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TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative 
diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterize 
TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homoge
neous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system 
for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n = 126), 
amyotrophic lateral sclerosis (ALS, n = 141) and limbic-predominant age-related TDP-43 encephalopathy neuro
pathologic change (LATE-NC) with and without Alzheimer’s disease (n = 304).
The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging 
schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data- 
driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. 
Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD- 
TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological 
diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our 
model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and 
early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression pat
terns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant sub
types within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within 
ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing 
between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brain
stem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, 
despite aggregating individuals with and without Alzheimer’s disease and a larger sample size for this group.
Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded 
accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP 
progression patterns that warrants further investigation in larger cross-cohort studies.
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Introduction
The accumulation of TAR DNA-binding protein 43 (TDP-43) under
lies a variety of syndromes, being the primary cause of many cases 
of frontotemporal dementia (FTD) and most cases of amyotrophic 
lateral sclerosis (ALS). More recently TDP-43 accumulation has 
been identified as a frequent feature of Alzheimer’s disease and ad
vanced ageing, a phenomenon described as limbic-predominant 
age-related TDP-43 encephalopathy neuropathological change 
(LATE-NC).1 Neuropathological staging systems have been derived 
by neuropathologists for each proteinopathy that describe the 
stereotypical spatiotemporal progression pattern of TDP-43 accu
mulation.1–5 However, the manual derivation of these staging sys
tems limits their spatiotemporal resolution and relies on the 
assumption that there is a single common spatiotemporal progres
sion of TDP-43 for each syndrome. This limitation is of particular 
importance given that the mapping between TDP-43 pathology 
and clinical syndrome is imperfect.6,7

Frontotemporal dementia is clinically and pathologically hetero
geneous,8 and recent work has recognized systematic variation in 
pathological features of TDP-43 underlying FTD.9 ALS also exhibits 
substantial clinical heterogeneity10; whilst ALS is primarily charac
terized as a neuromuscular disorder, approximately 20% of ALS cases 
also have cognitive impairment,11 and/or a typical FTD-syndrome. 
The concurrence of ALS and FTD suggest the possibility of these dis
orders constituting two extremes of an ALS-FTD spectrum disorder 
(ALS-FTD),12 supported by observations that C9orf72 mutations can 
lead to either phenotype, or a mix of both.13,14

LATE-NC is a recently proposed terminology describing the 
commonly observed phenomenon of TDP-43 deposition mostly 

within medial temporal lobe structures in elderly adults.1 Unlike 

FTD and ALS, the clinical syndrome that is associated with 

LATE-NC (termed ‘LATE’) currently does not have a corresponding 

set of criteria for a clinical diagnosis. Although LATE is associated 
with memory impairment, discriminating whether cognitive im
pairment is due to LATE rather than other conditions is challenging 
without neuropathological evidence, particularly since it common
ly co-occurs with Alzheimer’s disease, which is also associated with 
memory impairment. LATE-NC is defined neuropathologically by a 
stereotypical distribution of TDP-43 in older adults.1,4,5 However, 
the definition and description of this common neuropathological 
phenomenon is still being debated, and the terms LATE and 
LATE-NC have not met full consensus.15

Much is still unknown about the origin, progression and vari
ability of TDP-43 aggregation as a whole, as well as within respect
ive neurodegenerative diseases. For example, while many argue 
that there are clear clinical and pathological distinctions denoting 
distinct entities, there remains debate surrounding whether late- 
stage LATE-NC can be discriminated from early stage frontotem
poral lobar degeneration due to TDP-43 (FTLD-TDP) given overlap 
of regions that are affected.15,16 Similarly, the regional origin of 
FTLD-TDP is still unknown, with both the amygdala3 and frontoin
sular or anterior cingulate17 proposed as candidate pathological 
epicentres.

A potential solution to capture the progression and spatial het
erogeneity of TDP-43 proteinopathies is the use of data-driven dis
ease progression modelling, which facilitates the probabilistic 
reconstruction of sequential disease progression patterns from 
cross-sectional data in a similar manner to traditional staging sche
ma. However, in contrast to the traditional method of constructing 
neuropathological staging systems by hand, disease progression 
modelling can account for uncertainty in the level of pathology in 
each region and can enable the reconstruction of more complex 
progression patterns with large numbers of regions.18 The 
Subtype and Stage Inference (SuStaIn) algorithm19 combines dis
ease progression modelling with clustering to further enable the 
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identification of subgroups of individuals (subtypes) with distinct 
disease progression patterns. This enables the probabilistic assign
ment of an individual to a subtype based on their subgroup, and 
stage based on their position along the inferred progression pattern 
for that subgroup. While previously applied to imaging datasets,19–22

SuStaIn has recently been adapted to accommodate scored data 
often used in pathological assessment.23

Here we use SuStaIn to assess the progression and heterogen
eity of TDP-43 accumulation in FTLD-TDP, ALS and LATE-NC across 
21 brain regions. We first estimate a single progression pattern for 
each group to enable comparison with existing TDP-43 staging 
schema. Next, we demonstrate the potential utility of disease pro
gression models for the three-way classification of FTLD-TDP, ALS 
and LATE-NC. We further explore whether there is heterogeneity 
in the progression of TDP-43 within FTLD-TDP, ALS and LATE-NC 
by modelling multiple progression patterns within each group, 
and we test for differences between the resulting subgroups.

Materials and methods
Dataset

Neuropathological samples with TDP-43 pathology were taken 
from the Center for Neurodegenerative Disease Research Brain 
Bank at the University of Pennsylvania, for which the tissue prepar
ation, staining and immunohistochemistry procedures have been 
described previously.24 The TDP-43 immunostain used in this study 
was 1D3 (rat anti-p409/410 TDP-43). Both sporadic cases and muta
tion carriers were included (Table 1 and Supplementary Table 1). 

For each brain, up to 21 regions were sampled comprising the 
amygdala, hippocampal dentate gyrus, hippocampal cornu ammo
nis (CA)/subiculum, entorhinal cortex, anterior cingulate, superior/ 
middle temporal gyrus, middle frontal gyrus, angular gyrus, occipi
tal cortex, thalamus, globus pallidus, caudate/putamen, substantia 
nigra, midbrain, locus coeruleus, upper pons, cerebellum, medulla, 
orbitofrontal cortex, motor cortex and spinal cord (cervical spinal 
cord α-motor neurons in lamina 9) (Supplementary Fig. 1). Each re
gion was assigned a score according to a semi-quantitative rating 
scale based on the extent of TDP-43 inclusions, where 0 = non- 
detectable, 0.5 = sparse, 1 = mild, 2 = moderate and 3 = severe (Fig. 
1). The reliability of these scores was verified by independent expert 
neuropathologists. All individuals with any evidence of TDP-43 
pathology in the brain were included in this study.

Three data subsets—those with FTLD-TDP, ALS and LATE-NC— 
were extracted for disease progression modelling (Table 1 and 
Supplementary Table 1). The inclusion criteria for the FTLD-TDP 
and ALS subsets were a primary neuropathological diagnosis of 
FTLD-TDP9,25 and ALS,12 respectively. Four ALS patients with a 
diagnosis of ‘ALS–Other’, which includes ALS without TDP-43 pro
teinopathy, and one ALS patient with a diagnosis of ‘ALS– 
Dementia’ were excluded from this study. The inclusion criterion 
for the LATE-NC subset was a secondary or tertiary neuropatho
logical diagnosis of LATE-NC,1 with (LATE-AD+) or without 
(LATE-AD−) a primary neuropathological diagnosis of Alzheimer’s 
disease neuropathologic change.26 A secondary neuropathological 
diagnosis of LATE-AD+ was made if individuals showed a primary 
diagnosis of Alzheimer’s disease (using NIA-AA criteria), did not 
have a secondary diagnosis of FTLD or ALS, and also had evidence 
of TDP-43.16 The criteria for a neuropathological diagnosis of 
LATE-AD− were the absence of another TDP-43 neuropathological 
diagnosis (i.e. ALS, FTLD-TDP, or corticobasal degeneration), a 
TDP-43 score of 1 or more in the amygdala, and a TDP-43 score of 
less than 1 in the medulla (a region with near 100% sampling rate 
across diagnoses). These inclusion criteria were the sole criteria 
for inclusion in the study. In particular, we included individuals re
gardless of their TDP-type (A–E), and mutation carriers (e.g. GRN, 
C9orf72) and ALS-FTD cases were included. In total there were 126 
individuals with FTLD-TDP, 141 with ALS and 304 with LATE-NC 
that were included in the SuStaIn modelling (Table 1 and 
Supplementary Table 1).

Age at death and estimated age at symptom onset were re
corded for all individuals. Note that age of symptom onset refers 
to the age that primary symptoms were reported to manifest, 
which may or may not be symptoms directly related to TDP-43 
neuropathology. Disease duration was calculated as the difference 
between age at symptom onset and age at death. Sex and interval 
between death and post-mortem examination was also recorded 
for all patients. APOE genotype (ALS: 99%; FTLD-TDP: 100%; 
LATE-NC: 98%) and Braak tau stage (ALS: 95%; FTLD-TDP: 99%; 
LATE-NC: 97%) were also recorded for nearly all individuals using 
methods that have been previously described.24 TDP-43 type was 
also available for FTLD-TDP patients using published criteria.9

TDP-43 type was missing for two FTLD-TDP patients.

Disease progression modelling using SuStaIn

Disease progression modelling was performed using Ordinal 
SuStaIn.23,27 The SuStaIn algorithm combines clustering and dis
ease progression modelling to estimate subtypes with distinct pro
gression patterns from cross-sectional data. The Ordinal version of 
SuStaIn is specifically designed for modelling ratings data such as 

Table 1 Demographic information for all individuals included 
in this study, stratified by TDP-43 diagnosis

ALS FTLD-TDP LATE-AD+ LATE-AD−

n 141 126 235 69
Age at onset 59.5 

(11.0)
61.0 (9.0) 70.2 (9.0) 68.8 (10.0)

Age at death 63.7 
(10.6)

68.5 (10.0) 80.9 (8.4) 80.9 (8.7)

Disease duration 4.3 (4.3) 7.3 (4.1) 10.3 (4.3) 11.9 (8.0)
% Female 40.4% 45.2% 62.1% 31.9%
Braak stage 1.7 (1.7) 2.0 (1.6) 5.8 (0.7) 3.3 (1.4)
% APOE4 carrier 25.0% 24.6% 63.3% 33.8%
% APOE2 carrier 12.9% 18.2% 5.2% 8.8%
% Mutation carrier 19.9% 46.8% 4.2% 5.8%
% Co-pathology 76.6% 88.9% 42.7% 55.1%
% AD phenotype 0.0% 12.7% 77.4% 8.7%
% FTDS 

phenotype
1.4% 81.7% 9.4% 15.9%

% MND phenotype 96.5% 0.0% 0.0% 1.4%
% LBD phenotype 0.7% 0.8% 4.3% 62.3%
% Other 

phenotype
1.4% 4.8% 9.0% 11.6%

PMI 12.6 (7.9) 12.8 (7.3) 12.6 (7.1) 11.5 (6.7)

Entries are mean (standard deviation) for the group, unless indicated to be 
percentages. 

AD = Alzheimer’s disease; ALS = amyotrophic lateral sclerosis; Co-pathology =  
demonstrates at least one secondary co-pathology (other than LATE); FTDS =  
frontotemporal dementia spectrum; FTLD-TDP = frontotemporal lobar degeneration 
due to TDP-43; LATE-AD+ = Alzheimer’s individuals with amygdalar but not 

medullar TDP-43 pathology; LATE-AD− = non-Alzheimer’s individuals with 

amygdalar but not medullar TDP-43 pathology; LBD = Lewy body disease;  

MND = motor neuron disease; PMI = post-mortem interval.
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neuropathological ratings. Ordinal SuStaIn describes disease pro
gression as a sequence in which different regions reach different 
scores, requiring as input the probability that a given score is ob
served in each region. In addition to learning the sequence in which 
different regions reach different scores, the algorithm quantifies 
the uncertainty in that sequence using Markov Chain Monte Carlo 
sampling. The uncertainty in the sequence is influenced by several 
factors including the number of samples available to estimate the 
sequence at different stages, the heterogeneity in the sequence be
tween individuals and the signal to noise ratio of the biomarker 
measurements (neuropathological ratings in this case). We mod
elled scores of 1, 2 and 3 in Ordinal SuStaIn, translating the scores 
of 0.5, 1, 2 and 3 to probabilities by evaluating a normal distribution 
around that score with a standard deviation of 0.5, and normalizing 
by the sum of the probabilities of each score (Supplementary 
Table 2). Note that, for example, a score of 0.5 (‘sparse’) corresponds 
to an equal probability of the score being 0 or 1. Missing neuro
pathological ratings were modelled as having an equal probability 
of having each score. Regions with a significant proportion of miss
ing data (missing in more than 25% of subjects) were excluded 
when running Ordinal SuStaIn. For FTLD-TDP, the orbitofrontal 
cortex was excluded due to missingness, giving a total of 20 regions. 
For ALS, the occipital cortex, locus coeruleus and orbitofrontal cor
tex were excluded, with 18 regions remaining. For LATE-NC, the 
motor cortex and spinal cord were excluded, leaving 19 regions. 
As each SuStaIn stage corresponds to a new region reaching a 
new score, there were n = 20 × 3 = 60 stages for FTLD-TDP, n = 18 ×  
3 = 54 stages for ALS and n = 19 × 3 = 57 stages for LATE-NC.

Ordinal SuStaIn was first used to estimate a single progression 
pattern for each group, enabling direct comparison with previous 
staging systems. Next, Ordinal SuStaIn was used to estimate mul
tiple progression patterns for each group. The subtype progression 
patterns were cross-validated using 10-fold cross-validation and 
the optimal number of progression patterns (number of subtypes) 
within each group was chosen using the cross-validation informa
tion criterion, which balances model accuracy with model com
plexity.19 For each progression pattern, individuals were first 
assigned to a subtype (in cases where the number of subtypes 
was greater than one) and were then assigned to a stage, based 
on maximum likelihood.19 The SuStaIn stage can be thought of as 
a proxy for progression along a pathological trajectory. Subtypes 
were evaluated for crossover events by plotting the distribution of 
subtype probability across stages. Subtype probability distributions 
that crossed chance levels (in this case, 50% for both ALS and 
FTLD-TDP given k = 2 subtypes) after Stage 1 were tagged as evi
dence for a crossover event. Crossover events suggest the possibil
ity of discontinuity between variation observed before and after the 
event. Brain schematics in Figs 1, 5 and 6 were generated using: 
https://github.com/AllenInstitute/hba_brain_schematic.

Classification using SuStaIn

Three-way classification of FTLD-TDP, ALS and LATE-NC was ini
tially performed by directly using the outputs of SuStaIn with a sin
gle progression pattern per group. SuStaIn was used to assign each 
individual to a group (FTLD-TDP, ALS or LATE-NC) and stage by 
evaluating the probability each individual belonged to each stage 
of each group’s progression pattern. The group and stage combin
ation that had the highest probability was chosen as the predicted 
diagnosis for that individual. Individuals that had a most probable 
stage of 0 for their most probable SuStaIn-based diagnosis were la
belled as ‘Unclassified’. Note that probabilities were computed 

out-of-sample for each individual (using 10-fold cross-validation 
when evaluating within-diagnosis) and took into account uncer
tainty in the progression pattern by integrating over the Markov 
Chain Monte Carlo samples of the progression pattern output by 
SuStaIn. Unclassified Stage 0 individuals were excluded before 
classification.

Classification using logistic regression

A second predictive diagnostic model was evaluated using a com
bination of SuStaIn and logistic regression. Progression patterns 
for each group (ALS, FTLD-TDP, LATE-NC) were used to assess the 
probability that each individual fit within each progression pattern. 
Similar to above, these probabilities were calculated by evaluating 
the probability of the maximum likelihood stage within the pro
gression pattern for each diagnosis. The three probabilities, along 
with maximum likelihood SuStaIn stage and age at death, were 
used as independent features in a multinomial logistic regression 
three-way classification model using an L2 penalty and 
Limited-memory BFGS (‘lbfgs’) solver. The sample was divided 
into training (80%) and testing (20%) sets. In the training set, 
10-fold cross-validation was used to optimize over a grid of 10 lin
early spaced values between 1 × 10−4 and 1 × 104 for the hyperpara
meter ‘C’. Performance was evaluated by recording accuracy, 
precision, recall and F1 score, both overall and class-weighted, of 
predictions in the left out test set. This process was repeated 100 
times to establish confidence intervals around the measurements.

Comparison of SuStaIn-derived progression patterns 
to previously described staging systems

Previously described staging systems were used to stage each indi
vidual based on regional presence of TDP-43 pathology. For ALS sta
ging, we used the four-stage system described in Brettschneider 
et al.2 For FTLD-TDP, we used the four-stage system described in 
Brettschneider et al.3 Given that this system was derived based spe
cifically on patients with behavioural variant FTD (bvFTD), we de
scribe staging across both the whole group of FTLD-TDP patients 
and across patients with a primary clinical diagnosis of bvFTD 
only. Since there are multiple proposed staging schemes for 
LATE-NC, we use three different proposed LATE-NC staging sys
tems, as described by Nelson et al.1 For each staging system, com
posite regions of interest were created for each stage based on 
averaging the TDP-43 scores of the regions falling within that stage 
(Supplementary Fig. 2). A patient was assigned to a stage if they 
showed a TDP-43 score equal to or greater than 1 for that stage as 
well as all previous stages in the regime. If a patient showed ‘out 
of order’ staging (e.g. score >1 in Stages I and III but not II), they 
were assigned to an ‘Unclassifiable’ category. Once all patients 
were staged using their group specific staging scheme, this stage 
was compared to the data-driven stage assigned to that patient. 
This approach allowed us to evaluate how much the data-driven 
SuStaIn stages resembled previously described manual staging sys
tems of these various proteinopathies.

Statistical analysis

Correlations were used to describe univariate relationships be
tween SuStaIn stage and age, disease progression and total 
TDP-43 pathology, the latter calculated as the sum of all regional 
TDP-43 scores across an individual. Independent sample t-tests 
were used to assess differences between stage classifiable and un
classifiable patients (see ‘Comparison of SuStaIn-derived 
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progression patterns to previously described staging systems’ sec
tion) in the probability of assignment to a patient’s diagnostic pro
gression pattern (see ‘Classification using SuStaIn’ section). 

Ordinary least squares general linear models and χ2 tests were 
used compare misclassified to correctly classified patients from 
the machine learning classification analysis. To explore regional 

Figure 1 Progression patterns of TDP-43 proteinopathies. (A) Inferred trajectory of regional TDP-43 progression based on individuals with a primary 
pathological diagnosis of ALS (left), a primary pathological diagnosis of FTLD-TDP (middle), or a secondary or tertiary pathological diagnosis of LATE-NC. 
Colours within each brain region represent the cumulative sum of probabilities (0–1) summed across three stages of severity, light pathology (1) in red, 
moderate pathology (2) in purple and severe pathology (3) in blue (see key at the bottom of each column). Only stages with reduced event ordering un
certainty (e.g. those represented by at least five individual donors) are shown. Brain schematics were generated using: https://github.com/ 
AllenInstitute/hba_brain_schematic. Below the brains are positional variance diagrams. Each box represents the degree of certainty that a given brain 
region (y-axis) has reached a given severity stage (red, light; purple, moderate; blue, severe) at a given SuStaIn stage (x-axis). (B) Representative micro
graphs for TDP-43 scores of 0, 1, 2 and 3, respectively. ALS = amyotrophic lateral sclerosis; Amyg = amygdala; Ang = angular gyrus; CB = cerebellum; 
Cing = anterior cingulate; CP = caudate/putamen; CS = CA1/subiculum; DG = dentate gyrus; EC = entorhinal cortex; FTLD-TDP = frontotemporal lobar 
degeneration due to TDP-43; GP = globus pallidus; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropathologic change; LC  
= locus coeruleus; MB = midbrain; MC = motor cortex; MF = middle frontal gyrus; Med = medulla; OC = occipital cortex; OFC = orbitofrontal cortex; 
SC = spinal cord; SMT = superior and middle temporal gyrus; SN = substantia nigra; TS = thalamus.
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differences between subtypes, general linear models were fit using 
each region as the dependent variable, subtype as the independent 
variable and SuStaIn stage as a nuisance covariate (to ensure rela
tionships were not due to differences in disease progression). 
Benjamini–Hochberg false discovery rate was applied across all 
regions to correct for multiple comparisons. Multivariate logit 
maximum likelihood estimate regression models were used to in
vestigate other subtype differences. Models were constructed using 
subtype as the dependent variable and the following as simultan
eous independent variables: Age at symptom onset, age at death, 
sex, post-mortem interval, APOE E2 carriage, APOE E4 carriage, 
Braak stage and SuStaIn stage. For the FTLD-TDP model only, 
TDP-43 type was also included as a covariate. Owing to low num
bers of individuals expressing TDP-43 type D (n = 2), these indivi
duals were excluded. In addition, two ALS individuals were 
assigned to ‘Stage 0’ by SuStaIn, indicating they did not have suffi
cient TDP-43 pathology to be subtyped, and were excluded from the 
statistical analyses. Both the ALS (n = 130) and the FTLD-TDP 
(n = 115) models were fitted on a sample of subjects with complete 
data for all variables.

Data availability

Source code for the Ordinal SuStaIn algorithm is available at https:// 
github.com/ucl-pond/pySuStaIn. All reasonable requests for access 
to neuropathological data used in this study will be considered 
by the Penn Neurodegeneration Data Sharing Committee. 
Applications can be completed using an online request form 
(https://www.pennbindlab.com/data-sharing).

Results
Progression of LATE-NC

Assuming a common progression pattern across all individuals 
with LATE-NC (Fig. 1), SuStaIn identified that TDP-43 deposition 
was initially confined to the amygdala region (SuStaIn Stages 1–2). 
This was expected given our definition of LATE-NC required 
TDP-43 pathology in the amygdala. During SuStaIn Stages 3–9, 
TDP-43 deposition spread to the hippocampal CA/subiculum, fol
lowed by the entorhinal cortex and then to the hippocampal den
tate gyrus. Subsequently, at SuStaIn Stages 10–13, TDP-43 
deposition emerged in the orbitofrontal cortex, followed by the an
terior cingulate and then the superior/middle temporal gyrus. 
Moderate to severe TDP-43 pathology was present in all medial 
temporal regions before the appearance of TDP-43 pathology in cor
tical regions at SuStaIn Stage 10. Beyond SuStaIn Stage 13 there 
were few samples available, and the progression pattern had high 
uncertainty.

Progression of ALS

Under the assumption of a single common progression pattern 
(Fig. 1), SuStaIn estimated that TDP-43 deposition in ALS began in 
the spinal cord, before progressing to the medulla and motor cortex 
in SuStaIn Stages 2–5. Subsequently, in SuStaIn Stages 6–13, there 
was TDP-43 deposition in the caudate/putamen, thalamus, globus 
pallidus, midbrain, substantia nigra, pons and anterior cingulate. 
In SuStaIn Stages 14–15, TDP-43 progressed to the middle frontal 
and angular gyri. By SuStaIn Stage 21, TDP-43 was found in all re
gions sampled except the cerebellum, including regions of the med
ial temporal lobe.

Progression of FTLD-TDP

Assuming a single common progression pattern for FTLD-TDP 
(Fig. 1), SuStaIn identified that there was high uncertainty in the ini
tial stages of TDP-43 progression in FTLD-TDP due to a lack of indi
viduals with early stage TDP-43. The progression pattern was 
under-sampled and had high uncertainty before SuStaIn Stage 27. 
While uncertainty was too high to draw confident inference, 
SuStaIn inferred that the amygdala, entorhinal cortex, anterior cin
gulate and superior/middle temporal gyrus were the first regions to 
display moderate TDP-43 pathology, between SuStaIn Stages 10–13. 
When uncertainty became lower at SuStaIn Stage 27, there was al
ready moderate TDP-43 deposition throughout regions sampled 
from the medial temporal lobe, basal ganglia and cerebral cortex, 
with the exception of the occipital lobe, and light pathology 
throughout all subcortical regions sampled. At SuStaIn Stages 28– 
32, TDP-43 deposition in the superior/middle temporal gyrus, an
terior cingulate, entorhinal cortex and middle frontal became 
severe, while mild TDP-43 deposition was seen in the occipital cor
tex. By SuStaIn Stage 38, TDP-43 burden became severe in the 
amygdala, moderate in the thalamus, midbrain and medulla, and 
also appeared in the spinal cord. Beyond SuStaIn Stage 38, model 
uncertainty became too high for confident interpretation, though 
the locus coeruleus and cerebellum appeared to be the latest re
gions to be affected.

Relationship between SuStaIn stage and age of 
onset, age at death and disease duration

Figure 2 shows the relationship between SuStaIn stage and total 
TDP-43 pathology, age of onset, age at death and disease duration 
in each condition. As expected and by design, SuStaIn stage was 
nearly collinear with total TDP-43 pathology, making it a conveni
ent proxy for overall pathologic progression. FTLD-TDP had an in
verse relationship between SuStaIn stage and global age of onset, 
age at death, and disease duration. In contrast the LATE-NC group 
had a positive relationship between SuStaIn stage and global age of 
onset and age at death but no relation with disease duration. There 
was no significant relationship between SuStaIn stage and age or 
disease duration in ALS; however, see ALS subtype results below.

Comparison with previous staging schema

SuStaIn stage showed a good correspondence with existing staging 
schema (Fig. 3), whilst providing additional granularity. Individuals 
were considered unclassifiable on existing staging schema if some 
regions had evidence of TDP-43 pathology (score greater than 1) 
that was consistent with a late stage, but other regions lacked evi
dence of TDP-43 pathology consistent with the earlier stages of the 
staging scheme. Notably, for all prior staging systems, unclassifi
able individuals occurred at low, moderate and high levels of path
ology. Owing to its probabilistic formulation, SuStaIn was able to 
stage individuals that were otherwise unclassifiable using existing 
staging schema. This probabilistic information could also be used 
to identify individuals that did not fit the staging system well. 
Indeed, compared to classifiable individuals, unclassifiable indivi
duals had a lower (cross-validated) probability of belonging to the 
dominant progression pattern of their diagnostic group for the 
ALS staging system (t = 2.60, P = 0.01) and two of three LATE-NC sta
ging systems (Nelson: t = 1.46, P = 0.14; Josephs: t = 5.84, P < 0.001; 
Rush: t = 2.85, P = 0.0046), though not for the FTLD-TDP staging sys
tem (full sample: t = −0.99, P = 0.32; bvFTD only: t = −1.26, P = 0.21).
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Figure 2 Relationships between age and disease progression. The relationship between total TDP-43 pathology, age of disease onset, age at death and 
disease duration with total TDP-43 pathologic burden (as measured with SuStaIn stage) across all three diagnostic categories. SuStaIn stage was strong
ly related with total TDP-43 pathology across all diagnostic groups. LATE-NC showed a significant positive relationship between SuStaIn stage and age 
(at onset and at death), whereas FTLD-TDP showed a significant negative relationship with age and disease duration. ALS = amyotrophic lateral scler
osis; FTLD-TDP = frontotemporal lobar degeneration due to TDP-43; LATE-NC = limbic-predominant age-related TDP-43 encephalopathy neuropatho
logic change.

Figure 3 Comparison between SuStaIn-inferred TDP-43 pathological progression and previous staging systems. Individuals are staged based on vari
ous proposed staging criteria (Supplementary Fig. 2). TDP-43 pathology was averaged within regions belong to each stage. If an individual shows TDP-43 
pathology (1+) in an advanced stage before showing TDP-43 pathology in a previous stage, they are considered to be ‘out-of-stage’, represented by ‘U’ for 
‘unclassifiable’. SuStaIn stage generally showed good correspondence with previous pathological staging systems. ALS = amyotrophic lateral sclerosis; 
(bv)FTD = (behavioural variant) frontotemporal dementia; FTLD-TDP = frontotemporal lobar degeneration due to TDP-43; LATE-NC = limbic-predom
inant age-related TDP-43 encephalopathy neuropathologic change.
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Three-way classification of FTLD-TDP, ALS and 
LATE-NC

Using SuStaIn, each participant was assigned a probability of be
longing to the typical ALS, FTLD-TDP or LATE-NC progression 

(Fig. 4A–C), regardless of TDP-type or genetic group. Most cases fea

tured a high probability of their true pathological diagnosis. In fact, 

a winner-takes-all classification using only these probabilities re

sulted in a three-way classification accuracy of 85.9% (balanced ac

curacy = 81.3%; Fig. 4D and Supplementary Table 3), which was 

hampered most by a relatively low recall in FTLD-TDP diagnosis. 

Specifically, many FTLD-TDP cases were misclassified as LATE-NC 

(Fig. 4D), and the probability of a LATE-NC diagnosis varied widely 

among FTLD-TDP cases (Fig. 4B). After further optimizing this mod

el using logistic regression and including SuStaIn stage and age at 

death as features, out-of-sample three-way classification accuracy 

improved to 92.3% (balanced accuracy = 90.3%; Fig. 4E and F and 

Supplementary Table 3). Diagnostic tests of the decision boundar

ies suggested this improvement involved allowing higher ALS prob

ability thresholds in the context of lower LATE-NC thresholds 

(Supplementary Fig. 3A). Most misclassifications across both the 

maximum likelihood and the logistic regression models involved 
FTLD-TDP patients misclassified as ALS or LATE-NC, and many of 
these misclassifications were high confidence (Fig. 4B and 
Supplementary Fig. 3A). Interestingly, cases having both ALS and 
FTLD-TDP as primary and secondary diagnosis (in either order) 
tended to have intermediate probabilities of both ALS and 
FTLD-TDP (Supplementary Fig. 3B). Many of the misclassifications 
were consistent with secondary underlying pathology, such as 
FTLD-TDP and ALS; for further case studies of misclassified indivi
duals see Supplementary material and Supplementary Fig. 4.

Differentiating LATE-NC from FTLD-TDP

Despite SuStaIn issuing good classification of LATE-NC from 
FTLD-TDP, the very low number of early stage FTLD-TDP cases or 
late-stage LATE-NC cases (Fig. 5A) made it difficult to examine 
the point where these pathological entities could potentially 
intercept. However, sufficient cases were present at SuStaIn 
Stage 12 of both diagnostic groups to examine overlap of mod
elled SuStaIn’s progression patterns with a tolerable degree of 
certainty. Qualitatively, at Stage 12, SuStaIn projects FTLD-TDP 

Figure 4 Pathology-based disease classification. All three diagnostic models were applied to all individuals regardless of TDP-type or genetic group, 
and the probability of the maximum likelihood stage was recorded. This probability represents a proxy for how well the individual’s regional 
TDP-43 pattern fit the model trajectory for LATE-NC/ALS/FTLD-TDP. Box plots in A–C show the distribution of probabilities for each of the three diag
nostic models (x-axis), stratified by pathological diagnosis (TDPDx on the x-axis), for (A) the ALS model, (B) the FTLD-TDP model and (C) the LATE-NC 
model. Note that each graph (A–C) includes a probability for every subject. Note also that probabilities were derived using 10-fold cross-validation for 
within-diagnosis assessments (e.g. ALS cases tested using the ALS model) to avoid over-fitting. Each individual is coloured in accordance with their 
clinical diagnosis. Generally, individuals showed a high probability in models trained on their diagnosis, and a low probability in others. (D) A confusion 
matrix showing agreement between pathological diagnosis and maximum likelihood subtype model. True pathological diagnosis labels are repre
sented on the y-axis, while predicted labels are shown on the x-axis. Individual pathological profiles tended to agree best with models fit to their clinical 
diagnostic group, but this was not true in all cases. (E) A logistic regression model was trained on the probabilities, plus maximum likelihood SuStaIn 
stage and age at death, using 100 iterations of train/test splits. The confusion matrix shows the average agreement between pathological diagnosis and 
predicted subtype in the 100 left-out test groups. (F) Distribution of classification statistics for performance of the maximum likelihood model across 
the 100 train/test splits, stratified by pathological diagnosis. See Supplementary Table 3 for further statistics and comparison with the maximum like
lihood model. AD = Alzheimer’s disease; ALS = amyotrophic lateral sclerosis; bvFTD = behavioural variant frontotemporal dementia; DLB/PD = demen
tia with Lewy bodies/Parkinson’s disease; CBS = corticobasal syndrome; Dx = diagnosis; FTD = frontoptemporal dementia; FTLD-NOS = frontotemporal 
lobar degeneration not otherwise specified; LATE-AD+ = Alzheimer’s individuals with amygdalar but not medullar TDP-43 pathology; LATE-AD− =  
non-Alzheimer’s individuals with amygdalar but not medullar TDP-43 pathology; MND = motor neuron disease; PPA = primary progressive aphasia; 
PSP = progressive supranuclear palsy. 
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patients to have greater cortical burden of TDP-43 pathology, par
ticularly in the anterior cingulate, as well as sparse TDP-43 bur
den in the basal ganglia. In contrast, Stage 12 LATE-NC cases 
were projected to have greater (more severe) TDP-43 burden in 
the medial temporal lobe (Fig. 5C). However, among LATE-NC 

cases, a brief increase of FTLD probability was seen around 
LATE-NC Stages 12–16, and a similar phenomenon of higher 
LATE-NC probability was seen in FTLD-TDP cases also around 
Stages 12–16 (Fig. 5B), indicating some degree of overlap between 
these two entities around these stages.

Figure 5 Comparing LATE-NC and FTLD-TDP. (A) Histograms showing the proportion of individuals assigned to each stage, separately for FTLD-TDP, 
ALS and LATE-NC models/individuals. Nearly all LATE-NC individuals were assigned to Stages 16 or lower, while nearly all FTLD-individuals were as
signed to Stages 16 or higher. (B) SuStaIn tends to confuse LATE-NC and FTLD-TDP, particularly the stages of the crossover noted in A. The top plot re
presents the probability of being classified as FTLD-TDP among LATE-NC individuals, whereas the bottom plot represents the probability of being 
classified as LATE-NC for FTLD-TDP individuals. For both sets of patients, probability of misclassification is very low, except between Stages 12–16. 
(C) Comparison of FTLD-TDP and LATE-NC at Stage 12, with colours representing the amount of pathology using the same scale as Fig. 1, ranging 
from white (no pathology) to red (light pathology) to purple (moderate pathology) to blue (severe pathology). Brain schematics were generated using: 
https://github.com/AllenInstitute/hba_brain_schematic. ALS = amyotrophic lateral sclerosis; Amyg = amygdala; Ang = angular gyrus; CB = cerebellum; 
Cing = anterior cingulate; CP = caudate/putamen; CS = CA1/subiculum; DG = dentate gyrus; EC = entorhinal cortex; FTD = frontotemporal 
dementia; FTLD-TDP = frontotemporal lobar degeneration due to TDP-43; GP = globus pallidus; LATE-NC = limbic-predominant age-related TDP-43 en
cephalopathy neuropathologic change; LC = locus coeruleus; MB = midbrain; MC = motor cortex; MF = middle frontal gyrus; Med = medulla; OC = oc
cipital cortex; OFC = orbitofrontal cortex; SC = spinal cord; SMT = superior and middle temporal gyrus; SN = substantia nigra; TS = thalamus.
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Heterogenous pathological progression patterns of 
TDP-43 proteinopathies

For each neuropathologic diagnostic category, SuStaIn was refit al
lowing estimation of multiple progression patterns. For ALS, 
SuStaIn identified two subtypes of TDP-43 progression (Fig. 6
and Supplementary Figs 5 and 6). The first subtype, which we la
belled as subcortical predominant, had greater TDP-43 depos
ition in brainstem and subcortical regions, namely in the 
medulla, pons, basal ganglia, midbrain and substantia nigra. 
The second subtype, which we labelled as corticolimbic predom
inant, had greater TDP-43 deposition in cortical and medial tem
poral regions, namely the amygdala, hippocampus, superior/ 
middle temporal gyrus, entorhinal cortex and the occipital cortex 
(Fig. 6 and Supplementary Fig. 6). No evidence was found for pu
tative crossover events between the two subtypes after Stage 1 
(Supplementary Fig. 5).

When allowing SuStaIn to estimate multiple progression pat
terns for FTLD-TDP, SuStaIn identified two subtypes with distinct 
TDP-43 progression (Fig. 6 and Supplementary Figs 5 and 7). The 
first subtype, which we labelled as cortical predominant, had great
er TDP-43 deposition in the angular gyrus, occipital cortex, super
ior/middle temporal gyrus, middle frontal gyrus, anterior 
cingulate and dentate gyrus. The second subtype, which we la
belled as brainstem predominant, had greater TDP-43 deposition 
in the medulla, pons, spinal cord, cerebellum and amygdala 
(Fig. 6 and Supplementary Fig. 7). No evidence for a subtype cross
over event was observed (Supplementary Fig. 5).

Despite aggregating a diverse set of individuals with and with
out Alzheimer’s disease, a single progression pattern best described 
the TDP-43 progression pattern for the n = 304 participants with a 

secondary or tertiary neuropathological diagnosis of LATE-NC 
(Supplementary Fig. 5).

Clinical characteristics of FTLD-TDP subtypes

FTLD-TDP pathological subtypes were assessed for differences in 
demographic, pathological and genetic variables (Table 2). 
Compared to Subtype 2 (brainstem predominant), Subtype 1 (cor
tical predominant) participants were more likely to present with 
TDP-43 type C pathology, while Subtype 2 was more likely to pre
sent with TDP-43 type B pathology and type E pathology, after ad
justing for other covariates. There was also a significant 
interaction between SuStaIn subtype and SuStaIn stage on age at 
death (t = −2.85; P = 0.005) and disease duration (t = −3.26, P =  
0.001), such that Subtype 2 individuals showed a stronger negative 
relationship between SuStaIn stage and age at death 
(Supplementary Fig. 8). Individuals with a secondary diagnosis of 
ALS were more likely to be Subtype 2 (85.7% of seven individuals 
with secondary neuropathological evidence of ALS versus 52.9% 
of 119 individuals without secondary neuropathological evidence 
of ALS), but this trend did not reach statistical significance (P =  
0.1928).

Clinical characteristics of ALS subtypes

Similarly, differences in various clinical variables were tested be
tween ALS Subtype 1 (subcortical predominant) and ALS Subtype 
2 (corticolimbic predominant). Two confounding factors signifi
cantly discriminated between the two subtypes (Table 2): Subtype 
1 had a longer post-mortem interval and also tended to have less 
overall brain pathology (e.g. lower SuStaIn stage) compared with 

Figure 6 Subtypes of primary TDP-43 proteinopathies. T-maps showing regions that are significantly different between ALS subtypes (top) and 
FTLD-TDP subtypes (bottom), after controlling for SuStaIn stage and multiple comparisons. A positive t-value (red) indicates more severe TDP-43 path
ology in Subtype 1 and a negative t-value (blue) indicates more severe TDP-43 pathology in Subtype 2. Brain schematics were generated using: https:// 
github.com/AllenInstitute/hba_brain_schematic. ALS = amyotrophic lateral sclerosis; Amyg = amygdala; Ang = angular gyrus; CB = cerebellum; Cing =  
anterior cingulate; CP = caudate/putamen; CS = CA1/subiculum; DG = dentate gyrus; EC = entorhinal cortex; FTLD-TDP = frontotemporal lobar degen
eration due to TDP-43; GP = globus pallidus; LC = locus coeruleus; MB = midbrain; MC = motor cortex; MF = middle frontal gyrus; Med = medulla; OC =  
occipital cortex; OFC = orbitofrontal cortex; SC = spinal cord; SMT = superior and middle temporal gyrus; SN = substantia nigra; TS = thalamus.
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Subtype 2. Covarying for these and other variables, there was a non- 
significant trend (P = 0.09) for Subtype 1 being associated with a 
younger onset age. There was a significant SuStaIn subtype × 
SuStaIn stage interaction on symptom onset age (t = 2.56, P = 0.01) 
and age at death (t = 2.72, P = 0.007), where Subtype 1 showed a 
stronger negative relationship (Supplementary Fig. 8).

Discussion
In this study we employed data-driven disease progression model
ling to derive an empirical system for staging and differentiating 
three major TDP-43 proteinopathies: ALS, FTLD-TDP and 
LATE-NC. The data driven staging schema derived from disease 
progression modelling corroborated previously described staging 
systems, whilst revealing additional detail in the progression pat
terns of each TDP-43 proteinopathy. Individuals diagnosed with 
ALS, FTLD-TDP or LATE-NC could be distinguished with high accur
acy based on their probability of belonging to the learnt progression 
pattern for each proteinopathy. Most misclassified cases appeared 
to be driven by features of more than one TDP-43 diagnostic entity 
intermingling, as well as mutations and presence of co-pathologies. 
Our study further identified considerable heterogeneity in the pro
gression of ALS and FTLD-TDP across individuals, but the progres
sion of LATE-NC was found to be remarkably homogeneous.

Previous staging systems have been based on the delineation of 
a smaller, coarser set of stages based on the overall severity of path
ology. In contrast, our data-driven staging systems were based on 
probabilistic inference of the sequential progression of TDP-43, en
abling us to infer fine-grained progression patterns and to stage 

individuals probabilistically. Where previously described staging 
systems resulted in a substantial proportion of ‘unclassifiable’ indi
viduals that did not precisely match the staging system, our data- 
driven method was able to probabilistically assign individuals to 
their best matching stage, accounting for the variability and uncer
tainty in the TDP-43 progression pattern for each particular TDP-43 
proteinopathy. The probabilistic nature of the SuStaIn algorithm 
also allowed us to build proteinopathy classifiers by comparing 
an individual’s regional pattern to that of the dominant pattern of 
a given proteinopathy. This resulted in a robust and fully auto
mated classification of diseases based only on an array of regional 
TDP-43 frequency scores plus age at death. The combined staging 
and classification could be useful for pathologists in classifying un
usual cases and for establishing consistent quantification of indi
vidual TDP-43 progression for research studies.

Previous studies have described considerable pathological, 
clinical and biomarker heterogeneity in both ALS28–30 and 

FTLD-TDP,31,32 and the two syndromes often co-occur within an in

dividual.12 Here we identified two major neuropathological sub

types in ALS and a further two in FTLD-TDP. The ALS subtypes 

broadly split into a subcortical predominant subtype with greater 

involvement of the spinal cord, medulla, pons and the caudate/pu

tamen, and a corticolimbic predominant subtype with greater in

volvement of the temporal lobe, amygdala and hippocampus. 

Previous studies have similarly identified a subgroup of ALS cases 

with greater hippocampal and cortical involvement.33,34 There is 

some controversy as to whether TDP-43 pathology in ALS originates 

in the motor cortex or the spinal cord. While our subtype analysis 

revealed subgroup differences in the relative timing of regional 

Table 2 Comparison between regional TDP-43 subtypes of FTLD-TDP and ALS

S1 S2 coef P Versus B P Versus C P Versus E P

FTLD-TDP
n 57 69
Age at onset 60.5 (9.1) 61.5 (9.0) −0.00 0.89
Age at death 68.3 (9.3) 68.6 (10.7)
Disease duration 7.6 (2.8) 7.1 (4.9) 0.04 0.45
% Female 57.9% 52.2% 0.10 0.80
Braak stage 2.0 (1.4) 2.0 (1.8) −0.13 0.58
% APOE4 carrier 26.3% 23.2% 0.20 0.67
% APOE2 carrier 17.5% 18.8% −0.21 0.70
% TDP-A 33.3% 37.7% 0.64 0.23 −0.68 0.19 2.06 0.09
% TDP-B 24.6% 34.8% 1.32 0.03 1.42 0.24
% TDP-C 36.8% 17.4% 2.74 0.03
% TDP-E 1.8% 8.7%
SuStaIn stage 30.1 (10.3) 27.8 (11.3) −0.03 0.13
PMI 12.4 (6.9) 13.1 (7.6) −0.01 0.84
ALS
n 78 61
Age at onset 57.4 (11.0) 61.5 (10.2) −0.04 0.09
Age at death 62.0 (10.3) 65.2 (10.3)
Disease duration 4.6 (4.5) 3.9 (4.2) 0.02 0.66
% Female 61.5% 57.4% 0.27 0.53
Braak stage 0.8 (0.8) 0.9 (0.9) −0.06 0.82
% APOE4 carrier 28.6% 21.3% 0.46 0.31
% APOE2 carrier 15.6% 9.8% 0.66 0.38
SuStaIn stage 10.9 (9.4) 15.4 (10.7) −0.05 0.01
PMI 14.3 (8.7) 10.6 (6.1) 0.07 0.02

The top and bottom of the table represent the output for FTLD-TDP and ALS, respectively, of a single model including all covariates. Entries are mean (standard deviation) for a 

subtype, unless indicated to be percentages, coefficients, or P-values. 
ALS = amyotrophic lateral sclerosis; FTLD-TDP = frontotemporal lobar degeneration due to TDP-43; PMI = post-mortem interval; S1 = Subtype 1; S2 = Subtype 2; SuStaIn =  
Subtype and Stage Inference.
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onset of motor cortex pathology, SuStaIn inferred the spinal cord as 
the first susceptible region for both ALS subtypes.

The FTLD-TDP patterns identified in this study divided into a 
brainstem predominant subtype with greater subcortical and 
brainstem involvement, and a cortical predominant subtype with 
greater cortical involvement. This is consistent with previous stud
ies identifying subcortical involvement in FTD subgroups,35,36 with 
the brainstem predominant subtype having greater subcortical in
volvement. The brainstem predominant subtype was more likely to 
present with TDP-43 type B and E pathology, whilst the cortical pre
dominant subtype was more likely to present with TDP-43 type C 
pathology. This aligns with previous work demonstrating that 
TDP-43 type B is associated with FTD-ALS phenotypes,32,37–39 with 
the subcortical and brainstem involvement in the brainstem pre
dominant subtype being closer to the pattern of TDP-43 progression 
in ALS. As with ALS, further studies in larger samples may reveal 
further subdivision of the subtypes.

SuStaIn stage was positively correlated with age in LATE-NC, in 
agreement with previous studies.1 However, in FTLD-TDP SuStaIn 
stage was found to be negatively correlated with age. 
Interestingly, when allowing for subtypes, both ALS and 
FTLD-TDP exhibited subtypes with an increased amount of subcor
tical pathology and an inverse relationship between age and path
ology, suggesting that age associations may have been driven by 
subgroup associations for FTLD-TDP and negated by subgroup as
sociations for ALS. The factors leading to positive and negative re
lationships between pathology and age are complex and 
incompletely understood. A positive association with age might 
be produced by a slow progressing (typically late onset) pathology, 
which is often present alongside other pathologies and is unlikely 
to be the primary cause of death. A negative association with age, 
in contrast, may be produced by a fast progressing (often early on
set) pathology, with a higher burden of pathology being found in in
dividuals with faster progression who consequently die at a 
younger age. This idea is supported by previous studies that have 
found inverse correlations between the primary pathology and 
age, such as between age and tau deposition in Alzheimer’s dis
ease.20,40,41 An alternative explanation for an inverse correlation 
between disease stage and age is that more neuronal death in older 
(or more progressed) subjects leads to lower proportions of TDP-43 
pathology being stained on histopathological slides. Some evidence 
for this phenomenon is presented by individuals with long-lasting 
ALS, who demonstrate decreased TDP-43 staining due to neuronal 
death of TDP-43-vulnerable neurons.42,43 One final explanation for 
an inverse correlation with age is that younger subjects may have 
higher neurocognitive reserve and are therefore able to function 
under a greater burden of pathology.44

We identified a single progression pattern for LATE-NC, suggest
ing that the pattern of TDP-43 progression in LATE-NC is relatively 
stereotypical, or at least spread around a single major mode. We did 
not find evidence in the present study that the progression of 
LATE-NC differed between individuals with or without 
Alzheimer’s disease, although our sample was dominated by indi
viduals with Alzheimer’s disease and larger studies will be required 
to confirm this. A recent study by Cykowski et al.45 identified sub
types of LATE-NC with distinct TDP-43 inclusion morphologies. 
Our study does not necessarily contradict this study as we did not 
consider the morphology of the TDP-43 inclusions when deriving 
subtypes and stages. It is also worth noting that we did not consider 
very early ‘sparse’ pathology, whereas early pathology was found to 
be more heterogeneous in the study by Cykowski et al.45

The regions affected by LATE-NC and FTLD-TDP are known to 
overlap and the similarity of their TDP progression patterns has 
not yet been fully determined, although some studies suggest 
that they can be differentiated.16 Whilst SuStaIn could differentiate 
LATE-NC and FTLD-TDP with high accuracy, it is important to note 
that there was a systematic under-sampling of individuals with 
early stages of FTLD-TDP and late stages of LATE-NC in our dataset. 
We did observe subtle differences for the few individuals at over
lapping middle stages of FTLD-TDP or LATE-NC. However, we also 
observed a clear decrease in the confidence of classifying these in
dividuals, suggesting that these subtle differences may not be 
strong enough to differentiate one condition from the other at an 
individual level. Similarly, there was considerable uncertainty in 
the early stages of the FTLD-TDP progression pattern and the late 
stages of the LATE-NC progression pattern. There is some contro
versy as to whether FTLD-TDP and LATE-NC share similar origins, 
where FTLD-TDP may be an earlier-onset and far more aggressive 
variant of LATE-NC. Based on our observations, we can neither con
firm nor reject this hypothesis, especially since early FTLD-TDP is 
undersampled in our cohort. Closer study of TDP-43 morphology 
in LATE-NC and FTLD-TDP may help to resolve this controversy.

Our study has a number of limitations that warrant further con
sideration in future work. The neuropathological sample was ob
tained from a tertiary academic centre and may have a referral 
bias. FTLD-TDP is also known to be highly heterogeneous, poten
tially with distinct progression patterns in carriers of genetic muta
tions for FTLD-TDP, however our study was underpowered to 
resolve mutation-specific patterns. The SuStaIn algorithm infers 
subtypes with distinct progression patterns from cross-sectional 
data, relying on the assumption that TDP-43 proteinopathies pro
gress sequentially from region to region, as is the case in all neuro
pathological studies. The SuStaIn algorithm also assumes that each 
individual has a single TDP-43 proteinopathy (FTLD-TDP, ALS or 
LATE-NC), an assumption violated by several individuals in this 
study, leading to misclassification. Our study determined progres
sion patterns using neuropathological samples from a large num
ber of regions. Whilst ideally suited to determining the 
progression pattern of each TDP-43 proteinopathy, this means 
that the derived staging systems may require sampling of a larger 
range of regions than is necessary to differentiate one proteinopa
thy from another. There are also several regions that were not 
sampled in the present study that merit further investigation in fu
ture studies. Our study only considered the total amount of TDP-43 
pathology in each region and did not consider the specific TDP-43 
inclusion morphologies, which may provide further stratification 
if considered in future work, e.g. TDP type may enhance the differ
entiation of FTLD-TDP and LATE-NC46 but was only available for a 
subset of individuals in our study. In this study, we focused on com
paring SuStaIn to staging schema of predefined neuropathological 
groups, running SuStaIn separately in each group. While consistent 
with current neuropathological practice, this may bias our results 
towards only reproducing these preconceived diagnostic categor
ies. For example, diagnosis of LATE-NC in this study required amyg
dalar TDP-43 pathology, which may bias the amygdala as the 
earliest region to show TDP-43 burden. A similar issue may be pre
sent with the spinal cord and ALS, though other criteria are used in 
the neuropathological definition of ALS as well.

Overall, we develop an empirical pathological staging system 
for ALS, FTLD-TDP and LATE-NC, using data-driven disease pro
gression modelling. We demonstrate that this staging system is 
sufficient for staging and accurate classification and can provide 
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probabilistic information that aids classification of individuals that 
deviate from the stereotypical progression pattern for each TDP-43 
proteinopathy. Our results demonstrate that there is substantial 
heterogeneity amongst ALS and FTLD-TDP progression patterns, 
whilst we identify that LATE-NC is relatively homogeneous in this 
cohort. Data-driven disease progression modelling is a useful tool 
for neuropathological staging and management and can aid in un
ravelling neuropathological heterogeneity.
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