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Polymer electrolyte fuel cells (PEFCs) are regarded as a
substitution for the combustion engine with high energy
conversion efficiency and zero CO2 emissions. Stable system
operation requires control within a relatively narrow range of
operating conditions to achieve the optimal output, leading to
faults that can easily cause accelerated degradation when
operating conditions deviate from the control targets. Perform-
ance recovery of the system can be realized through early fault
diagnosis; therefore, accurate and effective diagnostic charac-

terisation is vital for long-term serving. A review of off-line and
on-line techniques applied to the fault diagnosis of fuel cells is
presented in this work. Off-line approaches include electro-
chemical impedance spectroscopy (EIS), cyclic voltammetry
(CV), galvanostatic charge (GSC), visualisation-based and image-
based techniques; the on-line methods can be divided into
model-based, data-driven, signal-based and hybrid methods.
Since each methodology has advantages and drawbacks, its
effectiveness is analysed, and limitations are highlighted.

1. Introduction

In the dual pressures of climate change and energy crisis,
polymer electrolyte fuel cells (PEFCs) are targeted as an integral
technology in transportation electrification and decarboniza-
tion, especially for heavy trucks, which benefit from their energy
density, almost zero emission and short refuelling time. The
stack is the most essential fuel cell system component and is
typically formed from tens to hundreds of single cells in series
to deliver higher power output. In each of the single cells,
hydrogen is split into electrons and protons at the anode
catalyst interface, and proton transport occurs through the
insulating electrolyte sandwiched between the electrodes. The
oxygen reduction reaction (ORR) that occurs on the cathode
side is a more sluggish and rate-limiting process. The focus in
the fuel cell community has been on improving the perform-
ance of platinum-based,[1] even platinum group metal-free[2]

electrocatalysts for the ORR. However, achieving high perform-
ance and durability in fuel cells requires a systematic approach.
This entails the development of advanced catalysts and
optimization of the single cell structure[3] as well as the
implementation of effective fuel cell system control.

Currently, the most critical issues for widespread commerci-
alisation are cost and durability, which are coupled. Increasing
the life of the system can reduce the cost per kilometre. To
improve reliability and life expectancy, not only the individual
components are required to be more durable, but faults that
occur during operation should be detected to ensure that the

fuel cell system always works in the required condition. The
faults of the fuel cell system will result in abnormal changes in
one or more health indicators (HIs) so that the health state of
the fuel cell system can be evaluated by mapping the relation-
ship between HI and fault. The contribution of various HIs, such
as voltage, internal resistance power and hybrid indexes, used
in diagnosis have been discussed by Zhang et al..[4] Systematic
classification of existing fault diagnosis methods has been
reported in the literature. Petrone et al.[5] classified and
discussed the model-based approaches for PEFCs diagnosis.
Model-based approaches can be divided into white, grey and
black boxes, depending on whether they are based on
experimental data or physical relationships. These methods rely
on the residual difference between the predictions of the model
and experimentally measured values. To supplement this,
Zheng et al.[6] summarised new applications and trends of non-
model-based methods, in which the fault information can be
directly derived by artificial intelligence and signal processing. It
can be concluded that non-model diagnosis is a potential
solution for future study, but this paper only focuses on the
qualitative detection and analysis of faults. None of these
reviews was concerned with the methods of analysing and
characterising the faults mechanism in depth. Consequently, an
overview to systematically cover the frontiers and prospects of
fuel cell fault diagnosis is still lacking.

This paper aims to synthesise the latest progress and
outstanding research and development issues on the fault
diagnosis of fuel cell systems, discuss the characteristics,
limitations and trends of each method, and offer insights into
developing effective and reliable diagnostic techniques. The
comprehensive understanding of various advanced diagnostic
methods provided serves as a reference marker for future
research but also enables researchers to address the challenges
and potential issues faced during the practical implementation.
The review starts with a brief introduction to the common fault
types of PEFCs. Next, depending on whether detailed mecha-
nism analysis or operational health estimates are required, two
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basic categories of methods can be considered: off-line and on-
line. Off-line diagnostic methods are usually performed under
laboratory conditions to gain insight into fault mechanisms and
effects. The on-line diagnosis method uses sensor signals to
monitor the health status of the fuel cell system in real-time.
Discussion is also given to outstanding issues, such as fusion
decision techniques that combine different diagnostic models
to boost accuracy, which is covered in detail in section 4.

2. PEFC Faults

The deviation of operating conditions causes the occurrence of
faults. The automotive fuel cell system generally operates in a
wide power range. For each current density, a corresponding
pressure, flow, humidity and temperature need to be met;
Complex auxiliaries are necessary except for the PEFC stack,
including a hydrogen supply subsystem coupled to a recircula-
tion blower, an air supply subsystem with a humidifier, a
coolant subsystem, a DC-DC converter and a controller. The
operating condition of the automotive PEFC system is quite
complicated and can be affected by many external factors, such
as temperature, vibration and even particulate contamination.
Deviations from operating conditions lead to temporary or
permanent degradation of system performance, which should
be avoided in practice.

Faults can be classified into permanent and recoverable.
Permanent faults refer to the problems that need to be solved
by parts replacement. For example, pinholes or flaws in the
membrane, generated during operation or manufacture, could
cause reactant gas crossover, bringing the risk of explosion.[7]

Chemical degradation of perfluorosulfonic acid (PFSA) mem-
branes leads to a permanent decrease in proton conductivity
and, therefore, the efficiency of the operating system.[8]

Recoverable faults mean that system performance can be
recovered with remedial actions. Common recoverable faults
include short-circuit, reactant starvation, impurities poisoning
(CO), and water unbalance problems.[9] However, control
objectives are not achieved, or the situation worsens, when the
faults are not detected in time. The system’s performance will
quickly decay below the expected threshold, or there is even a
possibility of shutdown or personal risk. Taniguchi et al.[10]

analysed the adverse effect of low anode stoichiometry on the

catalyst layer and found that the cell voltage falls quickly below
zero when the anode is not supplied with enough fuel - termed
cell reversal. The electrochemical active surface area (ECSA) was
reduced by around 28% after 3 minutes of cell reversal, and the
average catalyst particle size increased from 2.64 to 4.95 nm by
observation via transmission electron microscope (TEM); thus,
recoverable faults can quickly cause irreversible damage to the
fuel cell if not acted on promptly. As well as catalyst nano-
particle degradation and agglomeration, cell reversal can cause
corrosion of the carbon supports of the catalyst. For instance,
Zhou et al.[11] analysed the composition of the anode exhaust
under cell reversal, and the detected CO2 indicated the
consequential carbon corrosion, which may cause the collapse
of the porous electrode and further catalyst agglomeration.
Such rapid performance degradation in a short period is called
a burst fault, so the corresponding fault data sample size is very
small.

Water management failure is the most common fuel cell
fault, representing over 50% of PEFC faults.[12] Especially for the
next generation of self-humidifying fuel cell systems in which
external humidifiers will be removed, water management will
face more significant challenges. The core point is to maintain
sufficient membrane water content to ensure the electro-
chemical reaction, as insufficient humidification will lead to
increased membrane resistance and even membrane perfora-
tion. Water droplet formation and accumulation flood the
porous transport layers, catalyst layer and even the channels of
the gas flow field, and thus hinder the transportation of
reactants to the catalyst surface. This is followed by the voltage
drop due to partial fuel starvation. There is a subtle balance in
humidification, water generation, transportation and removal to
ensure optimal output performance, and phase changes
(vapour, liquid and ice) are also involved in the cold start-up. A
fault should be detected and identified by non-destructive and
real-time tools as quickly as possible; it can then be mitigated
or even eliminated through certain control logic. For instance,
the oxygen excess ratio is increased to drain liquid water,[13]

called a purge or surge.
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3. Fault Diagnosis

Fault diagnosis and isolation control are increasingly critical in
fuel cell control, evaluation and characterisation. Various
diagnostic approaches for fuel cell systems have recently
emerged, each with pluses and minuses. As summarized in
Table 1, depending on whether they can be deployed in the
actual system, existing fuel cell diagnosis techniques roughly
fall into two categories: off-line and on-line.

3.1. Off-line techniques

Here we define ‘in situ’ as characterisation without disassembly
of the fuel cell but not necessarily during operation, and
‘operando’ as the characterisation of a fuel cell during its
operation in realistic conditions. Off-line methods are independ-
ent of the fuel cell’s disassembly and operating status of the
fuel cell, and they refer to those usually performed under
laboratory conditions and not available when the fuel cell
systems go into service in their intended application. Specially
modified stacks (such as using a transparent bipolar plate to
visualise the flooding formation and water movement in the
flow channel directly[14]), changing the nominal operating
conditions (nitrogen feed to cathodic side during the cyclic
voltammetry [CV] test) and specialised equipment that is
difficult to deployed are required. However, the performance
decline mechanisms of the stack with faults generally can be
understood more fundamentally via off-line measurements, as
they provide more detailed and explainable information on the
fuel cell characteristics. Off-line fault diagnosis techniques
mainly include electrochemical impedance spectroscopy (EIS),[15]

CV,[16] galvanostatic charge (GSC),[17] visualisation-based
methods[14,18] and imaging-based. Here, we discuss how the
outputs of these characterisation methods can be used as the
inputs to diagnostic models for fuel cell control logic.

3.1.1. EIS

Electrochemical impedance spectroscopy (EIS) measurement
can be carried out by imposing a small sinusoidal alternating
current (AC) signal to perturb the stack and recording the
corresponding response (AC amplitude and phase). The
schematic principle of the EIS technique is illustrated in
Figure 1. The frequency range of the perturbation signal is
about 10 kHz to 0.1 Hz. The impedance is expressed as a
function of the frequency and can be used to distinguish
individual contributions in the frequency domain. When the
real and imaginary components of the impedance are plotted
on a Nyquist plot, semi-circular arcs result and can provide
information about the various resistances in the system.

EIS measurement is sensitive to both external operating
conditions (temperature, gas impurities) and core components
(such as membrane and bipolar plate),[19] so it is broadly applied
in the diagnosis and characterisation of fuel cells. Yuan et al.[20]

examined the effect of stack temperature, stoichiometry and
humidity on the impedance spectra. The charge transfer
resistance and temperature have an inverse relationship; the
low-frequency arc increases with a higher current when the air
stoichiometry is fixed. Conversely, the low-frequency arc
becomes smaller with the increasing current when hydrogen
stoichiometry is constant. Interruption of humidification at the
cathode has a more significant effect on the spectra than the
humidification interruption at the anode. Maidhily et al.[21] used
EIS to access two types of gas diffusion layers. They observed
that the double-side gas diffusion layer (microporous layer
slurry coated on both sides of the gas diffusion backing) is
more suitable for higher temperatures and relative humidity.
However, a single-side coated diffusion layer (microporous layer
slurry coated only one side facing the catalyst layer) is
favourable for dry reactant. Besides, EIS can be combined with
other methods, such as polarisation curve,[22] to analyse
performance decline.

The measured EIS data of fuel cells is usually interpreted by
the equivalent circuit model in which different circuit elements
describe different electrochemical processes separately. There-
fore, the effect of operating conditions and components on
various internal processes can be analysed by EIS. For instance,
a simple Randles circuit has been used by Mousa et al.[29] to fit
the impedance data and further predict stack voltages. The
reduction of oxygen concentration can be detected by
calculating the difference between predicted and measured
voltages. The simple Randles circuit only consists of three
elements: RO, representing the total ohmic resistance, Cdl

indicating the double layer capacitance at the electrode/
electrolyte interface and Rct , indicating the charge transfer
resistance at the cathode side (the anode is ignored because
pure hydrogen is used as fuel, and the hydrogen oxidation
reaction (HOR) is many times more facile than the oxygen
reduction reaction (ORR)). Mainka et al.[23] used a Randles circuit
model containing an additional Warburg impedance (ZW) to
describe the oxygen diffusion process; nevertheless, there are
still inaccurate fitting problems in the high-frequency part.
Fouquet et al.[24] further replaced the plane capacitor with a

Table 1. Categories of diagnosis approaches.

Off-line On-line

Electrochemical impedance spectroscopy (EIS)
Cyclic voltammetry (CV)
Galvanostatic charge (GSC)
Visualisation-based
Imaging-based

Model-based
Data-driven
Signal-based
Hybrid methods

Figure 1. The schematic diagram of the EIS technique.
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constant phase element (CPE) where the impedance of the CPE
is calculated as 1=ðQðjwÞaÞ, the parameter of Q has units of
capacitance and a � 1 is a constant. The modified equivalent
circuit model fits the experimental data well in the frequency
range. Anodic processes are also considered in Refs. [25-27], but
usually only include the double-layer capacitance and the
charge transfer resistance. Some more elaborate equivalent
circuit models have been proposed,[28,30] as listed in Table 2.

In addition to the parameters’ value of the equivalent circuit
model obtained by fitting the impedance spectrum, impedance
domain data can be turned into a distribution of the time
constants by the Distribution of Relaxation Times (DRT)
approach without any prior knowledge of the system. The
number of electrochemical processes and their characteristic
relaxation times can be determined by DRT analysis, and the
DRT function rðtÞ is a solution to Equation 1:[31]

ZðfÞ ¼ R0 þ Rpol

Z ∞

� ∞

trðtÞ
1þ i2pft

d ln t (1)

Here R0is the high-frequency resistance, Rpolis the total
polarisation resistance, iis the imaginary part, f is the frequency
and t represents the time constant. Several methods with

logical restriction, such as Fourier Transform, Tikhonov Regula-
rization, Maximum Entropy and multiple-(RQ) CNLS-fit, can be
used to get the viable solution.[32] Heinzmann et al.[33] inves-
tigated the impact of relative humidity (RH) on PEMFC
impedance and the corresponding DRTs. As shown in Figure 2,
process P2 associated with the ORR decreased with increased
humidity. The adjacent peaks P3 to P5 also depended strongly
on humidity rather than current density or oxygen partial
pressure, which supported that these processes are related to
proton transport. Kwon et al.[34] identified the carbon corrosion
by DRT, peak area decrease and the negative shift in the
characteristic relaxation time (t0) can be observed during the
initial 1k cycling, representing the decrease in charge transfer
resistance. A remarkable negative shift oft0showed in the 30k
cycling. It may result from the drastic reduction of ECSA and
double-layer capacitance.

To solve the problem of standard EIS taking a long time to
acquire in the low-frequency range, Lu et al.[35] achieved fast EIS
measurement by combining continuous wavelet transform and
maximum likelihood estimation. Current pulse injection (CPI)
characterisation is proposed by Jeppesen et al.[36] to reduce the
cost of impedance measurement. Nonetheless, the measure-

Table 2. Typical equivalent circuit models used to represent the impedance spectra.

Ref. Equivalent circuit model Overall impedance (W) Usage of model

[23] RO þ
1

jwCdlþ
1

RctþZW

A Warburg element accounting for oxygen deple-
tion along the air channel.

[24] RO þ
1

QðjwÞaþ 1
RctþZW

A high-frequency depressed semicircle can be dealt
with by substituting a constant phase element for
the standard plane capacitor.

[25] 1

jwCdlþ
1

Rct a

þRO þ
1

jwCdlþ
1

Rct cþZw c

Identify the flooding phenomenon for a 500 W
stack. Rct aandRct c signify the anode and cathode
charge transfer resistance.

[26] 1

Q1ðjwÞa1þ
1
Rct

þRO þ
1

Q2ðjwÞa2þ
1
Rmt

The effect of the MEA activation condition under
low and high thermal and pressure stresses.
Rmtrepresents the mass transport resistance.

[27] 1

Q1ðjwÞa1þ
1
Ra

þRO þ
1

Q2 ðjwÞa2þ
1

RcþZw

In-situ diagnosis of cell reversal by anode starvation,
Ra and Rc are the resistances associated with the
anodic and cathodic processes.

[28] ROþjwL þ 1

jwCdlþ
1

Rct a

þ
1

QðjwÞaþ 1
Rct cþZw

Analysis of the SO2 contamination effect on the
oxygen reduction reaction.

Wiley VCH Dienstag, 05.09.2023

2399 / 314798 [S. 4/15] 1

Chemistry—Methods 2023, e202300030 (4 of 14) © 2023 The Authors. Chemistry - Methods published by Chemistry Europe and Wiley-VCH GmbH

Chemistry—Methods
Review
doi.org/10.1002/cmtd.202300030

 26289725, 0, D
ow

nloaded from
 https://chem

istry-europe.onlinelibrary.w
iley.com

/doi/10.1002/cm
td.202300030 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [14/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ment takes tens of seconds (over which time the system should
maintain a steady state).

It is worth mentioning that, with increased on-board
computing power, EIS can also be used for on-line diagnostic
technologies. On-line EIS measurement can be realized based
on the existing DC-DC converter without additional equipment
and cost.[37] However, perturbating a small disturbance signal to
the stack and acquiring the corresponding response signal is
still necessary with this measurement. When the amplitude of
the disturbance signal is not significant, it is susceptible to noise
and so the response signal is difficult to measure accurately. On
the contrary, the large amplitude will affect the normal
operation of the stack, perturbing the system periodically out of
the steady state and invalidating the EIS measurement.

3.1.2. Cyclic Voltammetry

Cyclic voltammetry (CV) is another popular electrochemical
characterisation approach. The working electrode’s potential is
swept linearly back and forth between two set potential limits
while the current is measured. The maximum potential of the
anode is generally set below 1 V to avoid carbon oxidation.[38]

Generally, the kinetics of oxygen reduction reaction (ORR) is
sluggish compared to the hydrogen oxidation reaction (HOR),[39]

and more attention is paid to the electrochemical activity of the
cathode catalyst, so this electrode is usually used as the
working electrode (purged with N2), and the anode is used as
both the counter and reference electrode (fed with H2). The
ECSA of the cathode catalyst is estimated from the charge
density, catalyst loading in the electrode and a constant that
relates the monolayer surface charge of said catalyst to the
surface area.

Liu et al.[40] performed CV as the diagnostic tool during a
900 h durability test of the membrane electrode assembly
(MEA), and the results are presented in Figure 3. The degrada-
tion rate of the ECSA of the cathode after the 900 h drive cycle
is 55%. Besides, the gradual upward shift of the cyclic
voltammetry curves indicates the oxidation of crossover H2,
which increases during the testing and implies additional
membrane degradation during the durability test. A similar
conclusion has been reported by Cleghorn et al.,[41] where about
66% of cathode ECSA was lost in 26,300 h of operation; this
decrease in ECSA is due to the growth of Pt nanoparticles
caused by a combination of agglomeration and dissolution/
reprecipitation mechanisms,[1b] as well as loss of Pt due to
corrosion and physical detachment from the support.

Yuan et al.[42] studied the adverse impact and contamination
mechanisms of NH3 by using CV and found that the adsorption
of NH4

+ or NH3 on Pt causes active site reduction on the
cathode side. EIS can be used for modelling and on-line
diagnosis of fuel cells, but CV is generally only used for
quantitative degradation analysis after fuel cell degradation has
occurred due to its long scanning time.

3.1.3. Galvanostatic charge

Galvanostatic charge (GSC) is a suitable in situ diagnosis
method for the stack. This makes up for the fact that the CV has
narrow applicability in single-cell characterisation.[17,43] As
opposed to recording current in CV, GSC measures the variation
of voltages under different charging currents.

Figure 4 illustrates the voltage variations over time during
the different charging processes. In addition to ECSA, parame-
ters such as double-layer capacitance, Ohmic resistance and
hydrogen crossover current can also be calculated. The effects
of temperature and RH on the performance of the MEA were
assessed by Pei et al.[44] with the GSC tests. The double-layer

Figure 2. Impact of humidification on PEMFC Impedance spectra and
corresponding DRTs by Heinzmann et al. Reproduced with permission from
Ref. [33]. Copyright 2008 Elsevier.

Figure 3. CV spectra of the MEA during 900 h durability test by Liu et al.
Reproduced with permission from Ref. [40]. Copyright 2014 Elsevier.
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capacitance and ECSA increase with increasing RH, but both
change very little as the temperature increases. Hydrogen
crossover current and cell ohmic resistance drop linearly with
increasing RH, and the high level of the membrane water
content leads to the decrease of porosity, which further
impedes reactant crossover; however, with the temperature
rise, hydrogen crossover current increases and the ohmic
resistance declines.

The GSC was used to evaluate the influence of MEA
electrochemical parameters on the stack’s performance by Wu
et al.,[45] such as mass transfer loss and contact resistance, by
adjusting assembly torque. Nevertheless, a high-efficiency filter
is required to remove the signal noise for the GSC method
application.[46]

3.1.4. Visualisation-based methods

Through a transparent endplate design, the formation and
distribution of liquid water in the flow field inside the fuel cell
can be directly observed.[47] The liquid water accumulation was
monitored by the pressure drop (pressure difference between
the inlet and outlet of the cathode channel) by Ma et al.,[48] and
the emergence and removal of droplets can be simultaneously
observed by operating a transparent fuel cell stack. An
exemplar PEFC stack with transparent windows is shown in
Figure 5. By visualizing the two-phase flow, Lee et al.[14]

conclude that flooding (water droplets and slug formation) on

the anode is more significant than on the cathode side. The
starting region of the flooding fault is different under different
current densities, and the inlet is the area with the lowest
current density and the middle with the high current density.

However, visualisation-based methods usually need special
modifications to the fuel cell design, which can affect its
integrity. Due to the difficulty in accurately calculating the
volume of water plugging or droplet through pictures, there
are errors in quantifying the degree of water flooding fault.

3.1.5. Imaging-based methods

To visualize the internal operating state of the stack, except for
unique designs such as transparent endplates, X-ray
radiography,[49] neutron radiography,[50] magnetic resonance
imaging (MRI),[51] and infrared (IR)[52] imaging can also be used
to realize the on-site visualisation. Yuan et al.[52a] detected
pinholes developed in the membranes by performing IR
imaging. The crossover hydrogen reacts with oxygen to
produce heat in the presence of the Pt catalyst so that the hot
spots reflect the hydrogen crossover location. As shown in
Figure 6B, Asghari et al.[52b] observed similar local temperature
increases. Although hydrogen leakage fault can be detected
rapidly and accurately based on IR imaging, confirming the
precise location of the defected cells is challenging due to the

Figure 4. Voltage change rates during the different charging processes by
Pei et al. Reproduced with permission from Ref. [44]. Copyright 2014 Elsevier.

Figure 5. A transparent designed PEFC stack by Lee et al.,[14] opaque graphite
bipolar plates are replaced with gold and polycarbonate plates. Reproduced
with permission from Ref. [14]. Copyright 2012 Elsevier.

Figure 6. (A) The cell comprised of aluminium endplates, current collectors
and flow-fields in neutron radiography setup by Kulkarni et al. Reproduced
with permission from Ref. [53]. Copyright 2019 Elsevier. (B) Infrared thermal
image of the stack with hydrogen leakage by Asghari et al. Reproduced with
permission from Ref. [52b]. Copyright 2014 Elsevier. (C) The bespoke fuel cell
with graphite plates designed for in situ X-ray CT. Reproduced with
permission from Ref. [56]. Copyright 2020 Elsevier.
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increase of temperature in a wide area caused by heat
conduction. IR imaging is also impractical for most fuel cell
system setups in real-world operation and has limited potential
for on-line diagnostics.

Neutron radiation is mainly used to study water transport in
single cells due to high attenuation when it passes through
lighter materials. Kulkarni et al.[53] investigated the effects of
compression on the water dynamics of the fuel cell with in-
plane and through-plane neutron imaging (Figure 6A), in which
the effect of land and channel pattern on the water retention
profiles was revealed. Besides, Neutron radiography can also be
used to optimize design; Wu et al.[54] studied the effect of the
number of serpentine flow fields on PEFC water management,
and the results show that the single-channel arrangement has
higher water removal ability and cell potential.

Similarly, X-ray radiography is used by Deevanhxay et al.[49a]

to investigate water distribution in the cathode microporous
layer, showing that the accumulated liquid water can be
observed directly. Meyer et al.[55] combined X-ray radiography
with neutron imaging to compare two types of gas diffusion
layer and found that the design of the gas diffusion layer/
microporous layer on both sides must be considered collec-
tively. Although the imaging-based methods are on-line, they
often require a specialist experimental setup and are hard/
impossible to implement into an automotive stack. The X-rays
easily pass through light materials and struggle to penetrate
dense materials, so Hack et al.[56] used a graphite plate as the
flow-field, current collector and end plate, as illustrated in
Figure 6C.

3.2. On-line techniques

On-line diagnosis techniques mainly consist of model-based,
data-driven, signal-based and Hybrid methods. The on-line
diagnosis techniques only use the signals from different sensors
attached to the fuel cell system in its application (e.g., in a
vehicle) to estimate the state of health, and then fault tolerant
control can be realised. Therefore, the fault presented during
the operation can be accurately examined (the cause or the
location of the fault) according to the signals measured. Unlike
off-line diagnosis, the cause of failure does not need to be
revealed by on-line techniques. But the real-time capability,
accuracy, and complexity of hardware and software should be
considered.

3.2.1. Model-based methods

Model-based diagnostic methods are also termed residual-
based: zero residual signifies the normal operation, and non-
zero means a faulty case.[57] For the system model, which runs
in parallel with the actual system and has the same input
conditions, the residuals can be calculated as the difference
between the model output (prediction value) and the actual
system outputs (measurement value). A diagram of the model-
based methods is illustrated in Figure 7A.

The system model can be established based on physical
equations (white box models) or experimental datasets (black
box models). The white box model is established based on
theoretical equations, so it has high generalisation ability and
only needs to modify the specific parameters when ported to
different fuel cell systems. Esmaili et al.[59] developed a seg-
mented model to forecast the current distribution, flow regime,
and governing equations to list a few examples, including mass
balance, gas diffusion, water transfer, and voltage calculation.
Simulation results show that under high current density with
saturated reactant gas, two-phase pressure drop has a similar
trend with output voltage so that it can be used as a diagnostic
tool for flooding and dehydration. Inspired by models pre-
sented in Ref.,[60] water management and stack thermal
dynamics are further considered by Polverino et al..[61] Some
assumptions are made in the model development, such as the
simultaneous occurrence of multiple faults not being consid-
ered. The overall number of equations which include first-order
differentiation and algebra is over 100, and the number of
unknown variables is about the same. Nine different faults can
be identified, involving stack, auxiliary components and sensors,
but high computational effort is required to solve the
equations.

Black box models can be obtained directly from the
experimental data with a low computational cost. The regres-
sion model of the heat transfer rate trained off-line is presented
by Oh et al.,[62] compared with measured data in real-time to
calculate the residual for the heat transfer rate. Model inputs

Figure 7. (A) Diagram of model-based methods by Petrone et al. Reproduced
with permission from Ref. [5]. Copyright 2013 Elsevier. (B) Diagnosis
procedure of neural network-based model proposed by Steiner et al.
Reproduced with permission from Ref. [58]. Copyright 2011 Elsevier.
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include the heat exchanger inlet temperature, stack pump and
reservoir pump control signal. As shown in Figure 7B, to identify
water management failures, based on the previous study,[63]

Steiner et al.[58] further trained an Elman neural network
model[64] to predict the cathode pressure drop and cell voltage.
Water management-related variables are chosen as inputs, such
as air inlet flow rate and dew point temperature. Therefore, the
residual voltage value is first used to determine whether the
system is in normal operation. Then the flooding and
dehydration are distinguished by pressure drop residual value.

Additionally, there are other network models, such as radial
basis function (RBF)[65] and Bayesian,[66] that differ in approach
by network structure and parameter, respectively. RBF neural
networks consist of three layers, but without context units
compared to Elman, and use radial basis function as nonlinear
function. The parameter of the Bayesian neural network is not
fixed, while it follows a specific probability distribution.[67]

State observer models differ slightly from physical models
as they estimate model parameters from the system outputs
and inputs, usually parameters that cannot be directly meas-
ured. Based on the Super Twisting Sliding Mode algorithm, Liu
et al.[68] designed an observer to estimate the oxygen stoichiom-
etry via the system outputs, including stack output voltage and
cathode pressure. However, there is a demand to adjust the
fault decision system’s threshold properly.

3.2.2. Data-driven methods

It is challenging to build an accurate model of a whole fuel cell
system by equations, and the residuals are susceptible to noise.
Moreover, fuel cell systems generate vast amounts of data in
their running. Data-driven methods have become an alternative
technique for fuel cell fault diagnosis. Figure 8A shows the
typical steps for a data-driven method. Experiments should be
designed and conducted in certain operating conditions,
including normal and other faulty states of interest, to obtain
training and test datasets. The common signals include single-
cell voltages and magnetic field measurements, and sufficient
quality training data is difficult to obtain, especially for burst
faults. Invalid and missing values generated in data collection
are then processed by data analysis. Feature selection aims to
select some particular sensor signals from the fuel cell system
that can reflect the faulty status directly or indirectly. If the
dimensionality of the original variables is still too high, some-
times some variables contain useless and irrelevant information.
Feature extraction can be used to realize dimensional reduction
and increase the accuracy of the trained classifier. Principal
component analysis (PCA) and Fisher discriminant analysis
(FDA) are common methods.

If the diagnostic model performs well on the test dataset, it
can be used for on-line deployment. Some common machine
learning algorithms that can be used to train the classifier
include support vector machine (SVM), k-Nearest Neighbour
(KNN) and relevance vector machine (RVM). They all belong to a
larger family of supervised learning algorithms in which a
labelled training dataset is indispensable. Fault diagnosis is

essentially a classification problem. Supervised learning aims to
train a function (model) from a given dataset and then predict
its class label for unknown input samples. This is why the
training samples need to be labelled in advance. The unknown
sample can only be predicted as one of the predefined classes.
Different classification algorithms have different optimisation
objectives: SVM aims to solve the separation hyperplane with
the maximum margin between different classes of data, but
KNN only needs to find the K set of samples closest to unknown
samples in the training dataset. For unsupervised learning,
because the class labels of the dataset are unknown, clustering
needs to be based on the similarity between samples. The most
typical method is the K-means algorithm, but the value of K
needs to be carefully selected based on prior knowledge.

As shown in Figure 8B, Li et al.[69] trained and validated the
FDA feature extraction and Spherical-Shaped Multi-class SVM
classification models based on the magnetic measurement
dataset collected off-line. The models mentioned above predict
real-time measurement data in the on-line stage. The diagnostic
model is different from the system model; the former predicts
the system’s health status directly, but the latter outputs only
the signal used to calculate the residual.

Liu et al.[70] started by using K-means clustering to screen
out singular points from the train and test datasets which do
not match their actual class labels, then converted all datasets
into discrete codebook index sequences; several discrete
hidden Markov models corresponding to faulty sates were
trained by the Baum-Welch algorithm in this work. For an
unknown sample, each model will calculate a probability and
select the state of the model with the maximum probability. A
comparative study of various feature extraction (PCA, FDA and

Figure 8. (A) Typical steps for a data-driven method. (B) The implementation
procedure of a data-driven method by Li et al.,[69] the model training and
validation are completed in the off-line stage, and then the health state of a
real-time magnetic measurement sample is diagnosed in the on-line stage.
Reproduced with permission from Ref. [69]. Copyright 2018 IEEE.
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their nonlinear extensions with kernel function) and classifica-
tion methodologies (SVM, KNN and Gaussian Mixture Model)
combinations have been presented by Li et al..[71] The results
show that the supervised FDA and SVM have lower error rates
and computational costs. Multi-Label SVM was used by Li
et al.[72] to address the issue of simultaneous faults in Solid
Oxide Fuel Cells (SOFCs), which only need a training dataset of
a single isolated fault.

For the method based on artificial neural networks (ANNs),
feature extraction is naturally included in the diagnostic model,
and abstract features can be extracted through multilevel
nonlinear transformations. Zhang et al.[73] constructed a deep
feedforward neural network (DNN) with initialisation parameters
pre-trained by a stacked sparse autoencoder. In contrast to
DNN without pre-training, its convergence rate is faster. More-
over, only small-scale datasets of faults are required to ensure
favourable diagnosis performance. Ghorbani et al.[74] evaluated
the performance of Naïve Bayes, KNN, Logistic Regression and
ANN in the diagnosis of fuel starvation; the KNN and ANN
performed with higher accuracy compared to other algorithms
(F1-Score both above 97%). Although the objects of diagnosis
are SOFCs in their studies, these methods and conclusions can
be transferred to PEFCs’ fault diagnosis. Zhou et al.[75] used the
1D convolutional neural network (CNN) to analyse the AC
voltage response in the time domain directly, considering the
long measurement time of EIS (as shown in Figure 9).

Different from the diagnostic features obtained by fitting
equivalent circuit models,[35] the diagnostic features of the data-
driven method in the narrow sense only come from the sensor
measurement and control signal of the system, so the use of
expensive and complicated instrumentation on the fuel cell is
avoided. The diagnostic model requires only a low amount of
computational cost to make it suitable to deploy on-line, and Li
et al. have realised the implementation of SVM.[76] The C/C+ +

programs for achieving real-time performance are compiled
and integrated into an embedded system, and the embedded
system then validates the experimental off-line test data in the
first instance. Therefore, the procured performances can be

compared correspondingly with the results from the previous
stage. The matching validation guarantees that the off-line
trained model can be compiled and work well in the embedded
system. Consequently, the introduced delays should be noted
for on-line application.

3.2.3. Signal-based methods

Unlike the data-driven methods mentioned above, signal-based
methods do not require pre-training of the diagnostic model,
which means they cannot directly predict the state of health.
Commonly used signal-based methods include wavelet trans-
form (WT),[77] wavelet packet transform,[78] and empirical mode
decomposition (EMD).[79]

The decomposition of fuel cell output voltage is presented
by Damour et al..[79] This work uses the energy contribution of
the first and the ninth intrinsic mode functions to determine
the state of water management. The effectiveness of this
approach is proved by experiments conducted on a 50 W single
fuel cell. In contrast to WT, although EMD overcomes the lack of
adaptability of base functions, it is sensitive to noise due to its
dependence on the envelope.[80] Rubio[81] et al. compared the
Fourier transformation and WT of cell voltage noise. The results
show that the latter is more sensitive to changes in operating
conditions than the former method. In the work presented by
Ma et al.,[82] the Sym20 wavelet function is utilized to recon-
struct the fluctuation voltage, and the obtained energy intensity
of the reconstructed vibrating voltage is compared with the
boundary value (0.1) to identify anode flooding. Similarly, a
Daubechies4 wavelet is applied by Pahon et al..[83] Multifractal
analysis of stack voltage signals based on the Wavelet Trans-
form Modulus Maxima is proposed by Benouioua et al..[84] The
regularity of the voltage signal can be used to recognize the
diminution of stoichiometry and pressure. Several authors have
employed WT to extract patterns from different signals, but it
requires selection of the basis function in advance, and different
choices greatly influence the analysis results. Besides, WT
displays a high-quality analysis at a high computation cost.
Other methods based on frequency characterisations have been
developed, such as electrochemical noise analysis which has
been used to monitor water balance.[85]

The signal-based diagnostic method can also use time-
domain information, as in the research conducted by Zhao
et al.,[86] who deduced two statistics indexes to indicate the
correlation between sensor measurements and the residual
error, respectively. Faults in both single sensor and system
levels could be detected.

In addition to the system’s signals from existing sensors or
their controller, other signals sensitive to operating conditions
can be used to survey fuel cell stacks, such as acoustic
emission.[87] Bethapudi et al.[88] installed a piezoelectric acoustic
sensor on the surface of cathode flow-field plates to measure
acoustic activity, which is highly correlated with reactant
humidity conditions. Magnetic field measurements have been
successfully applied by Hamaz et al.,[89] where nonhomogene-

Figure 9. Schematic diagram of diagnosis based on AC voltage response and
1D CNN presented by Zhou et al. Reproduced with permission from Ref. [75].
Copyright 2022, the Authors.

Wiley VCH Dienstag, 05.09.2023

2399 / 314798 [S. 9/15] 1

Chemistry—Methods 2023, e202300030 (9 of 14) © 2023 The Authors. Chemistry - Methods published by Chemistry Europe and Wiley-VCH GmbH

Chemistry—Methods
Review
doi.org/10.1002/cmtd.202300030

 26289725, 0, D
ow

nloaded from
 https://chem

istry-europe.onlinelibrary.w
iley.com

/doi/10.1002/cm
td.202300030 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [14/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ous current density distribution corresponding to the faulty
cases was reflected in the magnetic field data.

3.2.4. Hybrid methods

Different diagnostic methods have their pros and cons. The
model-based method is more robust as the system features
change, whereas the data-driven approach requires no model-
ling and is simple to deploy on-line. Hybrid methods combining
the advantages of different techniques may often represent a
promising alternative solution.

The fault signature matrix distinguishes multiple faults in
the model-based methods. Each of several binary vectors
corresponds to a concerning fault, and the elements have the
same number of residuals. The following rule determines the
binary vector: when one residual is higher than its threshold,
the related element is set to one; when the residual is lower
than the threshold, it is set to zero. However, the simple use of
binary codification of the residuals results in information loss,
such as when different faults have the same vector. Costama-
gna et al.[90] trained an SVM classifier to determine health states
to solve this issue. Unlike the data-based methods, the original
variable here is the residual signals.

Shao et al.[91] presented an ANN ensemble approach, as
illustrated in Figure 10A. Each sub-ANN has a diverse structure;
the nodes of all layers (input, hidden and output) are different;
moreover, their inputs are irrelevant to reduce the correlation
of these sub-ANNs. The Lagrange multiplier method is used to

combine the predictions of the sub-ANNs. The highest accuracy
of the sub-ANNs is 85.62%, but the overall accuracy of the
ensemble network increases to 93.24%.

Signal-based methods can also be hybridized with data-
based techniques. Zheng et al.[92] developed a reservoir comput-
ing-based approach for discriminating five different health
states of the stack, and the diagnostic procedure is illustrated in
Figure 10B. The first step is to calculate the time-frequency
signature of the original voltage signal by using the Short Time
Fourier Transform. Then, this is multiplied by the randomly
generated input weight matrix to calculate the network input.
Detti et al.[93] likewise only used the voltage signal, which Fast
Fourier Transform processes to obtain the Total Harmonic
Distortion (THD). The popular KNN is employed to identify
flooding and drying.

3.3. Summary

Off-line diagnostics can be used for quantitative and detailed
analysis of fuel cell degradation caused by faults, and they are
generally used as characterisation tools that can guide the use
of component materials, manufacture and structural optimisa-
tion, such as how to avoid or mitigate catalyst particle
agglomeration/dissolution. Additionally, the severity of the
different faults also can be graded.

On-line diagnostic techniques are usually employed to meet
the steady state and transient power demands and avoid the
loss of efficiency and economic losses caused by shutting
down. Efforts should be made to improve diagnostic general-
isation performance to different operating conditions and
systems and to reduce computational costs. Other problems,
such as adaptivity and time delay, remain.

Cross-fertilisation of diagnostic strategy from the lithium-ion
battery system, an electrochemical energy conversion device
connected in series and faced with similar durability challenges,
would be helpful.[94] Besides, the advancement of micro-
integrated sensors[95] can provide original diagnosis signals.

4. Discussion

4.1. Adaptive diagnosis

The expected operating time of the automotive fuel cell system
is 5,000 h, with the rate power decline not exceeding 80%;
however, components of the system, such as the stack, degrade
over time, which results in performance and lifespan reduction.
The baseline degradation is inevitable and will exist as long as
the fuel cell is in operation. Another type of degradation is
associated with deviations from nominal operating conditions
and rapid loss of lifespan at the time of faults occurrence. But
the former is generally considered to be a normal ageing
phenomenon, not a fault. For data-driven methods that use
various sensor signals, using a fixed diagnostic model in a
dynamically degraded system creates inherent contradictions.
The expected diagnostic performance can be maintained if the

Figure 10. (A) The framework of a network ensemble by Shao et al.
Reproduced with permission from Ref. [91]. Copyright 2014 Elsevier. (B) The
diagnostic procedure of reservoir computing by Zheng et al. Reproduced
with permission from Ref. [92]. Copyright 2017 Elsevier.
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rules or thresholds are updated continuously throughout the
system life cycle. Alternatively, to avoid false alarms or false
detection, diagnostic features that are constant for normal
operation and independent of degradation could be utilized.[96]

In the diagnostic applications of commercial vehicles, the
consistency of automotive fuel cell system diagnostic rules and
the inconsistency of vehicle state constitute another pair of
inherent contradictions. The running time and operating
conditions of each system may be different, and the same is
true of the degradation degree. Ideally, the diagnostic rules for
each system would be adaptive.

4.2. Fusion decision

A two-step diagnostic module is shown in Figure 11. The first
step is to make sure the sensor is working correctly. Otherwise,
the sensorless control strategy has to be activated immediately.
There are some individual diagnostic models using different
inputs. After the fusion decision, the controller eliminates or
mitigates the fault according to the corresponding strategy.

All on-line diagnostic methods rely on real-time sensor
measurements as the input, so abnormal sensor measurements
could negatively affect diagnostic performance. More seriously,
a sensor fault may bring mistakes in the control strategy.
Therefore, detecting real-time sensor failures is essential for
system performance.[97] Mao et al.[98] calculated the consistency
of various sensors to evaluate sensor reliability. The detection of
abnormal cathode humidification sensors was obtained, and
the different levels of flooding can be identified accurately.
Zhou et al.[99] have briefly discussed the necessity and examples
of how to achieve the diagnostic decision of the multi-sub
models, considering that the fusion of several classifiers
ultimately performs better than the outcome of a single one.

4.3. Cost-sensitive diagnosis

The conventional diagnosis techniques pursued absolute accu-
racy, but misdiagnosis is inevitable in real applications.
Eliminating the negative impact of faults on the system is the
fundamental goal, so maximizing accuracy is not sufficient, as
different classes of misdiagnosis are associated with unequal
costs. The most representative example includes the cost of

unequal misdiagnosis errors in the medical domain. A type 1
error means a patient is unhealthy, but the diagnosis result
shows no problem (missed diagnosis), and a type 2 error means
a person is healthy, but the diagnostic result indicates that they
are unhealthy (false alarm). Generally, the former mistake can
be more dangerous to the patient.[100] Thus, we should consider
the cost-sensitive learning in multiple faults diagnosis of the
PEFC system.

The types of misdiagnoses can be divided into the following
three areas: (1) the system has a fault, the diagnostic model
misdiagnosed as another fault; (2) The system has a fault, but
the diagnostic model did not detect any failure case; (3) The
system runs in a healthy state, and the diagnostic model has a
false alarm fault detection. Although type (2) is a particular case
of type (1), these two types of misdiagnoses have different
actual effects on the system. It is necessary to avoid serious
faults being misdiagnosed as minor faults or healthy to avoid
aggravating existing faults with control strategy logic after
misdiagnosis. Several minor faults may allow being misdiag-
nosed as severe faults.

4.4. Generalisation performance

The actual system faults’ severity may differ from the pre-
designed faults. For instance, the membrane dehydration fault
(actual) is more serious when the stack temperature is increased
by a few degrees (compared to the historical dataset). So fault
severity has been widely studied in rotating machinery,[101]

where severity refers to the magnitude of the fault. Therefore,
the generalisation ability of different diagnostic features and
diagnostic methods needs to be evaluated.

Traditional machine learning algorithms such as SVM are
more popular in fuel cell fault diagnosis than deep learning
algorithms because of the small amount of training datasets
required and the dimension of the original variables not being
very high. Deep learning has end-to-end characteristics without
any feature extraction step, such as R-CNN,[102] Faster R-CNN,[103]

YOLO,[104] SSD,[105] and Generalisation performance is better with
untrained data.[99]

5. Conclusions and Perspectives

Early fault diagnosis can prevent the exacerbation of recover-
able faults by correcting operating conditions or emergency
shutdowns and does not lead to hazardous situations. There-
fore, the reliability and durability of the system or component
can be improved. This work presents an overview of fuel cells’
most advanced fault diagnosis methodologies and their use.
Off-line diagnostic techniques are generally used for detailed
analysis to contribute insight into the mechanism of faults and
their comprehensive impacts on system performance; On-line
diagnostic techniques are usually deployed to recognize the
health status of the PEFC system. Significantly, the data-driven
methods do not require physical modelling and parameter
fitting so they can be a promising tool for on-board application.

Figure 11. A two-step diagnostic process adapted from Dijoux et al.
Reproduced with permission from Ref. [9]. Copyright 2017 Elsevier.
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By combining detailed knowledge acquired from the estab-
lished off-line characterisation of fuel cells with a careful
categorisation of signatures of faults from on-line measure-
ments, it may be possible to develop a complex and accurate
understanding of the health state of electrochemical systems
from more simple sensing when advanced machine learning
and data-driven approaches are taken. In this way, we can build
on significant existing understanding obtained from well-
defined off-line characterisation to inform low computational-
cost data-driven models that have the potential to be used in
real-time, on-line diagnostic sensing. From the laboratory
concept to the industrial deployment of the data-driven
method, the top priority is achieving reliable diagnostic results
with low-cost sensors. The core challenge is that the incon-
sistency between the distribution of historical data used for
training the diagnostic model and the actual data in the
operation process of the PEFC system will lead to the reduction
of diagnostic accuracy and reliability. Interdisciplinary ap-
proaches combining advanced characterisation of fuel cells and
state-of-the-art machine learning methods could make rapid
and accurate onboard diagnosis a reality for future systems
control applications.
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By combining detailed knowledge
acquired from the established off-line
characterisation of fuel cells with a
careful categorisation of signatures of
faults from on-line measurements, it
may be possible to develop a
complex and accurate understanding
of the health state of electrochemical
systems from more simple sensing
when advanced machine learning and
data-driven approaches are taken.
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