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Abstract: The pandemic of COVID-19 and its widespread transmission have made us realize the
importance of early, quick diagnostic tests for facilitating effective cure and management. The primary
obstacles encountered were accurately distinguishing COVID-19 from other illnesses including the
flu, common cold, etc. While the polymerase chain reaction technique is a robust technique for the
determination of SARS-CoV-2 in patients of COVID-19, there arises a high demand for affordable,
quick, user-friendly, and precise point-of-care (POC) diagnostic in therapeutic settings. The necessity
for available tests with rapid outcomes spurred the advancement of POC tests that are characterized
by speed, automation, and high precision and accuracy. Paper-based POC devices have gained
increasing interest in recent years because of rapid, low-cost detection without requiring external
instruments. At present, microfluidic paper-based analysis devices have garnered public attention
and accelerated the development of such POCT for efficient multistep assays. In the current review,
our focus will be on the fabrication of detection modules for SARS-CoV-2. Here, we have included a
discussion on various strategies for the detection of viral moieties. The compilation of these strategies
would offer comprehensive insight into the detection of the causative agent preparedness for future
pandemics. We also provide a descriptive outline for paper-based diagnostic platforms, involving the
determination mechanisms, as well as a commercial kit for COVID-19 as well as their outlook.

Keywords: COVID-19; diagnostics; POC testing devices; SARS-CoV-2; viral sensor

1. Introduction

The rapid global transmission and evolution of the novel coronavirus, known as
SARS-CoV-2, leading to the outbreak of COVID-19 and subsequently declared as a global
pandemic, have had profound effects on the lives of countless individuals worldwide [1,2].
This unprecedented situation has resulted in significant disruptions in healthcare, economy,
and society [3]. Reflecting upon past events, previous outbreaks of infectious diseases
like severe acute respiratory syndrome (recognized as SARS-CoV), as well as Middle East
respiratory syndrome (recognized as MERS-CoV), have indeed caused notable social and
economic consequences. However, these have not posed a comparable stage of danger to
humanity as the COVID-19 pandemic [4,5]. Coronaviruses (CoV) are a type of enveloped
virus characterized by their large size, positive-sense RNA genome, and non-segmented
single-stranded RNA structure. Their genome length typically ranges from 26 to 32 kilo-
bases [6,7] (Figure 1A). The classification of the taxonomy of coronaviruses (CoVs) has been
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performed by the International Committee on Taxonomy of Viruses (ICTV) recently, as
part of the order Nidovirales, specifically within the family Coronavirideae. Within the
subfamily of Coronavirinae, there are four major genera: Beta and Alpha coronaviruses
that primarily cause infections in mammals, while Delta and Gamma coronaviruses mostly
cause infections in birds. There are currently thousands of mutants of identified human
CoV known to cause various infections such as respiratory, gastrointestinal, liver, and
neurological diseases [8] (Figure 1B). Various SARS-CoV-2 mutations have arisen on a
global scale, with certain strains displaying heightened transmissibility or a potential to
resist antibodies. Notably concerning are variants like Alpha, Beta, Gamma, Delta, and
Omicron, which have been linked to more severe clinical presentations [9]. The emergence
of new strains of coronaviruses in humans seems to occur periodically, primarily due to the
widespread prevalence of coronaviruses, the increase in human–animal interactions, their
high genetic diversity, and the frequent genome recombination [10,11].

In recent times, coronaviruses (CoV) have emerged as significant pathogens responsi-
ble for the outbreak of respiratory diseases, including Middle East respiratory syndrome
(MERS) in 2012 as well as severe acute respiratory syndrome (SARS) in 2002. A novel
CoV called SARS-CoV-2 was recognized in cases of pneumonia in Wuhan, Hubei Province,
China, in December 2019. This virus later became known as Coronavirus Disease 2019,
i.e., COVID-19. In March 2020, the declaration of a pandemic, i.e., the COVID-19 outbreak,
was announced by the World Health Organization (WHO). So far, COVID-19 has affected a
staggering number of over 512 million individuals, resulting in approximately 6.2 million
deaths [12–14]. While some drugs have received approval for COVID-19 treatment, there is
currently no consensus on a widely applicable therapeutic regimen. Remdesivir is a type
of antiviral medication designed to hinder the RNA-dependent RNA polymerase (RdRp)
activity of the SARS-CoV-2 virus, thus impeding its ability to reproduce [15]. In response to
the COVID-19 pandemic, the FDA has granted emergency use authorization for molnupi-
ravir as a therapeutic option for COVID-19 patients. This drug also functions as an RdRp
inhibitor, similar to Remdesivir [16]. Another pharmaceutical option against SARS-CoV-2,
known as Paxlovid, combines two distinct drugs—nirmatrelvir and ritonavir—and has
received FDA emergency use authorization. Nirmatrelvir, a peptidomimetic compound,
serves as an inhibitor for the primary protease (Mpro) of SARS-CoV-2. This molecule cova-
lently attaches to the catalytic cysteine (Cys145) residue on Mpro, preventing the virus from
processing polyprotein precursors essential for replication [17]. Ritonavir, originally an
inhibitor for HIV protease, plays a role in Paxlovid by extending the half-life of nirmatrelvir.
Its mechanism involves inhibiting the metabolizing enzyme cytochrome P450 3A (CYP3A),
thus enhancing the pharmacological effects of nirmatrelvir [18]. Vaccination efforts have
made significant progress, but effectively managing COVID-19 patients involves initial
diagnosis, instant isolation, and implementation of protective measures to avert further
transmission [19,20].

The primary challenge in transmission of the SARS-CoV-2 virus is the identification
of asymptomatic cases. Early diagnosis would act as a major part of preventing the virus
transmission and controlling potential new waves of COVID-19. Additionally, prompt and
early detection is vital for effective treatment during a pandemic, as it can greatly increase
the prognosis of patients. Thus, there arises a continuous need to enhance existing diag-
nostic approaches and propose a sensitive, specific, and rapid methodology to determine
SARS-CoV-2, particularly in point-of-care tests [21–23]. However, the current gold standard
diagnostic approach for COVID-19 detection is conducted by the reverse transcription
polymerase chain reaction known as RT-PCR that targets the SARS-CoV-2 RNA [24–26].
There is also increasing interest in loop-mediated isothermal amplification, i.e., LAMP
techniques, like RT-LAMP [27–31]. The advancement of quick, POC molecular diagnos-
tic experiments that exhibit comparable specificity and sensitivity to the existing gold
conventional methods could effectively contribute to expanded testing capabilities [32,33].

Point-of-care testing, i.e., POCT, is a portable, user-friendly, and affordable technique
that utilizes convenient and rapid analytical tools to provide immediate test outcomes at
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the step of sample collection [34]. POCT could be implemented in doctor’s offices, clinics,
hospitals, or even homes by utilizing small sample volumes [35]. When compared to con-
ventional laboratory testing [36], POCTs are formulated to identify distinct viral proteins
or human antibodies linked to the SARS-CoV-2 virus. These tests offer relatively rapid
results (typically spanning 15 to 30 min) and are economically more viable compared to
RNA-based tests [37]. Furthermore, POCT assessments are conducive to self-administration
at home by any individual. Deploying testing outside centralized test centers, particularly
at urgent care or primary levels, could play a major part in prompt detecting and identi-
fying COVID-19 cases, thus preventing community transmission. POC devices provide
opportunities to (i) utilize more cost-effective and portable instruments, (ii) eliminate the
requirement of sample transportation to testing laboratories for examination, (iii) decrease
sample processing stages, (iv) utilize easily collectible samples such as anterior nasal swabs
or saliva that did not need trained personnel for collecting the samples, and (v) record
different entities (antibodies, antigen, virus) in asymptomatic or symptomatic patients,
aiding in precise determination of individuals requiring clinical care or quarantine. While
various types of POC devices have gained emergency use authorization (EUA) in different
countries, there is ongoing validation of novel biosensing strategies and designs, as efforts
continue to develop new devices with different techniques [38]. Currently, microfluidic
paper-based analysis devices, i.e., using µPads have received enormous attention and
have played a key role in advancing POCT. These analytical platforms incorporate injec-
tion [39], reaction [40], separation [41], and detection [42] functionalities within the paper
by creating hydrophilic and hydrophobic channels. µPads offer numerous advantages,
including minimal reagent consumption, excellent biocompatibility, ease of processing,
simplicity in methodology, and low production cost. Notably, the development of µPads
has experienced remarkable progress in current years [43].

Hence, considering the importance of determination techniques in POCT devices, it
becomes crucial to examine and compare various present determination approaches on
microfluidic paper-based analysis devices (µPads) and other POCT devices. In the current
review, our emphasis lies on the advancements in POCT devices for SARS-CoV-2 determi-
nation. Initially, we provide an overview of the developed POCT methods for identification
of SARS-CoV-2, encompassing clustered regularly interspaced short palindromic repeats or
CRISPR-associated proteins (CRISPR/Cas), nucleic acid amplification tests (NAAT), and im-
munoassay tests systems. Additionally, we explore innovative POCT diagnostic platforms
that integrate advanced technologies such as nanotechnology, aptamers, surface-enhanced
Raman spectroscopy (SERS), and clustered regularly interspaced short palindromic repeats
(CRISPR)-Cas. Lastly, we discussed the shortcomings and prospects for developing POCT
analytical devices, while also providing insights into potential research opportunities and
directions in this field. Although µPads are widely utilized due to their portability, there is
still significant scope for their upgradation in terms of detection sensitivity and stability.

2. SARS-CoV-2 Diagnostic Targets and Point-of-Care Devices

Currently, there are three main categories of COVID-19 testing methods: antibody
tests, antigen tests, and molecular diagnostics. The test of RNA diagnostics is employed
to determine the SARS-CoV-2 RNA presence, while antigen tests aim to identify specific
viral proteins. Conversely, antibody tests are utilized to ascertain the presence of antibodies
developed by an individual against the virus [44]. In RNA tests, various RNA genome
regions are targeted, while antigen examinations focus on structural proteins, i.e., antigens
that exist within the viral envelope (Figure 1C). The SARS-CoV-2 virus possesses a single-
stranded RNA having target genes like envelope genes, RNA-dependent RNA polymerase,
S-protein, N-protein, ORF8, and ORF1b [35]. Among these, the four main structural
proteins comprise the nucleocapsid protein (N) [45], matrix protein (M), small envelope
protein (E), and spike surface made up of glycoprotein (S) [46].

The RT-PCR has become the gold conventional approach for the determination of
the SARS-CoV-2 virus owing to their rapid amplification and high specificity capabilities.
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However, the thermal cycling requirements pose challenges when adapting this technology
for portable devices, as precise temperature control is necessary to ensure accurate amplifi-
cation of genetic material in the sample. Several RT-PCR-based POC devices have gained
EUA. These include the Visby Medical COVID-19 POCT from Visby Medical (San Jose,
CA, USA), the BioFire Respiratory Panel 2.1-EZ from BioFire Diagnostics, LLC (Salt Lake
City, UT, USA), the cobas SARS-CoV-2 and Influenza A/B Nucleic Acid Test from Roche
Molecular Systems, Inc. (Rotkreuz, Switzerland), the Accula SARS-CoV-2 Test from Mesa
Biotech Inc. (San Diago, CA, USA), and Inc Xpert Xpress SARS-CoV-2 DoD, Xpert Xpress
SARSCoV-2/Flu/RSV, Xpert Xpress SARS-CoV-2 from Cepheid, Sunnyvale, USA [47,48].
The SARS-CoV-2 determination of structural proteins in antigen tests heavily relies on
the utilization of distinct monoclonal antibodies. These investigations have gained atten-
tion as a valuable element within a wide-ranging community testing approach aimed at
minimizing the spread of the virus [49].

Antigen tests offer quicker results compared to PCR techniques, providing outcomes
within minutes. However, they possess lower sensitivity due to the absence of target
amplification. Several antigen EUA-approved point-of-care devices have demonstrated
success, including the Status COVID-19/Flu by Princeton BioMeditech Corp, Sofia 2 Flu
+ SARS Antigen FIA (all 3 from Quidel Corporation), the QuickVue SARS Antigen Test,
Sofia 2 SARS Antigen FIA, the Clip COVID Rapid Antigen Test by Luminostics, Inc., the
BD Veritor System for Rapid Detection of SARS-CoV-2 by Becton, Dickinson and Company,
LLC, the BinaxNOW COVID-19 Ag Card by Abbott Diagnostics Scarborough, Inc., the
CareStart COVID-19 Antigen test by Access Bio, Inc., and LumiraDx SARS-CoV-2 Ag Test by
LumiraDx UK Ltd. These techniques can detect nucleocapsid protein antigen qualitatively
from SARS-CoV-2, which necessitates the extraction buffer inclusion for virus particle
disruption in the specimen as well as responsible for exposure of the viral nucleoproteins
present internally [47,48].

The certainty of protection against reinfection for patients who have recuperated
from COVID-19 as well as possess antibodies remains uncertain due to reported instances
of reinfection, as documented in both confirmed and suspected cases [48,50]. Similarly,
individuals who have been recently infected may test positive for antibodies while still
actively spreading the virus, depending on the sampling for serologic testing and timing
of infection [51]. While over 100 serology tests have received EUA (including pending
submissions), a limited number of POC devices got approved, such as the Sienna-Clarity
COVIBLOCK COVID-19 IgG/IgM Rapid Test Cassette from Salofa Oy, the MidaSpot
COVID-19 Antibody Combo Detection Kit from Nirmidas Biotech, Inc., the RapCov Rapid
COVID-19 Test from Advaite, Inc., the RightSign COVID-19 IgG/IgM Rapid Test Cassette
from Hangzhou Biotest Biotech, and the Assure COVID-19 IgG/IgM Rapid Test Device
from Assure Tech [47,48].

As per the WHO rules, RT-PCR is considered the standard diagnostic method for
SARS-CoV-2 determination owing to its specificity and high sensitivity. However, this con-
ventional approach has certain drawbacks, including the requirement for skilled personnel
and expensive laboratory equipment [52,53]. Moreover, accurate RNA extraction from
the sample is essential before conducting the RT-qPCR test, requiring reliable equipment,
reagents, and precautions to prevent contamination throughout the analysis and sampling
process. On the other hand, antibody-based tests often require a minimal blood sample
obtained through fingerstick or venipuncture, which can be challenging in underdeveloped
areas [54]. Hence, paper-based POC diagnostic approaches have emerged as a potent
complementary approach to overcome these limitations associated with conventional
diagnostic methods.
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2021 American Chemical Society).

3. Microfluidic-Based Smart Diagnostic Platform for COVID-19 Diagnosis

Microfluidics-based POC diagnostics are valuable tools for detecting SARS-CoV-2, of-
fering integrated platforms through the combination of various techniques on microfluidic
chips. These platforms, initially commercialized for analyzing and tracking oncological dis-
ease biomarkers, have now become a reality. The current pandemic has further uncovered
the boundaries of conventional PCR-based techniques, which rely on skilled personnel
and centralized laboratory setups. To overcome these challenges, microfluidics-based
diagnostics have shown great potential [57,58]. Significant technological progress has oc-
curred by incorporating microfluidic-based approaches for genetic material determination
in recent years [59,60]. Successful demonstrations have been conducted, showcasing the
detection of viruses, genetic material testing, and outcomes visualization using simple
microfluidic-based methods [61,62]. These devices have been tested for genetic material
detection in COVID-19 patients, exhibiting higher overall efficiency compared to assays
such as LFA and reverse transcriptase LAMP [27,63].

It is likely that SARS-CoV-2 will not be the final pandemic we have faced, highlighting
the importance of technological preparedness and adaptability for future outbreaks. The
need for high-throughput and rapid diagnostic strategies for SARS-CoV-2, in the form
of portable POCT systems, remains urgent [64]. In recent years, miniaturized biosensors
have emerged as promising analytical platforms because of their unique properties, rapid
analysis, reliable specificity, high sensitivity, and consistent results [65–67]. As an example,
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Sawank and coworkers have developed a microfluidic nano immunoassay (NIA) called
NIA for simultaneous anti-SARS-CoV-2 IgG detection on a single device in 1024 samples.
The design of the microfluidic NIA device is shown in Figure 2(i) and demonstrates 100%
specificity and 98% sensitivity [68]. Furthermore, the creation of an extensive serology
platform that is affordable and easily accessible requires the exploration of alternative
methods for venipuncture. To address this challenge, Swank et al. devised a sample
collection and processing system that allows for non-invasive analysis using dried whole
blood samples obtained through a convenient finger prick. The researchers conducted
experiments utilizing three distinct approaches for collecting, shipping, processing, extract-
ing, and analyzing dried whole blood samples, as illustrated in Figure 2(ii). They evaluated
the performance of two commercially accessible devices designed for the collection of
precise 10 µL quantities of whole blood: the Neoteryx Mitra® and the DBS System SA
HemaXis™DB10. In forthcoming times, the NIA generates the possibility for individuals
to acquire a straightforward blood-sampling kit that comprises a lancet, a blood-sampling
tool, and a pre-addressed return envelope. These kits could be obtained conveniently from
local pharmacies or supermarkets (refer to Figure 2(ii)). The kit’s usage is uncomplicated
and user-friendly within the confines of one’s personal space, where a minor finger prick
is performed to collect the blood using the provided device. Subsequently, the device
containing the blood sample can be dispatched via regular mail to a central laboratory
without necessitating specialized biosafety precautions. This central laboratory would
then conduct an analysis of the blood sample for one or more biomarkers, interpret the
resulting data, and convey the test outcomes back to the individual through means such as
smartphones, email, or regular mail.

In a different analysis, a potential microfluidic technique has been proposed for anti-
body detection towards SARS-CoV-2, as depicted in Figure 3B. The integration capability
of the microfluidic substrate with fluorescence, absorbance, and other diagnostic methods
provides advantages over conventional diagnostic strategies, as illustrated in Figure 3A [69].
Significantly, the sensor device enables quantitative measures within a linear detection
range of 585.4 copies/µL to 5.854 × 107 copies/µL, having 231 copies/µL sensitivity.
Yakoh et al. developed an electrochemical device for testing COVID-19 antibodies, de-
livering results within 30 min [70]. The utilization of a paper-based sensor presents an
opportunity to transform the point-of-care testing (POCT) platform, providing the desired
sensitivity and characteristics. This approach is particularly advantageous due to its cost-
effectiveness, portability, and easy replacement options. Alafeef and his team employed
a paper-based electrochemical technique to create detecting probes for genetic material
testing [71]. Ganguli et al. engineered a portable RT-LAMP device designed to identify
SARS-CoV-2 in clinical samples such as nasal swabs. Figure 3C presents a diagram illus-
trating the user-friendly and readily available point-of-care device. The device exhibited a
detection limit of 50 RNA copies/µL and provided real-time detection of the viral genome
within a 30-min timeframe.

The cost-effective and validated “SARS-CoV-2 RapidPlex” demonstrates a high level
of sensitivity, enabling the simultaneous detection of multiple key biomarkers associated
with the SARS-CoV-2 virus. These biomarkers include immune response, viral contam-
ination, and disease severity, making it suitable for home-based diagnostics. In a study,
Mateos et al. [72] developed an integrated on-chip platform that combines RNA extraction
using immiscible filtration assisted by surface tension (IFAST) with colorimetric reverse
transcription loop-mediated isothermal amplification (RT-LAMP) for RNA amplification
and detection. The platform utilizes two sets of primers that target the open reading
frame 1a (ORF1a) and nucleoprotein (N) genes of SARS-CoV-2 as shown in Figure 3D.
Figure 3 showcases the extensive application of microfluidics across various domains,
encompassing biomedical sensors, equipment, and even small valves. In recent years,
nucleic acid techniques utilizing microfluidics, like CRISPR, LAMP, and RT-PCR, have been
utilized to identify SARS-CoV-2. This section presents the up-to-date research findings
from researchers as well as discusses the availability of POCT devices in the market.
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Figure 2. (i) (A) The microfluidic chip design comprises 1024-unit cells, enabling high-throughput
detection of SARS-CoV-2. (B) The experimental process is depicted in an illustrative manner. (C) The
chip facilitates the sandwich immunoassay process. (D) The fluorescence response of antihuman
IgG-PE is observed for the anti-spike antibodies present in human serum. (E) An image displays
the limit of detection (LOD) marked with a dashed line, along with the concentration of antihuman
IgG-PE against anti-spike IgG. (ii) Schematic illustration of ultralow-volume whole blood sampling
and processing developed by Swank et al. (A) The Mitra® device and (B) the HemaXis™DB10 device
are used to collect 10 µL of whole blood, while (C) the blood glucose test strip collects 0.6 µL of
whole blood. After collection, (D–F) the blood samples are dried, allowing the devices to be shipped
via regular mail under ambient conditions. Upon arrival at the laboratory, (G) the Mitra® tips are
removed and placed in a 96-well plate, (H) the HemaXis™DB10 cards are punched, and the filter discs
are placed in a 96-well plate, and (I) the glucose test strip is cut to size and placed in an Eppendorf
tube. Next, (J–L) the blood samples are extracted in a buffer solution through overnight incubation at
4 ◦C, followed by (M) transfer to a spotting plate. Subsequently, the samples are (N) microarrayed
and (O) analyzed using the NIA device (adapted with permission from Ref. [68], copyright 2021
Proceedings of the National Academy of Sciences).
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3.1. LAMP Tests

Isothermal amplification techniques, like loop-mediated isothermal amplification
(LAMP), play a crucial role in isothermal amplification testing (IAT) and offer the advantage
of detecting various targets simultaneously within a single reaction. Several studies have
demonstrated that LAMP exhibits higher sensitivity and accuracy compared to RT-PCR
for SARS-CoV-2 detection. The LAMP process is depicted in Figure 4A [74], involving
the amplification of viral nucleic acids and LAMP-specific primers extracted at a constant
60–65 ◦C temperature. The outcomes are typically generated through fluorescence or
colorimetry, which could be seen by a compact device or the naked eye. The detection and
interpretation of LAMP results do not rely on bulky instruments, making it suitable for
community and household self-screening.

Natsuhara and colleagues introduced a microfluidic chip with dispensing and mixing
sections capable of continuous fluid dispensing (Figure 4B) [75]. This chip enables the
analysis of communicable diseases like influenza and COVID-19 through LAMP-based
colorimetry within individual chambers. Lyu and co-authors devised a droplet array
slip-chip for high-throughput COVID-19 determination as shown in Figure 4C [76]. The
facile movement of fluid was achieved by chip sliding which can avoid the precise bonding
challenges associated with conventional chips featuring high-precision microchannels.
In a study by de Oliveira and co-workers, a manually controlled centrifuge microfluidic
device was employed for LAMP-based SARS-CoV-2 detection, utilizing a fidget spinner
(Figure 4D) [77]. Although this device is portable and independent of a specific instrument,
it exhibits inaccurate speed control, which may lead to errors if not operated properly.
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While the aforementioned works primarily focus on designing microfluidic chip structures
for fluid control, there arises a requirement for a portable signal readout device. Smart-
phones have emerged as reliable signal readout devices for LAMP, offering improved
computing power and imaging capabilities. Colbert and co-workers proposed a technique
for SARS-CoV-2 identification by merging LAMP with particle diffusometry as shown in
Figure 4E [78]. The smartphone is utilized for capturing images of samples comprising
fluorescent beads after RT-LAMP, facilitating the detection process.
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3.2. RT-PCR Tests

The RT-PCR technique integrates complementary DNA (cDNA) PCR and RNA re-
verse transcription technologies. By leveraging mass and heat transfer methods based on
fundamental hydrodynamic principles, microfluidics has the potential to enhance detection
accuracy and reduce the time required for RT-PCR, particularly in terms of the necessary
temperature variations. Incorporating microfluidic devices into RT-PCR testing can lead
to more compact and rapid processes. Turiello and co-authors introduced an automated,
rotationally driven microfluidic platform designed for the purification and enrichment of
SARS-CoV-2 RNA [79]. The isolation of the virus for sample enrichment in the device is
achieved using nanotrap magnetic particles, which effectively remove complex matrices
and prevent the inhibition of RNA amplification and detection. The utilization of portable
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and microfluidic biochips determination devices that employ the RT-PCR technique greatly
enhances the speed and accuracy of SARS-CoV-2 detection. Centrifugal microfluidic chips
have found extensive application in disease diagnosis [80,81]. Furthermore, these chips
enable highly automated and integrated multiple determinations, thereby enhancing prac-
ticality and functionality [82]. Figure 5 illustrates a direct RT-PCR approach proposed
by Ji and his group, utilizing a centrifugal microfluidic chip device [83]. Centrifugal mi-
crofluidic systems are widely employed for nucleic acid detection due to their simplicity,
self-contained fluid control, and minimal environmental contamination risks. One notable
advantage of microfluidic chips is their capability to detect multiple targets simultaneously.
The differentiation between COVID-19 and influenza, which exhibit similar symptoms, can
enable widespread early screening and alleviate the burden on healthcare systems [84–86].
However, inconsistent sampling practices and sample contamination can result in inaccu-
rate test outcomes [87]. These challenges hinder the widespread RT-PCR usage. We trust
that standardizing and automating the sampling process within microfluidic chips can
address this issue.
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3.3. CRISPR-Associated Proteins System (Cas) Tests

CRISPR, recognized as a powerful gene-editing tool, has been referred to as “molecular
scissors” [88]. Zhang et al. devised a system that combines CRISPR with fluorophore-
quencher DNA probes for signal amplification and detection purposes (Figure 6A(a)) [89].
Ramachandran et al. implemented isotachophoresis (ITP) on a microfluidic chip in com-
bination with CRISPR and LAMP, enabling the diagnosis of COVID-19 within a 35-min
timeframe [90]. In this system, Cas12, along with the guide DNA, selectively binds to the
target DNA, leading to fluorophore–quencher DNA probe cleavage. However, the efficiency
of CRISPR is hindered by time-consuming amplification and nucleic acid processes as well
as the dependence on huge instruments for fluorescent signal readout. Silva and co-authors
developed a catalase-mediated assay for CRISPR-based detection of SARS-CoV-2 [91]. Cer-
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tain scientists have devised testing techniques that operate autonomously without the need
for external apparatus. Li and his group introduced a lateral flow microfluidic device that
utilizes a hand-warmer pouch serving as a heat source (Figure 6A(b)) [92]. In this approach,
the reagent’s freeze-dried powder is preloaded into a reaction chamber. Then, the handler
can manually manipulate the liquid as well as observe the outcomes with the bare eye.
While numerous RNA detection methods that are both highly sensitive and suitable for
POC application exist, they are marred by a susceptibility to non-specific amplification
when conducted under isothermal conditions. This susceptibility consequently results
in inaccurate positive outcomes. To counteract this concern, the incorporation of isother-
mal amplification techniques with CRISPR technology has proven to be instrumental in
mitigating the likelihood of non-specific detection [93,94]. Leveraging these attributes, a
multitude of approaches that combine CRISPR technology with isothermal amplification
have emerged. These innovative techniques effectively enhance the amplification of target
genes and consequently elevate the overall efficacy of COVID-19 detection procedures.

3.4. Electrochemical Biosensors

Electrochemical biosensors have received enormous attention owing to their simplicity,
affordability, and potential for miniaturization. These tiny devices utilize tailored electrodes
that serve as receptors or transducers, depending on the specific requirements, to enable
real-time, specific, and accurate target monitoring [95–97]. By extracting potentiometric
or amperometric signals from the sensing electrode, information linked to the analyte
presence can be obtained [98–100].

In their study, Sanati-Nezhad and his group fabricated an electrochemical immunosen-
sor approach to determine the nucleocapsid protein antigens of SARS-CoV-2. They utilized
a bbZnO/rGO nanocomposite coating on carbon screen-printed electrodes (SPEs) to en-
hance antibody adsorption (Figure 6B) [101]. The resulting device system was connected to
a readout system, which generated electrochemical signals in COVID-19 presence. Sim-
ilarly, Ali et al. employed improved 3D printing technology to construct a 3D reduced-
graphene-oxide (rGO) electrode and integrated it with a microfluidic device, serving as an
electrochemical sensor [102]. This setup allowed for the antibodies specific determination
towards SARS-CoV-2, achieving a 2.8 × 10−15 M limit of detection (LOD). Additionally,
Fabiani and the group developed a miniaturized electrochemical sensor utilizing magnetic
beads and a carbon black-based electrode for SARS-CoV-2 determination (Figure 6C) [103].
The utilization of magnetic beads offers advantages in terms of preconcentration, reduced
washing steps, and enhanced sensitivity and reliability. Additionally, the application of an
external magnetic field enables the removal of interference from seasonal H1N1 influenza
virus during detection. Zhao et al. demonstrated the feasibility of using a smartphone-
based electrochemical sensor for the determination of SARS-CoV-2 RNA, eliminating the
necessity for extensive laboratory processes and equipment [104]. This “plug-and-play”
setup opens up possibilities for portable testing. Another recent study integrated the
electrochemical platform with a wireless module, facilitating the development of graphene
electrodes for rapid COVID-19 identification [105]. The “SARSCoV-2 RapidPlex” test,
which is cost-effective and highly sensitive, can determine SARS-CoV disease and offer
information on COVID-19 key aspects (disease severity, immune response, and viral in-
fection). This test has the efficiency to be performed at home, offering convenience and
accessibility to individuals.
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Figure 6. (A) An overview of the CRISPR–LAMP detection platform, designed to offer universal
stability and precise results (a) (adapted with permission from Ref. [89], copyright 2020 American
Chemical Society), and a microfluidic device utilizing lateral flow technology, which operates inde-
pendently without the need for external devices, and incorporates a hand-warmer pouch as its power
source (b) (adapted with permission from Ref. [92], copyright 2022 Elsevier); (B) a graphical represen-
tation depicting the sequential process of immuno-biosensor preparation (adapted with permission
from Ref. [101], copyright 2020 American Chemical Society); and (C) a schematic demonstration of
the detection process of electrochemical biosensor for a saliva sample (adapted with permission from
Ref. [103], copyright 2020 Elsevier).

4. COVID-19 Diagnosis Using Paper-Based Diagnostic Platform

Paper-based analytical systems offer significant potential for bringing POC diagnostic
systems to developing regions, primarily owing to their exceptional characteristics includ-
ing transportation, convenient storage, eco-friendliness, chemical inertness, flexibility, ease
of modification, porosity, and biocompatibility [106,107]. Furthermore, these devices allow
for the application of various sample types, and sample transfer can be achieved without
the need for additional power, relying on capillary forces. Over the last three decades,
paper-based POC tests have been proposed for diverse biomedical uses and have been
introduced as both “over-the-counter” products, like “professional market” products, preg-
nancy testing, and glucose monitoring capable of diagnosing various cancers, hemopathies,
lipidoses, diabetes, cardiac markers, and infectious diseases. Notably, paper-based POC de-
vices have shown a key role in addressing the current COVID-19 pandemic. The platforms
for paper-based POC diagnostics range from simple 1D formats like lateral flow assays
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(LFA) and dipsticks to more complex 3D platforms, including electrochemical paper-based
assay devices (ePAD) and microfluidic paper-based assay devices (µPAD).

Microfluidic paper-based devices (µPads) deliver several benefits, including simplic-
ity, ease of processing, low production cost, good biocompatibility, and minimal reagent
consumption. Consequently, there has been an enormous rise in the development of
µPads in recent times [43]. Various methods have been employed to fabricate µPads, like
stereoscopic printing [108], flexographic printing [109], one-step plotting technology [110],
cutting [111], plasma processing [112], laser processing [113], wax printing [114], inkjet
printing [115], and photoetching [116,117]. Amongst these approaches, LFA stands out as a
well-established paper-based diagnostic method that has gained significant consideration
and investment from manufacturers and researchers for COVID-19 diagnostic kit devel-
opment. A characteristic LFA consists of an absorbent pad, a nitrocellulose membrane, a
conjugate pad, and a sample pad. The initiation of sample flow occurs from the sample pad
as well as encounters the dried signal molecules onto the conjugate pad. The whole SARS-
CoV-2 RNA, antibodies, antigens, and biomarkers necessary for SARS-CoV-2 detection
could be used for the LFA platform.

4.1. LFA-Based Diagnostic Platforms
4.1.1. For Viral Antigens

In contrast to RT-qPCR, antigen diagnostics offer a direct means of detecting SARS-CoV-2
as well as its associated proteins in a sample obtained from a nasal passage or nasopharyngeal
swab, eliminating the need for sample pretreatment and amplification [118]. This approach
enables faster, easier, and more cost-effective diagnosis of COVID-19 compared to RT-qPCR.
Antigen diagnosis test relies on immunoassay reactions which include the interaction between
antibodies and antigens. Despite the development of numerous paper-based antigen diag-
nostics, the rapid antigen tests’ sensitivity remains uncertain as well as low in comparison to
RT-qPCR. The detection limit for antigen tests is around 105 copies/mL, whereas RT-qPCR can
detect levels even lower than 102 copies/mL [119,120]. False-negative outcomes might result
in lower sensitivity than antigen tests’ sensitivity when the target antigen’s concentration in
the experimental specimen is decreased. To address these limitations, several studies have
been conducted. Liu and the group introduced an innovative nanozyme-based chemilumi-
nescence paper assay for the detection of SARS-CoV-2 S antigen. This approach integrates
chemiluminescent immunoassays with LFA and nanozyme (Co-Fe@hemin-peroxidase),
achieving a (360 TCID50/mL) sensitivity compared to ELISA [121].

Furthermore, Kim and the group introduced an innovative method to quickly mon-
itor SARS-CoV-2 S antigen. By utilizing angiotensin-converting enzyme 2 (ACE2), the
cellular receptor for SARS-CoV-2, they effectively determined the SARS-CoV-2 S1 antigen
from COVID-19 patients extracted clinical specimens (Figure 7A) [122,123]. Additionally,
they developed fusion antibodies comprising crystallizable fragments (Fc) and single-
chain variable fragments (scFv) specific to the SARS-CoV-2 N antigen employing phage
display technology. These scFv-Fc antibodies were then applied to the LFA platform
(Figure 7B) [124]. The quick scFv-Fc-based diagnostic kit exhibited good specificity, capable
of distinguishing even the SARS-CoV N protein.

4.1.2. For Viral Antibodies

LFA enables the antibodies qualitative determination in serum samples. When
SARSCoV-2 infects the human body, the immune system is activated to combat the virus.
As part of this immune response, various immunoglobulins, which include IgM, IgG,
and IgA, are generated to neutralize the virus and provide protection against future in-
fections [125–127]. IgM antibodies typically emerge in the blood a few days following
infection and become identifiable around 5 to 10 days after the symptom’s onset. In sero-
logical LFA, test lines (T1, T2) are formed by immobilizing antihuman antibodies of IgG
(or IgM) on a nitrocellulose membrane, while a control line is created utilizing secondary
antibodies produced in different hosts like mice and rabbits. When a sample comprising
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SARS-CoV-2-specific IgG or IgM antibodies is applied to the strip of LFA, the antibodies
attached to gold nanoparticles conjugated with the S (or N) protein flow together as well
as eventually attach to the test line, leading to a prominent color change. Zeng and the
group introduced a lateral flow technique combing an IgG–IgM immunochromatographic
assay, demonstrating higher sensitivity (85.29%) compared to individual IgM (82.35%) and
IgG (61.76%) tests [128]. Peng and the group implemented a photon-counting technique
to detect LFA and enhance sensitivity (Figure 8A). They utilized laser optical analysis to
record SARS-CoV-2 antibody density in a straightforward manner [129]. Moreover, Roda
and the group introduced a dual optical/chemiluminescence format for LFA, aiming for
highly sensitive and affordable detection (Figure 8B) [130].

4.1.3. For Viral RNA

Isothermal nucleic acid amplification is a viable approach that enables amplification at
a consistent temperature and eliminates the requirement for bulky equipment like thermocy-
clers [45]. This technique offers advantages such as high sensitivity, specificity, convenience,
and cost-effectiveness. A novel LFA was created as a potential substitute for conventional
RT-qPCR, enabling the concurrent identification of genes of SARS-CoV-2, namely, N, ORF3a,
and RdRp genes [131]. The product of PCR was generated through RT-PCR, thereafter a
30 min LFA analysis was conducted at 25 ◦C, with an LOD of 10 copies/test for a single
gene (Figure 9B). Nevertheless, the overall assay duration still amounts to around 2 h,
including the 100 min required for the PCR reaction. The incorporation of this technique
into an LFA offers notable benefits like affordability, convenience, specificity, and high
sensitivity, thereby facilitating the development of POC kits for detecting SARS-CoV-2
RNA (Figure 7A). Zhu and the group proposed a diagnostic approach utilizing multiplex
reverse transcription loop-mediated isothermal amplification (mRT-LAMP) combined with
LFA for COVID-19 diagnosis [132]. The whole analysis time period for this test is 1 h. A
qualitative experiment was also performed that combined the LFA coupled with recombi-
nase polymerase amplification (RPA) (Figure 9A) [133]. This test targeted the SARS-CoV-2
N gene and demonstrated the ability to detect SARS-CoV-2 N gene-comprising plasmid
as few as 0.25–2.5 copies/µL. Xia et al. introduced a highly sensitive field-deployable
method (detecting single-copy levels) for identifying the SARS-CoV-2 gene through the
implementation of reverse transcription-enzymatic recombinase amplification (RT-ERA)
(Figure 9B) [134].

4.2. Microfluidic and Electrochemical Paper-Based (µPADs and ePADs) Diagnostics Platforms

Typical LFAs provide a comfortable, speedy, and cost-effective option for testing for
COVID-19. However, there is an ongoing debate regarding their sensitivity and speci-
ficity [135]. Moreover, their limitations in offering quantitative analyte results hinder
their use in clinical practice [136]. To address these issues, µPADs have emerged as an
appealing diagnostic kit that links the benefits of paper-based biosensing platforms with
traditional microfluidic devices. Through various straightforward patterning approaches
like PDMS printing, screen printing, wax printing, inkjet etching, and photolithography,
it becomes effortless to create hydrophilic channels and hydrophobic barriers, enabling
control over flow within the µPADs [61]. In contrast to conventional LFAs, µPADs offer the
flexibility to direct flow in multiple directions (both horizontally and vertically) based on
their design, enabling the quantitative determination of different analytes within a single
device. Additionally, when compared to conventional microfluidic devices, µPADs possess
inherent benefits like good biocompatibility, independence from external power sources,
simplicity in fabrication, and cost-effectiveness [137]. As a result, µPADs are increasingly
finding applications in various fields, including the biochemical industry, medical diag-
nosis, environmental monitoring, and POC diagnostics [137,138]. An example of their
application is demonstrated by Gong et al., who introduced an instrument-free paper-based
microfluidic enzyme-linked immunosorbent assay (ELISA) for quantitatively measuring
IgG/IgM/IgA antibodies specific to SARS-CoV-2. By employing a pulling-force spinning
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top (PFST) in combination with a paper-based microfluidic approach (Figure 10a), they
achieved blood–serum separation and detection of the antibodies [136]. Another group
utilized cellulose as a substitute membrane material as well as employed a double-antigen
sandwich format (Figure 10b) for a SARS-CoV-2 antibody test [139]. They constructed
a 3D channel and fabricated a device to maintain a continuous flow rate. Additionally,
Garneret et al. developed µPADs for SARS-CoV-2 RNA determination. They presented a
user-friendly portable device that integrates paper microfluidics with isothermal nucleic
acid amplification [140].
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In recent developments, an electrochemical paper-based analytical device (ePAD)
has emerged as a solution to enable quantitative data acquisition and enhance detection
sensitivity. Unlike most µPADs that depend on optical readout through agglomeration of
nanoparticles, often imposes limitations on the performance of the sensor [141]. Yakoh
and group introduced a label-free ePAD specifically designed for antibodies IgM and IgG
SARS-CoV-2-specific determination. This ePAD consists of three components: a closing
ePAD, a counter ePAD, and a working ePAD (Figure 10c) [70]. Remarkably, this ePAD
demonstrates high sensitivity (100%) in detecting targeted antibodies in clinical sera and
could be explored for antigen determination as well. In other research, a novel ePAD-based
platform for COVID-19 diagnosis was introduced that incorporates zinc oxide nanowires
(ZnO NWs) grown directly on working electrodes (Figure 10d) [142]. By optimizing the
ZnO NWs-enhanced working electrode, they determined SARS-CoV-2-specific antibody
(CR3022) successfully even at 10 ng/mL, the lowest concentration in human serum.
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COVID-19 diagnosis, incorporating a working electrode enhanced by ZnO nanowires (adapted with
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5. Summary and Conclusions

Nearly three years have passed since the initial recorded case of COVID-19. Regret-
tably, due to the virus’s highly transmissible nature and the frequent emergence of new
variant mutations, effective treatments for the virus are still unavailable. Consequently,
mass detection, timely diagnosis, and physical interventions like social distancing remain
crucial in curtailing the transmission of the virus. Hence, there is an ongoing need for the
development of specific, highly sensitive, robust, and rapid POC diagnostic tests. In light
of these requirements, this review aims to provide an overview of the existing diagnostic
techniques used during the SARS-CoV-2 pandemic, focusing on their impact on public
health and emergency response. The gold conventional tool for SARS-CoV-2 virus diag-
nosis is the detection of nucleic acid through RT-PCR. However, this diagnostic method
involves time-consuming RNA extraction, taking approximately 3–4 h, and requires quali-
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fied technicians and expensive laboratory facilities. Although RT-PCR serves as the primary
defense against the outbreak, different serological diagnostic approaches are also accessible
to counterpart it. Nevertheless, cross-reactivity and the potential for false-positive results
pose significant concerns. As the disease continues to spread, the immediate necessity lies
in more affordable point-of-care tools.

The advancement of health monitoring systems has been greatly facilitated by the
adoption of microfluidics technology and biosensors, enabling rapid detection methods.
Microfluidic technology allows for the integration of complex analytical processes within
small volumes, encompassing tasks such as sampling, mixing, separation, enrichment,
washing, and temperature control. By leveraging these capabilities, microfluidics provides
a cost-effective platform for the determination of SARS-CoV-2 that is rapid, accurate, and
automated. Researchers have successfully incorporated different nucleic acid amplification
approaches, involving CRISPR, LAMP, and RT-PCR, into microfluidic chips for diagnostic
applications. Additionally, extremely sensitive analysis approaches like electrochemical
biosensors, paper-based tests, and fluorescence-assisted tests have gained widespread us-
age. While these devices have demonstrated impressive performance in laboratory settings,
there is still a considerable gap to bridge for commercial deployment. The operational
requirements of commercial equipment often compromise the reliability of test results
and render the products unaffordable for most individuals. We anticipate that with the
increasing demand for testing, more exemplary methods will emerge in the market. In prac-
tical POC applications, instrument-independent determination is endorsed, particularly in
resource-constrained environments. Therefore, downsizing analytical instruments becomes
crucial to enhance mobility and energy efficiency, facilitating their suitability for field use.
Additionally, transferring computer-based data processing to portable terminals would aid
in the commercialization efforts [143]. Notably, current portable commercially available
quantitative tools like pressure meters and glucometers have already been leveraged for
analyte identification indirectly, representing the significant potential for the commercial-
ization of instrument-free integrated quantitative nucleic acid detection [144,145].

Furthermore, this review offers an outline of current advancements in paper-based
determination techniques for quick SARS-CoV-2 diagnosis. Paper, being easily accessible
and inexpensive, allows for relatively low-cost mass production of biosensors. Moreover,
paper’s inherent capability to facilitate fluid movement via capillary flow reduces the
requirement for external pumps or equipment, making paper-based diagnostic systems
highly attractive in the market. Several cost-effective and rapid POC tests, including LFA-
based diagnostic kits, have been proposed as powerful techniques to combat the outbreak
of COVID-19. These tests have played a significant role in promptly identifying innovative
infections and implementing quarantine records. While LFA-based tests have been used to
complement the current gold standard technique, RT-qPCR, paper-based analytical devices
have the efficiency for providing POC diagnostic devices for developing countries as well
as developing it for future disease outbreaks beyond COVID-19. Despite the progress made
in novel research on paper-based tests for reliable POC diagnostics, their application in
COVID-19 diagnosis still faces challenges. One area of research focus is reagent storage,
aiming to achieve stable storage of reagents within paper devices for instant use. Another
important aspect is sample preparation, especially crucial for CRISPR and nucleic acids tests
that often rely on amplification to improve the determination’s sensitivity. Additionally,
multiplex detection is essential for many medical diagnostic tests due to the similarities
in symptoms among different infectious diseases, like the common cold and SARS-CoV-2.
Furthermore, certain diseases are co-existing due to multiple serotypes and pathogens [146].
Therefore, rapid and simultaneous multiple target detection, in comparison to single target,
would greatly benefit medical diagnoses. Moreover, the introduction of artificial intelligence
(AI) is expected to improve diagnostic performance. AI-based COVID-19 diagnosis has
been progressively explored in lung determination imaging, including chest radiograph
(X-ray) imaging and computed tomography (CT) [147,148] and chest radiograph (X-ray)
imaging [149,150]. Through close collaboration between academia and industries, it is
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believed that a paper-based POC test with specificity and high sensitivity, while completely
fulfilling the ASSURED standards, is within reach.

In the context of this review article, one particular study conducted by Li et al. demon-
strated the highest sensitivity in detecting the CR3022 antibody, which is specific to the
spike glycoprotein S1 of SARS-CoV-2, in human serum [142]. This antibody serves as
a marker for COVID-19, with a remarkably low LOD of up to 0.4 pg mL−1. The study
focused on enhancing the performance of paper-based ZnO-NW-enhanced Electrochemical
Impedance Spectroscopy (EIS) biosensors through an experimental approach. In essence,
this research contributes to the advancement of our knowledge regarding the effective-
ness of nanomaterial-augmented EIS biosensing. Additionally, it provides insights into
potential strategies for achieving even better EIS biosensing performance by manipulating
the morphology of nanomaterials. The utilization of such high-performance paper-based
nano biosensors holds significant promise for precise and swift diagnostic applications in
effectively managing infectious disease crises.
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