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In this dissertation, we address the problem of vagueness in traditional legal 

contracts by presenting novel methodologies that aid in the paradigm shift from 

traditional legal contracts to smart contracts. We discuss key enabling technologies that 

assist in converting the traditional natural language legal contract, which is full of vague 

words, phrases, and sentences to the blockchain-based precise smart contract, including 

metrics evaluation during our conversion experiment. To address the challenge of this 

contract-transformation process, we propose four novel proof-of-concept approaches that 

take vagueness and different possible interpretations into significant consideration, where 

we experiment with popular vendors' existing vague legal contracts. We show through 

experiments that our proposed methodologies are able to study the degree of vagueness 

in every interpretation and  demonstrate which vendor's translated-smart contract can be 

more accurate, optimized, and have a lesser degree of vagueness. We also incorporated 

the method of fuzzy logic inside the blockchain-based smart contract, to successfully model 

the semantics of linguistic expressions. Our experiments and results show that the smart 

contract with the higher degrees of truth can be very complex technically but more 

accurate at the same time. By using fuzzy logic inside a smart contract, it becomes easier 

to solve the problem of contractual ambiguities as well as expedite the process of claiming 

compensation when implemented in a blockchain-based smart contract. 
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CHAPTER 1

INTRODUCTION AND MOTIVATION1

1.1. Digital Economy Revolution

First Industrial Revolution started when we witnessed the paradigm shift from an

agricultural and handicraft economy, where people used to produce goods by hand, to one

where people started to produce goods by machines. This was when the first automation

started on a mass scale in the late 1700s, and hence we used the phrase “industrial rev-

olution” [51]. Similarly, in the late 1800s, we climbed one more step of development and

built the electricity, telegraph, and railroad networks for a faster increase in productivity

and economic growth, which is known as the Second Industrial Revolution [121]. Likewise,

after 100 years, in the late 1900s, we saw an immense advancement in technology, especially

in computer and communication technologies and production processes, where the shift took

place from mechanical, analog, and electrical technology to digital electronics technology.

We call this period the Third Industrial Revolution or Digital Revolution [87]. Finally, we

are in what is known as the Fourth Industrial Revolution. Also known as Industry 4.0 [181],

we believe that the boundaries between the physical, digital, and biological worlds will be

hazy during this revolution as the world is already trending rapidly towards smart automa-

tion and data exchange, and due to this, the technologies are expected to cause disruption in

every aspect of the economy. As humans are already connected to each other by billions of

mobile devices, with the highest processing and storage capacity ever, and unlimited access

to information, these advancements in technology are even augmented with emerging tech-

nologies such as blockchain, artificial intelligence, extended realities, the internet of things,

and so on. Although it is in a germination phase now, digital economy [28] has a huge

potential to be one of the core parts of our fourth industrial revolution as it allows users to

1Portions of this chapter are reproduced from K. Upadhyay, R. Dantu, Y. He, A. Salau and S. Badruddoja,
“Paradigm Shift from Paper Contracts to Smart Contracts,” 2021 Third IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 2021,
pp. 261-268, doi: 10.1109/TPSISA52974.2021.00029. © 2021 IEEE. Reprinted, with permission.
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have unprecedented real-time interactions and decentralized experiences through the use of

current and future integrated digital platforms such as blockchain, smart contracts, artificial

intelligence, internet of things, and so forth.

1.1.1. Customer-Centric Economy

Just like technology, the economy is also ever-changing. Due to changing dynamics

of the economy, the organizations providing services and doing business have already shifted

their priorities to the customers. Instead of retaining complete power control over themselves

and having a long line of bureaucracy [45], business organizations and institutions have been

focusing on decentralization. This has been allowing the customers to gain more benefits

as, due to the decentralization approach, they can avoid the legal quagmire of mediators,

hence saving a lot of time and money. In addition to decentralization, due to the usage of

state-of-the-art technologies in recent times, the whole economy is reaping the benefits of

automation, accessibility, and security. For instance, when one person is selling the land to

another person, then, instead of going to the office, standing in a long queue, and waiting

for a long time due to the intermediaries and bureaucracy taking over the process, it is going

to happen almost instantly when compared. Therefore, the main objective of today’s and

the future economy is to be more customer-centric and always put the customer first [145].

1.1.2. Digital Assets and Their Digital Owners

Digital assets are something that has value, are uniquely identifiable, and are stored

in the crypto wallet and recorded on the blockchain ledger [30]. The person or organization

with the legal right and authority over digital assets is known as a digital owner. Digital

assets include graphics, videos, documents, manuscripts, project files, etc. In this new era

of the digital economy, there are many examples of digital assets, such as cryptocurrencies,

Non-fungible tokens (NFTs), arts and collectibles, virtual real estate, in-game items, etc.

The digital owners can use their digital assets for social networking, gaming, trading, remote

working, and digital events [30].
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Figure 1.1. Legal Contracts sits at the core of three major technologies that

are Digital/Virtual Economy, Blockchain, and Artificial intelligence [15].

1.1.3. Legal Contracts and Policies for Digital Economy

Legal contracts and policies always have been a core component of the economy re-

gardless of the time frame of the industrial revolution [103]. There are different kinds of

contracts that have been used for various purposes since the beginning of the first industrial

revolution for binding two or more parties in a lawful agreement. With the economy, con-

tracts also have evolved throughout time. In the digital economy, when the digital owners are

trading with their digital assets, the process still needs to be legally bound with agreements

between the involved parties that delineate the rules, rights, and obligations of each party

involved. The recent advancement in contracts, known as the smart contract, is starting to

get popular with the activities in the digital economy. A person selling their real estate title

to the other person via a blockchain-based smart contract without the need for any interme-

diary where all the events, activities, and transactions of every kind are recorded immutably

in a distributed, decentralized, and cryptographically secure manner in the blockchain is just

one example out of many in digital economy [93].

3



1.2. Real-World Knowledge and its Impact on Legal Contracts

Humans are excellent at understanding a concept quickly through abstraction rather

than precision. It is obvious that all human beings are from different backgrounds and

occupations. Hence, it has always been more natural for humans to communicate in ab-

straction and approximation. Due to this reason, the interpretation of real-world knowledge

in human beings can always differ. The incompleteness, inaccuracy, and inconsistency of

real-world knowledge in human beings due to their different background and knowledge pos-

session result in a phenomenon in semantics, metaphysics, and philosophical logic known as

vagueness.

Traditional 

Contract

Interpretation 2

Interpretation 5

Interpretation 1

Interpretation 4

Interpretation 3

Figure 1.2. One traditional contract can create multiple interpretations in

multiple parties due to its inherent vague nature

Vagueness arises when there are multiple meanings and interpretations from a single

source and also arises when the given information is incomplete, inaccurate, and inconsistent

[178]. Vagueness is inherent to traditional legal contracts as they are intentionally designed

and drafted by lawyers in such a way that it includes vague words and phrases for their

flexibility and open nature due to the uncertainty of the future [59]. Hence, the legal contract

can either be vague and fuzzy when it is unclear what the other party means or ambiguous

when one party is clear about what the other party means, but it could have several meanings.

Nevertheless, these phenomena in legal contracts invite plenty of serious problems when the

4



involved parties have different interpretations, confusion, and misunderstandings.

Although real-world knowledge can have various ways of classification, the following

concepts [4] are the ones that are more significant to understand and are also inherent to

traditional legal contracts.

• Incompleteness: Incompleteness is a situation when either one or both involved

parties in a legal contract do not possess all the parts and details that are needed

for that particular event or action and therefore are indeterminate [13]. As the

properties of real-world knowledge are continuously changing around us and will

always vary, hence knowledge is always and inevitably be incomplete.

• Inaccuracy: Inaccuracy is a situation when something is not precisely correct. In

the real world, although maximum precision in science is still the main objective

to quest after, at the same time, philosophically, it is immeasurable, as real-world

knowledge has unlimited degrees of truth. In some cases, real-world knowledge can

be accurate but again be outdated by new pieces of evidence or developments [142].

• Inconsistency: Inconsistency is when there is a lack of coherence and agreement as

various people from various backgrounds in the legal contract possess different levels

of real-world knowledge [81]. As knowledge obtained by people varies according to

country, culture, education, occupation, religion, gender, etc., it is not possible to

always have a unanimous decision and get the same result. It is only possible to

eliminate the inconsistency factor from a limited system.

1.3. Common Types of Language Modifiers in Legal Contracts

Language modifiers, also known as linguistic modifiers or language qualifiers, are

words or phrases that modify the meaning in a sentence [138]. They alter the degree,

certainty, specificity, and context of the information in a given sentence. Although language

modifiers can have some more examples, they have been classified as the following major

types that a legal contract can have, which invites the problem of the generation of multiple

interpretations.
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• Intensifiers: Intensifiers are words or phrases such as “very”, “definitely”, “abso-

lutely”, “extremely”, etc., that strengthen and intensify another word’s meaning.

• Diminishers: Diminishers are words or phrases such as “rather”, “slightly”, “a bit”,

“kind of”, etc., that weaken another word’s intensity and meaning.

• Hedging words: Hedging words are words or phrases such as “maybe”, “might”,

“probably”, “possibly”, “roughly”, “fairly”, “likely”, “appears”, “think”, etc., that

indicates caution and tentativeness, and hence, uncertainty.

• Generalizers: Generalizers are the words or phrases such as “generally”, “usually”,

“typically”, “oftentimes”, “broadly speaking”, etc., that makes the meaning of sen-

tence more general and inclusive.

• Specificity modifiers: Specificity modifiers are the words or phrases such as “par-

ticularly”, “specifically”, “precisely”, etc., that narrow down the words to enhance

the precision and specificity of a sentence.

• Vague words: Vague words are the words such as “good”, “bad”, “best”, “rea-

sonable”, “interesting”, etc., that only help in providing a general description of a

sentence as it lacks clarity and precision.

• Ambiguity-inducing words: Ambiguity-inducing words are the words such as “bank”,

“book”, “cool”, “bat”, etc., which have more than one meaning and create multi-

ple interpretations. There are many types of ambiguity-inducing words as well.

They are lexical ambiguity, syntactic ambiguity, antecedent ambiguity, temporal

(time-based) ambiguity, and contract-reference ambiguity. The central focus for

this chapter and the rest of the dissertation would be contract-reference ambiguity

from ambiguity-inducing words.

– Contract-reference ambiguity: The words such as “hereunder”, “herein”, “fore-

going”, “reasonable”, “best efforts”, “good faith”, “may”, and “might” are a

few popular examples of contract-reference ambiguity with various degrees of

truth. These words do not have any specific meanings. For example, suppose

the contract drafter uses the word “hereunder”. In that case, it either means it
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applies for everything else that’s below until the end of the contract or just for

everything else until the end of that particular clause or section. Hence, these

words generate many ambiguities in legal cases [3].

1.4. Research Motivation

1.4.1. What is a Contract?

An agreement that is in written or spoken form is known as a contract. A contract

settles an agreement or a dispute between one or more parties, generally, an offeror and an

offeree, since it is intended to be enforceable by law [43]. As a contract is legally enforceable,

if one party fails to do what they have promised to do, the other party has the right to ask the

court to enforce the agreement or award damages for injury sustained because the contract

has been breached. All the responsibilities, do’s, and don’ts are outlined in a contract.

People have been using verbal agreements too, but the risk of disagreements and confusion

can be reduced by only using written and tangible legal contracts.

OFFEROR OFFEREE

Offer

Acceptance

Figure 1.3. Entities and processes in a contract

For a contract to be legally enforced, it needs to meet four requirements which are as

follows [103]:

• Agreement: The involved parties in a contract must reach a mutual agreement. An

offeror will make an offer, and an acceptance will be replied to by an offeree.

• Consideration: Each agreement must be made in return for the performance of a

legally sufficient act. An agreement lacks sufficient consideration if one party is not

required to exchange something of legal value.
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• Contractual capacity: All the involved parties in the legal contract must possess the

entire legal capacity to fulfill contractual duties.

• Lawful object: The purpose of the contract must be legal.

1.4.2. Contractual Confusion due to Fuzzy Contracts

The most infamous characteristic of a legal contract is that it is unclear, vague, and

full of jargon and hedge words. Hence, this almost always results in multiple interpretations

from multiple parties. A vague contract means that a specific term, word, phrase, or defini-

tion is vague and has multiple meanings depending on a person’s knowledge, experience, or

perception [3].

Figure 1.4. In an organization, the drafters of the legal contract intentionally

and strategically put vague and fuzzy words as they want the legal contract

to be as flexible as possible since the future is uncertain. Nonetheless, on

the other hand, there are customers from different backgrounds with various

levels of real-world knowledge who perceive the contents of the legal contract

differently. The main cause for different interpretations is the presence of vague

and fuzzy words and phrases that are put in legal contracts.

We have all been in that situation when we are constantly making complaints to

the organization, especially internet service providers (ISPs), whenever their service gets

constantly interrupted [31]. For the subscription and the payment the customers have made

to the ISPs, they are entitled to provide the customers with very good service in all aspects,
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at least what they have mentioned in their service-level agreement (SLA).

A service-level agreement (SLA) is also a kind of legal contract between a vendor and

its customer which defines the quality of service that the vendor promises to provide to its

customers in exchange for their subscription and payment [79]. If the vendor fails to provide

the level of service to its customers that have been defined in their SLA, then the vendor

will be penalized, and they will have to provide compensation to the customers that are also

defined in the SLA. In other words, SLA is viewed as an important component of a vendor’s

legal contract.

Nevertheless, an SLA, also a kind of legal contract, has the inevitable problem of being

vague and full of legal jargon that customers with different backgrounds and knowledge do

not comprehend fully. Companies always prefer to talk in company-related or legal jargon,

while customers who are laypersons prefer talking in everyday natural language [1]. For

instance, generally, customers will make complaints such as “The service has been very slow

and irregular for the last couple of months.” These kinds of complaints might be genuine

but present vague messages as, obviously, the customers cannot speak in legal or technical

jargon. Due to this communication gap, when customers are trying to get further inquiries

or support for their case, that leaves the customers even more puzzled. In that scenario, the

customers who are not receiving proper service, as well as proper support from the company,

are not getting any better help from the company-drafted SLA.

1.4.3. Remedies for Overcoming Confusion in Fuzzy Contracts

On the contrary, the main reason why smart contracts are becoming influential in the

legal system is due to their explicitness, modernness, and innovative nature [128]. Although

a conventional paper contract has always prevailed in the legal world since its origin for its

enforceability, it still lacks a plethora of opportunities and advantages a smart contract can

provide. Smart contracts are well suited for agreements without the presence of any third

party or central authority. In contrast to traditional contracts, smart contracts are enforced

by the blockchain system [176]. Hence, there would be no need for expensive court systems.

This way, contracts become way cheaper as more peer-to-peer transactions can be governed
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by smart contracts rather than by trust.

Figure 1.5. Unlike traditional legal contracts, which lack self-executability

and are inherently vague in nature, a smart contract is an explicit computer

program that resides in blockchain and is run when the specific and precise

predetermined conditions are met. Due to this reason, even if the customers are

from various backgrounds with diverse real-world knowledge, a smart contract

does not create multiple interpretations for multiple people due to its explicit

nature.

It can be challenging when there are contracts between organizations from two dif-

ferent countries with different languages and legislation. Researching and visiting different

court systems can be very costly, and the judicial systems of one country will have limited

power over companies from other countries. Nonetheless, blockchain-based smart contracts

will not face these difficulties as they would not differentiate between any countries or their

legislation and judicial practice. Enforcement of conventional contracts through a central-

ized authority such as a court system is not only very costly but also brings uncertainty to

the result. There might always be that probability where lawyers will intentionally reveal

some esoteric, vague, fuzzy, and ambiguous loophole concealed in the conventional contracts

that entirely void the contract [56]. Even when the contract seems unquestionable and indis-

putable from the surface, the involved contracting parties rely on their court system’s good

faith to make sure that the contract is enforced.
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Table 1.1. Applications of blockchain-based smart contract [144]

Features How can a Smart contract replace a Traditional legal con-

tract?

Explicit The smart contract is written in the programming language, which

is explicit and unambiguous and is able to be executed objectively.

Incorruptible Once the traditional legal contract is changed into a smart contract,

everything that is stored in a smart contract is incorruptible and

immutable because blockchain is cryptographically secured.

Disintermediation The blockchain and smart contract completely remove the trusted

third party/arbiter/mediator.

Decentralization The legal contract would not be controlled by a central authority.

Consensus To maintain the integrity of the contract, all the parties and partic-

ipants must come to a consensus.

Distributed The ledger is maintained by all the participants and validators in

the network, hence more secure.

Transparent All entities, processes, and events that occur throughout the contract

are transparent to all the participants in the network.

Faster settlement Eliminating the intermediaries will settle everything faster and make

the process cheaper as the parties involved in a legal contract do not

have to pay extra legal fees to the lawyers.

During the COVID-19 pandemic, there were various cases of eviction of tenants by

landlords in many states within the United States and in other countries as well [162]. Before

letting someone live in a residence, landlords and tenants have signed a contract where they

agree that if the rent is not paid on the due date, the landlord has the right to take action

against the tenant in the form of eviction. Nonetheless, there were cases of tenants being

evicted by their landlords during the pandemic, even when the tenants were willing to pay

the rent. This means that a paper contract with the government seal or signature stamp
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that can be torn apart at any time is not sensible and preferable when compared with smart

contracts.

In the coming years, conventional paper legal contracts will definitely be replaced by

smart contracts due to their faster settlement process, higher efficiency, and less vulnerability

to legal loopholes [165]. In addition, smart contracts are less expensive, and they can reach

across borders just as easily as within borders.

1.4.4. Narrowing the Focus for Research Motivation

Figure 1.6. Due to the fact that digital entities inside the digital economy

will be facing plenty of issues in using traditional legal contracts for the ex-

change of digital services or digital assets, there is a significant need to convert

the vague legal contracts written in the natural language to the blockchain-

based smart contracts. In this dissertation, we focus precisely on the medium

that we have applied to do so, which is also the fundamental research motiva-

tion and definition.

Contracts have evolved through time, as also stated previously [165]. During all these

years, contracts and policies have taken the forms of property lease and rental agreements,

service-level agreements, software licensing agreements, non-disclosure agreement, end user

license agreement, digital goods and services agreement, virtual currency exchange agree-

ment, and so on [147]. It is also a fact that the majority of the time, these contracts have
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always been vague, fuzzy, and incomprehensible [165].

For example, in the modern digital economy such as metaverse [38], there will be a

presence of plenty of digital entities that will own digital assets. These digital assets owned

by digital entities inside the digital economy environment will lead to various activities and

transactions among the entities. In the metaverse, it will be challenging for digital entities

to use traditional legal contracts in natural language, which has a plethora of problems,

especially vagueness and lack of self-executability being the most. Therefore, there is an

urgent need to convert vague legal contracts to blockchain-based smart contracts to make

them vagueness-free and self-executable. Hence, with the use of several formal methods,

proof-of-concept methods, and artificial intelligence methods, including fuzzy logic, vague

legal contracts can be converted to blockchain-based smart contracts, as shown in figure

[166]. In addition, blockchain also has the capability to preserve the integrity of generated

smart contracts and artificial intelligence algorithms and maintains security from many kinds

of attacks.

In spite of this overall example above, to narrow the focus of this dissertation’s mo-

tivation, we only emphasize the conversion processes of the vague legal contracts

to the blockchain-based smart contracts.

1.5. The Research Problems

The principal objective of this dissertation is to introduce a novel methodology that

can be implemented by meticulously studying the nature of the traditional vague legal con-

tracts and transforming them into blockchain-based smart contracts to see their performance

in the blockchain network. To fulfill this objective, we have formulated the following research

questions (RQs), which our work has addressed and answered:

• RQ1: How can we improve the worsening communication and trust between the

legal contract drafters that draft vague contracts and policies with legal jargon and

the consumers with limited real-world knowledge with no experience in the legal

background? As explained above, this situation needs to be addressed in order for
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blockchain-based smart contracts to prosper as the favored replacement to existing

traditional vague legal contracts.

• RQ2: In what manner can we quantify and measure the interpretations since vague

contracts can readily generate multiple interpretations among various individuals?

It is essential to tackle this problem as without analyzing the multiple interpretations

the traditional vague contract generates, it will only bring more uncertainty further.

• RQ3: In situations where customers/consumers demand compensation for inade-

quate service from vendors despite not completely comprehending the legal con-

tracts, how is the certainty or confidence level of such claims determined and com-

puted? Although, oftentimes, the victims of vague contracts and policies are the

consumers, yet to be certain about their claims, the certainty or confidence level of

such claims is crucial to be determined to ensure precision and equity.

• RQ4: How can we design an architectural model where a smart contract that con-

sumers’ limited real-world knowledge into perspective accounts for the vagueness

factor and allows the smart contract to make decisions based on the fuzzy linguistic

descriptors? This situation requires attention as a truly smart contract will only

be completely smart if the contract can understand the vague and fuzzy linguistic

descriptors as inputs that customers/consumers are accustomed to while communi-

cating.

1.6. Summary of Specific Contributions

A brief summary of the specific contributions of this dissertation is provided below:

(1) The novel analytical examination and analysis has been delivered with a unique ar-

chitectural model to aim for the elimination of vagueness, fuzziness, and legal jargon

present in the traditional legal contracts for the translation and transformation into

the blockchain-based smart contracts [165].

(2) The architecture with a methodology has been introduced that is able to study the

vagueness of the traditional legal contracts for the generation of the possible human

interpretations, quantification, and conversion of the generated possible interpre-
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tations into smart contracts to measure the vagueness index with implementation

results and observation [167].

(3) A novel architectural model with the methodology designed to classify the vague

words from non-vague words in service-level agreements using an effective machine

learning algorithm and then generating possible interpretations from the vague

words to learn which service-level agreement when translated into the smart contract

is vague and uncertain has been portrayed with experimental results and observa-

tions [164].

(4) A flexible mathematical model based on fuzzy logic [186] that helps in understanding

and quantifying the certainty level [36] of the customers’ claims on compensation

based on their complaints has been portrayed with an example.

(5) A successful implementation of the architectural model is presented that solves

the problem of the customers who are victims of the vague contracts and arduous

bureaucratic system by incorporating the idea of fuzzy logic inside blockchain-based

smart contract that can make claiming compensation an easy task [166].

(6) An exhaustive discussion regarding the unprecedented security risks and introduc-

tion to novel architecture for the security of digital economy such as metaverse by

ensuring multimodal secured auditing has been made [163] .

1.7. Organization of the Dissertation

The rest of the dissertation is organized as follows:

• Chapter 2: This chapter presents the thorough background and existing literature

surveys related to this dissertation.

• Chapter 3: We examine the vagueness index of each interpretation and the behavior

of the translated interpretation when translated into the blockchain in this chapter.

• Chapter 4: In this chapter, we inspect the vagueness and uncertainty levels in SLAs

from popular ISP vendors by translating them into smart contracts.

• Chapter 5: We apply the weighted fuzzy reasoning technique to study the certainty

level of claims made by consumers in this chapter.
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• Chapter 6: We incorporate the notion of fuzzy logic inside a smart contract in

this chapter and study the behavior of these fuzzy logic-based smart contracts in

blockchain networks.

• Chapter 7: This chapter presents a security analysis by portraying a security model

for smart contracts and the digital economy and highlighting significant security

vulnerabilities and their prevention remedies.

• Chapter 8: Finally, we conclude the dissertation in this chapter by summarizing

the contributions of each chapter, challenges faced during the implementations, and

possible directions for future work.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW1

2.1. Background Definitions

To begin with, let us define and explain some of the fundamental terminologies briefly

that we will often be using in this dissertation.

Definition 2.1. Blockchain. Blockchain is a shared, distributed, decentralized, and im-

mutable digital ledger that aids the process of recording and tracking transactions and assets

[127]. An asset can be either tangible or intangible, and digital [19]. For instance, real estate

properties, cash, and cars can be tangible assets that can be recorded and tracked inside the

blockchain. On the other hand, intangible and/or digital assets can be digital and intellec-

tual properties, copyrights, patents, non-fungible tokens, and so on. Basically, blockchain is

a network of the “chain or sequence of blocks” which is maintained by the peers that use

a consensus protocol in the network to achieve a distributed agreement about the ledger’s

state [191].

Definition 2.2. Ethereum. Ethereum is a popular decentralized blockchain that has

the functionality of a smart contract [26]. It was co-founded by V. Buterin, G. Wood, C.

Hoskinson, A.D. Iorio, and J. Lubin in 2013. The consensus mechanism used in the Ethereum

blockchain used to be proof-of-work (PoW) but recently changed to proof-of-stake (PoS) in

2022 [92].

Definition 2.3. Smart contract. A smart contract is a piece of code or programs that

reside in the Ethereum blockchain, which is self-executed when the predetermined conditions

are triggered [26]. The concept of a smart contract was first introduced by Nick Szabo in

the early 1990s [159]. A smart contract is itself an Ethereum account and also has a balance

1Portions of this chapter are reproduced from K. Upadhyay, R. Dantu, Y. He, A. Salau and S. Badruddoja,
“Paradigm Shift from Paper Contracts to Smart Contracts,” 2021 Third IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 2021,
pp. 261-268, doi: 10.1109/TPSISA52974.2021.00029. © 2021 IEEE. Reprinted, with permission.
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that can send transactions over the blockchain network when executed.

Definition 2.4. Ether. Ether (ETH) is a native cryptocurrency or token for the Ethereum

blockchain that can be used as a method of payment for purchase and sales, investment,

collateral, etc., in the Ethereum blockchain [26]. As of 2023, Ether is the second-largest

cryptocurrency by market capitalization, after Bitcoin [50].

Definition 2.5. Transaction. A transaction in the Ethereum blockchain is an action

initiated by an externally-owned account (EOA) that is cryptographically signed. It is a

process of transferring Ethereum-based assets from one address to another [26].

Definition 2.6. Gas cost. Gas cost is the cost required to execute a transaction on the

Ethereum blockchain. Gas cost is paid in Ethereum’s native currency, Ether [26].

Definition 2.7. Deployment cost. Deployment cost is the cost required to deploy the

smart contract onto the Ethereum blockchain. It is paid in Ethereum’s native currency,

Ether [26].

Definition 2.8. Fuzzy logic. Fuzzy logic is a sub-topic of the explicit artificial intelligence

method, and it is a mathematical approach that was first introduced by Lotfi Zadeh in 1965

to represent vagueness, uncertainty, and imprecise information [186]. Unlike Boolean logic,

it is a logic that allows a variable to have truth values 0 and 1 instead of just being true or

false.

Definition 2.9. Linguistic variable. A linguistic variable or a linguistic descriptor is a

variable whose values are not in numbers but are in natural language words and sentences

[186]. For example, the linguistic descriptors for the word “reasonable” can be extremely

reasonable or rather reasonable or not at all reasonable.

Definition 2.10. Membership function. Membership function is a type of function in

fuzzy logic that describes and provides the information of fuzziness of an element [186].

Membership function represents “degrees of truth” of something in a fuzzy set [189]. If the
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membership value of an element is 0, then it is not a member of the fuzzy set, whereas if the

membership value is 1, then it is completely a member of the fuzzy set.

2.2. Brief Overview of Blockchain Technology
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Figure 2.1. An illustration of a high-level Blockchain system showcasing the

sequence of a chain of blocks [192].

Blockchain is a digital ledger of transactions that is shared and distributed to all the

peers that are responsible for managing and confirming the lawfulness of each subsequent

batch of transactions, called blocks. These subsequent blocks in the blockchain are ordered

chronologically as each new block is added to the previous one. Blockchain is known to be

immutable and tamper-resistant because of how the next block is linked with the previous

block and also due to its distributive nature.

As this digital ledger is distributed to all the peers or nodes in the network, even if

a malicious hacker who has control over one node wanted to tamper with the data in the

block, all other nodes would still have the previous data that would not agree with the newly

changed data.

Blockchain also has other core features such as decentralized, instant settlement,

consensus-based, transparent, and no single point of failure.
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Figure 2.2. An illustration of a high-level mechanism of smart contract with

respect to the blockchain [159].

Below here, we will briefly explain the step-wise mechanism of the blockchain system:

(1) Creating the transaction: When a sender creates and signs the transaction with

their cryptographic keys, that transaction will be relayed to the recipient’s wallet,

which will need verifying peers or nodes for their verification and approval. If the

verifying peers do not see anything suspicious, then the receiving party will see an

update in their wallet. This change in the state will be recorded in the subsequent

block instantly.

(2) Logging and compiling transaction into the block: The block is encapsulated with

the timestamp, date, sender’s and receiver’s address, the transaction amount, and

an encrypted hash of the sender’s digital signature. All this information is recorded

inside the block while a transaction is logged and compiled into the block.

(3) Distributing the block to peers: After the block is ready, it is distributed to all the

peers or nodes throughout the network for verification purposes. As the blockchain

is known to be decentralized, these peers inside the network follow a particular

consensus mechanism (for example, proof-of-work, proof-of-stake, etc.) on the state

of the ledger for verification purposes.

(4) Verifying the block: The peers or popularly known as “miners” in the case of Bitcoin
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blockchain [123], depending on the method of a consensus protocol, are required to

verify the current block. Based on the amount of work done in proof-of-work or

on the amount of stake they own in proof-of-stake, the winner node or peer in the

network verifies the block and, in return rewarded with the fees in the form of the

native cryptocurrency.

(5) Linking the block: Once the verification of the block is completed and the winning

peer are rewarded for their verification work based on their work or their ownership

of stake, the block is completed and receives a new timestamp including its unique

hash and is ready to be linked with the sequence or chain of previous blocks. The

most important feature from a security perspective comes at this moment when the

block records the hash of the last block in the chain to create the immutable and

tamper-resistant state and proper sequential arrangement of the blockchain. Finally,

this update is shared with other nodes or peers on the network. This correctness of

the ledger is verified and ensured by the identical hashes.

2.3. Evolution of Legal Contracts

2.3.1. Traditional Paper Contract

Traditional paper contracts are the most common type of legal contract we see in

our everyday lives [108]. The agreements between the parties, name of the parties, date,

clauses/section, and the signatures of the parties are written on a paper that also includes

a lawful governing seal, usually from a rubber stamp. The whole content of the contract is

written in natural language by a person, usually by a lawyer, according to what the parties

agree for that states their terms and conditions. In traditional paper contracts, the involved

parties and the middlemen, usually lawyers and attorneys, need to meet in person to inform

them about the terms and conditions of the agreement. When the parties have to make

some changes to their existing contract, they meet again with their middlemen and create

a new draft of the contract. Once all involved parties agree on the new draft, they sign the

contract [108]. In this type of contract, the cost of the attorneys is usually very costly. Other

expenses such as paper materials, printing, rubber stamps, several copies of the contract for
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each party, and travel costs to meet the parties are also involved, which ultimately increases

the final price in the agreement’s implementation.

In case when the agreements set out in the contract are not met and the contract

is violated, the involved parties have to go to the central authority, i.e., the court system.

Here, the legal judge in the court system acts as the arbiter who settles the dispute between

the parties.

Traditional
Paper Contract

Electronic
Contract

Artificial Intelligence-
based Contract

Blockchain-based
Smart Contract

Origin: ancient era
(around 400 B.C.)

Readable in Natural
Language

Ambiguous

Drafted by lawyers
and attorneys

Centralized and
Arbiter Required

Arbiter -> Judge

Legally Enforced

Origin: early 2000s 

Readable in Natural
Language

Ambiguous

Drafted by lawyers
but templates

available for free or
purchase

Centralized and
Arbiter Required

Arbiter -> Judge

Legally Enforced

Origin: early 1990s

Readable in Natural
Language

Ambiguous

Drafted by intelligent
and expert machine
and algorithms (NLP

and Machine
Learning)

Centralized and
Semi-Arbiter

required

Arbiter -> Artificial
Intelligence

Legally Enforceable

Origin: early 1990s

Written in Code
(Computer Program)

Non-Ambiguous

Drafted by computer
programmers as

well as AI algorithms

Distributed and Self-
executable

Arbiter -> Self
(Smart Contract)

Legally Enforceable

Figure 2.3. Paradigm shift of the contract from one stage to the other, where

the traditional paper contract is the most primitive kind and blockchain-based

smart contract is the most advanced and self-executable, hence, one of the

disruptive technologies.

22



2.3.2. Electronic Contract

People started realizing that traditional paper contracts are a lot more expensive and

consume more time when drafting. Even for a slight change in the process of drafting the

contract, all the involved parties had to meet in person and their hired attorney for the

signatures. After the arrival of the internet and personal computers for regular households

were popular, in the early 2000s, electronic contracts were created [48]. Traditional contracts

and electronic contracts were basically the same. Still, the major difference between them is

that depending on the different needs and uses of the parties, ready-made templates of the

various kinds of contracts are already available on the internet. The parties getting into an

agreement just need to choose a template from the available templates, fill in their details,

and attach their digital signatures [99]. Although the parties just have to download or buy

the existing templates, which saves a lot of time compared to traditional paper contracts, the

parties can also modify the template according to their needs if they have to. Despite being

an electronic contract, this kind of contract is still written in natural language. However,

as the whole process has more automation than paper contracts, the probability of human

error is lesser. The advantage of an electronic contract is low transaction costs and other

miscellaneous costs such as paper and printing.

Despite being an electronic contract, only the drafting and signing of the contract is

automated, but settling the dispute still remains as primitive as a traditional legal contract

where the involved parties must visit the judicial system in case of dispute settlement.

2.3.3. Artificial Intelligence-Based Contract

Artificial intelligence (AI) has been gaining popularity unlike any other science and

has touched almost every sector since its arrival, including law. It is a type of technology

that can mimic and replace human behavior. Law firms have been using the help of AI for

contract drafting and management. Softwares like Document Assembly Programs [96] have

existed since the 1990s. This software allows the lawyers to fill in a pre-coded questionnaire

that includes or excludes specific language based on their responses. Once the lawyer an-

swers all questions, the software will generate a final document. While these programs save
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a lot of time, on the other hand, these programs do not allow lawyers to modify the coding

to adapt to the specific needs of their clients. There has been an increasing demand for

AI contract drafting in the field of law these recent years [111], [126], [100]. The contract

drafting software based on AI learns from the past and similar contracts. It scans previous

documents, identifies essential terms and phrases that include abundant legal jargon, and

drafts a suitable legal contract template in just a few seconds. The most significant advan-

tage of AI-driven contract software is that it learns the whole legal contract document by

analyzing its subjects, word patterns, writing style, IF/ELSE agreements, different sections,

and clauses, etc., and creates a similar legal contract accurately without the intervention of

any third party such as lawyers and attorneys.

Moreover, using AI with the law does not only remove lawyers as contract draft-

ing middlemen but also removes the judge from the court of law itself as the demand for

prediction of trial outcomes through data analytics as AI intelligence has been able to pre-

dict outcomes with increasing accuracy. Scientists and researchers have been using Natural

language processing (NLP), Machine learning, and Deep learning to enhance expertise and

intelligence by creating AI algorithms to replace the third and centralized entity, i.e., the

legal judge from the judicial system, for the dispute settlement processes. AI algorithms have

been used extensively to find the settlement area between the involved parties, reducing the

need for human contact and increasing the dispute settlement process. The usage of these

AI algorithms allows the parties to save their time by settling directly, and these AI-based

settlements are far more consistent and uniform as it does not leave any room for errors and

human biases [69], [12]. However, two more features are missing even when AI is used for

legal contracts, i.e., distributed nature and self-execution of the contract.

2.3.4. Blockchain-Based Smart Contract

So far, we have discussed how a simple and conventional paper contract originated

and how it was drafted and functions. Later, the conventional contract was converted to an

electronic or digital contract. Despite saving a lot of time and resources, electronic contracts

still required a middleman to settle the disputes, if there were any. As the technology became
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more advanced, with the rise of AI and its branches like NLP, machine learning and deep

learning were able to learn from the past and were capable of both drafting new contracts

as well as settling disputes as arbiters without any human intervention, increasing the effi-

ciency. Still, there was one important part missing all along with these transformations, i.e.,

automation and self-execution of the contract.

Figure 2.4. A blockchain-based smart contract is a computer program that

has pre-defined terms with different events and is capable of self-execution,

and self-settlement [159].

As mentioned earlier, blockchain is a distributed ledger system that is decentralized,

immutable, and cryptographically secured. A smart contract is a concept in the blockchain,

which is a computer code that resides inside the blockchain that has all the IF/ELSE state-

ments and agreements between the involved parties of the contract. Due to the features and

characteristics of this blockchain-based smart contract, the contract is distributed, decen-

tralized, and secured. As a result, this makes the smart contract self-executable which does

not require any outsiders or third parties or any arbiters in case of disputes.

Unlike traditional paper and electronic contracts, a smart contract is the most novel

and technologically advanced contract, which is a computer program intended to execute

and enforce automatically. The concept of a smart contract was first introduced by Nick

Szabo in the early 1990s [159]. The smart contract runs on the Ethereum blockchain. This

contract is a collection of code, i.e., functions and data, i.e., state that resides at a specific

address on the Ethereum blockchain [26]. A smart contract itself is a type of Ethereum

account. It has a balance, and it can send transactions over the blockchain network when

triggered. Hence, it reduces the need for trusted intermediates. As it is self-executed and
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self-enforced, a smart contract is not controlled by the involved parties. They are instead

deployed to the blockchain network and run as they are programmed. Involved parties or

user accounts can then interact with the deployed smart contract by sending transactions

that execute a specific function defined inside the smart contract.

Parties Traditional Contract Intermediaries
 Execution

Parties Blockchain-based Smart Contract Execution

Traditional Contract

Smart Contract

(Government, Court, Bank, etc.) 

Figure 2.5. Traditional contract Vs. Smart contract, where the traditional

contract needs to involve at least one intermediate party for execution, but

the smart contract is self-executable without the need for an intermediate.

A smart contract is designed in such as way that if one of the two parties violates the

contract, then with its self-executable feature, the contract gets triggered, and the violating

party is penalized automatically. For instance, there are two parties A and B inside the

smart contract that is programmed for a rental agreement. Assuming, A being the landlord

and B being the tenant, if B is unwilling or fails to pay his/her rent by the due date, A

does not have to seek the arbiter or a third-party AI-based expert system in this case. Since

smart contracts are self-executing by nature, once the tenant violates the contract by not

paying the rent at the proper time, the money from the tenant’s account can be automati-

cally transferred to the landlord’s account.

It would be impossible for anyone meddling with the contract to modify anything in-
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side the contract as it is cryptographically secured and immutable. Not only is it immutable,

but all the nodes or participants will also know about the transactions and logs inside the

blockchain as it is distributed throughout the network. However, it does not mean that ev-

eryone in the blockchain network would know that the tenant could not pay rent, and he/she

has to suffer from embarrassment. Since everything inside the blockchain is encrypted, the

involved parties (accounts) will remain anonymous. In addition, blockchain-based smart

contracts completely eliminate the trust factor because it follows a peer-to-peer network

architecture [84], [119]. Hence, the involved parties do not have to be concerned with the

central (third-party) figure, such as a human judge in courts, as it usually introduces biases.

In Table 2.1, we present several kinds of smart contracts written in their respective

programming languages in different blockchain platforms.

Table 2.1. Smart contracts in other popular blockchain platforms

Blockchain Platform Smart Contract Programming Language

Ethereum Ethereum Virtual Machine

(EVM) [78]

Solidity

Bitcoin Bitcoin Script/Bitcoin Con-

tracts [23]

C++, Custom Stack-based

Language

Binance Smart Chain Binance Smart Contract [32] Solidity (Compatible with

EVM)

Polkadot Substrate Smart Contracts

[89]

Rust

Cardano Plutus [102] Haskell

NEO NEO Smart Contract [58] C#, Java, Python

2.4. Adoption and Legal Enforcement of a Smart Contract

Smart contracts have been popular within a short period. With the advent of

blockchain and smart contracts, only a few people were using smart contracts. However,

in these recent years, the smart contract has been increasing its scope around as many areas
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as possible. Trading activities, mortgages and loan systems, record storage, insurance, sup-

ply chain management, and crowdfunding are famous use-case examples of smart contracts.

Although the smart contract is still not as mature as traditional paper contracts, people and

even government of many nations have started to realize that smart contracts have been

offering solutions to the existing legal and security challenges that have an abundance of

loopholes [72].

For instance, in 2017, a provincial government in Switzerland launched the issuance

of digital IDs that runs on the Ethereum blockchain2. Similarly, the government of Chile

started using the Ethereum blockchain to track the data to maintain accountability and

integrity in the energy department. The government of Georgia converted its traditional

land titles registry to blockchain in 2017. In 2021, El Salvador became the first nation to

recognize Bitcoin as a legal tender and established a law recognizing Bitcoin as a legitimate

payment3. In the same way, countries such as Estonia, UK, UAE, Brazil, Sweden, Singapore,

Portugal, Malta, Nigeria, etc., are also adopting blockchain and smart contract technology

[61].

Just like in a traditional paper legal contract or an electronic/digital, a smart contract

also has the same elements and features. These elements are mutual agreement, consider-

ation, competent parties, genuine consent, and, finally, legally enforceable. Similarly, in a

smart contract, there will be one party that offers and another party that accepts in exchange

for a benefit. The involved parties in the smart contract have to reach an agreement. As

mentioned earlier, in exchange for a benefit from the other party, each party gives up some-

thing of value. Also, it is significant for the parties in the smart contract to be competent,

as the smart contract can only be enforced when the involved parties are qualified. The

smart contract also has the feature of genuine assent, as all involved parties in the smart

contract must engage in the agreement independently. Finally, the smart contract has a

lawful and legal purpose, although it is written in the code and not in the natural language

2https://irishtechnews.ie/global-blockchain-adoption-which-countries-are-leading-the-charge/

3https://cointelegraph.com/news/5-countries-leading-the-blockchain-adoption

28



like traditional paper contracts. Hence, the smart contract has exactly the same features

as the paper contract. In addition, it has more technological features that are even more

advantageous to us compared to paper contracts. Some of these advantages are that smart

contracts are decentralized, distributed, and immutable, and settlement occurs faster.

Whether a smart contract is legally enforceable or not depends on whether the smart

contract meets the requirement of a valid legal contract. This will also depend on what

law applies and the jurisdiction in which the enforcement is called [72]. Since the smart

contract is a relatively new and emerging technology, it may not have been evaluated and

tested by regional or national law. Nevertheless, smart contracts’ enforceability should not

be ruled out simply because they are written entirely in computer code for automation and

self-execution. As long as a smart contract behaves like a traditional paper legal contract

and complies with national/provincial/state law, the current legal system should not have

any issue in adopting the smart contract.

The following are the significant requirements, also named by us as Five A’s, that a

smart contract needs to fulfill to be adopted by the current legal system for legal enforce-

ability [165].

2.4.1. Admissibility

The term admissible means that something can be accepted. For a smart contract to

be admissible in a court of law, it must prove that it is valid in the proceeding or comply

with the law. A smart contract should be admissible in a court of law just like a traditional

paper contract, as the smart contract also behaves the same way the paper contract does.

Additionally, the smart contract also has all the major components that make it a legally

enforceable contract. Hence, for this reason, a smart contract describes the information and

has the characteristics that are pertinent to a resolution of issues in any kind of judicial

proceedings so that a judge or jury can consider such information and characteristics to

make a decision.
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Justice for all without 

human error and bias

Affordable to low income people/business

Proven to be authentic and genuine


Auditable and examinable

Admissible in the court of law

Accessible to all without any boundaries

Figure 2.6. Major requirements, also known as 5 A’s for Smart contract’s

enforceability. These 5 A’s prove why a smart contract provides justice for all

without any human errors and biases and is perfectly legally enforceable [165].

2.4.2. Authenticity

Many documents must fulfill the criteria of authenticity in a court of law for them

to be legally enforceable. Authenticity defines the process by which the information and

characteristics of a smart contract are proven to be veritable and legitimate. For anything

to be legitimate and legally enforceable, it should be genuine and not a forgery. One of

the major traits of the smart contract is immutability which is the biggest proponent of

authenticity because once the smart contract is written and deployed onto the blockchain,

it can neither be modified nor changed to maintain its integrity and legitimacy.

2.4.3. Auditability

The auditability of the smart contract or any kind of document is a core part of legal

compliance from the judicial perspective. This feature of auditability and the audit logs

enables the court to examine and verify when the smart contract was created, deployed into

the blockchain, signed, and used to make a transaction. In addition, the smart contract and

the transactions made via the smart contract give involved parties detailed and tamper-proof
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timestamped audit logs of every event.

2.4.4. Accessibility

The contract law should not, in any case, be out of reach of the parties, and there

should be no sense of discrimination. The terms and agreements in the legal contract should

be fair and unbiased all the time. For example, when multinational companies are legally

bounded by traditional paper or electronic contracts, the companies’ corresponding govern-

ment will have limited power over companies from different governments. However, if these

multinational companies had been using smart contracts, there would be no discrimination

and differentiation between any country and their legislation and judicial practice. Hence,

smart contracts ensure their reach to everyone equally.

2.4.5. Affordability

Hiring a contract lawyer to review our written agreements in paper contracts in the

contracting process is one of the principal steps, as the words and formats used in the

paper contract need to be very specific and must follow a certain pattern to be legally

binding. Although hiring and working with a contract attorney will probably ensure that

the agreements are admissible in court and are legal, it is still very pricey. Depending on the

situation, when a lawyer or an attorney is hired just for the review of the paper contract,

the price can be unreasonably high, ranging from at least $500 to $1000 [73]. To make it

worse, if people actually hire an attorney to draft and negotiate the contract for them, the

price can be even exorbitant.

On the other hand, the development and deployment cost of the smart contract is

expensive as well [66]. Moreover, proper auditing and testing of the smart contract are costly

as it requires people with special expertise and background. In addition, when deployed to

the main net and when making transactions with the smart contract, the incurred gas fee and

transaction fee can be excessively high too. Currently, it may seem that the smart contract

is not fit for small and mid-sized businesses because of the development and deployment

cost of the smart contract. Although the development cost and deployment cost of the
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smart contract is also expensive currently, it is inevitably true that in the future, the cost

of adopting the smart contract will plummet as these days, the cost of cryptocurrencies are

just exaggeratingly high due to immature market of cryptocurrencies and other factors.

2.5. Active Research Topics in Smart Contracts and Emerging Technologies in Legal Aspects

In spite of smart contracts being considered as one of the emerging technologies, there

are other technologies as well where researchers are actively collaborating with each other

to experiment and amalgamate smart contracts with other disciplines [16], [17], [155], [148],

[122]. The smart contract has been providing immense benefits, but there are still various

challenges on how to derive the smart contract from the legal contract as typically, regular

paper contracts are written in natural language and hence create a high risk of vagueness,

whereas a smart contract is a piece of code or a computer program. Hence, the derivation

of a complete smart contract from a vague legal contract is still one of the major challenges.

There are various groundbreaking pieces of research being conducted in the field of

Artificial intelligence (AI) and law using formal models of legal texts and legal reasoning

as well [16], [12], [84]. One of the major roles of formal models is to remove vagueness, as

regular legal contracts are written in natural language. As a result, there are no parenthesis

or brackets; hence, the scope of connectives such as “and” and “or” can be vague. There

are other words and phrases that are used in legal contracts as well, which are vague. For

example, words such as “unless”, “reasonable”, “may”, “can”, etc., are capable of several

interpretations [167], [74], [166]. Therefore, a lot of novel legal research includes the usage of

propositional logic, fuzzy logic, and AI that attempts to understand, interpret and resolve

the vagueness and fuzziness of legal contracts [166].

2.5.1. Natural Language Processing

Natural language processing (NLP) manipulates the natural language, such as text

or speech, by a computer program. NLP is a subsection of Artificial intelligence (AI) that

does not only help computers to understand human language but also to interpret it. NLP

has roots in disciplines such as computer science and computational linguistics. Recently,
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computational law research using NLP has been a hot topic as computational law involves

analyzing natural language-based data and documents such as legal contracts in a consider-

able quantity. Therefore, modern machines and programs can analyze more language-based

data and documents than humans consistently without any fatigue and bias.

There has been a massive increase in the demand for software development for the

automation of tasks due to the growth of legislation. Presently, an analyst or an attorney

is required who is expensive to hire to draft and interpret the law in legal activities. Nev-

ertheless, there is always an issue of fuzziness and vagueness in the legal documents and

contracts as they are written in plain natural language, which creates multiple interpreta-

tions for multiple parties involved in the legal action. For instance, the word “book” has

numerous meanings. One is the verb that means to reserve, and the other is the noun that

means something to read from. Attorneys overlook these issues intentionally or unintention-

ally when they draft and analyze the contracts as they review and analyze thousands of legal

contracts full of vague words and legal jargon. Instead, researchers are using NLP so that

they can pinpoint the specific vague terms and provide correct revisions for improvement

[122]. Furthermore, NLP experts are trying to create a computational model to generate

smart codes from the analysis of legal contracts, using NLP and Blockchain-based smart

contracts so that they don’t leave room for vagueness.

2.5.2. Machine Learning and Deep Learning

As NLP technologies have been involved more in attempting to review, analyze, in-

terpret, and generate the logic for the smart contract’s development, more research is going

on on the security side of the smart contracts where machine learning has been used [12],

[17], [148], [122]. Just like NLP, machine learning is also considered to be a subset of AI.

Machine learning is defined as a branch of AI and computer science that focuses on using the

available data and algorithms to imitate the way humans learn by improving their learning

accuracy eventually. On the other hand, deep learning is a subset of machine learning and

AI that is a neural network with three or more layers where these neural networks simulate

the human brain’s behavior. Deep learning algorithms are more modern and accurate for
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learning something than machine learning algorithms but require more data to learn.

In recent years, hackers and malicious attackers have not only been exploiting vul-

nerabilities in web-based systems but also in blockchain-based smart contracts, which has

resulted in huge economic and financial losses. For that reason, to find out and detect these

vulnerabilities of the smart contracts, the researchers have used an analysis model that uses

machine learning extensively [17]. These studies have successfully shown that their anal-

ysis model can predict various types of vulnerabilities, particularly in smart contracts of

Ethereum blockchain written in Solidity language, such as access control, arithmetic, denial

of service, re-entrancy, etc., with accuracy, precision, and recall with more than 90% [16].

Machine learning has not only been used just for prediction and detection of smart

contract vulnerabilities but also has been used for legal contracts management [182]. Ma-

chine learning helps in identifying and analyzing the clauses and other relevant data in the

contracts. Besides, it also has been allowing business companies to review thousands of con-

tracts quickly by classifying the contract according to its relevancy, classifying the clause,

pinpointing a significant part of the clause, and learning more about new clauses.

Nevertheless, machine learning and deep learning typically take a lot of computer

processing power and memory. On the other hand, blockchain costs a lot for any processing,

storing, or computer processing power as well. Since anything inside the blockchain costs

money and is usually expensive, the cost factor of using machine learning and deep learning

inside the smart contract or the blockchain still remains a significant challenge.

2.5.3. Internet of Things (IoT)

The Internet of Things, also known as IoT, is a large number of devices connected

to the internet to share data with each other. These internet-connected devices use sensors

to gather data and communicate with each other so that humans can improve their living

and working lifestyles. One popular example of IoT is a smart home that automatically

adjusts heating and lighting to a smart factory that monitors industrial machines to look for

problems and then automatically adjusts to avoid failures.

IoT establishes an excellent combination with blockchain-based smart contracts, par-
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ticularly when it comes to business, financial, and legal transactions, as they are traditionally

authorized by a third party, such as a bank or a court, making the transaction process com-

plex and time-consuming. When smart contracts are used with IoT, it will solve a plethora of

problems, such as the publishing of secure software updates as URLs on the blockchain that

includes cryptographic hash that IoT devices can validate and allowing automatic payments

to everyone on the IoT network and ensuring of micropayments made between the IoT de-

vices as well, and sending of accurate information on food temperature for frozen items to the

blockchain network by the IoT sensors so that the data can be analyzed among stakeholders

to ensure the quality and freshness of the frozen foods. IoT also helps in security vulnera-

bilities by allowing data sharing more securely across stakeholders, automating transactions,

verifying identification and authentication, and reducing costs by disintermediating media-

tors when merged with blockchain-based smart contracts [17], [182]. For instance, the status

of the IoT network will be improved by allowing devices to register and validate themselves,

self-executing contracts, and reducing the threat of cyber attack since there would be no

central system to attack [17]. Therefore, when combined with IoT, blockchain-based smart

contracts will benefit us immensely.

2.6. Related Literature Review

Although there has been profound research going on for smart contracts in a substan-

tial manner in recent years, the study on “smart legal contracts” has not been so thorough.

Despite the fact there has been extensive research on vagueness, legal contracts, and smart

contracts separately, there has not been any study on the relationship between legal con-

tracts and smart contracts. Smart contract and vagueness has been studied in [74], but the

author does not have any methodology to classify the interpretations of legal contracts and

smart contracts based on the vagueness level. There is only a superficial classification of

vagueness from a linguist’s perspective made in [3] by the author, which was not enough

as our study covered more aspects than just a linguistic point of view. In [158], the author

explains how a contract can be computed and how it can be converted into code but lacks the

research and discussion of vagueness and concepts of a smart contract. In [64], the author

35



talks about the rules by which various sequences of the events trigger particular sequences

of state transitions in the relationship between the entities in which vagueness has not been

discussed. In [155], the author talks about blockchain being used for drafting and probating

wills and making the contract transparent and secure, yet we cannot find an explanation

of the relationship between a legal contract and a smart contract based on the vagueness.

In [42], the author takes vagueness into account by encoding contract metadata, but the

consideration of actual clauses is completely ruled out.

Similarly, although there have been several types of research on vagueness and types

of vagueness separately, there has not been any research so far on various kinds of legal

contracts and SLAs and how we can convert these legal contracts and SLAs into smart con-

tracts, considering vagueness as the main challenge. There has been a study done on how

an SLA can be converted into a smart contract that can be used in the blockchain to reduce

manual effort to claim compensations in [150]; however, the authors have not described the

vague and legal jargons that we see in the SLAs and how that vagueness was considered

while converting the SLA into the smart contract. In [169], the authors talk about the SLA

management system but lack research on how we can convert an SLA into a smart contract.

Also, only the basic functions of the SLA Management System have been studied. Likewise,

the authors talk about how they proposed a new SLA management framework that uses

two-level blockchain architecture and how an SLA is transformed into a smart contract in

[168] but fail to include the concept of vague requirements that can cause issues while writing

a smart SLA. In [10], the authors have proposed a blockchain-based method to assess SLA

compliance but have ruled out the vagueness found in the SLA. Correspondingly, in [125],

the authors have proposed a system that uses blockchain, which claims the compensation

process can be kept safe and reliable but again lacks the discussion of the vague nature of

SLA.

Table 2.2 here provides a concise comparison between the contributions of several

existing works and the original research presented in the subsequent chapters of this disser-

tation, focusing on the key topics that are relevant to the subject matter.

36



Table 2.2. Comparison of few contributions from existing work and this dissertation

Topics Cov-

ered (↓) in

Lit. Surveys

(→)

[74] [3] [158] [64] [155] [42] [150] [169] [10] [125] This

Disser-

tation

Legal Con-

tacts

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Vagueness ✓ ✓ ✓ ✓ × ✓ × × × × ✓

Interpretation × × × × × ✓ × × × × ✓

Quantification

of uncertainty

× × × × × × × × × × ✓

Reasoning

with linguis-

tic variables

× × × × × × × × × × ✓

Fuzzy Logic × × × × × × × × ✓ ✓ ✓

Blockchain

and Smart

contracts

✓ × × × ✓ × ✓ ✓ × ✓ ✓

Security × × × × ✓ × × × × × ✓
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CHAPTER 3

STUDY OF CROWDFUNDING CONTRACT’S VAGUENESS AND TRANSLATION

INTO SMART CONTRACT1

3.1. Introduction

A contract is an agreement that is in written or spoken form. It settles an agreement

or a dispute between one or more parties since it is intended to be enforceable by law. It can

be classified into different types [43]. However, in this chapter, we will only be focusing on

traditional legal contracts, which are usually in paper form, or in some cases, in electronic

form. Fundamentally, this type of contract contains do’s and don’ts under different clauses.

As we now all know that a contract involves one or more parties, so, consequently, a team

of lawyers is also involved since a contract is involved in legal cases. These lawyers can be

considered as middlemen since they are the ones who try to arrange and decide the best

possible situation for all the parties who are involved in the legal contract.

On the other hand, a Smart contract (SC) is a computer program that is self-

executable, self-enforced, and managed by a blockchain [26]. The computer program com-

prises the explicit and precise set of rules under which the parties of that smart contract

agree to interact with each other. If and when the predefined rules written in the smart

contract are met, the agreement is self-executed and enforced.

Thus, the main problem definition of this chapter is how we can convert or trans-

late a “dumb” legal contract that is full of vagueness into an accurate smart legal contract

that can be applied and used in the Ethereum blockchain. To perform the experiment and

to measure the accuracy of a derived smart contract from a traditional legal contract, we

have specifically taken a general crowdfunding legal contract because of its application in

blockchain and the long set of vague terms and conditions. In this chapter, we discuss the

1This chapter is presented in its entirety from K. Upadhyay, R. Dantu, Z. Zaccagni and S. Badruddoja, “Is
Your Legal Contract Ambiguous? Convert to a Smart Legal Contract,” 2020 IEEE International Conference
on Blockchain (Blockchain), Rhodes, Greece, 2020, pp. 273-280, doi: 10.1109/Blockchain50366.2020.00041.
© 2020 IEEE. Reprinted, with permission.
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steps that were taken in order to translate a legal contract into a smart contract considering

all the ambiguities and vague terms present in a legal contract. This chapter also discusses

the different interpretations of a legal contract that people can have based on their knowledge

and experience and how those multiple interpretations can have an effect on the accuracy of

the translated smart contract.

3.2. Contributions

The main contributions of this chapter are as follows:

• We investigate the legal contract’s vagueness by generating all possible interpreta-

tions a contract has and convert into separate control flow graphs.

• We translate the generated control flow graphs of all interpretations into separate

smart contracts for each interpretation for the Ethereum-based blockchain.

• We find the vagueness of each translated smart contract based on their performance.

• We use McCabe’s cyclomatic complexity [116] to generate the vagueness index based

on the complexity of the control flow graph of each interpretation.

• Finally, we identify the vaguest and most accurate translated smart contract based

on its performance and vagueness index.

3.3. Relationship between a Traditional Legal Contract and a Smart Contract

Since a legal contract consists of a plethora of vague and legal words, it results in

various different interpretations. For instance, a person who is reading a legal contract

might perceive it in a different way than the other person who is reading the same legal

contract. The main reason for the multiple interpretations of the people reading the same

legal contract comes from the vagueness of the words used in it and how the meanings of

those words can be perceived [3]. Fig. 3.1 shows that several versions of smart contracts

can be mapped or converted from a legal contract as legal (natural) language can result

in different interpretations and understandings for different people. It also explains the

relationship between a legal contract and the generated smart contracts from the same legal

contract can have one too many relationships.
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Crowdfunding Legal
Contract with various

ambiguous words and legal
words that results in

different interpretations

SC with first
interpretation

SC with
second

interpretation

SC with third
interpretation

SC with
fourth

interpretation

SC with fifth
interpretation

One to Many Relationship

Figure 3.1. One to many relationship between a legal contract and smart contract

3.4. Experimental Setup

The tools and materials that we have used for this work are listed below:

i) Ropsten Test Network [190], ii) Solidity Programming Language 0.5.3 [47], iii) Remix Web

IDE [85], iv) Metamask [107], v) Node.js [161], vi) Truffle [173], vii) Ganache-CLI [106], viii)

Web3 [175], ix) HD Wallet [49], x) Google Chrome in Incognito Mode [143], and xi) A

Crowdfunding Legal Contract [67] xii) An Employment Agreement Legal Contract [132].

Figure 3.2. Number of times vague words and phrases were found in each

clause with “Contribution and Payment” and “General” being the highest.
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3.5. Methodology

Fig. 3.3 shows there are four different fundamental phases in this chapter. The first

phase is the selection of a legal contract. For this project, we have selected a regular crowd-

funding legal contract as a test contract. The second phase talks about having different

interpretations of the same legal contract. In the third phase of the project, we translate all

possible interpretations derived from the vague crowdfunding legal contract into a respective

smart contract. In the fourth and final phase, we find out which interpretation of the smart

contract is the most vague and accurate.

Oftentimes, we have heard people and companies suing each other because of the

lack of understanding of the terms and conditions in the contract. The only reason a le-

gal contract is making everyone’s life difficult is because of the way it is written, i.e., with

many vague terms and jargon words [3]. As a result, it is obvious for different people to

perceive the same contract in different ways. Hence, people who are reading a legal contract

might have different interpretations of each other, as shown in Fig. 3.1. Another objective

of this study was to create all possible interpretations people might have when reading a

legal contract and convert all those interpretations into a smart contract, and finally find

out the vaguest and most accurate smart contract among them. This crowdfunding legal

contract was taken as a test sample from Cloudset Solutions from Coherence Design [67].

However, since the crowdfunding legal contract is several pages long and has 12 clauses in

total, we have only taken one particular clause, i.e., “Contribution and Payment” (Clause

number 5), into consideration for testing. The reason behind selecting only this particular

clause out of all 12 clauses is that the number of vague words and phrases in this clause was

more in numbers compared to other clauses, as we can see in Fig. 3.2 and this clause also

constantly revolved around the idea and mechanism of how crowdfunding works and involved

more transactions. The other reason to select this particular clause among other clauses is

because of the more number of permissive and vague words and phrases used in that clause

such as “may”, “otherwise”, “time to time”, “is not intended” and “might”. From Fig. 3.2,

we can also see that out of 64 vague words and phrases found in the legal contract, this
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clause has 11 of them, i.e., 17.18%.

Person 1
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identified

Phase 1

Phase 2 Phase 3
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Figure 3.3. Selection of a legal contract in the first phase, generation of

all possible interpretations of the selected legal contract in the second phase,

translation of all possible interpretations derived from the vague legal contract

into their respective smart contract, and identification of the vaguest as well

as accurate smart contract in the fourth phase.

The control flow graph shown in Fig. 3.4 was generated from the fifth clause called

“Contribution and Payment”. This clause says that in a crowdfunding platform, a ’developer’

who is seeking monetary aid receives money from sponsors once the sponsors like his/her idea.

However, this clause also states the rules of payment to the developer. It uses statements as

“All contribution amount are stated exclusive of VAT, unless the context requires otherwise”

and “If the Sponsor does not pay any amount properly due to the Developer under or in

connection with the Agreement, the Developer may charge the Sponsor interest on the overdue

amount.” However, the words like “otherwise”, “properly” and “may” do not give clear and

specific instructions hence, result in multiple interpretations. The word “may” itself could

mean “yes” or “no”. Fig.3.4 explains the steps of Clause 5 with additional possible steps that
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arise from these vague words. Hence, from the control flow graph from Fig. 3.4 and these

two vague statements, we have created and categorized four further possible interpretations

and shown them in their respective control flow graphs in Fig. 3.5.

Clause 5
'Start'

Contribution to
Project Manager

Exclusive of VAT? Apply 10% VAT
on contribution

Contributed within
30 days?

Apply 8% interest
rate

Total
contribution to

Project Manager

NO

NO

YES

YES

Figure 3.4. Control flow graph of the events from a clause “Contribution

and Payment” from Crowdfunding Contract (General/Root Interpretation).

As shown in the Fig. 3.5, we can see that Fig. 3.4 ’s control flow graph can be further

categorized into four different interpretations from where we can create four different control

flow graphs. This is only possible due to the words such as “may” and “properly” present

in Clause 5 of the crowdfunding legal contract, which has vague and multiple meanings. If

mandatory words such as “must” or “will” were present instead of “may” and “requires

otherwise”, then we would only have one control flow graph and no other variations because

of it’s preciseness.

3.6. Results

As we have generated a maximum of five different interpretations in total, including

Root/General Interpretation, we also have measured the metrics for each interpretation.
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Figure 3.5. The variation in control flow graphs showing multiple interpre-

tations from Fig. 3.4’s control flow graph.

3.6.1. Performance of Smart Contracts by Each Interpretation

(1) Smart contract with Interpretation 1:

• Transaction fee of 100 transactions of Interpretation 1: 25 deployments of the

same smart contract with Interpretation 1 were performed, in addition to 75

transactions in Ropsten Testnet. The deployment cost is constant. It is ap-

proximately 0.0007 ethers and is constant until the end. The deployment cost

was much higher than the transaction cost. Although there were a few discrep-

ancies in the transactions cost, the ethers that it consumed to run in Ropsten

Testnet are very similar. Apart from the deploy function, there is only one

function that took more than 0.0001 ethers, i.e., withdraw() function. This

function is used when the sponsors contribute a payment to the developer and
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when the developer is ready to withdraw the payment.

• Total time taken for each transaction of smart contract with Interpretation 1:

The lowest time taken by one of the transactions was 9 seconds. On the other

hand, a transaction took 1463 seconds, which is approximately 25 minutes.

However, the average time taken by all these 100 transactions was 155 seconds,

which is approximately 3 minutes. The time these transactions take depends

on various factors. If the function is too complex and has a greater number of

parameters, then it takes more time. Also, if the test net gets busy at its peak

time, then it takes more time to be registered.

(2) Smart contract with Interpretation 2:

• Transaction fee of 100 transactions of Interpretation 2: The transaction fees and

deployment cost of 100 transactions for interpretation 2. The highest transac-

tion fee is 0.0006 ethers. Out of 100 transactions, 25 transactions have the same

amount of fees, i.e., 0.0006 ethers. Since these 25 transactions were deployment

costs, therefore the fees were much higher compared to other transaction costs.

• Total time taken for each transaction of Smart contract with Interpretation 2:

The lowest time for a transaction to register taken was 9 seconds. The highest

time for a transaction to register was 1549 seconds. And the average time for

all 100 transactions was 96 seconds.

(3) Smart contract with Interpretation 3:

• Transaction fee of 100 transactions of Interpretation 3: This data of transaction

fees for the smart contract with Interpretation 3 was exactly as same as for

Smart contract Interpretation 2. The highest transaction fee is 0.0006 ethers.

Out of 100 transactions, 25 transactions that are the deployment costs have

the same amount of fees, i.e., 0.0006 ethers, which is the same as the previous

case from Interpretation 2. The only reason behind the costs being the same

is that the smart contract complexity for both interpretations 2 and 3 is also

similar.
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• Total time taken for each transaction of smart contract with Interpretation 3:

The time taken to register keeps on varying as the peak rate of Rospten Testnet

varies. Whenever the network is too busy, it usually takes more time to register

the transactions. The lowest time taken for a transaction to register taken was

5 seconds. The highest time for a transaction to register was 1703 seconds.

And the average time for all 100 transactions was 89 seconds.

(4) Smart contract with Interpretation 4:

• Transaction fee of 100 transactions of Interpretation 4: Although this data for

transaction fees for the smart contract with Interpretation 4 is very much similar

to previous interpretations except Interpretation 1, the highest transaction fees,

in this case, is a bit more than previous interpretations 2 and 3.

• Total time taken for each transaction of smart contract with Interpretation 4:

The lowest time for a transaction to register taken was 1 second. The highest

time for a transaction to register was 390 seconds. And the average time for

all 100 transactions was 55 seconds, which is much lesser than Interpretation

3. The reason for the variance in time taken to deploy was the fluctuations in

the peak rate of the Ropsten Testnet.

(5) Smart contract with General Interpretation (Root Interpretation):

• Transaction fee of 100 transactions of General Interpretation: This smart con-

tract with General Interpretation is the kind of smart contract where most

people perceive the legal contract in a more practical way in the real world.

This is the case of how a clause looks like in General Interpretations where

there are lots of branches of “yes” and “no”. 25 transaction fees that are the

deployment costs, were the highest compared to all interpretations, the highest

transaction fees. The highest transaction fee here is more than 0.0007 ethers.

This is the first sign of a smart contract, with this interpretation type being

vague compared to the other interpretations. The more vague an interpretation

is, the more complex it becomes. As a result, the more complex an interpre-
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tation is, the more costly it is in terms of fees. This means that vagueness,

complexity, and cost have a direct relationship.

• Total time taken for each transaction of smart contract with General Interpre-

tation: The lowest time for a transaction to register taken was 1 second. The

highest time for a transaction to register was 671 seconds. And the average

time for all 100 transactions was 80 seconds. The reason for this variance in

time taken to deploy is the same as in previous cases, i.e., the fluctuations in

the peak rate of the Ropsten testnet.

3.6.2. Comparison of Average Transaction Fees between Different Interpretations of Smart

Contract

Figure 3.6. Comparison of average transaction cost by 5 different interpre-

tations of Smart contract to find out the complexity of each Smart contract.

In Fig. 3.6, a comparison of all smart contracts with their respective interpretations

has been made. 500 transactions were performed, 100 for each interpretation. As we can see

in Fig. 3.6, Interpretation 1 consumed approximately 0.00023 ethers. Interpretation 2 has

consumed the least, i.e., slightly more than 0.00021 ethers. Interpretation 3 has always been

very similar to Interpretation 2 in all aspects. Even the average transaction cost is similar,

i.e., slightly more than what Interpretation 2 costs. Interpretation 4 has consumed approxi-

mately 0.00022 ethers. However, smart contract with General Interpretation has consumed
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the most among all, consuming slightly more than 0.000245 ethers. As demonstrated in Fig.

3.6, since the General or Root Interpretation is more vague and complex, the consumption

rate is higher compared to other interpretations.

The reason smart contract with General Interpretation consumed more gas for trans-

action fees than the rest of smart contracts is because it is more complex and has more lines

of code. And the only reason it is more complex is because it is more vague. We also discuss

finding out the most vague interpretation previous section, where we calculate the vagueness

index based on the complexity level of each smart contract to strengthen our observations

and conclusion. From this transaction fee consumption pattern, we can say that the smart

contract with General Interpretation is much more vague and complex contract than smart

contracts with the other four interpretations.

Table 3.1. Complexity measure of Crowdfunding Smart contracts

Type of Smart contract Complexity Measure (Vagueness In-

dex)

Interpretation 1 1

Interpretation 2 1

Interpretation 3 1

Interpretation 4 1

Root Interpretation 3

3.6.3. Measurement of Complexity and Vagueness Index of Each Smart Contract

We have also calculated and measured the complexity of all five different interpreta-

tions. We have used McCabe’s cyclomatic complexity in order to find the complexity of each

interpretation. The relationship between complexity and vagueness is directly proportional,

whereas vagueness and accuracy are inversely related. The more complex an interpretation

is, the more vague it becomes. We have used the control flow graphs from Fig. 3.4 and Fig.

3.8 to calculate the complexity. To evaluate the complexity, we used McCabe’s cyclomatic
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complexity. The cyclomatic complexity is defined in [116], which measures the complexities

and the total number of linearly independent paths of a program.

(1) C = Ne –Nn + 2 ∗Ncc

Where, C is the complexity, Ne is the number of edges of the control flow graph,

Nn is the number of nodes of the control flow graph, and Ncc is the number of connected

components.

As we can see in Table 3.1, smart contracts with Interpretations 1, 2, 3, and 4 have

the same complexity measure, i.e., 1. This means that when measuring the vagueness index

of smart contracts with Interpretations 1, 2, 3, and 4, we found that they are equally vague

at the same level. However, the complexity measure for the smart contract with General

Interpretation is 3. Hence, the vagueness index for General Interpretation is three times

more than that of the other four smart contracts. Therefore, from Fig. 3.4, Fig. 3.8, Fig.

3.6 and Table 3.1, we have measured the complexity level of each smart contract with five

different interpretations and found out that the most vague one is the smart contract with

General Interpretation which makes it less accurate. In other words, smart contracts with

Interpretations 1, 2, and 3 are more accurate compared to the smart contract with General

Interpretation.

Not only we calculated McCabe’s cyclomatic complexity for Crowdfunding Legal

Contract, but we also took an Employment Agreement Contract, and we performed our

test on it to find the complexity measure and vagueness index to see if the level of vague-

ness is also greater in General Interpretation for Employment Agreement Contract. From

the Employment Agreement Contract, we generated a general interpretation along with 10

more different interpretations for test purposes, although even more interpretations could

be generated. The more vagueness is in the legal contract, the more interpretations can be

generated from it.

From Table 3.2, we can see that the smart contract with the general interpretation

has a vagueness index of 5. On the contrary, the smart contract with the rest of the in-
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terpretations have the same level of vagueness index, hence have equal vagueness index.

Therefore, we can conclude the smart contract with the General Interpretation always has

higher vagueness index compared to other interpretations because it comprises words and

phrases with multiple meanings and is full of vagueness or least accurate.
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Figure 3.7. Control flow graph of the events from Employment Agreement

Contract (Root Interpretation).
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Figure 3.8. The variation in control flow graphs showing multiple interpre-

tations from Fig. 3.7’s control flow graph.

In both contracts, the contract with general interpretation scored highest, meaning

the contract with general interpretation is more vague than any other interpretations in any

given contract. Our observations and the comparison between the vagueness index from

Table 3.1, Table 3.2, Fig. 3.7 and Fig. 3.8, shows that the employment agreement smart

contract is more vague than the crowdfunding smart contract because of the higher vagueness

index.

3.6.4. Total Translation Percentage of a Legal Contract

There are altogether of 12 clauses in our test crowdfunding legal contract. 4 out of

12 clauses have been successfully converted into the smart contract. In other words, we can

say that we were able to convert 33.33% of the total contract into the smart contract, as

shown in Fig. 3.9. The clauses that have been converted are “Agreement”, “The Project”,

“Rewards”, and “Contribution and Payment” which revolves around the idea and mechanism

of the crowdfunding process.
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Table 3.2. Complexity measure of Employment Agreement Smart contracts

Type of Smart contract Complexity Measure (Vagueness In-

dex)

Interpretation 1 1

Interpretation 2 1

Interpretation 3 1

Interpretation 4 1

Interpretation 5 1

Interpretation 6 1

Interpretation 7 1

Interpretation 8 1

Interpretation 9 1

Interpretation 10 1

Root Interpretation 5

Figure 3.9. Total translation percentage of a whole Crowdfunding Legal

Contract into Smart contract.

The clauses that were not converted were not related to the mechanism and function-
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ing of a crowdfunding process and hence did not contribute much when it came to writing

the smart contract. The whole contract cannot always be converted into a smart contract as

the activities, events, and other major aspects in a legal contract also include physical and

non-transactional activities. In that case, we only take the subset of the legal contract and

convert the convertible subset into the code, i.e., smart contract.

3.7. Conclusion

In this chapter, we introduced a novel study on the relationship between a vague legal

contract and a smart contract. We also created all possible interpretations from a vague le-

gal contract and then evaluated and compared different metrics that helped us to ultimately

find the most vague as well as accurate interpretation. By assessing the transaction fees

and vagueness index of all the possible interpretations of the smart contract, we were able

to strengthen our final conclusion and point out whether a given interpretation of a smart

contract was accurate or vague. We also compared two legal contracts and found which

contract was more vague than the other. We also studied the total translation rate of a

traditional legal contract into a smart contract and what type of clauses are more likely to

be converted to computer code easily. The main purpose of this chapter is to study how a

legal contract in the real world has been affecting people’s lives in different ways by being

vague and vague and how we can convert a given legal contract into a smart contract and

leverage blockchain technology to make the work efficient and effective.
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CHAPTER 4

ANALYSIS OF THE CONVERSION PROCESS OF TRADITIONAL SERVICE-LEVEL

AGREEMENT (SLA) OF ISP VENDORS INTO SMART CONTRACT1

4.1. Introduction

A service-level agreement (SLA) is a legal contract between a vendor and its customer

which defines the quality of service that the vendor promises to provide to its customers in

exchange for their subscription and payment. If the vendor fails to provide the level of service

to its customers that have been defined in their SLA, then the vendor will be penalized, and

they will have to provide compensation to the customers that are also defined in the SLA.

In other words, SLA is viewed as an important component of a technology vendor’s legal

contract.

However, since an SLA is also a type of traditional legal contract [179], it is full of

vague terms and legal jargon that makes it hard for the vendor’s customer to understand

the precise meaning. Oftentimes, we hear and see many reviews, news, and incidents where

customers complain against ISPs about not getting their internet service in exchange for

what they are paying for [140], [91], [60]. We have also heard customers spending their time

and money to request compensation and service credit from their vendors. However, due

to the vague and equivocal nature of the SLA, it becomes difficult for the customers to get

their refunds back.

A legal contract is vague when a specific term, word, phrase, or definition is not pre-

cise and hence results in multiple meanings [3]. Since most SLAs are vague and lack a precise

set of metrics by which the service is measured as well as the indemnification clause results

in multiple interpretations when multiple people from different linguistic backgrounds and

experiences read them. As a result, the customers always have a hard time getting their

1This chapter is presented in its entirety from K. Upadhyay, R. Dantu, Y. He, S. Badruddoja and A. Salau,
“Can’t Understand SLAs? Use the Smart Contract,” 2021 Third IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 2021, pp.
129-136, doi: 10.1109/TPSISA52974.2021.00015. © 2021 IEEE. Reprinted, with permission.
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compensations back from the vendors when they do not get the service they have subscribed

for due to the absence of self-enforcement property and precise usage of words.

On the contrary, a Smart legal contract or a Smart contract (SC) is a kind of contract

where the agreements are self-enforcing and are embedded in computer code that is managed

by the blockchain [26]. There are a clear and precise set of rules under which the parties

involved in the smart contract agree to interact with each other. If and when the prede-

fined rules that are written in the smart contract as code are met, there will be automatic

enforcement of the agreements.

Vagueness is an important issue when formalizing contractual clauses, and we propose

a formal method to find out vague terms in SLA contracts using machine learning and then

convert those vague SLA contracts into Ethereum-based smart contracts. Thus, the main

problem definition of this chapter is how we can analyze and compare the vague nature

of different SLAs, particularly broadband vendors’ SLAs that are full of vague words that

result in multiple interpretations for different people. Besides, we also discuss how we can

convert these vague SLA contracts into non-vague and smart contracts that can be used

in Ethereum-based Blockchain as the Blockchain is decentralized and distributed and also

eliminates the need for middlemen such as lawyers and legal attorneys.

4.2. Contributions

The chapter’s main focus is contract interpretation due to the vagueness present in a

contract. The main contributions of this chapter are as follows:

• We investigate the vague nature of SLAs by taking six samples of real SLAs from

different popular vendors of the same industry, i.e., six different SLAs from six differ-

ent internet service providers (ISPs) that are AT&T [130], Verizon [135], Spectrum

[133], T-Mobile [134], Ziply Fiber [136], and CenturyLink [131].

• We use machine learning to train the model from the SLAs of AT&T, Verizon,

Spectrum, and T-Mobile as training dataset to detect vague words from the SLAs

of Ziply Fiber and CenturyLink as testing dataset. The SLAs for training and

testing were chosen randomly.
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• We manually transform Ziply Fiber and CenturyLink’s vague SLAs into their re-

spective control graph and further derive all possible special case interpretations

from the root control graphs.

• We translate the generated control flow graphs of both vendors’ SLAs and all in-

terpretations into their corresponding smart contracts for each interpretation for

Ethereum-based Blockchain.

• We measure the vagueness of each translated smart contract based on their per-

formance in the Ethereum-based Blockchain network and compare which vendor’s

SLA is more vague out of the two test SLAs.

• Additionally, we measure the vagueness by using Shannon’s Entropy [152] and Mc-

Cabe’s cyclomatic complexity [116] to generate the vagueness index for each inter-

pretation of a smart contract of both vendors’ (Ziply Fiber and CenturyLink) SLAs

based on the complexity of the control flow graph of each interpretation for both

test SLAs.

• We compare the performance of the smart contracts of both broadband vendors,

i.e., Ziply Fiber and CenturyLink, and we then identify their most vague as well as

accurate interpretation of the smart contract.

• Finally, we identify which vendor’s smart contract is more vague in general among

Ziply Fiber and CenturyLink.

4.3. Relationship between a Traditional Service-Level Agreement (SLA) and a Smart Con-

tract

A service-level agreement (SLA) is written by a vendor, but it is also written so that

the customers can measure that the service they are getting is how it is exactly defined in the

SLA. Unfortunately, an SLA consists of affluent ambiguous, vague, and fuzzy legal terms.

Hence, SLA results in various interpretations when different customers read them because

of their different experiences and knowledge. An SLA drafted by the legal department of a

vendor is written in such a way that it is full of jargon terms that only the people who are

involved in legal aspects can understand the SLA.
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Figure 4.1. One to many relationship between an SLA and smart contract

Also, the service metrics that are defined in the SLA, which describes how much

service and what kind of service the customers are expected to get after they subscribe

for it, need to be clearer for the customers to understand. In addition, even though the

service metrics are written as clearly as possible, there will still be plenty of words such as

“may”, “might”, “reasonable”, “best efforts”, “most likely”, and so on in the indemnities

section when it comes to giving the compensation back to the customers for bad service

[151]. Therefore, as shown in Fig. 4.1, due to the presence of vague words and structure in

the SLA contract, different people perceive the same contract differently.

These kinds of vague terms as well as the way the service metrics are defined in the

SLA, create multiple interpretations. For example, one customer from different background

and experience might understand the same SLA differently than the other customer who

reads it. The main cause of these multiple interpretations from the same SLA is the way

it is drafted and the vague words contained in it. On the other hand, a smart contract is

clear, precise, and straightforward. In Fig. 4.1, we can see the one-to-many relationships

between an SLA contract and a smart contract. This figure describes the type of relationship

between a traditional SLA contract and a smart contract and how one SLA can be interpreted

in various ways due to the vague words present in it. Hence, several different versions of

the smart contract can be translated from a vague SLA, which is written in vague natural
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language. The more vague an SLA is, the more interpretations it will have and the more

possibility of generation of different interpretations of smart contracts.

4.4. Experimental Setup

The tools and materials that we have used for this project are listed below:

i) Ropsten Test Network, ii) Solidity Programming Language, iii) Remix Web IDE, iv)

Metamask, v) Node.js, vi) Truffle, vii) Ganache-CLI, viii) Web3, ix) HD Wallet, x) Google

Chrome in Incognito Mode, xi) Python 3, Anaconda and Jupyter Notebook [146] xii) Support

Vector Machine [44], xiii) AT&T’s SLA, Verizon’s SLA, Spectrum’s SLA and T-Mobile’s SLA

as training SLA, and xiv) Ziply Fiber’s SLA and CenturyLink’s SLA as test SLA.

4.5. Methodology

We have divided our entire methodology into six phases, as shown in Fig. 4.2 and

Fig. 4.3.

In our first, second, and third phases, as shown in Fig. 4.2, we read the texts in the

two SLAs and use binary classification to classify the vague words from non-vague words by

using machine learning. Apart from being a part of future work and research, the reason

machine learning is used instead of manual hand-picking of vague words and phrases is that

we wanted to automate the extraction process of vague words and phrases and evaluate the

performance. Therefore, in our first phase, we gather different SLAs from different vendors

but from the same industry so that we can create a training dataset for the machine to learn

the kind of vague words being used in the SLAs. We have gathered six different SLAs from six

different popular ISP (broadband) vendors, which are AT&T [130], Verizon [135], Spectrum

[133], T-Mobile [134], Ziply Fiber [136], and CenturyLink [131]. The reason all the SLAs from

ISP vendors were chosen and not mix from other vendors such as insurance companies was

primarily to get unbiased results and to translate the SLAs of ISP into the Ethereum-based

smart contracts so that customers would benefit from automated compensation system and

would not have to face any difficulty to get the indemnities, penalties, and compensations

when they do not get their services as they were promised in the SLA contract.
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Figure 4.2. Selection of six SLAs from six different vendors from the same

industry and categorizing them into train and test data sets in Phase 1 and

2 and using Support Vector Machine (SVM) to detect and classify vague and

non-vague terms from test data, i.e., Ziply Fiber and CenturyLink in Phase 3.

We have categorized the SLAs of AT&T, Verizon, Spectrum, and T-Mobile as the

training dataset, while Ziply Fiber and CenturyLink were categorized as testing dataset.

There were no hard-and-fast rules to decide what SLAs will be as training dataset and what

SLAs will be testing dataset. The selection of both the training and testing SLAs is done

randomly. We created a script to read all texts in the SLA documents, tokenize all the words

present in the documents, and finally prepared the training dataset by labeling the tokens

manually as vague (1) or non-vague (0).

In Phase 2, we classify the SLAs of Ziply Fiber and CenturyLink as test SLAs meaning

all the words extracted from these two SLAs were used to prepare the test dataset. Support

Vector Machine (SVM) [44] was used to train the model for it to perform binary classification

and detect the vague words from non-vague words as shown in Phase 3 of Fig. 4.2. After

experimenting and testing with other common machine learning algorithms such as Random

Forest, Decision Tree, and kNN, we got the highest accuracy from SVM. As a result, we
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decided to use SVM for binary classification of vague words in test data, i.e., tokens from

Ziply Fiber’s and CenturyLink’s SLA contracts.

As shown in Phase 4 of the Fig. 4.3, after we finish detecting all the possible vague

words and phrases in our two test SLAs (Ziply Fiber and CenturyLink) using machine learn-

ing, we manually generate different possible interpretations from those machine detected

vague terms as shown in Phase 4. One of the main objectives of this study was to create

as many as possible human interpretations people will have while reading the SLAs of the

ISP vendors, convert all the interpretations into the Ethereum-based smart contract, and

finally find out which version or the interpretation of the smart contract is more vague and

accurate along with finding which SLA in average is more vague.

Interpretation 1

Interpretation 2

Interpretation 'N'

Interpretation 1

Interpretation 2

Interpretation 'N'

Ziply Fiber's
SLA

CenturyLink's
SLA

SC with first
interpretation

SC with second
interpretation

SC with 'N'
interpretation

SC with first
interpretation

SC with second
interpretation

SC with 'N'
interpretation

Most ambiguous and
accurate SC for Ziply Fiber

identified

Most ambiguous and
accurate SC for

CenturyLink identified

Phase 5Phase 4 Final Phase

Phase 4 Phase 5 Final Phase

Figure 4.3. Generation of all possible different interpretations of both test

SLAs in Phase 4, translation of all generated interpretations from both vague

test SLAs into their respective smart contracts in Phase 5, and comparison

and identification of the most vague and accurate interpretation from each

test SLA along with the most vague and accurate SLA out of the two in Final

Phase.
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The classification or detection accuracy of the model while classifying the vague words

in Ziply Fiber’s SLA was 85% and in CenturyLink’s SLA was 79%. Although increasing the

accuracy is our top priority and part of our future work, we have considered only those

vague words that the machine has detected successfully to generate various interpretations

for translating those interpretations into their corresponding smart contracts. We translate

all those generated interpretations from the vague words that were detected using machine

learning into their respective smart contracts, as shown in Phase 5 of Fig. 4.3. Finally, as

shown in Phase 6 or the final phase in Fig. 4.3, we perform various tests of the translated

smart contracts of all the interpretations of both SLAs, and we find out what interpretation

of each SLA and what SLA as a whole is the most vague as well as the most accurate one.
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'Start'

Service Outage
caused by Ziply
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Service Outage 
in Customer's

Premises

SLA metrics 
not met

Eligible for 
service credit?

Service Credit not
paid to Customer's

a/c

Service Credit 
paid 

to Customer's a/c

Total Service 
Credit 

to Customer

Clause 2 'Start'
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Eligible for
Availability 
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Availability Credit
not paid to

Customer's a/c

Eligible for
Performance
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Performance Credit
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paid to 
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Performance 
Credit paid to 
Customer's a/c

Ziply Fiber's Control Flow Graph CenturyLink's Control Flow Graph
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NO
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NO
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Figure 4.4. From these CFGs, 5 other special case interpretations for Ziply

Fiber’s SLA and 4 special case interpretations for CenturyLink’s SLA will be

generated.
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Fig. 4.4, 4.5, and 4.6 describe Phase 4 of our methodology in more detail. The figure

that we see in Fig. 4.4 is the control flow graphs that we generated from Ziply Fiber’s SLA

and CenturyLink’s SLA, considering only the vague words that the machine detected after

classifying the vague from non-vague terms. We manually generated control flow graphs of

these vendors so that we could also generate all possible special case interpretations from

these control graphs. The control graphs in Fig. 4.4 explain how vague the SLA of Ziply

Fiber and CenturyLink is by portraying multiple branches in the control graph. We have

named this version of the control graph as root control graphs as this was our first step

to derive the control flow graph from Ziply Fiber’s and CenturyLink’s SLA contract. The

control graphs from Fig. 4.5 and 4.4 are named as special case interpretation control

graphs as these are generated further from the root control graphs.

The sentences present in Ziply Fiber’s SLA contract such as “In the event of a Service

Outage, Customer may be entitled to a credit against the applicable On-Net Service MRC”

and “Credits do not apply to Service Outages caused, in whole or in part, by one or more

of the following.” increases the degree of vagueness. Here, the words such as “may” and

“in whole or in part” lead to more than one interpretation of the whole SLA of Ziply Fiber

because these are permissive terms. It also describes different actions and events that might

take place depending on the understanding of the customers who read the SLA. Hence, we

first generate the root control graph of Ziply Fiber’s SLA as shown in the left column of Fig.

4.4 as well as CenturyLink’s root control graph as shown in the right-column of Fig. 4.4.

Hence, this would be the case of how the SLA will look where there are multiple “yes” and

“no” because of the involvement of vague words, which results in multiple branches in the

control flow graph.

From Fig. 4.4, we further generate more special case interpretations. All 5 of them

for Ziply Fiber are shown in Fig. 4.5. Hence, Fig. 4.5 shows how we have generated other

interpretations further from Fig. 4.4. Similarly, Fig. 4.6 shows the vague nature of Cen-

turyLink’s SLA as well by portraying multiple possible branches the decisions, events, and

actions can have.
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Interpretation 5
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Figure 4.5. Derivation of five special cases of interpretation from Ziply

Fiber’s control flow graph.

Fig. 4.6 only has four interpretations, as CenturyLink’s SLA had fewer nodes, edges,

and connected nodes. It was the first control graph that we derived from the SLA. The

sentence such as “If Service performance falls below the thresholds provided in Table 2.0

and CenturyLink is unable to rectify the performance of the Service(s) at the Affected UNI

within 30 business days then Customer may be eligible for a Performance Credit for Service

degradation subject to the rules and exclusions provided in this agreement.” along with other

vague sentences are used in CenturyLink’s SLA, which allows customers to form multiple

interpretations further that we have discussed in Fig. 4.6. In Fig. 4.6, we have four possible

special case interpretations that can be generated from Fig. 4.4’s root control flow graph

(right-column). This further generation of interpretations was possible due to the usage of
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permissive and vague words in CenturyLink’s SLA. This case is similar to the case of Ziply

Fiber’s SLA.
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Figure 4.6. Derivation of five special cases of interpretation from centu-

ryLink’s Control flow graph.

If mandatory words had been used instead of permissive and vague words, then the

root control graphs in Fig. 4.4 would be more straightforward without different branches.

Once we derived and generated all possible special cases interpretations further from Ziply

Fiber and CenturyLink’s root control flow graph as shown in Fig. 4.4, 4.5 and 4.6, we

translated both the root control graphs and special case control graphs from both vendors

into their respective smart contracts.
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4.6. Results

4.6.1. Vagueness and Complexity Measurement by Smart Contract Deployment

We translated the root control graphs from Fig. 4.4 to analyze which vendor has a

more vague SLA in general. We translated the control flow graph of Ziply Fiber and Centu-

ryLink into their respective SLA and deployed their smart contract in Ropsten Testnet 10

times each. As we can see in the Fig. 4.7, the TXN cost of Ziply Fiber was 0.031516123 ETH.
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Ziply Fiber's Smart Contract CenturyLink's Smart Contract

Figure 4.7. Comparison of the vagueness in SLAs from two different vendors

which shows that Ziply Fiber’s SLA is more vague than CenturyLink’s SLA.

However, as the size of the control flow graph for CenturyLink was small and had

less number of interpretations compared to Ziply Fiber, the TXN cost for CenturyLink was

just 0.029813379 ETH. Then we deployed all five special case interpretations of the smart

contract of Ziply Fiber 10 different times in Ropsten Testnet. We have made the comparison

of transaction (TXN) costs of all smart contracts with their respective interpretations. Fig.

4.8 shows the average of all the registered TXN costs of all five special case interpretations

of Ziply Fiber’s smart contract in Ropsten Testnet. Interpretation 1 had the average TXN

costs of 0.024063215 ethers (ETH). Similarly, Interpretation 2 had average TXN cost of

0.021482481 ETH. Likewise, Interpretation 3 and 4 had 0.020106104 ETH and 0.025117192

ETH, respectively. Interpretation 5’s average TXN cost was the lowest because of its con-
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trol flow graph size, i.e., 0.014882172 ETH. We observed that all these TXN costs of their

respective interpretations correlate to the size of control graphs as well.
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Figure 4.8. Comparison of average TXN cost of 5 different special case inter-

pretations of Ziply Fiber’s Smart contract for the measurement of vagueness

and complexity.

Similarly, we deployed all four special case interpretations of the smart contract of

CenturyLink 10 different times as well in Ropsten Testnet. If we take a look at Fig. 4.9, we

can see that the average TXN cost of Interpretation 1 is 0.01572939 ETH. Likewise, the TXN

cost of Interpretation 2, 3 and 4 are 0.017547318 ETH, 0.013452181 ETH and 0.014446134

ETH respectively.

From our study, we found that the reason Ziply Fiber consumed more TXN cost than

CenturyLink was that it is more vague. Vagueness is directly proportional to the complexity

of the smart contract, which means if the vagueness of a certain interpretation rises, the lines

of code along with the program complexity will also rise, which will result in the increment

of the TXN and gas cost. As we can also see in Fig. 4.4 and 4.5, the control flow graph of

Ziply Fiber was more complex and had more interpretations. The main reason for this was

the vague nature of Ziply Fiber was more compared to CenturyLink’s smart contract.
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Figure 4.9. Comparison of average TXN cost of 4 different special case inter-

pretations of CenturyLink’s Smart contract for the measurement of vagueness

and complexity.

Therefore, from this observation, we can say that if a particular interpretation is

more vague in nature, it is more complex in the control graph as well. In addition, while

translating the control graph into the smart contract, due to the SLA’s vagueness as well as

complexity, the smart contract of that very SLA consumed more TXN and gas cost as we

can see in Fig. 4.7, 4.8 and 4.9.

4.6.2. Vagueness and Complexity Measurement by Entropy and Cyclomatic Complexity

To corroborate our evaluation of the proportional relationship between vagueness and

TXN costs, we have also studied both entropy and cyclomatic complexity of Ziply Fiber’s

and CenturyLink’s SLA along with respective interpretations, which helped us to find their

respective vagueness indexes.

We have used Shannon’s Entropy and McCabe’s cyclomatic complexity to find the

uncertainty and complexity of both vendors’ SLAs. We have used the control flow graphs

from Fig. 4.4, 4.5, and 4.6 to find the entropy and cyclomatic complexity. The Shannon’s

entropy measures the average level of information and uncertainty which is in variable’s

possible’s outcomes. Similarly, cyclomatic complexity measures the complexities and the

total number of linearly independent paths of a program.
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Table 4.1. Entropy measurement of Ziply Fiber’s SLA control graph and its

Special Case Interpretations

Type of Smart contract Entropy Measure (Uncertainty In-

dex) of Ziply Fiber’s SLA

Ziply Fiber’s root SLA 1.6094

Interpretation 1 0

Interpretation 2 0

Interpretation 3 0

Interpretation 4 0

Interpretation 5 0

(1) Shannon’s Entropy:

The Shannon’s entropy [152] is defined as:

(2) H(X) = −
∑n

i=1
P (xi)logP (xi)

Where, H(X) is the entropy of X,
∑n

i=1 is the sum over variable’s possible

values, log is the natural logarithm, x1...., xi are possible outcomes and P (xi) is the

probability of the occurrence.

Table 4.2. Entropy measurement of CenturyLink’s SLA control graph and

its Special Case Interpretations

Type of Smart contract Entropy Measure (Uncertainty In-

dex) of CenturyLink’s SLA

CenturyLink’s root SLA 1.3863

Interpretation 1 0

Interpretation 2 0

Interpretation 3 0

Interpretation 4 0
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We calculated Shannon’s Entropy for both control flow graphs of Ziply Fiber

and CenturyLink from Figure 4. To calculate Shannon’s entropy, we considered the

number of special case interpretations each SLA (root control graph) can generate.

For example, the number of special case interpretations from Ziply Fiber (Fig. 4.5)

is 5. Hence, each special case interpretation is assumed to have a 1/5 probability of

occurrence. Likewise, the number of special case interpretations from CenturyLink

(Fig. 4.6) is 4.

Therefore, in this scenario, each special case interpretation is assumed to have

a 1/4 probability of occurrence. We found out that entropy for Ziply Fiber was

1.6094 and for CenturyLink was 1.3863, as shown in Table 4.1 and 4.2. From this,

we can say that the control flow graph and hence, the nature of Ziply Fiber is more

uncertain and vague than the SLA of CenturyLink.

(2) McCabe’s Cyclomatic Complexity:

The Mccabe’s Cyclomatic Complexity [116] is defined as:

(3) C = Ne − Nn + 2 ∗Ncc

Where, C is the complexity, Ne is the number of edges of the control flow graph,

Nn is the number of nodes of the control flow graph, and Ncc is the number of

connected components.

Both entropy (uncertainty) and complexity (vagueness) of Ziply Fiber’s root SLA

is higher compared to CenturyLink’s SLA. From our observations and evaluations

from Fig. 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9 and Table 4.1, 4.2, 4.3 and 4.4, we found

that in both vendors’ SLAs, smart contract of Ziply Fiber was more vague than

smart contracts of CenturyLink.
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Table 4.3. Complexity measurement of Ziply Fiber’s SLA control graph and

its Special Case Interpretations

Type of Smart contract Complexity Measure (Vagueness In-

dex) of Ziply Fiber’s SLA

Ziply Fiber’s root SLA 3

Interpretation 1 1

Interpretation 2 1

Interpretation 3 1

Interpretation 4 1

Interpretation 5 1

Table 4.4. Complexity measurement of CenturyLink’s SLA control graph

and its Special Case Interpretations

Type of Smart contract Complexity Measure (Vagueness In-

dex) of CenturyLink’s SLA

CenturyLink’s root SLA 2

Interpretation 1 1

Interpretation 2 1

Interpretation 3 1

Interpretation 4 1

4.7. Conclusion

We introduced a novel idea on how we can study the vague nature of legal contracts

and service-level agreements (SLAs) of real vendors from the industry and how using smart

contracts can help avoid the challenges of vagueness in traditional legal contracts. Regardless

of how popular a vendor is, their SLAs can still be vague, imprecise, and vague, which can

put a customer into a myriad of confusion and difficulty. In this chapter, we presented

a fresh solution to an existing problem of vagueness in legal contracts by gathering real-
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world SLAs of the top ISP vendors using a machine learning approach to train the model

to detect vague words in legal contracts automatically. Since understanding a vague legal

contract is difficult and it can create several different interpretations for several different

people, we studied all the interpretations and their behaviors thoroughly from the SLAs of

two different ISP vendors. We derived and generated all possible interpretations from the

root SLA and then evaluated and compared different metrics, which helped us to find the

most vague interpretation as well as the most vague vendor’s SLA as a whole. We were also

able to validate our final conclusion and decide whether a given interpretation of an SLA

was accurate or vague by assessing the transaction fees and vagueness index of all possible

interpretations of the SLA. Moreover, we also compared two different SLAs and found which

one was more vague than the other. The main purpose of this chapter is to study how SLA

contracts, even from popular vendors, can create confusion and different interpretations in

different customers by being vague and how converting the traditional and vague SLAs into

smart contracts can help us find the right interpretation of a legal contract.
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CHAPTER 5

QUANTIFYING INTERPRETATION CERTAINTY VIA WEIGHTED FUZZY

REASONING TECHNIQUE

5.1. Introduction

We have all been in that situation when we are constantly making complaints to

the organization, especially internet service providers (ISPs), whenever their service gets

constantly interrupted [112], [140], [60], [124]. For the subscription and the payment the

customers have made to the ISPs, they are entitled to provide the customers with very good

service in all aspects, at least what they have mentioned in their service-level agreement

(SLA). However, often times customers end up not getting the kind of service that these

ISPs and other sort of companies promise to them. In addition, when customers are exas-

perated with their service, the only help they can get is from the SLA of the company. As

mentioned before, an SLA is a legal contract created by the vendor which defines the level

of the service expected by the customer that describes the metrics by which their service is

measured. An SLA also mentions that in case the services are not fulfilled to the customers

properly, then customers are entitled to receive some form of compensation or remedies based

on the measurement of provided metrics [154].

Nevertheless, as mentioned in previous chapters, companies always use vague and

fuzzy words and legal jargon in their legal contracts and SLAs, while customers who are

laypersons understand and prefer talking in everyday natural language. Due to this commu-

nication gap, when customers are trying to get further inquiries or support for their case,

that leaves the customers even more puzzled. In that scenario, the customers who are not

receiving proper service, as well as proper support from the company, are not getting any

better help from the company-drafted SLA.

Hence, it is obvious that many companies’ knowledge and many customers’ com-

plaints and compensation claiming interpretation always involve fuzzy concepts. Vagueness

is a kind of phenomenon that is still an open research problem in the area of natural lan-
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guage that has been studied throughout the years [21]. In this chapter, we have presented

how with the application of Fuzzy Logic, we are able to quantify a dissatisfied customer’s

claim for compensation when they file complaints to the vendors based on their SLA. This

method uses natural linguistic descriptors and can easily model the semantics of linguistic

expressions. This mathematical model was inspired by the Mycin system [153] that was de-

veloped in the early 1970s at Stanford University by Edward Shortliffe and Bruce Buchanan

which was used for the diagnosis of blood clotting disease and to help with bridging the gap

between a physician’s knowledge in medical diagnosis and patient’s symptom manifestations.

5.2. Contributions

The main contributions of this chapter are as follows:

• We use and adapt from Shyi-Ming Chen’s Weighted Fuzzy Reasoning Algorithm to

quantify the certainty level of a claim made by a dissatisfied customer, that was

originally used for the medical diagnosis [36].

• We generate the degree of truth for the knowledge representation.

• We investigate the concluded compensation based on the set of customers’ com-

plaints.

• We use similarity measures and the weighted vector method for the inclusion of the

degree of importance.

• We illustrated with an example based on the weighted fuzzy reasoning technique

how the confidence/certainty level of a customer’s claim on compensation could be

derived when the provided metrics of a company are not satisfactory.

5.3. Fuzzy Logic, Definitions, and Properties

Fuzzy logic was first proposed by Lotfi Zadeh in his 1965 paper, where he reflected

on how to model logical reasoning with vague or imprecise statements [186]. Fuzzy logic is

a method of reasoning that resembles human reasoning for representing and manipulating

uncertain information. It has the ability to handle the concept of partial truth as in real

life, as in real life, there are situations when the decision has to be made from inputs that
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have gray areas. Unlike Boolean logic that only works on either “yes” or “no” or either

“1” or “0”, fuzzy logic is a many-valued logic that has truth values of variables in any real

number between 0 and 1, inclusive [63]. It takes truth degrees as a mathematical basis on

the model of the vagueness phenomenon. For instance, consider a statement “The weather

is cold today.” In Boolean logic’s scenario, as it can only deal with either 1 or 0, if the word

“cold” had to be quantified to understand and measure the above statement, then the value

of the word “cold” only has two possible values, i.e., 1 or 0. In this above case, it would

be a 1. However, every person has different knowledge representations and interpretations

on different topics and, as a result of this, have different expressions in natural language. A

person’s tolerance and interpretation of cold weather can vary from another person who is

used to even colder weather. Hence, instead of expressing natural language in either “is cold

(1)” or “is not cold (0)”, fuzzy logic allows the expression of natural language considering

gray areas and degrees of truth using linguistic descriptors and their corresponding truth

membership values. For example, “cold” can have different linguistic descriptors and corre-

sponding membership values such as “extremely cold (1)”, “very cold (0.85)”, “somewhat

cold (0.30)”, or “not at all cold (0.00)”.

With the kind of advantages Fuzzy logic has been offering, and by being a kind of

explicit artificial intelligence model, we can see its application in numerous areas, ranging

from anti-lock brakes and auto transmission developed by Nissan to a microwave oven de-

veloped by Mitsubishi Chemical, and many more [118], [115], [22], [172].

Following are the definitions of fuzzy sets, including the most common fuzzy relations

and operations.

Definition 5.1. A fuzzy set A of the universe of discourse U , U = {u1, u2, ......., un} can be

defined as a set of ordered pairs {(u1, µA(u1)), (u2, µA(u2)), ......., (un, µA(un))},

where, µA is the membership function of the fuzzy set A,

µA : U −→ [0, 1], and

µA(ui) indicates the grade of membership of ui in A;
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∀ui ∈ U the membership value µA(µi) is a single value between zero and one [189].

Definition 5.2. A fuzzy set A is empty if and only if its membership function is identically

zero on the universe of discourse U [189].

Definition 5.3. Let fuzzy sets A and B of the universe of discourse U and let y be the

element of the universe. Let µA and µB be the membership values of element y in the fuzzy

sets A and B, respectively. The union of the two fuzzy sets is denoted by:

µA∪B(y) = max[µA(y), µB(y)]; ∀y ∈ U

µA∪B = µA ∪ µB,

where, ∪ represents maximum element in the set [189].

Definition 5.4. Let fuzzy sets A and B of the universe of discourse U and let y be the

element of the universe. Let µA and µB be the membership values of element y in the fuzzy

sets A and B, respectively. The intersection of the two fuzzy sets is denoted by:

µA∩B(y) = min[µA(y), µB(y)]; ∀y ∈ U

µA∩B = µA ∩ µB,

where, ∩ represents minimum element in the set [189].

Definition 5.5. Let fuzzy sets A and B of the universe of discourse U and let y be the

element of the universe. Let µA and µB be the membership values of element y in the fuzzy

sets A and B, respectively. The complement of the fuzzy set A and B are respectively

denoted by [189]:

µA(y) = 1− µA(y);∀y ∈ U

µB(y) = 1− µB(y);∀y ∈ U

5.4. Degree of Truth and Knowledge Representation

In the case of a dissatisfied customer due to inadequate services from a broadband

vendor, knowledge can be represented after reading the SLA as follows:

IF complaints are filed based on different information, THEN concluded compensation (CF

= µi).
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Table 5.1. Fuzzy quantifiers and their corresponding numerical intervals -

Adapted from [36], [189], [187]

Fuzzy Quantifiers Numerical Intervals

always [1.00, 1.00]

very strong [0.95, 0.99]

strong [0.80, 0.94]

more or less strong [0.65, 0.79]

medium [0.45, 0.64]

more or less weak [0.30, 0.44]

weak [0.10, 0.29]

very weak [0.01, 0.09]

no [0.00, 0.00]

Table 5.2. Certainty levels and their corresponding numerical intervals -

Adapted from [36], [189], [187]

Certainty levels Numerical Intervals

absolutely certain [1.00, 1.00]

extremely certain [0.96, 0.99]

very certain [0.86, 0.95]

pretty certain [0.76, 0.85]

quite certain [0.66, 0.75]

fairly certain [0.56, 0.65]

more or less certain [0.46, 0.55]

little certain [0.30, 0.45]

very little certain [0.16, 0.29]

hardly certain [0.01, 0.15]

absolutely uncertain [0.00, 0.00]

76



For example, let U be a set of complaints filed based on different metrics in service-

level agreements (SLA), U = {Performance, Operation, Availability, Latency, Jitter, Mainte-

nance}, and Compensation be a concluded outcome, then this knowledge can be represented

by the rule R1 as follows:

R1: IF {no Performance Λ no Operation Λ very weak Availability Λ very strong La-

tency Λ always Jitter Λ very weak Maintenance},

THEN Compensation (CF = 0.90).

According to Table 5.1 and Table 5.2 in this chapter, the rule Rn can be written as follows:

R1: IF {(Performance, 0.00), (Operation, 0.00), (Availability, 0.05), (Latency, 0.97),

(Jitter, 1.00), (Maintenance, 0.05)},

THEN Compensation (CF= 0.90).

where D1 = {(Performance, 0.00), (Operation, 0.00), (Availability, 0.05), (Latency, 0.97),

(Jitter, 1.00), (Maintenance, 0.05)},

THEN Compensation (CF= 0.90).

Here D1 is a fuzzy set of the universe U , where U = {Performance, Operation, Availability,

Latency, Jitter, Maintenance}.

5.5. Similarity Measures and Degrees of Importance

(4) T (x, y) = 1− |x− y|,

where T (x, y) ∈ [0, 1].

The larger the values of T (x, y), the higher the similarity between x and y.

Let U be the universe of discourse and let A and B the two fuzzy sets of U , i.e., U = {u1,

u2, ......., up},

A = {(u1, a1), (u2, a2), ......., (up, ap)},

B = {(u1, b1), (u2, b2), ......., (up, bp)},

where,

ai ∈ [0, 1], bi ∈ [0, 1], and 1 ≤ i ≤ p. By using the vector representation method, A and B

can be represented by the vectors A and B respectively, where
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A = ⟨a1, a2, ......., ap⟩,

B = ⟨b1, b2, ......., bp⟩.

Assuming that each νi in U has a different degree of importance and the importance of νi is

wi, where wi ∈ [0, 1] and 1 ≤ i ≤ p, then the degree of importance of each ui in U can be

described by a weighted vector W , where

W = ⟨w1, w2, ......., wp⟩.

The degree of similarity between the fuzzy sets A and B can be measured by the similarity

function F , F (A,B,W ) ∈ [0, 1], where

(5) F (A,B,W ) =
∑p

j=1

[
T (aj, bj) ∗

Wj∑p
k=1 ∗Wk

]
The larger the value of F (A,B,W ), the higher the similarity between the fuzzy sets

A and B.

5.6. A Weighted Fuzzy Reasoning Technique

In this section, we present a weighted fuzzy reasoning technique based on the simi-

larity function F which is adapted from Shyi-Ming Chen’s paper [36].

Let U be a set of complaints filed based on different information in SLA and V be a set of

concluded compensation, where

U = {m1, m2, ......., mp},

V = {d1, d2, ......., dn}.

Assuming that the knowledge base contains the following fuzzy production rule:

Ri: IF Di THEN di (CF = µi),

where Di = {(mj, tij | tij ∈ [0, 1], 1 ≤ j ≤ p}, µi ∈ [0, 1], and 1 ≤ i ≤ n, and assuming that

the M is the set of customer’s complaints, where M = {(mj, xj | xj ∈ [0, 1], 1 ≤ j ≤ p}. Di

and M are the fuzzy sets of U , where U = {m1,m2, .......,mp}. By using vector representa-

tion method, Di and M can be represented by the vectors Di and M , respectively, where

Di = ⟨ti1, ti2, ......., tip⟩,
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M = ⟨x1, x2, ......., xp⟩.

Let Wi be the weighted vector of the complaints appearing in Di, where Wi =

⟨wi1, wi2, ......., wip⟩. The weights are used to emphasize the importance of individual ele-

ment in the similarity calculation as the elements inside the set have different characteristics

and features. By applying above equation, we get [36]:

(6) F (M,Di,Wi) =
∑p

j=1

[
T (xj, tij) ∗

Wij∑p
k=1 ∗Wik

]
,

where,

F (M,Di,Wi) ∈ [0, 1]. The larger the value of F (M,Di,Wi), the higher the similarity be-

tween M and Di.

Let λ be a threshold value. If F (M,Di,Wi) ≥ λ, then the rule Ri can be triggered. The

threshold helps to prioritize the rules in the situations where multiple rules are triggered

simultaneously. This indicates that the customer might get the compensation di with the

degree of certainty of about ci, where ci = F (M,Di,Wi) ∗ µi and ci ∈ [0, 1]. The larger the

value of ci, the higher the possibility that the customer might get the compensation di. If

F (M,Di,Wi) < λ, then the rule Ri cannot be activated and therefore, will be discarded.

In the following, we use an example to illustrate the quantification of interpretation, where

the result of any arithmetic operation is represented by 2 digits of significant numbers.

Example 5.6. Let U be a set of metrics, V be a set of concluded compensation, and M be

a set of customer’s complaints, where,

U = {m1, m2, m3, m4, m5, m6},

V = {d1, d2, d3, d4, d5, d6},

M = {(m1, 0.20), (m2, 0.50), (m3, 0.20), (m4, 0.85), (m5, 0.95), (m6, 0.00)}

Assume that the threshold value λ is 0.50 (i.e., λ = 0.50), and the knowledge base of

a broadband or an ISP contains the following fuzzy production rules:
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R1: IF {(m1, 0.90), (m2, 0.70), (m3, 0.70), (m4, 0.05), (m5, 0.00), (m6, 0.50)}

THEN d1 (CF = 0.10)

R2: IF {(m1, 0.50), (m2, 0.70), (m3, 0.85), (m4, 0.70), (m5, 0.50), (m6, 0.50)}

THEN d2 (CF = 0.40)

R3: IF {(m1, 0.50), (m2, 0.50), (m3, 0.70), (m4, 0.70), (m5, 0.85), (m6, 0.85)}

THEN d3 (CF = 0.50)

R4: IF {(m1, 0.40), (m2, 0.50), (m3, 0.70), (m4, 0.85), (m5, 0.70), (m6, 0.40)}

THEN d4 (CF = 0.50)

R5: IF {(m1, 0.20), (m2, 0.40), (m3, 0.60), (m4, 0.80), (m5, 0.85), (m6, 0.40)}

THEN d5 (CF = 0.80)

R6: IF {(m1, 0.05), (m2, 0.05), (m3, 0.40), (m4, 0.85), (m5, 0.85), (m6, 0.20)}

THEN d6 (CF = 1.00)

µ1 = 0.10, µ2 = 0.40, µ3 = 0.50, µ4 = 0.50, µ5 = 0.80, µ6 = 1.00

D1 = {(m1, 0.90)}, {(m2, 0.70)}, {(m3, 0.70)}, {(m4, 0.05)}, {(m6, 0.00)}, {(m6, 0.50)},

D2 = {(m1, 0.50)}, {(m2, 0.70)}, {(m3, 0.85)}, {(m4, 0.70)}, {(m6, 0.50)}, {(m6, 0.50)},

D3 = {(m1, 0.50)}, {(m2, 0.50)}, {(m3, 0.70)}, {(m4, 0.70)}, {(m6, 0.85)}, {(m6, 0.85)},

D4 = {(m1, 0.40)}, {(m2, 0.50)}, {(m3, 0.70)}, {(m4, 0.85)}, {(m6, 0.70)}, {(m6, 0.40)},

D5 = {(m1, 0.20)}, {(m2, 0.40)}, {(m3, 0.60)}, {(m4, 0.80)}, {(m6, 0.85)}, {(m6, 0.40)},

D6 = {(m1, 0.05)}, {(m2, 0.05)}, {(m3, 0.40)}, {(m4, 0.85)}, {(m6, 0.85)}, {(m6, 0.20)}

Based on the vector representation method, M , D1, D2, D3, D4, D5, and D6 can be repre-

sented by the vectors M , D1, D2, D3, D4, D5, and D6 respectively, where

M = ⟨0.20, 0.50, 0.20, 0.85, 0.95, 0.00⟩

D1 = ⟨0.90, 0.70, 0.70, 0.05, 0.00, 0.50⟩

D2 = ⟨0.50, 0.70, 0.85, 0.70, 0.50, 0.50⟩
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D3 = ⟨0.50, 0.50, 0.70, 0.70, 0.85, 0.85⟩

D4 = ⟨0.40, 0.50, 0.70, 0.85, 0.70, 0.40⟩

D5 = ⟨0.20, 0.40, 0.60, 0.80, 0.85, 0.40⟩

D6 = ⟨0.05, 0.05, 0.40, 0.85, 0.85, 0.20⟩

Assuming that the weighted vectors of D1, D2, D3, D4, D5, and D6 are W1, W2, W3,

W4, W5, and W6 respectively, where

W1 = ⟨0.00, 1.00, 0.10, 0.00, 0.20, 0.40⟩

W2 = ⟨0.30, 0.00, 0.20, 1.00, 0.00, 1.00⟩

W3 = ⟨1.00, 0.00, 0.00, 0.30, 0.00, 0.10⟩

W4 = ⟨0.00, 0.20, 0.50, 0.10, 0.10, 0.00⟩

W5 = ⟨0.50, 0.00, 0.40, 1.00, 0.00, 0.50⟩

W6 = ⟨0.00, 0.30, 1.00, 1.00, 1.00, 1.00⟩

when i = 1,

(7)

Q = M ∩D1

= {(m1, 0.20), (m2, 0.50), (m3, 0.20), (m4, 0.05), (m5, 0.00), (m6, 0.00)};

T = {m1,m2,m3,m4}.

Because T ̸= ∅, we get y1 = F (M,D1,W1) = 0.62.

Since 0.62 > λ, we obtain c1 = 0.62 ∗ 0.10 ≃ 0.06.

From Table 5.1, we can see that the corresponding certainty level of c1 is “hardly certain”.

when i = 2,

(8)

Q = M ∩D2

= {(m1, 0.20), (m2, 0.50), (m3, 0.20), (m4, 0.70), (m5, 0.50)};

T = {m1,m2,m3,m4,m5}.

81



Because T ̸= ∅, we get y2 = F (M,D2,W2) = 0.65.

Since 0.65 > λ, we obtain c2 = 0.65 ∗ 0.40 ≃ 0.26.

From Table 5.1, we can see that the corresponding certainty level of c2 is “very little certain”.

when i = 3,

(9)

Q = M ∩D3

= {(m1, 0.20), (m2, 0.50), (m3, 0.20), (m4, 0.70), (m5, 0.85)};

T = {m1,m2,m3,m4,m5}.

Because T ̸= ∅, we get y3 = F (M,D3,W3) = 0.40.

Since 0.40 < λ, the rule R3 cannot be activated and therefore, will be discarded.

when i = 4,

(10)

Q = M ∩D4

= {(m1, 0.20), (m2, 0.50), (m3, 0.20), (m4, 0.85), (m5, 0.70)};

T = {m1,m2,m3,m4,m5}.

Because T ̸= ∅, we get y4 = F (M,D4,W4) = 1.44.

Since 1.44 > λ, we obtain c4 = 1.44 ∗ 0.50 ≃ 0.72.

From Table 5.1, we can see that the corresponding certainty level of c4 is “quite certain”.

when i = 5,

(11)

Q = M ∩D5

= {(m1, 0.20), (m2, 0.40), (m3, 0.20), (m4, 0.80), (m5, 0.85)};

T = {m1,m2,m3,m4,m5}.

Because T ̸= ∅, we get y5 = F (M,D5,W5) = 0.82.

Since 0.82 > λ, we obtain c5 = 0.82 ∗ 0.80 ≃ 0.66.
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From Table 5.1, we can see that the corresponding certainty level of c5 is “quite certain”.

when i = 6,

(12)

Q = M ∩D6

= {(m1, 0.05), (m2, 0.05), (m3, 0.20), (m4, 0.85), (m5, 0.85), (m6, 0.00)};

T = {m1,m2,m3,m4,m5}.

Because T ̸= ∅, we get y6 = F (M,D6,W6) = 0.85.

Since 0.85 > λ, we obtain c6 = 0.85 ∗ 1.00 ≃ 0.85.

From Table 5.1, we can see that the corresponding certainty level of c6 is “pretty certain”.

Thus, we can obtain the following results:

(1) The customer might get the compensation d1 with the degree of certainty of about

0.06 (hardly certain)

(2) The customer might get the compensation d2 with the degree of certainty of about

0.26 (very little certain)

(3) The customer might get the compensation d4 with the degree of certainty of about

0.72 (quite certain)

(4) The customer might get the compensation d5 with the degree of certainty of about

0.66 (quite certain)

(5) The customer might get the compensation d6 with the degree of certainty of about

0.85 (pretty certain)

5.7. Conclusion

In this chapter, a weighted fuzzy reasoning algorithm for handling consumers’ claims

on compensation was presented that was adapted from S.M. Chen’s algorithm used for

medical diagnosis [36]. This technique is flexible as it is able to take into account several

sets of complaints filed based on different information in an SLA with different degrees of

importance and weight. This algorithm efficiently handles the problem of vagueness in an
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SLA and the communication gap due to different interpretations between a company and

a customer. With a strong knowledge base that includes fuzzy quantifiers, certainty levels,

and production rules, we can efficiently evaluate a customer’s complaint and, with the help

of approximate reasoning, can derive the customer’s complaints of their complaint with a

specific and crisp degree of certainty.
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CHAPTER 6

DEFUZZIFICATION OF TRADITIONAL SERVICE-LEVEL AGREEMENT (SLA)

INTO SMART CONTRACT1

6.1. Introduction

In our everyday life, when a customer makes a complaint against the company when

the services that they are subscribed to are unsatisfactory, that is against the service-level

agreement (SLA) [79], the complaint is made in natural language. For example, “The service

is slow and has been really bad for over a month now.” is the kind of complaint made by

the customer to the company that has plenty of vagueness in the statement. The company

takes advantage of the customer’s lack of legal and contractual knowledge and tries to escape

from making the compensation to the customer [71], [77], [39]. And even if the complaints

are heard, it takes a long time for the customers to claim their compensation and get back

their refund, which results in uninvited wastage of extra time and money just to get the

compensations back [112], [140], [60], [124].

Ambiguous

Fuzzy

Vague

Legal JargonsCustomer Service Level
Agreement

Figure 6.1. A layperson does not understand the ambiguity, fuzziness,

vagueness, and legal jargon present in the legal contract or service-level agree-

ment.

1This chapter is presented in its entirety from K. Upadhyay, R. Dantu, Y. He, A. Salau and S. Badruddoja,
“Make Consumers Happy by Defuzzifying the Service-Level Agreements,” 2021 Third IEEE International
Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA,
USA, 2021, pp. 98-105, doi: 10.1109/TPSISA52974.2021.00011. © 2021 IEEE. Reprinted, with permission.
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Ambiguity and vagueness are the phenomenons that many have tried to study in

natural language. We find vagueness, fuzziness, and legal jargon abundantly that is beyond

our comprehension in legal contracts [20], [141], [29], [110] and service-level agreements

(SLAs). Fuzzy logic is an approach to computing something that is based on degrees of

truth rather than the Boolean true or false (1 or 0). Natural language has many gray areas,

and nothing can always be classified either as 1 or as 0. We have used fuzzy logic because

it can model the semantics of linguistic expressions [188]. After all, fuzzy sets can capture

their innate vagueness. Fuzzy logic is also much cheaper and quicker at the same time when

implemented inside the smart contract [159] for the blockchain compared to machine learning

due to the simplicity of fuzzy logic’s [188], [86] rule-based system and an inference engine

that makes the smart contact not only smart but also intelligent.

Despite the fact that there has been substantial research going on for the smart

contracts in the present day [74], [3], [158], [150], [169], [42], [125], the study specifically

on the vagueness in legal contracts and translation of the legal contracts to smart legal

contracts considering vagueness in legal contracts as the main factor has not been exhaustive

as mentioned in Chapter 2.

6.2. Contributions

The main focus of this chapter is the Ethereum-based smart contract that incorporates

fuzzy logic, which is intelligent enough to handle the issues of linguistic vagueness present in

the legal contracts and SLAs that will potentially create multiple interpretations. The main

contributions of this chapter [166] are as follows:

• We take a real-life SLA from a popular telecommunication vendor, Spectrum’s SLA

[133], and find ambiguities and vagueness in it.

• We manually summarize the whole vague SLA into an IF and ELSE condition that

would be the basis for our fuzzy logic-based smart contract.

• We incorporate Mamdani’s Fuzzy Inference System [114] inside our Ethereum-based

smart contract.
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• We create three different smart contracts with the same architecture but with differ-

ent numbers of linguistic descriptors and membership functions and perform several

experiments for evaluation and analysis.

• Finally, we conclude that using fuzzy logic inside an Ethereum-based smart contract

would be a novel and convenient method to handle the uncertainties and vagueness

found in the clauses of the SLA that would also result in faster settlement in claiming

compensation by the dissatisfied customers.

6.3. Experimental Setup

The tools and materials that we have used for this project are listed below:

i) Ropsten Test Network, ii) Solidity Programming Language, iii) Remix Web IDE, iv)

Metamask, v) Node.js, vi) Truffle, vii) Ganache-CLI, viii) Web3, ix) HD Wallet, x) Google

Chrome in Incognito Mode, xi) Python 3, Anaconda and Jupyter Notebook xii) Skfuzzy

[129]

6.4. Methodology

When a customer is not satisfied with the services provided by their company, as

mentioned in the company’s service-level agreement (SLA), due to the lack of knowledge

of legal jargon and vague words and phrases, it would be difficult for any customer to

understand the SLA clearly and claim their compensation. A customer has to go through

a lot of hassles even if they would have understood the vague legal words in the SLA.

Hence, in this work, we have selected a real-life SLA from a popular telecommunication

vendor, Spectrum Internet from Charter Communications, and studied the vagueness and

ambiguities found in the SLA. We read the whole SLA and found out that there were not

any metrics properly given for the customers discussing the performance and operation of

the company. Furthermore, the compensation that was provided was absolutely not in favor

of the customers who were experiencing the worst internet service. Since the whole SLA

was vague and the metrics were not properly set out for the customers, we concentrated and

summarized the whole SLA into one general fuzzy rule. The rule is: “If the Performance
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and Operation are bad, then Compensation should be high.” Here, Performance is the title

of Clause 3 and Operation is the title of Clause 4. Since the basis for the calculation of

compensation is the performance and operation of the company, as the SLA states, we have

assumed our two inputs are Performance and Operation, and our output is Compensation.

This fuzzy rule would be the basis for this work, where we create an Ethereum-based smart

contract that has fuzzy logic implementation inside. We created a smart contract that has a

fuzzy inference system in it so that the smart contract can actually be smart and can decide

by itself the total compensation amount to be sent back to the customer’s account based

on the ratings provided by the customers. There is a possibility that customers can provide

fake ratings which are very low to get a higher compensation amount [76]. However, that

is the concern of this work, and since everything should be validated and everybody should

come to a consensus in blockchain so, cheating by providing low ratings just to get higher

compensation even if a customer is getting good service is not possible [185]. Our main

focus in this work is the Ethereum-based smart contract itself that is smart and intelligent,

which can understand and decode the natural human language and hedges by quantifying

the linguistic variables and providing us a crisp value of compensation.

FUZZIFIER

RULE-BASED SYSTEM

INFERENCE ENGINE
(INTELLIGENCE)

DEFUZZIFIER
(Center of

Gravity Method)

SMART CONTRACT INCORPORATING FUZZY LOGIC

CRISP RATING
OF

PERFORMANCE
AND 

OPERATION

Customer rates vague inputs and fuzzy
descriptors of Performance and Operation

 with a crisp number

CRISP VALUE 
OF

COMPENSATION

Smart Contract incorporating Fuzzy
Logic defuzzifies the crisp value of

Compensation (output) for the customer

Figure 6.2. Our model architecture consists of three main phases where a

dissatisfied user who wants to claim compensation, provides crisp ratings of

the company to the fuzzy logic-based smart, which fuzzifies the inputs into

linguistic variables for the generation and inference of rules, and finally de-

fuzzifies the aggregated fuzzy output into the crisp value of compensation for

the customer.
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Our methodology comprises a smart contract that incorporates a fuzzy logic mech-

anism that has four major components and their respective functions in it [14]. They are

Fuzzifier, Rule-based System, Inference Engine, and Defuzzifier as shown in Fig. 6.2. In our

methodology, we have three main phases, which are explained below:

6.4.1. Inputs

First, the customer provides crisp ratings for the vague inputs, Performance, and

Operation to the smart contract. This input is measured in percentages. For example, if the

customer is highly satisfied with the performance of the company but somewhat satisfied

with the operations of the company, they would rate Performance as 90% and Operation as

40% in the smart contract.

6.4.2. Components of Smart Contract

The ratings for two inputs provided by the dissatisfied customer will now be fetched

by the smart contract, which performs fuzzy logic operations inside. We have four major

components inside the smart contract, as further explained in detail below:

(1) Fuzzifier:

Fuzzifier is a component that is responsible for the process of converting the

crisp inputs (ratings) for Performance and Operation provided by the user. The

crisp ratings are converted into linguistic variables [57] and are assigned with the

membership values. The source of the membership values is either the domain

expert, intuition, or statistical analysis. In this work, the source of assignment

of membership values is both domain expert and intuition. We have developed

three different smart contracts called SC 1, SC 2 and SC 3 that have the same

architecture but a different number of linguistic descriptors and hence a different

number of membership values for each linguistic descriptor. In our SC 1, we have

the least number of descriptors for inputs, i.e., three. We increase the number of

descriptors for inputs to five for SC 2. Finally, we have eight descriptors for both

inputs and output in SC 3.
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Smart Contract

Provides crisp rating for
"Performance" (Input)

Provides crisp rating for
"Operation" (Input)

Sets Triangular
Membership Function

for "Performance"
Sets Triangular

Membership Function
for "Operation"

Evaluate rules strength

Sets Triangular
Membership Function
for "Compensation"

(output)

Receives crisp  amount  for "Compensation"  (Output) using Mamdani Method's Center of Gravity (COG)
Technique of Defuzzification

Input Membership
Function

Fuzzification
Module

Rule/Knowledge
Base

Generate fuzzy sets for
output using IF-THEN

rules

Fuzzify the crisp ratings
and obtain the degree of

Membership Function

Inference 
Engine

Defuzzification
ModuleCustomer

Fuzzify the crisp ratings
from the customer and

produce the fuzzy
inputs

Combine fuzzy sets of
inputs to make fuzzy
inferences using IF-

THEN rules

Figure 6.3. Implementation of Fuzzy Logic inside Smart contract which uses

Triangular Membership Function [139] in order to solve the problem of con-

tractual vagueness by fuzzifying the crisp inputs provided by the customer.

With the help of a rule-based system and inference engine, the customer will

get the correct amount of compensation or service credits without having to

deal with the vagueness and fuzziness present in the SLA

Descriptors are fuzzy linguistic variables that describe the gray areas of the fuzzy

inputs. The descriptors for inputs and output for each smart contract are provided

below:
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• Smart contract with 3 descriptors (SC 1):

This smart contract has only 3 descriptors in its inputs and 5 descriptors in

its output. We have also referred to this smart contract as “SC 1” in our

figures below, as this was the first smart contract we developed and tested.

The descriptors of the inputs and outputs are provided below:

– Performance: {poor, good, excellent}

– Operation: {slow, acceptable, rapid}

– Compensation: {very low, low, normal, high, very high}

• Smart contract with 5 descriptors (SC 2):

Our second smart contract has 5 descriptors in both its inputs and output. The

descriptors in this smart contract have been stretched out to 5 for evaluation

and further research purposes. We have referred to this smart contract as “SC

2”. The descriptors of the inputs and outputs are provided below:

– Performance: {very poor, poor, good, very good, excellent}

– Operation: {very slow, slow, acceptable, fast, rapid}

– Compensation: {very low, low, normal, high, very high}

• Smart contract with 8 descriptors (SC 3):

Finally, our third smart contract has been even further stretched out to 8

descriptors in both inputs and outputs. The reason we also increased the

number of descriptors in the output along with the inputs was that we did

not want to have fewer descriptors in the output compared to the number of

descriptors in the inputs. We have referred to this smart contract as “SC 3”.

The descriptors of the inputs and outputs for SC 3 are provided below.

– Performance: {extremely poor, very poor, poor, satisfactory, good, very

good, extremely good, excellent}

– Operation: {extremely slow, very slow, slow, mediocre, acceptable, fast,

very fast, rapid}

– Compensation: {extremely low, very low, low, insufficient, normal, high,
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very high, extremely high}

No hard and fast rule says anything about a specific name should be given to a

descriptor, or there should be a specific number of descriptors in the inputs and out-

put [157]. We have used the aforementioned descriptors because they are suitable

for this research that involves service-level agreements (SLA). Although there are

various membership functions [8] to assign membership values after the crisp ratings

are converted into linguistic descriptors, in this fuzzification process, we have used

triangular membership function. The membership values range from 0 to 1 and are

denoted by µ.
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Figure 6.4. An example of a triangular membership function

The triangular membership function is defined as [139]:

(13) µ(x, a, b, c) =



0, if x < a

(x− a)/(b− a), if a <= x <= b

(c− x)/(c− b), if b < x <= c

0, if c < x

Where, µ(x, a, b, c) is the degree of membership of parameters a, b, and c.

92



For example, as we can see in the sequence diagram of Fig. 6.3, when a customer

provides the crisp ratings for Performance and Operation, the Fuzzifier takes those

crisp numbers to convert them into the linguistic descriptors we have mentioned

earlier. For instance, if we take the case of SC 1, which has only three linguistic

descriptors when a customer rates Performance as 40%, this crisp value will be

converted into a fuzzy descriptor. Hence, for some people, 40% might be poor,

and for others, the same rating of 40% might be good, which depends on people’s

experience and interpretation.

(2) Rule-based system:

Once the crisp values are fuzzified into descriptors and membership values are

assigned for those corresponding descriptors, we construct fuzzy rules in a rule-based

system that has IF, OR, AND, THEN with linguistic descriptors. These rules are

very much similar to the rules from the Decision Tree [98]. Each rule has two parts

that are antecedent and consequent. Any rule can have multiple antecedents and

consequents. For instance, there are three rules formed in the rule-based system after

the crisp inputs are fuzzified into descriptors. Here in this instance, the descriptors

are poor and slow. The antecedent is the condition, and the result is the consequent.

IF the performance is “poor” OR operation is “slow” is the antecedent, and THEN

compensation is “high” is the consequent. There are n2 number of rules inside the

rule-based system, where n is the number of descriptors in inputs. As we can see

in Fig. 6.5, this is the matrix of rules for SC 1 that has 9 rules altogether because

of three descriptors for inputs in SC 1. Similarly, our SC 2 had 25 rules altogether

because five different descriptors were assigned for each input and output. Likewise,

we stored a total of 64 rules in our SC 3 because the inputs and output of SC 3 had

eight descriptors in its inputs and output.

(3) Inference engine:

Once the fuzzy rules are created and stored in the rule-based system, we map

the fuzzy rules into the membership graphs of all the parameters. This means that
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Figure 6.5. Matrix of 9 rules for SC 1 as SC 1 just has three descriptors for

its first input, Performance, and three descriptors for its second input, Oper-

ation.

we map the antecedents of a rule to the consequents of the same rule.

Mapping is performed to all the rules in the rule-based system. Once the matrix

is created, then the inference engine decides what the output will become when the

crisp inputs are converted to the linguistic variables. For instance, as we can see

in the matrix, when Performance is poor, and Operation is slow, the Compensation

is very high. Similarly, when the Performance is excellent, but Operation is accept-

able, then Compensation is low. Additionally, the Inference Engine also helps to

measure the strength of the rules and select for the final phase, defuzzification. The

membership values of the antecedents are conjoined together with the intersection

operator (finding the MIN or minimum) since they are connected with AND in this

work. If the antecedents had been connected with OR, then we would have used

the union operator (finding the MAX or maximum). Once the membership values

of the antecedents are compared, and the minimum values of each rule are selected,

the minimum membership value would be the unit for measuring the strength of

the rules.

(4) Defuzzifier:
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Defuzzification is the final step of fuzzy logic and hence the final component

of our smart contract as well. This component is responsible for making the final

decision by selecting the rule that has the highest strength [35]. More importantly,

this component is also responsible for finding the crisp value from the output of the

aggregated fuzzy set. From Fig. 6.3, we can see that when the strength of rules is

evaluated, the defuzzifier/defuzzification module transfers the fuzzy inference results

back to the crisp value. This crisp value would be the final output. Although there

are various defuzzification techniques, such as the Mean of Max method, Weighted

sum method, Lambda-cut method, etc., we have used the Center of gravity (COG)

method in this work [65]. The COG is defined as [184]:

(14) X∗ =

∑n
i=1 xi ∗ Ai∑n

i=1Ai

Where, X∗ is the crisp output,
∑n

i=1 is the sum over variable’s possible values,

xi is the center of an area, and Ai is the total area of the selected region.

From the sequence diagram in Fig. 6.3, we can also see that the final crisp value

for Compensation is produced as output and sent back to the customer.

6.4.3. Output

Finally, the customer who provides the crisp ratings for the two inputs to the fuzzy

logic-based smart contract, i.e., Performance and Operation, will get a crisp result back as

Compensation. The Compensation is also measured in percentages, just like the inputs. For

example, from Fig. 6.6, if SC 1 is implemented, we can see when the customer provides crisp

ratings for Performance and Operation as 20% and 30%, respectively if the service is poor,

the customer receives the Compensation as 60% of total expenses of his/her subscription to

the current service. However, when the customer increases the crisp ratings for Performance

and Operation to 50% and 60%, respectively, the customer receives the Compensation as

26.82%. The lower the customer ratings are, the higher the compensation is, and vice-versa.

Nevertheless, in the Results section, we still discuss the accuracy of our defuzzification output

in all three smart contracts.
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(a) (b)

When, 
performance = 20% and

operation = 30%

compensation = 60%

When, 
performance = 40% and

operation = 50%

compensation = 44.82%

When, 
performance = 50% and

operation = 60%

compensation = 35.17% compensation = 26.82%

When, 
performance = 80% and

operation = 90%

(c) (d) (e) (f)

Figure 6.6. Performance and Operation are the inputs of the Smart contract

incorporating Fuzzy Logic with 3 descriptors for inputs and 5 descriptors for

output where the Triangular MF and Center of gravity method is used. Differ-

ent series of inputs are provided to observe the varying nature of the output,

i.e., Compensation.

6.5. Results

We have developed and tested three different types of smart contracts with the same

architecture of fuzzy logic that we have discussed above in the Methodology section. The

only way these three smart contracts differ is by the number of descriptors and their corre-

sponding membership functions and matrix of rules. Although the employed technique of

defuzzification is the same, i.e., the Center of gravity (COG) method, these three different

kinds of smart contracts have a different number of descriptors. The reason we developed

and tested three different kinds of smart contracts is to successfully evaluate and analyze the

performance, accuracy, and impact of the varying number of descriptors in smart contracts

when deployed into the Ethereum-based Blockchain. More is explained about these smart

contracts and their respective descriptors in detail in the following subsections.
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6.5.1. Defuzzification Results from Different Smart Contracts

In our SC 1, we got different results for Compensation when different values for inputs

were provided as expected. Since the Compensation will be higher when the customer ratings

are lower and will be lower when the customer ratings are higher, the inputs and output

have an inverse relationship. As shown in Fig. 6.6 and Fig. 6.7, when the user provides

the crisp rating of 20% and 30% in the smart contract for Performance and Operation,

respectively, it gives us the output of 60% for Compensation. Similarly, SC 1 gives the

Compensation of 45% when the Performance and Operation are 40% and 60%, respectively.

When the inputs for Performance and Operation are 50% and 60%, respectively, SC 1 gives

us the Compensation of 35%. Finally, when the inputs for Performance and Operation are

increased to 80% and 90%, the Compensation reduces to 27%. We can also see in Fig. 6.7

that the compensations calculated by the SC 1 decrease when the ratings for Performance

and Operation are increasing.

Figure 6.7. Defuzzification of the output of three different Smart contracts

when different values of inputs are provided.

We provided different values of ratings as inputs again for SC 2. Although SC 2 has

more descriptors for Performance and Operation, i.e., five, we can see that the Compensa-

tion is the same as 60% when the ratings are 20% and 30% respectively. However, when

the ratings for Performance and Operation are increased to 40% and 50%, this time SC 2
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gives us the Compensation of 40%. Similarly, when the input ratings are 50% and 60%,

respectively, the Compensation is 30%. Finally, when there are high ratings for Performance

and Operation, such as 80% and 90%, respectively, SC 2 gives us the Compensation of 10%.

Finally, for SC 3, we provided the same series of values of ratings as inputs again

for SC 3 as we did for SC 1 and SC 2. From Fig. 6.7, we can see that when the ratings

for Performance and Operation were 20% and 30% respectively, SC 3’s output, i.e., Com-

pensation is 60%. We can observe in the bar chart the values for the output are decreasing

when provided the same values for inputs as SC 1 and SC 2. Similarly, the Compensation

was outputted as 36% when the rating inputs were increased to 40% and 50%, respectively.

Likewise, when the customer ratings were increased to 50% and 60%, respectively, the Com-

pensation fell to 10%. Finally, when the customer ratings were at their highest, i.e., 80%

and 90%, the Compensation output was just 4%.

From the bar chart, we can see that regardless of the kind of smart contract and the

number of descriptors they have, when the two inputs, i.e., Performance and Operation are

20% and 30%, respectively, the final defuzzified crisp value for Compensation is same or at

least similar in all three smart contracts, SC 1, SC 2 and SC 3.

6.5.2. Deployment Costs of Different Smart Contracts

We deployed all three smart contracts in Ropsten Testnet. We converted all ETH

costs in United States Dollars (USD), and on August 16, 2:09 AM UTC, the conversion

rate of 1 ETH was 3,315.44 USD. This data was provided by Morningstar for Currency

and Coinbase for Cryptocurrency [11]. SC 1 had the lowest deployment cost, i.e., 14.02

USD. The reason SC 1 had the lowest deployment cost was that it was the lightest program

among all smart contracts, as SC 1 only had three descriptors in its inputs, Performance and

Operation. As a result of only three descriptors, the number of membership functions for

each corresponding descriptor was also lesser. However, SC 2 had five descriptors for both

inputs, and as a result, this smart contract had more membership functions assigned for its

descriptors. Hence, the deployment cost for SC 2 was higher than SC 1, i.e., 21.24 USD.

Finally, the highest deployment cost was for SC 3 because it had eight descriptors for inputs,
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Performance, and Operation, as well as for the output, Compensation. The deployment cost

for SC 3 was 30.11 USD.
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Figure 6.8. Deployment costs of SC 1, SC 2, and SC 3 in Ropsten Ethereum

Testnet in USD.

The deployment cost of a smart contract depends on its size. Therefore, the larger the

smart contract, the higher the deployment cost is. In this case, the size of the smart contract

was affected by the number of descriptors and their corresponding membership functions in

the smart contract. Additionally, we can also observe that we have a common ratio of 1.5 in

this geometric series of deployment costs among the three smart contracts. The deployment

cost of SC 2 is 1.5 times higher than the deployment cost of SC 1, and the same case for

SC 3 and SC 2 as well. The reason we see this almost precise ratio between the deployment

cost is the number of descriptors chosen for inputs in each smart contract, i,e, three, five,

and eight.

6.5.3. Transaction Costs of Major Functions Used in Different Smart Contracts

We discuss the TXN costs incurred by the four major functions used in the smart

contracts below.

• Function for Performance:

This function is responsible for taking the crisp input from the customer for rating
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the Performance of the company and then fuzzifying the crisp input using its mem-

bership functions depending on how many descriptors it has. In SC 1, the TXN

cost for Performance was 1.29 USD. The TXN cost for Performance increases to

2.13 USD in SC 2 and increases further to 2.64 USD in SC 3. The reason TXN cost

is getting higher and higher is due to the increasing number of descriptors and their

corresponding membership functions in smart contracts.
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Figure 6.9. TXN costs of major functions used in SC 1, SC 2, and SC 3 in USD.

• Function for Operation:

This is a similar function to Performance as Operation is our second input. Like-

wise, this function is responsible for taking the crisp input from the customer for

rating the Operation of the company and then fuzzifying the crisp input using its

membership functions depending on how many descriptors it has. Hence, the TXN

costs in each smart contract for Operation is approximately the same as Perfor-

mance, as we can see in Fig. 6.9. The TXN cost for Operation in SC 1, SC 2, and

SC 3 were 1.27 USD, 2.13 USD, and 2.75 USD, respectively, in an increasing fashion.

• Function for Rules’ Strength Evaluation:

Depending on the crisp ratings given by the customer, this function checks and
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selects the triggered rules in the rule-based system by calculating the membership

values of each descriptor. Then, in the inference engine, when two antecedents

are joined together using a conjunctional operator, i.e., AND operator/MIN oper-

ator/Intersection operator, it compares between two membership values each time

and finds the minimum value to evaluate the strength of all selected rules. Hence,

because of this function’s complexity, the TXN cost incurred is the highest, as shown

in Fig. 6.9. The TXN cost incurred by the functions that measure the strength of

the rules is approximately the same in all three smart contracts. The TXN costs for

SC 1, SC 2, and SC3 are 2.84 USD, 2.86 USD, and 2.90 USD, respectively. Even

though the TXN cost for this function is highest in SC 3, higher in SC 2, and lowest

in SC 1, there is not much significant difference in the TXN costs regardless of being

from different smart contracts. The reason the TXN costs are almost similar in this

case is that the number of rules this function checks to measure their strength is

only four. Only four rules are selected for evaluation of their strength because there

are only two different inputs. Since we only have two inputs, only four rules are

triggered and then selected from n2, where is the number of inputs. Hence, the level

of complexity of this function, regardless of having a different number of descriptors

in a different smart contract, is the same.

• Function for Defuzzification:

This function is responsible for finding the crisp output from the aggregated fuzzy

set. The defuzzification technique that we have used for this work is the Center of

gravity (COG) method, as mentioned in the methodology section. The TXN cost

of SC 1, SC 2, and SC 3 are 0.76 USD, 0.73 USD, and 0.67 USD, respectively. The

TXN cost incurred by this function is also almost exactly similar because of the

usage and implementation of the same method across all three smart contracts.
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Figure 6.10. SC 3 proves to be most accurate and effective as it provides

the most realistic and accurate output, whereas SC 1 with the least realistic

output.

6.5.4. Effectiveness of the Smart Contract

From our observations in the Fig. 6.10, we concluded that SC 3, with the highest

number of descriptors, has the highest accuracy compared to SC 1 and SC 2 because when

the Performance and Operation are 80% and 90%, respectively, the value of Compensation

in SC 1 is 26.82% which is extremely high and unusual in real life [40]. However, the output

from SC 3 has the most accurate and realistic values of all defuzzified Compensation values

compared to SC 1 and SC 2.

6.6. Conclusion

We introduced a novel idea on how we can translate a vague legal contract by using

fuzzy logic inside the smart contract that would be smart and intelligent enough to consider

various human interpretations by taking several linguistic variables and descriptors into

account. No matter how popular a vendor is, their SLAs can still be incomplete and vague,

which puts a customer into a myriad of confusion and trouble. In this chapter, we presented

a fresh solution to an existing problem of vagueness in legal contracts by taking a real-

world legal contract and using a cheaper and faster approach, i.e., fuzzy logic, to make the

Ethereum-based smart contract smart and intelligent to decide the output based on several
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sets of different inputs. We also created three different smart contracts that employ the same

logic and architecture but have different sets of linguistic variables to evaluate the behavior,

cost, and accuracy of each smart contract. The main purpose of this chapter is to study the

gray areas of natural language that create the fuzziness and vagueness in legal contracts and

how an Ethereum-based smart contract can be made even smarter and more intelligent to

easily handle this problem of vagueness and multiple contract interpretations.
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CHAPTER 7

SECURITY ANALYSIS AND MULTIMODAL AUDITING OF SMART CONTRACTS

FOR DIGITAL ECONOMY1

7.1. Introduction

As pointed out in Chapter 1, we have already stepped into the fourth industrial rev-

olution, where the digital economy is evolving at its best. Web3 has already taken over [70],

and the technologies that are employed in today’s digital economy are state-of-the-art and

sophisticated such as blockchain and smart contracts, artificial intelligence, edge computing,

internet of things, extended reality, 3D reconstruction, and so on. Due to this, the economy

has gotten more and more customer-centric. In addition, there is enhanced social interac-

tion, expanded access and inclusivity, greater economic opportunities, rich and immersive

experiences, and more collaboration and innovation. One such revolutionizing example of

the digital and virtual economy is metaverse.

The term “Metaverse” was first introduced by American science fiction author Neal

Stephenson in his 1992 novel, Snow Crash [156]. Today, the metaverse is defined as a

simulated digital environment that employs extended realities, blockchain, and artificial in-

telligence, along with ideas of social media, to create the scope and sphere for rich user

interaction that mimics the real world [54].

Nonetheless, as the technology and hence, the industry gets increasingly high-end

and sophisticated, the challenges it invites are also enormous. Especially in the scope of

cybersecurity, the digital economy is even more vulnerable to various forms of cyber attacks

such as ransomware, phishing, hacking, malware, etc., which can cause information theft,

identity theft, cryptocurrency theft, and several other financial losses and data breaches. As

the metaverse is a modern form of the digital economy, it has certainly been “living up to

1Portions of this chapter are reproduced from K. Upadhyay, R. Dantu, Y. He, S. Badruddoja and A. Salau,
“Auditing Metaverse Requires Multimodal Deep Learning,” 2022 IEEE 4th International Conference on
Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), Atlanta, GA, USA, 2022,
pp. 39-46, doi: 10.1109/TPS-ISA56441.2022.00015. © 2022 IEEE. Reprinted, with permission.
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the hype” of its consumers. Nevertheless, as it also has the potential to invite cybersecurity

risks, modern problems will definitely need modern solutions, which we discuss in the subse-

quent sections. In this chapter, we have used the terms “digital economy” and “metaverse”

interchangeably.

7.2. Contributions

• We outline the major technologies employed in the digital economy, such as meta-

verse, along with the current trends, and argue why a decentralized digital economy

is better than a centralized digital economy.

• We present unprecedented security risks and vulnerabilities that modern digital

economies such as the metaverse can invite.

• We provide a novel conceptual model with a secure multimodal approach for coun-

termeasures that can tackle the security risks in the digital economy.

• We discuss the advantages of a manual secure multimodal approach for remediation

strategies in detail.

7.3. Technologies Employed in Digital Economy

• Blockchain: In simple terms, the blockchain is a distributed ledger technology that

comprises a continuously growing sequence of blocks linked together by crypto-

graphic hashes. The blockchain reflects an immutable history of the states and sets

of transactions throughout the life of the system. The distributed ledger is main-

tained by the peers running a consensus protocol in the system. Also, due to the

decentralized, distributed, inherent, immutable, and secure nature of the blockchain,

it offers the digital economy an effective way of securing its users’ data and digital

contents [68].

• Extended reality: Extended reality (XR) enables users in the digital economy to vi-

sualize and actively interact with 3D contents [180]. With XR, which comprises Aug-

mented reality (AR), Virtual reality (VR), and Mixed reality (MR), can help to im-

prove existing techniques or even facilitate novel approaches in medicine/healthcare,
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education, sports, etc. with the co-existence and interoperability of the virtual world

and the physical world [41].

Digital Economy
Environment

Blockchain Artificial Intelligence

3D Reconstruction

Internet of Things

Extended Reality

Edge Computing

Figure 7.1. Digital Economy is composed of various advanced technologies

such as Blockchain, 3D Reconstruction, Artificial intelligence, Extended Real-

ity, IoT, and Edge Computing.

• Artificial intelligence: AI engines can serve various purposes within the digital econ-

omy, such as analyzing 3D scans and 2D images for the creation of user avatars,

lifelike conversations and interactions with users, generating outputs, and even im-

proving the virtual world based on learning experiences from users and so on [18].

• Internet of things: IoT can enable fast communication between the different com-

ponents of the digital economy, i.e., seamless connectivity of the virtual world and

the physical world devices. For example, data from IoT can improve context and

awareness of the physical devices for extended reality applications with real-time

communication between the virtual and physical worlds. There are numerous ben-

efits of IoT [109] for the digital economy.
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• 3D reconstruction: To realize an immersive virtual world that is similar in construc-

tion to the physical world in the digital economy, 3D reconstruction is fundamental.

3D models of real-life objects can be made from realistic images taken with 3D cam-

eras, creating a digital representation of the real world for the virtual world. This

digital representation of the real world in the virtual world is called Digital Twins

[174].

• Edge computing: Edge computing is crucial in the development of the digital econ-

omy as it helps to reduce latency in users’ interactions, activities, and engagements

in the virtual world. It will facilitate the capabilities of extended reality technology,

blockchain security, connectivity, and computing, among others [53].

7.4. Experiences in Digital Economy

• Social networking: Digital economies such as metaverse can improve the connectiv-

ity and experiences of social media users [55]. Naturally, humans are social beings,

communicating and interacting with one another, whether online or offline. The

metaverse will enable a smooth integration of the offline and online (social net-

works) lives into one, and because users can experience multiple virtual worlds in

the metaverse, they will be able to enjoy and experience social life that may have

been beyond their reach in real life.

• Gaming: Gaming is one of the fascinating experiences in the digital economy. With

the current immersive experience that users already derive from games such as

Minecraft, Call of Duty, Animal Crossing, etc., in the metaverse, the experience

can only get better as users will be able to have a more realistic combination of the

virtual and physical worlds [54].

• Trading: The digital economy opens a new world of trading for internet users, where

they are allowed to buy and sell their digital assets. There are already platforms

that provide access to such a trade, e.g., Decentraland, Sandbox, and many more.

We will discuss more such platforms in Sec. 7.5.

• Events: With the metaverse as a virtual form of smart city, users can hold events
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virtually, saving them the cost of physical and in-person meetings, especially in

times of pandemic as we currently experience [55]. For instance, researchers can

virtually hold a conference, with a teacher organizing a virtual classroom with the

students experiencing the same or even better learning process.

• Remote working: The digital economy is bringing to reality novel techniques in

medicine and health care, education, hospitality, and tourism, among others. For

instance, in healthcare, the operations of Doctors without Borders are greatly im-

proved as a surgeon can remotely participate in a medical procedure on a patient

without having to be physically present with the patient [160].

• Entertainment: Users can enjoy not just the gaming experience of the metaverse,

but even much more entertainment, like watching movies in an immersive 3D virtual

world with VR/AR tools, attending live concerts, and many more [88].

7.5. Current Trends in Modern Digital Economy

• Decentraland: Decentraland [137] is a virtual reality platform that allows users to

buy, sell, and manage their virtual property, i.e., real estate. In this digital economy,

the native currency is known as MANA [7]. Users can create and then develop their

own world as they desire and tour this metaverse from their phones, computers, or

VR headsets. The cryptocurrency MANA uses an Ethereum-based blockchain as

its platform but is expensive due to the high gas fee that is required for operating

the blockchain. Decentraland Metaverse has been catching the attention of many

users. As soon as Facebook changed its name to Meta, there was a staggering 400%

rise in the price of MANA2.

• Axie Infinity: Axie Infinity [52] is probably the most popular digital economy in

the present day as it already has more than a quarter of a million users daily.

The users, or players, have to own a native token called AXS so that they can get

some stake in the ownership and perform some operations in the game [7]. In this

2https://markets.businessinsider.com/news/currencies/mana-decentraland-altcoin-metaverse-facebook-
rebranding-land-ethereum-crypto-2021-11
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metaverse, users or players create their own kingdoms and hunt for rare treasures.

This metaverse also runs on an Ethereum-based blockchain where players compete

to receive a native NFT called “Axies”, which can cost anywhere from USD 4 to

USD 100,000, depending on how rare the NFT is.

• Star Atlas: Unlike Decentraland and The Sandbox, Star Atlas [95] runs on the

Solana blockchain [183]. Solana is known to be faster and more secure than Ethereum.

The native token in the Star Atlas Metaverse is known as ATLAS [7]. In this meta-

verse, users can build their own spaceship, have their own crew members, create

their own planet, and explore the whole universe. In addition, this digital econ-

omy has a native currency known as POLIS [7] that can be bought with ATLAS to

customize and manage the users’ gaming experience.

7.6. Centralized Digital Economy Vs. Decentralized Digital Economy

Digital economy implementations are widely discussed among big companies such as

Apple, Microsoft, Meta, and NVIDIA [101]. The deployment and use case of the digital

economy concerns security, interoperability, scalability, and performance. Broadly, the digi-

tal economy is categorized into two forms: centralized and decentralized. In a central digital

economy, a central authority would control the applications, businesses, transactions, etc.

The centralized metaverse would inherit all the problems from the internet technologies we

know today. A significant concern of the central digital economy is data privacy. For in-

stance, through Facebook, Instagram, Whatsapp, and many other applications, Meta collects

a myriad of information that breaches the privacy of users [90]. Another aspect of concern

is interoperability [83], where giant companies like Amazon, Google, Meta, and many others

do not collaborate to provide a better experience to the users. Moreover, this also affects

scalability since the performance of such applications will depend on the expandability of

the company infrastructure. Conversely, the decentralized digital economy commits a deeper

and wider bucket to meet the rising demands of metaverse users. Distributed digital econ-

omy provides a realistic and immersive virtual experience lowering the risk of security and

raising the level of interoperability and scalability. Decentralized digital economy commits to
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keeping the secrecy of data through blockchain technologies with consensus-based transac-

tions [171]. Moreover, the interoperability and scalability of blockchain can help the digital

economy grow rapidly. Hence, considering the overall benefits derivable from a decentralized

metaverse compared to the centralized version discussed above, the blockchain can be seen

as an integral component of the metaverse.

7.7. Threat Analysis of Digital Economy

As discussed in previous sections, the digital economy is composed of several major

complex technologies. Not only do these complexities provide tons of exciting experiences,

but these complexities from these different technologies also invite various security loopholes

to the integrated digital economy as well. As in this chapter, we have broadly classified the

security vulnerabilities and threats into three broad areas, i.e., Information Theft, Identity

Theft, and Cryptocurrency Theft [163]. We discuss some of their real-world examples below

and in Table 7.1 on how they can affect the security and safety of digital economy adversely.

7.7.1. Use of Deepfake for Avatar Theft

Users are represented by a cartoonish avatar in the digital economy [105]. They are

the embodiment and the identity of the users in the metaverse that allows them to pursue

different adventures in different experiences. However, with the massive use of deepfake

technology, the concern about the security of digital economy is soaring high [62]. Deepfakes

use Artificial intelligence and Deep Learning, where an image, video, or audio of a person, in

which their face or body has been digitally changed so that they appear to be someone else

[177]. This is generally used for malicious intent or to spread hoaxes or false information. For

example, recently, in June 2022, it was reported that the mayors of several European capitals

had been convinced to participate in a video conference with a deepfake of the Mayor of Kyiv,

Vitali Klitschko3 [24]. In metaverse, the users are represented with an avatar or, hopefully,

with a realistic representation of the future. So, for instance, when two users, buyer and

seller, are in a business conference in the metaverse and are closing on a multi-million-dollar

3https://www.theguardian.com/world/2022/jun/25/european-leaders-deepfake-video-calls-mayor-of-kyiv-
vitali-klitschko
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business deal, it is possible that the seller can be somebody else instead of the actual seller

and receive the money after closing the deal just because of his/her appearance. On the other

hand, the buyer does not know that it is not the actual seller but a deepfake representation

of the actual seller on some malicious attacker. Hence, in a place like a metaverse, where

nothing is in person and everything is based on virtual reality and avatars, deepfakes can be

a substantial severe threat.

Absence of practice of Secure
Auditing  in Digital Economy

3D
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Extended
Reality

Blockchain Digital Economy  Artificial
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Internet of
Things

Edge
Computing
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Crypto &
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Figure 7.2. Metaverse as a digital economy is still in the germination phase,

which composes of various major technologies that work together and provide

users with an unprecedented experience. Nevertheless, the digital economy

also has plenty of serious security threats and vulnerabilities that need imme-

diate action. We discuss that with the use of the secure auditing technique

incorporating multimodal Deep Learning approaches, it is possible to elimi-

nate these threats, and safe and enriched experiences can be restored.
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7.7.2. Crypto Scams and Rugpulls

Some of the well-known cryptocurrencies are Bitcoin and Ether. However, due to the

hype and promising future, there are new cryptocurrencies being created almost every day

as well. Some of these cryptocurrencies are legitimate, while others are just created to scam

people. There are different types of crypto scams that already exist in the digital economy

and Decentralized finance (DeFi) world. Some of the famous crypto scams are rugpulls,

Ponzi schemes, romance scams, etc. For instance, A rugpull occurs when a developer attracts

investors to a new cryptocurrency project, and the developers of the smart contract turn out

to be fraudulent [80]. The fraudulent developers create a new crypto token, pump up the

price of the token, then suddenly pull as much money out of the project as possible while the

price is pumping before abandoning the project and the investors as the price of the so-called

cryptocurrency/token project plummets to zero. If the rugpuller had never been given the

majority of power, it would be difficult for him/her to run away with the investor’s money.

A famous example of this kind of attack is Squid Game Token4 [120] when multiple investors

could not sell their own tokens as the price of the token was pumped by twenty million

percent. Then, the price of the token fell from USD 2,860 to nil as the rugpullers pulled out

USD 3.3 million when the fraudulent developers abandoned the Squid Game Token project.

7.7.3. VR Devices Spoofing

When someone or something pretends to be something else in an attempt to gain a

victim’s confidence in order to get access to a system, then this is known as spoofing. In the

metaverse, since VR devices are used by users all the time, VR device spoofing can happen

when scammers fool the user’s account by asking the victim to join the conference from

somewhere it isn’t. In addition, malware such as Trojan [5] can also be used to intercept

and manipulate the communication between the metaverse network and the VR devices to

commit fraud. The most common purpose of this attack would be to cause financial fraud

by manipulating transactions that are controlled by VR devices, even when authentication

4https://nypost.com/2021/11/01/squid-game-cryptocurrency-plummets-nearly-100-in-scam-attack/
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factors are in use, as the previously installed Trojan horse can be used to act between the VR

devices and the metaverse security mechanism which allows sniffing the financial transactions

as the user are browsing from their VR devices.

7.7.4. Untrusted AI Agents

Artificial intelligence (AI) facilitates intelligent decisions for various applications. AI

models are designed with well-known algorithms proven to yield high accuracy with many

modes of learning. One of the critical problems in recent development involves the trust of the

data and model [16]. For example, data poisoning attacks create untrustworthy applications

where input data, the machine learning model, and output data can be questioned [25]. If the

data and model of the machine learning process are altered, then we can not trust the results.

Similarly, we can not trust classification or prediction if it is not trained with immutable

original data and model. Another perspective of trust is the fairness and explainability of the

learning models [16]. As another example, the developers can bias machine learning models

on particular features such as race, gender, and ethnicity, which can question the model

itself. A trustable machine learning model, therefore, is required in modern applications

that demand security, privacy, and immutability [16].

7.7.5. Darkverse

Just like Darknet, the digital economy can also harbor a darkverse which can act

like an overlay network within the digital economy that can only be accessed with specific

software, configurations, or authorization. Darkverse [82] can be a gathering place for cy-

bercriminals that can make experiences in the metaverse a risky activity. Darknet can be a

hotspot for several reasons, such as conducting organized crimes, sharing illegal files, selling

restricted goods and tokens, leaking news and whistleblowing, etc.

7.7.6. Crypto Hacks and Token Ransomware

Another threat that probably will be very popular in digital economy is cryptocur-

rency and token ransomware. In this type of security threat, a malicious program sent by an
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attacker encrypts the files stored on the victim’s computer in order to extort the cryptocur-

rencies and tokens that the victim owns. The files or links can be sent to the victim by a

malicious attacker via emails, messages, or other modes, and when they are downloaded on

the victim’s end, the malware will encrypt and lock the files until the victim sends the asked

amount of extortion in the form of cryptos and tokens. Likewise, a famous DAO attack that

caused a loss of USD 60 million in 2016 [117] that can also occur in the metaverse is known

as a Reentrancy attack [149], where a malicious contract exploits the code in a vulnerable

contract to drain its funds as shown in Fig. 7.3.

Malicious
Contract

Metaverse
Content Creator

Withdraw

Send

Balance
never

updated

fallback()
used by
attacker

Figure 7.3. In the Reentrancy attack, the attacker can use a fallback function

in the malicious contract and can continuously call the withdraw function

to drain the Metaverse Content Creator’s funds when their contract fails to

update its state before sending funds.

7.7.7. Unlawful Monetization of Data

One main concern of the digital economy is data privacy. User’s information in the

metaverse can be stolen by hackers with the use of malicious contracts, malware, and spyware

with the rise of phishing attacks. Similarly, AR and VR devices are also already proven to

be vulnerable devices [2]. Hence, as metaverse will be a digital/virtual copy of real life, it

will collect personal information from users, including brainwaves, biometric data, health

information, preferences, etc., and the absence of proper and strict documentation of legal

policies can allow the malicious users and companies to make illegal monetization of data.
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7.7.8. Inconsistent Legal Contracts

As the digital economy is adopting blockchain and smart contract technologies, the

legal contracts that comprise business logic and the policies that are converted into smart

contracts should be clear and explicit [167]. Legal contracts are infamous for their legal

jargon and vagueness. As the legal contracts employ vague words and phrases abundantly,

this results in multiple interpretations for multiple readers [165]. As a result, while converting

these legal contracts to smart contracts, the probability of inconsistency increases. The

more there is an inconsistency between the actual legal contract and its smart version of the

contract, the more vulnerable the metaverse can become, as it allows the attack surface to

become bigger.

7.7.9. Law Enforcement

As social media have its own world, the digital economy will have its own world,

too, probably even with the potential of being more significant than anything else. Since

the digital economy also has the equal potential to be a perfect network to perform illegal

activities such as phishing, ransom, fraud, money laundering, social engineering, propaganda,

and fake news [148], it will be very difficult to trace, monitor and infiltrate by the law

enforcement.

7.8. Importance of Secure Multimodal Auditing

As technologies such as Deepfake that are derived from Deep learning are responsi-

ble for the security threats in the metaverse for identity theft, but at the same time, deep

learning models and algorithms can prevent tons of security threats and vulnerabilities, as

it is one of the most powerful technology [104]. For this, all the modes such as text, image,

audio, video, speech, and biomarker signals have to be provided great attention and have

to be audited, including the core smart contracts, so that there is no room for any security

loopholes as shown in Fig. 7.5. Likewise, one of the essential features of a decentralized

digital economy is that it is incorruptible. Whatever goes inside the blockchain can never

be changed due to the use of the impossible-to-break cryptography technique used.
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Table 7.1. Digital Economy Services, Components, Security Risks, and Au-

dit Remediation Technologies

Digital

Economy

Services

Prominent Dig-

ital Economy

Components

Examples of Security

Risks in Digital Econ-

omy

Audit Remediation

Technologies

Social Net-

work

AI (Deep learn-

ing), XR

Using Deepfake for

Avatar Theft, Untrusted

AI Agents

Time-stamped blocks

for data provenance and

Generative Adversarial

Networks in Deep learn-

ing

Gaming Deep learning,

XR, 3D Recon-

struction

VR Devices Spoofing Cryptographic func-

tions and signatures in

blockchain

Trading Blockchain and

Smart contracts

Crypto Scams, Rugpulls,

Ransomware, Unlawful

monetization of data

Recurrent Neural Net-

works in Deep learning

Events AI, 3D Recon-

struction

Darkverse, Improper

Law Enforcement

Blockchain and Pattern

Recognition in Deep

learning

Remote

Working

Internet of

Things, Edge

Computing

VR Devices Spoofing,

Inconsistent legal con-

tracts

Cryptographic func-

tions and signatures in

blockchain

Entertainment AI, XR VR Devices Spoofing Behavioural analytics

and Pattern recognition

in Deep learning

Hence, this is the reason why blockchain is known to be exceptionally secure. Never-

theless, one disadvantage of blockchain is that it is tremendously expensive to operate due
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to its distributed and decentralized nature. Therefore, any facility we use from blockchain

technology is also costly. As we know, a smart contract, that is, a computer program, is one

integral component of blockchain and resides in the decentralized digital economy.

TextsImages & VideosSpeechBio marker signals

ERC-20, 721, 1155 

Cryptocurrencies
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Multi modes in Deep
Learning Multi m

odes in Smart

Contract

Multimodal Deep
Learning Audit Multim

odal Smart

Contract Audit 

Secured, Safe &
Trusted

Digital Economy

Integrated Audited
Digital Economy

Figure 7.4. The cube represents that there are various modes in both Deep

learning and Smart contract which needs to be audited multi-dimensionally in

order to achieve a safe and trusted digital economy.

Similarly, it is also known that anything that is in the blockchain is immutable and

irreversible. Hence, it is significant to understand that, like any other programming language,

it is not possible to keep making changes to the smart contract, as once the smart contract is

deployed into the blockchain, it stays immutable. However, even an experienced and smart

developer can make some mistakes while writing a smart contract, as its inherent to all

human beings, and nobody is perfect.

Therefore, it is crucial that before the smart contract is ready to be deployed into

the digital economy, it is checked over and over again and, if possible, audited by a third
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party. This way, the developers can save millions of dollars if there are any potential bugs

or critical security risks hidden in the smart contract for malicious hackers to exploit. One

famous example of why secure auditing is so vital was the DAO hack [117] on the Ethereum

blockchain when approximately USD 60 million was stolen in 2016. In addition, there is

a possibility that the smart contracts sent by the developers to the auditors for secured

auditing can be optimized in terms of gas fees and transaction fees so that even if the

contract is working properly without any security risk, the gas fees can still be lowered

drastically.

Information
Theft

Cryptocurrency
Theft

Identity Theft

Major Security
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Digital Economy

Multimodal Deep
Learning Audit

Multimodal Smart
Contract Audit

Audit of Multimodal Deep
Learning and Blockchain-
based Smart Contract acts

like a Firewall for Digital
Economy

User enjoying Digital
Economy environment

safely and securely

Events

Social Networking
Entertainment

Gaming

Trading

Remote
Working

Integrated Secure
Auditing of Digital

Economy

Figure 7.5. As there are three major security risks in the digital economy,

which are Information, Identity, and Cryptocurrency Theft, in our model, we

make integrated secured auditing the focal point that takes all the aspects

and layers of decentralized digital economy via Multimodal Deep learning and

Smart contract audit into consideration to ensure all entities are safe and

secure and can achieve enriched experiences in the digital economy.

7.9. Phases in Secure Auditing

In secure auditing [75], a given project codebase is examined, and then mitigation

strategies are recommended by the security auditors to the project developers so that there
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is no room for security loopholes and vulnerabilities. Although, generally, smart contracts

are written in Solidity, but can be in any other language as well as presented in Table 2.1.

Security Risks
Initial 


Examination

Risk Analysis
+ Audit

Remediation
provided by

Auditors

Remediation from
Auditors used by

client

Final
Audit

Report
published

Phase 1 Phase 2 Phase 3 Phase 4

Figure 7.6. Division of the process of Secured Auditing of digital economy

in four different phases. The secure audit time depends on the size and com-

plexity of the project.

Typically, secured auditing has the following four major stages:

(1) Phase 1: The project codebase is provided by the developers to the security auditors

for initial examination and analysis.

(2) Phase 2: The security audit team examines the project codebase provided by the

project developers using the static analysis method and/or manual auditing method

and then presents all the critical, medium, and minor level findings that are related

to security vulnerabilities, inconsistent business logic with respect to the code and

optimization issues in a preliminary audit report. Likewise, all the remedies and

mitigation strategies to deal with all the presented findings are provided to the

developers so that they can act upon them.

(3) Phase 3: The project developers then make changes to their codebase according to

the preliminary report provided by the security audit team.

(4) Phase 4: After the project developers make changes to their codebase and there are

no new changes to be made or no errors and security vulnerabilities, the security

audit team finally publishes their final audit report and provides it to the project

developers.
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7.10. Types of Secure Auditing

Secure auditing is classified into two main types. The first one is known as static

analysis, and the second is manual auditing which we further discuss below.

(1) Static analysis auditing: Static analysis auditing is a process where the debugging

and examination of the codebase are performed by the security auditors without

executing the program. In this kind of auditing, the audit tools scan and identify

the security risks presented in the codebase. Static analysis is typically easier as

well as faster to perform. Some of the popular static analysis tools are Slither,

Mythril, Securify, SmartCheck, Echidna, etc. [75]. These tools help in performing

tasks such as automated vulnerability detection, automated optimization detection,

code review, and understanding.

(2) Manual auditing: Manual auditing takes more time and effort compared to static

analysis, as security auditors have to examine each and every line of code carefully.

Sometimes, there are tens of thousands of lines of code that auditors have to examine

and other times less. There is no hard and fast rule on how security auditors

audit a given project as different auditors have different ways to perform their

examination as its a constant and to-and-fro process. Nevertheless, the following

are some critical discussions that a security auditor has to consider while performing

manual auditing. We also discuss why static analysis by itself is not enough and why

manual auditing is significant. We again divide manual auditing into two categories

based on deep learning and smart contract and briefly discuss how they can assist

as audit remediation strategies.

Examples of Vulnera-

bilities in Smart con-

tract

Cause of the Vulnerability Audit Remediation

Strategies
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Reentrancy Attack A recursive call is made by

the untrusted contract back

to the function from the origi-

nal contract to steal the funds

from that contract

Check-effect-interactions pat-

tern, Reentrancy Guard from

OpenZeppelin [170]

Centralization Risks Overpowered owner, Initial

token distribution, Rugpulls,

Private key leaks

Safe management of private

key, Usage of Multi-Signature

wallets, voting modules for

transparency and consensus

Integer Overflow and/or

Underflow

The value circles back to zero

due to an increment by 1 bit

and can be used repeatedly to

keep increasing the value. On

the contrary, instead of going

beyond the range in the high-

est order, an underflow error

occurs when it goes below the

range

Using the SafeMath library

from OpenZeppelin or by

manually checking for inte-

ger overflows and underflows.

This vulnerability has been

solved since Solidity upgraded

its version to 0.8.0. [170]

Authorized Proxies If a smart contract is capable

of behaving like a proxy by

being able to call other smart

contracts with the data pro-

vided by the user, then that

user also can figure out the

identity of the proxy contract

Build a system in the smart

contract where the proxy does

not have any permissions, in-

cluding for itself
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Absence of Address Vali-

dation

Without sanity checks and

missing validations for the

correct address, one might

send the funds to incorrect

addresses or bring the priv-

ileges to a certain malicious

entity.

Sanity checks and validation

should be performed when-

ever possible to ensure that

the provided addresses are ac-

curate and also to verify they

are not zero addresses.

Gas limits and costly

loops

Loops that do not have any

explicit limit and are depen-

dent on storage values can

drain the funds due to their

expensiveness

Loops should be used very

carefully and in necessary

cases in smart contracts. Ir-

relevant functionality and li-

braries should be removed.

Arithmetic precision Division performed before

the multiplication can cause

issues related to rounding as

division before multiplication

truncates the lower bits,

which will lead to the loss of

precision in the calculation

Multiplication should always

be used before division in-

stead in a mathematical ex-

pression and equation to

achieve arithmetic precision

Table 7.2: Common security vulnerabilities, cause, and

audit remediation strategies in Smart contract

7.11. Integrated Secure Multimodal Audit as a Remediation Strategy

7.11.1. Multimodal Deep Learning Audit

• Prevent deepfake avatar theft: Deep learning has been both a source of the prob-

lem and a remediation strategy for avatar theft via Deepfake technology. As deep

learning is making it easier to steal avatar’s identity, it is also helping in the detec-
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tion of the stolen avatars and the potential threat. Researchers have been able to

distinguish between fake and authentic media by looking for inconsistencies among

the deepfake from frame to frame [113]. In another deep learning model, also known

as the biological feature deepfake detection model, the researchers were able to de-

tect the deepfake by identifying biological traits only an actual human can possess,

which includes anatomical actions, such as heartbeat, breathing, and blood flow

[9]. These signals were easily detected by deep learning algorithms, as even the

subtle change of light or reflection on the face can be a key point. Deep learning

merged with blockchain can even make it easier when it comes to detecting and pre-

venting deepfakes in the metaverse. In case an Avatar is stolen by an attacker with

malicious intent, it is possible to find the source of the original and stolen Avatar us-

ing blockchain, as everything in the blockchain is time-stamped with cryptographic

functions, as this process can be augmented by deep learning algorithms.

• Predict crypto scams, rugpulls, and ransomware: Crypto scams, especially rug-

pulls, and pump-and-dump, are caused when fake recommendations and specu-

lations boost the price of the potential cryptocurrency, and when the prices are

soaring high, the scammers dump shares of cryptos by selling their own shares at

inflated prices. Deep learning models and algorithms can be used to predict if it

actually is some kind of crypto scam, a rugpull, or ransomware [34]. Generally,

these scams often have multiple phases that occur over a different periods of time.

With the collection of standard anomaly detection datasets, researchers have been

able to identify and detect longer-term anomalies as well as shorter-term anomalies

in crypto scams. Likewise, it is also possible to detect crypto ransomware before

the encryption to prevent the files from being irreversibly encrypted. An effectively

and efficiently designed deep learning algorithm can analyze billions of relevant data

and detect threats and suspicious activities or keywords in milliseconds without any

human intervention. Financial fraud, malware, and ransomware detection with the

use of the machine and deep learning have been considered a popular mechanism,
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and there is no doubt this can be a powerful tool in the realm of the metaverse as

well.

• Reconcile legal contracts and program code: As reading and understanding legal

contracts are still one of the most arduous tasks to perform, with the advancement

in deep learning algorithms, this process can be done quickly without the supervi-

sion of humans. In addition to contract analysis, deep learning can also facilitate

understanding the semantics and syntax of the program code. These days, there

are already a few tools that analyze the business logic or the legal contracts first

and then convert them to pseudo-code and program code with the use of Natural

language processing and Deep learning algorithms [164]. Deep learning has provided

unprecedented ways to identify and extract critical variables, such as clauses, dates,

names, entities, and IF/ELSE statements.

• Strengthen trust in AI agents: Deep learning needs less human intervention com-

pared to traditional machine learning. Deep learning helps to establish a strong

level of trust as it has the capacity to execute feature engineering on its own. Also,

deep learning performs very well on multimodal such as image, audio, text, etc.,

and the models that are used in deep learning are more reliable and accurate as the

amount of data used to train these models is huge compared to traditional machine

learning models. AI agents are fed information from the raw data, which has a

statistical correlation to identify any labels or continuous targets. Deep learning

algorithms can train data with higher dimensions and samples, which is essential to

study a more convincing pattern for making correct decisions [16]. Apart from that,

the mathematical computations involved in deep learning algorithms study the data

with more granularity and preciseness. Higher accuracy of learning and predictions

can make AI models more meticulous, which makes deep learning inevitable for a

trusted digital economy.

• Prevent illegal monetization of user data and criminal activities in Darkverse: Deep

learning can analyze billions of data and then identify a pattern on who is stealing
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the users’ data for illicit monetization or for any other specific criminal activities

in darknet or darkverse [33]. As deep learning algorithms are always connected

to the database, pattern recognition algorithms can be used to scan through the

records and transaction details that are stored over the years. Deep learning can

immediately spot any suspicious patterns with the use of behavioral analytics, which

helps to understand and predict an individual’s behavior for different transactions.

The use of deep learning in data theft detection is a step forward in multimodal

auditing to ensure the safety and security of the digital economy.

7.11.2. Multimodal Smart Contract Audit

Consistency
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Business Logic +
Smart Contract

Logic

Trusted Oracle

Error, Fault, and
Failure-free

Mathematics

Key points to consider

during manual audit

 

False Negatives
(False Alarms)


and False
Positives

Codebase
Inspection

and
Deploy

Testnets

Figure 7.7. In addition to all the security risks mentioned in Table 7.2,

the auditor needs to ascertain the business logic is consistent with the smart

contract logic. Other crucial points in manual audit to consider that cannot

be performed with static analysis are trusted oracle, mathematical equations,

false negatives and positives, and final testing by deploying in testnet.

• Consistency between business vs. smart contract logic: In many cases, the inten-

tion and the implementation of smart contracts happen to be different. While the

business logic delineates the purpose and rules of the smart contract in one way,

the programming logic of the smart contract can go another way. This can open
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the door to a lot of vulnerabilities when the blueprint of the project does not match

the actual product [6]. These types of issues are simply out of an automated audit

tool’s reach. Hence, manual auditing is crucial in cases like these to understand the

intention and rules of the given project and how consistent the codebase is with

the provided business logic in the documentation files. There should always be

consistency between the business logic of the project with its actual programming

logic.

• Trusted oracle: An external entity that provides the external data as input to the

blockchain or performs some external computation and delivers the result to the

smart contract in the blockchain is known as an oracle [27]. An essential question

any security auditor needs to ask themselves while performing audits manually is

if the oracle that the given smart contract is using can be trusted. Hence, while

auditing the project codebase provided by the developers/clients, an auditor is al-

ways supposed to check if the external inputs from an oracle can be trusted. Lack

of validation check for inputs from oracle to the smart contracts can leave room for

severe and critical bugs and security vulnerabilities.

• Error, fault, and failure-free mathematical equations: There are plenty of math-

ematical equations used in the smart contracts ranging from simple to complex

nature, especially when the smart contract is related to DeFi and the smart contact

is responsible for the calculation of stakes, tokens, fee, etc. Solidity as a program-

ming language for the smart contract already has an issue with the floating point

numbers. In addition, the security auditors need to be double-sure that the math-

ematical equations and expressions in the project codebase are not just the correct

equations and expressions but also don’t have any calculation pitfalls. An auto-

mated audit tool with static analysis might be able to find issues related to the

arithmetic signs and expressions; however, to understand the working mechanism of

these mathematical equations, an auditor must investigate them. For example, var-

ious ranges of numbers as input can be provided to all the parameters in equations,
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in both numerator and denominator, to investigate if any pitfalls, errors, faults, or

failures are hidden.

• False negatives and false positives: False negative is a situation when an attack has

taken place, but no alarms have been raised. A security auditor should definitely

not rely only on static analysis tools as these tools cannot always identify, sometimes

even, critical bugs and security risks. For this reason, an auditor may use the static

analysis but, in addition, must also manually audit the codebase line by line to

scrutinize if static analysis tools missed something. Almost always, with a thorough

manual audit, auditors are able to find many hidden vulnerabilities in the codebase.

On the other hand, a false positive is a situation when false alarms are raised. For

example, there are also plenty of cases when the static analysis tools identify an

activity or event as an attack due to their high sensitivity, but that activity or

attack is benign and acceptable in a practical scenario. So, auditors need to be

careful in first confirming if it’s actually a false positive case and removing these

false positive cases from the findings.

• Codebase testing in test networks: A significant step of manual audit also requires

the auditor to identify the behavior of the smart contract when it is deployed onto the

test networks. After deploying the smart contract onto the testnet, each parameter

and function should be checked by passing several rounds of inputs to see if they are

behaving properly. This way, the auditor can also find out more about the smart

contract’s gas cost efficiency [37] and how they can be optimized in the best way

possible.

7.12. Conclusion

Learning about systematic threats and security analysis is crucial to metaverse, a

kind of digital and virtual economy as it is still in the germination phase. In this chapter,

we discussed the unprecedented security vulnerabilities as significant challenges that digital

economy will be facing in the near future. We also argued why the digital economy needs

to be decentralized. Then, we highlighted how secure auditing could assist and be of service
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to the digital economy. Furthermore, we discussed why and each mode of deep learning has

to be audited with respect to the smart contract for its proper, safe, and secure function-

ing. For each security vulnerability example, we also provided the respective remediation,

mitigation, and countermeasure strategies from an integrated multimodal deep learning and

smart contract audit perspective.
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CHAPTER 8

SUMMARY AND CONCLUSION

8.1. Summary

A blockchain-based smart contract is in the germination phase, but it is also one of

the hottest topics and emerging technologies. It is spread not just in the scope of computer

science but also towards computational law and computational linguistics. We have dis-

cussed why a smart contract is advantageous and beneficial to bring into practice now. Due

to its unique features, such as being explicit, non-vague, self-executable, distributive, de-

centralized, immutable, cryptographically secured, and having faster settlement ability, it is

undoubtedly true that smart contracts are better legal contracts compared to the traditional

versions of legal contracts. In addition, it is also better than conventional contracts because

it entirely eliminates the issues of vagueness in the contract as it is written in the code. As a

result, the involved parties in the contract would not have to suffer from confusion, multiple

interpretations, and misunderstandings. Therefore, the smart contract is the answer for an

effective and efficient tool that can accommodate increasing the clarity and accuracy and

reducing the complexity of the dispute settlement process.

The focus of the studies performed in this entire dissertation is to propose an al-

ternative solution where traditional legal contracts, which are inherently vague, fuzzy, and

ambiguous by nature, are considered and translated to blockchain-based smart contracts

that are explicit, vague-free, and self-executable. The legal contracts and policies written

by the lawyers always have been vague and extremely unclear to consumers who belong to

various backgrounds with different real-world knowledge. When the consumers have not

been satisfied with the services from a service-providing organization, they need to take the

reference from the legal contract or service-level agreement they are bound with. However,

the way these legal contracts and service-level agreements are designed and written in such

ways that consumers from other backgrounds cannot completely understand. The usage of

“legal language”, although it is necessary to use, simultaneously invites a plethora of issues,
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especially for consumers who do not have much knowledge and understanding of legal jargon.

Even if they do, it still is a massive hassle for the consumers to file complaints against the

service providers for compensation, as the traditional legal contracts do not provide the fa-

cility of self-execution when the predetermined “vague” conditions are triggered. Therefore,

there is a need for an exhaustive and deeper understanding of the challenges that vagueness

brings.

Ambiguity in
words

Ambiguity in
phrases

Ambiguity in
sentences

Law Enforcement

Traditional

Contract/

Service
Level


Agreement

Fuzziness in

Promise or Compensation


in case of dispute

Blockchain

Oracle for

external data
feeding

Interpretation 2

Interpretation 1

Interpretation 'N'

Admissibility in the court of law

Smart Contract


Blockchain

Natural Lang Processing
Machine Learning

Fuzzy Logic
Bayesian Networks

Decision Graphs

Science used for creation:

Ground truth and surveys
from attorneys and legal

personnel

Figure 8.1. Conversion of the traditional paper contract to a legally en-

forceable blockchain-based smart contract. Here, a paper contract has plenty

of possibilities for vagueness. Hence, the vagueness is explored on the word,

phrase, and sentence level, and their corresponding interpretations are created

and fed onto the blockchain with the help of blockchain oracle, including the

fuzziness of the agreements and ground truth from the lawyers. Once the

smart contract is created, it is made enforceable and admissible in the courts

of law [167], [166].

Hence, this entire dissertation focuses on the novel proof-of-concept methods that

explain how existing traditional legal contracts that are vague and fuzzy can be transformed
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into blockchain-based smart contracts. This dissertation also delineates and measures the

behavior of legal contracts after being transformed into smart contracts inside the blockchain

network.

A novel study was performed in Chapter 3, where a real and existing crowdfunding

legal contract that had 12 clauses or sections in total was translated into the blockchain-

based smart contract. This contract had a lot of vague words and phrases in every clause.

However, only four clauses which are “Agreement”, “The Project”, “Rewards”, and “Contri-

bution and Payment” were considered for translating from the vague legal contract into the

smart contract due to the fact these four clauses revolve mainly around the crowdfunding and

transactional mechanism. The vague words and phrases were manually hand-picked, and all

multiple possible meanings with degrees of truth were generated for the analysis of each in-

terpretation. All generated interpretations were portrayed in the control flow graphs, where

they were quantified in order to measure their complexities. In addition, these generated

interpretations were translated and transformed into smart contracts that are based on the

control flow graphs. Finally, all these different possible interpretations that were translated

into the smart contracts were deployed onto the blockchain for the analysis and evaluation

of their behavior in the blockchain network. In this chapter, we found that the more vague

and fuzzy the crowdfunding legal contract was, the more deployment and transaction fees

it was also incurring in the blockchain network. As the whole crowdfunding could not be

translated into a single, smart contract due to the presence of the clauses in it, such as

activities, events, etc., that included physical and non-transactional activities, only a subset

of the whole legal contract was taken for the conversion.

In Chapter 4, another novel proof-of-concept methodology was performed in order to

analyze the degree of uncertainty and vagueness in real-life popular internet service providers’

SLAs. SLAs from popular vendors, such as AT&T, T-Mobile, Spectrum, CenturyLink, etc.,

were chosen for this study. Instead of manually hand-picking the vague words and phrases

from these SLAs, machine learning was used to binary classify the vague words from non-

vague words from two test SLAs which were Ziply Fiber and CenturyLink. We used Shan-
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non’s entropy to measure the uncertainty index of various interpretations that was derived

from the root SLA of both Ziply Fiber and CenturyLink. Similarly, we used McCabe’s cy-

clomatic complexity to measure the vagueness index in both of these SLAs. When all the

generated interpretations were translated into each of the smart contracts and deployed onto

the blockchain for the evaluation of their behavior, we found out that Ziply Fiber’s SLA con-

sumed more deployment and transaction cost on average compared to CenturyLink’s SLA,

which also corroborated the results that were generated from a measurement of uncertainty

and vagueness index of both of these SLAs.

As fuzzy logic is extremely good at modeling logical reasoning with vague and im-

precise sentences, we used a weighted fuzzy reasoning technique as a mathematical model

in Chapter 5, which can easily handle the problem of vagueness in a service-level agreement

that causes communication gap due to the multiple interpretations between a company and

its customer. With the help of fuzzy quantifiers, certainty levels, and their corresponding

numerical intervals, the set of complaints filed by customers based on different information

available in an SLA, such as performance, operation, availability, latency, jitter, and main-

tenance were efficiently quantified so that they can be used inside the production rules. We

also introduced the similarity measurement function along with the weighted vector, which

finds out the degree of similarity between two fuzzy sets, which are a set of metrics in an

SLA and a set of customer’s manifestations. Weighted vectors allowed us to allocate the

degrees of importance in the antecedent part of the production rule, whereas the certainty

factor allowed us to measure the confidence of the consequent part. Finally, we were able to

demonstrate an example of how an analysis can be performed that can measure and tell us

the confidence level of customers regarding their claim for compensation when their service

is not proper. This technique of weighted fuzzy reasoning acted like a consumer’s claim and

compensation interpretation diagnosis system.

In Chapter 6, our methodology consisted of the architecture where we designed a

smart contract that incorporated the fuzzy logic mechanism inside. As it always has been

a big issue for customers to claim compensation when the service they have been getting
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is not proper, understanding the contents of legal contracts and service-level agreements

first is a necessary step that most of the customers can’t seem to pass due to the contract

being full of vague words and legal jargons. Therefore, we introduced a very novel method

where the whole smart contract is designed with the core idea of fuzzy logic, which has four

main components. These four components of fuzzy logic-based smart contracts are fuzzifier,

rule-based system, inference engine, and defuzzifier. We created three smart contracts with

the same architectural designs except for the linguistic descriptors for experimental and fur-

ther evaluation purposes. The first smart contract had the lowest linguistic descriptors, the

second had higher, and the third had the highest. From our evaluation, we concluded that

the smart contract, which had the highest degree of truth or linguistic descriptors, was more

accurate compared to the other two. However, at the same time, the most accurate smart

contract was also incurring more deployment and transaction costs compared to the other

two. Similarly, out of the four major functions inside the smart contract, the function for

rules’ strength evaluation was the most expensive due to its complex nature. Finally, by in-

corporating the idea of fuzzy logic inside the smart contract, the smart contract was not only

smart but also intelligent as now the smart contract had the ability to use vague linguistic

descriptors and defuzzify them into the crisp results that a layperson can understand.

At last, in Chapter 7, we discussed the security threats and vulnerabilities that a

digital or virtual economy, such as the metaverse, can harbor if smart contracts are used

inside a digital economy for various purposes. In the digital/virtual economy, as there will

be three major security risks, which are information theft, identity theft, and cryptocurrency

theft, we presented a security model where we made “integrated secured auditing” the fo-

cal point. This security model for the digital economy, such as the metaverse, emphasizes

multimodal auditing in two main sectors: multimodal deep learning audit and multimodal

smart contract audit. The multimodal deep learning audit focuses on the auditing of various

modes such as texts, images, audios/videos, speeches, and biomarker signals, whereas the

multimodal smart contract audit focuses on the auditing of tokens, smart contracts, cryp-

tocurrencies, crypto wallets, and blockchain oracles. In this chapter, we have presented the
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relevant threats and vulnerabilities that a digital economy can invite due to the usage of

smart contracts and also suggested preventative remedies for the defense mechanisms.

The contract originated as a paper contract and is still widespread worldwide from

tiny to large tasks, but the development kept on advancing. Eventually, the paper con-

tract evolved into electronic or digital contracts and from digital contracts to Artificial

intelligence-based contracts, and finally to blockchain-based smart contracts. Looking back

at the developmental trends in computer science and information technology sector, it is

evident that the paradigm shift of the contract from the traditional paper contract is not

going to stop at blockchain-based smart contracts. There will be other advanced technolo-

gies in the future that will adopt the contract and add more features and make the contract

even more versatile and efficient. Regardless of how advanced and smart the contract is, the

usability of such smart contracts should always be encouraged, and the legal enforceability

of such smart contracts should always be maintained. We hope that this dissertation will

facilitate the researchers currently working on legal contracts and smart contracts to find

new paths and open problems to tackle in the coming years.

8.2. Challenges and Directions for Future Work

Understanding the semantic legal terms, which makes a contract vague, will always

be a challenge as these legal words are understood clearly only by certain people whose

profession lies in the legal sector. The idea of a Smart Legal Contract is itself a novel

idea. Conversion of the legal terms into a smart contract correctly without being vague is

quite difficult. Also, the whole contract might not be converted into a smart contract since

the activities and events in a legal contract might include physical and non-transactional

activities. One of the main challenges we faced was to label all the tokens manually as vague

or non-vague in the training dataset correctly. Labeling the dataset involved meticulous

planning while preparing the dataset at the beginning of this project because many words are

vague literally for a layperson but may not be considered as vague by the lawyers who draft

the SLAs. Another challenge was to increase the accuracy of the existing model that we used

to classify and detect the vague words which were used to generate various interpretations
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of SLA that can later be translated into their respective smart contracts. Nevertheless, we

are persistently working to gather more SLAs from vendors to increase our training dataset,

which will help increase the accuracy of the model.

There is plenty of research possibility in this scope, especially with the exponential rise

in the advancement of the digital economy, artificial intelligence, and blockchain technology

in recent years. Some of the possible research topics and directions for our future work are

as follows:

• Use and development of natural language processing systems and artificial intel-

ligence for legal contract analysis by extracting the texts of a given contract au-

tomatically and generating all possible interpretations to find vagueness can be a

fascinating area of research.

• In our existing work, we have used a simple binary classification model to clas-

sify vague from non-vague words and phrases with decent accuracy considering our

dataset’s size. However, increasing our dataset exponentially and then using Gen-

erative Pre-Trained Transformer 3 (GPT-3) [46] and Bidirectional Encoder Repre-

sentations from Transformers (BERT) [97] to get much better and more accurate

predictions of vague words would also be a part of the future work. In addition,

these technologies also excel at capturing contextual information and can aid in

comprehending how specific words and phrases in a clause should be interpreted

within a given context.

• Use of other defuzzification techniques such as the mean-max method, center of sum

(COS) method, and weighted average method in the smart contract and comparing

the accuracy of the defuzzification with the existing center of gravity (COG) method

is a part of our future work.

• Regarding fuzzy logic-based smart contracts, future work also includes comparing

the ground truth of smart contracts that implement various defuzzification methods

with the legal department of the vendors that calculates and decides the compen-

sation in their SLA.
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• A future work would also be developing a smart contract comprising the methodol-

ogy of type-2 fuzzy logic [94], which would be an extension of our existing word of

fuzzy logic and would be characterized by a three-dimensional membership function.

Type-2 fuzzy logic systems would provide a higher level of uncertainty management

compared to type-1 fuzzy logic.

• Comparing the ground truth of the translated smart contracts with the lawyers and

studying the contrast integrity of our vagueness index with the lawyers’ measure-

ment standard is a major part of our future work, which would help us better tune

the parameters of our study to increase the accuracy.

• The security of the translated smart contracts needs to be provided with more atten-

tion simultaneously. Hence, the security model of integrated multimodal auditing

that we discussed in chapter 7 of this dissertation will be studied further and be

implemented in the future as a remediation strategy for the smart contracts used

inside digital economy.
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