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The pharmaceutical and bio-pharmaceutical industries rely on simulations of liquid chromatographic processes 
for method development and to reduce experimental cost. The use of incorrect injection profiles as inlet boundary 
condition for these simulations may, however, lead to inaccurate results. This study presents a novel modelling 
approach for accurate prediction of injection profiles for liquid chromatographic columns. The model uses the 
residence time distribution theory and accounts for the residence time of the sample through the injection loop, 
connecting tubes and heat exchangers that exist upstream of the actual chromatographic column, between the 
injection point and the column inlet. To validate the model, we compare simulation results with experimental 
injection profiles taken from the literature for 20 operating conditions. The average errors in the predictions of 
the mean and variance of the injection profiles result to be 8.98% and 8.52%, respectively. The model, which 
is based on fundamental equations and actual hardware details, accurately predicts the injection profile for a 
range of sample volumes and sample loop-filling levels without the need of calibration. The proposed modelling 
approach can help to improve the quality of in-silico simulation and optimization for analytical chromatography.
1. Introduction

A significant proportion of drug manufacturing costs is incurred dur-
ing downstream purification, where reversed-phase liquid chromatog-
raphy is a major process [25]. To reduce costs and experimental effort, 
pharmaceutical companies employ modelling and simulation of liq-
uid chromatography to support method development. This is done by 
solving a mathematical transport model of the chromatographic sepa-
ration, such as the Equilibrium-Dispersive Model [13] or the General 
Rate Model [16], together with an equilibrium isotherm describing the 
adsorption of solutes onto the stationary phase. In order to solve the 
model equations, suitable expressions for the initial conditions and the 
boundary conditions are required. The initial conditions, describing the 
starting point of the simulation (e.g., an empty column), are normally 
well established, as is the outlet boundary condition for the exit from 
the column. The selection of an appropriate sample injection profile as 
the inlet boundary condition to the column, however, is not trivial, 
although is of fundamental importance for obtaining accurate chro-
matographic peak shape predictions. Accurate prediction of the peak 
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shapes is critical, especially when these are used to derive information 
about equilibrium isotherm parameters and kinetic data that are later 
used in method development.

The most commonly employed inlet boundary condition is the sim-
ple rectangular boundary condition, whereby the sample injection pro-
file is modelled as a rectangular pulse with height 𝐶0 and width 𝑡𝑝, 
where 𝐶0 and 𝑡𝑝 represent the concentration of the analyte in the sam-
ple vial and the feeding time, respectively [7,16,26,14]. To prevent 
numerical instabilities that might arise from the vertical boundaries 
of a rectangular shape, the rectangular profile can be flanked by two 
semi-Gaussian curves [23]. Rectangular injection profiles are usually 
employed because of their simplicity, however, they are not realistic. 
Because of axial dispersion of the solutes in the elements or units up-
stream of the column, for instance, tubing or a heat exchanger (see 
Fig. 1), true injection profiles actually deviate strongly from the rectan-
gular shape, in fact, they are asymmetric, with a sharp front followed 
by a tailing decay [16,26,11,18].

To improve the accuracy of simulations, some studies have em-
ployed experimentally determined injection profiles. These are mea-
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Fig. 1. Schematic representation of a liquid chromatographic system. Our modelling approach for predicting the injection profile into a liquid chromatographic 
column considers the residence time distributions (RTDs) of the units placed upstream of the column (e.g., connecting tubes and heat exchangers) from the injection 
point to the column inlet. However, when a direct comparison with experimental injection profile is required, the RTDs of downstream units must also be included.
sured by injecting a tracer into the chromatographic system with the 
column replaced by a zero-dead volume connector [29]. This procedure 
is, however, impractical for in-silico optimization since the injection 
profiles vary with flow rate, injection volume, mobile phase viscosity, 
solute molecular weight and extra-column volumes [26,11], hence the 
injection experiments would need to be repeated if any of these param-
eters are to be changed.

As alternatives to experiments, the literature reports several com-
putational fluid dynamics simulations [8,9], as well as empirical and 
semi-empirical models for predicting injection profiles. These models 
vary in terms of accuracy, number of fitting parameters and experimen-
tal effort required. In the case of small sample volumes, the simplest 
and most extensively used models are the half-Gaussian [24], the quasi-
Gaussian [17] and the exponentially modified Gaussian (EMG) models 
[6]. The latter results from the convolution of a Gaussian peak with an 
exponential decay function, where the Gaussian contribution accounts 
for the Gaussian-type band broadening in connecting tubes caused by 
axial dispersion, and the exponential decay function models the expo-
nential tailing caused either by mixer-type extra volumes or by strong 
axial dispersion [20]. None of these models can, however, predict the 
concentration plateau that is known to arise at large sample volumes 
[7,11].

To account for sample volume, Felinger et al. [7] proposed combin-
ing the EMG function with a rectangular pulse of width 𝑡𝑝, this being the 
feeding time of the equivalent rectangular shape (i.e., the ratio between 
sample volume and flow rate). This model can predict the sample injec-
tion profile under different operational conditions, however, it relies on 
several fitting parameters that have to be calibrated against experimen-
tal results. Note that this approach is empirical, it does not offer any 
physical insight, and the parameters therefore do not have any physical 
interpretation.

A similar model was developed by Forssén et al. [11]. In their work, 
a Gaussian function was combined with a square pulse followed by an 
exponential decay. They also derived linear relationships to express the 
model parameters as functions of injection volume and flow rate. Even 
though this model reduces the experimental effort required, it is still 
empirical and the parameters again have no physical meaning.

Weatherbee et al. [30] used the Forssén model as a starting point for 
developing what they referred to as a global model. In their work, they 
considered a two-dimensional liquid chromatography (2D-LC) system 
and focused on predicting the shape of the injection profile at the inlet 
of the second column by estimating five parameters over a number of 
experimental conditions. Then, they developed empirical functions that 
related the parameter values to flow rate and loop volume. Unlike in 
the work by Forssén et al. [11], Weatherbee et al. [30] found non-linear 
dependencies.

A slightly different approach was developed by Gritti et al. [14], 
and later implemented by Pepermans et al. [23]. In their work, they 
described the injection profile as an asymmetric double sigmoidal func-
tion with two empirical time parameters that have to be tuned against 
2

experimental data [14].
All the models presented so far, and summarized in Table 1, are em-
pirical or semi-empirical and do not consider the hardware details of the 
system. Their applicability will therefore depend on the specific chro-
matographic system in question. To the authors’ knowledge, the only 
fundamental investigation of the injection profile in liquid chromatog-
raphy so far was made by Samuelsson et al. [26]. In their work, they 
employed a 2D-convection-diffusion differential equation with cylin-
drical coordinates and the equation for the parabolic velocity profile 
to investigate the dependence of the injection profile on different ex-
perimental parameters. The same model was successively employed by 
Baran et al. [1] to predict band broadening and band deformation of 
slow diffusing macromolecules. The model, which enables accounting 
for the parabolic velocity profile and the radial diffusion that arises in 
the injection loop and in all the capillaries connecting the injector to the 
column, led to highly accurate predictions and fundamental knowledge 
acquisition on the dispersion mechanisms involved. However, every 
new flow rate, sample volume, filling level, changes in tubing etc. will 
require a new simulation. As argued by Forssén et al. [11], this mod-
elling approach is hard to implement, computationally expensive, and 
thus inaccessible to practitioners.

This work presents a new versatile modelling approach for pre-
dicting the injection profile into a liquid chromatography column that 
requires minimal experimental effort and is easy to implement. The ap-
proach is based on the convolution of the residence time distribution 
(RTD) functions of the sample through the elementary units of a chro-
matographic system that are located between the sample injection point 
and the column inlet, such as connecting tubes and heat exchangers (see 
Fig. 1), together with the concentration profile of the sample at the in-
jection point. The model, which is based on fundamental understanding 
of the material transport phenomena in a continuous flow system, ac-
counts for the system geometry and enables predicting the injection 
profiles over a wide range of operating conditions (i.e., sample loop 
volumes and loop-filling levels). This is essential for proper simulation 
accuracy as required by in-silico optimization of analytical applications 
in order to reduce the time and cost of method development.

This paper is organized as follows. Section 2 introduces the RTD 
theory and the convolution integral. Section 3 describes the proposed 
modelling approach in detail. In Section 4, the only unknown parameter 
of the model is estimated, and the model is validated against experi-
mental findings from the literature. Further discussions are provided in 
Section 5, with conclusions drawn in Section 6.

2. Residence time distribution (RTD) theory

Since the early work of Peter Danckwerts in 1953, the RTD theory 
has been a standard tool for understanding and analysing flow systems 
in a variety of physical sciences [22]. In this work, the RTD theory is 
employed, for the first time, to describe the injection profile in liquid 
chromatography.

By definition, the RTD function is the probability density function 

(PDF) of the time that different fluid elements, atoms or molecules, are 
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Table 1

Summary of empirical injection profiles reported in the literature. In these functions, 𝐶0 is the analyte concentration in the sample, 𝑡𝑑𝑤𝑒𝑙𝑙,𝑖𝑛𝑗 is the dwell time from 
the injection point to the column inlet, 𝑡𝑝 is the feeding time of the (equivalent) rectangular pulse, 𝑚 and 𝜎 are the mean and the standard deviation of a Gaussian 
function, 𝜏 is the time constant of an exponential decay function, 𝐴 and 𝑎 are fitting parameters, while 𝑎1 and 𝑎2 are empirical time parameters.

Most used name Shape Equation References

Rectangular pulse
𝐶(0, 𝑡) =

{
𝐶0 if 𝑡𝑑𝑤𝑒𝑙𝑙,𝑖𝑛𝑗 ≤ 𝑡 ≤ 𝑡𝑑𝑤𝑒𝑙𝑙,𝑖𝑛𝑗 + 𝑡𝑝

0 if 𝑡 < 𝑡𝑑𝑤𝑒𝑙𝑙,𝑖𝑛𝑗 or 𝑡 > 𝑡𝑑𝑤𝑒𝑙𝑙,𝑖𝑛𝑗 + 𝑡𝑝

Felinger et al. [7], 
Guiochon et al. [16], 
Gritti et al. [14]

Half Gaussian 𝐶(0, 𝑡) = 2𝐴√
2𝜋𝜎

exp
(
− (𝑡−𝑚)2

2𝜎2

)
for 𝑡 ≥𝑚 James et al. [17]

Exponentially modified Gaussian (EMG) 𝐶(0, 𝑡) = 𝐴

2𝜏
exp

(
𝜎2

2𝜏2
+ 𝑚−𝑡

𝜏

)[
1 − erf

(
𝜎√
2𝜏

− 𝑡−𝑚√
2𝜎

)]
Felinger [6]

EMG convoluted with a rectangular pulse
𝐶(0, 𝑡) = 1

2𝑎

{
erfc

(
𝑚−𝑡√
2𝜎

)
− erfc

(
𝑚−(𝑡−𝑡𝑝 )√

2𝜎

)
+ exp

(
𝜎2

2𝜏2
+ 𝑚−𝑡

𝜏

)
×
[
exp

(
𝑡𝑝

𝜏

)
erfc

(
𝜎√
2𝜏

+ 𝑚−(𝑡−𝑡𝑝 )√
2𝜎

)
− erfc

(
𝜎√
2𝜏

+ 𝑚−𝑡√
2𝜎

)]} Felinger et al. [7]

Gaussian function convoluted with an 
exponentially decaying pulse characterized 
by an initial plateau of width 𝜃

𝐶(0, 𝑡) = 𝐴

2

[
erf

(
2𝑚−2𝑡+𝜃√

2𝜎

)
+ erf

(
2𝑡−2𝑚+𝜃√

2𝜎

)
+ exp

(
2𝑚−2𝑡+𝜃

𝜏
+ 𝜎2

2𝜏2

)
erfc

(
2𝑚−2𝑡+𝜃√

2𝜎
+ 𝜎√

2𝜏

)] Forssén et al. [11], 
Weatherbee et al. [30]

Asymmetric double sigmoidal function
𝐶(0, 𝑡) = 𝐶0

[
1 + exp

(
− 𝑡−𝑡𝑑𝑤𝑒𝑙𝑙,𝑖𝑛𝑗+0.5𝑡𝑝

𝑎1

)]−1
×
{
1 −

[
1 + exp

(
− 𝑡−𝑡𝑑𝑤𝑒𝑙𝑙,𝑖𝑛𝑗+0.5𝑡𝑝

𝑎2

)]−1} Gritti et al. [14], 
Pepermans et al. [23]
likely to spend in one or more elements or units; and the function is of-
ten denoted as 𝐸(𝑡) [4,20]. Thus, the quantity 𝐸(𝑡)d𝑡 yields the fraction 
of material whose residence time in the system lies in the differential 
range d𝑡 around the time 𝑡. The RTD function of a system can be de-
termined experimentally by performing either pulse injection or step 
change experiments of an inert tracer at the inlet of the system and 
recording the tracer concentration in the outlet stream as a function of 
time [10]. In the case of pulse injection, and for constant flow rates, 
𝐸(𝑡) is directly determined by normalizing the concentration profile of 
the tracer in the outlet stream by its underlying area:

𝐸(𝑡) =
𝐶𝑜𝑢𝑡(𝑡)

∫ ∞
0 𝐶𝑜𝑢𝑡(𝑡)d𝑡

(1)

In the case of a step change of the type 𝐶𝑖𝑛(𝑡) = 𝐶0𝐻(𝑡), with 𝐻(𝑡) being 
the Heaviside step function, one can directly determine the cumulative 
RTD function 𝐹 (𝑡) from the concentration profile of the tracer in the 
outlet stream:

𝐹 (𝑡) =
𝐶𝑜𝑢𝑡(𝑡)
𝐶0

(2)

whose derivative coincides with 𝐸(𝑡):

𝐸(𝑡) = d𝐹 (𝑡)
d𝑡

(3)

For the case where the inlet concentration of the tracer is a generic 
function, 𝐸(𝑡) can be obtained from the outlet concentration only via 
deconvolution.

2.1. RTDs of common process units

The RTDs of common process units have been derived and exten-
3

sively used in the literature. Below, we review the RTDs of the ideal 
Plug Flow Reactor (PFR), Laminar Flow Reactor (LFR) and ideal Con-
tinuous Stirred Tank Reactor (CSTR), as we will use these expressions to 
model the different units of a chromatography system (e.g., connection 
tubes and heat exchangers).

The ideal PFR is characterized by a piston flow. No mixing takes 
place in the axial direction and the residence time is the same for all 
elements of fluid [20]. This means that a PFR delays, but does not re-
shape, the input signal. The RTD function of an ideal PFR is a spike of 
infinite height, zero width and unit area, mathematically represented 
by [4,10]:

𝐸(𝑡) = 𝛿(𝑡− 𝜏) (4)

where 𝛿 denotes the Dirac delta function and 𝜏 represents the resi-
dence time of all the fluid elements. Perfect plug flow is often assumed 
for describing the flow through catalytic reactors, heat exchangers and 
packed towers [4].

Unlike the ideal PFR, the ideal CSTR is characterized by perfect 
mixing. As a consequence, the concentration within the vessel vol-
ume is uniform and identical to the concentration in the outlet stream 
[4,10,28]. This leads to an exponentially decaying RTD function:

𝐸(𝑡) = 1
𝜏
exp

[
− 𝑡

𝜏

]
(5)

where 𝜏 represents the mean residence time of the fluid elements.
Experimentally measured RTDs deviate from ideality and they are 

usually in between the RTDs of the ideal CSTR and of the ideal PFR. This 
happens because, in turbulent flow, velocity fluctuations lead to axial 
dispersion, whereas in laminar flow, the velocity profile is parabolic ac-
cording to the Hagen–Poisseuille law, with the fraction of fluid closer to 

the wall spending more time inside the pipe [10]. The RTD for a purely 
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Fig. 2. (a) Schematic representation of sample loops when considering 100, 75, 50 and 25% of loop filling. When the sample loop is operated in the First-In/First-out 
(FIFO) mode (i.e., the sample loop is loaded and unloaded in the same direction), the sample has to flow through the dotted volume before reaching the first capillary 
tube, and thus, it is convenient to define an effective injection point (i.e., the thick bar). (b) Input concentration at the effective injection point 𝐶 (𝑡).
convective laminar flow reactor (LFR) was derived by Danckwerts [4]
and reads:

𝐸(𝑡) =

{
0, 𝑡 < 𝜏∕2
𝜏2

2𝑡3 , 𝑡 ≥ 𝜏∕2
(6)

where 𝜏∕2 is the minimum time the tracer stays within the reactor.

2.2. Convolution

To model the injection profile, we consider the elements or units 
upstream of the chromatographic column as an assembly of unit opera-
tions in series. The RTD of the overall process 𝐸(𝑡) can thus be obtained 
by combining the RTDs characterizing all the individual unit operations:

𝐸(𝑡) =𝐸1(𝑡) ∗𝐸2(𝑡) ∗ ... ∗𝐸𝑛(𝑡) (7)

where ∗ denotes the convolution operator in the time domain. By def-
inition, the convolution of two functions 𝐸1(𝑡) and 𝐸2(𝑡) defined in 
[0,+∞)→ ℝ is:

𝐸(𝑡) = (𝐸1 ∗𝐸2)(𝑡) =

𝑡

∫
0

𝐸1(𝑠)𝐸2(𝑡− 𝑠)d𝑠 (8)

The convolution integration can also be computed as a multiplication 
in the frequency domain using the Fast Fourier transform (FFT) and its 
inverse [12]:

𝐸(𝑡) = 𝐹𝐹𝑇 −1 [𝐹𝐹𝑇 [𝐸1(𝑡)] × 𝐹𝐹𝑇 [𝐸2(𝑡)]
]

(9)

Since the convolution operation is commutative, the order of the units 
does not matter. Additionally, convolution can also be used to relate the 
output concentration of a given system of interest to the input concen-
tration [10]:

𝐶𝑜𝑢𝑡(𝑡) = 𝐶𝑖𝑛(𝑡) ∗𝐸(𝑡) =

𝑡

∫
0

𝐶𝑖𝑛(𝑠)𝐸(𝑡− 𝑠)d𝑠 (10)

3. Modelling approach

In this work, we propose a new modelling approach for predicting 
the injection profile in liquid chromatography under various operating 
conditions based on the RTD theory described above. If we consider 
𝐶𝑖𝑛(𝑡) to be the input concentration at the injection point, the corre-
sponding output concentration 𝐶𝑜𝑢𝑡(𝑡) can be computed by introducing 
4

Eq. (7) into Eq. (10):
𝑖𝑛

𝐶𝑜𝑢𝑡(𝑡) = 𝐶𝑖𝑛(𝑡) ∗𝐸1(𝑡) ∗𝐸2(𝑡) ∗ ... ∗𝐸𝑛(𝑡) (11)

where 𝐸1(𝑡), 𝐸2(𝑡) ... 𝐸𝑛(𝑡) are the RTDs of all the units composing the 
system chain. As we need the sample injection profile as an inlet bound-
ary condition to solve the mass balance equation of the liquid chromato-
graphic column, we have to consider the RTDs of all the units placed 
upstream of the column, from the injection point to the column in-
let. We will refer to this as injection profile at the column inlet. If, on 
the other hand, we want to validate predicted injection profiles against 
experimental injection profiles as part of an investigation, we have to 
consider the RTDs of all the units placed upstream and downstream of 
the chromatographic column, all the way to the detector. This is be-
cause the injection profiles are experimentally measured at the detector 
having the column replaced by a zero-dead volume connector. We will 
refer to this as injection profile at the detector (see Fig. 1).

Another important consideration relates to the sample loading [3]. 
In the case that the sample loop is operated in the First-In/Last-out 
(FILO) mode (i.e., the sample loop is loaded with the sample, and then 
unloaded into the chromatographic system in the direction opposite 
from which it was loaded), the first unit to consider in the system chain 
is the first capillary tube. However, in the case that the sample loop is 
operated in the First-In/First-Out (FIFO) mode (i.e., the sample loop is 
loaded and unloaded in the same flow direction), and for partial loop 
filling, the RTD function of a further unit has to be considered. This is 
because when injection starts, the sample has to flow through the re-
maining portion of the loop before reaching the first capillary tube. To 
account for this, the effective injection point is defined at the interface 
between sample and mobile phase (see Fig. 2-a). Both loading modes 
are used without one being more commonly employed than the other 
[21].

Eq. (11) can be solved as long as 𝐸𝑖(𝑇 ) for 𝑖 = 1, … , 𝑛 and 𝐶𝑖𝑛(𝑡) are 
all known (𝑛 is the number of units). With this aim, we imposed two 
simplifying assumptions. As a first approximation, each unit is assumed 
to behave either like an ideal PFR, or like an ideal CSTR, or like a LFR, 
and thus its characteristic RTD is given by either Eq. (4), or Eq. (5)
or Eq. (6), respectively. This approximation is enough to successfully 
model the main physical features of the hardware system in analytical 
chromatography. Furthermore, it is convenient since the equations are 
already available and easy to solve. However, in the case of LFR, it is 
worth verifying that 1) the flow regime is indeed laminar (by evaluating 
the Reynolds number of the flow), 2) mass transfer is mainly driven by 
convection (so that diffusion is negligible) and 3) the ratio 𝐿∕𝑑, where 𝐿
and 𝑑 are the unit length and diameter, respectively, is sufficiently small 
(for more information, refer to Chapter 15 of Levenspiel [20]). Note 

that the RTD function for LFRs cannot be used to model laminar flow 
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Fig. 3. Block diagram of the modelling approach developed for predicting the 
injection profile in liquid chromatography. The main steps are: data collection, 
recovery of the residence time contributions (RTDs) for each unit or element in 
the experimental setup, and parameter estimation. Note that, if the parameter 
𝜃 is known, the modelling approach reduces to the blocks with solid lines.

systems in the Taylor-Aris regime, because radial molecular diffusion 
significantly influences mass transfer and in turn the RTD function. For 
more information, refer to the Supplementary Information section. The 
second assumption concerns the input concentration at the effective 
injection point. To allow for a certain unknown amount of backward 
flux to be considered when the sample is pumped through the loop, 
𝐶𝑖𝑛(𝑡) is assumed to be a sharp front followed by an exponential decay:

𝐶𝑖𝑛(𝑡) =
⎧⎪⎨⎪⎩
0 if 𝑡 < 0

𝐶0 if 0 ≤ 𝑡 < 𝜃

𝐶0 exp
[
−(𝑡− 𝜃)∕𝜏

]
if 𝑡 ≥ 𝜃

(12)

where 𝜃 is the width of the plateau and 𝜏 is the length (in time-space) 
of the exponential decay (see Fig. 2-b). Because the area beneath 𝐶𝑖𝑛(𝑡)
is known and reflects the injected amount of substance, only one pa-
rameter, either 𝜃 or 𝜏 , has to be estimated.

Let us establish 𝜃 as the only unknown parameter of our model, 
which consists of Eqs. (11) and (12). The optimal value for 𝜃 ∈ [0, 𝑡𝑝]
can be estimated by minimizing the root-mean-square error (RMSE) be-
tween predicted and experimental injection profiles:

min
𝜃∈[0,𝑡𝑝]

RMSE(𝜃) =

√√√√1
𝑗

𝑗∑
𝑖=1

(
𝐶𝑜𝑢𝑡,𝑖 −𝐶

𝑒𝑥𝑝

𝑜𝑢𝑡,𝑖

)2
(13)

where 𝑗 is the number of data points considered.
Fig. 3 shows our modelling approach in step-by-step instructions. It 

begins with the collection of experimental injection profiles, the identi-
fication of the hardware details of the system, the estimates of RTDs for 
each unit, and the estimate of an initial guess for 𝜃. Then, it involves 
the calculation of 𝜃, which is performed by minimizing the objective 
function as shown in Eq. (13). With the optimal value of 𝜃, it is then 
possible to predict the injection profile at the column inlet. In the case 
5

where 𝜃 is known, the modelling approach reduces to just estimating 
Journal of Chromatography A 1708 (2023) 464363

the RTDs for each unit operation and calculating 𝐶𝑖𝑛,𝑖 and 𝐶𝑜𝑢𝑡,𝑖, i.e. no 
experimental investigation is required.

In this work, the proposed modelling approach is implemented and 
solved in the Matlab workspace using the built-in conv function to com-
pute convolution. As minimization method, we employed the routine 
𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ𝑏𝑛𝑏 [5], which uses the Nelder-Mead simplex algorithm [19]
and supports variable bounds. To qualitatively compare experimental 
and predicted injection profiles, we also calculated the mean residence 
time (the first raw moment of the overall RTD):

𝑡𝑚 = 𝜇1 ≡
∞

∫
0

𝑡𝐸(𝑡)d𝑡 (14)

and the variance of the curve, namely the band broadening contribution 
due to extra column volumes (the second central moment):

𝜎2 =

∞

∫
0

(𝑡− 𝑡𝑚)2𝐸(𝑡)d𝑡 (15)

4. Results

4.1. Case study: experimental and model setup

To validate our model, we employ the injection profiles experimen-
tally obtained by Stoll et al. [27] in a customized Agilent HPLC system 
(1290 Infinity I line). (Their study is the only one in the literature con-
sidering injection profiles that report system geometry and dimensions.) 
Their injection profiles refer to the sample injected from the interface 
valve of a two-dimensional liquid chromatography (2D-LC) into the sec-
ond dimension column. Note that, being able to accurately predict the 
injection profile of the 1D effluent into the 2D column is particularly 
important when the 1D effluent has a higher solvent strength than the 
mobile phase in the second dimension (i.e., in the case of solvent mis-
match).

To experimentally measure the injection profile, Stoll et al. [27]
replaced the chromatographic column with a zero-dead volume con-
nector. As Fig. 4 shows, their system was equipped with an 8-port/2-
position interface valve with two injection loops operated in the FIFO 
configuration. The valve was connected to a pre-column filter, remov-
ing any particulate matter, via capillary tube a characterized by 0.12 
mm i.d. and 50 mm length. The thermostated column compartment was 
equipped with a 1.0 μL heat exchanger and a zero-dead volume connec-
tor. The injected concentration profiles were measured in a UV detector 
equipped with a 0.6 μL low dispersion flow cell. The connecting tubes 
b, c and d were, in order, 220 mm x 0.075 mm i.d., 100 mm x 0.075 
mm i.d. and 220 mm x 0.075 mm i.d. stainless steel capillaries. The 
total overall upstream and downstream volumes were estimated to be 
about 3.0 mm3 and 1.6 mm3, respectively. The experimental injection 
profiles were detected by UV absorbance at 254 nm with five sample 
loops differing in geometry and volume, and considering four different 
sample loop filling levels (25, 50, 75 and 100%), for a total of 20 op-
erating conditions tested. A 10 μg/mL solution of uracil in water was 
used as tracer and the flow rate was set at 2.5 mL/min. More informa-
tion about the experimental setup and the experimental procedure can 
be found in Stoll et al. [27].

In deriving the predicted injection profiles at the detector, we imple-
mented the procedure described in Fig. 3. We modelled each capillary 
tube as a LFR because, in each tube, laminar flow occurs (i.e. the 
Reynolds number Re ≡ 𝜌𝑢𝑑∕𝜇 is much lower than 2100) and convec-
tion transport dominates over diffusive transport (i.e. the Péclet number 
Pe ≡ 𝑢𝑑∕ is much greater than 𝐿∕𝑑). For more information, refer to 
the Supplementary Information section. In terms of the heat exchanger, 
we assumed this to behave like an ideal PFR as suggested by Danckw-
erts [4]. For the case of 100% loop filling, the effective injection point 
coincides with the end of the sample loop, and thus capillary tube a was 

the first unit considered in determining the RTD of the overall system. 
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Fig. 4. Schematic representation of the customised Agilent HPLC system used in Stoll et al. [27]. The figure provides details about the flow path upstream and 
downstream of the chromatographic column (the column is replaced with a zero-dead volume connector for the investigation). The elements a, b, c and d are 

capillary tubes.

Fig. 5. The parameter 𝜃 as a function of the sample volume 𝑉 .

However, since the sample loop is operated in FIFO mode, in the case 
of partial loop filling, the sample is first pushed through the remain-
ing portion of the loop before entering tube a. To account for this, we 
located the effective injection point within the sample loop, at the in-
terface between the sample and the mobile phase, and we considered 
the rest of the sample loop as a further element in the system chain. As 
a first approximation, the latter was assumed to behave like a LFR. Note 
that, in this case study, we considered neither the pre-column filter, nor 
the connecting valves, nor the low-dispersion flow cell. However, their 
volumes are small compared to the volume of the other units and, as 
a consequence, their contribution in shaping the overall RTD is neg-
ligible. All simulations were performed considering the loop volumes 
measured by Stoll et al. [27] (13.7, 22.7, 45.5, 68.8, 83.3 μL) rather 
than the nominal loop volumes (13.5, 20, 40, 60 and 80 μL).

4.2. The optimal estimate for parameter 𝜃

Our modelling approach relies on an unknown parameter, 𝜃, that is 
obtained by minimizing the RMSE between experimental and predicted 
injection profiles (see Eq. (13)). Fig. 5 shows the optimal estimate for 
𝜃 as a function of the sample volume for all the 20 conditions tested. 
Interestingly, we found that there exists a linear relationship between 
𝜃 and the sample volume 𝑉 , and that the five data that do not follow 
the trend, i.e., the five markers whose value is close to zero, correspond 
to cases where only 25% of the loop is filled with sample. If we dis-
regard these outliers (there must be some unaccounted effects that are 
significant when it comes to 25% of loop filling), the data are well fit-
ted by 𝜃∕𝑉 = 17.71 (s/mL), with an R-squared value equal to 0.996. As a 
consequence, if the loop filling ranges between 50% and 100% and the 
chromatographic system is similar to that considered in this work, then 
the value of 𝜃 can be predicted a priori and our modelling approach 
becomes parameter-free, i.e. not requiring any experimental investiga-
tion. The model can then be used to predict injection profiles for a wide 
range of operative conditions and hardware settings.

For loop filling below 50%, on the other hand, the trend is unclear. 
6

We believe that the difference between simulation and experiment is 
due to unaccounted effects that become significant when the sample 
volume is small compared to the injection loop volume. Examples are 
fluxes due to valve movements when injecting the sample into the mo-
bile phase, different viscosities of the sample and the mobile phase, or 
longitudinal diffusion over time.

The relationship between 𝜃 and 𝑉 must be re-calibrated for chro-
matographic systems and operating conditions that deviate from those 
considered here. In particular, lower values of 𝜃∕𝑉 (i.e., 𝐶𝑖𝑛 character-
ized by a narrower plateau and a longer tail) might result from solutes 
with larger molecular weights and solvents with higher viscosity. Theo-
retically, 𝜃∕𝑉 should be re-calibrated also when the flow rate changes. 
However, since the influence of the flow rate in shaping the injection 
profile is minor [26,11,30], almost negligible at high sample volumes, 
predicting 𝜃∕𝑉 only once (e.g., in the middle of the range considered) 
is enough in most practical situations.

In cases where re-calibration is really needed, only one experiment 
is required (preferably performed with a loop filling greater than 50%). 
The fine-tuned 𝜃∕𝑉 can then be used to model a range of injection loop 
volumes and loop-filling levels.

4.3. Predicted and experimental injection profiles: a comparison

Fig. 6 compares the experimental injection profiles measured at 
the detector (markers) with the injection profiles predicted consider-
ing 𝜃∕𝑉 = 17.71 (s/mL) (solid lines) for all the 20 conditions tested. All 
profiles are normalized to a maximum peak height of 1. To get a quanti-
tative measure of the goodness of the comparison, the RMSE is provided 
above each picture. The agreement between experimental and predicted 
injection profiles is good for most of the injection volumes and filling 
levels tested. The largest deviations are observed when the sample is in-
jected through a sample loop filled for 25% (first column of Fig. 6) as 
previously discussed, and when there are larger volumes of the injec-
tion loop not filled with the sample (bottom right corner of Fig. 6). This 
indicates that assuming laminar flow through the remaining portion of 
the sample loop might be inaccurate (Stoll et al. [27] do not provide 
any information about the length and diameter of the injection loops; 
therefore, we could not verify the applicability of the pure convective 
model, i.e., whether the LFR assumption was suitable in all cases). The 
model accounts for the time delay the sample requires to reach the in-
jection port and the parabolic velocity profile, but it does not account 
for phenomena such as mixing and Taylor-Aris dispersion which may 
be present. Even if our model is inaccurate at low loop-filling levels, it 
works well for loop-filling levels equal to or greater than 50%. Further-
more, the model should always work when the sample loop is operated 
in the FILO mode (in this case, there is no need to model a portion of 
the sample loop and thus, we expect the same accuracy obtained in the 
FIFO mode reported here for 100% loop filling).

Table 2 reports the mean residence time and the time variance of the 
experimental and predicted injection profiles, together with their rela-
tive errors. In both cases, the median relative error of the predictions is 
∼ 7.5%. Note that, the time variance of the injection profile at the de-
tector represents the band broadening associated with the migration of 
the solute in the extra-column volumes, and thus it is useful to deter-
mine the influence of extra-column contribution to peak width under 

both isocratic and gradient conditions [15,29].
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Fig. 6. Comparison between the experimental injection profiles provided by Stoll et al. [27] (markers) and the injection profiles predicted considering 𝜃 = 17.71
(s/mL) 𝑉 (solid lines). The effect of varying the injection loop volumes (i.e. 13.7, 22.7, 45.5, 68.8 and 83.3 μL) and the loop-filling levels (i.e. 25, 50, 75 and 100%) 
7

are reported by rows and by column, respectively. All the curves are normalized, and the flow rate is 2.5 mL/min.
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Table 2

Mean residence time and variance of experimental and predicted injection pro-
files with relative errors for the 20 conditions tested. The experimental injection 
profiles are the one provided by Stoll et al. [27].

Vol (μL) Filling (%) 𝑡𝑚,𝑒𝑥𝑝 𝑡𝑚,𝑝𝑟𝑒 𝐸𝑅𝑡𝑚
𝜎2
𝑒𝑥𝑝

𝜎2
𝑝𝑟𝑒

𝐸𝑅𝜎2

13.7 25 0.33 0.30 6.82 0.01 0.01 3.68
13.7 50 0.29 0.30 1.21 0.01 0.01 10.36
13.7 75 0.25 0.29 13.68 0.01 0.01 2.61
13.7 100 0.22 0.26 17.53 0.01 0.01 3.65

22.7 25 0.50 0.48 5.18 0.02 0.02 3.46
22.7 50 0.44 0.43 1.75 0.02 0.02 5.19
22.7 75 0.37 0.39 6.45 0.02 0.02 0.67
22.7 100 0.33 0.38 12.67 0.04 0.03 6.84

45.5 25 0.95 0.82 13.45 0.06 0.06 7.62
45.5 50 0.83 0.77 6.70 0.08 0.07 9.36
45.5 75 0.73 0.72 2.00 0.10 0.09 12.47
45.5 100 0.65 0.63 2.85 0.14 0.13 3.04

68.8 25 1.49 1.25 15.72 0.11 0.13 16.11
68.8 50 1.36 1.25 8.04 0.14 0.15 12.34
68.8 75 1.17 1.13 2.71 0.21 0.19 7.73
68.8 100 0.95 0.97 2.60 0.37 0.35 6.39

83.3 25 1.97 1.51 23.42 0.30 0.25 15.36
83.3 50 1.63 1.35 17.07 0.31 0.25 19.53
83.3 75 1.41 1.30 8.08 0.31 0.26 16.36
83.3 100 1.16 1.03 11.52 0.46 0.43 7.69

Fig. 7. Rectangular pulse (dashed line), 𝐶𝑖𝑛(𝑡) (dotted line) and predicted in-
jection profile (solid line) for 13.5 μL sample volume and 100% loop filling. 
The total area overlap between the ideal rectangular pulse and the predicted 
injection profile is 70.78%.

5. Discussion

In the previous sections, we have shown that the RTD theory can 
be used to accurately predict the injection profiles and to estimate the 
extra-column band broadening for sample loops of different sizes and 
different loop-filling levels. Furthermore, for loops filled between 50% 
and 100%, the parameter 𝜃 scales with the sample volume, and the 
model becomes parameter-free and is therefore valid for many chro-
matographic settings and combinations.

5.1. Deviation from the ideal rectangular pulse

Fig. 7 compares the predicted injection profile (solid line) with the 
ideal rectangular pulse (dashed line) for the case of 13.5 μL sample vol-
ume and 100% loop filling. The total area overlap between the two 
curves is only 70.78%. In other cases considered, the overlap is even 
lower (not shown). This demonstrates that true injection profiles might 
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significantly deviate from ideal rectangular pulses, and therefore one 
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Fig. 8. Normalized injection profile for 5, 10, 25, 50, 100, 200 and 400 μL at 
a flow rate of 2.5 mL/min, considering 𝜃∕𝑉 = 17.71 (s/mL), 100% loop filling, 
and the same system represented in Fig. 4.

must impose as inlet boundary condition a profile that is as close to 
the real one as possible. In doing so, however, one must accept a trade-
off between accuracy and experimental effort. Our model leads in most 
cases to reasonably accurate inlet profiles, while significantly reducing 
the experimental effort required to obtain the values of the model pa-
rameters. Fig. 7 also shows how the input concentration 𝐶𝑖𝑛(𝑡) (dotted 
line) looks like for this particular case study.

5.2. Dependence on injection volume

In their work, Forssén et al. [11] demonstrated that the injection 
volume is the main parameter that needs to be accounted for when 
modelling the injection profile. Thus, we report in Fig. 8 the injection 
profiles predicted for varying injection volumes, at 100% loop filling 
and with 𝜃∕𝑉 = 17.71 (s/mL). The profiles are characterized by a steep 
front and a significant tail that arises because of sample dispersion 
through the different elements or units. Furthermore, the dispersion 
of the injection profiles increases with the injection volume and, for 
the higher injection volumes, the concentration plateau emerges. The 
shapes of these profiles are qualitatively similar to those reported by 
Samuelsson et al. [26] and Forssén et al. [11], respectively, in their 
Figs. 1 and 2, however, their models require either more parameters or 
more computational effort than our model. We can conclude that our 
modelling approach can accurately and easily predict the shape of the 
injection profile across a set of injection volumes and with only one 
parameter (𝜃) that is easy to estimate.

6. Conclusions

Actual injection profiles in liquid chromatographic systems gener-
ally deviate from the ideal rectangular shape often assumed, and one 
of the main challenges that researchers face when modelling liquid 
chromatography is implementing an injection profile that mimics the 
actual one. Previous literature addressed this problem by using either 
experimentally determined injection profiles or surrogate models de-
rived from the combination of Gaussian, square, and exponential res-
idence time profiles [2]. However, these models require a relatively 
large amount of experimental data, and performing experiments is both 
expensive and time-consuming.

In this work, we have proposed a new modelling approach for in-
silico estimation of injection profiles for liquid chromatography that is 
based on the residence time distribution (RTD) theory. The approach 
consists in combining, or convoluting, the RTD functions of all the dif-
ferent units or elements composing the chromatographic system that are 
placed between the injection point and the column inlet (e.g., tubing, 

heat exchanger etc). To obtain the injection profile, the overall RTD is 
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then convolved with the inlet concentration of the sample. The model, 
which has been validated against independent experimental data, relies 
on a single easily fitting parameter whose value depends on the injec-
tion volume.

The modelling approach requires either one experimental injection 
profile, or no experiments at all. The main advantages of the model are 
that it is applicable over a range of operating conditions, there is no 
need to solve mass balance equations, and the experimental work is ei-
ther minimized or not required. Furthermore, the approach is cheap, 
fast and easy to use, and is therefore accessible to most practitioners, 
with the only requirement being the knowledge of the size and geom-
etry of the different chromatographic system elements. Future work 
includes testing and adapting the proposed approach to preparative 
scale chromatography where different assumptions may be required.
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