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CHAPTER 1

INTRODUCTION

The proliferation of Android applications in contemporary times has transformed how

we interact with technology, making them an essential component of our everyday routine.

Customization capability, the ability to install third-party applications, multitasking, exter-

nal storage support, and fewer download and sharing restrictions than iOS are some of the

many reasons that make Android the most popular smartphone operating system globally

[113]. Android occupies almost 71.8% [113] of the mobile OS market share, with around 2.3

billion [93] users worldwide. Proper testing of an application before releasing it to the Play

Store is crucial to prevent failure while using it and building confidence in it. An application

failure can potentially be expensive and cause a loss of time, money, reputation, and even

life. In 2020, substandard software quality led to a financial loss of $2.08 trillion (T) dollars

in the United States [70]. According to “The App Attention Index 2021” [2], 57% of the users

will not use a digital service if it cannot impress them in one shot, and 61% will not tolerate

poor performance. Systematic and proper testing ensures the quality of the application and

reduces the risk of failure at runtime. Due to the large state space, app creators are typi-

cally unable to test every possible scenario and must consider the cost-effectiveness of their

testing processes. Manual testing poses significant challenges and lacks reliability due to

the substantial investment of time and financial resources, combined with the inherent risks

involved. Automated testing represents a valuable means of circumventing the shortcomings

of manual testing, thereby resulting in enhanced productivity.

One of the most critical test automation tasks is automated test case generation.

The intricacy of Android applications is compounded by the vast range of hardware con-

figurations, an abundance of software versions, and multifaceted user interfaces, posing a

distinctive challenge to developing automated test generation techniques. In contrast with

conventional desktop applications that rely predominantly on keyboard and mouse inputs

for user interactions, Android offers a range of input methods, including hardware and soft-
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ware keyboards as well as touchscreens. The Android platform offers a diverse spectrum of

gestures, including click, long-click, scroll, and rotate. It is imperative to acknowledge the

interaction mechanisms and the distinctive framework architecture of Android when devising

automated testing methodologies for Android applications.

Code coverage measurement is a critical aspect when evaluating the effectiveness of

testing strategies. It evaluates the degree to which an application’s code is executed during

testing, encompassing both individual test cases and the entire test suite. Attaining high

code coverage is highly important as it offers a valuable understanding of the thoroughness of

the testing procedure by assessing the level of code coverage in the application’s source code.

This metric plays an essential role in assessing the effectiveness of the testing procedure and

directly contributes to the identification and resolution of faults and vulnerabilities, ulti-

mately enhancing the overall quality of the application. Applications that undergo extensive

testing with high code coverage levels often demonstrate fewer flaws and higher reliability

compared to those with lower coverage levels [66]. However, due to the complexity and diver-

sity inherent in Android apps and devices, attaining satisfactory code coverage can present

challenges, often requiring resource-intensive and time-consuming testing methods.

Graphical User Interfaces (GUIs) of mobile applications play an important role in pro-

viding the functionality end-users require, as end-users typically interact with an application

through a GUI. By programmatically exploring the GUI, automated testing techniques can

generate test cases that exercise different paths, inputs, and states of the application, leading

to a more thorough examination of its behavior and increased code coverage. Over the past

years, several researchers [19] [106] [110] [101] [31] [84] focused on developing automated

GUI test-case generation techniques for Android applications. Numerous methods, includ-

ing model-based, search-based, dynamic extraction-based, and machine learning-based tech-

niques, have been utilized in these techniques to develop effective test scenarios for Android

applications. In recent years, the widespread adoption of machine learning (ML) methodolo-

gies has significantly increased, resulting in its extensive utilization across multiple domains,

including software testing. ML has garnered substantial momentum and is increasingly be-
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ing embraced as an approach in the domain of software testing. One promising approach for

automated test case generation in Android applications through GUI exploration to achieve

high code coverage is the use of Reinforcement Learning (RL) [112]. Reinforcement learning

is a machine learning approach that allows software agents to learn from their environment

and make decisions based on the feedback received. By employing reinforcement learning

algorithms, automated test case generation can be enhanced, enabling the test generation

process to learn from the application’s behavior and generate test cases that explore critical

execution paths, thereby achieving a high degree of code coverage.

While automated test case generation is a significant advancement and achieves high

code coverage, it often generates a large number of test cases, leading to time and resource

constraints during execution. Additionally, the order in which these test cases are generated

may not always be optimal. Consequently, optimizing the execution of these automatically

generated test cases becomes crucial. Test Case Selection, Minimization, and Prioritization

are popular test case optimization activities used in resource-limited scenarios. Selection

ensures comprehensive coverage and optimized resource allocation, while Minimization elim-

inates redundancy. However, Prioritization is particularly significant as it efficiently allocates

resources to address critical and high-risk test cases promptly, enhancing overall testing ef-

ficiency and effectiveness. Test Case Prioritization (TCP) schedules the test case execution

order based on their importance, the likelihood of revealing faults, and the impact on criti-

cal functionalities. It is important to note that test case prioritization does not compromise

the quality of testing since it does not discard any test cases. One of the key advantages

of prioritizing test cases is its capability to improve the efficiency of code coverage. TCP

improves the rate at which code coverage is attained by focusing on critical functionalities,

complex user interactions, or previously untested areas of the application. It offers the ca-

pacity to sequence tests in a strategic fashion, predicated upon their relevance and potential

for covering critical segments of the code, rather than executing them randomly or in the

order they were created. As a result, fewer tests are required to achieve high levels of code

coverage, saving both time and resources.
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Figure 1.1. Overview of the Hybrid Testing Technique

1.1. A Hybrid Testing Approach

This dissertation presents a hybrid testing technique that integrates reinforcement

learning-based automated test case generation with multi-perspective test case prioritiza-

tion for Android applications. The objective of this integration is to achieve superior code

coverage and optimize the effectiveness of the generated test cases by systematic reordering.

The overview of the proposed hybrid approach is shown in figure 1.1. The application under

test(AUT) first goes through a test generation process that utilizes reinforcement learning

to systematically explore the AUT’s GUI and thereby generating test cases as sequences

of events. Then the test suite prioritization process reorders the test cases generated by

reinforcement learning to their optimal order with the goal of maximizing the code coverage

rate.

With the aforementioned objective, the dissertation adopts reinforcement learning

algorithms, Q-learning and SARSA (State-Action-Reward-State-Action), to systematically

generate test cases for Android applications with improved code coverage. Moreover, the

dissertation presents test case prioritization techniques based on pairwise event interaction
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coverage, application state coverage, and Android activity coverage to enhance the coverage

rate of SARSA-generated test cases. A comprehensive empirical investigation uncovered a

strong correlation between the attainment of a high code coverage rate in Android applica-

tions and the coverage of Android activities, which encompass individual screens containing

UI (User Interface) elements accessible for user interactions. Guided by this observation, this

study investigates the effect of UI element coverage on test case prioritization and develops

novel prioritization strategies rooted in three key factors. These factors are the count of

unique UI elements contained in the test case, the cumulative weight assigned to the test

case, and the execution cost associated with it. The weight of a test case is determined by

analyzing the distinct action types it encompasses while assigning varying weight values to

each specific action type. To determine the cost of executing a test case, this study consid-

ers the test case length (number of events present in the test case) and the corresponding

execution time measured in seconds. By leveraging these factors, this dissertation presents

nine combinatorial strategies for calculating prioritization scores for each test case.

1.2. Contributions

This dissertation makes the following contributions:

• Contribution 1(Published): Adaptation of reinforcement learning algorithms,

Q-learning and SARSA, for Android GUI test generation and empirical evaluation

of the code coverage effectiveness of the generated test cases [12], [61].

• Contribution 2(Published): Developing test suite prioritization techniques based

on pairwise event coverage, application state coverage, and activity coverage to im-

prove code coverage for SARSA-generated Android test cases [63].

• Contribution 3(Submitted to Information and Software Technology Jour-

nal, Current status is “Under Review”): Developing test suite prioritization

techniques based on GUI element coverage, test case cost, and test case complexity,

measured in terms of “test case weight” for Android test suites generated by the

reinforcement learning algorithm SARSA [62].
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1.3. Dissertation Organization

The remainder of this dissertation is organized as follows:

Chapter 2 provides a comprehensive review of relevant literature aimed at establishing a

foundational understanding of Android GUI testing. It explores existing approaches and

techniques for test generation in the Android context, emphasizing the pivotal role of rein-

forcement learning algorithms. Additionally, it meticulously examines the landscape of test

case prioritization techniques currently employed in the field.

Chapter 3 describes the details of the reinforcement learning setup and delves into

the details of using reinforcement learning algorithms to generate effective test cases for

Android applications. This chapter discusses the design and implementation of Q-learning

and SARSA-based test case generation, highlighting their advantages over random testing.

Chapter 4 of this dissertation investigates prioritization techniques that improve the

code coverage of test cases resulting from the SARSA reinforcement learning algorithm. It

presents the utilization of pairwise interaction, activity, and application state coverage to

improve the effectiveness of the generated test suite.

Chapter 5 focuses on element coverage and weighted cost-based prioritization tech-

niques for Android test suites generated by the reinforcement learning algorithm SARSA.

This chapter presents novel methods for prioritizing test cases based on their coverage of dif-

ferent application GUI elements, their associated costs, and their complexity, thus improving

the efficiency and effectiveness of the generated test suite.

Chapter 6 summarizes the key findings in the context of Android GUI test generation

using reinforcement learning algorithms and the prioritization techniques to optimize them.

Finally, Chapter 7 identifies opportunities for further research and improvement in

the field of reinforcement learning-based Android GUI test generation and post-prioritization

techniques to maximize testing efficiency, paving the way for future researchers to explore

and expand upon the current work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The Android Operating System (OS), originated by Google, is designed primarily

for touchscreen mobile devices, including but not limited to smartphones and tablets. It

has garnered widespread acclaim and emerged as the most widely utilized mobile operating

system worldwide [113]. The open-source attribute of Android stands out as a salient feature.

This characteristic empowers software engineers to adjust and tailor the operating system to

align with their individual requirements. The adaptable nature of Android OS has proven

instrumental in facilitating the proliferation of diverse Android devices, characterized by an

array of sizes, designs, and pricing structures. In contrast to the exclusive availability of

iOS on Apple devices, Android has the capacity to operate on a variety of smartphones

and tablets from various manufacturers. Android provides a highly intuitive user interface

coupled with an extensive array of applications that are readily accessible through the Google

Play Store.

2.1. Android Application Components

Android applications are constructed based on the various components encompassed

within the Android development framework, thus distinguishing them from traditional desk-

top applications. The fundamental elements of an Android application are its application

components which function as an entry point for the user or the system to enter the appli-

cation. The main components of Android applications are [21]:

• Activities: Android applications are composed of activities. An activity is a single

screen or window of an Android application that contains a collection of widgets

and events. Activities provide the foundation of the user interface for end-users and

serve as the point of entry for user interactions, handle user input, and facilitate

communication between different components.

• Services: Services refer to the background elements that execute long-running tasks

or operations without any user interface.
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Figure 2.1. Android Application Components

They operate autonomously regardless of ongoing activities and persist in opera-

tion even in instances where the user transitions to a separate application. Services

are typically employed to undertake various tasks, such as facilitating music play-

back in the background, managing network operations, or executing periodic data

synchronization.

• Broadcast Receivers: Broadcast receivers allow apps to receive and respond to

system-wide or application-specific broadcast messages. These messages may come

from the system itself, such as low battery alarms, or they may be sent by other

applications installed on the same device.

• Content Providers: Content providers facilitate the communication of data across

applications. They control access to an organized set of data, such as a database or

file, and offer other programs a standardized interface for querying or changing the

data.

Effective testing methodologies must account for the unique architecture of the Android

framework, particularly the activities, services, broadcast receivers, and content providers,

in order to ascertain complete coverage of application functionality.

The official integrated development environment for Android uses either Java or

Kotlin as the programming language to develop native Android applications. Cross-platform
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application development frameworks such as Iconic [7], React [9], and Flutter [6] use program-

ming languages including but not limited to Python, JavaScript, and C++. Even though

native Android applications are mostly written in Java, we cannot use traditional tools for

testing standalone Java applications for Android. Android Applications differ significantly

and manifest different types of bugs [33]. The unique architecture of Android combines

and extends concepts from multiple application domains, including embedded, web-based,

distributed, and desktop [100]. Furthermore, the Android framework allows applications to

support multiple input methods, such as hardware keyboards, software keyboards, and touch-

screens. It offers a wide array of user interactions, including gestures like click, long-click,

scroll, and rotate. These input methods and gestures need to be considered when developing

test generation tools for Android applications. Dynamic UI management, system-generated

events, inter-app communications, and context awareness [94] [45] are some of the other

major challenges for Android test automation [100].

2.2. Software Testing

Software testing is a methodical and analytical procedure aimed at assessing a soft-

ware system or application to ensure that it satisfies predetermined specifications, performs

as designed, and functions consistently. The assessment of software quality, functionality,

and performance is deemed a crucial aspect of the software development life cycle(SDLC)

as it helps acquire trust in the product’s dependability and performance, improving overall

quality and user satisfaction.

2.2.1. Manual Testing

Manual testing is the process of manually running test cases and confirming software

functioning without the use of automated tools or scripts. Testers engage directly with the

program to do different test operations such as generating test cases, performing tests, and

recording faults. To find problems, analyze software behavior, and certify compliance with

requirements, manual testing depends on human observation, intuition, and knowledge.
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2.2.2. Automated Testing

Automated testing entails the use of software tools, frameworks, and scripts to auto-

mate the generation and execution of test cases, and the verification of program functioning.

It seeks to boost testing efficiency, expand test coverage, and decrease human effort in repet-

itive and time-consuming testing jobs. Automated testing tools enable testers to generate

test cases using scripts or graphical interfaces, which are then run automatically by the tools.

This method allows for faster test execution, fewer human mistakes, and more thorough test

coverage.

2.2.3. Benefits of Automated Testing

The utilization of automated testing confers several advantages compared to manual

testing.

• Improved Testing Efficiency: Automated testing tools are capable of executing

tests at a significantly faster rate than manual testing techniques, thereby enabling

prompt feedback on the software’s performance while simultaneously shortening the

overall duration of the testing process.

• Increased Test Coverage: The utilization of automation facilitates the imple-

mentation of a wide array of test cases and scenarios, encompassing a significantly

wider scope of functionality, inputs, and configurations that may be infeasible to

attain through manual testing.

• Reduced Human Errors: Automated tests are performed by automated tools,

which eliminates the chance of human mistakes such as overlooking faults or incon-

sistencies, assuring consistent and accurate test execution.

• Cost and Time Savings: Although there may be a required investment necessary

for the initial setup and maintenance of automated tests, the long-term benefits

prove to be advantageous in terms of improved testing efficiency, reduction of manual

labor, and early detection of defects during the development cycle, resulting in

significant cost and time savings.
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• Parallel Testing: Automated testing facilitates the concurrent execution of tests,

thereby expediting the testing procedure to a significant extent. Organizations can

enhance test execution time and overall efficiency by leveraging parallel testing via

simultaneous testing across diverse devices or environments.

• Scalability and Reusability: Automated testing scripts and frameworks possess

the ability to be conveniently scaled and utilized across diverse projects, platforms,

and configurations. Once automated tests are developed, they can be utilized for

subsequent releases or updates, reducing the time and resources required for gen-

erating fresh test scenarios. The scalability and reusability of testing practices are

key factors in augmenting the efficacy and productivity of the testing process.

Through the incorporation of automated testing, it is possible to augment test coverage

while enhancing software quality and reducing the overall release timeline. Ultimately, such

implementation leads to the delivery of software products that are reliable and resilient,

thereby meeting the expectations of the end-users.

2.3. Android Automated Test Generation

Android applications are Event Driven Systems (EDSs) where Graphical User In-

terfaces (GUI) have a prominent role. The GUI of an application is tightly coupled with

the business logic to provide functionalities to the users. Testing application functional-

ity through the GUI is critical. Many previous research efforts focused on Android testing

through the GUI [19] [106] [110] [101] [31]. Manual testing can be used to test the Android

application’s GUI, but it’s time-consuming. Android applications are composed of activi-

ties, and activities can have multiple widgets. The available events and their combinations

require a significant amount of time and human effort. Automated testing may save time

and cost and improve test coverage and efficiency. Automated test generation attempts to

improve the efficiency and effectiveness of testing by generating test cases that cover a wide

range of scenarios. Test generation for Android applications can be challenging due to the

complexity of the user interface and the many devices and configurations on which Android

apps can be used [100]. Characteristics of the Application Under Test (AUT) may influence
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results as well. To be effective, test generation for Android must understand the UI and be

able to generate test cases that exercise it effectively.

There has been ongoing research for years towards developing Android test automa-

tion tools [33] [128] [114] [59] [88]. Some of the common approaches used in the literature to

develop automated testing tools for Android are discussed below:

2.3.1. Random Testing Tool: Monkey

A simple approach to automatically testing Android applications is to feed random

GUI events to the Application Under Test (AUT) during its execution. The Android

UI/Application Exerciser Monkey [1] is a command-line utility packaged with the official

Android Software Development Kit (SDK). Monkey effectively injects a pseudo-random se-

quence of events based on screen coordinates, including touches, clicks, gestures, and some

system-level events. It is important to note that, despite its popularity, Monkey lacks the

ability to generate events by identifying the application’s GUI elements; rather, it generates

events by randomly clicking screen coordinates. As a result, Monkey often generates the

same event multiple times or clicks on a non-interactive screen area. Sometimes it takes sig-

nificant time for Monkey to reach the functionalities of the application, which, depending on

testing resources, may result in subpar testing coverage. Haoyin [49] proposes optimization

techniques to improve the fault detection capability of Monkey and presents a random walk-

based tool that effectively comprehends the UI architecture of the application and uniformly

disperses the event sequences across the entire input domain. Hu C et al. [52] combine auto-

matic event and test case generation using Monkey with dynamic analysis of log files. This

approach lacks accuracy as a significant amount of time is spent generating events that may

not expose any faults or critical functionality. Amalfitano et al. [17] utilize the notion of the

“Saturation Effect” by conducting concurrent random testing sessions in order to establish

termination criteria for the Monkey fuzzing technique. Their methodology involves regular

evaluations of the variation in code coverage among the ongoing sessions, ultimately ceasing

the testing procedure upon identification of a deviation lower than a predetermined critical

threshold.
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2.3.2. Model-Based Testing (MBT)

Model-Based Testing (MBT) tools [25] [41] [111] [46] [72] [121] [122] [123] create an

abstract model of the application under test (AUT) that describes the behavior of the AUT

in terms of input sequences, actions, conditions, output, and the flow of data from input to

output. MBT tools use the model of the application created as finite state machines or state

charts to generate test cases.

Amalfitano et al. [18] presents a tool called AndroidRipper that dynamically con-

structs a model of the application under test as a GUI tree. Then it selects paths through

the tree to generate test cases. Espada et al. [41] compose specially designed state machines

to model the behaviors of an Android application. A model checker generates execution

traces from the model corresponding to test cases. Choi et al. [32] use active learning with

testing to learn a model of the application. Their main focus is to increase code coverage

quickly and avoid restarting the application. MobiGUITAR [19] constructs the application’s

state machine by dynamically analyzing its GUI, followed by the application of pairwise

edge (event) coverage criteria to generate test cases from the state machine. Stoat [111]

employs a dynamic analysis approach, supplemented by weighted UI exploration and static

analysis, to effectively study app behaviors and develop models, which are then repeatedly

mutated and refined using Gibbs sampling [20]. The test case generation process utilizes

a probabilistic approach to generate event sequences from the stochastic model. Gu et al.

[47] abstract a model of the application under test and dynamically enhance the accuracy

of the model by utilizing runtime information during the testing process. Their exploration

strategy to generate test cases employs a combination of random and greedy approaches in

the depth-first search.

One major drawback of model-based approaches is that they have a high tendency to

generate infeasible test cases because even a simple application model with few states and

transitions can generate a large number of event sequences and combinations, resulting in

redundant and ineffective bug detection. Moreover, creating an accurate model takes time

and can be error-prone because of the complexity of Android applications.
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2.3.3. Search-based Techniques

Search-based techniques [16] [23] [106] [80] use meta-heuristic search optimization

to generate test cases. EvoDroid [78] examines the source code of the application under

test to create two different types of application models that describe the app’s external

interfaces and internal behaviors. To maximize code coverage, EvoDroid applies a step-wise

evolutionary algorithm utilizing these two models. Amalfitano et al. [16] present AGRippin

(Android Genetic Ripping), a Search-Based Testing approach that builds a GUI tree using

a hill-climbing algorithm and then explores it using a genetic algorithm to generate test

cases. SAPIENZ [80], a multi-objective search-based testing tool combines random fuzzing

and systematic exploration with search-based exploration to detect faults and maximize

coverage while minimizing the test case length. Jabbarvand et al. [57] use an evolutionary

search technique to produce test cases by using a collection of application models reflecting

both functional behavior and contextual variables that affect energy usage. Eler et al. [39]

present MATE, an accessibility testing tool that uses a random strategy to explore the UI

and searches for accessibility issues based on pre-configured accessibility properties whenever

a screen state is found. Auer et al. [23] improve the performance of MATE [39] by integrating

a surrogate model—an abstraction of the state-based behavior of GUI. This model can avoid

executing high-cost test cases by tracing already-explored behavior. The Cadage framework,

proposed by Zhu et al. [131], automatically constructs and refines a dynamic GUI model

of the Android application under test. Then, it employs a breadth-first search algorithm

with the objective of efficiently exploring unexecuted GUI event handlers, thereby ensuring

thorough coverage during the testing process. Jha et al. [58] presents a value-deterministic

search-based strategy that captures events and associated data during the execution of an

Android application and stores them in a log file. Utilizing the log record, the technique

applies a value-deterministic search-based replay to reproduce crashes.

2.3.4. Dynamic Analysis-Based Techniques

Dynamic extraction techniques [77] [120] generate and execute event sequences on the

fly at run-time. They do not need an abstract model of the AUT to generate test cases. Choi
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et al. [32] combine active learning with testing and propose a machine learning approach

called Swifthand to learn the AUT dynamically. Their goal is to generate test cases to

maximize branch coverage with minimal restarts. MacHiry et al. [77] present Dynodroid,

which uses a dynamic approach to generate a sequence of events using an “observe-select-

execute” cycle. It observes the available events first, confirms their existence, and then

chooses using a randomized algorithm. Wu et al. [120] present a dynamic malware detection

framework called DroidDolphin by leveraging GUI-based testing, big data analysis, and

machine learning. It utilizes a support vector machine (SVM) algorithm to predict malware

by analyzing API call logs and Android Virtual Device (AVD) logs. A3E, presented by

Azim et al. [24], incorporates a dynamic depth-first exploration strategy that capitalizes

on automated techniques to explore activities and graphical user interface (GUI) elements

in a systematic way with the goal of maximizing activity and method coverage. ENCK et

al. [40] created TaintDroid that tracks the stream of privacy-sensitive information through

third-party applications utilizing dynamic taint analysis [105] to monitor sensitive data.

PREFTEST [76] integrates static and dynamic analysis methodologies to comprehensively

evaluate the effects of varied preference configurations on Android applications. Wen et

al. [118] developed a fully distributed framework called PATS (Parallel Android Testing

System) that dynamically analyzes the GUI of an application to enhance testing efficiency

by parallelizing the testing process and identifying and eliminating redundant sequences.

Alzaylaee et al. [15] introduced a hybrid testing approach, employing the Monkey random

testing tool in conjunction with the state-based dynamic analysis tool DroidBot [73]. The

primary aim of this approach is to enhance code coverage and, consequently, reveal possible

malicious behaviors.

2.3.5. Machine Learning-based Techniques

Machine learning(ML) is a division of Artificial Intelligence(AI) that concentrates

on creating algorithms and models adept at analyzing information, drawing conclusions,

and making decisions without explicit programming. There has been a surge in the uti-

lization of machine-learning methodologies to solve complex problems including software
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testing challenges for Android. Rosenfeld et al. [98] used machine learning to categorize

Android activities into seven distinctive types in their study. They relied on the notion

that activities with comparable interface structures have similar characteristics. Following

that, the researchers ran customized testing for each activity type, concentrating on the

intended behavior and structure to find functional bugs. AppFlow [53], introduced by Hu

et al. utilizes machine learning to automatically identify typical screens and widgets and

empowers developers to create a library of modular tests for the primary function of an

app category(e.g. checkout feature of an e-commerce app). The utilization of this library

in new applications can alleviate the burden of performing manual smoke testing. Peng et

al. [92] present MUBot (Multi-modal User Bot) that utilizes a multi-modal deep learning

framework to acquire knowledge from interactive traces. The acquired knowledge allows

MUBot to emulate human users and facilitate the automated test generation for intricate

commercial Android applications. White et al. [119] propose a method to enhance random

GUI testing through the utilization of a machine learning approach known as “You Only

Look Once” (YOLO) for the automatic identification of GUI widgets in screenshots. The

initial step involved training the machine learning model to identify the types and respective

positions of widgets exhibited on the screen. The resultant outputs subsequently guide the

test generator to generate test cases with improved coverage.

One machine learning technique that is receiving particular attention in the field of

automated test generation is reinforcement learning. Reinforcement learning is a type of ma-

chine learning where algorithms learn to make decisions by interacting with an environment

and receiving feedback in the form of rewards or penalties. The learning agent explores the

environment through a trial-and-error approach to maximize cumulative reward. Popular

reinforcement learning algorithms include Q-learning, SARSA, Deep Q-Learning etc. Au-

toBlackTest [82] is perhaps the first Q-learning-based GUI testing solution for Java/Swing

desktop applications. Esparcia-Alcázar et al. [42] propose TESTAR, a GUI testing tool

based on Q-learning for desktop and web applications. Kim et al. [65] generate test cases

with improved branch coverage for C applications using deep reinforcement learning with
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their tool Gunpowder. These tools are not applicable for mobile testing because of the unique

characteristics of mobile applications, such as a wide range of screen sizes, OS versions, input

methods, and interaction mechanisms.

This work implemented an Android GUI testing strategy using Q-learning to increase

code coverage [12]. The optimized event selection using trial-and-error interactions employed

in the proposed technique accomplishes 3.31% to 18.83% better code coverage than random

testing. Vuong et al. [116] propose a similar test generation algorithm based on Q-learning

for Android with a different reward function than the reward function utilized in this study.

In their approach, the discount factor was fixed at 0.9. Contrarily, the proposed technique in

this study utilizes a variable discount factor based on the number of events in the subsequent

state after executing an event, allowing the agent to look further ahead if a state has fewer

events. QBE [69] explores GUIs and prioritizes the GUI action transitions using Q-learning

to increase activity coverage and crash detection. Q-testing [90] is another Q-learning-based

tool that uses a curiosity-driven exploration strategy and a neural network to distinguish

functional scenarios. Yasin et al. [124] present DroidbotX, which increases overall instruc-

tion coverage, method coverage, and activity coverage by employing Q-Learning with upper

confidence bound (UCB) exploration. Andrea et al. [97] use a deep neural network in their

tool ARES to achieve higher code coverage and detect faults in Android apps. DeepGUIT

[34] applies Deep Q-Network for Android testing. This approach uses a neural network to

approximate the action-value function using current information(states, actions, rewards,

and following states).

The model-based tool AIMDroid [46] is the sole tool found in the literature that

uses the reinforcement learning algorithm SARSA for Android testing. Using a Breadth-

first search (BFS) algorithm, AIMDroid traverses activities and creates a BFS tree. Then it

encases an explored activity in a “cage” and employs a SARSA-guided fuzzing algorithm to

explore the inner states of the activity. The primary goal of AIMDroid is to explore every

activity and reduce activity transition time. This dissertation presents an Android GUI test

generation based on SARSA to explore the UI space of the entire AUT instead of focusing on
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only one activity. Similar to the Q-learning algorithm introduced in this study, the SARSA-

based test generation technique systematically explores the application’s unexplored areas

using SARSA with the goal of maximizing code coverage without the need to create any

BFS tree. The detailed description of the Q-learning and SARSA-based test generation

algorithms implemented in this study is discussed in Chapter 3. The SARSA test generation

provided increases of 9.87-24.79% code coverage, 6.90 - 20.09% branch coverage, 7.88 - 28.48%

method coverage, and 3.74 - 35.02% class coverage when compared to the random testing

tool Monkey [61]. While reinforcement learning-based test case generation through the

SARSA algorithm significantly improved code coverage over random testing, there is still

room for improvement in the ordering of the generated test cases. It is conceivable that

the high-impact test cases are generated late in the process, potentially reducing the overall

effectiveness of the generated test suite. Test case prioritization can improve the effectiveness

of these test suites by scheduling test cases in the most optimal order.

2.4. Test Case Prioritization

Test case prioritization identifies the optimal order to execute the test cases based

on predefined criteria, with the objective of executing the most critical test cases first.

This technique can be especially beneficial when there are time constraints on testing, as it

prioritizes the execution of critical test cases at the beginning of the test suite. Rothermel

et al. [99] defined the test suite prioritization problem as:

Definition 2.1. Find T ′ ∈ PT such that (∀T ′′) (T ′′ ∈ PT ) (T ′′ ̸= T ′) [f(T ′) ≥ f(T ′′)].

PT represents the possible orderings of an individual test case within a test suite T

while the function f represents the prioritization fitness and assigns a prioritization score.

Test case prioritization has been the subject of extensive research, and a variety of

techniques and algorithms [87] [36] have been developed based on different criteria including

code coverage analysis [54], genetic algorithms [26], fault history analysis [89], interaction

coverage analysis [27] and machine learning-based approaches [64].
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2.4.1. Coverage-based Prioritization Techniques

Coverage-based prioritization techniques prioritize test cases based on their ability

to cover specific aspects of the application. These aspects can include but are not limited

to, code coverage [99] [37] [48], requirement coverage [96] [102] [129] [81] and combinatorial

interaction coverage [27] [103] [28].

Rothermel et al. [99] presented several prioritization techniques that leverage state-

ment and branch coverage to reorder test cases. The techniques were evaluated on eight C

programs and found to be effective in quickly detecting faults. Jones et al. [60] introduced

prioritization and reduction techniques for Modified Condition(MC)/Decision Coverage(DC)

test suites used in commercial airborne systems. MC/DC is a stringent variation of the basic

condition/decision coverage criterion that aims to ensure that each condition in a decision

statement independently affects the decision outcome. The prioritization algorithm utilizes

MC/DC pair coverage and an additional approach that recomputes the contribution of test

cases after each test case is selected. Fang et al. [43] focused on logic coverage methods

such as Branch coverage, and MC/DC coverage to prioritize test cases. Experiments imply

that logic coverage is appropriate when fine-grained coverage information is available. Krish-

namoorthi et al. [96] propose a requirement coverage-based prioritization strategy using six

factors to improve fault detection rate. Konsaard et al. [67] employed a genetic algorithm

to develop total coverage-based prioritization.

Bryce et al. [27] prioritized test cases for Event-drive Software(EDS) based on t-

way combinatorial coverage of interactions. Huang et al. [55] present a novel approach

to prioritization relying on fixed-strength interaction coverage. Their approach involves

utilizing base choice coverage iteratively and implementing one-wise coverage strength as

a means to boost the fault detection efficacy while ensuring the cost-effectiveness of the

prioritization process. Satish et al. [104] proposed a hybrid technique that generates test

cases using the ACTS tool [127] with strength 2, modifies the covering array by replacing

“don’t care” positions, and prioritizes test cases based on a cost function incorporating

higher-order coverage.
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2.4.2. Cost-aware Prioritization Techniques

Cost-based prioritization takes into account the expenses associated with executing

a test case. Test cases are assessed not just for their ability to detect errors or vulnerabili-

ties, but also for the resources necessary to carry them out. Various factors, including the

execution time and the length of the test case, are considered in determining the associated

costs. Malishevsky et al. [79] presented a novel cost-benefit model for test case prioritiza-

tion that divides costs into the cost of analysis and the cost of the prioritization algorithm.

Srikanth et al. [107] suggested a cost-effective prioritization method for configurable software

systems. Their method uses configuration switching cost as a prioritizing element, giving

low-cost tests more importance. Elbaum et al. [38] introduced a novel metric to assess the

effectiveness of fault detection. This metric accounts for test case costs and the severity

of detected faults, thereby offering a more comprehensive evaluation of the fault detection

rate. Furthermore, they presented techniques aimed at prioritizing factors that consider

such expenses. In their study, Bryce et al. [29] introduced a new prioritization algorithm

that incorporates the coverage of pairwise interactions along with the test case length as

its cost. The algorithm computes a test case’s prioritization score by dividing the number

of yet-to-be-covered pairwise interactions by the length of the test case. Hyuncheol et al.

[91] and Huang et al. [56] used historical data of test case execution to prioritize test cases,

utilizing a cost metric that takes into account both the severity of faults and the time taken

for executing the test cases. Hyuncheol et al. calculated a “historical value” for each test

case based on its fault severity and the execution time of the test case, while Huang et al.

employed a genetic algorithm that takes into account the test case execution time and fault

severity to determine the optimal order of test case execution.

2.4.3. Risk-based Prioritization Techniques

The goal of risk-aware test case prioritization is to rank test cases based on their

possible influence on system dependability and functioning. It understands that not all test

cases are created equal and that certain tests have a larger risk of creating major failures or

vulnerabilities. Test cases are prioritized in risk-aware prioritization based on their associated
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risks, such as the possibility of discovering a defect, the severity of the possible failure, and

the criticality of the impacted functionality. Stallbaum et al. [109] presented RiteDAP (Risk

Based Test Case Derivation And Prioritization), a technique for risk-based generation and

prioritization of test cases that employs activity diagrams as its core mechanism to generate

test cases. Then it prioritizes the test cases by their total risk score, as well as their additional

risk score. The technique estimates risks by evaluating the probability of containing a fault

by an entity and the total damage caused by this fault. Srivastava et al. [108] demonstrated

a prioritization approach that considers requirement priority, severity, and the probability of

risk factors associated with the requirements. To estimate risks, they followed a systematic

approach: firstly, identifying potential problems, and subsequently assigning severity values

to each identified problem. Yoon et al. [125] proposed a prioritization strategy utilizing

product risks based on multiple risk items associated with the product. The suggested

technique includes an initial assessment of risk weight associated with requirements, which

is performed by evaluating the probability of failure and the cost paid as a result of the failure

and multiplying the two together. The risk exposure values are then estimated based on the

risk weight of requirements for various risk items. The prioritization technique systematically

reorders test cases based on risk exposure values. Hettiarachchi et al. [51] employed a

fuzzy expert system in order to assess the risks associated with project requirements and

further recommended a simplified prioritization strategy predicated on the identified risks.

The utilization of a fuzzy expert system is employed to derive the status of requirement

modification and potential security vulnerabilities.

2.4.4. Test Case Prioritization for Android Applications

The majority of the literature on test case prioritization emphasizes desktop and web

applications. The conventional methods of prioritizing test cases may not be suitable for

testing mobile applications since they fail to account for the distinctive features of mobile

devices. According to a study by Mukherjee et al. [87], there has been comparatively little

research on test case prioritization in the mobile application domain. Marijan [83] introduced

a prioritization strategy that takes into consideration various criteria such as the execution
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time of tests, the frequency of test failures, the impact of test failures, and cross-functional

implications in the context of a continuous integration environment. This was tested on

three Android applications but did not factor in the core features of an application. The

prioritization strategy introduced by Qian [95] et al. gives the highest priority to the test

case which have the highest potential to trigger an Android memory leak. However, it does

not take into account other factors such as code coverage or bugs that are not related to

memory leaks. Waqar et al. [117] suggested an Android test case prioritization model using

sequence patterns and reinforcement learning. An inaccurate RL model or the quality of the

dataset collected from the users can affect the prioritized test suite’s performance.

Michaels et al. [85] leveraged the graphical user interface (GUI) of Android appli-

cations, as well as the traits of automatically generated test cases, to develop test case

prioritization techniques based on combinatorial coverage of element and event sequences.

While these studies have provided valuable insights into test case prioritization for Android

applications, there is still a need to investigate more effective and efficient approaches to

achieve high code coverage and improve application quality. Additionally, there has been no

prior research that has integrated test case prioritization alongside reinforcement learning-

based test case generation for Android applications.
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CHAPTER 3

REINFORCEMENT LEARNING FOR ANDROID GUI TEST GENERATION

This chapter introduces the fundamentals of reinforcement learning and provides a

comprehensive overview of its application in the context of the Android environment to

generate automated GUI tests. To begin with, the chapter delves into the essential concepts

that form the foundation of reinforcement learning setup, with a particular focus on the

crucial idea of balancing exploration and exploitation.

Moreover, the chapter provides an extensive exploration of the adaptation of rein-

forcement learning techniques to the Android environment, highlighting the intricate details

involved. This encompasses a detailed discussion on state and event representation, the de-

sign of the reward function, the utilization of Q-value functions, and the definition of the

discount factor.

Additionally, this chapter provides a thorough overview of the test case generation

process utilizing Q-learning and SARSA. It encompasses several key elements, including

algorithm overview, research questions, experimental setups, results analysis, discussions,

and an exploration of potential threats to the validity of the findings.

3.1. Reinforcement Learning Fundamentals

Reinforcement Learning (RL) [112] [115] is a computational approach to machine

learning, inspired by behavioral psychology and focused on goal-directed learning from in-

teractions. In contrast to supervised learning, which involves the provision of labeled ex-

amples to an agent, and unsupervised learning, whereby an agent discovers patterns within

unlabeled data, reinforcement learning is predicated upon a learning process reliant on trial

and error. It directly connects an action with an outcome to learn about the best actions

based on reward or punishment. Reinforcement Learning (RL) has the capacity to facilitate

the creation of highly sophisticated systems that possess the ability to systematically learn

and adjust to intricate settings, thus establishing a robust means of resolving an extensive

array of practical problems.
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The two main components of a Reinforcement Learning setup are the Agent and the

Environment.

• Agent: The agent is an autonomous entity that can perform independent actions

in an environment to achieve a goal. The agent interacts with the environment to

learn and make informed decisions with the goal to learn an optimal policy that

guides its decision-making process.

• Environment: The object where the agent is acting is considered to be the environ-

ment. It constitutes the external system or problem with which the Reinforcement

Learning agent engages in interaction. It can be a virtual or physical environment,

such as a game, a mobile application, a physical robot, or a financial market. The

environment functions as a source of observations or states for the agent while also

serving as the recipient of actions executed by the agent.

Figure 3.1. Reinforcement Learning

The utilization of trial-and-error interactions by the agent serves as a mechanism to

procure knowledge pertaining to the environment and enhance its proficiency in decision-

making. The decision-making process progresses sequentially in response to the interactions

between the agent and the environment. In addition to the agent and the environment, there

are other essential components in an RL setup:

• State: The state describes the current situation or configuration of the environ-

ment. The state comprises all the necessary information that the agent requires to

make decisions. The state can incorporate numerous features such as the position of
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objects, the agent’s position, the current time step, or any other important factors.

States can be discrete, with a limited number of potential states, or continuous,

with an unlimited state space.

• Action: An action is a possible move or decision that an agent can take in a given

state. In a certain state, typically an agent can perform finite actions. For example,

the agent can move left, right, up or down in grid environment.

• Reward: The reward is an abstract concept to evaluate the actions. It is the

immediate feedback from the environment after performing an action. The reward

can be positive, negative, or even zero indicating the quality of an action.

• Policy: The policy is the strategy that the agent uses to select the next action from

a certain state. The policy establishes a connection between the possible states and

decisions of an agent, thereby directing the overall behavior of the agent.

• Action-value function: The Q-function, also referred to as the action-value func-

tion, is a critical notion that significantly influences the process of making decisions.

The Q-function is employed to predict the aggregated rewards that will be acquired

by an agent when taking an action within a defined state. The Q-function measures

the quality or value of an action in a given state, steering the agent’s decision-making

toward interactions that are likely to result in higher long-term rewards. By itera-

tively updating the action-value function based on observed rewards, reinforcement

learning algorithms such as Q-learning and SARSA can converge toward an optimal

policy.

Figure 3.1 shows a typical reinforcement learning setup. In a reinforcement learning

framework, an autonomous agent takes an action in a particular state based on a behavior

policy, observes the resulting state, and collects the immediate reward for taking the action.

Agent receives a positive reward for taking measurably good actions and a negative reward

for measurably bad actions. From these observations, the agent updates the action value Q

using a policy known as target policy or update policy that guides which action to take next

in order to get the optimal cumulative reward. Popular reinforcement learning algorithms
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include but are not limited to the Monte Carlo method, Q-learning, SARSA, Q-learning -

Lambda, and SARSA - Lambda [112].

This study adopted two of the most popular reinforcement learning algorithms Q-

learning and SARSA to generate test cases for Android applications where the application

under test works as the environment.

3.1.1. Exploration and Exploitation

The fundamental concepts of exploration and exploitation hold significant impor-

tance in the reinforcement learning algorithm’s learning process. Exploration is the pro-

cess of searching out new and unexplored states and actions in the environment, whereas

exploitation is the act of using learned information to make the best decisions based on

present knowledge. Exploration is a crucial aspect of decision-making processes since it

facilitates the collection of crucial information concerning the environment. Moreover, ex-

ploration provides the agent with the opportunity to identify and uncover hidden rewards,

as well as explore alternative actions and states that potentially offer greater rewards. The

absence of exploration may result in suboptimal solutions for the agent, leading to a failure

in identifying the optimal policy. In contrast, the act of exploitation entails the utilization

of existing knowledge to optimize immediate gains and benefits. Through the utilization of

the learned policy, the agent is able to execute decisions that are anticipated to result in

increased short-term rewards.

In reinforcement learning, balancing exploration and exploitation is a complex trade-

off. Excessive exploration may result in excessive trial and error, wasting resources and time,

whereas excessive exploitation may result in early convergence to unsatisfactory solutions.

The optimization of exploration and exploitation during the process of learning presents a

significant challenge.

3.2. Adaptation of Reinforcement Learning in Android Environment

This study employs the Q-learning and SARSA reinforcement learning algorithms

to interact with an application through the iterative selection of Android GUI events from

26



various states within the application under test. The sequences of events generated as a

result of GUI exploration are subsequently recorded and stored as test cases.

3.2.1. Representation of State and Event

In a particular state, the RL agent selects an event from the available events and

evaluates the resulting reward based on the current state of the application. The state

contains the information that helps the agent to determine the next event. The agent’s job

is to learn the sequence of events that maximize the cumulative reward.

The definition of what comprises a state and an event is crucial to the reinforcement

learning-based approaches proposed in this study. The ability to deterministically identify

each state and event enables test case generation to make event selection decisions across

different iterations. During test generation, Appium [3] and UIAutomator [10] tools are used

to retrieve XML (Extensible Markup Language) representations of an Android application’s

user interface. Using this XML representation, it is possible to discover the types of widgets

available in a GUI state and the types of interactions (e.g. click, long press, etc.) that are

enabled on the widgets. Widgets are uniquely identified by ID or XPath depending on what

is available. This information provides the basis for the definition of state, action, and event.

Definition 3.1. An action a is denoted by a 3-tuple: a = (w, t, v), where w is a widget

on a particular screen, t is a type of action that can be performed on the widget (e.g. click)

and v holds arbitrary text if the widget w is a text field. For all non-text field widgets, the

value of v is empty.

Definition 3.2. A GUI state s is denoted by an n-tuple: s=(a1, a2, a3, ..., an) where ai is

an action and n is the total number of unique actions available on the screen.

Definition 3.3. An event is a set of one or more related actions that may occur in a

particular GUI state. It is denoted by a 2-tuple e=(s, Ae) where s is a GUI state and Ae is

an ordered set of actions associated with the event.

In Android applications, a GUI widget can have multiple properties (e.g., position,
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size, and label). Considering all these properties will create an enormously large number of

states to test and cause state explosion. To manage the potential for state explosion, this

study adopted a coarse definition of GUI state. As shown in definition 3.2, a GUI state

is defined in terms of the events available on a particular screen. This is in contrast to

considering the properties of every widget available on a screen.

3.2.2. Reward Function

The proposed approach models an Android application as a stochastic process with

a finite set of GUI states S and a finite set of GUI events E (e.g., tapping a widget, text

input, etc). In each GUI state s, the test generation system selects and executes an event e

from the set of available events in s. Selecting and executing an event causes a transition to

a new GUI state s′.

Event selection in a particular state is based on a notion of expected reward. The

reward function computes the immediate outcome of carrying out an event. A definition

of reward is necessary in order to enable the test generation system to distinguish between

previously selected “good” and “bad” events. For instance, given a GUI state with text

input fields that require specific types of input to move to a new screen, associating rewards

to text input helps the test generation system re-select the input that led to new states in

the past. The immediate reward R(e, s, s′) for executing event e in GUI state s is defined

as:

R(e, s, s′) =


rinit, if xe = 0

1

x e
, otherwise

(3.4)

where s′ is the resulting state after executing event e, xe is the execution frequency, i.e., the

number of instances event e has occurred, and rinit is the default reward associated with

each GUI event that has not yet been selected during the test generation process. Using this

reward function, the events that have been explored previously are less likely to be explored

again since the reward function is inversely proportional to the execution frequency. This

helps ensure that a few events do not get selected too many times.
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3.2.3. Q-value Function

The Q-value function determines the value of an event in a particular state of the

AUT. It is based on the immediate reward for executing an event and the expected future

reward associated with subsequent states. In other words, the choice of the event to select

in a particular state is influenced not only by the immediate reward from selecting the event

but also by potential rewards from events in future states. The Q-value function enables

the test generation system to look ahead when making the choice of what event to select

in a particular state. Sometimes immediate sacrifice may result in high future rewards in

the long run. At each step, the agent selects a GUI event using an event selection policy

guided by the Q-value of the available events in a given state of the AUT. The agent executes

the event, observes the reward, and updates the action value Q using the Q-value function

defined by the Bellman equation [112]:

Q-Learning:

Q(s, e)← Q(s, e) + α[R(e, s, s′) + γ ·maxe∈Es′
Q(s′, e∗)−Q(s, e)] (3.5)

SARSA:

Q(s, e)← Q(s, e) + α[R(e, s, s′) + γQ(s′, e′)−Q(s, e)] (3.6)

where, Q(s, e) on the left-hand side is the new Q-value of event e after executing the event

and going to the new state s′, Q(s, e) on the right hand is the old Q-value of event e in

state s, α is a hyperparameter called the learning rate, R(e, s, s′) is the immediate reward

for taking event e in state s, Q(s′, e′) is the Q-value of next selected event e′ in the state s′.

γ is known as the discount factor. maxe∈Es′
Q(s′, e∗) is the maximum Q-value in state s′.

The value of learning rate α is typically set between 0 to 1. If the learning rate is

0, the Q value will never be updated and the agent will learn nothing. Learning will be

quicker for a high value of α. This study aims to learn the environment as quickly as possi-

ble and set a learning rate of 1 to maximize learning. Hence, the Q-value function changes to:
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Q-Learning:

Q(s, e) = R(e, s, s′) + γ ·maxe∈Es′
Q(s′, e∗) (3.7)

SARSA:

Q(s, e) = R(e, s, s′) + γQ(s′, e′) (3.8)

The test generation system iteratively approximates the value of each GUI event in a

particular state based on its experience by interacting with the application under test. The

Q-value function enables the test generation agent to favor the execution of GUI events that

lead to unexplored or partially explored states, irrespective of immediate reward. During

the implementation, the Q-value of each event e is initialized to a user-defined default value.

Each time an event e in a particular GUI state s is selected, the Q-value is updated using

the Q-value equation.

3.2.4. Discount Factor

The discount factor helps the agent look ahead and determine how future rewards

affect the Q-value function. For a state s′ having a total number of events |E|, the discount

factor γ(s′, E) is determined using equation 3.9.

γ(s′, E) = 0.9× e−0.1×(|E|−1) (3.9)

Typically, the value of the discount factor is within the range of [0, 1]. A high discount

factor encourages the test generation system to place a high priority on selecting events that

lead to potentially high rewards in future states. A low discount factor specifies that the

test generation system should focus on selecting events that maximize immediate reward. A

discount factor of 0 makes the agent myopic as it considers only the immediate reward. On

the other hand, a discount factor approaching 1 will always give priority to cumulative high

future rewards. Instead of a static discount factor, this work utilizes a variable discount factor

derived from the exponential decay function defined in equation 3.9. The intuition is that

the agent should look further ahead (i.e. use a high discount value) and prioritize potential

future rewards over immediate rewards when it encounters states with a small number of
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events. The dynamic discount factor as defined in equation 3.9 reduces the tendency of the

agent to ignore states that have a small number of available events.

Figure 3.2. Test Case Generation with Q-learning

3.3. Android GUI Test Generation Using Q-Learning

The Q-learning-based test generation agent employed in this study adopts a greedy

policy to carefully select events and subsequently, generates event sequences. In each state,

the agent chooses an event that has the highest Q-value from the set of available events.

Figure 3.2 shows the workflow of a test case generation process. The process begins by

initializing the sequence and identifying the available events in the current state of the

application. It chooses an event using a greedy policy, selecting the event with the highest

Q-value from the available events. If two events have the same highest Q-value, one of them

is randomly selected. The chosen event is executed, and the agent observes the resulting

state. If it’s not a terminal state, the test generation process calculates the reward and

discount factor, updates the Q-value of executed event e, and adds the executed event to the

sequence. This process continues until it finds a terminal event i.e. the event that causes

application exit. When a terminal state is found, the algorithm updates the Q-value of the

executed event to 0 and stops the sequence. The sequence of events created by this process

is saved as a test case.
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Algorithm 1: Test Suite Generation with Q-learning

input : application under test, AUT

input : test suite completion criterion, c

input : home button probability, home btn prob

input : initial Q-value, Vinit

output: test suite, T

1 begin

2 while not c do

3 start AUT ;

4 testCase← ϕ;

5 while true do

6 if random(0, 1) <= home btn prob then

7 selectedEvent← HOME

8 else

9 currEvents← getAvailableEvents();

10 foreach event in currEvents do

11 if timesExecuted(event) = 0 then

12 setQValue(event, Vinit);

13 end

14 end

15 selectedEvent← getMaxValueEvent()

16 end

17 execute selectedEvent;

18 testCase← testCase ∪ selectedEvent;

19 if selectedEvent exits AUT then

20 updateReward(selectedEvent, 0);

21 setQValue(selectedEvent, 0);

22 break;

23 end

24 newEvents← getAvailableEvents();

25 reward← getReward(selectedEvent);

26 γ ← calDiscountFactor(newEvents);

27 maxV alue← getMaxValue(newEvents);

28 qV alue← reward+ γ ×maxV alue;

29 setQValue(selectedEvent, qV alue);

30 end

31 T ← T ∪ testCase;

32 end

33 end
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3.3.1. Algorithm Overview

Algorithm 1 shows the pseudocode for the Q-learning-based test generation algorithm.

It takes four input parameters:

(1) application under test,

(2) test suite completion criterion,

(3) probability of HOME button, and

(4) initial Q-value for new events.

The algorithm is part of an Android test generation tool called Autodroid [11] [13]. It uses

the input parameters to explore the GUI and produces a set of event sequences as a test

suite for the AUT .

The criterion for test suite completion is a fixed time budget. On each iteration, the

algorithm creates an empty test case and starts the AUT. The getAvailableEvents procedure

on line 9 retrieves all the events available in the current GUI state at the time it is called.

Lines 10-14 set the initial Q-value to the user-specified value Vinit for events that have never

been executed. The getMaxValueEvent procedure on line 15 selects the event that has the

maximum Q-value from the events in the current GUI state and line 17 executes the selected

event. The call to getAvailableEvents on line 24 gets the available events in the new GUI

state resulting from executing the selected event in the previous state. Lines 25-26 calculate

the reward and discount factor for the executed event as defined in equations 3.4 and 3.9

respectively. The getMaxValue procedure on line 27 returns the maximum Q-value in the

resulting state. Each time an event is executed, line 28 calculates the Q-value using equation

3.7 and line 29 updates it.

The event-selection and Q-value update process repeats until the agent executes a

termination event that causes the AUT to close. The events executed until the termination

point represent a single test case. Examples of termination events include:

(1) events whose sole purpose is to exit the application (e.g. clicking an exit button in

a menu),

(2) pressing the HOME button,
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(3) pressing the BACK button in certain GUI states,

(4) GUI events that cause a switch to some other application e.g. the Android contacts

application and

(5) events that cause the AUT to crash.

Lines 19-23 assign a Q-value of zero to termination events. This enables the test

generation agent to avoid previously encountered termination events that may prevent deeper

exploration of the GUI in subsequent test cases. This blacklisting scheme also helps to

prevent the generation of a high number of short test cases. It does not apply to the

Android HOME button since the HOME button is used solely to probabilistically terminate

each test case as shown on lines 6-7. Probabilistic termination of event sequences enables

the agent to produce test cases of varying lengths within a test suite. An event sequence

hash function is used to prevent the generation of duplicate test cases so that every test case

in a test suite is unique.

Figure 3.3. Example application in terms of states and events

3.3.2. Running Example

Consider the generation of a test suite for an Android application that has states A,

B, C, D, E, F, G, H and I as shown in Figure 3.3. State A has two available events (a1

and a2), state B has two available events (b1 and b2) and state C has two available events

(c1 and c2). States E, F, G, H and I are leaf nodes that represent the result of executing

a termination event. The initial Q-value for each event is set to 500. The directed arrow

indicates a transition from one state to another upon execution of the event indicated by

the arrow’s label. For instance, executing event a1 causes a state transition from A to B.
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Table 3.1. Example rewards and Q-values for three episodes

state event
Episode 0 Episode 1 Episode 2

Count Reward Q-value Count Reward Q-value Count Reward Q-value

A
a1 0 - 500 1 1 408 1 1 408
a2 1 1 408 1 1 408 2 0.5 407.5

B
b1 0 - 500 0 - 500 0 - 500
b2 0 - 500 1 0 0 1 0 0

C
c1 1 0 0 1 0 0 1 0 0
c2 0 - 500 0 - 500 1 0 0

D
d1 0 - 500 0 - 500 0 - 500
d2 0 - 500 0 - 500 0 - 500

As shown in Algorithm 1, app execution starts at line 3 and the number of events in the

testCase is initially 0. This is considered as the start of an episode.

At the start of episode 0, the agent is in state A, and line 9 of the algorithm sets the

currEvents value to {a1, a2}. Lines 10-14 set the Q-value for a1 and a2 to the user-specified

initial Q-value of 500. Line 15 selects an event that has the highest Q-value in the current

GUI state. Since both a1 and a2 have the same Q-value, one of them is selected randomly. If

we assume that event a2 is selected, then line 17 executes the selectedEvent a2. This causes

a transition from state A to state C and the execution count of a2 is updated to 1 (the

initial execution count was 0). Line 18 adds the executed event a2 to the testCase. If the

executed event closes the application, lines 19-23 set the reward and Q-value for the event

to 0. Event a2 does not close the application, so line 24 sets the value of newEvents to {c1,

c2}. Line 26 calculates the discount factor using equation 3.9. Line 25 calculates the reward

for executing event a2 as defined in equation 3.4 and line 27 gets the maximum Q-value of

the events c1 and c2 which is 500 (both events still have the same initial Q-value since they

have never been executed). Lines 28-29 calculates and sets the new Q-value for the executed

event a2. In state C, both events have the same Q-value. Suppose c1 is selected randomly

and executed, then a transition is made from state C to F. The reward and Q-value for c1

are set to 0 since state F is a terminal state. The agent repeats this process for each episode

until it executes a termination event that closes the AUT. Application exit indicates the end

of an episode/test case and the resulting test case is added to the test suite. Table 3.1 shows

the reward and Q-value for each event after each episode.
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In episode 1, the agent uses information derived from episode 0. In state A, it selects

and executes event a1 since it has the largest Q-value. This causes a transition from state

A to state B. In state B, both b1 and b2 have the same Q-value. If we assume b2 is selected,

then a transition from state B to E occurs. Since E is a terminal state, the reward and

Q-value for b2 are set to 0 and the application closes. The updated reward and Q-value

for each event in episode 1 are shown in Table 3.1 under the column “Episode 1”. The

algorithm continues to generate test cases until it meets the specified test suite completion

criteria. This study employs a completion criteria of 2 hours time budget.

3.3.3. Research Question

The Q-learning-based technique is evaluated by comparing its performance to random

test generation in terms of code coverage across eight subject applications. The goal is to

answer the following research question:

Research Question: Does the Q-learning-based algorithm generate test

cases with higher code coverage than random test generation?

3.3.4. Applications Under Test

The eight subject applications are downloaded from multiple categories in the F-droid

[5] open source repository and they serve different purposes:

(1) Tomdroid

(2) Loaned

(3) Budget

(4) ATimeTracker

(5) Repay

(6) SimpleDo

(7) Moneybalance

(8) WhoHasMyStuff

Tomdroid is a note-taking application. Budget is an application to manage income

and expenses. ATimeTracker helps users to start/stop time tracking for any task. Moneybal-
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ance tracks expenses shared by groups of people. WhoHasMyStuff and Loaned are inventory

apps to keep track of personal items. Repay is an app to keep track of debts. SimpleDo is a

to-do list application.

Table 3.2. Characteristics of subject applications

App Name # Lines # Methods # Classes # blocks
Tomdroid v0.7.2 5736 496 131 22169
Loaned v1.0.2 2837 258 70 9781
Budget v4.0 3159 367 67 9129
ATimeTracker v0.23 1980 130 22 8351
Repay v1.6 2059 204 48 7124
SimpleDo v1.2.0 1259 88 31 5355
Moneybalance v1.0 1460 163 37 4959
WhoHasMyStuff v1.0.25 1026 90 24 3597

Table 3.2 shows characteristics of the subject applications including the number of

lines, methods, classes, and bytecode blocks in each application. The applications range

from 1026 to 5736 lines of code, 88 to 496 methods, 22 to 131 classes, and 3597 to 22169

bytecode blocks. Tomdroid has the largest number of code lines and bytecode blocks with

5736 and 22169 respectively. WhoHasMyStuff has the smallest number of code lines and

bytecode blocks with 1096 and 3597 respectively. The applications contain a variety of

input controls such as buttons, checkboxes, radio buttons, spinners, pickers, options menus,

floating contextual menus, pop-up menus, and dialog boxes. The bytecode of each Android

application was instrumented using the techniques described in Zhauniarovich et al. [130]

3.3.5. Experimental Setup

Random test generation is used as a baseline to evaluate the performance of the

Q-learning test generation technique. Random test generation selects and executes events

uniformly at random from the available events in each GUI state. The random and Q-

learning-based test generation algorithms are implemented in the same tool, Autodroid [11],

which is written in Java, to minimize the influence of different tool implementations on the

results of the experiment. Autodroid takes instrumented APK files as input to generate test
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suites and code coverage reports. Code coverage reports are generated using Emma [4]. The

test cases were generated on Android 4.4 emulators with a screen resolution of 768x1280.

The emulators were executed on a host machine running Ubuntu 14.04 with 16GB RAM.

Table 3.3 shows the configuration parameters used to instantiate the random test generation

and Q-learning-based algorithms.

Table 3.3. Test generation parameters

Parameters Random Q-learning
Generation time for each test suite (in hours) 2 2
Number of test suites (trials) for each app 10 10
Time delay between actions (in seconds) 4 4
Home button probability 0.05 0.05
Initial Q-value - 500

Each test generation algorithm is run for 2 hours on each application to generate a

test suite. Based on the size of the applications, 2 hours of testing time seemed reasonable

for covering most of the application features. Both test generation algorithms are run 10

times on each subject application to minimize the impact of randomness in the algorithms.

A time delay of 4 seconds between events was used so that the AUT has sufficient time

to respond to one event before performing the next one. The probability of pressing the

HOME button in a GUI state influences the average length of test cases in a test suite since

the HOME button causes the AUT to exit. The HOME button probability was set to 5%

since prior experiments suggest that the 5% probability value provides a reasonable balance

between short and long test cases. For the Q-learning algorithm, a high initial Q-value of

500 was assigned to the events that have never been executed. This value is larger than any

Q-value the test generation agent will derive from actual interaction with the AUT. Such a

high initial Q-value encourages the test generation agent to execute each event in a GUI state

at least once before making decisions based on learned Q-values. The high initial Q-value

of 500 also encourages repeated execution of event sequences that revisit partially explored

states (i.e. states with at least one event that has never been executed).
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Table 3.4. Average block coverage achieved by the Random and Q- learning

App Random Q-learning Improvement by Q-learning
Tomdroid 44.06% 48.20% 4.14%
Loaned 46.78% 62.28% 15.50%
Budget 65.95% 69.26% 3.31%
ATimeTracker 62.47% 77.31% 14.84%
Repay 44.79% 55.69% 10.90%
SimpleDo 50.41% 69.24% 18.83%
Moneybalance 78.90% 87.50% 8.60%
WhoHasMyStuff 76.50% 82.75% 6.25%

3.3.6. Results and Discussion

Code coverage is employed as a measure of the extent to which each test generation

technique explores the functionality of the AUT (Application Under Test). Rather than

comparing results separately for each application, the combined data across all applications

is normalized and compared for each technique. In line with recommendations in Arcuri et

al. [22], Mann-Whitney U-test is utilized for pairwise statistical tests to determine if there

was a significant difference in block coverage between the Q-learning-based and random test

generation techniques.

Table 3.4 shows the average block coverage achieved by random test generation and Q-

learning-based technique. The Q-learning technique achieves higher average block coverage

for all applications and shows an average improvement of 10.30% compared to random test

generation. The difference between average block coverage achieved by the random and

Q-learning-based techniques ranges from 3.31% to 18.83%.

Figure 3.4 shows a box plot of block coverage achieved by each algorithm for all the

subject applications. The Q-learning-based technique has a higher median block coverage

compared to random test generation for each of the applications. Q-learning consistently

achieves higher maximum coverage than random test generation whereas random test gener-

ation always has the lowest coverage for each application. The Mann-Whitney U-test shows

that there is a significant difference (U = 1911.5, p = 0.00001) between the block coverage

of both techniques at the p < 0.05 significance level.
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Figure 3.4. Block coverage across all applications and all runs

The difference in block coverage between the random and Q-learning-based techniques

is most notable in SimpleDo, Loaned, ATimeTracker and Repay. These apps have GUIs

that mostly require simple actions such as clicks and long presses rather than interactions

with validated input fields. Furthermore, the majority of their functionality is accessible

through a small subset of GUI states. The Q-learning-based algorithm assigns Q-values

to encourage the execution of events that lead to new or partially explored states. This

enables the algorithm to repeatedly execute sequences of high-value events and revisit the

subset of GUI states that provide access to most of an AUT’s functionality. The block

coverage improvement in Budget, Moneybalance, Tomdroid, and WhoHasMyStuff is smaller

than the other subject applications for a number of possible reasons. Moneybalance and

WhoHasMyStuff have a small number of features, most of which are easily accessible by

the random and Q-learning-based algorithms. Budget has several GUI states that require

complex interactions with validated text input fields. Tomdroid has a significant amount of

OS-specific and configuration-dependent code that is unreachable regardless of which test

generation algorithm is used. The block coverage improvements in these apps may be due,

in large part, to the Q-learning algorithm’s ability to identify and avoid termination events

that prevent deep exploration of the GUI within a single episode.
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3.3.7. Threats to Validity

While Q-learning-based test generation has resulted in superior code coverage com-

pared to random test generation, there are several potential threats to consider:

Internal Validity: One potential internal threat to validity present in this research is the

selection of input parameter values for the Q-learning algorithm. The selection of param-

eters, including the discount factor, the heuristics used for event selection, and the initial

Q-value, bears considerable influence on the behavior and effectiveness of the algorithm. De-

termining optimal parameter values that perform consistently across diverse scenarios poses

a significant challenge, especially in the context of machine learning algorithms. The diver-

sity in the selection of parameters has the potential to create partiality or irregularities in the

process of test generation, thereby giving rise to possible discrepancies in the outcomes. The

research employed a learning rate of 1 and integrated a variable discount factor determined

by an exponential decay function. The selection of these values was founded on the intuition

that the agent ought to show a forward-looking behavior by assigning higher discount values

to states with fewer events.

External Validity: The study’s sample size is limited, as it compared the Q-learning

technique to random test generation across only eight open-source Android applications.

The limited number of subject applications reduces the diversity and representativeness

of the sample, thereby restricting the generalization of the results to a more comprehensive

selection of Android applications. Furthermore, comparing only one alternative methodology

limits the external validity because it does not give a full evaluation against a variety of

competing methods. Further studies that compare the Q-learning-based technique to greedy

frequency-based [11] and combinatorial-based [13] alternatives, with a higher number of

subject applications, may increase confidence in the results. Nevertheless, the consistency of

the results in this initial study suggests that our Q-learning-based technique has potential

value.

Construct Validity The assessment of the Q-learning-inspired test generation method ex-

clusively with regard to block coverage imposes a constraint that has the potential to impinge
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upon the study’s construct validity. To enhance construct validity, future research should

investigate incorporating metrics and assessments that capture a more thorough picture of

the technique’s usefulness and performance. Further studies may examine fault detection

ability and the impact of different time budgets for applications of different complexity.

3.4. Android GUI Test Generation Using SARSA

SARSA behaves and learns in accordance with the same policy and hence is known

as an on-policy algorithm. In other words, SARSA uses the same policy to select an action

and update the action value Q. At each step, the SARSA agent selects a GUI event from the

available events in a given state from the AUT. The agent executes the event, observes the

reward, and updates the action value Q using the Q-value function defined by the equation

3.8. Figure 3.5 shows the workflow of a test case generation process using SARSA. The

process begins by initializing the sequence and identifying the available events in the current

state of the application. It chooses an event using an ϵ-greedy policy from the available

events. The chosen event is executed, and the agent observes the resulting state. The Q-

value is set to 0 for terminal states. For non-terminal states, the agent selects a new event

from the new state using the same ϵ-greedy policy. Then the Q-value of the executed event is

calculated and updated based on the reward, discount factor, and the Q-value of the newly

selected event. This process continues until a terminal state is reached.

Figure 3.5. Test Case Generation with SARSA
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Algorithm 2: ϵ-greedy event selection

Input: available events in a given state, events

Input: epsilon value, e

Output: selected event, eventToExecute

1 p← random(0, 1);

2 if p < e then

3 eventToExecute← selectRandom(events);

4 else

5 eventToExecute← getMaxValueEvent(events);

6 end

7 return eventToExecute

3.4.1. Epsilon Greedy Event Selection

The ϵ-greedy exploration policy is utilized to select an event and update the Q-value.

In this approach, the agent randomly selects an event with a probability of ϵ and the best

event (the event with the maximum Q-value in a state) with a probability of 1-ϵ. The value

of ϵ determines the classic problem of exploration vs. exploitation. The agent will select a

random event most of the time if the ϵ value is high, and with a low ϵ value, the agent will

exploit more, i.e., most of the time, the agent chooses a greedy event. This study hypothesizes

that the ϵ value of 0.3 is a good exploration vs. exploitation trade-off considering the large

exploration space of Android applications. Algorithm 2 shows the pseudocode for ϵ-greedy

event selection. It is the definition of getEpsilonGreedyEvent used in the Algorithm 3 line

11 and 29.

3.4.2. Algorithm Overview

Algorithm 3 illustrates the pseudocode for the test generation process using SARSA.

It accepts the AUT (Application Under Test), a test suite completion criterion c, initial Q-

values Vinit, and a test case termination criterion t as inputs and generates a test suite T

as output. The test suite completion criterion is a predetermined time budget of two hours,

and the test case termination criterion is the probability of selecting the home button set to

0.05, which is the same criterion used in Q-learning-based test generation. Initially, a high

Q-value of 500 was set to ensure that the events get executed at least once.
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Algorithm 3: Test Suite Generation with SARSA

input : AUT
input : completion criterion, c
input : initial Q-value, Vinit

input : test case termination criterion, t
output: test suite, T

1 begin
2 while not c do
3 start AUT ;
4 TC ← ϕ;
5 events← getAvailableEvents();
6 foreach event in events do
7 if execFrequency(event) = 0 then
8 setEventValue(event, Vinit);
9 end

10 end
11 eventTemp← getEpsilonGreedyEvent(events);
12 while not t do
13 eventToExecute← eventTemp;
14 execute eventToExecute;
15 TC ← TC ∪ eventToExecute;
16 if eventToExecute exits AUT then
17 updateReward(eventToExecute, 0);
18 setEventValue(eventToExecute, 0);
19 break;
20 end
21 newEvents← getAvailableEvents();
22 foreach event in newEvents do
23 if execFrequency(event) = 0 then
24 setEventValue(event, Vinit);
25 end
26 end
27 γ ← calculateDiscountFactor(newEvents);
28 reward← getReward(eventToExecute);
29 eventTemp← getEpsilonGreedyEvent(newEvents);
30 eventV alue← getEventValue(eventTemp);
31 qV alue← reward+ γ × eventV alue;
32 setEventValue(eventToExecute, qV alue);
33 end
34 T ← T ∪ TC;
35 end
36 end
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On each iteration of the outer while loop, the algorithm initializes the AUT and sets

the test case TC as an empty set. It then retrieves the available events in the current state

of AUT using the function getAvailableEvents (line 5). Next, the algorithm initializes

the Q-values of the available events (lines 6-10). It selects an event (line 11 ) using the

ϵ-greedy event selection policy described in algorithm 2. Then it enters the inner while loop

to create a test case i.e. sequence of events. Within the loop, the algorithm executes the

selected event (line 14) and adds it to the test case TC (line 15). The algorithm observes the

resulting state. If the event causes the AUT to exit, the event’s reward Q-value is updated

to zero (lines 16-20). The algorithm terminates the test case and starts a new one.

If the event does not cause the AUT to exit, the algorithm retrieves the newly available

events (line 21) and initializes their Q-values (lines 22-26). It calculates the discount factor,

gamma, based on the new events (line 27), retrieves the reward of the executed event (line

28), and selects a new event to execute using an epsilon-greedy policy (line 29). The Q-value

of the executed event is updated based on the reward, discount factor, and the value of the

selected event (lines 31-32). This process continues until the test case termination criteria

are triggered. Once the termination criterion t is met, the test case TC is added to the test

suite T (line 34). The algorithm continues the process until the completion criterion c is

satisfied.

3.4.3. Research Questions

The experiments apply SARSA-guided test generation to seven Android applications

to examine the following questions:

RQ1. Is SARSA able to generate test cases with better code coverage than

Monkey?

RQ2. How does SARSA compare to Monkey in terms of code coverage progress

over time?
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Table 3.5. Characteristics of subject applications

App Name # LOC # Branches # Methods # Classes
AnkiDroid 29063 11772 4091 500
Tricky Tripper 8244 2512 1766 290
Track Work Time 6403 2105 1211 174
The Kana Quiz 4453 2231 629 87
Tickmate 2654 770 395 60
SimpleReminder 1126 314 292 48
Open FNDDS Viewer 971 163 189 37

3.4.4. Applications Under Test

Seven Android applications of various sizes and categories, downloaded from the open-

source app repository F-droid [5], are utilized to evaluate the code coverage performance of

SARSA. The applications are:

(1) AnkiDroid

(2) Tricky Tripper

(3) Track Work Time

(4) The Kana Quiz

(5) Tickmate

(6) SimpleReminder

(7) Open FNDDS Viewer

Table 3.5 shows the number of lines, branches, methods, and classes for each of

the subject applications. The applications exhibit a variation in their code base size, with

lines of code ranging from 971 to 29063, branches ranging from 163 to 11772, methods

ranging from 189 to 4091, and classes ranging from 37 to 500. AnkiDroid has the highest,

and Open FNDDS Viewer has the lowest number of lines, branches, methods, and classes.

The applications are instrumented to collect code coverage using the free and open-source

code coverage tool JaCoCo [8]. The test generation process installs the instrumented APK

and runs the experiments. It uses Appium [3] and UIautomator [10] to extract the XML

representation of the AUTs GUI and discover available widgets and actions identified by
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unique ID or XPath.

3.4.5. Experimental Setup

The random test generation tool Monkey, which comes with Android Studio, is uti-

lized as a baseline to assess the performance of code coverage performance of the SARSA-

based test generation algorithm. Monkey provides high code coverage and has been used

as a baseline in many research studies. Typically, Monkey generates a single sequence for

a test suite, while the SARSA-based algorithm proposed in this study generates multiple

event sequences. Therefore Monkey was configured to run for two hours and generate mul-

tiple event sequences for a fair comparison. The implementation of the SARSA algorithm

and the reconfigured Monkey tool was conducted using Python programming language. The

maximum event sequence length for each application generated by SARSA was used as the

input for the Monkey event sequence. Monkey script used a unique seed as input for each

event sequence to prevent sequence repetition. The SARSA and Monkey experiments are

run ten times on each application, with a two-hour time limit for each run. Test case ter-

mination criteria are probabilistic with a probability value of 0.05. The test case terminates

by clicking on the Home button. A two-second delay was used after each event to ensure

that the next event is not executed before the AUT responds. Two machines with identical

configurations, Ubuntu 20.04.3 LTS with 32 GB RAM and a Pixel 3a emulator with API 29

(Android 10.0), are used to generate the test cases.

Table 3.6. Input Parameters for both SARSA and Monkey

Parameters Monkey SARSA
Test Suite Generation Time (in hours) 2 2
Total number of test suites for an app 10 10
Delay between actions (in seconds) 2 2
Test case termination probability 0.05 0.05
Action Value Q (Initial) - 500

A large starting Q-value of 500 was set for SARSA; this value will always be larger
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than the values the agent derives after interacting with the environment, and the agent

will select every event in a given state at least one time. Table 3.6 shows test generation

parameters. After executing ten runs for each application, code coverage was collected and

the average was reported.

Table 3.7. Average code coverage achieved by SARSA and Monkey testsuites

App Name
Line Branch Method Class

SARSA Monkey Improvement SARSA Monkey Improvement SARSA Monkey Improvement SARSA Monkey Improvement
AnkiDroid 39.62 14.83 24.79 25.16 8.37 16.79 49.36 20.88 28.48 67.3 32.28 35.02
Tricky Tripper 36.61 24.97 11.64 20.27 12.45 7.82 42.2 28.51 13.69 55.07 41.96 13.11
Track Work Time 58.13 36.52 21.61 38.69 22.56 16.13 63.29 39.58 23.71 81.09 52.01 29.08
The Kana Quiz 63.3 49.75 13.55 46.71 39.81 6.9 75.28 63.69 11.59 89.66 80.49 9.17
Tickmate 78.02 53.92 24.1 57.87 36.97 20.09 81.06 60.23 20.83 86.34 65.67 20.67
SimpleReminder 67.18 57.31 9.87 48.89 37.83 11.06 66.51 58.63 7.88 81.87 78.13 3.74
Open FNDDS Viewer 90.15 71.12 19.03 69.69 55.92 13.77 93.07 71.91 21.16 100 82.7 17.3

3.4.6. Results and Discussion

Table 3.7 represents the average line, branch, method, and class coverage achieved

by SARSA and Monkey across ten runs for the seven subject applications. It also shows the

code coverage improvement by SARSA over Monkey.

Research Question 1: Is SARSA able to generate test cases with better

code coverage than Monkey?

SARSA outperforms Monkey in all subject applications in terms of line, branch, method,

and class coverage. Line coverage improvement ranges from 9.87% to 24.79%. The t-test

is employed to assess whether a statistically significant difference exists in code coverage

between the SARSA-based and Monkey test generation techniques. The results of the t-

test indicate a significant difference in line (p < 0.0001), branch (p < 0.0001), method

(p < 0.0001), and class (p < 0.0001) coverage between both techniques.

AnkiDroid, which is the largest among the subject applications in terms of lines of

code, achieved the highest line coverage improvement. It also achieves the highest method

and class coverage improvement. The method and class coverage improvements range from

7.88% to 28.48%, and 3.74% to 35.02%, respectively. SimpleReminder, achieves the lowest

line, method, and class coverage improvement. It has 1126 lines of code, making it the

second smallest of the subject applications. After a close inspection of the source code

of SimpleReminder, it was found that the uncovered lines of code are mostly related to
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some services that trigger based on context changes such as system broadcast of time. The

proposed technique only works on GUI events, and it does not support context and system

events yet. Monkey can generate several system-level events, despite that, the proposed

approach achieves higher coverage than Monkey.

Figure 3.6. Line Coverage across all the subject applications and for all runs

The highest branch coverage improvement 20.09 is achieved by Tickmate, while The

Kana Quiz achieves the lowest branch coverage improvement. Branch coverage improvement

ranges from 6.9% to 20.09%. Table 3.5 shows that The Kana Quiz has a relatively high
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number of branches considering its total number of lines of code. It is a quiz application,

and the quiz questions cover most of the code. The questions populate in the same activity.

Since most of the possible events of this application are around the same activity and the app

has high lines of code-to-branch ratio, Monkey can achieve a relatively high branch coverage.

Therefore the branch coverage improvement by SARSA is lowest for this application. Open

FNDDS Viewer is the smallest app with only 971 lines of code, and it achieved 100% class

coverage by SARSA.

Figure 3.6 shows the distribution of line coverage achieved by both SARSA and Mon-

key in boxplots for all ten runs across all the subject applications. Branch, Method, and Class

coverage follow similar patterns. SARSA achieves higher minimum, median, and maximum

coverage than Monkey consistently for all the subject applications. In all the applications,

Monkey achieves the minimum coverage value. SARSA boxplots are comparatively shorter

than Monkey for the same application in all the cases, implying that the code coverage

achieved by SARSA for an application across ten runs has less variation than Monkey.

Research Question 2: How does SARSA compare to Monkey in terms of

code coverage progress over time?

To evaluate the performance of both SARSA and Monkey over time, line coverage progress

over time was observed for each subject application. The run among the ten runs that

achieves the line coverage closest to the average value for each application is graphed, and

the line coverage graph is plotted in Figure 3.7. Other runs show a similar pattern. The test

generation time in minutes is plotted on the horizontal axis, and the vertical axis represents

the achieved line coverage. An early jump is observed in small-sized applications, i.e., Open

FNDDS Viewer and Simple Reminder. They reach the maximum or almost close to the

maximum line coverage value by SARSA within 20 minutes. Similar patterns are observed

in Tickmate and The Kana Quiz. AnkiDroid, Tricky Tripper, and Track Work Time are the

larger applications among the test subjects in terms of lines of code. With these applica-

tions, SARSA outperforms Monkey from the beginning, but there is no early jump, and the

progress is more pronounced.
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(a) AnkiDroid: Code coverage progress over time

(b) Tricky Tripper: Code coverage progress over time

(c) Track Work Time: Code coverage progress over time
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(d) The Kana Quiz: Code coverage progress over time

(e) Tickmate: Code coverage progress over time

(f) SimpleReminder: Code coverage progress over time
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(g) Open FNDDS Viewer: Code coverage progress over time

Figure 3.7. Code coverage progress over time

After reaching a certain point, Monkey does not explore the AUT much but SARSA keeps ex-

ploring, given the strategy and parameters that encourage exploration. For all applications,

SARSA-generated test suites achieve a faster rate of line coverage.

3.4.7. Threats to Validity

The validity of the study is subject to various threats.

Internal Validity: The internal validity of the study is subject to the choice of parameters

for the SARSA algorithm. The epsilon value is critical in balancing exploration and ex-

ploitation throughout the learning process, and its choice can have a significant influence on

the algorithm’s behavior and results. In order to mitigate this concern, the study employed

an epsilon value of 0.3 as a means of achieving a harmonious equilibrium between exploration

and exploitation. To enhance the internal validity, future studies ought to consider experi-

ments with different epsilon values or decayed epsilon to gain a better understanding of the

trade-offs involved in this area. Furthermore, it is worth considering the exploration of var-

ious configurations concerning the learning rate and discount factor in prospective research

endeavors.

External Validity: The SARSA-based test generation approach was evaluated in this study
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utilizing seven Android applications. The limited number of applications raises questions

regarding the generalizability of the results, as distinct applications, have unique characteris-

tics that may result in variable outcomes. To limit this risk, attempts were taken to improve

external validity by selecting applications of diverse sizes and classifications. By adding this

variety, the research aimed to capture a greater sample of the Android application environ-

ment and boost the possible generalizability of the results.

Construct Validity: The test case termination criteria employed in the study are char-

acterized by a probabilistic nature, which gives rise to concerns pertaining to the potential

threat to validity resulting from the variability inherent in pressing the Home button. In

order to mitigate this issue, a total of ten trials were executed for every application, and the

resulting averages were compiled.
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CHAPTER 4

PAIRWISE INTERACTION, ACTIVITY, AND APPLICATION STATE

COVERAGE-BASED PRIORITIZATION TECHNIQUES TO IMPROVE CODE

COVERAGE FOR SARSA GENERATED TEST CASES

Android applications featuring graphical user interfaces (GUIs) are built around ac-

tivities and are driven by events. Individual screens of Android applications are called

activities. An activity is similar to a page on a website. Each activity encompasses a variety

of GUI components and widgets, notably including buttons, text boxes, and images, that

allow for user engagement and interaction. An application may comprise several activities,

and end-users traverse through them to access various features and functionalities.

The events triggered through user interactions with the GUI of an application char-

acterize its functional behavior. Let’s consider the following example to better understand

the concept of an event: Assume we have a messaging app that has a “Send” button. Click-

ing on the “Send” button triggers an event. This event indicates the user’s desire to send

a message. The application process the event, which includes activities such as verifying

the message content, delivering the message to the recipient, and updating the message his-

tory. The event-driven architecture of the applications guarantees that the relevant steps are

completed when the “Send” button is tapped, allowing for smooth communication between

users.

The event interactions by the users cause the application to transition between dif-

ferent states based on its GUI, internal logic, and functionality. For instance, clicking a

button may lead to a new screen being displayed or a specific action being performed. The

confluence of GUI events and their resultant application states culminates in a dynamically

evolving interaction model. Inspired by the work of Bryce et al. [27] [29], this study proposes

new prioritization strategies for Android applications that take into account the application’s

state and activity, as well as pairwise event interaction coverage. The prioritization tech-

niques proposed in this study aimed to attain comprehensive coverage of distinctive pairs of
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events, activities, and states within the Android application context. The primary objective

of this study is to improve the code coverage rate of test cases generated through the SARSA

method by prioritizing test cases that cover a diverse range of event pairs, activities, and

states.

4.1. Proposed Prioritization Strageies

The study adopts the definitions of states and events employed in test case generation,

which are outlined in detail in Chapter 3.

A state is defined as an n-tuple: s = (a1, a2, a3, ..., an) where every ai is a legal action

available to be enacted on the on-screen elements.

Events are a set of one or more related actions that may occur in a GUI state.

An event and its ordered set of actions are represented in a 2-tuple e = (s, Ae ). In this

representation, the GUI state is s and the ordered set of actions associated with the event

is Ae. An example event could be a single click on the login button of an application or an

input of several sentences into a text field.

This work introduces four strategies for prioritizing test suites, which encompass

pairwise coverage, state coverage, and activity coverage. These strategies are as follows:

(1) Pairwise event interaction coverage,

(2) Pair-Activity coverage (PA),

(3) Pair-State coverage(PS), and

(4) Pair-State-Activity coverage (PSA).

The first strategy focuses solely on covering unique event pairs, while the other three strate-

gies incorporate activity and state interactions alongside pair coverage to compute prioriti-

zation scores.

4.1.1. Pairwise event interaction coverage based prioritization

The pairwise event interaction coverage-based prioritization algorithm reorders test

cases using the number of unique event pairs that each test covers. To determine the priori-

tization score for each test case, the algorithm generates pairs of events and then calculates
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the score using the following equation:

pScore = pCount (4.1)

where pScore denotes the prioritization score assigned to the test case, while pCount repre-

sents the number of pairs covered by that particular test case.

This strategy measures the degree of coverage supplied by each test case in terms

of event interactions by setting the priority score equal to the count of unique event pairs

covered. This approach serves to optimize the coverage of critical code while mitigating

limitations in resource allocation. The algorithm places emphasis on the coverage of unique

event pairs as a means of ensuring that selected test cases possess the capacity to furnish ex-

tensive and inclusive coverage of event interactions. This helps to identify the test cases with

intricate functionalities and complex system behaviors. Assigning high prioritization scores

to these critical test cases increases the chances of detecting critical defects and revealing

latent issues that may emerge due to particular event combinations or inter-dependencies.

4.1.2. Pair-Activity coverage based prioritization(PA)

The Pair-Activity coverage-based prioritization (PA) algorithm presented in this work

offers a comprehensive approach to test case prioritization by considering both the number

of event pairs covered and the number of unique activities within each test case. By incor-

porating these two factors, the algorithm aims to prioritize test cases that provide balanced

coverage of event interactions and activities, leading to a more thorough testing process.

To calculate the prioritization score for each test case, the PA algorithm follows a

multi-step process. First, it generates all unique event pairs within the test case that are

not already covered by previously selected test cases, representing the potential interactions

between events. Next, it counts the number of unique activities present in the test case.

pScore = pCount ∗ cActivity (4.2)

In this equation, pScore represents the prioritization score assigned to the test case,
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pCount signifies the number of covered event pairs, and cActivity denotes the number of

unique activities within the test case. By multiplying the count of event pairs by the number

of unique activities, the algorithm captures the combined coverage of both event interactions

and activities. By prioritizing test cases based on Pair-Activity coverage, the algorithm

enhances the effectiveness of the testing process. It enables the identification of test cases

that not only cover a wide range of event interactions but also exercise distinct activities

within the system. This comprehensive coverage helps in uncovering unexplored activities

thereby maximizing coverage rate as well as fault detection probability.

4.1.3. Pair-State coverage based prioritization(PS)

The Pair-State coverage-based prioritization (PS) algorithm gives priority to test

cases based on the number of event pairs covered by a test case and the number of states

present within a test case. This strategy aims to prioritize test cases that provide a thorough

exploration of functional behaviors and state transitions. It generates all unique event pairs

and counts the number of unique states before calculating the prioritization score for each

test case using the following equation:

pScore = pCount ∗ cState (4.3)

In this equation, pScore is the prioritization score, pCount is the number of event pairs

covered by the test case, and cState is the number of unique states.

By multiplying the count of event pairs by the number of unique states, the algorithm

effectively captures the combined coverage of both event interactions and application states.

By considering these two factors, the algorithm ensures that test cases not only exercise

various event interactions but also cover application state transitions. The goal is to promote

a more realistic and thorough testing approach that facilitates the identification of test cases

that not only cover a diverse range of event interactions but also explore different system

states.
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4.1.4. Pair-State-Activity coverage based prioritization(PSA)

The Pair-State-Activity coverage-based prioritization (PSA) algorithm offers a so-

phisticated approach to prioritizing test cases by considering the coverage of event pairs,

activities, and states. The PSA strategy aims to prioritize test cases that provide a com-

prehensive exploration of system behaviors, activities, and state transitions by incorporating

the aforementioned three factors. To calculate the prioritization score, it generates all unique

event pairs and counts the pairs that are not covered by previously selected test cases, and

counts the number of unique activities and states present in each test case. It then calculates

the prioritization score for each test case using the following equation:

pScore = pCount ∗ cState ∗ cActivity (4.4)

In this equation, pScore denotes the prioritization score assigned to the test case, pCount

represents the number of event pairs covered by the test case, cActivity signifies the count

of unique activities, and cState indicates the count of unique states within the test case.

The PSA algorithm captures the combined coverage of event interactions, activities,

and states by multiplying the count of event pairs by the number of unique activities and

unique states. This promotes a comprehensive and realistic testing approach and enhances

the effectiveness and efficiency of the testing process. This comprehensive coverage con-

tributes to a broader coverage of code segments associated with specific states or activities.

When test cases cover a wide range of event pairs, activities, and states, they inherently

trigger different execution paths in the code. As a result, the code segments associated with

these paths are more likely to be executed, leading to increased code coverage. Prioritizing

test cases with high coverage results in a higher coverage rate and the likelihood of finding

defects early.

4.2. Algorithm Overview

The pseudocode for the test case prioritization process is illustrated in Algorithm 4.

It takes a test suite as input and produces a prioritized test suite as output.
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Algorithm 4: Pair-State-Activity coverage based prioritization

Input: Test Suite T
Output: Prioritized test suite T ′

1 T ′ = []
2 while uncovered event pairs remain do
3 current max = −1
4 current best = NULL
5 for test case ti in T do
6 if ti not in T ′ then
7 compute pCount as number of unique event pairs covered by ti
8 count unique activities covered by ti
9 count unique states covered by ti

10 compute pScore as prioritization score
11 if pScore > current max then
12 current best = ti
13 current max = pScore
14 end
15 else if pScore == current max then
16 Tie is broken at random
17 end
18 end
19 end
20 add current best to T ′

21 remove current best from T
22 Mark all unique pairs covered by current best as covered
23 end
24 Add the remaining tests in T in random order to T ′ return T ′

Given an input test suite T , the algorithm generates a prioritized test suite T ′ by iteratively

selecting the test case with the highest prioritization score and adding it to an ordered list.

The algorithm first initializes an empty list T ′ to store the prioritized test suite. It then

enters a while loop that iterates until all event pairs are covered. For each test case ti in

the original test suite T , the algorithm counts unique event pairs that are not covered by

the already selected test cases, unique activities, and unique states. Based on the selected

prioritization strategy, the algorithm computes the prioritization score. The pseudocode

shown in the algorithm is for the PSA strategy. Other strategies follow similar steps. The

algorithm marks the test case with the highest score as current best. If two or more test

case has the same score, the algorithm breaks the tie randomly. After checking all the test

60



cases, the algorithm adds the best test case to the prioritized suite. Once all event pairs

are covered, the algorithm exits the while loop. It then adds the remaining test cases from

the original test suite T (which were not selected during the prioritization process) to T ′ in

random order.

4.3. Empirical Analysis

4.3.1. Research Questions

The experiments examine the following research questions:

RQ1. Does prioritization by pairwise event interaction coverage-based strat-

egy achieve higher APSC and APBC scores than default and random

ordering?

RQ2. Does prioritization by pair-activity coverage-based strategy achieve higher

APSC and APBC scores than default and random ordering?

RQ3. Does prioritization by pair-state coverage-based strategy achieve higher

APSC and APBC scores than default and random ordering?

RQ4. Does pair-state-activity coverage-based strategy achieve higher APSC

and APBC scores than default and random ordering?

Table 4.1. Characteristics of subject applications

App Name # LOC # Branches # Methods # Classes #Activity

AnkiDroid 29063 11772 4091 500 21
Tricky Tripper 8244 2512 1766 290 16
The Kana Quiz 4453 2231 629 87 7
Tickmate 2654 770 395 60 10
SimpleReminder 1126 314 292 48 4

4.3.2. Subject Applications

To evaluate the effectiveness of the proposed test suite prioritization techniques, this

study employed test suites from five different Android applications:

(1) AnkiDroid

(2) The Kana Quiz
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(3) SimpleReminder

(4) Tickmate and

(5) Trickytripper.

These open-source applications are obtained from F-droid, an online repository of open-

source Android applications [5]. Table 4.1 shows the characteristics of the five subject appli-

cations. These characteristics include the lines of code (LOC), branches, methods, classes,

and activities for each application. The range of applications varies significantly in terms

of their coding composition, with code lengths ranging from 1126 to 29063 lines, branches

ranging from 314 to 11772, methods varying from 292 to 4091, classes varying from 48 to

500, and activities ranging from 4 to 21. AnkiDroid is the largest among the five applications

for all of the above metrics. The Kana Quiz and Tricky Tripper are also relatively large,

while Tickmate and SimpleReminder are smaller in size. The number of activities also varies

among the applications, with AnkiDroid having the most and SimpleReminder having the

least.

Table 4.2. Characteristics of test suites

App Name # testcases # Line Coverage # Branch Coverage # Activity Covered

AnkiDroid 120-148 39.62 25.16 14-16
Tricky Tripper 106-125 36.61 20.27 8-10
The Kana Quiz 101-124 63.3 46.71 6
Tickmate 94-116 78.02 57.87 10
SimpleReminder 106-125 67.18 48.89 4

4.3.3. Test Generation

SARSA, a reinforcement learning technique, generates test suites for the subject ap-

plications during the testing process [61] as described in Chapter 3. SARSA uses a trial-and-

error approach to identify the best GUI events that will maximize code coverage. SARSA-

based test generation was run for two hours to generate one test suite per application, and

ten test suites were developed for each application. SARSA creates test cases by navigating

the GUI without requiring access to the application’s source code. However, in the study,

the source code was utilized to gather code coverage data using JaCoCo [8]. The only re-

quirement for generating test cases with SARSA is the Android Package file instrumented
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with JaCoCo. The test suites utilized in this study contained around 94-148 test cases.

The proposed test suite prioritization algorithms were then tested on these test suites to

evaluate their effectiveness. Table 4.2 shows the characteristics of the test suites generated

by SARSA, including the number of test cases in the test suite, average line and branch

coverage, and the range of activities covered by the generated test suites.

4.3.4. APSC and APBC Metrics

A common metric for evaluating test case prioritization algorithms and their effec-

tiveness is APFD (Average Percentage of Faults Detected), which calculates the rate of fault

coverage by the prioritization algorithm [86]. Variations of this metric, such as APFDC , also

consider fault severity and test case cost [87].

This research focuses on maximizing the code coverage rate; therefore, it utilizes

the APSC (Average Percentage of Statement Coverage) and APBC (Average Percentage of

Branch Coverage) metrics introduced by Li et al. [74] to evaluate the performance of the

proposed test case prioritization algorithms. These metrics are inspired by APFD and are

calculated using the following formulas:

APSC = 1− TS1 + TS2 + ...+ TSm

nm
+

1

2n

APBC = 1− TB1 + TB2 + ...+ TBm

nm
+

1

2n

where TSi and TBi represent the first test case that covers the statement or branch

i, the variable m denotes the total count of statements that the test suite covers and n

represents the total number of tests in the test suite.

These metrics provide valuable information about code coverage, and a higher per-

centage generally indicates that the algorithm is more effective at maximizing code coverage

quickly. The study expects the APSC and APBC scores of a prioritized test suite will in-

crease compared to the default ordering, as the anticipation is that more statements and

branches will be covered earlier in the testing process.
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4.3.5. Experimental Setup

A comprehensive assessment is conducted to evaluate the efficacy and potency of the

proposed strategies for prioritizing SARSA-generated test cases. The test case prioritizing

algorithms are applied systematically to the test suites of the five subject applications, with

default and random orderings serving as comparative baselines. The test cases in each test

suite are reordered based on each prioritization technique using Algorithm 4, implemented

through Python scripts. To ensure the dependability of the outcomes, every prioritization

methodology is executed on every test suite for a cumulative count of ten iterations. The

utilization of a multiple-run approach facilitates the consideration of conceivable variations

and affords a more precise depiction of the efficacy of each respective technique. Coverage

reports are gathered to undergo analysis for every prioritized test suite. Moreover, the APSC

and APBC scores are calculated, and the mean scores for every application are ascertained,

yielding valuable insights pertaining to their impact on coverage.

4.4. Results and Discussion

Tables 4.3 and 4.4 present the average APSC and APBC scores for the prioritization

strategies applied to the five subject applications. The study compares the scores of the

prioritization strategies to the test suites’ original order and randomized orderings. The

tables 4.5 and 4.6 show the differences in APSC and APBC scores between prioritization

strategies and the default and random orderings. These tables provide insight into the

changes in scores that occurred after prioritization. On average, the pairwise, PA, PS, and

PSA coverage-based prioritization strategies all outperform the default and random ordering

strategies in terms of APSC and APBC scores for all subject applications.

Table 4.3. APSC Results by applications

Technique AnkiDroid Trickytripper The Kana Quiz Tickmate SimpleReminder
Default 92.78% 93.03% 94.83% 88.86% 92.92%
Random 94.11% 94.59% 94.78% 90.01% 93.62%
Pairwise 98.21% 99.07% 97.68% 96.84% 97.86%

PA 98.32% 99.27% 98.08% 97.01% 98.07%
PS 98.25% 99.13% 97.41% 96.52% 97.99%
PSA 98.32% 99.26% 97.76% 96.73% 98.09%
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Table 4.4. APBC Results by applications

Technique AnkiDroid Trickytripper The Kana Quiz Tickmate SimpleReminder
Default 94.91% 95.53% 94.76% 90.19% 92.09%
Random 95.87% 96.58% 95.10% 90.82% 92.80%
Pairwise 98.86% 99.55% 98.52% 97.32% 98.13%

PA 98.92% 99.66% 98.70% 97.51% 98.30%
PS 98.90% 99.58% 98.31% 97.08% 98.27%
PSA 98.93% 99.65% 98.51% 97.28% 98.35%

RQ1: Does prioritization by pairwise event interaction coverage-based strategy

achieve higher APSC and APBC scores than default and random ordering?

The pairwise event interaction coverage provides higher scores for APSC and APBC

compared to using default or random ordering methods for all five subject applications.

The pairwise coverage method was found to have an average improvement of 2.84-7.98% in

APSC and 3.76-7.13% in APBC when compared to the default order. Furthermore, when

compared to random ordering, the pairwise coverage method had an average improvement

of 2.90-6.83% in APSC and 2.98-6.50% in APBC. The results for all applications using the

Pairwise strategy are as follows: AnkiDroid surpassed the default order in APSC and APBC

by 5.43% and 3.95%, respectively. In comparison to the random order, the findings show

a 4.10% and 2.99% improvement in APSC. Trickytripper outperformed the default order

in both APSC and APBC, yielding improvements of 6.03% and 4.03%, respectively. In

comparison to the random order, the acquired findings showed a 4.48% increase in APSC

and a 2.98% increase in APBC. The Kana Quiz showed a 2.84% improvement in APSC and

a 3.76% improvement in APBC when compared to the default ordering. The Kana Quiz

showed a 2.90% improvement in APSC and a 3.43% improvement in APBC when compared

to the random sequence.

Tickmate attained a superior APSC of 7.98% and an enhanced APBC of 7.13% when

compared to the default order. In contrast to the random order, the Tickmate exhibited a

significant improvement of 6.83% and 6.50% in APSC and APBC, respectively. SimpleRe-

minder was observed to yield a 4.93% improvement in APSC and a 6.04% enhancement
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in APBC when compared to the default setting. In contrast to the random order, APSC

improved by 4.24% and APBC improved by 5.33%. The present findings suggest that the

adoption of the Pairwise approach resulted in a notable enhancement in both APSC and

APBC when compared to the default and random configurations across all applications.

RQ2: Does prioritization by pair-activity coverage-based strategy achieve

higher APSC and APBC scores than default and random ordering?

The results show that pair-activity coverage-based prioritization increases APSC

over default and random ordering techniques for all five subject applications. Pair-activity

coverage-based prioritization technique shows an average increase of 3.24-8.14% in APSC

and 3.94-7.32% in APBC when compared to the default ordering method. Additionally,

when compared to the random ordering method, the pair-activity coverage-based prioritiza-

tion technique shows an average increase of 3.30-7.00% in APSC and 3.04-6.69% in APBC.

For AnkiDroid, the PA strategy achieved 5.53% better APSC and 4.00% better APBC com-

pared to the default order. Compared to random order, it demonstrated 4.20% better APSC

and 3.04% better APBC. The results indicate that the PA algorithm demonstrated a signif-

icant improvement of 6.24% in APSC and 4.14% in APBC when compared to the default

setting for Trickytripper. In comparison with the random order, the Trickytripper results

displayed a 4.68% improvement in APSC and a 3.09% enhancement in APBC. The Kana

Quiz demonstrated an improvement of 3.24% in APSC and 3.94% in APBC when compared

to the default order. In contrast to the random order, the data exhibited a 3.30% improve-

ment in APSC and a 3.60% enhancement in APBC. Tickmate demonstrated a significant

improvement of 8.14% in APSC and 7.32% in APBC, as compared to the default order.

In comparison to the random order, the results indicated a superior APSC by 7.00% and

an improved APBC by 6.69%. The study found that the utilization of the PA strategy on

SimpleReminder resulted in a 5.15% improvement in APSC and a 6.21% enhancement in

APBC relative to the default order. In comparison to the random order, the results indicate

a 4.45% enhancement in APSC and a 5.50% improvement in APBC.
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Table 4.5. ∆ APSC by applications

AnkiDroid Trickytripper The Kana Quiz Tickmate SimpleReminder
Technique ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random
Pairwise 5.43% 4.10% 6.03% 4.48% 2.84% 2.90% 7.98% 6.83% 4.93% 4.24%
PA 5.53% 4.20% 6.24% 4.68% 3.24% 3.30% 8.14% 7.00% 5.15% 4.45%
PS 5.47% 4.14% 6.10% 4.54% 2.58% 2.63% 7.65% 6.51% 5.07% 4.37%
PSA 5.54% 4.21% 6.23% 4.67% 2.92% 2.97% 7.86% 6.72% 5.17% 4.47%

Table 4.6. ∆ APBC by applications

AnkiDroid Trickytripper The Kana Quiz Tickmate SimpleReminder
Technique ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random
Pairwise 3.95% 2.99% 4.03% 2.98% 3.76% 3.43% 7.13% 6.50% 6.04% 5.33%
PA 4.00% 3.04% 4.14% 3.09% 3.94% 3.60% 7.32% 6.69% 6.21% 5.50%
PS 3.98% 3.02% 4.06% 3.00% 3.55% 3.21% 6.90% 6.27% 6.18% 5.47%
PSA 4.01% 3.05% 4.13% 3.08% 3.75% 3.41% 7.09% 6.46% 6.26% 5.55%

RQ3: Does prioritization by pair-state coverage-based strategy achieve

higher APSC and APBC scores than default and random ordering?

The pair-state coverage-based prioritization methods demonstrate better APSC and

APBC scores than the default and random ordering techniques for all five target applica-

tions. To be precise, the pair-state coverage-based prioritization technique has an average

increase of 2.58-7.65% in APSC and 3.55-6.90% in APBC when compared to the default

ordering method. When comparing the pair-state coverage-based prioritization technique to

the random ordering method, it was found that there was an average increase of 2.63-6.51%

in APSC and 3.00-6.27% in APBC.

For AnkiDroid, the PS strategy outperformed the default order with 5.47% better

APSC and 3.98% better APBC. It also achieved 4.14% better APSC and 3.02% better

APBC compared to random order. Trickytripper achieved 6.10% and 4.54% better APSC

compared to default and random order respectively. It also demonstrated superior APBC

scores compared to the default and random order, with improvements of 4.06% and 3.00%

respectively. The Kana Quiz showed APSC improvements compared to the default and

random order, with increases of 2.58% and 2.63% respectively. Additionally, the PS strategy

achieved 3.55% better APBC compared to the default and a 3.21% better APBC over random

order for The Kana Quiz. The APSC enhancement observed for Tickmate amounted to

7.65% in contrast to default, and 6.51% when compared to random order. For the same
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application, PS demonstrated a superiority of 6.90% in APBC compared to default, and a

notable advantage of 6.27% in APBC when compared to a random order. The utilization

of PS on SimpleReminder yielded improvement by a 5.07% increase in APSC and a 6.18%

increase in APBC when contrasted with the default ordering. When compared with the

random order, the PS strategy demonstrated a 4.37% increase in APSC and a 5.47% increase

in APBC.

RQ4: Does pair-state-activity coverage-based strategy achieve higher APSC

and APBC scores than default and random ordering?

The results of the study indicate that the pair-state-activity coverage-based prioritiza-

tion strategy is a highly effective method for increasing code coverage in Android applications.

This method was found to be superior to both the default and random ordering techniques

in terms of APSC and scores for all five subject applications examined. The utilization

of the pair-state-activity coverage-based prioritization technique resulted in an average im-

provement of 2.92%-7.86% in APSC and 3.75%-7.09% in APBC in comparison to the default

ordering. Moreover, an average upsurge of 2.97%-6.72% in APSC and 3.05%-6.46% in APBC

was observed when compared to random ordering.

The AnkiDroid exhibits a 5.54% enhancement in APSC in contrast to the default

ordering, along with a 4.21% improvement compared to the random strategy. Similarly,

it exhibited a 4.01% enhancement in APBC as compared to the default method, and a

3.05% improvement when compared to the random ordering strategy. For Trickytripper PSA

showed a 6.23% rise when compared to the default order and a 4.67% growth in comparison

to a random strategy. It also demonstrated a 4.13% increase compared to the default and

a 3.08% boost in comparison to a random order in APBC. The Kana Quiz application

achieved a 2.92% improvement in APSC with PSA over default and a 2.97% improvement

over random. Additionally, it achieved a 3.75% increase in APBC over default and a 3.41%

increase over random prioritization. The PSA approach boosted APSC by 7.86% over the

default and by 6.72% over random order in Tickmate. Similarly, it increased APBC by

7.09% compared to the default and by 6.46% compared to random order. PSA amplified
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SimpleReminder’s APSC by 5.17% and 4.47%, respectively, outperforming the default and

random order. Furthermore, it resulted in a 6.26% gain in APBC over the default and a

5.55% increase over random order prioritization.

Discussion: A statistical analysis using the t-test was conducted to examine the

significance of the differences in APSC and APBC scores achieved by the proposed strate-

gies(pairwise, PA, PS and PSA) compared to default and random strategies. The t-test

results revealed a highly significant difference (p < 0.001) in APSC and APBC scores for

all the proposed techniques when compared to both the default and randomly ordered test

suites.

The default and random ordering strategies consistently achieved the lowest scores for

all subject applications, while the pairwise, PA, PS, and PSA strategies consistently achieved

higher scores. Among these strategies, the PSA strategy performed particularly well for the

AnkiDroid and SimpleReminder applications, while the PA strategy performed the best for

the Trickytripper, The Kana Quiz, and Tickmate applications. Tables 4.5 and 4.6 highlight

the top-performing strategies for each application. Although the difference is marginal, it

appears that the PA and PSA techniques, which incorporate activity coverage, consistently

achieve the highest APSC and APBC scores across all applications.

The improvement in scores is lowest for The Kana Quiz application and highest for

Tickmate. This may be due to the fact that The Kana Quiz is a quiz app with most of

its functionality concentrated in one activity, while Tickmate test suites achieve the highest

code coverage among the applications. Further, the test cases cover all 10 of its activities.

AnkiDroid has the highest LOC among the applications under test, and its test suites only

covered 14-16 activities out of 21, which may not have been sufficient to thoroughly test

the application. Trickytripper may also have suffered from inadequate test coverage. The

PS strategy, which utilizes state coverage, did not achieve the highest score for any of the

applications. Generally, it achieved marginally higher scores than Pairwise and slightly lower

than the PA and PSA strategies, which utilize activity coverage. This suggests that state

coverage alone may have a lower level of impact on APSC and APBC scores compared to
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activity coverage. The PSA strategy, which considers both activity and state coverage, tends

to achieve higher APSC and APBC scores for some applications compared to the strategies

that only consider one type of coverage. This suggests that both activity coverage and state

coverage are important factors in achieving high APSC and APBC scores.

4.5. Threats to Validity

Internal Validity: The proposed strategies in this study showed improvements over the

default and random ordering methods. However, one potential limitation is the number

of test cases per test suite, which may impact the accuracy of results, especially for larger

applications like Ankidroid and Trickytripper. Another consideration is the influence of

randomness on the algorithms, as the APSC/APBC scores calculated using random ordering

can exhibit significant variance. To address this, the study conducted multiple runs of each

algorithm on each test suite and reported the average results, including random ordering.

Additionally, the use of randomness to break ties and the ordering of final test cases were

consistent across all proposed strategies.

External Validity: The generalizability of the study’s findings may be limited due to

the small number of applications tested. Despite efforts to choose applications of varying

magnitudes, a bigger and more diverse sample of applications would offer a more complete

picture of the algorithms’ efficacy. It should be noted that the study focused solely on test

suite priority for Android applications, and the results may not be relevant to other types

of applications.

Construct Validity: The study focused on assessing the APSC and APBC scores as mea-

sures of effectiveness for the proposed strategies. The experimental design included variations

in test suite ordering and the use of different prioritization algorithms. However, there may

be additional factors or metrics that could impact the construct validity of the study. Future

research could explore other measures or consider different aspects of test suite prioritization

to further validate the findings.

Conclusion Validity: In conclusion, the study suggests that the proposed strategies for test

suite prioritization in Android applications can lead to improved APSC and APBC scores
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compared to default and random ordering methods. However, the constraints indicated,

such as the number of test cases per test suite and the restricted number of apps examined,

should be noted when interpreting the results. Further study with a bigger and more diverse

sampling of applications is required to improve the findings’ validity and generalizability.
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CHAPTER 5

ELEMENT COVERAGE AND WEIGHTED COST-BASED PRIORITIZATION

TECHNIQUES FOR ANDROID TEST SUITES GENERATED BY A

REINFORCEMENT LEARNING ALGORITHM

Chapter 4 of this dissertation has focused on the prioritization of test cases generated

by the SARSA algorithm and it has introduced novel methodologies that combine pairwise

event interaction coverage, application state coverage, and activity coverage. The prioriti-

zation based on activity coverage has exhibited promising potential in enhancing the APSC

and APBC scores across multiple tested applications. This finding suggests a correlation

between UI coverage and code coverage rate. Building upon these insights, the current re-

search endeavors to investigate the impact of UI element coverage on optimizing test case

execution to achieve higher code coverage rates.

To this end, this chapter introduces Android test case prioritization strategies that

incorporate unique UI element coverage alongside considerations of test case cost and com-

plexity. A key concept introduced is the notion of “test case weight,” which allows for the

weighting of test case complexity. Through the integration of SARSA-based test case gener-

ation with multifactor test case prioritization, the present study aims to enhance the efficacy

of test case execution, leading to an eventual improvement in code coverage rates for Android

applications.

5.1. Prioritization Strategies and the algorithm overview

This section outlines the proposed strategies, provides the definition of “test case

weight” and presents the test case prioritization algorithm.

5.1.1. Element Coverage-based Prioritization(ECP )

The Element Coverage-based Prioritization (ECP ) method is a software testing ap-

proach that prioritizes test cases by analyzing the coverage of distinctive user interface (UI)

elements that other test cases have not been previously covered. With the aim of enabling
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the testing process to explore a broader range of areas of the application within a constrained

period of time, this method seeks to find and execute critical test cases that cover an exten-

sive number of different UI elements. In the context of an Android application, an element

can be any of the various types of UI components, including but not limited to buttons, text

boxes, and dropdown boxes.

This technique determines the number of unique UI elements in a test case that is

not previously covered by any other test case to obtain the prioritization score for a specific

test case. The prioritization score of a test case is positively related to its coverage of unique

UI elements. The following equation computes the prioritization score of a test case:

ECP :

p score = e count (5.1)

Where p score denotes the prioritization score, and e count represents the distinct

UI elements count in the test case which is not already covered by another test case in the

prioritized test suite.

5.1.2. Element Coverage and Cost-based Prioritization(ECCP)

The Element Coverage and Cost-based Prioritization (ECCP ) strategy combines the

coverage of unique UI elements with the cost of executing test cases to optimize resource

usage and time. The goal of the ECCP strategy is to identify and execute critical test cases

early, which encompass a considerable proportion of unique UI elements while simultaneously

striving to maintain low execution costs.

Two distinct variations of ECCP are employed, namely, ECCP1 and ECCP2, each

utilizing a different method for computing the prioritization score.

ECCP1 :

p score =
e count

cost
(5.2)
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ECCP2 :

p score = e count+
1

cost
(5.3)

The main difference between the ECCP1 and ECCP2 equations is how they balance

the importance of element coverage and the cost of the test case to calculate the prioritization

score. In ECCP1, the prioritization score is directly proportional to the element coverage

and inversely proportional to the cost of the test case. This approach prioritizes test cases

in accordance with the number of user interface (UI) elements covered per unit cost. On the

other hand, ECCP2 calculates the prioritization score as the sum of the number of unique

UI elements covered by the test case and the inverse of the cost of the test case. The inverse

of the cost is added to the element counts as a penalty term. This way, ECCP2 gives more

importance to the element coverage. When a test case encompasses a significant quantity

of UI elements, the prioritization score will be elevated despite the test case’s considerable

cost. In summary, the ECCP1 methodology places significant emphasis on prioritizing cost

efficiency, while the ECCP2 approach employs a nuanced perspective that factors in not

only the scope of UI elements encompassed but also the related test case costs.

The measurement of the cost of test case execution can be assessed through various

means including the duration of executing the test case, the resources necessary for its exe-

cution, and the intricacy associated with the test case. The specific method for measuring

the cost may differ depending on the particular requirements of the testing process. The

proposed strategies investigate the execution time and length of the test case as the cost of

a test case, leading to four different ways of computing the prioritization score for ECCP :

ECCTP1 :

p score =
e count

execution time
(5.4)

ECCLP1 :

p score =
e count

t length
(5.5)
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ECCTP2 :

p score = e count+
1

execution time
(5.6)

ECCLP2 :

p score = e count+
1

t length
(5.7)

In the above equations, the variable t length denotes the total count of events in

the test case, while execution time indicates the duration of test case execution in seconds,

which is recorded during test case generation.

5.1.3. Element Coverage and Weighted Cost-based Prioritization (ECWCP)

Element Coverage and Weighted Cost-based Prioritization (ECWCP ) is an approach

that builds upon the existing ECCP technique. While ECCP techniques combine the

element coverage and cost of the test case for prioritization, they don’t take into account the

complexity of the test cases. ECCP1 strategies assume that all the test cases in a test suite

have similar complexity and prioritize them based on the ratio of element coverage and cost.

ECCP2 also considers all the test cases of equal complexity but unlike ECCP1 it adds the

inverse of cost as a penalty term to the element coverage to prioritize the test cases.

However, test case complexity can greatly influence the coverage rate, as certain

actions may hold more importance than others. Therefore, the introduction of test case

weight is proposed to address the complexity of the test cases during prioritization, resulting

in the ECWCP approach.

Test Case Weight: The notion of “test case weight” denotes a numerical value assigned

to a test case based on its significance in exploring new areas within the application by the

actions it encompasses.

Definition 5.8. The total weight of a test case Ti is defined as:

W (Ti) =
∑

w(a), for all a in A(Ti),

where W (Ti) denotes the total weight of test case Ti, A(Ti) represents the set of

actions contained in Ti and w(a) refers to the weight assigned to action a.
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Table 5.1. Weight Assignment for different action types

Action Weight
click 3
long-click 3
text-entry 3
enter 3
run-in-background 3
check-uncheck 2
back 2
swipe-up 1
swipe-down 1
swipe-right 1
swipe-left 1
home 1
launch 1

In other words, the weight of a test case is the sum of the weights of all the actions

it contains. The weights assigned to each action type reflect their relative importance in

exploring new areas within the application.

Based on an analysis of the application’s properties, behavior, and likelihood of ex-

ploring new areas, weight values were assigned to each action. The actions “click” and

“long-click” were given a weight value of 3 as they are highly likely to reveal new areas of

the application. Similarly, “text-entry” and “enter” have a high probability of uncovering

new areas, resulting in an assigned weight value of 3 as well. The action “run-in-background”

was also given a weight value of 3 as it has the potential to explore application features that

may not be visible when the app is in the foreground.

Although the “check-uncheck” action has the potential to explore new areas, a weight

value of 2 was assigned to it, considering the possibility that its probability of occurrence

may be less than the actions mentioned above. As the “back” command returns the user to

the previous screen, which can disclose undiscovered areas, a weight value of 2 was assigned
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to it. The GUI actions “swipe-up”, “swipe-down”, “swipe-right”, and “swipe-left” were

assigned a lower weight value of 1. This decision was based on the understanding that these

actions primarily manipulate the currently loaded screen and are not as likely to reveal new

sections of the application. It’s crucial to remember that the above weight distribution may

not be ideal for every application. Depending on the specific requirements of the application,

the weight values can be fine-tuned to get to obtain better results.

ECWCP techniques prioritize test cases by combining element coverage, test case

cost, and the different importance of various action types within a test case in exploring

new areas of the application under test. In the ECWCP approach, the total weight of a

test case is calculated by adding the weights of the individual action types it contains. The

weight assignments for individual actions are shown in Table 5.1. Additionally, the number

of uncovered unique UI elements covered by the test case and their cost are computed. The

four ECWCP strategies utilize the following equations to calculate prioritization scores:

ECWCTP1 :

p score =
weight ∗ e count

execution time
(5.9)

ECWCLP1 :

p score =
weight ∗ e count

t length
(5.10)

ECWCTP2 :

p score = e count+
weight

execution time
(5.11)

ECWCLP2 :

p score = e count+
weight

t length
(5.12)

5.1.4. Algorithm Overview

Algorithm 5 describes the pseudocode for the test prioritization algorithm. The al-

gorithm takes the default order test suite T as input and produces the prioritized test suite

T ′. Initially, the algorithm sets testcase count to total count of test cases in the test suite

T and selected test case to 0 as the number of test cases chosen so far.
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Algorithm 5: Prioritization Algorithm Pseudocode

Input: Test suite T
Output: Prioritized Test Suite T ′

1 testcase count = total count of test cases in the test suite T

2 selected testcase count = 0
3 T ′ = []
4 while selected testcase count ¡ testcase count do
5 current max = -1
6 current best = Null
7 for test case T i in T do
8 if T i not in T ′ then
9 compute element count as the number of newly covered UI elements by

T i

10 compute weight of the test case T i

11 compute tc length as the length of T i

12 get exec time as the time required to execute T i

13 compute prioritization score p score for T i

14 if p score ¿ current max then
15 current best = T i

16 current max = p score
17 end
18 else if pScore == current max then
19 break tie randomly
20 end
21 end
22 end
23 add current best to T ′

24 remove current best from T
25 Mark all unique UI elements covered by current best as covered
26 selected testcase count += 1
27 end
28 return T ′

It also initializes T ′ to an empty list. Then, a while loop is executed until all test cases in T

are selected.

The algorithm iterates over all the test cases in test suite T using a for loop in

each iteration of the while loop. The algorithm calculates the number of newly covered UI

elements by test case Ti, the weight of Ti, the length of Ti, and the execution time required to

run Ti in seconds for each test case Ti that has not been selected yet. Based on the specified

prioritizing approach, these data are utilized to generate the prioritization score p score for
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Ti.

If the computed p score is larger than the current maximum current max, Ti is

chosen as the current best test case, and its p score becomes the new current max. If the

computed p score equals the current max, the algorithm randomly breaks the tie. After

the for loop is completed, the algorithm adds the current best test case current best to the

prioritized test suite T ′, removes it from the original test suite T , and marks all unique UI

elements covered by current best as covered. It also increases the selected test case by one.

Once all of the test cases in T have been selected, the algorithm returns T ′ as output.

5.2. Empirical Analysis

This section outlines the experimental setup utilized to conduct empirical analysis by

applying the proposed prioritization techniques on five subject applications to answer the

following research questions:

5.2.1. Research Questions

RQ1. Does the Element Coverage-based Prioritization (ECP) strategy achieve

higher APSC and APBC scores compared to the default and random

ordering?

RQ2. Does the Element Coverage and Cost-based Prioritization (ECCP) strate-

gies achieve higher APSC and APBC scores compared to the default and

random ordering?

RQ3. Does the Element Coverage and Weighted Cost-based Prioritization

(ECWCP) strategies achieve higher APSC and APBC scores compared

to the default and random ordering?

RQ4. Does prioritizing test cases based on their execution time compared to

prioritizing test cases based on their length improve APSC and APBC

scores?
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Table 5.3. Characteristics of subject applications

Application Name # Lines Of Code # Branches # Methods # Classes #Activity
AnkiDroid 29063 11772 4091 500 21
Tricky Tripper 8244 2512 1766 290 16
The Kana Quiz 4453 2231 629 87 7
Tickmate 2654 770 395 60 10
SimpleReminder 1126 314 292 48 4

5.2.2. Subject Applications and Test Case Generation

Table 5.3 provides the characteristics of five subject applications: AnkiDroid, Tricky

Tripper, The Kana Quiz, Tickmate, and SimpleReminder. These applications are open-

source, written in Java, and downloaded from the F-droid [5] open-source application repos-

itory. AnkiDroid has the largest codebase among the tested Android applications, with 21

activities, 29063 lines of code (LOC), 11772 branches, 4091 methods, and 500 classes, indi-

cating a large and more intricate program. Tricky Tripper also has a significant number of

activities (16), lines of code (8244), branches (2512), methods (1766), and classes (290), but

less than AnkiDroid. The Kana Quiz has fewer activities (7), lines of code (4453), branches

(2231), methods (629), and classes (87) than both AnkiDroid and Tricky Tripper, indicating

a simpler application. Tickmate and SimpleReminder have the lowest numbers of lines of

code, branches, methods, and classes among the five applications, indicating that they are

relatively simple applications. Tickmate has 10 activities, 2654 lines of code, 770 branches,

395 methods, and 60 classes, while SimpleReminder has 4 activities, 1126 lines of code, 314

branches, 292 methods, and 48 classes.

The reinforcement learning algorithm SARSA was used to create 10 test suites for

each of the five Android applications. The algorithm was run for two hours to generate

each test suite. For the AnkiDroid application, the test suites consist of 120 to 148 test

cases, achieving a line coverage of 39.62% and a branch coverage of 25.16%. The number

of activities covered ranges from 14 to 16. The test suites for Tricky Tripper include 106

to 125 test cases, with a line coverage of 36.61% and a branch coverage of 20.27%. The

number of activities covered ranges from 8 to 10. The Kana Quiz application’s test suites

contain between 101 to 124 test cases, with a line coverage of 63.3% and a branch coverage of
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46.71%. Only 6 activities are covered by the test suites. Tickmate’s test suites consist of 94

to 116 test cases, achieving a line coverage of 78.02% and a branch coverage of 57.87%. The

test suites cover 10 activities. Lastly, for the SimpleReminder application, the test suites

contain between 106 to 125 test cases, with a line coverage of 67.18% and a branch coverage

of 48.89%. The test suites cover 4 activities.

5.2.3. Experimental Setup and Evaluation Metric

The proposed strategies break the tie randomly when it encounters two (or more) test

cases with the same prioritization score. To mitigate the variance due to random tie-breaking,

each strategy was applied 10 times on every test suite of all the subject applications. The

performance of the proposed strategies is compared with default order and random order

in terms of two metrics:: APSC (Average Percentage of Statement Coverage) and APBC

(Average Percentage of Branch Coverage). Inspired by APFD (Average Percentage of Faults

Detected), APSC and APBC metrics are introduced by Li et al. [74] to measure the coverage

rate of a test suite. For a test suite containing n test cases, APSC and APBC scores are

calculated by the following equations:

APSC = 1− TS1 + TS2 + ...+ TSm

nm
+

1

2n

APBC = 1− TB1 + TB2 + ...+ TBm

nm
+

1

2n

where, m represents the total number of statements or branches covered by the test

suite, TSi, and TBi refer to the initial test case that encounters the statement or branch i.

A Python script is used to calculate APSC and APBC scores from the coverage report

for every prioritized test suite of an application for a strategy and report the average scores.

5.3. Results and Discussion

Table 5.4 shows the APSC and table 5.5 shows the APBC scores achieved by the

proposed strategies as well as the default and random ordering. All of the proposed tech-

niques exhibited superior performance compared to both the default and randomly ordered
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strategies, resulting in better APSC and APBC scores. The significance of the improvement

in APSC and APBC scores attained by the proposed strategies, in comparison to default

and random order, was examined through a statistical analysis employing the t-test. The

outcomes of the t-test indicate a remarkably significant difference (p < 0.001) in APSC and

APBC scores across all the proposed techniques, when compared to both the default and

randomly ordered test suites.

Table 5.4. APSC scores by applications

Apps Default Random ECP ECCTP1 ECCLP1 ECCTP2 ECCLP2 ECWCTP1 ECWCLP1 ECWCTP2 ECWCLP2

AnkiDroid 92.78 94.11 98.44 96.86 96.23 98.29 98.31 98.50 98.48 98.55 98.54
Tricky Tripper 93.03 94.59 99.34 98.98 98.65 99.33 99.32 99.39 99.39 99.44 99.44
The Kana Quiz 94.83 94.78 97.90 96.30 95.65 97.62 97.61 98.11 98.06 98.02 97.95
Tickmate 88.86 90.01 97.67 95.99 94.96 97.43 97.44 97.63 97.61 97.71 97.66
SimpleReminder 92.92 93.62 97.61 96.63 95.73 97.45 97.46 97.74 97.59 97.66 97.54

Table 5.5. APBC scores by applications

Apps Default Random ECP ECCTP1 ECCLP1 ECCTP2 ECCLP2 ECWCTP1 ECWCLP1 ECWCTP2 ECWCLP2

AnkiDroid 94.91 95.87 98.96 97.82 97.34 98.83 98.84 98.99 98.98 99.05 99.03
Tricky Tripper 95.53 96.58 99.69 99.40 99.17 99.66 99.65 99.71 99.72 99.77 99.76
The Kana Quiz 94.76 95.10 98.44 96.99 96.40 98.28 98.25 98.61 98.58 98.60 98.52
Tickmate 90.19 90.82 97.59 95.92 95.05 97.07 97.08 97.65 97.54 97.75 97.61
SimpleReminder 92.09 92.80 97.53 96.03 95.05 97.20 97.20 97.69 97.49 97.67 97.47

RQ1: Does the Element Coverage-based Prioritization (ECP) strategy

achieve higher APSC and APBC scores compared to the default and random

ordering?

The Element Coverage-based Prioritization (ECP) technique outperformed

the default and random ordering methods, consistently earning considerably better APSC

and APBC scores for all applications investigated in this study. Table 5.6 presents the

improvement in APSC and APBC scores resulting from the ECP approach as compared to

default and random methods.

According to the results, the ECP strategy improved the APSC and APBC scores

of the AnkiDroid application by 5.66% and 4.05%, respectively, compared with the default

ordering method. Additionally, the ECP strategy yielded 4.33% higher APSC and 3.09%

higher APBC scores than the random ordering strategy for AnkiDroid.

In comparison to the default ordering, the ECP technique resulted in a considerable

boost in Tricky Tripper ’s APSC and APBC scores of 6.31% and 4.16%, respectively. The
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ECP strategy improved Tricky Tripper ’s APSC and APBC by 4.75% and 3.11%, respec-

tively, as compared to random ordering.

Table 5.6. APSC and APBC improvement over default and random by ECP

APSC APBC
Apps ∆Default ∆Random ∆Default ∆Random
AnkiDroid 5.66 4.33 4.05 3.09
Tricky Tripper 6.31 4.75 4.16 3.11
The Kana Quiz 3.07 3.12 3.68 3.34
Tickmate 8.81 7.66 7.40 6.77
SimpleReminder 4.69 3.99 5.44 4.73

When compared to The Kana Quiz application’s default ordering method, the ECP

technique increased the APSC and APBC scores by 3.07% and 3.68%, respectively. For the

same application, the APSC and APBC are improved by 3.12% and 3.34%, respectively, as

compared to the random ordering technique.

In the instance of Tickmate, the ECP technique increased APSC and APBC scores

by 8.81% and 7.40%, respectively, over the default and by 7.66% and 6.77%, respectively,

over random ordering.

With APSC and APBC scores improving by 4.69% and 5.44%, respectively, the ECP

method surpassed the default ordering for SimpleReminder. It also outperformed random

ordering by 3.99% and 4.73%, respectively.

RQ2: Does the Element Coverage and Cost-based Prioritization (ECCP)

strategy achieve higher APSC and APBC scores compared to the default and

random ordering?

The Element Coverage and Cost-based Prioritization (ECCP) strategies pri-

oritize critical test cases early by combining coverage of unique UI elements with the cost of

executing test cases to optimize resource usage and time. Tables 5.7 and 5.8 demonstrate

the APSC and APBC improvement for five applications by the proposed ECCP approaches,

namely ECCTP1, ECCLP1, ECCTP2 and ECCLP2.
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Table 5.7. APSC improvement over default and random by ECCP strategies

ECCTP1 ECCLP1 ECCTP2 ECCLP2

Apps ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random
AnkiDroid 4.08 2.75 3.45 2.12 5.51 4.18 5.53 4.20
Tricky Tripper 5.95 4.39 5.62 4.06 6.30 4.74 6.29 4.73
The Kana Quiz 1.47 1.52 0.82 0.87 2.79 2.84 2.78 2.83
Tickmate 7.13 5.98 6.10 4.95 8.57 7.42 8.58 7.43
SimpleReminder 3.71 3.01 2.81 2.11 4.53 3.83 4.54 3.84

Table 5.8. APBC improvement over default and random by ECCP strategies

ECCTP1 ECCLP1 ECCTP2 ECCLP2

Apps ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random
AnkiDroid 2.91 1.95 2.43 1.47 3.92 2.96 3.93 2.97
Tricky Tripper 3.87 2.82 3.64 2.59 4.13 3.08 4.12 3.07
The Kana Quiz 2.23 1.89 1.64 1.30 3.52 3.18 3.49 3.15
Tickmate 5.73 5.10 4.86 4.23 6.88 6.25 6.89 6.26
SimpleReminder 3.94 3.23 2.96 2.25 5.11 4.40 5.11 4.40

The results indicate that the enhancement in APSC for ECCTP1 displays a range

of 1.47% to 7.13% as opposed to the default order, and a range of 1.52% to 5.98% when

compared with random ordering. The ECCTP1 technique results in varied enhancements to

APBC in comparison to the default order, ranging from 2.23% to 5.73%. Additionally, when

compared to the random ordering prioritization, the range of improvement is between 1.89%

to 5.10%. ECCLP1 improved the APSC by 0.82% to 6.10% compared to the default ordering

and by 0.87% to 4.95% compared to random ordering. In contrast to the default order, the

corresponding improvement in APBC ranged from 1.64% to 4.86%. Likewise, the resulting

APBC improvement compared to random ordering was observed to range between 1.30% and

4.23%. The results also illustrate that the improvement in APSC for ECCTP2 showed a range

of values, ranging from 2.79% to 8.57% compared to the default ordering, and from 2.84%

to 7.42% when compared to random ordering. Regarding the default ordering, this strategy

improves APBC by a range between 3.52% and 6.88%, and compared to random ordering,

it ranges between 2.96% and 6.25%. ECCLP2 strategy yielded APSC improvements ranging

from 2.78% to 8.58% relative to the default ordering, and from 2.83% to 7.43% relative

to random ordering. Compared to the default and random ordering, ECCLP2 exhibited

variations in the ranges of 3.49% to 6.89% and 2.97% to 6.26%, respectively, in terms of the

reported increase in APBC.
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(a) AnkiDroid: Coverage Progress Over Time

(b) Tricky Tripper: Coverage Progress Over Time

(c) The Kana Quiz: Coverage Progress Over Time
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(d) Tickmate: Coverage Progress Over Time

(e) SimpleReminder: Coverage Progress Over Time

Figure 5.1. ECCP strategies Coverage Progress Over Time

The line coverage progress over time by different ECCP strategies for all the subject

applications is plotted in Figure 5.1 to investigate if there are any significant differences. The

X-axis represents time in seconds, and the Y-axis represents the number of lines covered.

Either ECCTP1 or ECCLP1 exhibits an initial surge, yet their advancement lacks consis-

tency. Conversely, the progress for all applications by ECCTP2 and ECCLP2 exhibit a close

resemblance. Despite a relatively modest pace of advancement initially compared to ECCP1

strategies, ECCP2 strategies tend to attain maximal coverage prior to ECCP1 strategies in

86



the majority of applications.

In general, the performance of ECCP strategies was better than default and random

ordering, but it was not as strong as the other prioritization strategies investigated in this

study. In terms of APSC and APBC scores, both ECCTP2 and ECCLP2 displayed superior

progress when compared to ECCTP1 and ECCLP1, and were able to attain nearly similar

results as ECP . These results are not surprising because ECCTP1 and ECCLP1 strategies

prioritize the test cases based on the coverage per unit cost. This way a test case will get a

low prioritization score if the cost(test case length or execution time) is high even when it

covers a high number of UI elements. On the other hand, ECCTP2 and ECCLP2 strategies

give more importance to the element coverage and add a penalty based on the test case cost.

None of these strategies consider the test case complexity and therefore lower APSC and

APBC scores are expected.

RQ3: Does the Element Coverage and Weighted Cost-based Prioritization

(ECWCP) strategy achieve higher APSC and APBC scores compared to the

default and random ordering?

The study investigated four distinct Element Coverage and Weighted Cost-

based Prioritization (ECWCP) strategies: ECWCTP1, ECWCLP1, ECWCTP2, and

ECWCLP2. In addition to the element coverage and the cost, these strategies consider the

importance of action types to explore new areas of the application. The employment of the

aforementioned strategies has led to a noteworthy increase in both APSC and APBC scores

across all the subject applications. The APSC improvements by ECWCP strategies are

shown in Table 5.9 and the corresponding APBC improvements by the ECWCP strategies

are shown in Table 5.10.

The ECWCTP1 method consistently outperformed default order, random order,

ECP , and all the ECCP strategies for all the subject applications. For The Kana Quiz and

SimpleReminder, this strategy outperformed other ECWCP strategies too, and achieved

the highest APSC and APBC scores. The APSC improvement for this strategy ranges from

3.28% to 8.77% over the default, and from 3.33% to 7.62% over random ordering.
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Table 5.9. APSC improvement over default and random by ECWCP strate-
gies

ECWCTP1 ECWCLP1 ECWCTP2 ECWCLP2

Apps ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random
AnkiDroid 5.72 4.39 5.70 4.37 5.77 4.44 5.76 4.43
Tricky Tripper 6.36 4.80 6.36 4.80 6.41 4.85 6.41 4.85
The Kana Quiz 3.28 3.33 3.23 3.28 3.19 3.24 3.12 3.17
Tickmate 8.77 7.62 8.75 7.60 8.85 7.70 8.80 7.65
SimpleReminder 4.82 4.12 4.67 3.97 4.74 4.04 4.62 3.92

Table 5.10. APBC improvement over default and random by ECWCP
strategies

ECWCTP1 ECWCLP1 ECWCTP2 ECWCLP2

Apps ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random ∆Default ∆Random
AnkiDroid 4.08 3.12 4.07 3.11 4.14 3.18 4.12 3.16
Tricky Tripper 4.18 3.13 4.19 3.14 4.24 3.19 4.23 3.18
The Kana Quiz 3.85 3.51 3.82 3.48 3.84 3.50 3.76 3.42
Tickmate 7.46 6.83 7.35 6.72 7.56 6.93 7.42 6.79
SimpleReminder 5.60 4.89 5.40 4.69 5.58 4.87 5.38 4.67

As for APBC, the improvement varies from 3.85% to 7.46% over default, and from 3.12%

to 6.83% when compared to random ordering. The ECWCLP1 technique is another strat-

egy that consistently outperformed default order, random order, ECP , and all the ECCP

strategies. Among the ECWCP strategies, it achieved the lowest or the second lowest scores.

The APSC gain for ECWCLP1 ranges from 3.23% to 8.75% in contrast to default, and from

3.28% to 7.60% compared to random ordering. The resulting APBC improvement ranged

from 3.82% to 7.35% over default ordering, and from 3.11% to 6.72% over random ordering.

ECWCTP2 strategy outperformed all other proposed strategies and achieved the

highest APSC and APBC scores for three applications: AnkiDroid, Tricky Tripper and Tick-

mate. Moreover, it achieved the second-highest APSC and APBC scores for SimpleReminder,

and the second-highest APBC but third-highest APSC score for The Kana Quiz. When com-

pared to the default order, it amplified APSC by 3.19% to 8.85%, while the improvement is

3.24% to 7.70% over random ordering. Similarly, APBC improvement ranges from 3.84% to

7.56% over default order, and 3.18% to 6.93% over random ordering. ECWCLP2 is found

to be an effective prioritization strategy with consistently achieving second or third-highest

APSC and APBC scores compared to the other strategies.
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(a) AnkiDroid: Coverage Progress Over Time

(b) Tricky Tripper: Coverage Progress Over Time

(c) The Kana Quiz: Coverage Progress Over Time
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(d) Tickmate: Coverage Progress Over Time

(e) SimpleReminder: Coverage Progress Over Time

Figure 5.2. ECWCP strategies Coverage Progress Over Time

The APSC improvement was between 3.12% to 8.80% over default ordering and 3.17% to

7.65% over random ordering. The improvement in APBC ranged from 3.76% to 7.42% over

default ordering, and from 3.16% to 6.79% over random ordering.

Figure 5.2 illustrates the line coverage progress over time by ECWCP strategies

for all the subject applications. The X-axis represents time in seconds, and the Y-axis

represents the number of lines covered. For AnkiDroid, Tricky Tripper, and The Kana Quiz

applications, the progress is identical at the beginning for all the ECWCP strategies. Some
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variations are observed in the later stages, but they are not very significant. ECWCP1

exhibits an early jump in line coverage for Tickmate, but after some time, the progress

looks almost the same for all the strategies. In the case of SimpleReminder, there are some

variations early on, but the progress becomes the same for all the strategies in the later

stages. Overall, it seems that all the ECWCP strategies achieve the highest coverage at a

similar time, and the lines overlap each other.

The findings of the study indicate that the weighting mechanism used in the Element

Coverage and Weighted Cost-based Prioritization(ECWCP ) techniques can significantly in-

crease the value of code coverage measures such as APSC and APBC. The weights assigned

to various action types help to differentiate between the complexity and significance of dif-

ferent actions. For example, clicks and long-clicks may be more important than swipes, and

the weighting mechanism enables the prioritization technique to consider these differences.

If two test cases have different action sets but have the same length or take the same time

to execute, the test case with more important actions, such as clicks and long-clicks, will

receive higher priority. This way, it is possible to discover the complex test cases and critical

paths that improve the APSC and APBC scores.

RQ4: Does prioritizing test cases based on their execution time compared

to prioritizing test cases based on their length improve APSC and APBC scores?

The study attempted to investigate whether the choice of test case length versus

execution time for computing the prioritizing score has any effect on the proposed strategies.

The performance of ECCTP1 was analyzed compared to ECCLP1, ECCTP2 was analyzed

compared to ECCLP2, ECWCTP1 was analyzed compared to ECWCLP1, and ECWCTP2

was analyzed compared to ECWCLP2. In most instances, subtle variations exist without

marked significance, except for ECCTP1 as shown in table 5.11 and 5.12.

Table 5.11. APSC: Time vs Length

Apps ECCTP1 - ECCLP1 ECCTP2 - ECCLP2 ECWCTP1 - ECWCLP1 ECWCTP2 - ECWCLP2

AnkiDroid 0.63 -0.02 0.02 0.01
Tricky Tripper 0.33 0.01 0 0
The Kana Quiz 0.65 0.01 0.05 0.07
Tickmate 1.03 -0.01 0.02 0.05
SimpleReminder 0.90 -0.01 0.15 0.12
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Table 5.12. APBC: Time vs Length

Apps ECCTP1 - ECCLP1 ECCTP2 - ECCLP2 ECWCTP1 - ECWCLP1 ECWCTP2 - ECWCLP2

AnkiDroid 0.48 -0.01 0.01 0.02
Tricky Tripper 0.23 0.01 -0.01 0.01
The Kana Quiz 0.59 0.03 0.03 0.08
Tickmate 0.87 -0.01 0.11 0.14
SimpleReminder 0.98 0 0.20 0.20

ECCTP1 achieved better APSC and APBC scores than ECCLP1 with APSC differ-

ences ranging from 0.33% to 1.03% and APBC differences ranging from 0.23% to 0.98%. In

the case of ECCTP2 vs ECCLP2, the difference ranges from -0.01% to 0.02% for APSC and

-0.1% to 0.3% for APBC. Similarly, ECWCTP1 versus ECWCLP1 did not show a signifi-

cant advantage of using one over another with APSC differences ranging from 0 to 0.15%

and APBC differences ranging from -0.01% to 0.20%. The APSC and APBC differences for

ECWCTP2 and ECWCLP2 respectively range from 0 to 0.12% and 0.01% to 0.20%.

5.4. Threats to Validity

This study has demonstrated the potential of prioritization strategies based on ele-

ment coverage, test case cost, and test case weight. However, there are several threats to

consider as this work may not generalize to all applications and test suites.

Internal Validity: This work compares the rate of code coverage for the techniques using

APSC and APBC. The results may be affected by the test case generation method and the

quality of the test cases. To mitigate this threat, 10 suites of different lengths were used for

each application by employing random tie-breaking. Also, each strategy was run 10 times

on each test suite to calculate the average score for each strategy for each application.

External Validity: The results of this study may not be applicable to other platforms

and languages as the examination was limited to the Android domain, specifically focusing

on unique Android UI elements and action types. Additionally, the empirical analysis was

performed on only five Android applications, which may not represent the entire Android

population. To mitigate this potential limitation, five Android applications of different

purposes were selected, each with varying numbers of lines of code, branches, methods,

classes, and activities.
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Construct Validity: The cost of test cases may vary by project, team, and other fac-

tors. For instance, there may be costs associated with cloud services, servers, employees

participating in the testing process to evaluate results, and more. For this work, test case

length and execution time were used as a surrogate for cost without considering other pos-

sible costs, given the fully automated process, including code coverage calculations. The

weight calculations used for different action types may change for other applications but are

sensible in this study as the weight of actions typically correlated with the amount of code

access, i.e., selecting a checkbox calls less code than clicking a submit button in most of

the applications used in this study. This threat was minimized by carefully understanding

the applications under test and assigning weights respectively. Other applications may have

different characteristics where different weight values may be tailored respectively.

Conclusion Validity: The performance of the proposed strategies was evaluated by com-

paring APSC and APBC scores with the test suite’s original order and randomly ordered

prioritization. This choice was made to assess the effectiveness of the proposed techniques

in terms of enhancing the code coverage rate. However, other work could examine different

metrics such as fault-finding effectiveness.
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CHAPTER 6

CONCLUSIONS

6.1. Summary and Conclusions

Android applications are event-driven systems that often have a large event space.

The exponential number of event combinations poses challenges to testing budgets. This

study presents a novel approach of test case generation using reinforcement learning al-

gorithms to generate test cases with high code coverage. Additionally, it optimizes the

effectiveness of the test suites with test suite prioritization techniques for Android auto-

mated GUI (Graphical User Interface) tests generated by reinforcement learning algorithms.

The fundamental goal of this hybrid approach is to improve testing efficiency by not only

automating test case generation but also by utilizing test case prioritization strategies to

increase the rate of code coverage during test execution. Reinforcement learning-based test

generation algorithm uses trial-and-error interactions to optimize event selection and sys-

tematically explore an AUT’s GUI to generate test cases. The study adopted two popular

reinforcement learning algorithms Q-learning and SARSA, to systematically explore Android

application GUI space and thereby generate test cases in the form of a sequence of events.

Empirical evaluation shows that for the same set of test generation parameters (i.e.

generation time, the delay between events, home button probability, etc.), the Q-learning-

based technique achieves 10.30% higher block coverage on average than random test gener-

ation, with a range of 3.31% to 18.83% improvement across eight subject applications.

The performance of SARSA is evaluated compared to the popular test generation

tool Monkey for seven native Android applications. SARSA outperformed Monkey for all

the subject applications in line, branch, method, and class coverage for the same set of

test parameters. Even though the SARSA-based technique proposed in this study does

not support system events as Monkey does, SARSA achieved 9.87% to 24.79% better line

coverage, 6.9% to 20.09% better branch coverage, 7.88% to 28.48% better method coverage,

and 3.74% to 35.02% better class coverage than Monkey. SARSA consistently achieves higher
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minimum, median, and maximum coverage than Monkey for all runs across all the subject

applications. Close inspection of the coverage progress over time shows that SARSA achieves

higher code coverage than Monkey and does this at a faster rate of coverage.

Test case prioritization aims to enhance testing efficiency through productive reorder-

ing. Although SARSA-generated test cases demonstrated a notable level of code coverage,

this study recognizes the potential for enhancing the efficacy of the test suite and devised

prioritization techniques for the purpose of improving code coverage rates. This dissertation

work introduced four prioritization strategies, namely Pairwise Event Interaction Coverage,

Pair-Activity Coverage (PA), Pair-State Coverage (PS), and Pair-State-Activity Coverage

(PSA) prioritization, by integrating pairwise interaction, application state coverage, and

activity coverage. The pairwise approach assigns priority to test cases on the basis of the

number of pair interactions present within each of them. The PA strategy effectively in-

tegrates unique activity coverage with pairwise interaction coverage. In contrast, the PS

approach encompasses pairwise interaction coverage alongside unique state coverage. Addi-

tionally, the PSA strategy encompasses the combination of all three aforementioned factors.

The results of an empirical analysis show that each prioritization algorithms signifi-

cantly outperform default and random orderings for the test suites, with activity coverage-

based prioritization PA and PSA outperforming pairwise and PS. PA achieved the highest

improvement for Trickytripper, The Kana Quiz, and Tickmate with an average increase of

6.24%, 3.24%, and 8.14% in APSC and 4.14%, 3.94% and 7.32% in APBC over default or-

dering and 4.68%, 3.30% and 7.00% in APSC and 3.09%, 3.60% and 6.69% in APBC over

random ordering. PSA achieved the best improvement for Ankidroid and SimpleReminder

with an average increase of 5.54% and 5.17% in APSC and 4.01% and 6.26% in APBC over

default ordering, and 4.21% and 4.47% in APSC and 3.05% and 5.55% in APBC over random

ordering.

Graphical User Interface (GUI) of Android applications provides functionalities to

the end users. The superior performance achieved by PA and PSA strategies suggests a

correlation between GUI element coverage and code coverage. Test case cost is a crucial
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factor that has been used in several other prioritization techniques found in the literature.

This study introduces a novel concept of “test case weight” and developed three new sets of

prioritization strategies by combining “test case weight” with GUI element coverage and test

case cost. These strategies are called Element Coverage-based Prioritization (ECP ), Element

Coverage and Cost-based Prioritization (ECCP ), and Element Coverage andWeighted Cost-

based Prioritization (ECWCP ). Test case weight measures the complexity of a test case

based on the importance of different action types. The hypothesis behind test case weight

is that not all actions in a test case are equally important; some actions are more valuable

for exploring new areas of the application. Test case cost was estimated by considering two

factors: test case length and execution time.

An empirical study applies the above strategies to five Android applications to assess

their effectiveness by comparing APSC (Average Percentage of Statement Coverage) and

APBC (Average Percentage of Branch Coverage) rates of the prioritized test suites to the

original order of the test suite and random order prioritization. The ECP strategy prioritizes

test cases based solely on the coverage of UI elements, with no consideration for other

factors. This means that the test case with the highest count of unique UI elements is

assigned the highest priority. The ECP strategy outperforms both default and random

order prioritization. It achieves 3.07% - 8.81% better APSC than the default order, and

3.12% - 7.66% better APSC score than the random order. Furthermore, ECP improves

APBC by 3.68% - 7.40% compared to default, and 3.09% to 6.77% compared to random

ordering.

The ECCP strategy takes into account the cost of a test case, which is determined by

its length and execution time, along with element coverage. However, it does not incorporate

the complexity of the test case. This work examined four ECCP strategies, namely ECCTP1,

ECCLP1, ECCTP2, and ECCLP2 based on the way of calculating prioritization scores.

These strategies perform better than the default and random order but worse than the ECP

and ECWCP strategies. Overall, the ECCP strategies achieve 0.82% - 8.58% better APSC

and 1.64% - 6.89% better APBC than the default order. They also achieve 0.87% - 7.43%
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better APSC and 1.30% - 6.26% better APBC than random ordering.

The ECWCP strategies assign weight values to different actions in a test case based

on their importance for exploring new areas. ECWCP strategies determine the total weight

of a test case by summing the weights of the individual actions within the test case. The four

ECWCP strategies include: (ECWCTP1, ECWCLP1, ECWCTP2, and ECWCLP2) com-

bine test case weight with element coverage and cost to identify a crucial path in maximizing

coverage rate. These strategies achieve superior APSC and APBC scores compared not only

to the default and random but also to other strategies (ECP and ECCP ) proposed in this

study. The APSC improvement by ECWCP strategies compared to the default order ranges

from 3.12% to 8.85%, and from 3.17% to 7.70% compared to the random order. Similarly,

the APBC improvement by ECWCP strategies ranges from 3.76% - 7.56% and 3.11% to

6.93% compared to the default and random order, respectively.

6.2. Implications

The results of this study have significant implications for the testing of Android appli-

cations. The proposed hybrid approach of test case generation and prioritization addresses

the challenges posed by the exponential event combinations, aiming to enhance testing effi-

ciency and improve software quality. Results indicate that the application of reinforcement

learning algorithms, specifically Q-learning and SARSA, during the test case generation

proved to be highly effective. The generated test cases effectively provided thorough testing

coverage by covering a variety of GUI interactions and scenarios. The application of test case

prioritization techniques allowed for the reordering of test cases, further improving efficiency

by focusing on the most impactful test scenarios.

Overall, the findings suggest that the hybrid approach of reinforcement learning-

based test case generation and prioritization may significantly enhance the efficiency and

effectiveness of testing Android applications. By systematically exploring the GUI space,

optimizing event selection, and prioritizing test cases, the proposed techniques contribute

to improving software reliability and quality despite the challenges posed by complex event-

driven systems.
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CHAPTER 7

FUTURE WORK

This dissertation presents a hybrid methodology to automatically test Android ap-

plications. The proposed approaches utilize reinforcement learning to automate test case

generation with the goal to obtain high code coverage. Furthermore, this work employs test

case prioritization strategies based on multiple factors to prioritize reinforcement learning

generated test cases and enhance code coverage rate. The results of the empirical investiga-

tions guide future work in the following areas:

7.1. Q-learning and SARSA with Varied Hyperparameter Settings:

The present study implemented Q-Learning and SARSA algorithms for Android GUI

test generation and evaluated their performance by comparing them with random test gen-

eration. Selecting parameters for machine learning algorithms is always challenging. The

choice of the learning rate, discount factor, event selection heuristics, and initial Q-value

may affect the test generation process and show different results. The Q-learning-based

test generation in this study adopts a greedy event selection policy, and SARSA utilizes

ϵ-greedy policy for event selection with an ϵ value of 0.3 in an effort to balance exploration

vs. exploitation. The greedy method always selects the event with the highest Q-value. As

a result, exploration can get stuck in local optima. ϵ-greedy method occasionally selects

random events with the ϵ value probability. Commonly used epsilon values found in the

literature are 0.1 [68], 0.2 [44], 0.5 [71]. An improved version of the ϵ-greedy method called

decayed-ϵ-greedy utilized [75] [14] [69] in many existing studies. This approach applies a

high epsilon value initially to encourage early exploration and decay at each iteration.

A learning rate of 1 is set in the Q-learning and SARSA implementations to maximize

the learning process. The learning rate α regulates how the Q-value will be updated to find

the optimal policy. 0.001 [14], 0.02 [30], 0.5 [75] [126] and 1 [82] [35] are some of the

common learning rate values used in the existing literature. A small learning rate gives more

importance to the old value and updates the Q-Value in small steps. A high learning rate
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gives more importance to new information and updates the Q-values in larger steps. The

high learning rate utilized in the algorithms presented in this dissertation may not converge

to the optimal policy. The decayed learning rate used in some research [65] can stabilize the

output converges to the optimal policy.

The discount factor controls the extent to which expected future rewards affect the

choice of an event in the current GUI state. A high discount factor encourages the selection

of events that potentially lead to high rewards in future states. A low discount factor

prioritizes immediate rewards over long-term rewards. Usually, the discount factor is set to

as close to 1 as possible to ensure the future reward is not neglected. The most common

discount factor value used in the literature is 0.9 [82] [69] [71] [126]. This study used a

variable discount factor calculated by an exponential decay function based on an intuition

that the agent should look further ahead (i.e., use a high discount value) when it encounters

states with a small number of events. Future work will explore Q-learning and SARSA for

Android test generation with different event selection heuristics, reward functions, and varied

hyperparameter settings.

7.2. Test Generation with Other Reinforcement Learning Algorithms

This dissertation employs reinforcement learning algorithms, namely Q-learning and

SARSA, to systematically explore the graphical user interface (GUI) of Android applica-

tions with the aim of automatically generating test cases. There are alternative reinforce-

ment learning algorithms that may serve as viable options for generating Android test cases

through the exploration of an application’s GUI. Two potential algorithms future studies

can investigate for Android GUI test generation:

Monte Carlo Tree Search (MCTS): MCTS is considered one of the best algorithms for

exploration. It is particularly popular in domains with large state space such as board games

and strategic planning. MCTS combines tree search with reinforcement learning to efficiently

explore the space of possible actions and make informed decisions. The fundamental concept

underlying the Monte Carlo Tree Search (MCTS) algorithm is to progressively construct a

search tree through iterative simulation and evaluation of potential actions. The structure of
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the tree is composed of discrete elements known as nodes, which signify the different states

present within the search space. The nodes are connected by edges that denote the actions or

pathways linking them together. The algorithm undergoes a series of four key steps during

each iteration:

(1) Selection: The algorithm initiates at the root node and proceeds through the tree

by adhering to a selection policy that typically balances exploration and exploita-

tion.

(2) Expansion: When the algorithm encounters a node with unexplored actions, it

expands the tree by adding child nodes that correspond to the available actions

within that node.

(3) Simulation: The algorithm conducts a Monte Carlo simulation from the newly

added node, by selecting actions until a terminal state or a predefined depth is

reached. The simulation is conducted in accordance with a predetermined or random

policy.

(4) Backpropagation: The simulation results are back propagated upward along the

tree structure, thereby revising the statistical attributes assigned to all nodes that

were traversed. This data guides the selection policy in subsequent iterations.

By iteratively applying these steps over a significant number of cycles, Monte Carlo

Tree Search (MCTS) gradually explores the state space and approaches an optimal or sub-

optimal solution.

Double Q-Learning: The Double Q-learning [50] algorithm is a variant of the Q-learning

algorithm which seeks to mitigate the problem of overestimation bias observed in conven-

tional Q-learning. The overestimation bias arises in the Q-learning technique when state-

action pairs are overvalued during the process of learning. The aforementioned bias has the

potential to result in suboptimal policy selection and impede the convergence of Q-values.

The Double Q-learning algorithm mitigates the problem of overestimation bias encountered

by conventional Q-learning through the implementation of two distinct sets of action-value

functions.
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The standard Q-learning maintains a single set of Q-values and updates the action-

value using the following equation:

Q(s, e)← Q(s, e) + α[R(e, s, s′) + γ ·maxe∈Es′
Q(s′, e∗)−Q(s, e)] (7.1)

where, Q(s, e) on the left-hand side is the new Q-value of event e after executing event and

going to state s′, Q(s, e) on the right hand is the old Q-value of event e in state s, α is a

hyperparameter called the learning rate, R(e, s, s′) is the immediate reward for taking event

e in state s, Q(s′, e′) is the Q-value of next selected event e′ in the state s′. γ is known as

the discount factor. maxe∈Es′
Q(s′, e∗) is the maximum Q-value in state s′.

Double Q-learning maintains two sets of action-value functions, typically denoted as

Q1 and Q2. These two sets are employed to decouple the processes of action selection and

evaluation by utilizing one set of Q-values for the selection of optimal action, and the other

set for evaluating the value of that action. The determination of the Q-value set to be

utilized for value updates is typically determined by a switching mechanism. The switching

mechanism may be predicated on a predetermined schedule or a random selection. The

update equation for Double Q-learning is as follows:

Q1(s, e)← Q1(s, e) + α[R(e, s, s′) + γ ·maxe∈Es′
Q2(s′, e∗)−Q1(s, e)] (7.2)

Q2(s, e)← Q2(s, e) + α[R(e, s, s′) + γ ·maxe∈Es′
Q1(s′, e∗)−Q2(s, e)] (7.3)

where Q1(s, e) represents the Q-value for executing event e in state s using Q1 set of values

and Q2(s, e) represents the Q-value for executing event e in state s using Q2 set of values.

By uncoupling the process of action selection and evaluation, Double Q-learning ef-

fectively diminishes the overestimation bias that is commonly observed in the customary

Q-learning approach.

7.3. Alternative Techniques for Test Suite Prioritization

In an effort to augment the effectiveness of prioritization procedures, alternative

methodologies will be investigated. These strategies include using machine learning tech-
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niques, genetic algorithms, or neural networks to help in prioritization. The incorporation

of these sophisticated techniques is anticipated to refine and optimize the process of priori-

tization, consequently yielding enhanced efficiency and effectiveness of the test suites.

7.4. Application in Other Domains

The current research examines the hybrid methodology that combines reinforcement

learning-based test generation and prioritization optimization specifically applied within the

context of Android applications running on mobile devices. Subsequent investigations may

examine other applications in other domains such as IoT (Internet of Things), smart watches,

autonomous vehicles, and other event-driven systems.
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[35] Céline Craye, David Filliat, and Jean-François Goudou, Rl-iac: An exploration pol-

icy for online saliency learning on an autonomous mobile robot, 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2016, https:

//doi.org/10.1109/IROS.2016.7759716, pp. 4877–4884.

[36] Umakanta Dash and Arup Abhinna Acharya, A systematic review of test case pri-

oritization approaches, Proceedings of International Conference on Advanced Com-

puting Applications (Jyotsna Kumar Mandal, Rajkumar Buyya, and Debashis De,

eds.), Springer Singapore, 2022, https://doi.org/10.1007/978-981-16-5207-3_55,

pp. 653 – 666.

[37] Hyunsook Do, Gregg Rothermel, and Alex Kinneer, Prioritizing junit test cases: An

empirical assessment and cost-benefits analysis, Empirical Software Engineering 11

(2006), 33 – 70, https://doi.org/10.1007/s10664-006-5965-8.

[38] S. Elbaum, A. Malishevsky, and G. Rothermel, Incorporating varying test costs and

fault severities into test case prioritization, Proceedings of the 23rd International Con-

ference on Software Engineering. ICSE 2001, 2001, https://doi.org/10.1109/ICSE.

2001.919106, pp. 329–338.

[39] Marcelo Medeiros Eler, Jose Miguel Rojas, Yan Ge, and Gordon Fraser, Automated

accessibility testing of mobile apps, 2018 IEEE 11th International Conference on Soft-

ware Testing, Verification and Validation (ICST), 2018, https://doi.org/10.1109/

ICST.2018.00021, pp. 116–126.

[40] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,

Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth, Taintdroid:

An information-flow tracking system for realtime privacy monitoring on smartphones,

ACM Trans. Comput. Syst. 32 (2014), no. 2, https://doi.org/10.1145/2619091.
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