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Abstract The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, introduced more than 70 years ago,
is a hallmark of colloidal particle modeling. For highly charged particles in the dilute regime, it is often
supplemented by Alexander’s prescription (Alexander et al. in J Chem Phys 80:5776, 1984) for using
a renormalized charge. Here, we solve the problem of the interaction between two charged colloids at
finite ionic strength, including dielectric mismatch effects, using an efficient numerical scheme to solve the
nonlinear Poisson–Boltzmann (NPB) equation with unknown boundary conditions. Our results perfectly
match the analytical predictions for the renormalized charge by Trizac and coworkers (Aubouy et al.
in J Phys A 36:5835, 2003). Moreover, they allow us to reinterpret previous molecular dynamics (MD)
simulation results by Kreer et al. (Phys Rev E 74:021401, 2006), rendering them now in agreement with
the expected behavior. We furthermore find that the influence of polarization becomes important only
when the Debye layers overlap significantly.

1 Introduction

Colloidal dispersions in aqueous solutions have been
the subject of numerous studies [1] because they play a
role in industrial processes involving coatings, aerosols,
or ceramics and for separation or filter processes [2].
They are also an excellent model system for fundamen-
tal soft-matter research as one can select their charge,
and thus interaction range and strength, over a wide
range of values [3]. One notable example is that of
charge-stabilized colloidal suspensions, commonly used
to study crystallization [4,5]. Pairwise interactions, as
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predicted by the Derjaguin–Landau–Verwey–Overbeek
(DLVO) theory [6,7], proved successful in explaining
experimental measurements using optical tweezers [8],
magnetic chaining [9], atomic force microscopy [10,11]
or laser radiation pressure methods [12]. Within this
framework, electrolytes in solution play a fundamental
role by screening the electrostatic interactions between
the colloids and governing the effective interactions.
The case of monovalent mobile ions is significant from
the theoretical perspective because it is amenable to
a mean-field level description, where one combines the
Poisson equation of electrostatics with the Boltzmann
distribution of the mobile ions to obtain the nonlinear
Poisson–Boltzmann (NPB) equation [13,14]. The NPB
equation can be used to determine the electrostatic
potential for many problems, but its solution is typi-
cally computationally demanding. An analytical solu-
tion of the NPB equation exists only for the case of an
electrolyte solution in contact with an infinite plane, as
Gouy and Chapman showed more than a century ago
[15,16], and other problems require a numerical solu-
tion. Typical approaches include finite differences [17],
finite element schemes [18], or multi-grid methods [19],
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and have recently been extended to machine learning
methods [20]. A complication arises for cases with non-
trivial boundary conditions. The solution of the NPB
equation for the case of two interacting charged spheres,
for example, has been the subject of many studies dur-
ing the 1980s and 1990s, although usually employing
constant potential or constant electric field boundary
conditions [21–23].

In the case of particles with a low surface charge
(when the electrostatic energy eψ is sufficiently small
compared to the thermal energy kBT ), one can linearize
the NPB equation, obtaining an effective interaction
potential via the DLVO theory. In their famous work,
Alexander and coworkers proposed using the DLVO
potential even for highly charged particles at low colloid
packing fraction, provided that a renormalized charge is
used [24]. What is now known as Alexander’s prescrip-
tion is a numerical recipe that requires solving the NPB
equation and fitting a DLVO potential sufficiently far
away from the particle, where linearization is appropri-
ate. By integrating the resulting effective potential up
to the colloid’s surface, one obtains an effective charge,
typically smaller than the bare one. In 2003, Aubouy
and coworkers [25] proposed an analytical estimate for
the renormalized charge in the colloid infinite dilution
limit that has shown to be of great value to the commu-
nity and fully agrees with the numerical solutions of the
NPB equation we present in this article. We here limit
to the case of relatively low colloid packing fractions
η = 4πρpa3/3, where ρp is the colloid particle density in
the electrolyte solution and a their respective radius. In
that case, Alexander’s prescription and the analytical
estimate by Aubouy et al.—which is derived for the zero
volume fraction limit η = 0—is expected to hold. In
the more general case, a Wigner–Seitz cell model of the
NPB equation has to be considered, i.e., the potential—
or counter-ion excess concentration—will not decay to
zero but remain at a finite value. The effective charge
then has to be determined self-consistently [26–28]. In
this renormalized Jellium model approach, where the
effective charge is consistent with Alexander’s prescrip-
tion, the DLVO potential is exact in the far field and the
potential of mean force agrees with explicit ion Monte-
Carlo simulations [29].

When the double layers start to overlap (i.e., when
the particles come close together), the typically em-
ployed boundary condition assuming a constant sur-
face charge on the colloid’s surface becomes question-
able as the effective charge density on the surface will be
affected by the electrostatic repulsion of the other parti-
cles. In this case, one must pay attention to polarization
effects, and one cannot assume a homogeneous poten-
tial on the particle’s surface. Whereas several numeri-
cal methods to effectively model the interaction of two
charged spheres exist, they typically rely either on the
approach of constant surface charges [21] or constant
surface potential [30] and often use linearized Poisson–
Boltzmann theory or some other kind of simplifica-
tion. Further approximations appear when the jump of
the dielectric constant between the low dielectric parti-
cles and the high dielectric solvent is included into the

mean-field approximation, such as linearized perturba-
tion theory [31], or introducing a nonlinear dielectric
response into the canonical partition function, resulting
in a dipolar Poisson–Boltzmann equation [32]. Further
complication would arise if one would include the effects
of charge regulation for pH-dependent ion dissociation.
For this field, new analytical results [33–35] and simula-
tion algorithms [36–38] have appeared, revitalizing the
interest in pH-sensitive interaction scenarios. For sim-
plicity, we will not discuss this interesting additional
complication in the present article.

Concerning the case of colloidal particles, the bound-
ary condition at the particles’ surface is in general
unknown. A possibility to determine it is to use continu-
ity conditions and solve Poisson’s equation in the par-
ticles interior [18], but this usually leads to numerical
problems since already tiny inaccuracies in the numer-
ical solution of the Poisson problem can result in large
errors for the total potential. Here, we use an iterative
procedure to determine the correct boundary conditions
and present the solution of the two-colloid problem with
dielectric mismatch, showing that one can use the effec-
tive DLVO potential to model the system using the
analytical estimates of Aubouy and coworkers. In light
of our results, we reinterpret the explicit ion molecu-
lar dynamics (MD) results of Kreer et al. [39] on the
effective charge of a pair of colloids, rendering their
findings less surprising. Examining the impact of the
dielectric contrast between solvent and colloidal par-
ticles, we show that the interaction energy drastically
changes when the Debye layers strongly overlap, such as
is the case for dense suspensions at low salt concentra-
tions. These deviations greatly exceed the inaccuracy
of DLVO approximation and can be explained qualita-
tively in terms of image charges contribution.

2 Poisson–Boltzmann equation with
unknown boundary conditions

When the correlations between micro-ions in a medium
of homogeneous dielectric constant ε can be neglected,
one can describe the system by combining the Poisson
equation with the Boltzmann probability distribution,
resulting in the so-called NPB equation for the reduced
electrostatic potential Φ = eψ/(kBT ). Here, ψ is the
electrostatic potential, e the unit charge, kB Boltzmann
constant, and T the absolute temperature. The NPB
equation takes, in the general case and assuming a sym-
metric monovalent salt, the form

∇2Φ(r) =
1
λ2

sinh Φ(r) − 4π�B

Nc∑

i

Ziδ (r − ri) . (1)

Besides the mobile charges, described at the mean-field
level, Eq. (1) includes the presence of Nc point-like
charges of valence Zi to represent the colloidal charges.
The quantities λ = 1/

√
4π�Bc0 and �B = e2/(εkBT )

denote the Debye and Bjerrum lengths, respectively,
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where c0 is the bulk concentration of the electrolyte
species.

The main problem that one has to face to solve the
NPB equation using finite elements in the presence of
one or more rigid objects (assumed to be imperme-
able to the ions) is that due to the excluded volume,
a discontinuity in the electric field appears at the sur-
face of the objects. In this case, one cannot solve the
NPB equation in a single domain. In principle, one
should solve the NPB equation in the outer region and
the Laplace equation in the inner region, matching the
boundary conditions at the surface of the objects in a
self-consistent way. In practice, the inner-domain solu-
tion is rarely necessary. Therefore, one can reduce the
problem to finding the NPB equation’s solution with
an appropriate boundary condition at the surface of
the colloids.

In the following formulation, we use Neumann bound-
ary conditions, specifying the normal component of the
electric field at the surface, −∇ΦS · n = ES · n = j,
where j denotes the electric field flux through the sur-
face. The key idea is to solve the problem of unknown
boundary conditions by casting the NPB equation into
an implicit form,

ES(r) = −∇ΦS(r) = f (ρ(Φ)) , r ∈ S. (2)

The functional f can take different forms, depending on
the geometry and symmetries in the system that affect
the corresponding Green’s function. Here, Φ and ΦS

denote the potential in the whole domain and on the
boundary surface, respectively, and E and ES are the
corresponding electric fields. Finally, the electric charge
density ρ depends implicitly on the potential Φ within
the mean-field approximation.

The implicit formulation can be written, in the most
general case, as the solution for the Poisson equation
associated with the NPB one:

ES(r) = �B

Nc∑

i

Zie (r − ri)
|r − ri|3

+
1

4πλ2

∫
sinh Φ(r′)

r − r′

|r − r′|3 dr′, (3)

where the term proportional to sinh(Φ) is regarded as
the (unknown) mean-field charge distribution, and the
position vectors ri and r′ can span the whole domain
of the problem.

Equation (3) is the starting point for the itera-
tive approach, which can be implemented using one of
the many available methods [40] including, for exam-
ple, Jacobi, Gauss–Seidel, or successive over-relaxation
(SOR). In the SOR approach, which we use in the cal-
culation presented here, the equation ES = f(Φ) is
approximated to a desired accuracy by generating the
sequence of estimates

E(n+1)
S = αf(Φ(n)) + (1 − α)E(n)

S ,

starting from an arbitrary (usually random) initial
guess of the solution. The relaxation parameter, α ∈
(0, 2), governs the convergence speed. For the numer-
ical implementation, we employed the highly efficient
DUNE framework [41] and rely on DUNE-PDELab
and the GMSH finite element mesh generator [42] for
discretization. The technical aspects can be found in
Ref. [43]. The various parts of our iterative Poisson
Boltzmann solver (IPBS) can be summarized as follows:

1. Assign the value for the flux at any boundary, where
this is known from physical or symmetry reasons.

2. Assign an arbitrary value for the flux at the surface
of the colloids, j

(n)
S .

3. Solve the NPB equation using this boundary con-
dition, and obtain the estimate for the electrostatic
potential in the domain of computation, Φ(n).

4. Compute a new estimate for the electric field on the
boundaries, En+1

S applying Eq. (3) to Φ(n).
5. Iterate steps 2 and 3 until a desired relative accuracy

Δ = max
{

2 |Φn+1
S −Φ

(n)
S |

|Φn+1
S +Φ

(n)
S |

}
is obtained.

The IPBS scheme is easy to implement and of general
applicability since it does not depend on which tech-
nique one uses to solve the NPB equation. One can
reduce the problem of two colloids to a two-dimensional
one by exploiting its symmetry. Working in cylindrical
coordinates (r, φ, z) and aligning the centers of the two
colloids along the z axis, the solution does not depend
anymore on the angle φ, and the NPB equation reads
then

∂2Φ
∂r2

+
∂2Φ
∂z2

=
1
λ2

sinh Φ − 1
r

∂Φ
∂r

, (4)

where Φ = Φ(r, z). Equation (4) is a nonlinear elliptic
equation and can be solved employing standard finite
elements methods [44] on a rectangular (r, z) domain D.
To do so, one needs to determine the unknown bound-
ary conditions at the surface of the colloids and those
on the border ∂D of the domain D. Because of the elec-
trostatic screening provided by the electrolyte, we know
that the electric field should tend to zero far away from
the colloid, and because of symmetry reasons, the nor-
mal component of the electric field has to be identically
zero along the axis passing through the colloid centers.

By introducing a mesh of N nodes located at position
(rj , zj), the implicit solution of Eq. (4) can be written
as

Φ(r, z) = �B

Nc∑

i

Zie

|r − ri|−

− 1
4πλ2

N∑

j=0

Θj sinh Φ(rj , zj), (5)

where

Θj =
∫ 2π

0

dφ√
(z − zj)

2 + r2 + r2
j + 2rrj cos φ

. (6)
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Fig. 1 A typical mesh
used in the finite element
method employing the
symmetry conditions for
spherical particles. The
mesh is highly resolved in
the region close to the
surface of the colloid (void
space around the origin).
The red line corresponds to
the iteratively determined
boundary condition
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In turn, one can express the integrals Θj in terms of the
complete elliptic integral of the first kind [45] K(m) =∫ π/2

0
[1 − m sin2(q)]dq as

Θj =
4√

αj − βj

K

(
2βj

βj − αj

)
, (7)

where q = φ/2, αj = (z − zj)2 + r2 + r2
j and βj =

2rrj . Equations (5) and (7) can eventually be used to
compute the electric field, Eq. (3), on the boundary
S and, therefore, to solve for the unknown boundary
conditions using the IPBS algorithm.

3 Algorithm validation and the two-colloid
problem

Before applying IPBS to the two-colloid case, we tested
it in the single colloid case, still employing the two-
dimensional scheme described so far, to check its imple-
mentation. Although no analytical solution in closed
form exists even for the simple problem of a single col-
loid (see Ref. [46] for a solution in the form of a series),
one can still perform a quite stringent numerical check
by comparing to the solution obtained with the Neu-
mann boundary condition. Indeed, given the symme-
try of the problem, the electric field has to be uniform
on the colloid surface and can, therefore, be estimated
using Gauss law. We have solved the problem of a col-
loid of charge Ze = 50 using a geometrical setup as
depicted in Fig. 1. We place a colloid of radius a = 5λ
in a salt solution with Debye length λ = �B.

We implemented the IPBS algorithm to solve these
two-dimensional problems using the finite elements
method of MATLAB, which uses piece-wise linear test
functions, and in DUNE for two- and three-dimensional
problems using polynomial test functions of higher
degrees. We present the IPBS solution of the single col-
loid problem with unknown boundary conditions and
the relative error with respect to constant Neumann
boundary conditions in Fig. 2, showing that IPBS was

able to recover the correct potential, being by all practi-
cal means indistinguishable from the solution that uses
the Neumann boundary condition. The IPBS algorithm
was tested using different initial configurations for the
electric field at the colloid’s surface and always reached
the convergence criterion Δ < 10−4 within 5–10 itera-
tions.

With the algorithm accuracy assessed, we can now
turn to the problem of determining the potential of two
like-charged colloids. We set up two colloids with charge
Ze = 255, placed at distance x in a medium character-
ized by a Bjerrum length �B = 0.024λ. The mesh setup
for the finite elements calculation has the same topology
as the one presented in Fig. 1. The other boundary con-
ditions remain unchanged: the unknown electric field at
the colloid surface and the Neumann condition of zero
normal field on the remaining linear boundaries.

Figure 3 shows some illustrative potential energy
landscapes obtained with the IPBS algorithm for two
different values of separation x, and colloids of radius
a = λ/3. At large separations, where the Debye layers
have, on average, a small overlap, the electrostatic influ-
ence of one colloid on the other is relatively small, and
the equipotential lines around the colloid are not much
perturbed. However, when the colloids are close, there
is a substantial overlap of the Debye layers that per-
turbs the ion distribution, and the equipotential lines
no longer show the original symmetry.

Within the DLVO description, the electrostatic inter-
action potential between two charged colloids of radius
a separated by a distance x is given by:

VDLVO(x) = Z2
eff�B

(
eκeffa

1 + κeffa

)2

− eκeffx

x
. (8)

However, the validity of the DLVO description breaks
down for highly charged colloidal particles due to non-
linear effects. In their seminal work [24], Alexander et
al. showed, using the cell model, that it is possible to
use an effective interaction of DLVO type also in the
nonlinear case by considering the screening length and
charge as effective parameters, κeff and Zeff . The basic
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Fig. 2 a IPBS solution for the potential around a single
colloid of radius R = 5λ, carrying a positive charge Ze = 50
immersed in an electrolyte solution characterized by a Debye
length λ = �B. The location of the boundary involved in the

iterative procedure is marked in red. b Relative difference
between the solutions obtained with the IPBS algorithm
and with standard finite elements using Neumann bound-
ary conditions

Fig. 3 IPBS solution for the potential of the two-colloid system with radius a = λ/3 and Bjerrum length �B = 0.024λ for
two separations, a x = 10/3λ and b x = 3/4λ. At every isoline, the potential doubles in magnitude

idea is to obtain the effective parameters by solving the
NBP equation for a cell model, exploiting the fact that
the electric field at the cell boundary must be zero by
symmetry. The effective charge density can be obtained
by integration of the counter-ion cloud up to the col-
loidal surface [24]. Here, we will compare the effective
interactions obtained from the IPBS solution with the
analytical approach proposed for the fitting parameters
by Aubouy et al. [25]. We note that Ref. [47] reports
an approximation for the effective screening length.
According to the cell model description presented in
that work, we decided to perform a DLVO fit to our
results only in the region x � a. Obviously, there is
no rigorous way to determine which points to include
in the fit. Therefore, we decided to use windows of dif-
ferent widths and observe the parameters’ convergence.
The values of κeff obtained from the fit always depart
less than one percent from κeff = λ−1, in agreement
with the results of Ref. [47], when the cell packing frac-
tion tends to zero. Because of this, we decided to use
only Zeff as a free parameter, enhancing the stability of

the fit procedure. After a transient phase, the value of
Zeff as a function of the window width oscillates around
an average value, which we choose as our best estimate
for the effective charge of the colloid. We present the
force obtained from the fitting procedure in Fig. 4.

To investigate the validity of the analytical estimates
and the cell model description, we have chosen to per-
form the IPBS calculation for three different values
of the colloid radius, namely a = λ/3, λ, and 5λ/3.
These values lie outside, at the border, and within the
region of validity κa � 1 of the analytical estimates,
respectively, but in all cases, the colloid packing fraction
η < 5 · 10−5 is well within the validity of Alexander’s
prescription [26]. The force between the two colloids
measured as a function of their distance is shown in
Fig. 4 for the three different values of the colloid radius
(squares).
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Fig. 4 Force between two identical spherical colloids of dif-
ferent radii a (symbols) and the results of a best fit to a
DLVO potential, Eq. (8), in the region x � a (lines)

The effective charge can be estimated using the ana-
lytical procedure, as [25]

Zeff =
a

�B

(
4κatZ + 2

(
5 − t4Z + 3

t2Z + 1

)
tZ

)
, (9)

where the bare colloidal charge Z enters via

tZ = T

(
Z�B/a

2κa + 2

)
(10)

and

T (x) =
√

1 + x2 − 1
x

. (11)

We report the corresponding values of Zeff in Table 1,
together with the values obtained from the fit of Fig. 4.
The DLVO potential can appropriately reproduce the
force between two colloids in the far region (x > λ) and
at short distances, where one could expect nonlinear
effects. Moreover, the estimates for the effective charge
Zeff are compatible with the analytical results for the
single colloid in the region of validity of Alexander’s
prescription.

To illustrate the importance of using the effective
boundary conditions obtained by the IPBS algorithm,
we show how these boundary conditions deviate from
the assumption of a constant electric field at the sur-
face in Fig. 5. For a homogeneously charged colloid in

Table 1 Effective charge of an isolated colloid from a fit
to the DLVO potential for the numerical solution and the
analytical approximation

x/λD Zeff (IPBS) Zeff (analytical) Relative deviation (%)

5/3 238.5 ± 0.1 241.4 1.1
3/3 202.0 ± 0.5 208.0 2.8
1/3 99.4 ± 1.0 87.2 13.9

Fig. 5 Relative deviation of the flux as a function of the
angle α normal to the distance vector between the colloids,
calculated using IPBS from the flux compared to an homo-
geneous normal electric field at the colloidal surface, for
different distances x between two colloids characterized by
κa = 1 and a surface charge density Ze/A = 0.001e/nm2

vacuum, the flux of the electric field through a surface
element is given by j0 = 4π�BZe/A, with A being the
surface area of the colloid. One can obtain the relative
deviation by comparing this expression to the effective
boundary condition obtained from Eq. (3), (j − j0)/j0.
Interestingly, the distribution of the differences is not
symmetric but peaked along the connecting axis. For
strongly overlapping Debye layers (κx � 2), the electric
flux on the far side is increased by the presence of the
second particle, whereas the two facing sides feel the
mutual influence up to separations of about κx ≈ 5.
For larger separations, we found that the assumption
of a constant electric field all over the colloid remains
valid as the value of the potential at the boundary is
homogeneous within numerical accuracy.

4 Including dielectric mismatch between
solvent and colloids

Using unknown Neumann rather than Dirichlet bound-
ary conditions allows us to find solutions also in the
presence of a dielectric jump at the interface between
colloid and solvent. Consider a space divided into two
regions by a surface S, whose normal vectors n point, by
convention, outward. The internal and external regions
are characterized by the dielectric constants ε1 and ε2,
respectively. The boundary conditions at S are then

ε2E
in · n = ε1E

out · n. (12)

Here, the field calculated in the proximity of the dielec-
tric discontinuity is Ein when evaluated at the internal
part of S, and Eout otherwise. However, implement-
ing this boundary condition directly in a finite element
method requires the solution of the Poisson problem
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inside the colloidal particle, which is what we avoid
using our IPBS algorithm. The solution to the prob-
lem is to find an equivalent one for the NPB equation
in the outer region but without any dielectric disconti-
nuity. As an example of an equivalent problem, one can
consider the same setup for the outer region but replace
the inner region with one of dielectric permittivity ε1
(instead of ε2) and an induced or image surface charge
density σind [48]. This induced surface charge σind is
an unknown function of position and electric field and
has to be determined for this alternative problem to be
equivalent to the original one.

An implicit relation for the charge density can be
derived as follows. The surface charge is related to the
electric field in proximity to S via the Gauss law:

(
Eout − Ein

) · n = 4πσind/ε1. (13)

We denote the charge density of the induced charges as
σind because a real surface charge density could also be
present. In terms of finite elements k, we can write

Ein
k = Eext

k − 2πσind
k nk/ε1

Eout
k = Eext

k + 2πσind
k nk/ε1, (14)

where Eext
k is the external electric field acting on ele-

ment k, i.e., the contribution arising from all volume
and surface charges on every other element in the grid
but the k-th one.

By combining Eqs. (12) and (13), one gets, for exam-
ple,

Ein
k · nk

(
ε2 − ε1

ε1

)
= 4π

σind
k

ε1
.

By further substituting the expression for Ein that
appears in Eq. (14), one can directly relate the induced
surface charge to the external electric field Eext, as

σk =
ε1
2π

(
ε1 − ε2
ε1 + ε2

)
Eext

k · nk. (15)

Since this quantity implicitly depends on the value of
the induced surface charge density of all other elements
through the external electric field, this equation is an
implicit definition for σind and can be estimated by (yet
another) iterative procedure.

After estimating the surface charges, one can intro-
duce them in the finite element scheme by noticing that
they can be recast in terms of a modified boundary con-
dition,

∂Φ
∂nk

= −Eout
k · nk = −

(
2ε1

ε1 + ε2

)
Eext

k · nk. (16)

For this purpose, we employed a second SOR procedure,
starting from zero induced charge. We found that using
a relatively small value for α ≈ 0.2 allows us to relax
the induced surface charge density simultaneously with

Fig. 6 Force between two identical spherical colloids con-
sisting of a dielectric material with (from top to bottom):
low permittivity (compared to the solvent); same permittiv-
ity as the solvent; and higher permittivity than the solvent.
The solid line is the DLVO force curve obtained with the
analytical estimate for the renormalized charge

the unknown boundary conditions. In this way, the pro-
cedure converges within a few dozen iterations for high
dielectric contrasts (like 1:80 for water–vacuum inter-
faces), making it a highly efficient tool for studying the
influence of dielectric properties.

Figure 6 shows the obtained force–distance curves for
two equivalent colloids with charge Z = 255 elementary
charges and a radius of a = 40 nm for three different
cases, namely the situation where the colloids have the
same dielectric properties as the solvent (no mismatch),
for dielectric spheres with low permittivity (ε1/ε2 =
80), which is the situation e. g. for silica particles), and
for dielectric spheres with high permittivity that have
a ten times higher dielectric constant than the solvent
(an approximation for metallic particles in water). The
salt concentration was chosen again such that κa = 1,
corresponding to 60 μmol salt, and the Bjerrum length
was set to be �B = 0.96 nm.

The following considerations can explain the influ-
ence of dielectric contrast at the colloid’s surface. For
colloids with low permittivity (ε2 � ε1), the induced
charge density will push the electric field lines out of
the colloid. According to Eq. (15), the sign of the
induced charge density will be such that it counter-
acts the source of the external field Eext as previously
defined, i.e., it tries to compensate for the field of the
second particle. As a consequence, the additional force
will be repulsive. Following the same reasoning for the
case ε2 � ε1, where the electric field lines tend to be
more perpendicular to the surface, and the resulting
force will reduce the repulsion compared to the case
without mismatch.

Figure 6 shows the resulting forces for the three dis-
tinct cases together with the DLVO prediction where
the analytical estimate, Eq. (9), has been employed.
The first interesting observation is that for the case
without dielectric contrast, the DLVO force prediction
is fulfilled precisely down to a surface–surface separa-
tion of 0.4λD, i.e., a region where one expects a very
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Fig. 7 Force difference between the IPBS result and the
prediction of the DLVO theory for dielectric, identical
spheres of radius a with κa = 1/3 (empty squares), κa = 1
(filled squares) and κa = 5/3 (shaded triangles). Within
each set, we report three values of dielectric contrast, as in
Fig. 6. The horizontal axis shows the distance measured in
units of the sphere radius. We computed the DLVO poten-
tial using the analytical approximation for the charges. The
dashed line marks ΔF = 0

strong overlap of the Debye layer. This result is some-
what surprising because nonlinearities were expected to
play an important role at these distances. However, it
clearly shows that the concept of charge renormaliza-
tion and the analytical estimate for the effective charge
Zeff are excellent tools to model the problem of two
interacting colloidal particles and that it is perfectly
valid to assume κeff ≈ κ in our fittings above. Further-
more, the polarization contributes significantly only if
the particles have a surface–surface separation of the
order of one Debye length.

In Fig. 7, we report the influence of the size of the col-
loidal particles on dielectric effects by plotting the dif-
ference between the forces calculated using IPBS and
the forces predicted by DLVO theory using the ana-
lytical estimate. Again, we use κa = 1/3, 1 and 5/3,
whereas we measured the separation in units of the
sphere radius. The results suggest that when the sur-
faces are nearly in touch, the DLVO description breaks
down (this is particularly evident for the small sphere,
where the net force is the largest), and at large sepa-
rations, the influence of dielectric effects becomes neg-
ligible. Also, the effect of dielectric mismatches is the
largest for spheres with small radii, κa � 1, whereas
dielectric effects vanish in the limit κa → ∞, where one
can describe the spheres within the Derjaguin approxi-
mation as two opposing flat surfaces.

Therefore, we can expect dielectric effects to con-
tribute significantly in solutions of charge-stabilized col-
loidal crystals [5] and probably even more significantly
for colloids in confinement, a problem that our approach
can address. In such systems, these effects might have
a significant contribution and should be examined fur-
ther, but this is beyond the scope of this article.

5 Discussion

In Ref. [39], Kreer et al. have investigated the influ-
ence of nonlinear effects in the interactions between
isolated pairs of charged colloids using explicit ion MD
simulations. One of their main results was that charge
renormalization seems to fail to describe the interac-
tion between isolated pairs of colloids in the low salt
limit. Here, we demonstrate that our calculations con-
tradict these results, showing quantitative agreement
with charge renormalized DLVO theory.

The MD simulation setup consisted of two colloids
with charge Z = 255 and radius a = 10 nm and mono-
valent salt ions, Zion = ±1 of radius a/100. Using con-
ditions of water at room temperature (�B = 0.71 nm),
the authors varied the number of salt ions in the explicit
simulations in such a way that the total number of ions
ntot in the simulation box was

ntot = Zn′
c + 2ns, (17)

where n′
c is the number of colloids. In our finite element

approach, charge neutrality is automatically fulfilled by
assuming the simulation box to be in contact with a
salt reservoir. This leads to a salt concentration c0 =
ntot/Vbox of our reservoir, whereas for the salt-free case,
we chose the concentration of ions to be negligible, κ →
0, again ensuring intrinsically the net-charge of the box
to be zero. The corresponding inverse screening length
is

κ =
√

8πlB/c0, (18)

and lies between λD = 12.5 nm and λD = 33.33 nm
(see values in Table 2).

In Fig. 8, we show the logarithmic force for the dif-
ferent screening parameters as a function of the col-
loid separation. Solid lines represent the result of a fit
to the DLVO potential, Eq. (8), where both κeff and
Zeff have been used as fitting parameters. In agreement
with our previous studies, we perform the fit only in the
region x > λ/2. We present the values resulting from
the fit in Table 2. The solution of the NPB equation
and the estimated renormalized charge show quantita-
tive agreement, as deviations are only significant in the
limit κ → 0. We can explain these effects by the finite
size of our domain. We checked this by varying the size
of our domain but found the mesh we used initially to
be a reasonable trade-off between computational cost
and numerical stability. We observed deviations from
the DLVO potential shape only at close separations,
x � a < λD, which is expected for strongly overlapping
Debye layers.

In their work, Kreer et al. calculated the effective
charge of the colloid and found it larger than the
bare one. However, such overcharging effects should not
appear within the PB description. In Fig. 9, we compare
the forces between the two spherical particles obtained
from MD simulations data and our NPB solution. At
separations x > 2.5λ, the NPB solution agrees very
well with the DLVO potential. However, also the MD
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Table 2 Salt ion number of the explicit ion MD simulations and corresponding screening parameters used for the NPB
calculations

ns κ κ (NPB) κ (MD) Z�
eff Zeff (NPB) Zeff (MD)

0 0.0333 0.011 0.010 88.3 79.8 110.0
160 0.0425 0.038 0.042 91.7 94.5 131.7
320 0.05 0.046 0.049 94.4 96.3 138.3
640 0.062 0.058 0.051 98.7 97.7 133.1
1280 0.082 0.082 0.060 105.5 105.5 126.1

Also listed are the fit parameters for the screening parameter and the effective charge after fitting a DLVO force to the results
of both approaches. Z�

eff denotes the predicted effective charge according to the analytical estimate. Zeff (MD) denotes the
result from the fit to Eq. (8) reported in Fig. 9

Fig. 8 Force-distance relation (semi-logarithmic scale) of
two colloids at various screening lengths obtained with IPBS
(symbols) and a fit to the DLVO potential (solid lines). The
values ns denote the corresponding equivalent number of
explicit salt ions in the simulation box. For clarity, the val-
ues for salt concentration ns = 0, 160, 320, and 640 are
shifted vertically by 4, 3, 2, and 1 units, respectively. Fits
are performed for x/λ ≥ 3

Fig. 9 Mean force acting between the two colloids calcu-
lated with IPBS (filled symbols), MD simulations [39] (open
symbols), and respective fit to the DLVO potential for the
IPBS (solid lines) and MD results (dashed lines). For clarity,
we shifted each data set along the vertical axis by multiples
of 15 units

Fig. 10 Effective charge obtained using the NPB solution
and the MD simulation results. The solid line shows the pre-
diction of the analytical estimate by Aubuoy and coworkers
[47]. The dashed takes into account the effective radius of
the soft-core MD simulations

simulations can be nicely described by effective DLVO
interactions. Table 2 shows all our fitting parameters.

Explicit ion simulations for monovalent salts for mod-
erate charge densities have proven to agree very favor-
able with the results of PB theory [49,50], so, here we
set out to understand if these deviations could be arti-
facts of the MD simulation. In Fig. 10, we calculate the
effective macro-ion charge as a function of the salt con-
centration, according to Fig. 3 in Ref. [39]. However,
we found that in their work, Kreer et al. did not com-
pute the effective charge Zeff of a DLVO interaction,
but rather the factor

Z ′ =
exp (κa)
1 + κa

Zeff (19)

appearing in Eq. (8). Considering this different prefac-
tor, the effective charges Zeff (MD) published in Ref.
[47] agree with the values obtained from our fit and
reported in Table 2 in the last column. Additionally,
in Fig. 10, we show the values of the effective charge
obtained that way are always less than the bare charge
of the colloidal particles, confirming the validity of
charge renormalization for these systems.

Still, the significant differences between the solution
of the NPB equation and the results of MD simula-
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tions call for a more in-depth analysis. In particular,
one should consider the presence of repulsive contri-
butions between finite-sized macro- and micro-ions of
the model interactions used in the MD simulations. In
detail, Kreer et al. had chosen an exponentially decay-
ing interaction of the form

Uαβ(x) = Aαβ exp (−Bαβ(x − σαβ)/σαβ) , (20)

with α and β denoting the different ion species and
σαβ = aα + aβ being the contact distance of the ions.
In the NPB calculation, we can take this additional
macro/micro-ion interaction also into account. Given
the parameters specified in Ref. [39], ACC = 1.84 eV
and BCC = 3.0, this potential decays rather slowly. We
found that at a separation x = 1.5a, the interaction
energy is still more than 16 kBT . At these energies the
picture of hard spheres of radius 10 nm, as employed by
the description within a cell model surely breaks down.

Here, we map the soft-core short-ranged pair poten-
tials onto effective hard-sphere diameters using the
Barker–Henderson (BH) scheme [51],

a� = 1/4
∫

dx [1 − exp(−βUCC(x))] , (21)

resulting in an effective colloid radius of about 13.13 nm.
We used this approximation to calculate again the effec-
tive charge, as reported in Fig. 10 using a dashed
line, obtaining a greatly improved agreement with
the MD simulations results. Of course, this is only a
rough approximation, as it does not account for non-
electrostatic effects caused by interactions between ions
and between ions and colloids. In conclusion, our results
support the hypothesis that this additional interac-
tion is largely responsible for the discrepancy observed
between the MD and the NPB equation results. Addi-
tionally, our data also suggests that it is meaningful to
approximate the interactions in these colloidal systems
with the DLVO potential using appropriate mappings
for the effective radius and the analytical estimate for
the effective charges.

6 Conclusions

In our contribution, we have addressed the problem
of the interaction between two charged colloids in an
electrolyte solution using the IPBS approach, which
can determine the proper boundary conditions for the
NPB equation in a self-consistent way, and addition-
ally accounting for the effect of a dielectric mismatch
between colloid interior and solvent. After validating
our approach with the single colloid case, we showed
that the DLVO theory can correctly describe the effec-
tive interaction between isolated pairs of highly charged
colloids nearly independently of the salt concentra-
tion, despite previous reports [39] claiming the oppo-
site. Nonlinear effects show up only at distances where
the Debye layers overlap significantly. In this regime,

dielectric effects play an important role, leading to an
additional repulsion (with respect to the case without
contrast) for typical dielectric permittivity values. The
dielectric repulsion is more pronounced for small col-
loids, vanishing in the limit of spheres with an infinitely
large radius. Our IPBS method can also be used for
charge-regulated boundary conditions which is left for
future investigations.
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