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Abstract 

Topological indices are graph-theoretically based characteristics that allow for the 

characterization of a molecular structure's underlying connectivity. Degree-based topological 

indices have been the subject of substantial research and have been connected to numerous 

chemical characteristics. Gaining relevance is the study of graph entropy indices as a tool for 

characterizing structural features and as a gauge of the complexity of the connectivity 

underneath them. The focus of current research is on substructures like beta graphene (β-GN), 

that are generated from hexagonal honeycomb graphite lattices. In this study, we investigate 

R, S and Van topological indices of beta graphene structures by using Shannon's entropy 

model, we generated the graph-based entropies of these structures. 
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1. Introduction 

Topological indices, which are structural invariants 

generated from molecular graphs and determine the 

fundamental connectivity of the molecular network, have 

drawn a lot of attention in recent years due to their applications 

in quantitative structure-activity and quantitative structure-

property relationships (QSPR) relations [1-4]. The 

physicochemical properties of molecular structures have been 

predicted using degree-based topological indices, which have 

been the subject of substantial research [1–5]. Through 

information entropy measurements, the information 

complexity of complicated chemical structures like GN, GY, 

and GDY can be identified. The idea of information entropy 

was initially developed by Shannon to study and measure the 

complexity of data and information transmission, but it has 

since been widely used in a range of scientific domains. 

Studying the complexity of molecular structures and their 

quantum chemical electron densities [6] is one of the most 

significant uses of information entropy. 

  

In QSAR and QSPR research, topological indices combined 

with entropy metrics may be a more effective tool. 

Information entropy has been discovered to directly correlate 

with the physical characteristics of fullerenes, including their 

formal carbon atom oxidation states and rotational symmetry 

numbers in several types of natural substances [7]. 

Due to its promising characteristics, including variable band 

gaps, charge-carrier mobilities, and energy level alignment, 

two-dimensional (2D) derivatives of graphite structures like 

GN, GY, and GDY are becoming more and more significant. 

GN is a 2D sheet made up of hexagons and carbon atoms that 

have undergone sp2 hybridization. It has attracted significant 

interest due to its remarkable physical, thermal, mechanical, 

chemical, and electrical properties [8,9]. Since 2010 when 

"groundbreaking experiments relating to the 2D substance 

graphene" won the Nobel Prize in Physics, GN-based 

materials have drawn a lot of interest [10]. The states of sp2 

atoms remain comparable when the bonds connecting three 

coordinated atoms in a GN layer are replaced by carbyne 

chains, and GY layers are created [11]. GYs are 2D materials 

created by adding acetylenic linkages to honeycomb structures 

made of C atoms that have undergone sp hybridization. 

Because acetylenic groups are present, these structures exhibit 

a wide variety of electrical, optical, and mechanical properties 

[12]. The first synthetic carbon-based nanomaterial, GDY, 

contains carbon atoms that are sp2 hybridized with benzene 

rings and sp hybridized with acetenyl groups. This brand-new 

substance, which contains both sp2 and sp hybridized carbon 

atoms, has been created [13]. The most popular GN and its 

variant configurations are the α,β,γ-type architectures [14]. 

Topological indices related to α-type structures have been 

examined among them [15-17]. Due to their significant 

applications, topological descriptors for the and structures of 

the GNs have not yet been explored; however, this calls for 
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further research into the topological indices of these various 

networks in order to compare and contrast the complexity of 

these structures [18]. Additionally, fluctuations in the relative 

entropies of the various types of structures would accompany 

phase transitions between them, and these variations might be 

well recorded by the topologically based entropy 

measurements that we propose here.  

For use in a variety of fields, including energy, the 

environment, future materials, bio-medicine, biosensor, and 

heat-sink applications, GN has a number of distinctive 

properties. GN is used in a variety of products, including 

lithium-ion batteries, flexible or micro-supercapacitors, 

lithium-air batteries, lithium-sulfur batteries, electrodes for 

fuel cells, and solar cells [18]. Because of GN's exceptional 

thermal conductivity, high opacity, and high chemical 

reactivity, scientists are considering employing it in the 

biomedical sector[18]. Because of its great conductivity, GN 

is a fantastic material for use in high-speed electronics. GN 

could be utilized as an energy storage device in the 

construction of supercapacitors and nonvolatile memory due 

to its huge inner surface area [9]. The loading and release of 

the medication is challenging to control since GN derivatives 

clump in salt or biological solutions and have some 

cytotoxicity, despite the fact that they might be employed for 

drug delivery [19]. Due to the presence of acetylenic groups, 

GYs are thought to have potential uses in optoelectronic 

devices [20]. 

Small GY flakes can be dispersed throughout a polymer 

matrix in composite materials to increase stiffness and 

strength. The band gap of GY can be mechanically changed, 

according to computational research, making it possible to 

produce transistors with a variety of characteristics that 

depend on the band gap with relative ease. Due of GY's 

enormous elastic strain range, it is possible to repeatedly 

stretch it without permanently changing its shape. As a result, 

it has reliable electromechanical coupling for a variety of uses, 

including temperature monitoring [21,22]. Field-Effect 

Transistors (FETs), solar cells, and a range of other 

applications [24,25] are just a few examples where GDY's 

exceptional electrical properties are used.  

Degree based and neighboring sum degree based entropies of 

the β-GN, β-GY, and β-GDY and structures have been 

calculted in the references [26,27].  

In this work, we investigate the R, S, and Van topological 

indices and related entropy measures for the β-GN structures. 

2. Topological indices and entropies 

Let G be a chemical graph and v a vertex(atom) of G. The 

degree of vertex v, denoted as deg(v), is the total number of 

edges which is incident to v. 𝑁(𝑣) is the set of all neighbouring 

vertices of v. The sum degree of the vertex v, denoted as 𝑆𝑣, is 

the total number of all the degrees of neighbouring vertices of 

v. The multiplication degree of the vertex v, denoted as 𝑀𝑣, is 

the multiplication of total number of all the degrees of 

neighbouring vertices of v. Van degree of the vertex v, defined 

as; 𝑣𝑎𝑛(𝑣) =
𝑆𝑣

𝑀𝑣
  [28]. Also, reverse Van degree of the vertex 

v, defined as; 𝑟𝑣𝑎𝑛(𝑣) =
𝑀𝑣

𝑆𝑣
 . Van topological indices defined 

as [28]; 

The first Van index of a simple connected graph G defined 

as; 𝑉𝑎𝑛1(𝐺) = ∑ 𝑣𝑎𝑛(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second Van index of a simple connected graph G 

defined as; 𝑉𝑎𝑛2(𝐺) = ∑ 𝑣𝑎𝑛(𝑢)𝑣𝑎𝑛(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third Van index of a simple connected graph G defined 

as; 𝑉𝑎𝑛3(𝐺) = ∑ [𝑣𝑎𝑛(𝑢) + 𝑣𝑎𝑛(𝑣)]𝑢𝑣∈𝐸(𝐺) . 

The first reverse Van index of a simple connected graph G 

defined as; 𝑉𝑎𝑛1𝑟(𝐺) = ∑ 𝑟𝑣𝑎𝑛(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second reverse Van index of a simple connected graph 

G defined as; 𝑉𝑎𝑛2𝑟(𝐺) = ∑ 𝑟𝑣𝑎𝑛(𝑢)𝑟𝑣𝑎𝑛(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third reverse Van index of a simple connected graph G 

defined as; 𝑉𝑎𝑛3𝑟(𝐺) = ∑ [𝑟𝑣𝑎𝑛(𝑢) + 𝑟𝑣𝑎𝑛(𝑣)]𝑢𝑣∈𝐸(𝐺) . 

R degree of the vertex v, defined as; 𝑟(𝑣) = 𝑀𝑣 + 𝑆𝑣  [29]. 

Also, reverse R degree of the vertex v, defined as; 𝑟𝑟(𝑣) =
1

𝑀𝑣+𝑆𝑣
. R topological indices defined as [29]: 

The first R index of a simple connected graph G defined as; 

𝑅1(𝐺) = ∑ 𝑟(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second R index of a simple connected graph G defined 

as; 𝑅2(𝐺) = ∑ 𝑟(𝑢)𝑟(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third R index of a simple connected graph G defined 

as; 𝑅3(𝐺) = ∑ [𝑟(𝑢) + 𝑟(𝑣)]𝑢𝑣∈𝐸(𝐺) . 

The first reverse R index of a simple connected graph G 

defined as; 𝑅1𝑟(𝐺) = ∑ 𝑟𝑟(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second reverse R index of a simple connected graph G 

defined as; 𝑅2𝑟(𝐺) = ∑ 𝑟𝑟(𝑢)𝑟𝑟(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third reverse R index of a simple connected graph G 

defined as; 𝑅3𝑟(𝐺) = ∑ [𝑟𝑟(𝑢) + 𝑟𝑟(𝑣)]𝑢𝑣∈𝐸(𝐺) . 

S degree of the vertex v, defined as; 𝑠(𝑣) = |𝑀𝑣 − 𝑆𝑣| [30]. 

Also, reverse S degree of the vertex v, defined as; 𝑟𝑠(𝑣) =
1

|𝑀𝑣−𝑆𝑣|+1
 . R topological indices defined as [30]: 

The first S index of a simple connected graph G defined as; 

𝑆1(𝐺) = ∑ 𝑠(𝑣)2
𝑣∈𝑉(𝐺)  . 

The second S index of a simple connected graph G defined 

as; 𝑆2(𝐺) = ∑ 𝑠(𝑢)𝑠(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third S index of a simple connected graph G defined 

as; 𝑆3(𝐺) = ∑ [𝑠(𝑢) + 𝑠(𝑣)]𝑢𝑣∈𝐸(𝐺) . 

The first reverse S index of a simple connected graph G 

defined as; 𝑆1𝑟(𝐺) = ∑ 𝑟𝑠(𝑣)2
𝑣∈𝑉(𝐺)  . 
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The second reverse S index of a simple connected graph G 

defined as; 𝑆2𝑟(𝐺) = ∑ 𝑟𝑠(𝑢)𝑟𝑠(𝑣)𝑢𝑣∈𝐸(𝐺) . 

The third reverse S index of a simple connected graph G 

defined as; 𝑆3𝑟(𝐺) = ∑ [𝑟𝑠(𝑢) + 𝑟𝑠(𝑣)]𝑢𝑣∈𝐸(𝐺) . 

Entropy is a measure of the unpredictable nature of pertinent 

information or a technique to gauge the uncertainty of a 

system, according to Shannon's fundamental work. The 

modern information theory was founded on the findings of this 

research. The structural informativeness of a network has been 

measured using entropy formulas [31]. Though information 

theory was first only employed in linguistics and electrical 

engineering, its adaptability led to its usage in fields like 

biology and chemistry [32] as well as graph theory for 

chemical networks. In order to measure the topological 

information of chemical networks and graphs, the concept of 

graph entropy was proposed. Based on the orbits of the vertex 

points, Rashevsky [33] created the idea of graph entropy. 

Mathematicians can associate graph elements like edges and 

vertices with probability distributions using the graph entropy 

measures, which are divided into intrinsic and extrinsic 

measures. Numerous disciplines, such as chemistry, ecology, 

sociology, and biology, use graph entropies extensively 

[34,35]. Dehmer developed graph entropies based on 

information functionals, analyzed their characteristics, and 

introduced them [36,37]. In addition to analyzing the walk-

based graph entropies, Estrada et al. [38] presented a 

physically sound measure of graph entropy. Applications for 

entropy network measurements include investigating the 

biological and chemical properties of molecular graphs as well 

as quantitatively defining a molecular structure [39]. There are 

numerous uses for entropy metrics in the study of chemical 

graphs. They are used to examine chemical characteristics of 

complicated networks. According to the definition of 

topological index T based Shannon’s entropy [40] for 2D 

networks, calculated as,  

𝑬𝒏𝒕𝒓𝒐𝒑𝒚𝑻(𝑮) = 𝑬𝒏𝒕𝑻(𝑮) 

= 𝒍𝒐𝒈(𝑻(𝑮)) −
𝟏

𝑻(𝑮)
∑ 𝒇(𝒖𝒗)𝒍𝒐𝒈(𝒇(𝒖𝒗))𝒖𝒗∈𝑬(𝑮)                (1) 

where f is the topological index's structural-functional 

identifier. In the case of the second Van index, for instance  

𝒇(𝒖𝒗) = 𝒗𝒂𝒏(𝒖)𝒗𝒂𝒏(𝒗) and in the case of the third Van 

index, for instance 𝒇(𝒖𝒗) = 𝒗𝒂𝒏(𝒖) + 𝒗𝒂𝒏(𝒗).  

3. Main results 

In this section we firstly calculate Van, R, S topological 

indcies and after that corresponding entropies of these indices 

for beta graphene families. According to its structural 

similarities to graphite, fullerene, carbon nanotubes, 

graphyne, and other closely related materials including 

amorphous carbon, carbon fiber, and charcoal, as well as 

aromatic compounds like polycyclic aromatic hydrocarbons, 

graphene can be seen as the fundamental building block of 

these materials. Despite having extremely various sizes and 

shapes, they all have some characteristics because they have 

the same structural makeup. As a result, understanding the 

above-mentioned materials is aided by the structural research 

of graphene. Figure 1 shows that the (2,1)  beta graphene (β-

GN(2,1)). It follows that the vertex set V(β-GN(m,n)) = 12mn 

+ 2m + 10n and the edge set E(β-GN(m,n)) = 18mn + m + 11n 

make up the β-GN(m, n).  

 

 

Figure 1  2D model for beta graphene β-GN(2,1) 

 

 β-GN(m,n) beta graphene has the following sum and multiplication 

edge end vertex degree partitions which are shown in Table 1.  

Table 1 Edge end vertex sum and multiplication degree partition of 

β-GN(m,n). 

Cardinality (𝑆𝑢, 𝑆𝑣) (𝑀𝑢, 𝑀𝑣) 

4𝑚 + 2𝑛 (5,5) (6,6) 

4𝑚 + 8 (5,7) (6,12) 

4𝑚 + 4𝑛 − 8 (5,8) (6,18) 

2𝑚 + 4 (7,9) (12,27) 

4𝑚 − 8 (8,8) (18,18) 



Graphs and Linear Algebra 1(2023), 20-33                      http://www.ffspublishing.com.tr/gala.html                                        ISSN: 2636-7947 
DOI: http://www.doi.org/10.5281/zenodo.8362835 

 
 

 23  
 

8𝑚 + 4𝑛 − 12 (8,9) (18,27) 

18𝑚𝑛 − 21𝑚 − 𝑛

+ 10 

(9,9) (27,27) 

 

With the help of Table 1, the Van, R and S edge end vertex degree 

partitions of β-GN(m,n) are calculated and given in Tables 2-4. 

Table 2 Van edge end vertex degree partition of β-GN(m,n) 

Cardinality (𝑣𝑎𝑛(𝑢), 𝑣𝑎𝑛(𝑣)) (𝑟𝑣𝑎𝑛(𝑢), 𝑟𝑣𝑎𝑛(𝑣)) 

4𝑚 + 2𝑛 (5/6,5/6) (6/5,6/5) 

4𝑚 + 8 (5/6,7/12) (6/5,12/7) 

4𝑚 + 4𝑛 − 8 (5/6,4/9) (6/5,9/4) 

2𝑚 + 4 (7/12,1/3) (12/7,3) 

4𝑚 − 8 (4/9,4/9) (9/4,9/4) 

8𝑚 + 4𝑛

− 12 

(4/9,1/3) (9/4,3) 

18𝑚𝑛 − 21𝑚

− 𝑛 + 10 

(1/3,1/3) (3,3) 

 

Table 3 S edge end vertex degree partition of β-GN(m,n) 

Cardinality (𝑠(𝑢), 𝑠(𝑣)) (𝑟𝑠(𝑢), 𝑟𝑠(𝑣)) 

4𝑚 + 2𝑛 (1,1) (1/2,1/2) 

4𝑚 + 8 (1,5) (1/2,1/6) 

4𝑚 + 4𝑛 − 8 (1,10) (1/2,1/11) 

2𝑚 + 4 (5,18) (1/6,1/19) 

4𝑚 − 8 (10,10) (1/11,1/11) 

8𝑚 + 4𝑛

− 12 

(10,18) (1/11,1/19) 

18𝑚𝑛 − 21𝑚

− 𝑛 + 10 

(18,18) (1/19,1/19) 

 

Table 4 R edge end vertex degree partition of of β-GN(m,n) 

Cardinality (𝑟(𝑢), 𝑟(𝑣)) (𝑟𝑟(𝑢), 𝑟𝑟(𝑣)) 

4𝑚 + 2𝑛 (11,11) (1/11,1/11) 

4𝑚 + 8 (11,19) (1/11,1/19) 

4𝑚 + 4𝑛 − 8 (11,26) (1/11,1/26) 

2𝑚 + 4 (19,36) (1/19,1/36) 

4𝑚 − 8 (26,26) (1/26,1/26) 

8𝑚 + 4𝑛

− 12 

(26,36) (1/27,1/36) 

18𝑚𝑛 − 21𝑚

− 𝑛 + 10 

(36,36) (1/36,1/36) 

 

3.1 Topological indices beta graphene 

The following theorems give the overall Van, R, and S indices 

representation of β-GN(m,n). 

Theorem 1. Let β-GN(m,n) be a beta graphene network. Then, the 

second Van index of β-GN(m,n) is; 

𝑉𝑎𝑛2(β − GN(m, n) ) = 2𝑚𝑛 +
505

81
𝑚 +

181

54
𝑛 −

44

81
 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑉𝑎𝑛2(β − GN(m, n) ) = ∑ 𝑣𝑎𝑛(𝑢)𝑣𝑎𝑛(𝑣)
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 2; 

𝑉𝑎𝑛2(β − GN(m, n) )

= (4𝑚 + 2𝑛) ×
5

6
×

5

6
+ (4𝑚 + 8) ×

5

6
×

7

12

+ (4𝑚 + 4𝑛 − 8) ×
5

6
×

4

9
 

+(2𝑚 + 4) ×
7

12
×

1

3
+ (4𝑚 − 8) ×

4

9
×

4

9

+ (8𝑚 + 4𝑛 − 12) ×
4

9
×

1

3
 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) ×
1

3
×

1

3
 

the conclusion follows. 

3D plot of the second Van index of beta graphene network, β-

GN(m,n), is shown in Figure 2. 

Theorem 2. Let β-GN(m,n) be a graphene network. Then, the 

second reverse Van index of β-GN(m,n) is; 

𝑉𝑎𝑛2𝑟(β − GN(m, n) ) = 162𝑚𝑛 −
55773

700
𝑚 +

792

25
𝑛 −

225

14
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Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑉𝑎𝑛2𝑟(𝐺β − GN(m, n) ) = ∑ 𝑟𝑣𝑎𝑛(𝑢)𝑟𝑣𝑎𝑛(𝑣)
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 2; 

𝑉𝑎𝑛2𝑟(β − GN(m, n) )

= (4𝑚 + 2𝑛) ×
6

5
×

6

5
+ (4𝑚 + 8) ×

6

5
×

12

7

+ (4𝑚 + 4𝑛 − 8) ×
6

5
×

9

4
 

+(2𝑚 + 4) ×
12

7
× 3 + (4𝑚 − 8) ×

9

4
×

9

4

+ (8𝑚 + 4𝑛 − 12) ×
9

4
× 3 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × 3 × 3 

the conclusion follows. 

3D plot of the second reverse Van index of beta graphene network, 

β-GN(m,n), is shown in Figure 3. 

 

 

Figure 2 3D plot of second Van index of β-GN(m,n) 

 

 

Figure 3 3D plot of second reverse Van index of β-GN(m,n) 

Theorem 3. Let β-GN(m,n) be a graphene network. Then, the 

third Van index of β-GN(m,n) is; 

𝑉𝑎𝑛3(β − GN(m, n)) = 12𝑚𝑛 +
271

18
𝑚 −

98

9
𝑛 − 5 

Proof. Considering that β-GN(m,n) is a beta graphene network. 

By definition; 

𝑉𝑎𝑛3(β − GN(m, n) ) = ∑ (𝑣𝑎𝑛(𝑢) + 𝑣𝑎𝑛(𝑣))
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 2; 

𝑉𝑎𝑛3(𝐺β − GN(m, n) )

= (4𝑚 + 2𝑛) × (
5

6
+

5

6
)

+ (4𝑚 + 8) × (
5

6
+

7

12
) + (4𝑚 + 4𝑛

− 8) × (
5

6
+

4

9
) 

+(2𝑚 + 4) × (
7

12
+

1

3
) + (4𝑚 − 8) × (

4

9
+

4

9
)

+ (8𝑚 + 4𝑛 − 12) × (
4

9
+

1

3
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × (
1

3
+

1

3
) 

the conclusion follows. 

3D plot of the third Van index of β-GN(m,n) network is shown in 

Figure 4. 

Theorem 4. Let β-GN(m,n) be a graphene network. Then, the 

third reverse Van index of β-GN(m,n) is; 

𝑉𝑎𝑛3𝑟(β − GN(m, n) ) = 108𝑚𝑛 −
753

35
𝑚 +

168

5
𝑛 −

171

7
 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 
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𝑉𝑎𝑛3𝑟(𝐺β − GN(m, n) )

= ∑ (𝑟𝑣𝑎𝑛(𝑢) + 𝑟𝑣𝑎𝑛(𝑣))
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 2; 

𝑉𝑎𝑛3𝑟(β − GN(m, n) )

= (4𝑚 + 2𝑛) × (
6

5
+

6

5
)

+ (4𝑚 + 8) × (
6

5
+

12

7
) + (4𝑚 + 4𝑛

− 8) × (
6

5
+

9

4
) 

+(2𝑚 + 4) × (
12

7
+ 3) + (4𝑚 − 8) × (

9

4
+

9

4
)

+ (8𝑚 + 4𝑛 − 12) × (
9

4
+ 3) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × (3 + 3) 

the conclusion follows. 

3D plot of the third reverse Van index of beta graphene network, β-

GN(m,n), is shown in Figure 5. 

 

 

Figure 4 3D plot of the third Van index of β-GN(m,n) 

Theorem 5. Let β-GN(m,n) be a beta graphene network. Then, the 

second S index of β-GN(m,n) is; 

𝑆2(β − GN(m, n) ) = 5832𝑚𝑛 − 4720𝑚 + 438𝑛 + 600 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑆2(β − GN(m, n) ) = ∑ 𝑠(𝑢)𝑠(𝑣)
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 3; 

𝑆2(β − GN(m, n) )
= (4𝑚 + 2𝑛) × 1 × 1 + (4𝑚 + 8) × 1 × 5

+ (4𝑚 + 4𝑛 − 8) × 1 × 10 

+(2𝑚 + 4) × 5 × 18 + (4𝑚 − 8) × 10 × 10

+ (8𝑚 + 4𝑛 − 12) × 10 × 18 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × 18 × 18 

the conclusion follows. 

3D plot of the second S index of beta graphene network, β-GN(m,n), 

is shown in Figure 6. 

 

 

 

 

Figure 5 3D plot of the third reverse Van index of β-GN(m,n) 
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Figure 6 3D plot of the second S index of β-GN(m,n) 

Theorem 6. Let β-GN(m,n) be a graphene network. Then, the 

second reverse S index of β-GN(m,n) is; 

𝑆2𝑟(β − GN(m, n) )

=
18

361
𝑚𝑛 +

202574

131043
𝑚 +

5545

7942
𝑛 +

31750

131043
 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑆2𝑟(𝐺β − GN(m, n) ) = ∑ 𝑟𝑠(𝑢)𝑟𝑠(𝑣)
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 3; 

𝑆2𝑟(β − GN(m, n) )

= (4𝑚 + 2𝑛) ×
1

2
×

1

2
+ (4𝑚 + 8) ×

1

2
×

1

6

+ (4𝑚 + 4𝑛 − 8) ×
1

2
×

1

11
 

+(2𝑚 + 4) ×
1

6
×

1

19
+ (4𝑚 − 8) ×

1

11
×

1

11

+ (8𝑚 + 4𝑛 − 12) ×
1

11
×

1

19
 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) ×
1

19
×

1

19
 

the conclusion follows. 

3D plot of the second reverse S index of beta graphene network, β-

GN(m,n), is shown in Figure 7. 

 

Figure 7 3D plot of the second reverse S index of β-GN(m,n) 

Theorem 7. Let β-GN(m,n) be a beta graphene network. Then, the 

third S index of β-GN(m,n) is; 

𝑆3(β − GN(m, n) ) = 648𝑚𝑛 − 330𝑚 + 124𝑛 − 84 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑆3(β − GN(m, n) ) = ∑ (𝑠(𝑢) + 𝑠(𝑣))
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 3; 

𝑆3(β − GN(m, n) )
= (4𝑚 + 2𝑛) × (1 + 1) + (4𝑚 + 8) × (1 + 5)

+ (4𝑚 + 4𝑛 − 8) × (1 + 10) 

+(2𝑚 + 4) × (5 + 18) + (4𝑚 − 8) × (10 + 10)

+ (8𝑚 + 4𝑛 − 12) × (10 + 18) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × (18 + 18) 

the conclusion follows. 

3D plot of the third S index of beta graphene network, β-GN(m,n), 

is shown in Figure 8. 



Graphs and Linear Algebra 1(2023), 20-33                      http://www.ffspublishing.com.tr/gala.html                                        ISSN: 2636-7947 
DOI: http://www.doi.org/10.5281/zenodo.8362835 

 
 

 27  
 

 

Figure 8 3D plot of the third S index of β-GN(m,n) 

Theorem 8. Let β-GN(m,n) be a graphene network. Then, the 

third reverse S index of β-GN(m,n) is; 

𝑆3𝑟(β − GN(m, n) ) =
36

19
𝑚𝑛 +

1909

209
𝑚 +

1010

209
𝑛 −

134

209
 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑆3𝑟(𝐺β − GN(m, n) ) = ∑ (𝑟𝑠(𝑢) + 𝑟𝑠(𝑣))
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 3; 

𝑆3𝑟(β − GN(m, n) )

= (4𝑚 + 2𝑛) × (
1

2
+

1

2
)

+ (4𝑚 + 8) × (
1

2
+

1

6
) + (4𝑚 + 4𝑛

− 8) × (
1

2
+

1

11
) 

+(2𝑚 + 4) × (
1

6
+

1

19
) + (4𝑚 − 8) × (

1

11
+

1

11
)

+ (8𝑚 + 4𝑛 − 12) × (
1

11
+

1

19
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × (
1

19
+

1

19
) 

the conclusion follows. 

3D plot of the third reverse S index of beta graphene network, β-

GN(m,n), is shown in Figure 9. 

 

Figure 9 3D plot of the third reverse S index of β-GN(m,n) 

Theorem 9. Let β-GN(m,n) be a beta graphene network. Then, the 

second R index of β-GN(m,n) is; 

𝑅2(β − GN(m, n) ) = 23328𝑚𝑛 − 13192𝑚 + 3834𝑛 − 1560 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑅2(β − GN(m, n) ) = ∑ 𝑟(𝑢)𝑟(𝑣)
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 4; 

𝑅2(β − GN(m, n) )
= (4𝑚 + 2𝑛) × 11 × 11

+ (4𝑚 + 8) × 11 × 19 + (4𝑚 + 4𝑛

− 8) × 11 × 26 

+(2𝑚 + 4) × 19 × 36 + (4𝑚 − 8) × 26 × 26

+ (8𝑚 + 4𝑛 − 12) × 26 × 36 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × 36 × 36 

the conclusion follows. 

3D plot of the second R index of beta graphene network, β-

GN(m,n), is shown in Figure 10. 
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Figure 10 3D plot of the second R index of β-GN(m,n) 

Theorem 10. Let β-GN(m,n) be a graphene network. Then, the 

second reverse R index of β-GN(m,n) is; 

𝑅2𝑟(β − GN(m, n) )

=
1

72
𝑚𝑛 +

101287067

1510608528
𝑚 +

207073

6115824
𝑛

−
2369

7629336
 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑅2𝑟(𝐺β − GN(m, n) ) = ∑ 𝑟𝑟(𝑢)𝑟𝑟(𝑣)
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 4; 

𝑅2𝑟(β − GN(m, n) )

= (4𝑚 + 2𝑛) ×
1

11
×

1

11

+ (4𝑚 + 8) ×
1

11
×

1

19
+ (4𝑚 + 4𝑛

− 8) ×
1

11
×

1

26
 

+(2𝑚 + 4) ×
1

19
×

1

36
+ (4𝑚 − 8) ×

1

26
×

1

26

+ (8𝑚 + 4𝑛 − 12) ×
1

27
×

1

36
 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) ×
1

36
×

1

36
 

the conclusion follows. 

3D plot of the second reverse R index of beta graphene network, β-

GN(m,n), is shown in Figure 11. 

Theorem 11. Let β-GN(m,n) be a beta graphene network. Then, the 

third R index of β-GN(m,n) is; 

𝑅3(β − GN(m, n) ) = 1296𝑚𝑛 − 342𝑚 + 368𝑛 − 276 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑅3(β − GN(m, n) ) = ∑ (𝑟(𝑢) + 𝑟(𝑣))
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 4; 

𝑅3(β − GN(m, n) )
= (4𝑚 + 2𝑛) × (11 + 11)

+ (4𝑚 + 8) × (11 + 19) + (4𝑚 + 4𝑛

− 8) × (11 + 26) 

+(2𝑚 + 4) × (19 + 36) + (4𝑚 − 8) × (26 + 26)

+ (8𝑚 + 4𝑛 − 12) × (26 + 36) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × (36 + 36) 

the conclusion follows. 

3D plot of the third R index of beta graphene network, β-GN(m,n), 

is shown in Figure 12. 

 

 

Figure 11 3D plot of the second reverse R index of β-GN(m,n) 
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Figure 12 3D plot of the third  R index of β-GN(m,n) 

Theorem 12. Let β-GN(m,n) be a graphene network. Then, the 

third reverse R index of β-GN(m,n) is; 

𝑅3𝑟(β − GN(m, n) ) = 𝑚𝑛 +
120256

73359
𝑚 +

8377

7722
𝑛 −

895

2223
 

Proof. Considering that β-GN(m,n) is a beta graphene network. By 

definition; 

𝑅3𝑟(𝐺β − GN(m, n) ) = ∑ (𝑟𝑟(𝑢) + 𝑟𝑟(𝑣))
𝑢𝑣∈𝐸(β−GN(m,n) )

 

As a result by using Table 4; 

𝑅3𝑟(β − GN(m, n) )

= (4𝑚 + 2𝑛) × (
1

11
+

1

11
)

+ (4𝑚 + 8) × (
1

11
+

1

19
) + (4𝑚 + 4𝑛

− 8) × (
1

11
+

1

26
) 

+(2𝑚 + 4) × (
1

19
+

1

36
) + (4𝑚 − 8) × (

1

26
+

1

26
)

+ (8𝑚 + 4𝑛 − 12) × (
1

27
+

1

36
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × (
1

36
+

1

36
) 

the conclusion follows. 

3D plot of the third reverse R index of beta graphene network, β-

GN(m,n), is shown in Figure 13. 

 

Figure 13 3D plot of the third reverse R index of β-GN(m,n) 

 

3.2 Entropies of  beta graphene 

The following theorems give the overall entropies which are based 

on Van, R, and S indices representation of β-GN(m,n). 

Theorem 13. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the second Van index of β-GN(m,n) 

is; 

𝐸𝑛𝑡𝑉𝑎𝑛2(𝐺) = log (2𝑚𝑛 +
505

81
𝑚 +

181

54
𝑛 −

44

81
)

−
1

2𝑚𝑛 +
505
81

𝑚 +
181
54

𝑛 −
44
81

((4𝑚 + 2𝑛)

×
25

36
× log (

25

36
) + (4𝑚 + 8) ×

35

72
× log (

35

72
)

+ (4𝑚 + 4𝑛 − 8) ×
10

27
× log (

10

27
) 

+(2𝑚 + 4) ×
7

36
× log (

7

36
) + (4𝑚 − 8) ×

16

81
× log (

16

81
)

+ (8𝑚 + 4𝑛 − 12) ×
4

27
× log (

4

27
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) ×
1

9
× log (

1

9
)) 

 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑉𝑎𝑛2(𝐺) = 𝑙𝑜𝑔(𝑉𝑎𝑛2(𝐺))

−
1

𝑉𝑎𝑛2(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 1, the conclusion follows. 
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Theorem 14. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the second reverse Van index of β-

GN(m,n) is;  

 𝐸𝑛𝑡𝑉𝑎𝑛2𝑟(𝐺) =  𝑙𝑜𝑔 (162𝑚𝑛 −
55773

700
𝑚 +

792

25
𝑛 −

225

14
) −

1

162𝑚𝑛−
55773

700
𝑚+

792

25
𝑛−

225

14
𝐺)

((4𝑚 + 2𝑛) ×
36

25
× log (

36

25
) + (4𝑚 + 8) ×

72

35
× log (

72

35
) + (4𝑚 + 4𝑛 − 8) ×

27

10
× log (

27

10
) 

+(2𝑚 + 4) ×
36

7
× log (

36

7
) + (4𝑚 − 8) ×

81

16
× log (

81

16
)

+ (8𝑚 + 4𝑛 − 12) ×
27

4
× log (

27

4
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × 9 × log (9)) 

 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑉𝑎𝑛2𝑟(𝐺) = 𝑙𝑜𝑔(𝑉𝑎𝑛2𝑟(𝐺))

−
1

𝑉𝑎𝑛2𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 2, the conclusion follows. 

 

Theorem 15. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the third Van index of β-GN(m,n) 

is;  

 𝐸𝑛𝑡𝑉𝑎𝑛3(𝐺) =  𝑙𝑜𝑔 (12𝑚𝑛 +
271

18
𝑚 −

98

9
𝑛 − 5) −

1

12𝑚𝑛+
271

18
𝑚−

98

9
𝑛−5

((4𝑚 + 2𝑛) ×
5

3
× log (

5

3
) + (4𝑚 + 8) ×

17

12
×

log (
17

12
) + (4𝑚 + 4𝑛 − 8) ×

23

18
× log (

23

18
) 

+(2𝑚 + 4) ×
11

12
× log (

11

12
) + (4𝑚 − 8) ×

8

9
× log (

8

9
)

+ (8𝑚 + 4𝑛 − 12) ×
7

9
× log (

7

9
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) ×
2

3
× log (

2

3
)) 

 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑉𝑎𝑛3(𝐺) = 𝑙𝑜𝑔(𝑉𝑎𝑛3(𝐺))

−
1

𝑉𝑎𝑛3(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 3, the conclusion follows. 

 

Theorem 16. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the third reverse Van index of β-

GN(m,n) is;  

 𝐸𝑛𝑡𝑉𝑎𝑛3𝑟(𝐺) =  𝑙𝑜𝑔 (108𝑚𝑛 −
753

35
𝑚 +

168

5
𝑛 −

171

7
) −

1

108𝑚𝑛−
753

35
𝑚+

168

5
𝑛−

171

7

((4𝑚 + 2𝑛) ×
12

5
× log (

12

5
) + (4𝑚 + 8) ×

102

35
× log (

102

35
) + (4𝑚 + 4𝑛 − 8) ×

69

20
× log (

69

20
) 

+(2𝑚 + 4) ×
33

7
× log (

33

7
) + (4𝑚 − 8) ×

9

2
× log (

9

2
)

+ (8𝑚 + 4𝑛 − 12) ×
21

4
× log (

21

4
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × 6 × log (6)) 

 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑉𝑎𝑛3𝑟(𝐺) = 𝑙𝑜𝑔(𝑉𝑎𝑛3𝑟(𝐺))

−
1

𝑉𝑎𝑛3𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 4, the conclusion follows. 

 

Theorem 17. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the second S index of β-GN(m,n) is;  

 𝐸𝑛𝑡𝑆2(𝐺) =  𝑙𝑜𝑔(5832𝑚𝑛 − 4720𝑚 + 438𝑛 + 600) −
1

5832𝑚𝑛−4720𝑚+438𝑛+600
((4𝑚 + 2𝑛) × 2 × log (2) + (4𝑚 + 8) ×

5 × log (5) + (4𝑚 + 4𝑛 − 8) × 10 × log (10) 

+(2𝑚 + 4) × 90 × log (90) + (4𝑚 − 8) × 100 × 2log (10)

+ (8𝑚 + 4𝑛 − 12) × 180 × log (180) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × 324 × 2log (18)) 

 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑆2(𝐺) = 𝑙𝑜𝑔(𝑆2(𝐺))

−
1

𝑆2(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 5, the conclusion follows. 

 

Theorem 18. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the second reverse S index of β-

GN(m,n) is;  
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 𝐸𝑛𝑡𝑆2𝑟(𝐺) =  𝑙𝑜𝑔 (
18

361
𝑚𝑛 +

202574

131043
𝑚 +

5545

7942
𝑛 +

31750

131043
) −

1
18

361
𝑚𝑛+

202574

131043
𝑚+

5545

7942
𝑛+

31750

131043

((4𝑚 + 2𝑛) ×
1

4
× log (

1

4
) + (4𝑚 + 8) ×

1

12
× log (

1

12
) + (4𝑚 + 4𝑛 − 8) ×

1

22
× log (

1

22
) 

+(2𝑚 + 4) ×
1

114
× log (

1

114
) + (4𝑚 − 8) ×

1

121
× log (

1

121
)

+ (8𝑚 + 4𝑛 − 12) ×
1

209
× log (

1

209
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) ×
1

361
× log (

1

361
)) 

 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑆2𝑟(𝐺) = 𝑙𝑜𝑔(𝑆2𝑟(𝐺))

−
1

𝑆2𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 6, the conclusion follows. 

 

Theorem 19. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the third S index of β-GN(m,n) is;  

 𝐸𝑛𝑡𝑆3(𝐺) =  𝑙𝑜𝑔(648𝑚𝑛 − 330𝑚 + 124𝑛 − 84) −
1

648𝑚𝑛−330𝑚+124𝑛−84
((4𝑚 + 2𝑛) × 2 × log (2) + (4𝑚 + 8) × 6 ×

log (6) + (4𝑚 + 4𝑛 − 8) × 11 × log (11) 

+(2𝑚 + 4) × 23 × log (23) + (4𝑚 − 8) × 20 × log (20)

+ (8𝑚 + 4𝑛 − 12) × 28 × log (28) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × 36 × log (36)) 

 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑆3(𝐺) = 𝑙𝑜𝑔(𝑆3(𝐺))

−
1

𝑆3(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 7, the conclusion follows. 

 

Theorem 20. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the third reverse S index of β-

GN(m,n) is;  

 𝐸𝑛𝑡𝑆3𝑟(𝐺) =  𝑙𝑜𝑔 (
36

19
𝑚𝑛 +

1909

209
𝑚 +

1010

209
𝑛 −

134

209
) −

1
36

19
𝑚𝑛+

1909

209
𝑚+

1010

209
𝑛−

134

209

((4𝑚 + 8) ×
2

3
× log (

2

3
) + (4𝑚 + 4𝑛 − 8) ×

13

22
× log (

13

22
) 

+(2𝑚 + 4) ×
25

114
× log (

25

114
) + (4𝑚 − 8) ×

2

11
× log (

2

11
)

+ (8𝑚 + 4𝑛 − 12) ×
30

209
× log (

30

209
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) ×
2

19
× log (

2

19
)) 

 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑆3𝑟(𝐺) = 𝑙𝑜𝑔(𝑆3𝑟(𝐺))

−
1

𝑆3𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 8, the conclusion follows. 

Theorem 21. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the second R index of β-GN(m,n) 

is;  

 𝐸𝑛𝑡𝑅2(𝐺) =  𝑙𝑜𝑔(23328𝑚𝑛 − 13192𝑚 + 3834𝑛 − 1560) −
1

23328𝑚𝑛−13192𝑚+3834𝑛−1560
((4𝑚 + 2𝑛) × 121 × 2log (11) +

(4𝑚 + 8) × 209 × log (209) + (4𝑚 + 4𝑛 − 8) × 286 ×

log (286) 

+(2𝑚 + 4) × 684 × log (684) + (4𝑚 − 8) × 676 × 2log (26)

+ (8𝑚 + 4𝑛 − 12) × 180 × log (180) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × 1296 × 4log (6)) 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑅2(𝐺) = 𝑙𝑜𝑔(𝑅2(𝐺))

−
1

𝑅2(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 9, the conclusion follows. 

 

Theorem 22. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the second reverse R index of β-

GN(m,n) is;  

 𝐸𝑛𝑡𝑅2𝑟(𝐺) =  𝑙𝑜𝑔 (
1

72
𝑚𝑛 +

101287067

1510608528
𝑚 +

207073

6115824
𝑛 −

2369

7629336
) −

1
1

72
𝑚𝑛+

101287067

1510608528
𝑚+

207073

6115824
𝑛−

2369

7629336

((4𝑚 + 2𝑛) ×
1

121
×

log (
1

121
) + (4𝑚 + 8) ×

1

209
× log (

1

209
) + (4𝑚 + 4𝑛 − 8) ×

1

286
×

log (
1

286
) 

+(2𝑚 + 4) ×
1

684
× log (

1

684
) + (4𝑚 − 8) ×

1

676
× log (

1

676
)

+ (8𝑚 + 4𝑛 − 12) ×
1

180
× log (

1

180
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) ×
1

1296
× log (

1

1296
)) 
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Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑅2𝑟(𝐺) = 𝑙𝑜𝑔(𝑅2𝑟(𝐺))

−
1

𝑅2𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 10, the conclusion follows. 

 

Theorem 23. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the third R index of β-GN(m,n) is;  

 𝐸𝑛𝑡𝑅3(𝐺) =  𝑙𝑜𝑔(1296𝑚𝑛 − 342𝑚 + 368𝑛 − 276) −
1

1296𝑚𝑛−342𝑚+368𝑛−276
((4𝑚 + 2𝑛) × 22 × log (22) + (4𝑚 +

8) × 30 × log (30) + (4𝑚 + 4𝑛 − 8) × 37 × log (37) 

+(2𝑚 + 4) × 45 × log (45) + (4𝑚 − 8) × 52 × log (52)

+ (8𝑚 + 4𝑛 − 12) × 62 × log (62) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) × 72 × log (72)) 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑅3(𝐺) = 𝑙𝑜𝑔(𝑅3(𝐺))

−
1

𝑅3(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 11, the conclusion follows. 

 

Theorem 24. Let G be a beta graphene network β-GN(m,n). Then, 

entropy of G which is based on the third reverse R index of β-

GN(m,n) is;  

 𝐸𝑛𝑡𝑅3𝑟(𝐺) =  𝑙𝑜𝑔 (𝑚𝑛 +
120256

73359
𝑚 +

8377

7722
𝑛 −

895

2223
) −

1

𝑚𝑛+
120256

73359
𝑚+

8377

7722
𝑛−

895

2223

((4𝑚 + 2𝑛) ×
2

11
× log (

2

11
) + (4𝑚 + 8) ×

30

209
× log (

30

209
) + (4𝑚 + 4𝑛 − 8) ×

37

286
× log (

37

286
) 

+(2𝑚 + 4) ×
55

684
× log (

55

684
) + (4𝑚 − 8) ×

1

13
× log (

1

13
)

+ (8𝑚 + 4𝑛 − 12) ×
63

972
× log (

63

972
) 

+(18𝑚𝑛 − 21𝑚 − 𝑛 + 10) ×
1

18
× log (

1

18
)) 

Proof. Considering that G is a beta graphene network. By definition; 

𝐸𝑛𝑡𝑅3𝑟(𝐺) = 𝑙𝑜𝑔(𝑅3𝑟(𝐺))

−
1

𝑅3𝑟(𝐺)
∑ 𝑓(𝑢𝑣)𝑙𝑜𝑔(𝑓(𝑢𝑣))

𝑢𝑣∈𝐸(𝐺)
 

As a result by using Theorem 12, the conclusion follows. 

4. Conclusions 

The generalized mathematical expression for R, S, and Van 

topological indices for structures of β-GN is described in this 

study. Information-theoretic entropy measurements of various 

phases of 2D materials of β-GN are provided by these 

generalized mathematical formulations. The structures 

examined here were shown to have very little variation in their 

entropies. These many phases of 2D materials made from 

graphite might be predicted in terms of their thermochemistry, 

physicochemical properties, electrical, optical, and 

mechanical characteristics using our proposed topological 

indices and entropy metrics. Additionally, these indices can be 

combined with metrics derived from quantum chemistry, such 

as molecular hardness, polarizability measures, atomic 

charges, etc., to create a platform that is robust in predicting 

molecular connectivity and electronic-based attributes. 

Numerous probabilistic entropy metrics are produced using 

the same indices that Shannon's formula uses to define the 

probability function. We create a connection between the 

degree-based entropies of and structures using their respective 

degree-based topological indices. By linking the architectures 

of and nanoribbons with a number of their physicochemical 

and optoelectronic properties, the results of this study could 

significantly advance QSAR and QSPR studies of these 

materials. 
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