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ABSTRACT
Graph Neural Network (GNN) training and inference involve signif-

icant challenges of scalability with respect to both model sizes and

number of layers, resulting in degradation of efficiency and accu-

racy for large and deep GNNs. We present an end-to-end solution

that aims to address these challenges for efficient GNNs in resource

constrained environments while avoiding the oversmoothing prob-

lem in deep GNNs. We introduce a quantization based approach for

all stages of GNNs, from message passing in training to node clas-

sification, compressing the model and enabling efficient processing.

The proposed GNN quantizer learns quantization ranges and re-

duces the model size with comparable accuracy even under low-bit

quantization. To scale with the number of layers, we devise a mes-

sage propagation mechanism in training that controls layer-wise

changes of similarities between neighboring nodes. This objective

is incorporated into a Lagrangian function with constraints and

a differential multiplier method is utilized to iteratively find op-

timal embeddings. This mitigates oversmoothing and suppresses

the quantization error to a bound. Significant improvements are

demonstrated over state-of-the-art quantization methods and deep

GNN approaches in both full-precision and quantized models. The

proposed quantizer demonstrates superior performance in INT2

configurations across all stages of GNN, achieving a notable level

of accuracy. In contrast, existing quantization approaches fail to

generate satisfactory accuracy levels. Finally, the inference with

INT2 and INT4 representations exhibits a speedup of 5.11 × and

4.70 × compared to full precision counterparts, respectively.
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1 INTRODUCTION
Data analytics and machine learning on large graphs encompass a

wide array of applications, including recommender systems, social

networks, web analysis, and computational biochemistry. Some

tasks within this scope include node classification, community

detection, link prediction, reachability analysis, and influence opti-

mization. Recently, Graph Neural Networks (GNNs) have shown

to be effective for learning over graphs [59]. GNNs utilize an itera-

tive process, aggregating features from neighboring nodes through

learnable parameters, thus generating rich and informative embed-

dings.

The versatility of GNNs often comes at a price – elevatedmemory

and computation demands. This poses challenges when scaling up

to larger graphs and deeper models. Large-scale graphs naturally

increase the storage costs and the neighborhood size during the

aggregation phase. While deeper models, with more iterative layers,

add computational strain, they do capture intricate relationships by

broadening the nodes’ receptive fields. To counter these, recently,

quantization approaches were developed to compress both the

model and graph, aiming to reduce storage, computation, and power

requirements for inference workloads [11, 16, 51, 67].

Quantization is the process of mapping continuous numerical

values into smaller sized representations (e.g., using 8-bits). There

are a variety of quantization methods developed for data-intensive

tasks, ranging from multi-dimensional indexing for range and simi-

larity queries [6, 14, 17, 52, 56, 57, 61] to processing convolutional

and recurrent neural networks [33, 55, 60]. For GNNs, quantiza-

tion is useful in many practical settings, such as resource-efficient

representation learning, reducing energy and communication in

sensors, IoT and mobile devices, on-device and embedded learn-

ing, managing data/models in distributed and edge computing, and
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recommender systems which commonly employ graph neural net-

works.

Unlike conventional applications of quantization, GNNs present

unique challenges due to their intrinsic characteristics, which are

not, effectively, addressed by the current methods. (i) The process of

neighborhood aggregation in GNNs can lead to significant variance

in high in-degree node embeddings, thereby exacerbating the quan-

tization error, especially in low-bit cases [51]. (ii) As GNNs deepen,

they tend to experience the "oversmoothing" issue where each em-

bedding loses its discriminative information due to the repeated,

unregulated message passing [19]. It is important to understand

if this problem remains or is aggravated with the introduction of

model quantization. Thus, while reducing GNN size and enabling

compressed processing are pivotal for performance efficiency, ad-

dressing oversmoothing is crucial to ensure accuracy, especially in

deeper models.

While recent studies [27, 51, 67] have delved into GNN quantiza-

tion, the problem is far from being solved and there is no effective

solution for low-bit quantization that scales for deeper GNNs. Our

paper underscores this challenge, revealing that state-of-the-art

GNN quantization methods undergo significant degradation at low

bit counts (INT4 and INT2). This is more pronounced in deeper

GNNs, due to accumulated layer-by-layer quantization errors. We

aim to address these intricacies and develop an end-to-end solution.

Our solution involves a quantizer that learns the quantization

ranges (QLR) along with a skewness-aware bitwise truncation (BT
∗
)

mechanism. Additionally, we introduce a smoothness-aware mes-

sage propagation scheme (SMP) to counter the oversmoothing is-

sue in quantized models. This quantizer determines an optimized,

data-aware learnable range grounded in the input data distribu-

tion, thereby minimizing model redundancy. It is shown to retain

its effectiveness with low-bit representations, which makes it apt

for large deep GNNs. The skewness-aware truncation embedded

within the quantizer improves the accuracy particularly in low-bit

(INT2) scenarios. Our message propagation scheme aims to mitigate

oversmoothing in deep GNNs by constraining the layer-wise shifts

in similarities among neighboring nodes. Furthermore, we prove

that by using SMP, the quantization error can be suppressed to a

bound. Finally, we demonstrate the efficiency and accuracy of our

solution through node classification accuracy on quantized GNN

models.

Experimental results demonstrate improvements over the state-

of-the-art approaches across various performance measures and

workloads. Specifically, our quantizer (QLR) demonstrates remark-

able advancements in low-bit quantization, outperforming existing

quantization methods while resulting in reduced model sizes. For

deeper GNNs, our SMP method delivers more accurate classifica-

tion compared to other deep GNN approaches both in full-precision

and quantized versions. The low-bit quantized SMP, using QLR,

achieves greater improvement over alternative deep quantized GNN

approaches with the help of the quantization error bound with SMP.

BT
∗
improves node classification accuracy on large datasets with

INT2 representation, making it comparable to INT8 accuracy. We

also show that the INT2 quantization model can yield an inference

speedup of 5.11 × compared to the full-precision model.

2 RELATEDWORK
Quantization has been commonly employed for neural network

(NN) models [20]. NN training is bottlenecked by high memory

requirements to handle large data involving intermediate results

and feature maps [2]. NNs can be trained with low precision using

dynamic fixed point arithmetic [9].

Quantization for neural networks can be performed during or

after training. The post-training approaches quantize weights or ac-

tivation of neural networks on a pre-trained full-precision model [4,

24]. Their low-bit quantization performance incurs significant ac-

curacy degradation. The quantization-aware training aims to avoid

this performance degradation [5, 12]. A useful technique is to ex-

pose errors from the quantization operation to the forward pass

at model training and use straight-through estimator(STE) to com-

pute the gradients [5]. Banner et al. [3] provide a theoretical anal-

ysis showing considerable room for quantization under Gaussian

weight assumption leading to 8-bit DNNs with comparable accu-

racy. The success of quantization has led to binary NNs (BNN)

drastically reducing computation and memory requirements us-

ing hardware-supported bitwise operations with strong precision

performances [28]. The efficacy of high-order bit representations,

involving bitwise truncation applied to 32-bit word embeddings,

has been demonstrated in previous studies [8].

Pioneering work on learning node representations [46] has been

followed by variants of architectures, utilizing convolutions [26,

32, 38] and autoencoder structures [7, 31]. GNN based representa-

tions have been used for various analytics tasks, including node

similarity search [13], link prediction [43], and entity disambigua-

tion [53]. Solutions for scaling GNNs mostly focus on distributed

processing [10, 62, 65]. Scalability challenges on large graphs have

also been studied in the context of memory optimizations [48] and

scalable processing [37, 44, 45].

GNN quantization have started to receive attention in recent

years. Tailor et al. [51] propose quantization-aware training for

GNNs, where high in-degree nodes are selected for full-precision

training while all other nodes are converted to INT8/INT4. This

can achieve reasonable accuracy especially on INT8 models. Huang

et al. [27] employ product quantization to compress input data but

do not address the more challenging task of quantization of param-

eters. A recent GNN quantization approach [67] addresses low-bit

representation of the weights and input features by learning the

parameters that are equal with the weight dimension and the num-

ber of input nodes, respectively, while leaving the core message

propagation unquantized. However, this approach necessitates the

learning of parameters that scale proportionally with the number

of input nodes, resulting in considerable storage and space over-

heads. Neural Architecture Search (NAS) is used to span possible

quantization levels suggesting an INT4 weight and INT8 activa-

tion as an effective strategy for GNNs [64]. Recent studies adapt

binary NN methods for GNNs [1, 54] offering a trade-off between

time/space efficiency and classification accuracy. These methods

typically either need an additional teacher model for knowledge

distillation or learn binary weights for each layer’s input message,

which require higher storage and computational load than a typical

quantization based approach.
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Towards addressing oversmoothing in deep GNNs, Liu et al. [35]

propose Elastic GraphNeural Networkwith long-range information

propagation using ℓ1 and ℓ2-based graph smoothing. APPNP [19] ad-

dresses the oversmoothing with a propagation scheme based on an

approximation of personalized PageRank. Zhu et al. [66] proposed

low-pass and high-pass filtering kernels which have empirically

reduced the effect of oversmoothing. DropEdge [42] aims to ad-

dress the oversmoothing by dropping a number of edges, which

can be interpreted as both a data augmentation method generating

random deformed graphs and message passing reducer by sparsify-

ing edge connections. PairNorm [63] quantifies the oversmoothing

and proposes a two-step center-and-scale normalization layer to

prevent nodes converging to similar representations. Compared

to enforcing local smoothness, our method, constrains the layer-

wise message propagation to counteract oversmoothing, which

achieves performance improvements over the prior approaches as

also demonstrated in our experiments.

3 PRELIMINARIES AND ANALYSIS
We first provide the technical background, covering quantization

for GNNs, analysis of quantization errors, and the oversmoothing

problem in GNNs.

3.1 GNN Basics
A graph G is represented as G = (𝑉 , 𝐸,X), where𝑉 = {𝑣1, · · · 𝑣𝑛} is
the set of𝑛 nodes |𝑉 | = 𝑛,𝐸 is the set of all edges,Hl

= [h𝑙
1
, · · · , h𝑙𝑛]⊤

is the node feature (embedding) matrix for layer 𝑙 ∈ 𝐿 where 𝐿

represents the number of layers in G, and h𝑖 ∈ R𝑑𝑙 is the feature
vector for 𝑣𝑖 ∈ 𝑉 node with initial H0 = X. The adjacency matrix

of G is a binary matrix A ∈ R𝑛×𝑛 , where A(𝑖, 𝑗) = 1 if the edge

between nodes 𝑣𝑖 and 𝑣 𝑗 exists (𝑒𝑖 𝑗 ∈ 𝐸), and 0 otherwise.

GNNs comprise a sequence of layers with three main functions

for each layer: message, aggregate and update. This framework is

generally called Message Passing NNs (MPNN) [21]. Each message,

which is a flow of data from nodes’ neighbors, is aggregated and

joined with existing embedding to form a new one for the respec-

tive node as given in Equation 1, where N𝑢 are the neighboring

nodes of node 𝑢. The feed-forward iteration starts with the initial

embeddings, h0𝑢=x𝑢 .

h(𝑙+1)𝑢 = 𝑈𝑝𝑑𝑎𝑡𝑒𝑙 (h𝑙𝑢 , 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑙 (h𝑙𝑣,∀𝑣 ∈ N𝑢 ) (1)

Various GNN architectures are proposed in the literature, essen-

tially, varying the message, aggregate and update functions [59].

We consider, the popular, GCN (Graph Convolutional Network)

architecture where the update function given in Equation 2 with

activation function 𝜎 and learnable weight matrix W𝑙 [32].

h𝑢(𝑙+1) = 𝜎

( ∑︁
𝑣∈N𝑢∪𝑢

1

√
𝑑𝑢𝑑𝑣

W𝑙h
𝑣
𝑙
)
)

(2)

Recently, a different perspective on common GNN models was

proposed by Ma et al. [36], where the authors unified different GNN

models, such as GCN, GAT, PPNP, and APPNP, by posing them as

solutions to the graph denoising problem.

argmin

H

1

2

∥H − X∥2𝐹 +
`

2

tr(H⊤LH) (3)

where H=[h1, · · · , h𝑛]⊤∈ R𝑛×𝑑 , L∈R𝑛×𝑛 represent final represen-

tations and the graph Laplacian matrix respectively. The first term

drives the embeddings H closer to the graph input features X while

the second term imposes global smoothness by enforcing similarity

amongst the connected nodes, as

tr(H⊤LH) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ) ∈𝐸
∥h𝑖 − h𝑗 ∥22 (4)

Following this, EMP (Elastic Message Passing) [35] method was

proposed enabling ℓ1 based smoothing constraints on GNNs.

3.2 Challenges with Deeper GNNs
While in traditional ML, deeper models can extract more powerful

representations, for GNNs this inherently leads to several major

challenges. First, as the depth increases, GNNs demand exponen-

tially more computations and larger storage to be managed and

processed, which makes their deployment on resource constrained

platformsmore challenging.We seek to design an inference-friendly

quantizer, i.e., performing inference directly on quantized elements

with high accuracy. Second, deeper GNNs suffer from the over-

smoothing problem, where node representations converge to indis-

tinguishable embeddings, degrading accuracy of downstream tasks.

It was shown that GCN exponentially loses its expressive power

for node classification tasks in many practical cases [39].

There are some proposals towards mitigating the oversmoothing

problem for full precision models [19, 34, 35, 42, 63] as discussed

in Section 2, including DropEdge, PairNorm, APPNP and EMP.
Our experiments confirm that DropEdge and PairNorm are par-

ticularly ineffective for low-bit quantization. These methods do not

consider the smoothness of message propagation amongst layers,

resulting in accuracy drops and unrestricted quantization error es-

pecially in low-bit cases. In contrast, we seek layer-wise smoothness

by enforcing constraints at message propagation, restricting the

quantization error, and denoising the message passing procedure

which lead to enhanced accuracy in low-bit quantization.

3.3 Quantization Basics
Quantization is the process of mapping continuous data, e.g., pa-

rameters, weights and activations of neural networks, to smaller

sized representations. In the scope of our analysis, we denote 𝑈

(e.g. Hl
) as a high-precision tensor-valued random variable with

probability density function 𝑓𝑈 (𝑢). A tensor is commonly quan-

tized between its maximum and minimum observed values [29].

Considering observed values as𝑈𝑜 ∈ [𝛼, 𝛽] and the corresponding

𝑏-bit quantized values as 𝑈𝑞 ∈ [𝛼𝑞, 𝛽𝑞], the quantization function

is given by

𝑄 (𝑈 , 𝑠, 𝑧) = clip

(
⌊𝑈
𝑠
+ 𝑧⌉, 𝛼𝑞, 𝛽𝑞

)
= 𝑈𝑞 (5)

where 𝑠=
𝛽−𝛼
𝛽𝑞−𝛼𝑞 is the scale, ⌊·⌉ denotes the round function, and

𝑧=⌊ 𝛽𝛼𝑞−𝛼𝛽𝑞
𝛽−𝛼 ⌉ is the zero point. The corresponding de-quantization

function is as follows

𝐷 (𝑈𝑞, 𝑠, 𝑧) = 𝑠 (𝑈𝑞 − 𝑧) (6)

The range [𝛼, 𝛽] is usually partitioned into 2
𝑏
equal interval

regions with a quantization step Δ=
𝛽−𝛼
2
𝑏 . Given that de-quantized
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value in Equation 6 is represented as 𝑈 , the mean squared error

(MSE) between𝑈 and𝑈 is given by

𝐸 [ (𝑈 −�̂� )2 ] =
∫ 𝛼

−∞
𝑓𝑈 (𝑢) (𝑢−𝛼)2𝑑𝑢 +

∫ ∞

𝛽

𝑓𝑈 (𝑢) (𝑢− ˆ𝛽)2𝑑𝑢

+
2
𝑏−1∑︁
𝑖=0

∫ 𝛼+(𝑖+1)Δ

𝛼+𝑖Δ
𝑓𝑈 (𝑢) (𝑢−�̂�)2𝑑𝑢

(7)

The MSE consists of three terms. The first two items are overload
distortion caused by clipping the values of𝑢 beyond [𝛼, 𝛽]. The third
term means granular distortion led by the quantization step Δ. For
any 𝑢 ∈ [𝛼, 𝛽], its granular distortion is in [−Δ

2
, Δ
2
]. Therefore, it

can be reduced by setting an appropriate Δ based on the distribution

of 𝑈 . This becomes particularly critical in GNN quantization, as

GNNs show large variance at aggregated values [51].

3.4 Challenges with GNN Quantization
Compared to quantizing CNNs, GNNs involve more types of el-

ements to be quantized with complex interdependencies. These

elements include inputs of each layer, weights, messages between

nodes, inputs and outputs of aggregation stage, and outputs of

update stage. Since the variance of the updated features after propa-

gation in GNNs is high due to the varying number of neighbors [51],

it is particularly challenging to design a low-bit uniform quantizer.

Tailor et al. [51] use percentiles to manually decide the quantiza-

tion range [𝛼, 𝛽], and a𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 parameter to perform weighted

average of the statistics of tensors during training. We empirically

observe that the accuracy is highly sensitive to the setting of per-

centiles and𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚, which increases the difficulty of obtaining

accurate results especially using low number of bits. Zhu et al. [67]

learn the quantization step size for each node of input features

and each dimension of weights, respectively. However, as it does

not quantize the message propagation part, the resulting model

size and computations are significantly larger. Moreover, learning

parameters per each node yields a higher model parameterization

and limits its inductive capabilities including mini-batch training.

It is akin to applying 𝑁 times learned step size [15], where 𝑁 is the

number of nodes in the graph. To address these challenges, we in-

troduce a quantizer with learnable ranges (QLR) which determines

the quantization range and is also friendly for mini-batch training

on large datasets.

4 LOW-BIT QUANTIZATION FOR GRAPH
NEURAL NETWORKS

This section describes our solution for quantization with learnable

ranges (QLR) and a skewness-aware bitwise truncation (BT
∗
) that

captures the underlying data distribution to preserve accuracy with

low-bit representations.

4.1 Quantization with Learnable Range
GNN involves various components such as layer activations, weights,

messages, inputs/outputs of the aggregation and update stages. We

aim to quantize all of the aforementioned components to reduce

the model size and maintain high accuracy during inference.

According to the quantization error analysis in Section 3.3, given

quantization level [𝛼𝑞, 𝛽𝑞], 𝑠 is directly influenced by different set-

tings of [𝛼, 𝛽]. Using this observation, we design a scaling parameter
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Figure 1: Quantization error with different 𝛾

𝛾 to modify [𝛼, 𝛽] into a more data-aware range [𝛾𝛼,𝛾𝛽], which
updates the quantization range to reduce the quantization error in

low-bit cases.

With the learnable quantization range [𝛾𝛼,𝛾𝛽], the quantization
function can be updated as

𝑄 (𝑈 , 𝑠𝛾 , 𝑧𝛾 ) = clip(⌊𝑈
𝑠𝛾
+ 𝑧𝛾 ⌉, 𝛼𝑞, 𝛽𝑞

)
= 𝑈𝑞,𝛾 (8)

where 𝑠𝛾=
𝛾 (𝛽−𝛼)
𝛽𝑞−𝛼𝑞 =𝛾𝑠 is the updated scale, while zero point stays the

same 𝑧𝛾=⌊
𝛾𝛽𝛼𝑞−𝛾𝛼𝛽𝑞

𝛾𝛽−𝛾𝛼 ⌉ =𝑧. The de-quantization function is modified

accordingly

𝐷 (𝑈𝑞,𝛾 , 𝑠𝛾 , 𝑧𝛾 ) = 𝑠𝛾 (𝑈𝑞,𝛾 − 𝑧𝛾 ) = 𝑈𝛾 (9)

To optimize 𝛾 at the backward propagation, Straight-Through

Estimator [5] can be used to calculate the gradient of 𝛾 as

𝜕𝑈𝛾

𝜕𝛾
=


𝛼𝑞, 𝑢 ≤ 𝛼𝑞

𝛽𝑞, 𝑢 ≥ 𝛽𝑞

𝑠 ⌊ 𝑢𝛾𝑠 ⌉ −
𝑢
𝛾 , 𝛼𝑞 < 𝑢 < 𝛽𝑞

(10)

QLR learns a scale (𝛾 ) relative to the quantization range of ob-

served values, allocates the limited quantization budget to the

remaining observed data points while accounting for the final

task. Notably, this is different from learned step size quantization

(LSQ) [15], which optimizes the step size over the full observed

values. We have empirically observed that LSQ tends to be highly

sensitive to the learning rate. This means that achieving satisfac-

tory accuracy often requires an exhaustive search for the proper

hyperparameters. The challenges with LSQ are further amplified

because, in GNNs, the value ranges can differ significantly across

layers, leading to uneven convergence rates between them.

Quantization error analysis for QLR. Given a value 𝑢 ∈ [𝛼, 𝛽],
its quantization error can be written as

𝑓𝑒 (𝑢) = ∥𝑢 − 𝑢∥2 = ∥𝑠𝛾 (
𝑢

𝑠𝛾
− ⌊ 𝑢

𝑠𝛾
⌉)∥2 (11)

It comes from two sources, 𝑠𝛾 and
𝑢
𝑠𝛾
−⌊ 𝑢𝑠𝛾 ⌉, which are the quantiza-

tion level and distortion caused by rounding operation, respectively.

Figure 1 shows the distortion error 𝑒𝛾 and total quantization error

𝑓𝑒 (𝑢) = ∥𝑠𝛾𝑒𝛾 ∥2, for aggregate output of Cora dataset, across vary-
ing scales in𝛾∈[0.05,1.0]. Noteworthy that, 𝑒𝛾 and 𝑠𝛾 affect the error

in different directions across different 𝛾 varying from INT2–INT8.

Specifically, with an optimized 𝛾 , the distortion in INT2 can be

reduced to a scale similar to that of INT4 and INT8 as shown in Fig-

ure 1(d). Hence, a learnable 𝛾 can optimize the quantization range,

reducing the total error even in extreme low-bit representations.
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(a) Cora-Message (b) Cora-Aggregate (c) CS-Message (d) CS-Aggregate

Figure 2: Kurtosis and Skewness of different datasets at each epoch

4.2 Skewness-aware Bitwise Truncation
A basic approach for INT2 can be simply keeping the most (two)

significant bits of the higher precision output (e.g., INT8, INT4) as

𝑄𝑏2←𝑏1 (𝑈𝑞, 𝑠0) = ⌊
𝑈𝑞

𝑠0
⌉𝑠0 (12)

where 𝑏1 and 𝑏2 (𝑏1≥𝑏2) are the number of bits used for quan-

tization, 𝑏2←𝑏1 means the 𝑏1-bit quantized representation being

truncated into𝑏2 bits;𝑈𝑞 denotes the𝑏1-bit representation obtained

with Equation 8, and 𝑠0 is the scale for truncating the low-significant

bit representation depending on 𝑏1 and 𝑏2. 𝑠0 can be obtained as

𝑠0 =
𝛼𝑞1 − 𝛽𝑞1
𝛼𝑞2 − 𝛽𝑞2

(13)

where [𝛼𝑞1 , 𝛽𝑞1 ] and [𝛼𝑞2 , 𝛽𝑞2 ] are the quantization levels for 𝑏1-bit
and 𝑏2-bit quantization, respectively.

While such formulation implicitly assumes the uniformity of

𝑈 , for GNNs this can significantly vary depending on the graph

topology. Measures such as kurtosis (̂ ) and skewness (𝑠𝑘) [22] can

be employed to better capture information about normality and

symmetry of the distribution respectively. While prior methods as-

sumed that the neural networks activations follow close-to-normal

distributions, we have empirically observed that, for GNNs, these

have relatively large kurtosis and are rather asymmetrical on low-

bit quantization (Figure 2). All these bring further challenges in

employing bitwise truncation (BT) for GNNs.

We formulate a data-aware truncation mechanism that accounts

for skewness of input data. Skewness-aware BT (BT
∗
), defined in

Equation 14, can capture the abnormal distribution of quantized

elements even under low-bits.

�̂�𝑏2←𝑏1 (𝑈𝑞, 𝑠0) = ⌊
𝑈𝑞 + ⌊𝑠𝑘⌉

𝑠0
⌉𝑠0 (14)

where 𝑠𝑘 is the skewness of input tensor𝑈 .

Figure 2 illustrates the kurtosis and skewness parameters of the

message passing and aggregate output blocks for 10-layer SMP,

detailed later in Section 5, using INT2, INT2-8 (BT) and INT2-8
∗

(BT
∗
) quantization across two datasets. We note that kurtosis (|^ |)

and skewness of the normal distribution are 3 and 0 respectively.

Therefore, ^𝑁 = |^ − 3| can be used to measure the normality of the

tensor, where smaller^𝑁 means a distribution closer to normal. The

average kurtosis of BT
∗
remains continuously smaller throughout

each epoch, as compared to INT2 and BT, which indicates a robust

training process. Similar trends are observed for the skewness 𝑠𝑘 :

values for BT
∗
fall in (−1.0, 1.0) range. As a result, using skewness

(𝑠𝑘) in the bitwise truncation process, as provided in Equation 14,

maintains the symmetry of the quantized elements while ensuring

their normality.

5 LAYER-WISE SMOOTHNESS-AWARE
MESSAGE PROPAGATION

In GNN learning, each node’s feature consists of a true signal, which

relates to its class, and a noise component. The essence of message

passing is to increase the signal-to-noise ratio by adaptively aggre-

gating node features. However, unexpected or out-of-distribution

features from a neighboring node, possibly of different class, can

adversely affect the goal of enhancing signal-to-noise ratio. In the

asymptotic case, aggregating features from different classes can

cause a blending of true features, resulting in oversmoothing. The

layer-wise smoothness that preserves locality between layers of

GNN, can be helpful in achieving deeper GNNs [35, 36].

In Section 4.1, we introduced a quantizer that reduces the quan-

tization error by learning an optimal quantization range. We also

need to ensure its efficiency with respect to increasing model depth.

From our empirical analyses, it is evident that the observed quantiza-

tion range (𝛽 -𝛼) for low-bit setting expands as the number of layers

grows (Figure 3). Based on Equation 7, an expanded quantization

range directly influences its error. This suggests that quantization

may further compromise the accuracy of deeper models which al-

ready suffer from over-smoothing. This potential degradation of

accuracy is also reflected in Figure 3, where we measure it on GCN

with INT2 quantization.

Motivated by the above observations, we devise a layer-wise

smoothness approach that brings forth two primary benefits. Firstly,

it facilitates smooth message propagation, thereby mitigating the

problem of oversmoothing. Secondly, it helps to address the chal-

lenges of obtaining satisfactory, low-bit representations caused by

substantial and abrupt updates during message propagation.

Outline: In this section, we present our Smoothness-aware Mes-

sage Propagation (SMP) solution which aims to reduce the over-

smoothing effect and suppress the quantization error to a bound.

We first quantify the layer-wise smoothness and analyze the local

smoothness of existing GNNs at message propagation. We then

present the SMP mechanism that smooths the message propagation

with a graph denoising approach. After transforming the optimiza-

tion problem into a Lagrangian function, we develop an optimal

solution involving a differential multiplier method (BDMM). We

also prove the existence of the quantization error bound for quan-

tized SMP. The results presented in Figure 3 (GCN+SMP) confirm

that SMP can also help improving the general GCN in INT2 quanti-

zation and deeper layer settings.

5.1 Layer-wise Smoothness
We quantify the smoothness objective in Definition 5.1 by measur-

ing the layer-wise local smoothness during message propagation

between each GNN layer.
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Figure 3: Effect of layer-wise smoothness on the aggregate
output quantization range in INT2 quantization

Definition 5.1. (Layer-wise Smoothness) Given a graphG=(𝑉 , 𝐸,X),
the 𝑙-th layer-wise smoothness is the change of connected nodes

∀(𝑣𝑖 , 𝑣 𝑗 ) ∈𝐸 with a degree normalization from layer 𝑙-1 to layer 𝑙 .

The layer-wise smoothness can be formulated as

S𝑙 =
∑︁

(𝑣𝑖 ,𝑣𝑗 ) ∈𝐸
∥(

h𝑙
𝑖√
𝑑𝑖
−

h𝑙
𝑗√︁
𝑑 𝑗
) − (

h𝑙−1
𝑖√
𝑑𝑖
−

h𝑙−1
𝑗√︁
𝑑 𝑗
)∥2

2
(15)

Specifically, S𝑙 can also be represented as

S𝑙 =
∑︁

(𝑣𝑖 ,𝑣𝑗 ) ∈𝐸
∥
(h𝑙

𝑖
− h𝑙−1

𝑖
)

√
𝑑𝑖

−
(h𝑙

𝑗
− h𝑙−1

𝑗
)√︁

𝑑 𝑗
∥2
2

= tr((Hl − Hl−1)⊤L̃(Hl − Hl−1))

(16)

where L̃ represents the normalized Laplacian matrix, L̃ = I− Ã, Ã =

D−
1

2 ÂD−
1

2 , Â = I + A, and Dii = 𝑑𝑖 =
∑

𝑗 Â𝑖 𝑗 . The tr(H⊤L̃H) is the
Laplacian regularization to make H smooth over graph G, similarly,

the 𝑙-th layer-wise smoothness tr((Hl − Hl−1)⊤L̃(Hl − Hl−1)) can
be explained as smoothing the changes from layer 𝑙-1 to 𝑙 over G.

5.2 Smoothness-aware Message Propagation
SMP is designed to guide the training process to achieve local

smoothness at message propagation of each layer, by utilizing the

smoothness measure presented in Definition 5.1. Intuitively, SMP

aims to avoid drastic correlation/similarity changes for connected

nodes to achieve local smoothness at each message update.

We formulate the SMP objective based on graph denoising for-

mulation (at each layer 𝑙 ∈ 𝐿) with degree normalization,

H∗ =argmin

H

1

2

∥H−X∥2𝐹 +
`

2

tr(H⊤L̃H)

subject to: S𝑙 ≤ 𝛿 = 𝛿0 |𝐸 |,∀𝑙 ∈ 𝐿
(17)

where S𝑙=tr((H − Hl−1)⊤L̃(H − Hl−1)), L̃ represents the normal-

ized Laplacian matrix, L̃ = I − Ã, Ã = D−
1

2 ÂD−
1

2 , Â = I + A, and

Dii = 𝑑𝑖 =
∑

𝑗 Â𝑖 𝑗 .

The optimization objective aims to find an optimal H∗ which
we assume to be the correct feature embedding for the particular

graph. We impose three different priors to extract this optimal

embedding. The first term minimizes the distance to measure the

original feature matrix (X), the second term imposes neighborhood

similarity in Equation 17. These two objectives have been used

in different methods in the literature. In SMP, we impose a new

constraint (with S𝑙 ) which limits the change of embeddings between

layers of the GNN and makes smooth transitions at each message

passing iteration. 𝛿0 is the threshold for controlling an allowed

variation between the correlations/similarities for the connected

node between layers, |𝐸 | is the number of edges in the graph.

This formulation shows that the constraint aims to mitigate

the abrupt changes in the relations between connected nodes due

to possibly interfering signals coming from neighboring nodes.

Alternatively, S𝑙 can be configured to capture the changes of the

smoothness with different distance measures, e.g., ℓ1 norm.

The Lagrange function for the objective function at layer 𝑙 has

the following form

L𝑙 (H,_,𝑠) = 1

2

∥H−X∥2𝐹 +
`

2

tr(H⊤L̃H)︸                           ︷︷                           ︸
𝑓 (H)

+_𝑔(H,H𝑙−1,𝑠)
(18)

where 𝑠 is slack variable, _ is Lagrangianmultiplier, and𝑔(H,H𝑙−1, 𝑠)
= 𝛿 − S𝑙 − 𝑠2.

Equation 18 is differentiable with respect to H, _ and 𝑠 . However,

Lagrangian multiplier method does not directly work with gradient

descent optimization and the derivation of optimal solution from

KKT (Karush–Kuhn–Tucker) conditions will be cumbersome when

the constraints are complex as in SMP case. Therefore, the optimal

solution to Equation 18 can be derived with the basic differential

multiplier method (BDMM) [41], which has been proved to optimize

Lagrange multipliers in conjunction with the objective argument

in a sequential manner. The BDMM updates are given below
H
𝑙+1

= H𝑙 − [H∇𝑓 (H𝑙 )
H𝑙+1 = H

𝑙+1 − [H_
𝑙∇H𝑔(H

𝑙+1
,H𝑙 , 𝑠𝑙 )

𝑠𝑘+1 = 𝑠𝑙 + 2[𝑠_𝑙𝑠𝑙

_𝑘+1 = _𝑙 + [_𝑔(H𝑙+1,H𝑙 , 𝑠𝑙+1)

(19)

When we calculate the respective gradients in Equation 18 and

incorporate into Equation 19, we easily reach the formulation as
H
𝑙+1

= (1 − (1 + `)[H)H𝑙 + `[HÃH𝑙 + [HX

H𝑙+1 = H
𝑙+1 + 2[H_(I − Ã) (H𝑙+1 − H𝑙 )

𝑠𝑙+1 = 𝑠𝑙 + 2[𝑠_𝑙𝑠𝑙

_𝑙+1 = _𝑙 + [_𝑔(H𝑙+1,H𝑙 , 𝑠𝑙+1)

(20)

where [H, [_ , and [𝑠 are the respective step sizes.

Variation of 𝑆𝑙 for existing GNNs. To provide an intuitive under-

standing of layer-wise smoothness (S), we measure S for SMP and

existing GNNs to quantitatively show how the measure varies with

different GNN solutions. We compute S on 10-layer GCN, SMP, and

several existing deep GNN solutions, including DropEdge, APPNP,

EMP, and PairNorm. Figure 4 shows the average layer-wise smooth-

ness of 10-layer GNNs (S) at each epoch, where S=
∑

𝑙∈𝐿 S𝑙
𝐿−1 (𝑙∈[2,L]).

The GCN, without any safeguard mechanism for oversmoothing,

creates extremely large layer-wise variations (higher S𝑙 ) when com-

pared to deep GNN solutions. This example illustrates that deep

GNN methods mitigating against oversmoothing are effective to

control and increase layer-wise smoothness (decreasing S𝑙 ) when
compared with the general GCN. Additionally, the S of SMP drops

continuously when compared with other comparable deep GNNs.

These experiments show that the iterative solution in Equation 20

is effective in controlling the change between layers by enforcing

both node-wise smoothness and layer-wise smoothness.
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Figure 4: Avg layer-wise smoothness against different
epochs (S) for GNNs

SMP Contribution to Quantization. The quantization error for

the 𝑙-th layer representation can be expressed as 𝑓 𝑙𝑒 =∥H𝑙 − H𝑙,𝑞 ∥2
2
,

where H𝑙,𝑞
is the quantized representation of H𝑙

. Accordingly, for

the quantized SMP, the smoothness constraint can be written as

𝑆𝑙,𝑞=tr((H𝑙,𝑞−H𝑙−1,𝑞)⊤L̃(H𝑙,𝑞−H𝑙−1,𝑞)). We can prove 𝑓 𝑙𝑒 is smaller

than a bound as provided in LEMMA 1, which underlines the supe-

riority of SMP in terms of quantization.

Lemma 1. For the 𝑙-th layer representation H𝑙 , the quantization
error is 𝑓 𝑙𝑒 ≤ 𝑙𝛿tr(Λ−1) + ∥H𝑙 − X𝑞 ∥2

2

Proof. The Laplacian matrix �̃� is eigendecomposable, i.e., �̃� =

UΛU⊤, where U is orthogonal matrix (UU⊤= I ). S𝑙,𝑞 can be rep-

resented as S𝑙,𝑞 = ∥Λ
1

2 U⊤ (H𝑙,𝑞 − H𝑙−1,𝑞)∥2
2
≤ 𝛿 . The derivation

process is summarized as follows

∥Λ
1

2 U⊤ (H𝑙,𝑞 − H𝑙−1,𝑞)∥2
2
= ∥(H𝑙,𝑞 − H𝑙−1,𝑞)Λ

1

2 ∥2
2
≤ 𝛿 1○

∥H𝑙,𝑞 − H𝑙 ∥2
2
− ∥H𝑙−1,𝑞 − H𝑙 ∥2

2
≤ ∥H𝑙,𝑞 − H𝑙−1,𝑞 ∥2

2
≤

∥(H𝑙,𝑞 − H𝑙−1,𝑞)Λ
1

2 ∥2
2
∥Λ−

1

2 ∥2
2
≤ 𝛿tr(Λ−1) 2○

𝑓 𝑙𝑒 ≤ 𝛿tr(Λ−1) + ∥H𝑙−1,𝑞 − H𝑙 ∥2
2

3○
∥H𝑖−1,𝑞 − H𝑙 ∥2

2
≤ ∥H𝑖−1,𝑞 − H𝑖−2,𝑞 ∥2

2
+ ∥H𝑖−2,𝑞 − H𝑙 ∥2

2

= 𝛿tr(Λ−1) + ∥H𝑖−2,𝑞 − H𝑙 ∥2
2
, where 1≤i≤ 𝑙 . 4○

𝑓 𝑙𝑒 ≤ 𝑙𝛿tr(Λ−1) + ∥H𝑙 − X𝑞 ∥2
2

5○
□

6 EXPERIMENTS
This section presents our experiments on benchmark datasets that

illustrate the effectiveness of QLR and QLR with BT (BT
∗
) quantiz-

ers under low-bit settings. We also compare our SMP with compa-

rable deep GNN baselines, highlighting the capability of SMP in

addressing the oversmoothing issue.

6.1 Experimental Setup
Datasets and Baselines. Our experiments are performed on five

datasets, Cora, PubMed, CiteSeer [47], CS [49] and Reddit [23] in

a semi-supervised node classification setting. The statistics of the

datasets are summarized in Table 1.

Table 1: Statistics of benchmark datasets

Dataset Cora CiteSeer PubMed CS Reddit

Nodes 2708 3327 19717 18333 232965

Edges 5278 4552 44324 81894 114848857

Features 1433 3703 500 6805 602

Labels 7 6 3 15 41

We start by comparing QLR against two state-of-the-art GNN

quantizers, Degree-Quant [51] andAggregate-Quant [67], onGCN [32].

These experiments are complemented with their respective model

sizes. To showcase the effectiveness of SMP for quantization and

oversmoothing we compare with 4 comparable deep GNN meth-

ods, which are, APPNP [19], DropEdge [42], PairNorm [63] and

EMP [35]. They are evaluated on 10-layer GNNs with 64 hidden

units. Subsequently, we apply BT (BT
∗
) within SMP and EMP

pipeline to verify its effectiveness on extreme low-bit represen-

tations and its scalability with respect to the numbers of layers.

Finally, we present the runtime efficiency bymeasuring the through-

put under the representations of various quantization levels.

Parameter settings. For APPNP, DropEdge, PairNorm and EMP,

we used the optimal parameters provided within their public repos-

itories. For SMP, we set the parameters from the following search

space: (1) learning rate (lr) ∈ {0.005, 0.008, 0.01, 0.015}; (2) weight
decay (wd) ∈ {5𝑒−4, 1𝑒−4, 5𝑒−5}; (3) drop rate ∈ {0.8}; (4) ` ∈ {3, 6,
9}; (5) the initial value of 𝛾 ∈ {1.0} ;(6) [_ , [𝑠 ∈ {1𝑒−5,1𝑒−6}; (7) 𝛿0
∈ {0.01, 0.1, 0.5, 1, 2}. Due to a significant difference in magnitude

between the gradients of the scaling parameters (𝛾 ) and other GNN

parameters, we have established a distinct search space for the

former: learning rate (lr𝛾 ∈ {0.001, 0.002}) and weight decay (wd𝛾 ∈
{1𝑒−4, 5𝑒−5}).

We present the average accuracy and standard deviation over

10 random data splits for Cora and CiteSeer, and 5 for PubMed, CS

and Reddit. For Reddit dataset, owing to its size, we have employed

mini-batch training with a batch_size of 20000. All of the experi-

ments are based on Pytorch [40] and PyTorch Geometric [18]. The

experiments are ran on Ubuntu 20.04 with 64GB RAM.

6.2 Comparison with different quantizers
We compare QLR with the state-of-the-art GNN quantization solu-

tions, Degree-Quant and Aggregate-Quant. Results are summarized

in Table 2.

We notice that Aggregate-Quant in default maintains a fixed

quantization level of INT4 for weights, while having smaller bits

for input features. Moreover, it does not quantize the message-

passing blocks of GCN, whereas QLR and Degree-Quant quantize

all the elements equally. Hence, for fairness, we also add quantizers

for its message-passing blocks and removed the INT4 constraint on

its model weights. Also important to note that Aggregate-Quant

maintains a step size parameter for each node, which can be viewed

as an extension of learned step size quantization (LSQ) [15], which

makes it highly inflexible for inductive tasks. Due to that, it does

not support mini-batch training, as the topology of the input graph

changes with each mini-batch training iteration.

We observe that performance of QLR significantly outperforms

those of its competitors irrespective of the quantization level. The

approach of optimizing the quantization range in the backward

pass makes QLR more robust and effective, especially in low-bit

cases. Aggregate-Quant demonstrates superior performance for

CiteSeer when applied to INT8 quantization, which can be courtesy

of its significantly larger parameter size. However, the accuracy of

low-bit cases degrades significantly when message passing blocks

are also quantized fairly. As for Degree-Quant, while it can achieve

comparable performance on INT8, it cannot generate expected

performance with INT4 and INT2 quantization on Reddit. Due to

its mask sampling strategy and low quantization level, one node
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Table 2: Classification Accuracy (%) of Different Quantization on GCN
Method QLR Aggregate-quant Degree-quant

Dataset FP INT8 INT4 INT2 INT8 INT4 INT2 INT8 INT4 INT2

Cora 80.79±1.54 81.03±1.03 80.40±1.06 74.56±2.35 78.57±3.09 59.03±2.50 – 80.64±1.47 77.81±1.22 –

Citeseer 67.74±2.29 67.59±2.07 67.10±2.73 60.12±3.02 68.09±1.83 47.79 ±4.41 – 67.62±2.08 66.10±1.97 –

PubMed 78.00±2.07 78.74±2.56 78.10±2.58 71.40±4.24 77.60 ±2.07 68.80 ±0.75 62.26 ±0.38 77.48±3.36 72.38±4.03 –

CS 90.42±0.44 90.51±0.45 88.42±1.62 71.54±6.97 89.45±0.65 40.52 ±6.74 – 89.96±0.58 82.51±3.09 –

Reddit 94.04 ±0.18 94.13±0.07 90.46 ±0.08 85.19 ±1.36 × × × 93.75 ±0.20 – –

– denotes accuracy ≤ 40.00%, × indicates the quantization method does not support mini-batch training

Table 3: Model size (MB) with different number of hidden
units (𝑑) on different quantization methods

𝑑 QLR Aggregate-quant Degree-quant

FP INT8 INT4 INT2 INT8 INT4 INT2 INT8 INT4 INT2

64 1.75 0.441 0.223 0.114 3.70 3.48 3.37 0.438 0.220 0.111

128 3.49 0.878 0.441 0.223 4.19 3.75 3.53 0.875 0.438 0.220

512 14.0 3.500 1.770 0.878 7.79 6.05 5.17 3.490 1.750 0.875

sampled to different mini-batches will generate different represen-

tations at different batch training, which curbs the overall accurate

representation. However, QLR can directly optimize the learnable

quantization range based on the observations of subgraphs, hence,

it can reduce the comprehensive quantization errors. These further

confirm that optimizing the quantization range in QLR enables

better preservation of accuracy in low-bit representations.

It is noteworthy that QLR preserves its accuracy results even

for INT2 quantization across all datasets, while the alternatives fail

to get comparable accuracy. Additionally, QLR even outperforms

the full precision (FP) model in INT8 quantization in many cases,

showcasing its effectiveness as a noise filter for GNNs.

In Table 3, we report the model sizes of different quantization

approaches with varying quantization levels and hidden units (𝑑).

Due to space limit, we only present the model sizes on CS dataset.

As there is a native 8-bit support, under constant 𝑑 , the sizes of

INT8 with QLR and Degree-Quant are consistently reduced to ap-

proximately one-fourth of the FP counterpart. For smaller bits,

however, we pack INT2 and INT4 similar to the process described

in [30]. The size of QLR is slightly larger to that of Degree-quant

due to storage of 𝑠𝛾 , 𝑧𝛾 and 𝛾 parameters. Given the superior accu-

racy performance of QLR in low-bit settings, its slight increase in

model size becomes negligible in comparison. Overall, with QLR

and Degree-quant, the INT2 and INT4 model sizes are significantly

smaller than their FP counterparts, with reductions of 16× and 8×,
respectively. However, the size of Aggregate-Quant is 2–6 times

that of its counterparts, largely due to the dimension and per-node

nature of the parameters.

6.3 Comparisons with existing deep GNNs
6.3.1 Node classification with existing deep GNNs. We compare

SMP with the existing deep GNNs in terms of both full-precision

(FP) and quantized models using QLR. Table 4 presents the classi-

fication accuracy results using 10-layer GNN. Notably, SMP con-

sistently outperforms the alternative methods on Cora, CiteSeer

and CS with FP models, and slightly lower than that of APPNP

on PubMed. SMP improves over EMP by enforcing smoothness at

layer-wise message propagation during training and inference.

For quantized models, although INT8 achieves high accuracy

close to FP for all methods, INT4 performance of DropEdge and

PairNorm drops significantly, rendering it incomparable in some

cases, and throws OOM errors on larger datasets. This is primarily

due to the complexity of the "backbone" models [42]. For exam-

ple, PairNorm, employing a GCN backbone, trains a weight matrix

for each layer. Likewise, DropEdge utilizes more intricate back-

bones such as GCN, ResGCN [25], IncepGCN [50], and introduces

connection perturbations at every layer. Consequently, these fac-

tors contribute to higher computational and storage requirements,

which further escalate with the depth of the model. On the contrary,

EMP, APPNP, and SMP employ much simpler architectures that

involve only two weight matrices prior to GNN propagation. As a

result, these models have more moderate and scalable requirements,

making them more amenable for deep GNN quantization.

SMP also consistently improves the low-bit performance en-

abling more stable training as compared to other methods. This

can be explained by the smooth, narrow-ranged representations

across layers, enabling QLR to identify more precise low-bit repre-

sentations. The empirical results are also in line with the quantiza-

tion error upper bound for quantized SMP as proved in LEMMA

1. We also note that QLR can also improve EMP and APPNP to

achieve reasonable accuracy with graceful degradation even in

INT2 quantization. This highlights the importance of optimizing

the quantization range for informative representation.

6.3.2 Performance with varying number of GNN layers. Figure 5
presents the performance of SMP and EMP with respect to differ-

ent number of GNN layers, using FP, INT8, INT4, INT2, INT2-8

( BT), and INT2-8
∗
( BT

∗
) representations. For simplicity, we nar-

row the search space as lr ∈ {0.005, 0.008, 0.01, 0.015}, wd=5𝑒−4,
lr𝛾=5𝑒

−4
, wd𝛾=1𝑒

−5
. We note that SMP-FP and SMP-INT8 outper-

form EMP-FP and EMP-INT8 in most cases with varying margins.

The improvements can be further enhanced by tuning the parame-

ters in a wider search space as listed in Section 6.1. We note that

SMP-INT4 continuously outperforms EMP-INT4 in nearly all cases

with different values of 𝐿 (except 𝐿=2–4 on PubMed and 𝐿=2 on CS).

SMP-INT2 achieves relatively high accuracy when compared with

EMP-INT2, which underlines the benefits of smoothness constraint

of SMP for extreme low-bit quantization.

6.3.3 Effect of Bitwise Truncation on GNN quantization. For INT2
quantization in Figure 5, the performance of BT (INT2-8) and BT

∗

(INT2-8
∗
) outperforms INT2 quantization with the basic QLR in

most cases, while the accuracy of EMP-INT2-8
∗
on CiteSeer is lower

(around 0.1%–2.5%) than that of INT2 at 𝐿=6–12. Similar results are

observed with PubMed at SMP-INT2-8
∗
when 𝐿=6–8 with margins

of 0.1%–1.3%. When we compare INT2-8 and INT2-8
∗
under the

same circumstances, the accuracy of INT2-8
∗
is significantly larger

than that of INT2-8 in most cases (except for CiteSeer, the perfor-

mance of INT2-8
∗
is slightly smaller than that of INT2-8 on SMP at

𝐿=6–8 and EMP at 𝐿=8). The performance of INT2-8
∗
demonstrates

the advantage over INT2-8 on the large datasets, i.e., PubMed and

CS, and the accuracy of INT2-8
∗
is close to that of INT4. Especially,
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Table 4: Classification accuracy of Deep GNN methods (%) on benchmark datasets
SMP EMP APPNP PairNorm DropEdge

Dataset FP INT8 INT4 INT2 FP INT8 INT4 INT2 FP INT8 INT4 INT2 FP INT8 INT4 FP INT8 INT4

Cora
82.91 82.92 82.69 72.69 82.59 81.58 77.93 66.20 80.78 81.82 79.68 71.28 71.20 70.21

–
76.08 79.10 78.31

±0.64 ±0.51 ±0.68 ±2.48 ±0.67 ±0.79 ±2.62 ±6.75 ±1.42 ±1.44 ±1.81 ±2.34 ±2.14 ±1.50 ±2.86 ±1.00 ±1.01
Citeseer

71.60 71.40 69.76 65.01 70.84 71.02 67.53 61.53 70.30 68.90 68.77 63.87 51.39
– –

60.07 61.15 59.60

±1.26 ±1.58 ±1.63 ±1.26 ±1.20 ±1.49 ±2.68 ±3.65 ±1.53 ±2.19 ±2.01 ±2.24 ±4.16 ±5.76 ±2.88 ±3.73
PubMed

79.36 79.90 78.44 75.92 78.64 78.48 76.18 74.22 79.59 79.31 78.49 73.41 75.72
OOM OOM

75.56
OOM OOM±2.15 ±2.41 ±2.51 ±2.29 ±2.93 ±3.32 ±3.44 ±3.03 ±1.39 1.98 ±2.37 ±1.19 ±2.21 ±1.81

CS
92.44 92.41 92.24 85.42 92.17 91.16 91.81 82.62 91.58 92.33 91.94 81.25 75.12

OOM OOM
87.30

OOM OOM±0.64 ±0.52 ±0.38 ± 1.80 ±0.46 ±0.42 ±0.54 ±1.09 ±0.66 ±0.57 ±0.57 ±8.08 ±4.24 ±1.64
– denotes accuracy ≤ 40.00%, OOM means ’out-of-memory’
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Figure 5: Results of SMP and EMP with varying layers
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Figure 6: Quantization performance of SMP and EMP on CS

the accuracy of INT2-8
∗
is, continuously, around 5%–7% higher

than that of INT2-8 on CS dataset with respect to varying number

of layers. This shows the effectiveness of BT
∗
in reaching relatively

high accuracy with low-bit representations.

Figure 6 presents the full training process of SMP and EMP with

variations of our quantization approach on CS dataset. While SMP

and EMP show unstable performance with INT2 representation

generated by the basic quantizer, applying skewness-aware BT

(BT
∗
) contributes improvements that are close to that of INT8 quan-

tization. Furthermore, SMP is more robust than EMP, due to the

existence of quantization error bound in SMP.

6.4 Inference Speedup
In Table 5, we elucidate the inference times associated with vary-

ing quantization levels for the 2-layer GCN and SMP architectures,

respectively. These model inferences are conducted on the Red-

dit dataset. The ↑ signifies the inference speedup comparing with

FP model. To realize quantized GNN speed improvements across

different quantization levels, we leverage the recent Tensor Core-

based approach, QGCT [58], applied to both GCN and SMP. We

observe a notable speedup of 5.11 × and 6.44 × with SMP and

GCN, respectively, in the context of low-bit representation (INT2),

in comparison to the FP counterparts. Notably, the speedup for

SMP exhibits a slight reduction compared to GCN, attributed to

the additional computational overhead of SMP. Remarkably, with

the same number of layer (𝐿), SMP showcases superior accuracy

Table 5: Inference time (ms) of SMP and GCN in different
quantization levels on Reddit dataset

FP INT8 ↑ INT4 ↑ INT2 ↑
SMP 178.3 46.46 3.84 × 37.96 4.70 × 34.89 5.11 ×
GCN 156.97 34.96 4.49 × 27.29 5.75 × 24.37 6.44 ×

performance relative to GCN. This is exemplified in Table 2 and

Figure 5 in the CS dataset with 𝐿=2. Specifically, for SMP, the INT8

and INT4 accuracy outperforms GCN by approximately 2%, while

SMP in INT2 mode demonstrates a performance advantage over

GCN by up to 13.5%.

7 CONCLUSION
We have introduced an end-to-end solution towards achieving scal-

able deep GNNs, involving an efficient quantization with learnable

ranges, with skewness-aware bitwise truncation, and a smoothness-

aware message propagation (SMP) mechanism for efficient training

and managing large deep GNNs. The solution reduces the model

size and maintains its accuracy for classification even in low-bit

representations. The message passing block in training is enforced

to have layer-wise smoothness and constrains the changes between

neighbor nodes. We formulate it as an additional constraint to a

graph denoising optimization function and solved by Lagrange

functions with an iterative BDMM algorithm. It aims to mitigate

the oversmoothing problem in GNNs and to avoid the performance

degradation encountered in low-bit quantization-aware training.

We provide an upper bound on the error for the quantized SMP

algorithm. Experiments show how the proposed solution achieves

significant improvements over the-state-of-the-art approaches, pro-

viding a significant reduction in model sizes, an order of magnitude

smaller than the full precision (FP) model with comparable accuracy

results, and mitigating the oversmoothing problem on benchmark

datasets.
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