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Recent work of Ablett (2021) and Kapustka, Kapustka, Ranestad, 
Schenck, Stillman and Yuan (2021) outlines a number of construc-
tions for singular Gorenstein codimension four varieties. Earlier 
work of Coughlan, Gołȩbiowski, Kapustka and Kapustka (2016)
details a series of nonsingular Gorenstein codimension four con-
structions with different Betti tables. In this paper we exhibit a 
number of flat deformations between Gorenstein codimension four 
varieties in the same Hilbert scheme, realising many of the singular 
varieties as specialisations of the earlier nonsingular varieties.
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1. Introduction

Gorenstein varieties in low codimension The explicit construction of Gorenstein varieties is well under-
stood in codimension three or less. Reid (2015) gave a general structure theorem for codimension four, 
but constructing Gorenstein ideals of codimension four is still not fully understood. Thus the case of 
codimension four is still an area of active study. By understanding concrete examples of codimension 
four Gorenstein varieties and the relationships between these varieties, we can hope to understand 
more about the general case.
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Table 1
A stratification of the Betti tables of Schenck et al. 
(2022).

Classifying curves by genus and degree
Degree Genus Corresponding Betti table
14 15 CGKK 1
15 16 CGKK 2, SSY 7, SSY 8
16 17 CGKK 3, SSY 3, SSY 4, SSY 6
17 18 CGKK 4, CGKK 5,6, SSY 2, SSY 5
18 19 CGKK 7,8, SSY 1
19 20 CGKK 9,10
20 21 CGKK 11

Definition 1.1. For a projective variety X ⊂ Pn , we say X is projectively Gorenstein, or alternatively 
arithmetically Gorenstein, if the coordinate ring R of X is Cohen–Macaulay and the canonical module 
ωR ∼= R(a), where a represents a shift in the grading.

We henceforth refer to such varieties as Gorenstein varieties. The condition on the canonical mod-
ule leads to interesting symmetry in the free resolution for such varieties. In codimension two it is 
shown by Serre (1960) that a variety is Gorenstein if and only if it is a complete intersection. In codi-
mension three, the Buchsbaum–Eisenbud structure theorem Buchsbaum and Eisenbud (1977) shows 
that all Gorenstein ideals of height 3 are given by the 2n × 2n Pfaffians of a (2n + 1) × (2n + 1)

skew-symmetric matrix, for n ∈Z≥1.

Attempts to classify codimension 4 Gorenstein varieties Recent work on Gorenstein varieties has focused 
in particular on Gorenstein Calabi–Yau threefolds, henceforth GoCY threefolds. Studying GoCY three-
folds in P 7 is an interesting subcase of the Gorenstein codimension four problem. This was first 
studied by Bertin (2009), and later by Coughlan, Gołȩbiowski, Kapustka and Kapustka, who published 
a list of nonsingular GoCY threefolds in P 7 Coughlan et al. (2016) and gave evidence to suggest this 
list may be complete. Schenck, Stillman and Yuan made further progress, listing every possible Betti 
table for Artinian Gorenstein algebras of codimension and regularity four Schenck et al. (2022). The 
regularity four condition is a direct result of the Calabi–Yau condition. Note that since the coordinate 
ring R for a Gorenstein variety X is Cohen–Macaulay, cutting by a regular sequence leaves an Artinian 
ring with the same Betti table. Thus any higher dimensional codimension four Gorenstein variety 
whose coordinate ring has regularity four will have a Betti table given in Schenck et al. (2022). For 
each Betti table of Schenck et al. (2022), there are explicit descriptions of one or more families of va-
rieties with that Betti table (see Coughlan et al. (2016), Schenck et al. (2022), Ablett (2021), Kapustka 
et al. (2021)). Further, the Betti tables of Schenck et al. (2022) may be split into two parts. Those 
appearing in Table 1 of Schenck et al. (2022) correspond to at least one family of nonsingular three-
folds in P 7 (see Coughlan et al. (2016)), and are therefore referred to as the CGKK Betti tables. Those 
appearing in Table 2 of Schenck et al. (2022) do not occur for nonsingular threefolds (see Schenck et 
al. (2022)), and we refer to these as the SSY Betti tables.

The results of this paper It was shown in Schenck et al. (2022) that the SSY Betti tables cannot corre-
spond to smooth GoCY threefolds. Moreover, almost all the families of curves given in Ablett (2021)
are families of singular stable nodal curves, in contrast to the families of nonsingular threefolds of 
Coughlan et al. (2016). See Table 1 for a description of the families of curves in terms of their genus 
and degree. It thus becomes an interesting question of whether the singular varieties in Ablett (2021), 
Kapustka et al. (2021) can be smoothed to one of the nonsingular varieties of Coughlan et al. (2016)
in the same Hilbert scheme. We summarise our results in the following theorem, which answers this 
question in the affirmative.

Theorem 1.2. Let β be an SSY Betti table of Schenck et al. (2022). Then

(i) There is at least one family of curves with Betti table β .
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Fig. 1. Degree 15 strata and incidences.

(ii) Each family in part (i) contains a subfamily whose general element admits a flat deformation to a curve 
with a CGKK Betti table.

Refined statements listing all the families and subfamilies that we consider are in Figs. 1, 3, 4 and 
§5.

By a result of Hartshorne (1966), the Hilbert scheme parametrising subschemes of Pn
k with fixed 

Hilbert function is connected. Hence Theorem 1.2 is unsurprising. On the other hand, our varieties 
and subsequent deformations are outlined concretely in terms of ideal generators, which does not 
follow from Hartshorne’s result.

We can often express these generators using Pfaffians of matrices and other similar techniques, 
giving a simple description of both the ideal and the deformation. We repeatedly utilise the “Cramer’s 
rule” format originally seen in Kustin and Miller (1980) and explained in (Papadakis and Reid, 2000, 
§2.8). Consider a 3 × 4 matrix M and column vector v of length 4 with entries in some polynomial 
ring, and a further parameter s. Then the equations obtained from

M v = 0,

3∧
M = sv

define a variety. By 
∧3 M = sv we mean that svi = (−1)i det Mî , where Mî is the 3 × 3 matrix ob-

tained by deleting the ith column of M . Several of our families of varieties may be described by 
imposing certain conditions on M , v and s. For example, when M and v have generic linear entries, 
and s is also general and quadratic, we obtain a family of varieties with Betti table CGKK 4.

We explain our naming convention for the families described in Coughlan et al. (2016), Schenck et 
al. (2022), Ablett (2021) and Kapustka et al. (2021). For simplicity, in this paragraph we only consider 
families of curves. As observed in Kapustka et al. (2021), each Betti table is uniquely identified by 
its first row b12b23b34. The symbol [b12b23b34] refers to the locus F[b12b23b34] of quaternary quartics 
whose apolar ring has that Betti table. An additional letter inside the brackets (for example [300a]), 
specifies an irreducible subset (of the locus F[300]) as identified in Kapustka et al. (2021). We add 
decorations outside the brackets to denote the families discussed in this paper. For example, consider 
the family of curves [441b]a. The first row of the Betti table of a general curve in this family is 
441. The b inside the brackets indicates that the family corresponds to a certain stratum of quartics, 
F[441b] . The a outside of the brackets is our primary identifier for this family of varieties. Different 
families corresponding to the same stratum of quartics are differentiated by our primary identifier. For 
example, the two families corresponding to F[562] are called [562]a and [562]b. A specialisation of a 
family is denoted by appending roman numerals to the name e.g. [441b]a specialises to [441b]ai. We 
sometimes write [562]a to refer to the family of curves [562]a. An element of (the family of curves) 
[562]a is called a curve in [562]a or sometimes a curve of Type [562]a.

Fig. 1 gives an overview of the results for degree 15. Similarly, Figs. 3 and 4 describe the results for 
degrees 16 and 17 respectively. An arrow A → B means that we can exhibit a flat deformation whose 
central fibre is a general element of the stratum A and whose general fibre is a general element of 
the stratum B .

It is interesting to compare and contrast our strata and their incidences with the stratification of 
the space of quartics in four variables in Kapustka et al. (2021). We do not claim to have a stratifica-
3
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tion of the Hilbert scheme of curves in P 5. Indeed, we know of other strata which are not included 
in the scope of this paper. Moreover, we have not counted parameters or moduli.

Lifting to higher dimensional varieties Using equations to describe our families of curves means that we 
can consider them more generally as families of codimension four varieties in a given n-dimensional 
projective space. These are referred to as liftings in Kapustka et al. (2021). In many situations, we 
can lift our smoothings of curves to smoothings of higher dimensional varieties too. However, it may 
happen that the lifted variety does not have a smoothing, because the deformation is obstructed in 
some lower dimension.

We make this more precise in degree 15. Family [550]a lifts to dimension 6, where it is the in-
tersection of a cubic hypersurface with the 7-dimensional projective cone over Gr(2, 5). Any further 
lifting results in singularities where the cubic intersects the vertex of the cone.

Family [551]a lifts to at least dimension 5 if we assume that ai, bi are coordinates along with 
xi and y. Similarly, the special family [562]bi lifts to dimension 5 if we assume that L0, L1, L2, L3
are coordinates. The smoothings of [551]a and [562]bi to [550]a both lift to dimension 5 without 
obstruction.

On the other hand, family [562]a lifts to dimension 9 if we assume that aij , bij are coordinates 
along with xi, y j . Since there is a deformation from [562]ai to [551]a and the maximal dimension of 
a lifting of [551]a is 6, it follows that the smoothing of [562]ai must be obstructed in dimensions ≥ 7. 
Indeed, the deformation to [550]a collects all the terms involving bij into the equation for the cubic 
hypersurface. The resulting 9-dimensional variety of type [550]a is singular along the intersection of 
this cubic hypersurface with the 3-dimensional vertex of the cone over Gr(2, 5) with coordinates bij .

How we prove our results We prove Theorem 1.2 by constructing explicit flat families, typically over A1

but in one case over A4, whose special fibre is a singular variety with an SSY Betti table and whose 
general fibre is a variety in one of the families of Coughlan, Gołȩbiowski, Kapustka and Kapustka. 
Explicit details of the deformations are outlined in sections 2, 3, 4 and 5. Note that the deformations 
for the curves of Type [551]a and [562]a are due to Jan Stevens.

To show that the deformations are indeed flat we utilise the fact that for a Noetherian integral 
scheme T and a family X ⊂ Pn

T , X is flat over T if the Hilbert polynomial is independent of t ∈ T at 
every fibre Xt (see Hartshorne (1977), III.9, page 261). Thus in our case, where t ∈A1 or occasionally 
A4, it is enough to check the dimension and corresponding Betti table of every fibre Xt , since the 
Hilbert polynomial can be directly calculated from this information. Table 1 organises the Betti tables 
of Schenck et al. (2022) into strata according to the degree and genus of the stable curves in Ablett 
(2021). Equidimensional varieties with Betti tables in the same strata will have the same Hilbert 
polynomial. We use Magma Bosma et al. (1997) to check that our families have the correct dimension 
and Betti table.

In sections 2, 3, 4 and 5 we outline details of each family of varieties and its deformations. The 
different sections correspond to different degrees, with section 2 describing the degree 15 varieties 
up to section 5 describing the degree 18 varieties. Further each section is split into subsections, with 
each subsection describing a different construction in that degree and its possible deformations.

This work builds on the talk “Gorenstein curves of codimension four” given by Ablett at the MEGA 
2022 conference, which discussed the results of Ablett (2021). The original constructions in Ablett 
(2021) and the flat families in this paper make frequent use of the Magma Bosma et al. (1997) com-
puter algebra software. The code is available at

github.com/PatienceAblett/GorensteinCodim4Deformations

and runs in the Magma online calculator.
Many of the varieties in the paper are defined using skew-symmetric matrices. We utilise the 

convention of only specifying the upper right triangular entries of the skew-symmetric matrix, since 
the rest of the entries are given by the skew-symmetry. We use Pfî M to denote the maximal Pfaffian 
of the submatrix of M obtained by removing the ith row and column. When there is only one matrix 
used in a construction we drop the M here for brevity.
4
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2. Deformations in degree 15

In this section we outline a series of deformations of degree 15 curves, exhibiting each of our 
singular curves in a flat family, whose general fibre is a nonsingular curve section of one of the 
constructions of Coughlan, Gołȩbiowski, Kapustka and Kapustka. In our naming convention, family 
no. 2 of Coughlan, Gołȩbiowski, Kapustka and Kapustka is called family [550]a. Note that we do not 
claim this is the only possible family of varieties with this Betti table. The family in Ablett (2021)
with Betti table SSY 7 is called family [551]a. The two constructions with Betti table SSY 8, as seen in 
Ablett (2021) and Kapustka et al. (2021), are referred to as families [562]a and [562]b. Here the letter 
distinguishing between the two families is outside the brackets. Both families are associated to the 
same irreducible locus of quaternary quartics from Kapustka et al. (2021). Note that the smoothing of 
a general curve in the Type [551]a family is outlined in Ablett (2021), as well as further details on all 
the families described in this section.

2.1. Family [550]a

The family [550]a is originally outlined in Coughlan et al. (2016), as Gr(2, 5) ∩ X3 ∩P 7, where X3

is a general cubic hypersurface. In other words, we take a linear P 7 section of Gr(2, 5) in its Plücker 
embedding and intersect with a cubic hypersurface. If we instead intersect Gr(2, 5) with P 5 to obtain 
a surface, this is the degree 5 del Pezzo surface. Subsequently intersecting with a cubic hypersurface 
defines a nonsingular curve with Betti table CGKK 2.

0 1 2 3 4
0 1 − − − −
1 − 5 5 − −
2 − 1 − 1 −
3 − − 5 5 −
4 − − − − 1

Betti table CGKK 2 Schenck et al. (2022)

2.2. Family [551]a

We start by recasting family [551]a, which was originally constructed in Ablett (2021), as an ex-
ample of the “Cramer’s rule” format.

Lemma 2.1. Consider the following matrix M, vector v, and parameter s:

M =
⎛⎝0 a0 a1 a2

0 b0 b1 b2
0 c0 c1 c2

⎞⎠ , v =

⎛⎜⎜⎝
F2
x0
x1
x2

⎞⎟⎟⎠ , s = y.

Here the ai and bi are linear forms, the ci are quadratic forms and F2 is a cubic form in x0, x1, x2, x3, x4, y. Let 
C be the variety in P 5 defined by equations M v = 0, 

∧3 M = sv. Then C = C1 + C2 is a curve with Betti table 
SSY 7. We call this family [551]a.

0 1 2 3 4
0 1 − − − −
1 − 5 5 1 −
2 − 1 2 1 −
3 − 1 5 5 −
4 − − − − 1

Betti table SSY 7 Schenck et al. (2022)
5
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We use the terminology C1 + C2 to denote the union of two curves which intersect transversely.
We describe the geometry of the Type [551]a curve constructed in the above Lemma more pre-

cisely. Three of the five quadrics defining C are

Q 0 = x0 y, Q 1 = x1 y, Q 2 = x2 y.

It follows that C breaks into two pieces, C1 ⊂P 4〈x0,...,x4〉 and C2 ⊂P 2〈x3,x4,y〉 .
The three equations coming from the product M v = 0 are

Q 3 = a0x0 + a1x1 + a2x2, Q 4 = b0x0 + b1x1 + b2x2, F1 = c0x0 + c1x1 + c2x2.

Let � be the (2, 2, 3) complete intersection defined by Q 3, Q 4, F1. Then � contains the line l = P 1〈x3,x4〉
and C1 is the residual curve to l in �, which is defined by Q 3, Q 4, F1 and a further quartic H , which 
is the determinant of the matrix⎛⎝a0 a1 a2

b0 b1 b2
c0 c1 c2

⎞⎠ .

The plane curve C2 is then defined by the more general quartic H ′ = H + yF2, where F2 is a cubic 
form. The ideal defining C is IC = (Q 0, . . . , Q 4, F1, H ′).

Thus C = C1 + C2 ⊂ P 5, where C1 ⊂ P 4 is residual to a line in a (2, 2, 3) complete intersection 
and C2 ⊂P 2 is a plane quartic “ear”, meeting C1 in four points on a line.

Jan Stevens showed that there is a flat family over A1 whose general fibre is a curve of Type [550]a 
and whose fibre over t = 0 is a general curve of Type [551]a, see Ablett (2021). Writing the equations 
using Cramer’s rule allows us to describe this deformation to Type [550]a with ease. Replacing M
with

Mt =
⎛⎝0 a0 a1 a2

0 b0 b1 b2
t c0 c1 c2

⎞⎠ ,

the equations Mt v = 0, 
∧3 Mt = sv now define a Type [550]a variety if t is invertible, as shown in 

Ablett (2021).

2.3. Family [562]a

We present two different families of curves with Betti table SSY 8 and outline a deformation for 
each construction.

0 1 2 3 4
0 1 − − − −
1 − 5 6 2 −
2 − 2 4 2 −
3 − 2 6 5 −
4 − − − − 1

Betti table SSY 8 Schenck et al. (2022)

We construct the first family, which is called [562]a. Let x1, . . . , x4, y1, y2 be coordinates on P 5

and choose cubics

F1 = a13x3x1 + a14x4x1 + a23x3x2 + a24x4x2,

F2 = b13x3x1 + b14x4x1 + b23x3x2 + b24x4x2

where aij , bij are linear forms. Now we can state:
6
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Fig. 2. Curve [562]a – Big Ears.

Lemma 2.2. Let C be the curve in P 5 defined by the 4 × 4 Pfaffians of the following two skew-symmetric 
matrices, and one additional equation:

M1 =

⎛⎜⎜⎝
y2 0 ∂ F2

∂x1

∂ F2
∂x2

0 ∂ F1
∂x1

∂ F1
∂x2

x2 −x1
H34

⎞⎟⎟⎠ , M2 =

⎛⎜⎜⎝
y1 0 ∂ F2

∂x3

∂ F2
∂x4

0 ∂ F1
∂x3

∂ F1
∂x4

x4 −x3
H12

⎞⎟⎟⎠ , y1 y2 = 0. (2.1)

Here H12 and H34 are general cubics. Then C has Betti table SSY 8. We call this family of curves [562]a.

Note that two of the Pfaffians of M1 are also repeated as Pfaffians of M2. These are the cubics 
F1 = Pf1̂ M1 = Pf1̂ M2, and F2 = Pf2̂ M1 = Pf2̂ M2. Thus there are nine ideal generators.

Writing out the quadric equations from the Lemma, we get

Q 1 = x3 y1, Q 2 = x4 y1, Q 3 = x1 y2, Q 4 = x2 y2, Q 5 = y1 y2.

Hence C = C1 + C2 + C3 where C1 ⊂P 3〈x1,...,x4〉 , C2 ⊂P 2〈x3,x4,y2〉 , and C3 ⊂P 2〈y1,x1,x2〉 .
First consider C1. The two repeated Pfaffians F1 and F2 define a (3, 3) complete intersection 

which is residual to the lines l34 = P 1〈x3,x4〉 and l12 = P 1〈x1,x2〉 . The residual curve is C1, with ideal 
(F1, F2, q12, q34), where the quartics q12 and q34 are given by the determinants of Jacobian matrices 
as follows:

q34 = ∂(F1, F2)

∂(x1, x2)
=

(
∂ F1
∂x1

∂ F1
∂x2

∂ F2
∂x1

∂ F2
∂x2

)
, q12 = ∂(F1, F2)

∂(x3, x4)
=

(
∂ F1
∂x3

∂ F1
∂x4

∂ F2
∂x3

∂ F2
∂x4

)
.

The quartic G34 = q34 + y2 H34 defines C2 ⊂P 2〈x3,x4,y2〉 , and G12 = q12 + y1 H12 defines C3 ⊂P 2〈y1,x1,x2〉 . 
Here H12 and H34 are general cubics.

Thus C ⊂ P 5 is a union of three curves, C1 ⊂ P 3 residual to a line pair in a (3, 3) complete 
intersection, and two plane quartic “ears” C2 and C3. Each quartic ear meets C1 in four nodes lying 
on a residual line. We therefore refer to a curve in family [562]a colloquially as “Big Ears” (see Fig. 2
for a schematic diagram).

Proposition 2.3. There is a specialisation [562]ai of the family [562]a such that a general curve in [562]ai 
admits a deformation to a curve in family [550]a. We construct a flat family over A1 whose special fibre is a 
curve in family [562]ai and whose general fibre is a curve in family [550]a.

Proof. The following deformation was first explained to us by Jan Stevens. Let [562]ai denote the 
special subfamily of family [562]a where H = H12 = H23. Let t ∈ A1 be a degree 0 deformation pa-
rameter. We perturb the matrices (2.1) to the following:
7
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M ′
1 =

⎛⎜⎜⎝
y2 t ∂ F2

∂x1

∂ F2
∂x2

0 ∂ F1
∂x1

∂ F1
∂x2

x2 −x1
H

⎞⎟⎟⎠ , M ′
2 =

⎛⎜⎜⎝
y1 t ∂ F2

∂x3

∂ F2
∂x4

0 ∂ F1
∂x3

∂ F1
∂x4

x4 −x3
H

⎞⎟⎟⎠ .

The quadric Q 5 also becomes Q ′
5 = y1 y2 − t2(a14a23 −a13a24). Since we assumed that H12 = H34, we 

maintain the coincidences Pfî M ′
1 = Pfî M ′

2 for i = 1, 2. We write out the perturbed Pfaffians in full. 
The Pfaffian quadrics deform to

Q ′
3 = Pf4̂ M ′

1 = x1 y2 + t ∂ F1
∂x2

, Q ′
4 = Pf5̂ M ′

1 = x2 y2 − t ∂ F1
∂x1

,

Q ′
1 = Pf4̂ M ′

2 = x3 y1 + t ∂ F1
∂x4

, Q ′
2 = Pf5̂ M ′

2 = x4 y1 − t ∂ F1
∂x3

,

one of the repeated cubic Pfaffians deforms to

F ′
2 = Pf2̂ M ′

1 = Pf2̂ M ′
2 = F2 + t H,

and the three remaining Pfaffians (one repeated) are unchanged:

F ′
1 = Pf1̂ M ′

1 = Pf1̂ M ′
2 = F1,

G ′
12 = Pf3̂ M ′

1 = y1 H + det ∂(F1,F2)
∂(x3,x4)

= G12,

G ′
34 = Pf3̂ M ′

2 = y2 H + det ∂(F1,F2)
∂(x1,x2)

= G34.

If t is invertible, then these three unchanged Pfaffians are redundant. That is, they are not needed as 
ideal generators. Indeed, using Q ′

i to eliminate the partial derivatives of F1, we have

t F1 = t ∂ F1
∂x1

x1 + t ∂ F1
∂x2

x2 = (x2 y2)x1 + (−x1 y2)x2 = 0,

and

tG12 = ty1 H + t det

(
∂ F1
∂x3

∂ F1
∂x4

∂ F2
∂x3

∂ F2
∂x4

)
= ty1 H + det

(
x4 y1 −x3 y1
∂ F2
∂x3

∂ F2
∂x4

)
,

= ty1 H + y1(
∂ F2
∂x3

x3 + ∂ F2
∂x4

x4) = y1 F ′
2.

Similarly, G ′
34 reduces to y2 F ′

2 and thus, F ′
1, G ′

12 and G ′
34 are redundant when t is invertible. The 

remaining Pfaffian equations Q ′
1, Q ′

2, Q ′
3, Q ′

4, F ′
2 and the extra equation y1 y2 − t2(a14a23 − a13a24)

define a curve in family [550]a as follows:

Pf

⎛⎜⎜⎝
y1 x2 ta14 ta13

−x1 ta24 ta23
−x3 x4

y2

⎞⎟⎟⎠ , F2 + t H .

Consider the ideal It = (Q ′
1, . . . , Q

′
4, Q 5, F1, F ′

2, G12, G34). By the above, when t is invertible It defines 
a curve of Type [550]a. Clearly I0 defines a curve of Type [562]ai. Every fibre has the same dimension 
and degree, and consequently the same Hilbert polynomial. Since the Hilbert polynomial at each fibre 
is independent of t this is indeed a flat family over A1. �

There is a second, symmetric deformation to [550]a if we put t in entry 23 of the perturbed 
matrices M ′

i , instead of entry 13.

Proposition 2.4. Let [562]aii be the specialisation of the family of curves [562]a obtained by requiring H34 = 0. 
Then a general curve in [562]aii can be deformed to a curve in [551]a. We exhibit a flat family over A1 whose 
fibre at t = 0 is a general curve in [562]aii, and whose general fibre is a curve in [551]a.
8



P. Ablett and S. Coughlan Journal of Symbolic Computation 121 (2024) 102251
Proof. The following deformation was first explained to us by Jan Stevens. Let [562]aii denote the 
special subfamily of [562]a where H34 = 0. Replace M1 with the matrix

M ′
1 =

⎛⎜⎜⎝
y2 t ∂ F2

∂x1

∂ F2
∂x2

0 ∂ F1
∂x1

∂ F1
∂x2

x2 −x1
0

⎞⎟⎟⎠ ,

and leave M2 as before. Two Pfaffians are perturbed and the rest remain unchanged. Specifically, we 
now have

Q ′
3 = Pf4̂ M ′

1 = x1 y2 + t ∂ F1
∂x2

, Q ′
4 = Pf5̂ M ′

1 = x2 y2 − t ∂ F1
∂x1

,

and we can use these to show that G01 and F1 are not needed as ideal generators when t is invertible:

t F1 = t ∂ F1
∂x1

x1 + t ∂ F1
∂x2

x2 = (x2 y2)x1 + (−x1 y2)x2 = 0,

tG34 = t det ∂(F1,F2)
∂(x1,x2)

= (x2 y2)
∂ F2
∂x2

− (−x1 y2)
∂ F2
∂x1

= y2 F2.

Moreover, for t invertible, the remaining seven generators define a curve in [551]a as follows:

M =
⎛⎝0 a23 a24 x1

0 a13 a14 −x2

0 ∂ F2
∂x3

∂ F2
∂x4

0

⎞⎠ , v =

⎛⎜⎜⎝
H12
tx3
tx4
y2

⎞⎟⎟⎠ , s = y1.

Consequently the ideal It = (Q 1, Q 2, Q ′
3, Q

′
4, Q 5, F1, F2, G12, G23) defines a Type [562]aii curve when 

t = 0 and a Type [551]a curve otherwise, and this is again a flat family over A1. �
The specialisation H34 = 0 imposes a nodal ear on the general curve of Type [562]aii. The de-

formation smooths the central curve and the nodal ear together into a curve of degree 11 which is 
residual to a line in a (2, 2, 3) complete intersection, just as in Type [551]a. The other ear is deformed 
trivially.

2.4. Family [562]b

The second family with Betti table SSY 8 is outlined in Kapustka et al. (2021), and is similar to 
family [441b]a described in 3.5.

Lemma 2.5. Let x0, x1, y0, y1, z0, z1 be coordinates on P 5 and let C be a curve in P 5 defined by the following 
nine equations:

Q 1 = x0 y0, Q 2 = x0 y1, Q 3 = x1 y0, Q 4 = x1 y1,

F1 = A0 y0 − A1 y1, F2 = B0 y0 − B1 y1,

G1 = L0x0 − L1x1, G2 = D0x0 − D1x1, H .

Here A0, A1, B0, B1 are quadratic forms, L0, L1 are linear forms, D0, D1 are cubic forms and H is a quartic 
which agrees with A0 B1 − B0 A1 on P 3〈y0,y1,z0,z1〉 and which agrees with L0 D1 − L1 D0 on P 3〈x0,x1,z0,z1〉 . Then 
C has Betti table SSY 8. We call this family of curves [562]b.

The four quadrics Q 1, Q 2, Q 3, Q 4 are reducible so C = C1 + C2 ⊂ P 5 where C1 ⊂ P 3〈y0,y1,z0,z1〉 , 
C2 ⊂P 3〈x0,x1,z0,z1〉 . Moreover, C1 is residual to the line y0 = y1 = 0 in the complete intersection defined 
by (F1, F2). Similarly C2 is residual to the line x0 = x1 = 0 in the complete intersection defined by 
(G1, G2). The curves C1 and C2 are each defined by an additional determinantal quartic, given by 
9
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A0 B1 − B0 A1 for C1 and L0 D1 − L1 D0 for C2. The condition on H implies that these quartics agree 
with the restriction of H to the line P 1〈z0,z1〉 .

This determinantal condition on H is tricky, because the entries of the two 2 × 2 matrices have 
different degrees:(

3 1
3 1

)
and

(
2 2
2 2

)
.

To show that family [562]b exists, we focus on the case that the cubics D0 and D1 break up into a 
linear and quadric form or three linear forms. Let [562]bi denote the special case

L1 = x1, A0 = L3x1, B0 = L0L1, B1 = L0L2,

D0 = L0L2L3, D1 = L1 A1

where L0, L1, L2, L3 are general linear forms. Then

F1 = L3x1 y0 − A1 y1, F2 = L0L1 y0 − L0L2 y1,

G1 = L0x0 − x2
1, G2 = L0L2L3x0 − L1 A1x1, H = L0L2L3x1 − L0L1 A1.

Together with the quadrics Q i , these define a reduced curve with several irreducible components.

Proposition 2.6. The general curve in the specialised family [562]bi as described above can be deformed to a 
curve of Type [550]a. We exhibit a flat family over A1 whose special fibre at t = 0 is of Type [562]bi and whose 
general fibre is of Type [550]a.

Proof. Let t in A1 be a degree 0 deformation parameter and consider the deformed quadrics

Q ′
1 = x0 y0 − tL2x1, Q ′

2 = x0 y1 − tL1x1,

Q ′
3 = x1 y0 − tL2L0, Q ′

4 = x1 y1 − tL1L0.

When t is invertible the ideal of the five quadrics (Q ′
1, Q

′
2, Q

′
3, Q

′
4, G1) can be generated by the 

4 × 4 Pfaffians of the skew-symmetric matrix

M =

⎛⎜⎜⎝
x0 x1 L2 0

0 tL1 tx1
y1 tL0

y0

⎞⎟⎟⎠ .

Consequently when t is invertible (Q ′
1, Q

′
2, Q

′
3, Q

′
4, G1) defines a degree 5 del Pezzo surface. Note 

that this is untrue when t = 0, since it is necessary to be able to cancel t . Furthermore, we can show 
that when t is invertible, F2, G2 and H are not needed as ideal generators. Indeed, we have

t F2 = y1 Q ′
3 − y0 Q ′

4,

tG2 = A1 Q ′
2 + x0 F1 − L3x1 Q ′

1 + tL2L3G1,

t H = A1 Q ′
4 − L3x1 Q ′

3 + x1 F1.

It follows that F1 defines a cubic hypersurface in the del Pezzo surface cut out by the five quadrics. 
The ideals It = (Q ′

1, Q
′
2, Q

′
3, Q

′
4, G1, G2, F1, F2, H) thus define a flat family of curves Ct , where C0 is 

in family [562]bi and Ct is in [550]a for t invertible. Since the Hilbert polynomial is independent of t , 
this is indeed a flat family. �
10
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[400]a

[420]a

[420]ai [430]a

[441b]a

[441b]ai

[441b]aii

[441a]a

[441a]ai

[441a]aii

Fig. 3. Degree 16 strata and incidences.

3. Deformations in degree 16

We now turn our attention to the degree 16 varieties. There are two different irreducible subsets 
of the locus F[441] corresponding to Betti table SSY 6, denoted F[441a] and F[441b] . The a and b are 
included inside the bracket to indicate the different components of the space of quarternary quartics 
in Kapustka et al. (2021). The corresponding families of varieties are denoted by [441a]a and [441b]a, 
with both admitting specialisations which smooth to a nonsingular variety of Coughlan et al. (2016). 
There are further families with Betti tables SSY 3 and SSY 4, which are denoted by [430]a and [420]a 
respectively. We connect each of these families to family [400]a, which is the family of complete 
intersections of four quadrics. The full results for this section are seen in Fig. 3.

3.1. Family [400]a

The family [400]a consists of (2, 2, 2, 2) complete intersections. This family has Betti table CGKK 3. 
We construct a number of smoothings of varieties in the [420]a, [430]a, [441a]a and [441b]a families 
to varieties of this type.

0 1 2 3 4
0 1 − − − −
1 − 4 − − −
2 − − 6 − −
3 − − − 4 −
4 − − − − 1

Betti table CGKK 3 Schenck et al. (2022)

3.2. Family [420]a

The original construction of the [420]a family is found in Schenck et al. (2022). This family cor-
responds to Betti table SSY 4, and unlike the other “SSY” constructions is a family of nonsingular, 
irreducible curves. Note that when embedded as a threefold in P 7, Schenck, Stillman and Yuan show 
that this threefold is singular.

0 1 2 3 4
0 1 − − − −
1 − 4 2 − −
2 − 2 6 2 −
3 − − 2 4 −
4 − − − − 1

Betti table SSY 4 Schenck et al. (2022)
11
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Let x0, . . . , x5 be coordinates on P 5 and consider the following matrix

M =

⎛⎜⎜⎝
x0 x1 x2 0

q1 q2 x3
q3 x4

x5

⎞⎟⎟⎠ ,

where the qi are general quadric forms. The 4 × 4 Pfaffians of this matrix define a codimension three 
variety, which when intersected with a fourth general quadric Q is a Gorenstein codimension four 
curve of Type [420]a. The Pfaffians are given explicitly as

Pf1̂ = x5q1 − x4q2 + x3q3,

Pf2̂ = x1x5 − x2x4,

Pf3̂ = x0x5 − x2x3,

Pf4̂ = x0x4 − x1x3,

Pf5̂ = x2q1 − x1q2 + x0q3.

Proposition 3.1. A curve of Type [420]a may be smoothed to the complete intersection of four quadrics. Ex-
plicitly, we construct a flat family of curves over A1 where the special fibre is a curve of the [420]a family and 
the general fibre is in the [400]a family.

Proof. The deformation is fairly simple and proceeds as follows. We introduce the deformation pa-
rameter t ∈ A1. Replacing the zero entry of the above matrix with the parameter t we observe that 
Pf2̂, Pf3̂ and Pf4̂ each gain a term, becoming

Pf2̂
′ = x1x5 − x2x4 + tq2, Pf3̂

′ = x0x5 − x2x3 + tq3, Pf4̂
′ = x0x4 − x1x3 + tq1.

From the syzygies between the three original quadric Pfaffians we obtain the following relations on 
the cubic Pfaffians:

tPf1̂ = x0Pf3̂
′ − x1Pf2̂

′ + x2Pf4̂
′,

tPf5̂ = x3Pf3̂
′ − x4Pf2̂

′ + x5Pf4̂
′.

It follows that when t is invertible the cubic Pfaffians are not needed as ideal generators, and the 
ideal (Pf2̂

′, Pf3̂
′, Pf4̂

′, Q ) defines a (2, 2, 2, 2) complete intersection. Again since the Hilbert polynomial 
is independent of t , this is a flat family over A1. �
3.3. Family [430]a

We now describe family [430]a, again utilising the “Cramer’s rule” format.

0 1 2 3 4
0 1 − − − −
1 − 4 3 − −
2 − 3 6 3 −
3 − − 3 4 −
4 − − − − 1

Betti table SSY 3 Schenck et al. (2022)

Let x0, x1, x2, y1, y2, z be coordinates on P 5, let A, C be linear forms and B, D, P , Q quadratic forms.
12
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Lemma 3.2. Consider the following matrix M, vector v and parameter s:

M =
⎛⎝ Q P A C

−x0 x1 0 0
x1 −x2 0 0

⎞⎠ , v =

⎛⎜⎜⎝
y2
y1
D

−B

⎞⎟⎟⎠ , s = z.

Then the seven equations obtained from M v = 0, 
∧3 M = sv define a curve C = C1 + C2 ⊂ P 5 with Betti 

table SSY 3. This is the [430]a family.

We describe the geometry of C in more detail. Two of the four quadric ideal generators, y1z and 
y2z are reducible. Hence C = C1 + C2, with C1 ⊂ P 3〈x0,x1,x2,z〉 and C2 ⊂ P 4〈x0,x1,x2,y1,y2〉 . Consider the 
cubic surface scroll in P 4〈x0,x1,x2,y1,y2〉 defined by the vanishing of the 2 × 2 minors of the matrix(

x0 x1 y1
x1 x2 y2

)
.

The first two minors of the above matrix give the remaining two quadrics in the ideal of C . Consider 
the third minor x0x2 − x2

1. Let

F = A(x0x2 − x2
1) − Bz,

G = C(x0x2 − x2
1) − Dz.

Then C1 is the curve residual to x0x2 − x2
1 in the complete intersection � ⊂P 3〈x0,x1,x2,z〉 defined by the 

vanishing of (F , G). The cubic AD − BC + P y1 + Q y2, cuts out C2 inside the cubic scroll in P 4.

Proposition 3.3. A general curve of Type [430]a can be deformed to a curve of Type [420]a, and to the complete 
intersection of four quadrics.

Proof. We consider the flat family Ct over A4 with coordinates t = (t1, t2, t3, t4). Denote by N the 
2 × 2 block of zeroes in M , which we replace with the 2 × 2 matrix

Nt =
(

t1 t2
t3 t4

)
.

Then Ct is defined using the “Cramer’s rule” format, with Nt replacing N in M . Depending on the 
rank of Nt , we observe three different possibilities for the homological behaviour of Ct . When Nt has 
rank 0, i.e. Nt = N , Ct is a curve of type [430]a. When Nt has rank 1, Ct is a curve of type [420]a. 
When Nt has rank 2, Ct is a curve of type [400]a.

When Nt has rank 1 we may write

Nt =
(

t1 0
0 0

)
,

where t1 is invertible. Consequently the polynomials defining Ct are given by

Q 1 = 1
t1

zy1 − Cx1,

Q 2 = 1
t1

zy2 − Cx2,

Q 3 = x0 y2 − x1 y1 − t1 D,

Q 4 = x1 y2 − x2 y1,

F1 = A(x0x2 − x2
1) − Bz + t1(Q x2 + P x1),

F2 = C(x0x2 − x2
1) − Dz,

F3 = AD − BC + P y1 + Q y2.
13
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Note that we can write 1
t1

since t1 is invertible. We can rearrange Q 1 = 0 and Q 2 = 0 to obtain

Cx1 = 1
t1

zy1, Cx2 = 1
t1

zy2.

Substituting these into F2 we observe that F2 = z
t1

Q 3, thus this polynomial is not required as an 
ideal generator. We show that the remaining polynomials define a curve of Type [420]a. Five of the 
polynomials are given (modulo Q 3) by the 4 × 4 Pfaffians of the matrix⎛⎜⎜⎝

z t1C −t1 Q − x0 A t1 P − x1 A
0 x1 x2

y1 y2
−B

⎞⎟⎟⎠ ,

and the remaining polynomial Q 3 is the general quadric.
Finally if Nt has rank 2, then we assume the matrix is diagonal with

Nt =
(

t1 0
0 t2

)
.

The equations become

Q 1 = zy1 + Q t1t2 + Ax0t2 − Cx1t1, Q 2 = zy2 − Pt1t2 + Ax1t2 − Cx2t1,

Q 3 = x0 y2 − x1 y1 − t1 D, Q 4 = x1 y2 − x2 y1 − t2 B,

F1 = A(x0x2 − x2
1) − Bz + t1(Q x2 + P x1),

F2 = C(x0x2 − x2
1) − Dz + t2(Q x1 + P x0),

F3 = AD − BC + P y1 + Q y2.

We can eliminate P and Q , since

Q = 1
t1t2

(−zy1 − Ax0t2 + Cx1t1),

P = 1
t1t2

(zy2 + Ax1t2 − Cx2t1),

and use this to show F1, F2 and F3 are not necessary to generate the ideal. Thus when N has rank 
two Ct is a curve of Type [400]a. Since the Hilbert polynomial at each fibre is independent of t we 
have a flat family of curves over A4. �
3.4. Family [441a]a

In Ablett (2021) we present two different families with Betti table SSY 6.

0 1 2 3 4
0 1 − − − −
1 − 4 4 1 −
2 − 4 8 4 −
3 − 1 4 4 −
4 − − − − 1

Betti table SSY 6 Schenck et al. (2022)

We outline a deformation for each family, starting with [441a]a.

Lemma 3.4. Let C ⊂P 4〈x0,...,x4,y〉 be a curve defined by the quadrics

Q 0 = x0 y, Q 1 = x1 y, Q 2 = x2 y,
14
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the quartic

q = (d0d + d1b + d2c)x3 − c2 + b2 + P y,

where P is a cubic form in (x3, x4, y) and d0, d1, d2 are linear forms, and the five Pfaffians of

M =

⎛⎜⎜⎝
b c d 0

x3 x1 x0
x0 x1

x2

⎞⎟⎟⎠ , (3.1)

where b, c and d are quadratic forms, with d = d0x0 + d1x1 + d2x2 . Then C has Betti table SSY 6. We denote 
this family of curves by [441a]a.

Brown, Kerber and Reid (2012) discuss conditions that can be imposed on the entries of a matrix 
so that its Pfaffians lie in a given ideal. Two of the known solutions to this problem are called Tom 
and Jerry. The matrix M is in the Jerry format, which appears frequently in this paper. Thus the 
Pfaffians of M lie in the ideal (x0, x1, x2). It is an open problem as to whether we can construct 
similar deformations using the Tom matrix format instead.

We discuss the geometry of C . Let � ⊂ P 4〈x0,...,x4〉 be the codimension three variety cut out by the 
Pfaffians of M , and let l be the line defined by (x0, x1, x2) in this copy of P 4. Note that the Pfaffians 
of M and the quartic q are a set of minimal ideal generators for the colon ideal (I� : Il). By looking at 
the quadrics defining C , we observe that C = C1 + C2, where C1 ⊂ P 4〈x0,...,x4〉 is the curve residual to 
l in �, defined by the five Pfaffians of M and the quartic q. On the other hand, C2 ⊂ P 2〈x0,x1,x2〉 is the 
plane quartic defined by q. The Pfaffians of M are

Pf1̂ = x2
0 − x2

1 + x2x3,

Pf2̂ = x2c − x1d,

Pf3̂ = x2b − x0d,

Pf4̂ = x1b − x0c,

Pf5̂ = x0b − x1c + x3d.

Notice that Pfaffians Pf2̂, Pf3̂ and Pf4̂ may be written as three of the 2 × 2 minors of the matrix

N =
(

x0 x1 x2 0
b c d y

)
,

with the other three minors giving the quadrics Q 0, Q 1, Q 2. Further, the remaining Pfaffians

Q 3 = x2
0 − x2

1 + x2x3,

F = bx0 − cx1 + dx3,

are in the “rolling factors” format of Duncan Dicks Reid (1989) with x0 → b, x1 → c and x2 → d. 
Moreover, since d is in the ideal (x0, x1, x2) we may write d = d0x0 + d1x1 + d2x2. The quartic q may 
be obtained from the cubic F = (d0x0 + d1x1 + d2x2)x3 − cx1 + bx0 by rolling factors and adding an 
additional term in y, which gives

q = (d0d + d1b + d2c)x3 − c2 + b2 + P y.

Proposition 3.5. Let [441a]ai be the specialisation of the [441a]a family, where P = y A for some quadric 
A ∈ (x3, x4, y). Then a curve in the [441a]ai family may be deformed to the complete intersection of four 
quadrics. We show this explicitly by constructing a flat family over A1.
15
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Proof. Let t ∈ A1 be a deformation parameter. We deform the matrix N to Nt by replacing 0 with t
in the top right entry:

Nt =
(

x0 x1 x2 t
b c d y

)
.

Then the quadrics are now given by

Q ′
0 = x0 y − bt,

Q ′
1 = x1 y − ct,

Q ′
2 = x2 y − dt.

If t is invertible then the other three minors are not needed to generate the ideal, since

t(x2b − x0d) = x0 Q ′
2 − x2 Q ′

0,

t(x2c − x1d) = x1 Q ′
2 − x2 Q ′

1,

t(x0c − x1b) = x1 Q ′
0 − x0 Q ′

1.

We further deform the remaining Pfaffians to

Q ′
3 = x2

0 − x2
1 + x2x3 + t2 A,

F ′ = bx0 − x1c + x3d + ty A.

The quartic remains unchanged. Again if t is invertible the cubic Pfaffian is now a tautology since

t(bx0 − x1c + x3d + ty A) = x1 Q ′
1 − x0 Q ′

0 − x3 Q ′
2 + y Q ′

3.

Similarly, we may write the quartic q as

tq = (c − x3d1)Q ′
1 − (b + x3d0)Q ′

0 − x3d2 Q ′
2 + yF ′,

so this is also not needed to generate the ideal when t is invertible. Consider the family of curves 
over A1 defined by the vanishing of

It = (Q ′
0, Q ′

1, Q ′
2, Q ′

3,Pf2̂,Pf3̂,Pf4̂, F ′,q).

It follows from the above that the general fibre is a (2, 2, 2, 2) complete intersection defined by the 
vanishing of

Q ′
0 = x0 y − bt,

Q ′
1 = x1 y − ct,

Q ′
2 = x2 y − dt,

Q ′
3 = x2

0 − x2
1 + x2x3 + t2 A.

On the other hand if t = 0 the curve defined by It is in the [441a]ai family. Since the Hilbert 
polynomial at each fibre is independent of t this is a flat family over A1. �

We now consider a different specialisation of the [441a]a family, which admits a deformation 
to [420]a. We replace the matrix M (3.1) used in the construction of the [441a]a family with the 
following degenerate version, where we have assumed certain linear dependencies between some 
entries in the Jer45 matrix:
16
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M ′ =

⎛⎜⎜⎝
b c d 0

x3 0 x1
x0 0

x2

⎞⎟⎟⎠ .

The three quadrics Q 0 = x0 y, Q 1 = x1 y and Q 2 = x2 y are unchanged. The additional quartic is now 
given by bc + x3cd0 + Ay2, and we further set A = c, so that q = bc + x3cd0 + cy2. We refer to this 
specialisation as [441a]aii. This is a degeneration of [441a]ai which no longer fits into the rolling 
factors format.

Proposition 3.6. A general curve in the family [441a]aii admits a deformation to a curve of Type [420]ai, which 
is a specialisation of [420]a with one extra zero in the Pfaffian matrix.

Proof. The Pfaffians of M ′ are now

Pf1̂ = x0x1 + x2x3, Pf2̂ = x2c, Pf3̂ = x2b − x1d,

Pf4̂ = −x1c, Pf5̂ = x0b + x3d.

Let t ∈A1 be a degree 0 deformation parameter. We deform Q 0 and Pf5̂ to

Q ′
0 = x0 y + tc, Pf5̂

′ = x0b + x3d − tyc.

When t is invertible, we can eliminate Pf2̂, Pf4̂ and the additional quartic q. For example,

tq = (b + d0x3)Q ′
0 − yPf′

5̂
+ d1x3 Q 1 + d2x3 Q 2.

The remaining three Pfaffians along with Q 1 and Q 2 fit into the 4 × 4 Pfaffians of the 5 × 5
skew-symmetric matrix⎛⎜⎜⎝

x2 x1 0 0
tc d x0

b −x3
−y

⎞⎟⎟⎠ . (3.2)

These Pfaffians and the last quadric Q ′
0 define a curve in the [420]ai family. This is a de-

generation of [420]a because the matrix (3.2) has an extra zero entry. Thus the ideal It =
(Q ′

0, Q 1, Q 2, Pf1̂, Pf2̂, Pf3̂, Pf4̂, Pf5̂
′, q) defines a curve of Type [441a]aii when t = 0, and a curve of 

Type [420]ai when t is invertible. �
3.5. Family [441b]a

We now discuss the family of curves associated to the stratum F[441b] with Betti table SSY 6.

Lemma 3.7. Let x0, x1, y0, y1, z0, z1 be coordinates on P 5 , and further let A, B, C, D, P , M, N, Q be 
quadratic forms. Consider the matrices

N1 =
(

x0 D ′ B ′
x1 C ′ A′

)
, N2 =

(
y0 Q ′ N ′
y1 P ′ M ′

)
,

where A′, B ′, C ′, D ′ are given by the restriction of A, B, C, D to y0 = y1 = 0 and M ′, N ′, P ′, Q ′ are given by 
the restriction of M, N, P , Q to x0 = x1 = 0. Let C1 ⊂ P 3〈x0,x1,z0,z1〉 be defined by the vanishing of the 2 × 2

minors of N1 and C2 ⊂ P 3〈y0,y1,z0,z1〉 be defined by the vanishing of the 2 × 2 minors of N2 . Suppose further 
that the quartics A′D ′ − B ′C ′ and P ′N ′ − Q ′M ′ agree on P 1〈z0,z1〉 . Then C = C1 + C2 ⊂ P 5 is a Gorenstein 
codimension four curve with Betti table SSY 6, corresponding to the stratum F[441b]. We call this family of 
curves [441b]a.
17
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The curves C1 and C2 are both degree 8 and genus 7, and are each residual to a line in a complete 
intersection. We consider the specialisation [441b]ai where P = A, Q = C , M = B and N = D , so that

H = AD − BC = P N − Q M

is the quartic in the ideal of C . The equations defining C are thus given by the 2 × 2 minors of the 
matrix

N =
⎛⎝ 0 x0 x1

y0 D C
y1 B A

⎞⎠ .

Proposition 3.8. Any curve in the [441b]ai family may be deformed to the complete intersection of four 
quadrics. We explicitly construct a flat family over A1 whose general fibre is in the [400]a family and whose 
special fibre is in the [441b]ai family.

Proof. Introduce a degree 0 deformation parameter t ∈A1 and consider the deformed matrix

Nt =
⎛⎝−t x0 x1

y0 D C
y1 B A

⎞⎠ .

The 2 × 2 Pfaffians of this matrix define a (2, 2, 2, 2) complete intersection. The quadrics become

Q ′
1 = x0 y0 + t D,

Q ′
2 = x0 y1 + t B,

Q ′
3 = x1 y0 + tC,

Q ′
4 = x1 y1 + t A.

If t is invertible then the four cubics and quartic are tautologies. Indeed, we have

t F1 = x0 Q ′
4 − x1 Q ′

2,

t F2 = x0 Q ′
3 − x1 Q ′

1,

tG1 = y0 Q ′
4 − y1 Q ′

3,

tG2 = y0 Q ′
2 − y1 Q ′

1,

t H = D Q ′
4 − B Q ′

3 + x1G2.

We see that (Q ′
1, Q

′
2, Q

′
3, Q

′
4) defines a complete intersection. We again consider the family of 

curves defined by ideals of the form

It = (Q ′
1, Q ′

2, Q ′
3, Q ′

4, F1, F2, G1, G2, H).

As shown above, the general fibre is the complete intersection of the four quadrics (Q ′
1, Q

′
2, Q

′
3, Q

′
4), 

whereas the special fibre is in the [441b]ai family. �
We now exhibit a specialisation [441b]aii of the [441b]ai family which admits a deformation to 

[430]a. Let [441b]aii be the specialisation of [441b]ai with A = x0a + y0d and C = x0c + y1b, so that 
the matrix N becomes:

N =
⎛⎝ 0 x0 x1

y0 D x0c + y1b
y1 B x0a + y0d

⎞⎠ .
18
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Proposition 3.9. There is a flat family over A1 whose special fibre at t = 0 is in the [441b]aii family and whose 
general fibre when t is invertible is in the [430]a family.

Proof. The 2 × 2 minors of N can be simplified using the quadrics Q i to give the following equations 
for the fibre over t = 0:

Q 1 = x1 y1, Q 2 = x1 y0, Q 3 = x0 y0, Q 4 = x0 y1,

F1 = Bx1 − ax2
0, F2 = Dx1 − cx2

0, F3 = D y1 − B y0, F4 = y2
0d − y2

1b,

H = D(x0a + y0d) − B(x0c + y1b).

We deform two of the quadrics and three of the cubics to:

Q ′
3 = x0 y0 − tby1, Q ′

4 = x0 y1 − tdy0, F ′
1 = Bx1 − a(x2

0 − t2bd),

F ′
2 = Dx1 − c(x2

0 − t2bd), F ′
3 = D(y1 + ta) − B(y0 + tc).

Then we have

t F4 = y1 Q ′
3 − y0 Q ′

4, t H = −x0 F ′
3 − B Q ′

3 + D Q ′
4,

so that when t is invertible, F4 and H are not needed as ideal generators.
We show that the remaining seven ideal generators fit into family [430]a. Recall the Cramer’s rule 

format for the [430]a family, defined using a matrix M , vector v and parameter s. Choosing M, v, s to 
be

M =
⎛⎝ 1

t D − 1
t B a c

−tb x0 0 0
x0 −td 0 0

⎞⎠ , v =

⎛⎜⎜⎝
y1
y0
D

−B

⎞⎟⎟⎠ , s = x1,

expresses the seven remaining ideal generators as an element of [430]a Note that the quadratic forms 
D, B appear both in M and v .

In conclusion the ideal It = (Q 1, Q 2, Q ′
3, Q

′
4, F

′
1, F

′
2, F

′
3, F4, H) defines a family of curves Ct , where 

the special fibre at t = 0 is in the [441b]aii family, and is in the [430]a family when t is invertible. �
The degeneration from [441b]ai to [441b]aii breaks the two degree 8 components Ci of a curve 

in the [441b]ai family into C ′
i + P 1〈z0,z1〉 . Thus a curve of Type [441b]aii contains the residual line 

P 1〈z0,z1〉 as a nonreduced component. The above deformation to [430]a smooths this double line into 
the residual conic in the construction of the general curve of Type [430]a curve. We do not know if 
there is a reduced curve of Type [441b]ai which deforms to [430]a.

4. Deformations in degree 17

We describe three families in degree 17, along with their specialisations. The results for this section 
can be seen in Fig. 4.

4.1. Family [300a]a

Family [300a]a is one of the nonsingular families of Coughlan et al. (2016) (see also (Papadakis 
and Reid, 2000, §2.8)).

Lemma 4.1. Let M be a 3 × 4 matrix and v a 4 × 1 column vector with linear entries, with a further degree 2 
parameter s. Then the variety defined by the equations
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[300a]a

[310]a

[331]a

[331]ai

[331]aii

[310]ai

Fig. 4. Degree 17 strata and incidences.

M v = 0,

3∧
M = sv

has Betti table CGKK 4. This is family [300a]a, and it is a lift of the stratum F[300a] in the space of quartics in 
four variables.

0 1 2 3 4
0 1 − − − −
1 − 3 − − −
2 − 4 12 4 −
3 − − − 3 −
4 − − − − 1

Betti table CGKK 4 Schenck et al. (2022)

4.2. Family [310]a

We next describe family [310]a.

0 1 2 3 4
0 1 − − − −
1 − 3 1 − −
2 − 5 12 5 −
3 − − 1 3 −
4 − − − − 1

Betti table SSY 2 Schenck et al. (2022)

Lemma 4.2. Let x0, . . . , x7, y be coordinates on P 8 and let M be the 5 × 5 skew-symmetric matrix

M =

⎛⎜⎜⎝
A B C D

x2 x3 x4
x5 x6

x7

⎞⎟⎟⎠
where the entries of the first row are

A = a0x0 + a1x1, B = b0x0 + b1x1, C = c0x0 + c1x1, D = d0x0 + d1x1,

with ai, bi, ci, di linear forms. The 4 × 4 Pfaffians of M are four cubics and one quadric, Pf1̂ . Let

Q 0 = x0 y, Q 1 = x1 y, Q 2 = Pf1̂ +yL,

where L is a linear form. Next define the cubic
20
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H = (c0d1 − c1d0)x2 − (b0d1 − b1d0)x3 + (a0d1 − a1d0)x4

+ (b0c1 − b1c0)x5 − (a0c1 − a1c0)x6 + (a0b1 − a1b0)x7, (4.1)

and let E be a general quadratic form. Then the cubic Pfaffians of M, along with Q 0, Q 1, Q 2 and H + yE define 
a fourfold X ⊂ P 8 with Betti table SSY 2. Intersecting X with a 5-dimensional linear subspace gives a family 
of curves in P 5 which we call [310]a.

Since the quadrics Q 0 and Q 1 are reducible, we observe that X = X1 + X2, with X1 ⊂ P 7〈x0,...,x7〉
and X2 ⊂ P 6〈x2,...,x7,y〉 . Let � be the variety defined by the Pfaffians of M in P 7, and Y the variety 
cut out by (x0, x1, Pf1̂). Note that Y is a component of �, and the Pfaffians of M together with the 
cubic H generate the colon ideal (I� : IY ). Thus X1 is residual to Y in �. On the other hand, X2 is 
cut out by the ideal (Q 2, H + yE) in P 6, and is thus a (2, 3) complete intersection. Intersecting this 
construction with a general P 5 produces a Gorenstein curve of codimension four, as in Ablett (2021).

Proposition 4.3. There is a flat family over A1 whose special fibre is a variety of Type [310]a and whose 
general fibre is a variety of Type [300a]a.

Proof. First we collect the terms of Pf5̂ involving x0, x1 as follows:

Pf5̂ = (x5a0 − x3b0 + x2c0)x0 + (x5a1 − x3b1 + x2c1)x1.

Let t ∈A1 be a deformation parameter. We deform the quadrics Q 0 and Q 1 to

Q ′
0 = x0 y + t(x5a1 − x3b1 + x2c1), Q ′

1 = x1 y + t(x5a0 − x3b0 + x2c0).

Then t Pf5̂ = x1 Q ′
0 − x0 Q ′

1. Hence if t is invertible, Pf5̂ is no longer needed as an ideal generator. The 
remaining cubic Pfaffians deform to

Pf′
2̂
= Pf2̂ + t(x5 E + (b1c0 − b0c1)L),

Pf′
3̂
= Pf3̂ + t(x3 E + (a1c0 − a0c1)L),

Pf′
4̂
= Pf4̂ + t(x2 E + (a1b0 − a0b1)L).

When t is invertible we may also replace the ideal generator H + yE with the polynomial

(H + yE) − 1

t
(d0 Q ′

0 + d1 Q ′
1).

Hence when t is invertible, the remaining three quadrics and four cubic generators fit into the 
“Cramer’s rule” format in the following way:

N =
⎛⎝x1 a0 −b0 c0

x0 −a1 b1 −c1
tL x4 −x6 x7

⎞⎠ , v =

⎛⎜⎜⎝
1
t y
x5
x3
x2

⎞⎟⎟⎠ , s = D + t E.

For invertible t , the three quadrics are obtained from N v = 0 and the remaining four cubics are given 
by 

∧3 N = sv .
It follows that (Q ′

0, Q
′
1, Q 2, Pf′

2̂
, Pf′

3̂
, Pf′

4̂
, Pf5̂, H + yE) defines a family of codimension four varieties 

whose general fibre is of Type [300a]a, and whose special fibre at t = 0 is of Type [310]a. Since the 
Hilbert polynomial at every fibre does not depend on t , this family is flat. �
21



P. Ablett and S. Coughlan Journal of Symbolic Computation 121 (2024) 102251
4.3. Family [331]a

We now describe a family of varieties with Betti table SSY 5.

0 1 2 3 4
0 1 − − − −
1 − 3 3 1 −
2 − 7 14 7 −
3 − 1 3 3 −
4 − − − − 1

Betti table SSY 5 Schenck et al. (2022)

Lemma 4.4. Let x0, . . . , x12, y be coordinates on P 13 and let M be the skew-symmetric matrix

M =

⎛⎜⎜⎜⎜⎜⎝
x3 x4 x6 x9 a0x0 0

x5 x7 x10 b1x1 0
x8 x11 0 0

x12 0 x0
0 x1

x2

⎞⎟⎟⎟⎟⎟⎠ (4.2)

where a0, b1 are scalars. Let X ⊂P 13 be defined by the seven 6 × 6 Pfaffians of M, the quadrics

Q 0 = x0 y, Q 1 = x1 y, Q 2 = x2 y

and the quartic H = q + yF where q is the following combination of the 4 × 4 Pfaffians of M:

q = a0 Pf1234 Pf2345 − b1 Pf1345 Pf1235,

and F is a general cubic form.
Then X is a 9-dimensional Gorenstein codimension four variety with Betti table SSY 5. The intersection of 

X with a general linear subspace of dimension 5 is a curve C and we call this family [331]a.

In the language of Brown, Kerber and Reid (2012) M is a Jer67, with all the 6 × 6 cubic Pfaffians 
of M lying in the ideal (x0, x1, x2). Indeed M is a normal form for the following Jer67 matrix:

M ′ =

⎛⎜⎜⎜⎜⎜⎝
x3 x4 x6 x9 A S

x5 x7 x10 B T
x8 x11 C U

x12 D x0
E x1

x2

⎞⎟⎟⎟⎟⎟⎠
where A, B, C, D, E, S, T , U are general in (x0, x1, x2).

In the statement of the lemma, we write Pfi jkl for the 4 × 4 Pfaffian of the skew-symmetric sub-
matrix of M which is obtained by removing those row-columns whose index does not appear in 
{i, j, k, l}. Hence,

Pf1234 = x3x8 − x4x7 + x5x6, Pf1235 = x3x11 − x4x10 + x5x9,

Pf1236 = b1x1x4 − a0x0x5, Pf2345 = x5x12 − x7x11 + x8x10,

Pf1345 = x4x12 − x6x11 + x8x9, Pf1245 = x3x12 − x6x10 + x7x9.

Then three of the 6 × 6 Pfaffians are
22
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Pf6̂ = x1Pf1234 − x0Pf1235,

Pf5̂ = x0Pf1236 + x2Pf1234,

Pf4̂ = x1Pf1236 + x2Pf1235.

Since the quadric generators are reducible, X = X1 + X2, where X1 ⊂ P 12〈x0,...,x12〉 and X2 ⊂
P 10〈x3...,x12,y〉 . Further, let � ⊂ P 12 be the variety cut out by the seven cubic Pfaffians of M , and l
be the linear subspace given by the vanishing of (x0, x1, x2). Then the quartic q and seven cubic Pfaf-
fians generate the colon ideal (I� : Il). Thus X1 is residual to l in �. On the other hand, X2 ⊂P 10 is a 
quartic hypersurface cut out by the polynomial H = q + yF .

Proposition 4.5. Let [331]ai denote the special case of [331]a where the cubic F is zero so that H = q. There is a 
flat family over A1 whose special fibre is a variety of Type [331]ai and general fibre is a variety of Type [300a]a.

Proof. Let t ∈ A1 be a deformation parameter. We first deform the quadrics using Pf1234, Pf1235 and 
Pf1236:

Q ′
0 = x0 y + t Pf1234, Q ′

1 = x1 y + t Pf1235, Q ′
2 = x2 y − t Pf1236 .

If t is invertible, then

t Pf6̂ = x1 Q ′
0 − x0 Q ′

1, t Pf5̂ = x2 Q ′
0 − x0 Q ′

2, t Pf4̂ = x2 Q ′
1 − x1 Q ′

2.

It follows that Pf4̂, Pf5̂ and Pf6̂ are redundant as ideal generators when t is invertible. Moreover,

t H = a0 Pf2345 Q ′
0 − b1 Pf1345 Q ′

1 − y Pf7̂,

and consequently if t is invertible H is also redundant. The remaining four cubic Pfaffians and three 
quadrics fit into the “Cramer’s rule” format as follows:

N =
⎛⎝x0 x8 −x7 x6

x1 x11 −x10 x9
x2 0 −b1x1 a0x0

⎞⎠ , v =

⎛⎜⎜⎝
1
t y
x3
x4
x5

⎞⎟⎟⎠ , s = −x2x12.

Then the three quadrics Q ′
i are given by N v = 0, and the remaining four cubics Pf4̂, Pf5̂, Pf6̂, Pf7̂ come 

from 
∧3 N = sv .

Thus, the ideal I = (Q ′
0, Q

′
1, Q

′
2, Pf1̂, . . . , Pf7̂, H) defines a flat family of varieties, whose special 

fibre at t = 0 is of Type [331]ai and whose general fibre is of Type [300a]a. �
Next we study the varieties which lie between the families [310]a and [331]a. We consider the 

degeneration of [331]ai to [331]aii, which is obtained by setting the x0 entry in the last column of 
(4.2) to zero and again setting the cubic F = 0 in H . Thus the matrix M becomes

M =

⎛⎜⎜⎜⎜⎜⎝
x3 x4 x6 x9 a0x0 0

x5 x7 x10 b1x1 0
x8 x11 0 0

x12 0 0
0 x1

x2

⎞⎟⎟⎟⎟⎟⎠ .

The construction proceeds as before, with X being defined by the quadrics

Q 0 = x0 y, Q 1 = x1 y, Q 2 = x2 y,

the 7 cubic Pfaffians of M
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Pf1̂ = x2 Pf2345 − b1x2
1x8,

Pf2̂ = x2 Pf1345 − a0x0x1x8,

Pf3̂ = x2 Pf1245 − a0x0x1x7 + b1x2
1x6,

Pf4̂ = x2 Pf1235 − a0x0x1x5 + b1x2
1x4,

Pf5̂ = x2 Pf1234,

Pf6̂ = x1 Pf1234,

Pf7̂ = a0x0 Pf2345 − b1x1 Pf1345,

and the additional quartic

H = Pf1234 Pf2345,

where all Pfi jkl are as before.

Proposition 4.6. There exists a flat deformation whose central fibre is of Type [331]aii and whose general fibre 
is of Type [310]ai (see the proof for a description of family [310]ai).

Proof. Introducing a deformation parameter t ∈A1, we first deform Q 0 to Q ′
0 = x0 y + t Pf1234. Thus 

Pfaffians Pf5̂ and Pf6̂ are not required as ideal generators when t is invertible and

ta0 H = a0 Pf2345 Q ′
0 − b1 Pf1345 Q 1 − y Pf7̂

as before, so that H is also not required.
Moreover, Pfaffians Pf1̂, Pf2̂, Pf3̂, Pf4̂ and the quadric Pf1234 are the 4 × 4 Pfaffians of the 5 × 5

matrix

N =

⎛⎜⎜⎝
x2x9 − a0x0x1 x2x10 − b1x2

1 x2x11 x2x12
x3 x4 x6

x5 x7
x8

⎞⎟⎟⎠ .

Comparing this with §4.2, with Q 1, Q 2, Q ′
0 as the three quadrics, and Pf7̂ as the extra cubic (4.1), 

we see that the general fibre is in the [310]a family. Since N is quite special, we call the resulting 
subfamily [310]ai.

Thus the ideal It = (Q ′
0, Q 1, Q 2, Pf1̂, Pf2̂, Pf3̂, Pf4̂, Pf5̂, Pf6̂, Pf7̂, H) defines a variety X0 of

Type [331]aii when t = 0 and a variety Xt of Type [310]ai when t is invertible. Dimension is pre-
served, so this is a flat family over A1. �

Let us call the above deformation X → A1. Then the total space X has three components, each 
of which dominates A1 by flatness. The first component X1 → A1 is a trivial deformation whose 
fibre X1 is the degree 11 component of a general variety in the [310]ai family. The second com-
ponent X2 → A1 is again trivial, and its fibre X2 is the quadric hypersurface (Pf1234 = 0) in the 
linear subspace x0 = x1 = x2 = 0. The last component X3 → A1 is a nontrivial deformation, de-
fined by (x0 y − t Pf1234 = Pf2345 = 0) in the linear subspace x1 = x2 = 0. The general fibre X3 of 
X3 is a complete intersection of two quadrics and X2 + X3 is the (2, 3) complete intersection 
(x0 y − t Pf1234 = x0 Pf2345 = 0). The central fibre Y3 = Y ′

3 + Y ′′
3 breaks into two hyperplane sections 

Y ′
3 : (y = 0) respectively Y ′′

3 : (x0 = 0) of the quadric (Pf2345 = 0).
Returning to the original deformation X →A1, we see that the general fibre Xt = X1 +(X2 + X3) is 

in a degeneration of the [310]a family, which we called [310]ai. Moreover, X0 = (X1 + Y ′
3) + (X2 + Y ′′

3 )

where (X1 + Y ′
3) is the degenerate degree 13 component of a general variety of Type [331]aii, and 

(X2 + Y ′′
3 ) is a degenerate quartic ear.
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5. Deformations in degree 18

In degree 18, we discuss the singular family [210]a with Betti table [210]. We show that a va-
riety in the specialisation [210]ai admits a smoothing to a variety in the [200]a family described in 
Coughlan et al. (2016) involving a linear section of the fourfold P 2 ×P 2.

5.1. Families [200]a and [200]b

Two families [200]a and [200]b are outlined in Coughlan et al. (2016). These higher degree vari-
eties are more complicated than those previously outlined, so their descriptions are not as complete. 
One of the families from Coughlan et al. (2016) is bilinked to a linear section of P 2 × P 2 in a 4-
dimensional (2, 2, 3) complete intersection. We call this family [200]a. The other family is bilinked to 
P 1 ×P 1 ×P 1 and we call this [200]b. Both constructions have the CGKK 7/8 Betti table. For curves, 
there is no difference between [200]a and [200]b. Both families are bilinked to the normal elliptic 
curve of degree 6. Thus we may refer to this family of curves as [200].

0 1 2 3 4
0 1 − − − −
1 − 2 − − −
2 − 8 18 8 −
3 − − − 2 −
4 − − − − 1

Betti table CGKK 7/8 Schenck et al. (2022)

5.2. Family [210]a

The curve C of Type [210]a was first described in Ablett (2021), and has Betti table SSY 1.

0 1 2 3 4
0 1 − − − −
1 − 2 1 − −
2 − 9 18 9 −
3 − − 1 2 −
4 − − − − 1

Betti table SSY 1 Schenck et al. (2022)

Lemma 5.1. Let x0, . . . , x5, y0, y1, z0, z1, z2, w be coordinates on P 11 and let M be the skew-symmetric ma-
trix

M =

⎛⎜⎜⎜⎜⎜⎝
x0 x1 x2 y0 y1 0

x3 x4 y1 ay0 0
x5 0 by1 y0

0 y0 y1
z0 z1

z2

⎞⎟⎟⎟⎟⎟⎠
where a, b are scalars. We define quadrics

Q 0 = y0 w, Q 1 = y1 w, Q 2 = x0x5 − x1x4 + x2x3,

where Q 2 is the Pfaffian of the upper left 4 × 4 block of M. Finally, let F0 be the following cubic:
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F0 = ab(y0 y1z1 − x2z2
1) + a(y2

0z0 − x1z0z1 + x5z2
1) + b(y2

1z2 + x0z2
1 − x4z1z2)

− x0z2
0 + x4z0z1 + x3z2

1 + x2z0z2 − x3z0z2 + x1z1z2 − x5z2
2

− y2
0z2 − y0 y1z1 − y2

1z0.

Suppose that X be defined by the quadrics Q 0, Q 1 , the seven cubic 6 × 6 Pfaffians of M, the cubic F1 =
F0 + wG where G is a quadratic form, and the further cubic F2 = w Q 2 .

Then X is a Gorenstein codimension 4 variety with Betti table SSY 1. The intersection of X with a 5-
dimensional linear subspace is a curve C and we call this family of curves [210]a.

We start from the following skew-symmetric matrix M ′

M ′ =

⎛⎜⎜⎜⎜⎜⎝
x0 x1 x2 a15 a16 a17

x3 x4 a25 a26 a27
x5 a35 a36 a37

a45 a46 a47
z0 z1

z2

⎞⎟⎟⎟⎟⎟⎠
where the aij are generic linear combinations of y0 and y1 so that the 6 × 6 cubic Pfaffians of M ′ lie 
in the ideal (y0, y1, Q 2). Since we assumed that M ′ is generic, by performing row-column operations, 
rescaling and relabelling variables in a prudent manner, we may reduce M ′ to the normal form M
displayed in the lemma.

Since the quadrics Q 0, Q 1 are reducible, it follows that X = X1 + X2 where X1 lies in the copy of 
P 10 defined by w = 0, while X2 lies in P 9 defined by y0 = y1 = 0.

By construction, X1 is residual to the quadric (y0, y1, Q 2) in the variety � defined by the 6 × 6
Pfaffians of M . Thus X1 ∈P 10 is defined by the seven cubic Pfaffians, along with the cubic F0, which 
we obtained by computing the colon ideal (I� : (y0, y1, Q 2)).

The other component X2 is the (2, 3) complete intersection defined by Q 2 and F1. In Ablett (2021), 
the quadric Q 2 had to be of rank 2, but here we can have quadrics of rank 6.

To construct a smoothing to Type [200], we consider the specialisation to family [210]ai where we 
assume that G = 0.

Proposition 5.2. A curve of Type [210]ai can be deformed to a curve of Type [200].

Proof. We now construct a flat family over A1, introducing t ∈ A1 as our deformation parameter. 
Note that the final four Pfaffians, Pf4̂, . . . , Pf7̂ are all in the ideal (y0, y1), so each Pfaffian may there-
fore be written as Ai y0 + Bi y1 for appropriate quadrics Ai , Bi .

For instance, Pf4̂ = Ay0 + B y1 where

A = −ay2
0 + ax1z1 + x0z0 + x3z2, (5.1)

B = −bx0z1 + y0 y1 − x3z1 − x1z2. (5.2)

If we deform the quadrics to Q ′
0 = y0 w + t B , Q ′

1 = y1 w − t A, then

tPf4̂ = y0 Q ′
1 − y1 Q ′

0.

Thus, when t is invertible Pf̂4 becomes redundant. We further deform the cubic F2 = w Q 2 to

F ′
2 = w Q 2 − t(ax1x2 y0 − ax2

1 y1 − bx0x4 y0 + bx0x2 y1 + bx0x3 y1

− x0x1 y0 − x3x4 y0 + x2
3 y1 − x0x5 y1). (5.3)

This extra term is chosen so that the syzygies yi F2 = Q 2 Q i for i = 0, 1 extend to the deformed ideal. 
For completeness, the extensions are:
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y0 F ′
2 = Q 2 Q ′

0 + t((bx0 + x3)Pf6̂ +x1 Pf7̂),

y1 F ′
2 = Q 2 Q ′

1 + t(ax1 Pf6̂ +x0 Pf1̂ +x3 Pf7̂).

Now consider the ideal

It = (Q ′
1, Q ′

2, F1, F ′
2,Pf1̂, . . . ,Pf7̂),

defining a variety Xt . The fibre over t = 0 is of Type [210]i. Moreover, the general fibre is irreducible, 
reduced, and its ideal is generated by eight cubics and two quadrics, and has Betti table CGKK 7/8.

Let Ct be a general fibre of the family. We use Magma Bosma et al. (1997) to work out the bilink-
age of Ct in a (2, 2, 3) complete intersection. We find that Ct is indeed bilinked to a normal elliptic 
curve of degree 6. We therefore have a one parameter deformation of curves with general fibre of 
Type [200] and special fibre at t = 0 of Type [210]ai. �
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Coughlan, S., Gołębiowski, L., Kapustka, G., Kapustka, M., 2016. Arithmetically Gorenstein Calabi–Yau threefolds in P7. Electron. 

Res. Announc. 23, 52–68. arXiv:1609 .01195.
Hartshorne, R., 1966. Connectedness of the Hilbert scheme. Publ. Math. IHÉS 29, 5–48.
Hartshorne, R., 1977. Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer-Verlag, New York.
Kapustka, G., Kapustka, M., Ranestad, K., Schenck, H., Stillman, M., Yuan, B., 2021. Quaternary quartic forms and Gorenstein 

rings. arXiv:2111.05817.
Kustin, A.R., Miller, M., 1980. Algebra structures on minimal resolutions of Gorenstein rings of embedding codimension four. 

Math. Z. 173, 171–184.
Papadakis, S., Reid, M., 2000. Kustin–Miller unprojection without complexes. J. Algebraic Geom. 13 (3), 563–577. arXiv:math /

0011094.
Reid, M., 1989. Surfaces with pg = 3, K 2 = 4 according to E. Horikawa and D. Dicks. In: Proc. of Alg. Geometry Mini Symposium. 

Tokyo Univ, pp. 1–22.
Reid, M., 2015. Gorenstein in codimension 4: the general structure theory. In: Algebraic Geometry in East Asia—Taipei 2011. 

Mathematical Society of Japan, pp. 201–227.
Schenck, H., Stillman, M., Yuan, B., 2022. Calabi–Yau threefolds in Pn and Gorenstein rings. Adv. Theor. Math. Phys. 26, 764–792. 

arXiv:2011.10871.
Serre, J.-P., 1960. Sur les modules projectifs. In: Séminaire Dubreil. Algèbr. Théor. Nr. 14 (1), 1–16.
27

http://refhub.elsevier.com/S0747-7171(23)00065-2/bibE4AB3948B611FC5A1322E57590665503s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib6913F418B0B88647EACCDCC11ADAD935s1
https://doi.org/10.1006/jsco.1996.0125
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib298C08EF19D8A9350FC081C548C32E08s1
http://www.jstor.org/stable/2373926
http://refhub.elsevier.com/S0747-7171(23)00065-2/bibF38C7A95513F82B2BBCA4878D542044Fs1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bibF38C7A95513F82B2BBCA4878D542044Fs1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib8B5436FDBEDC89D9A48DC120195FF396s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bibB26F54066DA55AAC90DB605B1387DF3As1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib12F12741A85D3522E237A74F4DBAC306s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib12F12741A85D3522E237A74F4DBAC306s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib976B3058E55F9F891A6BF4F91DEE49D6s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib976B3058E55F9F891A6BF4F91DEE49D6s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib814D1AF71F1607C7416C387D7D7A485Fs1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib814D1AF71F1607C7416C387D7D7A485Fs1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib7D2C1AF89899537EC2938FFD66743B59s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bib7D2C1AF89899537EC2938FFD66743B59s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bibEC9EF942E040E4BE1A0BB0DB85E9FCEBs1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bibEC9EF942E040E4BE1A0BB0DB85E9FCEBs1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bibAC2A9551840EC949E6BB2D03F0C64DE9s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bibAC2A9551840EC949E6BB2D03F0C64DE9s1
http://refhub.elsevier.com/S0747-7171(23)00065-2/bibA43DCD006E59F31C851FDC5906E6CA4Cs1

	Deformations of half-canonical Gorenstein curves in codimension four
	1 Introduction
	2 Deformations in degree 15
	2.1 Family [550]a
	2.2 Family [551]a
	2.3 Family [562]a
	2.4 Family [562]b

	3 Deformations in degree 16
	3.1 Family [400]a
	3.2 Family [420]a
	3.3 Family [430]a
	3.4 Family [441a]a
	3.5 Family [441b]a

	4 Deformations in degree 17
	4.1 Family [300a]a
	4.2 Family [310]a
	4.3 Family [331]a

	5 Deformations in degree 18
	5.1 Families [200]a and [200]b
	5.2 Family [210]a

	Declaration of competing interest
	Data availability
	Acknowledgements
	References


