

Beyond Gaia DR3: tracing the $[\alpha/M] - [M/H]$ bimodality from the Inner to the outer Milky Way disc with Gaia RVS and **Convolutional Neural-Networks**

Guillaume Guiglion (GG; LSW / MPIA, guiglion@mpia.de) & Samir Nepal (AIP)

The Milky Way Revealed by Gaia: The Next Frontier (Sept. 5-7, 2023)

Galactic Archaeology

 \rightarrow studying the formation and evolution of the Milky Way and it's local volume

 \rightarrow need for stellar chemistry, kinematics & ages

Huge data analysis challenge !!

What Gaia DR3 gave us:

\rightarrow 220 millions BP&RP spectra R~30-100 (De Angeli et al. 2022)

- \rightarrow 1.5x10⁹ parallaxes (Lindegren et al. 2021)
- \rightarrow 1.8x10⁹ G mags
- → 1.5x10⁹ BP & RB mags

→ See Recio-Blanco et al. 2023 + talk for standard spectroscopic analysis of RVS spectra

Can we exploit in a homogeneous way Gaia spectra (RVS + BP/RP) magnitudes (G, Bp, Rp) and parallaxes for supercharged stellar parametrization?

Analysis of the 1 million Gaia RVS-spectra with CNNs

Beyond *Gaia* DR3: tracing the $[\alpha/M] - [M/H]$ bimodality from the Inner to the outer Milky Way disc with Gaia RVS and Convolutional Neural-Networks

G. Guiglion¹, S. Nepal^{2,3}, C. Chiappini², S. Khoperskov², G. Traven⁴, A. B. A. Queiroz², M. Steinmetz², M. Valentini², Y. Fournier², A. Vallenari⁵, K. Youakim⁶, M. Bergemann¹, S. Mészáros^{7,8}, S. Lucatello^{9,10}, R. Sordo⁵, S. Fabbro¹¹, I. Minchev², G. Tautvaišienė¹², Š. Mikolaitis¹², J. Montalbán¹³

- \rightarrow Under revision :)
- Motivations and goals:
- → Use homogeneously the full Gaia data product
- \rightarrow Leverage the low-S/N RVS sample No GSP-Spec labels with 13 "good" flags within 15<S/N<25
- \rightarrow Set the machine-learning path for Gaia data analysis (DR4 in 2025, DR5 in 2027)

RVS sample

Our experience with CNNs and Gaia-like spectra

→ GG et al. 2020: 1st application of CNNs combining RAVE spectra, Gaia magnitudes, and parallaxes

→ Recent CNN developments in Nepal, GG et al. 2023 and Ambrosch, GG et al. 2023

Analysis of the 1 million Gaia RVS-spectra with CNNs

Training sample

Knowledge transfer from high-quality high-res APOGEE labels T_{eff}, log(g), [M/H], [α/M], [Fe/H] to intermediate-res RVS

gaia R~11400

A hybrid Convolutional Neural-Network for Gaia-RVS analysis

→ Observed sample: 841300 RVS stars

→ Prediction time **3300 stars / second**

How to ensure that a label falls within the training sample limits ?

- \rightarrow Labels within T_{eff}, log(g), [M/H], [α /M], [Fe/H], G, and parallax limits of training sample.
- → t-SNE classification of RVS spectra

 \rightarrow 644287 RVS stars within TS

Robust estimates of T_{eff}, log(g), [M/H] for 690000 Gaia stars

GG, Nepal et al. 2023

 \rightarrow By adding magnitudes, parallaxes and XP data, CNN is able to break spectral degeneracies in Gaia RVS spectra.

 \rightarrow CNN results are as good as the training set can be.

CNN performances for halo stars \rightarrow 15<S/N<25

 \rightarrow CNN provides precise and accurate labels down to [M/H]=-2.4 dex

Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

15<S/N<25

Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

Why using CNN on low-res spectra ?

 \rightarrow 4MIDABLE-LR Disc and Bulge surveys (Chiappini et al. 2019)

 Eu
 α-like

 Nd
 α-like

 Pr
 odd-Z

 Ea
 Fe-peak

 Ba
 s-process

 Y
 C/CH/CN

 Ni
 C/CH/CN

 Ni
 G

 Fe
 G

 Mn
 G

 Cr
 G

 Y
 G

 Sc
 G

 Ca
 G

 Mn
 G

 Cr
 G

 Y
 G

 Sc
 G

 Ca
 G

 Mn
 G

 G
 G

 Mn
 G

 G
 G

 Sc
 G

 Si
 G

 Ma
 G

 Ma
 G

 Ma
 G

4MIDABLE-LR ESO proposal 2020
 → Developing CNN for 4MIDABLE-LR D1(>) spectral analysis.

6000

wavelength (Å)

7000

8000

9000

5000

O C/CH/CN

4000

4MIDABLE-LR ESO proposal 2020

Summary:

- Hybrid CNN is an optimal method for combining full Gaia data product $\rightarrow\,$ Leveraging the large set of low S/N RVS spectra
- CNN parametrization is fast and robust (several 10³ stars per second)

Insights:

- Future spectroscopic surveys will strongly benefit from CNNs
- Standard spec. and ML methods complement each other
- CNN parametrization mainly reliable within the training sample limits \rightarrow The training sample should be built in a pro-active way

guiglion@mpia.de

