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1. Introduction

Sensing technologies made from stretchable materials can
revolutionize wearable devices and robotic systems.[1–4] They

provide a route to sensorize arbitrarily
shaped bodies conformably without affect-
ing their natural dynamics. Numerous
technologies and novel smart materials
are used to design these soft sensors,
including channels of conductive liquids,[5]

elastomeric composites with conductive
fillers,[6,7] conductive yarn,[8] embedded
air channels,[9] capacitive technolo-
gies,[10,11] and optical sensing.[12,13]

However, almost all these soft sensing
technologies suffer from complex nonlin-
ear properties, making them difficult to
model. Additionally, as these sensors
conform to the body of the user or the
robot, their behavior is further dictated
by the motions of the body itself. Hence,
developing soft sensor designs optimized
for specific tasks is still challenging.

Learning-based approaches can be used
to model the nonlinear behavior of the sen-
sor after installation.[14–18] However, the
blackbox nature of these models makes

them ineffective for any design purposes. A combination of
body deformation models and simple sensor models has
been used to optimize sensor morphologies, but the sim2real
error gap is high in these cases.[19–22] Culha et al. and Tapia
et al. used finite-element models to develop deformation models
of the sensing body and planned optimal sensor placement for
proprioceptive tasks.[19,21] However, the sensor models were
simplistic, without consideration of the nonlinear material
properties and the sensor–sensing body interaction. Yang et al.
used learning-based approaches to develop design models of soft
sensingmaterials to develop optimized strain sensors.[23] However,
in this case, the deformations of the sensing body were ignored.

Developing multiple complex models of the sensor, the
sensing body and their interactions is a challenging task. In such
cases, direct optimization in the real world is an alternate
solution relying on large-scale physical experimentation using
robotic technologies.[24–28] For direct optimization of soft sensing
technologies, several interconnected components are required: a
process for automated sensor fabrication and placement; smart
materials that enable this fabrication process; and algorithms to
test and optimize the designed sensors. In this work, we use 3D
printing for sensor fabrication and closed-loop sensor placement,
as shown in Figure 1. A gelatin-based soft sensor is used for
printing the soft sensors on to the sensing body.[29] Gelatin-based
hydrogels have recently been gaining interest in the field of soft
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Soft sensing technologies provide a novel alternative for state estimation in
wearables and robotic systems. They allow one to capture intrinsic state
parameters in a highly conformable manner. However, due to the nonlinearities
in the materials that make up a soft sensor, it is difficult to develop accurate
models of these systems. Consequently, design of these soft sensors is largely
user defined or based on trial and error. Since these sensors conform and take the
shape of the sensing body, these issues are further exacerbated when they are
installed. Herein, a framework for the automated design optimization of soft
sensors using closed-loop 3D printing of a recyclable hydrogel-based sensing
material is presented. The framework allows direct printing of the sensor on the
sensing body using visual feedback, evaluates the sensor performance, and
iteratively improves the sensor design. Following preliminary investigations into
the material and morphology parameters, this is demonstrated through the
optimization of a sensorized glove which can be matched to specific tasks and
individual hand shapes. The glove’s sensors are tuned to respond only to
particular hand poses, including distinguishing between two similar tennis racket
grip techniques.
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robotic sensors because of their low cost, ease of fabrication,
biodegradability, and printability.[30,31] Based on a previous work,
we adapted a self-healing ionic gelatin-based hydrogel for better
printability while maintaining its electrical properties.[32] The
material is biodegradable and recyclable, making it a sustainable
technology for large-scale physical experimentation.[33] The sen-
sors are directly printed and optimized on a wearable glove for
human motion tracking. Soft sensors for wearable devices have
been extensively researched, with numerous technologies[34–36]

and use cases listed in literature.[37–40] As the sensor
properties depend on the morphology of the user and the relative
morphology of the sensor, optimal sensor configurations are
user specific. In such cases, a sensor development framework
that allows fabrication of the sensor on the sensing body with
feedback and a process for evaluating and improving the sensor
design is vital.

The contributions of the article are as follows. 1) A repeatable
and quick sensor fabrication setup was developed with a combi-
nation of 3D printing and a color and depth (RGB-D) feedback.
2) A recyclable hydrogel-based mixture is presented for high-
quality printing, and its electric and mechanical properties were
investigated. 3) A closed-loop optimization protocol is proposed
for real-world optimization of the sensor morphology, incorpo-
rating uncertainties in real-world sensor data.

Material selection and characterization is presented in
Section 2.1 and 2.2, respectively. The basic morphology of the
sensor is investigated to confirm the repeatability of the sensor
and determine the input parameters of the optimization in
Section 2.3. The optimization results and discussion are
described in Section 2.4. Further, we discuss the limitations
and future direction in Section 3. Finally, detailed experimental
setups are explained in Section 4.

2. Results & Discussion

2.1. Material Selection: Printability

To reliably and repeatably print customized sensor shapes using
Figure 1’s setup, we must first tune the hydrogel’s material
properties to match its application;[41,42] If the viscosity is too
high, the material cannot be extruded from the nozzle, while
low-viscosity materials do not maintain their shape after printing.

The hydrogel described by Hardman et al.[32] with no extra
additives achieves a printable viscosity around 40∘C. However,
the viscosity quickly decreases with temperature, as indicated
around Figure 2a’s qualitative point “A.” At lower temperatures,
the viscosity increases due to gelation: by point “B,” the material
does not extrude reliably, leading to noncontinuous print lines.
The dotted lines indicate that the material is mostly a gel and is
difficult to print. In addition, the addition of salt for conductivity
enhancement lowers the gelation temperature and causes these
effects to occur at or near body temperature (light blue line),
which is undesirable for our applications. The amount of salt
is represented as a mass ratio to the gelatin (gelatin:NaCl= 1:x),
the effect of which is further explored in Section 2.2.

To counter this effect and increase the viscosity of the sensor-
ized hydrogel, cornflour, a corn kernel-based starch, was added to
the x= 0.2 composition.[43] The amount of cornflour is also
expressed as a mass ratio (gelatin:cornflour= 1:y). With
y= 0.5, the composition had appropriate printability around
38 ∘C, but demonstrated a low range of printable temperatures
(dark green line, quickly reaching point “C” if temperatures were
not carefully controlled). Increasing the ratio to 1.0 shifted the
viscosity to the fine print zone over a much larger temperature
range (light green, point “D”). This composition appears to be a
suitable compromise: we ensure that cornflour’s addition is
not detrimental to the material properties in Section 2.2.
Additionally, extruding such low-concentration starch mixtures
has a shear-thinning effect at low shear rates,[44] which is
beneficial for nozzle-based 3D printing resolutions.[45,46]

The fact that the hydrogel sensor is remoldable provides
several advantages to our 3D printing system. It allows us to
precisely control the gelation process by varying the temperate.
A fast-curing silicone-based sensor would need additional
mechanisms (like UV curing) or precise timing control to do
the same thing. We do not encounter nozzle blockage as the
gelation is reversible. Additionally, the sensor properties are
highly desirable when compared to silicone-based sensors,
providing high conductivity and linear response.

2.2. Material Selection: Characterization

Having identified the benefits of salt and cornflour in Section 2.1,
we next investigate their effects on the hydrogel’s baseline resis-
tance and mechanical properties. In particular, the thin sensor
morphologies required in this application must not result in
too high a baseline resistance, since this would increase the effect
of noise on our data acquisition system. All soft sensors will
exhibit viscoelastic behavior and hence would have some delay
in physical response to the applied stimuli. The conductive
mechanism is purely Ohmic and would not get affected by
the viscoelastic behavior of the material, but will get affected

Figure 1. Closed-loop physical optimization process of the printed sensor.
Our system uses closed-loop visual feedback to drive the 3D printer
trajectory and a closed-loop optimization routine to iteratively improve
the sensor shape. A modified 3D printer deposits a sensorized hydrogel
onto the surface of a gloved hand, the location of which is identified with
an RGB-D camera. The morphology of the sensor is tuned using Bayesian
optimization.
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by the geometric changes in the material. In this study, we are
ignoring the response time of the sensors.

Figure 2b shows how the baseline resistance of otherwise
identical samples varies with salt content: this reduced 10� with
0.1 salt, stabilizing at �0.3. This is highly beneficial for our sen-
sorized applications, but must be balanced with other material
properties: above 0.25, the gelation temperature (45–50 °C) is suf-
ficiently lowered so as not to set at room temperature. As such,
x= 0.2 was selected as a compromise for further investigations.
Figure 2b also shows the effect of time: the resistance increased
gradually over a number of days: we later see that this does not
affect the sensor’s relative response.

Figure 2c shows the effect of cornflour on the x= 0.2 hydrogel
baseline resistance. Though the resistance can be seen to tend
marginally upward within our selected range, this was dwarfed
by the effect of time and salt, and thus the composition with the
best printability (Section 2.1) is selected. This results in a hydro-
gel with mass ratio 1:1.5:2.5:0.2:0.2:1.0 of gelatin, glycerol, water,
citric acid, salt, and cornflour, respectively.

Given this selection, Figure 2d shows the relationship between
the strain and relative resistance change. Two ages of sample
(after 1 and 10 days) were strained until fracture. The 10 days
samples could withstand up to 310% strain, while those of
1 day achieved 166%. The resistance values increased almost

linearly with strain, with very similar gradients between the
two sample types. Indeed, since the expected strains for printed
glove applications do not exceed 100%, all samples operate
within their closely matching and nondamaged states.

To demonstrate the sensor performances within this range,
Figure 2e plots the response of a “1 day” hydrogel to applied
strain trapezoids of 30% and 100%. Both demonstrate minimal
drift and high repeatability: the 30% values vary by 7.4% of the
baseline resistance over 10 cycles, while the 100% values change
by just 2.7% over six cycles. Some small relaxation effects are
visible upon release of the 100% strains, though these last only
a few seconds before returning to the baseline resistance.

Using data from Figure 2, Table 1 compares the selected com-
position with a variety of hydrogel and nonhydrogel alternative
sensorized materials for wearable applications. It can be seen
that the printable material has a relatively high gauge factor
compared to materials capable of similar strains, while
remaining low cost and minimally toxic.

2.3. Sensor Morphology

Having selected a suitable composition of hydrogel in
Section 2.2, a number of preliminary printing tests are conducted
to explore the morphological parameters which best control the
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Figure 2. Characterization of the hydrogel. a) Printability of the compositions: to print with a reasonable quality, the material must maintain a specific
viscosity range. b) Change in measured resistance with salt and time. c) With 0.2 salt, change in measured resistance with cornflour and time. d) Relative
change in resistance with strain of the selected composition, after 1 & 10 days. e) Response repeatability: relative change in resistance of the selected
composition under 30% & 100% applied trapezoidal strains.
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resistive response of a printed glove sensor. The basic test is illus-
trated in Figure 3a: a “u-shaped” sensor is printed onto the ring
finger of a gloved hand, and the resistive response is visibly
changed as the hand is moved between the “base,” “middle,”
and “full” poses.

Whilst the base resistance of the sensors is dependent on the
thickness, Figure 3b shows how the u-shape’s thickness has little
effect on the relative sensitivity, which we define as the relative
change in resistance (RCR) between the “base” pose (p1) and
“full” pose (p2).

RCR ¼ Rp2=Rp1 (1)

Since the thickness of the sensor can be slightly different in
each print, this feature helps maintain sensor repeatability. In
contrast, Figure 3c shows the effect of 7 sensor morphologies
on the RCR, which varies from 1.13 (wide u-shape) to 1.23 (thin
u-shape). This stems from the 3D shape of the fingers: thin sen-
sors which lie along the back of the finger are stretched more
than wider sensors which are positioned along the side of the
finger. Indeed, the same effect is seen in the purple bars, which
show the RCR between the “middle” and “base” poses as p2 & p1.

Serpentine patterns are commonly used in strain sensors.
However, in this experiment, these “W” shapes gave lower
RCR values than the thinnest U-shape, since the outermost lines

lay along the side of the finger. Similarly, the sinusoidal pattern
could not outperform the U-shape. Thinner patterns would
interfere with the printability thresholds set in Figure 2a, and
thus U-shapes are chosen as the optimization loop’s basis. By
applying these shapes to the thumb, which has a wider range
of movement, and allowing a number of parameters to vary
(Section 2.4), we look to optimize for sensitivity to specific
motions while minimizing sensitivity to others. Since the sensi-
tivities vary with their relative printed position on the hand’s 3D
shape, we expect the optimum solution to vary with the user and
hence provide a method for quickly optimizing a custom sensor
morphology to the user’s hand.

2.4. Closed-Loop Optimization

The closed-loop Bayesian optimization which we employ is com-
posed of a computation phase and real-world phase (Figure 4a).
This optimization process starts with setting the target motions
of the finger, that is., which motions the final sensor should or
should not be sensitive to. Given these motions, the computation
phase suggests an initial sensor shape, which is printed onto
the user’s hand in the real-world phase. The performance
of the physical sensor is evaluated and assigned a score
(Section 4.3), which is returned to the optimization
algorithm to propose a new shape. The process is repeated until

Table 1. A comparison of the selected composition with other soft piezoresistive materials suitable for wearable applications. Partially based on data from
another study.[50]

Sensor type Gauge factor Maximum strain 3D printability Material toxicity

K-carrageenan/PAAm[51] 0.63 1400% Bioprinting High

DMA/SDS/NaCl (NaCl nanoparticles)[52] 1 200% Ink Extrusion Medium

Gelatin and tannic acid[53] <1 1500% No Low

PAA/nano barium ferrite[54] 1–3 100% No Some

CNT/Borax/PVA[55] 1.51 1000% No Medium

Stick on sensors[56] 2–3 400% No Low

Cellulose ionic hydrogels[57] 0.3 126% No Organic

Carbon-filled gelatin hydrogels[50] 2.5 320% Extrusion Low

EGaIn skin[5] 3.93 250% No Low

ZnONWs–PDMS[3,58] 114 50 No Medium

Natural rubberþ acetylene black[59] �0.8 180% Stereolithography Low

Selected composition (This work) 2.7 310% Extrusion Low

(a) (b) (c)

Figure 3. Repeatability of the sensor. a) A U-shaped sensor printed on one finger responds to three hand positions. b) Minimal effect of a U-shaped
sensor’s thickness on its resistive response. Thickness is represented as ratio to the thickest sensor. c) Effect of sensor morphology on relative resistive
response of the three hand positions.
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convergence; the use of Bayesian Optimization enables us to
obtain reasonable solutions within �20 iterations with uncer-
tainty measures.

By coupling this process with the selected hydrogel composi-
tion and printing process, the printed sensor can be tested almost
immediately after fabrication. The sensor is adhesive enough to
stick to the rubber glove, but can also be manually peeled off
within 30 s (see attached Supporting Information video). If
needed, higher adhesive forces can be generated using textured
gloves. Coupled with the hydrogel’s thermoreversibility, this
facilitates straightforward recyclability.

The optimization’s input parameters were selected based on
the results of Section 2.3 to ensure the widest variability, illus-
trated in Figure 4b: offset, width, angle, start point, and end
point. The width and offset are associated with the relative posi-
tion of the sensor, while the start point, end point, and angle
determine whether the sensor covers the joints of the finger.
These five inputs are scaled to be continuous values ranging
from 0 to 1, defined in Section 4.3. In this process, only the
thumb was the object of sensing. Due to the complexity of the
thumb mechanism, it is not intuitive to predict the appropriate
morphology of the sensor for sensing the thumb. For the other
fingers, on the other hand, the appropriate sensor morphology
can be easily estimated based on Figure 3c.

To define the output evaluations, two target applications are
proposed, using the poses shown in Figure 4c. In the first, we
look to maximize one sensitivity while minimizing another:
namely, finding a point on the Pareto curve which responds max-
imally between poses 3!1 and minimally between 2!1. The
second focuses on differentiating between different styles of ten-
nis grip, aiming to maximize the resistance ratio between
Western and Eastern grips (poses 4 and 5, respectively).

This closed-loop optimization can converge to one specific
hand, but its offset sensitivity suggests that the results would
not necessarily transfer to a differently sized hand, requiring
the process to be matched to not only the task but also the indi-
vidual. To demonstrate this, Figure 4d compares the differences
in output between two experimenters, for the hand poses
associated with experiment 1. Glove A is the optimal shape
for the first user and glove B is the optimal design for the second
user, while glove C is one of the suboptimal shapes. We see that
the sensor patterns do not transfer: while glove A is the best for

experimenter 1, glove B is the best for experimenter 2 and glove
C is the worst for both experimenters. Hence, the optimization
process is personalization to each user rather than a global
optimal solution.

To begin, the optimization was performed for a single person,
so that the hand shape stayed the same throughout. The results
of the first target application (maximizing pose 3’s sensitivity
while minimizing pose 2’s) are displayed in Figure 5.

The first ten iterations in Figure 5a’s optimization parameters
were randomized. Until iteration 15, some input parameters
searched the next point in a limited range. Beyond this, the
parameters quickly converged and Figure 5b’s output metric
sharply increased, reaching �3� its starting value after 20 iter-
ations. Simultaneously, the uncertainty decreased steadily after
iteration 15. We see from Figure 5c’s scatter plots that this cor-
responded to the identification of high scoring clusters within
the parameter space. Though significant areas are unexplored,
this local maximum was found quickly and successfully within
the physical iteration space; it is infeasible for a user of the glove
to wait until a global maximum is identified. Longer optimization
routines can however be performed for robotic systems.

The maximum output was 1.61 in iteration 20. Figure 5d
shows the optimization’s success via the raw sensor signals:
the gap between Rp1 and Rp2 is much smaller than that between
Rp1 and Rp3. In contrast, the glove of iteration 1 had the lowest
output, and the gap between Rp1 and Rp2 is greater. The shape of
the sensors provides an insight into the key aspects of such sen-
sitivity: iteration 20’s sensor curves to extend into the interdigital
space between the thumb and index finger, which the first iter-
ation’s sensor avoids altogether. This area undergoes significant
deformations when the thumb moves and thus plays an impor-
tant role in the proprioceptive sensing.

Figure 6 shows the results of the second optimization task:
distinguishing between the two racket grips. The parameters
quickly converge after an n= 10 random process, while the
uncertainty peaks at 0.62 during exploration before decreasing
during convergence. Simultaneously, the measured outputs
trended upward. Compared with experiment 1, the ranges of
exploration were not wider, as shown in Figure 6c. The maxi-
mum output was found to be 0.105 in iteration 18, while the min-
imum value was 0.013 in random input 5. The significant
difference in the gaps can be seen in Figure 6d. Since the

(a) (b) (c) (d)

Figure 4. Physical optimization process. a) The closed-loop Bayesian optimization process, which occurs both physically and computationally. b) Input
parameters. c) Target poses, used to evaluate each physical sensor’s output value. d) Comparison of three gloves (A, B, and C) tested on two different
people. The sensor lines are highlighted because the sensors are transparent.
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optimized sensor covered the interdigital space between the
thumb and index finger, the area’s importance is identified.

3. Conclusion

In this work, we present a framework for the closed-loop design
optimization of soft sensors via 3D printing. A sensorized recy-
clable hydrogel is printed onto customizable gloves which can be
tuned to match both specific tasks and hand sizes, using real-
world measurements coupled with Bayesian optimization. We
investigate material compositions, conditions, and 3D tracking
techniques to maximize the sensorized hydrogel’s repeatability,
printability, and response characteristics. By optimizing through
a few real-world iterations, we avoid the reality gap faced by
modeling difficulties and provide a feasible method of tuning
sensors to personalized applications over 20 tests. This feasibility
is demonstrated through two real-world optimizations, for selec-
tive sensitivities and sport grip detection. Our results show that

the proposed framework allows for individualized sensor designs
for bespoke applications while taking into account uncertainties
introduced by real-world data. In addition, since the hydrogel can
be peeled off from the glove and remelted, the entire process can
be performed with no waste and is completely recyclable. Future
work will aim to increase the speed of each iteration to further
streamline the process, utilizing automated testing, tuning
of starting parameters, and fine-scale temperature control.
Currently, we still rely on manual processes for wiring the
sensors and removing the sensors from the gloves. This is
why we employ low-data intensive optimization algorithms.
We expect automation of this process to be our next challenge
and could significantly improve our design pipeline. Another
direction to investigate is the use of alternate electrolytes like
ammonium nitrate (NH4NO3), sodium bicarbonate (NaHCO3),
or potassium iodide (KI) for improved printing performances.
With these adjustments, the framework can be applied to numer-
ous real-world soft sensors and grippers, enabling straightfor-
ward task customization in future sensor designs.

(a)

(c)

(d)

(b)

Figure 5. Optimization results of experiment 1. a) Input parameters. b) Output and uncertainty. c) Distribution of the input parameters and output
values. d) Time series responses for the sensors from iteration 1 and iteration 20.
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4. Experimental Section

Printing Framework: The automatic 3D printing framework enables
repeatable and quick prints and was built on a modified Creality CR-20.
The hotend was replaced with a Wiiboox LuckyBot 3D Printer Food
Extruder, which held the hydrogel at 38° C during printing. A cylinder,
whose diameter was 30mm, was attached to the nozzle, and the material
was extruded via a stepper motor. To provide an initial datum for the Z
(vertical) offset, the printer’s leveling sensor (BLTouch) was repositioned
at the same height as the modified nozzle. To provide further z data of the
3D surfaces, an Intel RealSense RGB-stereo camera was fastened to the
top of the printer. This camera is used for two purposes: hand detection
and height measurement. Hand detection is done to identify the position
of the user’s glove on the print plate, using the open-source Mediapipe
library.[47] Based on the identified finger joints, a Python script generates
G-code files which are sent to the printer via Pronterface. These files incor-
porate depth information from the camera, such that the nozzle’s distance
from the hand remains fixed throughout the print. This function highly
contributes to the enhancement of print quality: with this combination
of control, material selection, and line thickness. The minimum distance
between two lines was limited to 7mm to avoid contacts between the
lines.

There were some steps involved in the automatic generation of the
G-code files. In the first step, the sensor’s morphological parameters were
defined manually or proposed by the optimization (Section 4.3). With
these defined, the system scanned the position of the gloved hand, return-
ing the measured locations of the finger joints. Based on these landmarks,
the computer calculated the X–Y coordinates of the sensor and the
corresponding nozzle trajectory. The measured depth information was
also incorporated: the local height of the gloved hand was calculated
by subtracting the depth value from the known distance between the cam-
era and the print plate. Before output, the coordinates were transformed
from the camera’s pixels to printer’s buildspace, and extrusion speeds/
rates were defined. Finally, the print started following the G-code, printing
the desired morphology onto the user’s hand. Finally, conductive threads
were manually put on two ends of the printed sensor and were covered
with the hydrogel.

Fabrication & Characterization: The sensorized hydrogel printed in this
work was based on that proposed by Hardman et al.,[32] with adjusted
ratios and including cornflour as a thixotropic thickening additive. As
described in Section 2.1, the mass ratio of gelatin, glycerol, water, citric
acid, salt, and cornflour was selected as 1:1.5:2.5:0.2:0.2:1.0 to maximize
the sensitivity and printability. Fabrication follows the steps in ref. [32],
with cornflour first dissolved into the water: this was mixed with the gelatin

(a)

(c)

(d)

(b)

Figure 6. Optimization results of experiment 2. a) Input parameters. b) Output and uncertainty. c) Distribution of the input parameters and output
values. d) Time series responses for the sensors from iteration 5 and iteration 18.
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powder and bloomed for 5 min before the other components were added,
and the mixture was heated in a water bath at 60 °C for 4 h. Long-term
experiments were demonstrated in a previous work and showed the
robustness of the material over long durations.[32] The hydrogel material
was however still affected by environmental factors and reached an equi-
librium with the ambient humidity and temperature. This could be mod-
eled and compensated using data-driven methods using redundant sensor
configurations.[48] To investigate the print qualities in Figure 2a, the differ-
ent compositions were printed on a glove at 5° C intervals from 30 to
45° C. The print speed were held constant (5 mm s�1). The qualitative
printability evaluation was based on the amount extruded, “spread” after
printing, and cleanness of the lines.

Figure 2b,c’s baseline resistance testing was compared using samples
produced by casting into dog-bone molds 70mm long and 5mm high.
Values were measured using a Keysight E4980AL LCR meter at 1.0 kHz.

Figure 2d,e’s mechanical test samples were cast into 100mm dog-bone
samples and tested using a Universal Robots UR5 robotic arm. One end of
the sample was secured to the table using a clamp, and the other end was
pulled at a constant velocity of 2 mm s�1 by the UR5. The resistance was
measured using the LCR meter at 1.0 kHz, as were all subsequent tests
performed on the sensorized gloves.

Optimization Process: This section provides further details of the
closed-loop optimization process presented in Figure 1 and 4a.
Bayesian optimization is implemented using Python’s GPyOpt.methods
package. When presented with the output of the previous iteration,
new morphological parameters (Section 2.3) were proposed and printer
G-code automatically generated. The only manual steps in the closed loop
were the hand pose measurements. In measurement, the LCR meter’s
probes were joined to conductive threads, which were adhered to the ends
of the printed sensor. Each sensor was left at room temperature for 10min
after printing before testing occurs.

Each parameter was scaled to range between 0 and 1, as described in
Table 2. The point at which the angle of the line changes was set on the MP
joint.

The acquisition function is a key component of Bayesian optimization.
We selected expected improvement (EI) as the basis of our function due to
its widespread use and balance of exploitation and exploration.[49]

During Section 2.4’s first optimization, the function must reflect rela-
tive insensitivity between pose 1 and pose 2, and sensitivity between pose
1 and pose 3, that is, the output parameter should be small when the gap
between pose 1 and pose 2’s responses is significant, and should be large
when the gap between pose 1 and pose 3 is significant. We implemented

Y1 ¼ jRCRp1�p3 � 1j
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jRCRp1�p2 � 1j
q

(2)

where RCRp1�p2 and RCRp1�p3 was the resistance change ratio between
pose 1 & 2 and 1 & 3, respectively

RCRp1�p2 ¼ Rp2=Rp1 (3)

RCRp1�p3 ¼ Rp3=Rp1 (4)

The square root prevents the denominator from dominating the
response.

For the second optimization task of Section 2.4, the same experimenter
wore each printed glove while switching between Eastern and Western
grips of a tennis racket. To detect the difference, an acquisition function
was chosen to reflect significant differences in baseline response between
the two poses

Y2 ¼ Rp4=Rp5 � 1 (5)

where Rp4 and Rp5 are the resistance in Figure 4’s poses 4 & 5.
Appropriate ethics and consent procedures were followed for all

experiments involving human participants.
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