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Abstract. In the current LIBOR transition to overnight–rate benchmarks, it
is important to understand theoretically and empirically what distinguishes ac-
tual term rates from overnight benchmarks or “synthetic” term rates based on
such benchmarks. The well–known “multi–curve” phenomenon of tenor basis
spreads between term structures associated with different payment frequencies
provides key information on this distinction. This information can be extracted
using a modelling framework based on the concept of “roll–over risk”, i.e., the
risk a borrower faces of not being able to refinance a loan at (or at a known
spread to) a market benchmark rate. Separating the roll–over risk priced by
tenor basis spreads into a credit–downgrade and a funding–liquidity compo-
nent, the theoretical modelling and the empirical evidence show that proper
term rates based on the new benchmarks remain elusive and that a multi–curve
environment will persist even for rates secured by repurchase agreements.

1. Introduction. The ongoing transition from the London Interbank Offered Rate
(LIBOR) and other, similar benchmarks in major jurisdictions (IBORs) to new
benchmarks based on overnight rates is starting to move term rates to the center
of attention. Term is an important feature of borrowing transactions. This is not
simply because of interest rate risk or market expectations of rising or falling interest
rates reflected in higher or lower long-term versus short-term rates: Consider a
borrower who takes out a floating–rate loan, agreeing to pay a floating interest
rate updated every three months on a one–year loan, as compared to a borrower
who also needs to borrow for one year, but chooses to do so by borrowing at a
fixed rate for three months and then refinancing this loan every three months for a
total of one year. Both borrowers are equally exposed to interest rate risk, but the
second borrower faces the additional risk that they may not be able to refinance at
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the same market rate. This additional source of risk is “refinancing risk” or roll–
over risk1 (since it appears when seeking to roll over a three–month loan into a
new three–month loan). It can manifest itself due to the borrower experiencing a
credit downgrade or due to not being able to borrow at the market rate because of
dwindling market liquidity—as it happened when money markets dried up in the
wake of the default of Lehman Brothers in 2008. In fact, it is since 2008 that the
market has been putting a clearly discernible price on roll–over risk: Floating–for–
floating interest rate swap (i.e., basis swap) spreads added to the higher payment
frequency rate increased sharply at the time and then decreased post-crisis, but
never returned to the negligible levels seen pre-crisis. This price on roll–over risk
is a form of term premium reflected in term rates—the longer the term, the higher
the premium.

Clearly, an overnight rate such as SOFR, SONIA, EONIA or eSTR2 will not
reflect this premium, creating a substantial, and substantially risky, mismatch be-
tween the new risk–free rate (RFR) benchmarks and any borrowing or lending
for periods longer than overnight. Compounded–in–arrears indices based on these
benchmarks3 do not address this problem. Moreover, they introduce the additional
shortcoming that they are backward–looking, thus not known until the end of the
accrual period. The forward–looking “synthetic term rates” which rely on derivative
financial instruments to convert the floating overnight rate into a fixed rate over a
given term do not reflect this premium either. These swaps are derivative financial
instruments which do not involve an exchange of notional principal between coun-
terparties, so involve no borrowing/lending transactions, and therefore only serve
to transfer interest rate risk, not roll–over risk. Simply put, a hypothetical market
participant able to borrow at an overnight benchmark rate would still pay a pre-
mium above the OIS–implied term rate when borrowing for a fixed term (longer
than overnight) to avoid roll–over risk.

Thus it is important to understand theoretically and empirically what distin-
guishes term rates (at which market participants can actually borrow) from overnight
benchmarks or “synthetic” term rates based on these benchmarks. The now well–
recognised “multicurve” phenomenon in interest rate markets provides key clues to
explaining these differences: if we know what drives the basis spreads between term
structures based on genuine (benchmark) term rates of different tenors, then we
understand what is missing in (a) the new benchmarks based on overnight rates
and (b) the possible ways being discussed at present to fill the term rate gap. This
then leads to the conclusion that in jurisdictions where IBORs are discontinued,4
proper term rates remain elusive—and we are able to formally (both theoretically
and empirically) demonstrate what is missing. Though the discontinuation of LI-
BOR might be seen by some as an opportunity to ridden fixed-income markets of
term risk (basis spreads), we argue the contrary: The end of LIBOR will not result

1The term “rollover risk” first appears in the literature in connection with the financial crisis
of 2007/8 in Acharya, Gale and Yorulmazer (2011).

2Secured Overnight Funding Rate (in US dollars), Sterling Overnight Index Average, Euro
Overnight Index Average and Euro Short–Term Rate, respectively.

3For example, the Bank of England favours compounded–in–arrears SONIA in many cases
where proper term rates would have been used previously, see Bailey (2021).

4This is now more or less locked in for USD and GBP. For EUR, on the other hand, EURIBOR
still may or may not survive, and for some currencies no discontinuation is currently on the table,
e.g., there is no indication that the Australian IBOR equivalent, the Bank Bill Swap Rate (BBSW),
will be discontinued.
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in a return to the “single–curve” interest rate environment that was prevalent prior
to the 2008 financial crisis.

In this paper, we propose a framework that links the existence of the tenor basis
spreads to roll–over risk, including IBOR/OIS spreads as a limit case of a tenor
basis spread. To our knowledge, in prior literature only Filipović and Trolle (2013),
Gallitschke, Seifried and Seifried (2017) and Alfeus, Grasselli and Schlögl (2020)
have taken a similar approach (see also a discussion of the relevant literature in
Section 2 below). The first two papers predate the LIBOR transition, so they do
not consider the implications of roll–over risk (which they call “interbank risk”) for
the distinction between term rates and rates implied by the new RFR benchmarks.
Furthermore, Gallitschke et al. (2017) only model the funding liquidity component
(in the form of a “liquidity freeze”) of roll–over risk, not the credit downgrade com-
ponent.5 While our modelling of the credit downgrade component is similar to
Filipović and Trolle (2013) in the specific instance of our framework, which we use
for econometric estimation, we are explicit in the modelling of the funding liquidity
component. We also find that their assumption around the overnight–market com-
ponent of the default intensity/credit spread is untenable on our data set. That
is, setting this market component to a small constant is too restrictive, resulting
in an over–estimation of downgrade risk and often in over–pricing the EURIBOR–
OIS spread, even in the absence of any contribution from funding–liquidity risk.
Our model performs substantially better on the data and gives a more meaningful
split between the credit downgrade and funding–liquidity components of the tenor
basis spreads. Our treatment of overnight–market credit risk suggests that on our
data set, about 30% is the empirically observed upper bound for the contribution
of downgrade risk to tenor basis spreads. This implies that roll–over risk is also
central for secured term rates, and overnight rates such as SOFR and associated
synthetic term rates remain inadequate benchmarks for term borrowing. Thus our
modelling and empirical analysis provides a rigorous basis for the view also recently
expressed in practitioners’ articles (see, e.g., Nelson (2020) and Albanese, Iabichino
and Mammola (2021)) that an appropriate benchmark for term borrowing should
reflect this type of funding liquidity risk.

The rest of the paper is organised as follows. After giving some context in
terms of the recent literature on multicurve term structure modelling and on the
development of new benchmarks to replace LIBOR in Section 2, Section 3 presents
our modelling framework and derives the dynamics of a quoted benchmark rate such
as IBOR. Section 4 provides a specific model instance of the framework introduced
in Section 3, making the dynamics of the “credit” and “liquidity” components of roll–
over risk concrete in a manner which allows the prices of key market instruments
to be computed. An econometric analysis of the model applied to Euro data (OIS,
vanilla interest rate swaps, basis swaps and credit default swaps) is conducted in
Section 5. Since roll–over risk is not solely due to credit risk, it remains crucial
even if credit risk is entirely mitigated, e.g., if going forward one were to consider
a purely SOFR–based world: This would be a special case in our model, which is
discussed in Section 6. Section 7 concludes.

5In Gallitschke et al. (2017), credit risk enters only in the form of default risk, not via the risk
of facing an increased credit spread when attempting to refinance roll–over borrowing. Thus it
is unsurprising that they find, “Tenor basis spreads are almost exclusively due to the presence of
funding liquidity risk.”
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2. Background. In the literature, direct modelling of basis spreads (without any
recourse to the underlying financial risks driving these spreads) can be traced back
to Boenkost and Schmidt (2004), who constructed a model for cross–currency swap
valuation in the presence of a basis spread. Kijima, Tanaka and Wong (2009) ap-
plied this approach to single–currency (frequency) basis spreads, which were first
highlighted in an article by Henrard (2007), initiating an extensive literature on
“multicurve” models. Fujii, Shimada and Takahashi (2009) considered how the ab-
sence of arbitrage opportunities can be ensured in models of this type. Mercurio
(2009, 2010) proposed multicurve versions of the LIBOR Market Model, Kenyon
(2010) constructed a short–rate modelling framework, Mercurio and Xie (2012)
based their model on stochastic additive basis spreads, while Henrard (2010, 2013)
considered, respectively, deterministic and stochastic multiplicative basis spreads.
Focusing on a stochastic, multiplicative spot spread, Cuchiero, Fontana and Gnoatto
(2019) developed a general framework nesting all existing affine multicurve models.
The model of Moreni and Pallavicini (2014) consists of two curves, for risk–free
instantaneous forward rates and forward LIBORs, which are Markovian in a com-
mon set of state variables. Grasselli and Miglietta (2016) show how the widespread
practice of calibrating interest rate term structure models to market data via a
deterministic time–shift can be extended to a multicurve framework. Macrina and
Mahomed (2018) embed multicurve models (for discount curves in different curren-
cies, or real vs nominal interest rates, or for different tenors) in a general pricing
kernel framework. These works do not model the economic structural links between
different term structures.

Elsewhere, the literature incorporating potential causes of frequency basis spreads
revolves around either credit risk, or funding liquidity risk, or both. Papers by
Morini (2009) and by Bianchetti (2010) focus on counterparty credit risk as the
driver of the basis. Crépey and Douady (2013) construct a stylised equilibrium
model of credit risk and funding liquidity risk to explain the LIBOR/OIS spread.
Taking a different perspective, Crépey (2015) integrates funding cost and counter-
party credit risk into a model for credit valuation adjustment (CVA), but does not
explicitly consider spreads between different tenor frequencies arising from roll–over
risk.

Filipović and Trolle (2013) consider the risk of loss resulting from lending in the
interbank money market, which they call “interbank risk”. They separate this risk
into two parts, a default and a non–default component, and study the associated
risk premia based on time series data of overnight index swaps (OIS), the IBOR–
style (e.g. LIBOR, EURIBOR, etc.) money market, the vanilla interest rate swap
(IRS) market, and the basis swap market. Their “default” component is interpreted
in terms of the risk of a deterioration of creditworthiness of a LIBOR reference
panel bank, resulting in it dropping out of the LIBOR panel.6 Such a bank would
no longer be able to roll debt over at the overnight reference rate, while the rate on
any LIBOR borrowing would remain fixed until the end of the accrual period (i.e.,
typically for several months). They show that this differential impact of a credit
downgrade on rolling debt explains part of the LIBOR/OIS spread; the residual
is labelled the “liquidity” component.7 Both components of this “interbank risk”

6This is also known as the “renewal effect,” see Collin-Dufresne and Solnik (2001) and Grinblatt
(2001).

7Past empirical studies, in particular of the Global Financial Crisis, also found that credit risk
alone is insufficient to explain the LIBOR/OIS spread; see e.g. Eisenschmidt and Tapking (2009).
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manifest themselves as additional cost when rolling debt over. Thus, although
Filipović and Trolle (2013) do not use this terminology, this can be seen as roll–over
risk, consisting of “downgrade risk” (the credit component) and “funding–liquidity
risk”8 (the non–credit component).9

Starting from the observation that the frequency basis gives rise to naive “ar-
bitrage” strategies involving lending at a longer tenor and borrowing at a shorter
tenor, Alfeus et al. (2020) argue that the phenomenon of the frequency basis can
only persist (as empirically observed) if the putative “arbitrage” channel is closed
off by the presence of roll–over risk. They model both components as spreads ap-
plied to the overnight borrowing cost, showing how these block potential trading
strategies to take advantage of the LIBOR/OIS spread and/or the frequency basis.
That paper, however, takes a “cross–sectional” perspective on market data, calibrat-
ing the model to market data observed at a particular point in time. Specifically,
although roll–over risk has a term structure in Alfeus et al. (2020), that term struc-
ture is static in process time, therefore the model is not amenable to econometric
estimation. Lifting this restriction is a key point of distinction of our approach, as
explained in Section 3 below.

As noted by Alfeus et al. (2020), the IBOR/OIS spread can be interpreted as a
premium paid by the borrower at IBOR to avoid roll–over risk over the length of
the IBOR loan. This links roll–over risk with what the literature commonly calls
“term premia” or “term funding risk”. In other words, the presence of roll–over
risk gives rise to a term premium in addition to the premium due to the market
price of interest rate risk.10 In view of the current transition away from IBOR to
benchmarks such as the Secured Overnight Funding Rate (SOFR), this points to
a critical difference between IBOR and the proposed replacements, in that even
when interest rate risk is eliminated (e.g., through an OIS–type derivative financial
instrument), one obtains only a pseudo–term rate not reflecting roll–over risk. This
was long under–appreciated in the debate on the IBOR transition, but it is becoming
more widely recognised as an important issue.11

By explicitly modelling roll–over risk as the driver of the basis between overnight
rates and term rates, and between rates of different terms (a.k.a. tenors), our
framework provides important insights into the implications of phasing out IBORs
and for introducing proposed replacements (all of which, at the time of writing,

8“Funding–liquidity risk” has also been considered explicitly in a separate strand of the liter-
ature. For example, Acharya and Skeie (2011) model liquidity hoarding by participants in the
interbank market. In their model, there is a positive feedback effect between roll–over risk and
liquidity hoarding (via term premia on interbank lending rates), which in the extreme case can
lead to a freeze of interbank lending. Brunnermeier and Pedersen (2009) model a similar adverse
feedback effect between market liquidity and funding liquidity.

9As noted above, roll–over risk drives the spread between reference rates for term borrowing
versus reference rates based on overnight borrowing. Thus modelling this risk by a credit and a
liquidity component is consistent with the findings of the econometric literature on term premia,
which finds contributions from both of these components, see e.g. Michaud and Upper (2008) and
Gefang, Koop and Potter (2011).

10For a review of traditional concepts of term premia, see e.g. Kim and Orphanides (2007).
11Schrimpf and Sushko (2019) highlight this point repeatedly in an article in the BIS Quarterly

Review, noting for example, “A crucial, yet challenging, area of the reform process is the extension
of the reference curve from O/N to term rates.” In a paper examining alternative benchmarks to
replace LIBOR, Klingler and Syrstad (2021) remark that these alternatives “lack a term premium,
which detaches these rates from banks’ costs of term funding and introduces problems for loan
issuance.”
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reference overnight rates). This goes beyond what can be considered the current
state of the LIBOR transition debate:
• The move to replace IBORs with the RFR benchmarks is motivated by moving

towards a primary benchmark that is both closely related to actual transac-
tions and less susceptible to manipulation. It is clear that replacing IBOR
rates with transaction–based RFRs lives up to that objective. In the USA,
the current plan is to replace LIBOR with SOFR, which is a weighted aver-
age of rates on overnight repurchase transactions. Several challenges remain
though, including whether SOFR is an appropriate proxy for actual interbank
(or, for that matter, corporate) funding cost, as well as in relation to con-
verting existing LIBOR derivatives to SOFR equivalents. While the latter
problem is of considerable magnitude,12 some of the implications of the for-
mer (the resolution of which is a pre–requisite for satisfactorily addressing the
latter) are only beginning to be discussed in earnest.

• In response to a letter from a group of bank representatives,13 the Board of
Governors of the Federal Reserve System, the US Office of the Comptroller
of the Currency, and the Federal Deposit Insurance Corporation established
a LIBOR Transition Credit Sensitivity Group (CSG), “to focus on the issues
surrounding a credit sensitive rate/spread that could be added to SOFR”.
Here, the issue raised by the group of bank representatives, and thus the
issue which the CSG seeks to resolve, is one of a disconnect due to credit risk
between the cost of funding of private–sector banks (subject to credit risk) and
a SOFR benchmark based on repo transactions (subject to negligible credit
risk). Our analysis in the present paper suggests that this disconnect is not
solely due to credit spreads in the traditional sense, but also due to premia
for avoiding roll–over risk by borrowing at term.

• In the broader debate, problems arising from a mismatch in tenor between
the new candidate benchmarks (i.e., overnight) and the old IBOR benchmarks
(e.g., three months, six months, etc.) are only addressed in passing. This may
be because of the hope that “term rates” based on SOFR will become avail-
able once SOFR is well–established as the market benchmark, based on OIS
referencing SOFR as the overnight rate (in a manner similar to how current
OIS contracts reference the overnight Fed funds rate), see for example the dis-
cussion in Henrard (2019). Alternatively, a consultation by the ISDA (ISDA
(2018), where rates derived from a SOFR–OIS market were not included as
an option) concludes that a backward–looking approach, where a (constant)
term– and currency–dependent spread is added to a compounded average of
SOFR (often called SAFR), is the preferred option for replacing LIBOR in ex-
isting derivatives. From the analysis laid out in the present paper, we conclude
that neither of these approaches leads to benchmarks with the term–rate prop-
erties of the old IBOR benchmarks. In particular, SOFR–based OIS–implied
term rates would be more suitable to replace the current Fed–Funds–based
OIS–implied term rates, not the benchmark IBORs. Intuitively, this is both
unsurprising (though largely unrecognised) and economically significant when

12In the US dollar fixed income markets alone, it is estimated that 36 of the 200 trillion USD
gross notional value of LIBOR exposed derivatives and loans extend beyond the 2021 deadline,
see ARRC (2018), Table 1.

13See https://www.newyorkfed.org/medialibrary/media/newsevents/events/markets/2020/
credit-sensitivity-letters.pdf.
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one considers that tenor basis spreads (between one–month, three–month and
six–month tenors, and between these tenors and OIS) are known to be sub-
stantial and volatile. From a perspective of sound mathematical modelling
and the associated econometric analysis, this is due to “roll–over risk”, con-
sisting of downgrade risk (an aspect of credit risk quite distinct from that
considered by the CSG) and funding liquidity risk.

It is worth noting that there are efforts to develop indices of rates at which market
participants can actually borrow. In a recent paper, Berndt, Duffie and Zhu (2020)
propose an “across–the–curve” credit spread index to address the issues under con-
sideration by the CSG, by developing a robust benchmark spread which could then
be added to SOFR to better reflect the actual cost of funding. This proposed index
is a single number (i.e., a weighted average across maturities), and intended to reflect
the average spread (over SOFR) of bank borrowings, based on their recent compo-
sition. It thus avoids dealing with the tenor basis (or term premia) except in the
most aggregate manner. In contrast, the ICE Bank Yield Index (IBYI), developed
by the Intercontinental Exchange (ICE), seeks to provide a benchmark term struc-
ture, which is calculated from OIS term rates plus credit/funding spreads derived
from actual transactions. This makes this index essentially a transactions–based
version of LIBOR, see the white paper ICE (2019). However, Berndt et al. (2020)
remark on the IBYI, “The underlying pool of transactions, while much broader than
that used to fix LIBOR, is not sufficiently deep for heavy use in derivatives market
applications.”

3. Construction of the interest rate system. Let the filtered probability space
(Ω,G, (Gt)t≥0,Q) be the model for a financial market, where (Gt)t≥0 is the market
filtration, and Q is a probability measure equivalent to the physical (or real–world
or objective) probability measure P. We introduce a money–market account with
value process

B(t) = B(0) exp

(∫ t

0

r(s) ds
)
, (3.1)

for t ≥ 0. The short rate of interest process r(t)t≥0 is assumed risk–free; in particular
it is free of credit risk. It is further assumed that the money–market account is
the numéraire asset associated with the measure Q, which is thus identified as the
(spot) risk–neutral measure. The price process of a (non–dividend–paying) financial
instrument that is discounted by B(t) is a (Gt,Q)–martingale. The measure Q is
used to price any traded asset in the considered financial market. The risk–free
zero–coupon bond is an example of a traded asset with a price process satisfying

P (t, T ) = B(t)EQ [1/B(T ) | Gt] ,

for 0 ≤ t ≤ T . Before we proceed any further, we shall briefly discuss various
interest rates (and interest rate benchmarks) mentioned or used in this paper. We
also take the opportunity to recall the pricing of a canonical OIS contract allowing
us to derive the OIS rate.

1. We have already introduced the risk–free rate r(t)t≥0, which is recognised as
the secured (i.e. credit–risk–free) overnight benchmark rate. We emphasise
that we afford14 assuming that any overnight interest rate may be considered

14This is a stylistic choice common in interest rate term structure modelling. Strictly speaking,
in the context of the present paper this approximation ignores any basis spread between refinancing
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approximately as a continuously compounded rate, i.e.,

e
∫ T
t
r(s)ds ≈

N−1∏
i=0

[1 + δiρ(ti, ti+1)] , (3.2)

where ρ(ti, ti+1) is the overnight rate for t ≤ t0 ≤ . . . ≤ tN = T and δi =
ti+1 − ti.

2. The unsecured overnight benchmark rate rc(t)t≥0 is subject to credit risk. We
set rc(t) := r(t)+Λ(t), where Λ(t)t≥0 is the overnight credit spread process for
entities able to borrow at the unsecured overnight benchmark rate. Examples
of such overnight benchmark rates are the Effective Fed Funds Rate (EFFR) in
the USA and the EONIA rate in the EU. It then follows that r(t) = rc(t)−Λ(t)
and in the absence of market imperfections this would correspond to a secured
overnight benchmark rate. Examples of secured overnight benchmark rates are
SOFR in the USA and SARON in Switzerland. However, it is worth noting
that SOFR is often at a spread above EFFR, thus—perhaps for reasons of
market illiquidity—it is not a viable proposition to use Λ(t) to link the markets
for unsecured and secured borrowing. In our empirical analysis in Section 5,
we focus on the market for unsecured borrowing only, estimating dynamics
for rc(t) and Λ(t). This would then imply a “shadow” risk–free rate r(t), but
this rate is not used in the empirical analysis.

3. Collateralised financial instruments require capital (e.g. cash, treasuries, etc.)
to be deposited as collateral. Such deposits accrue interest at the collateral
rate. An important example is the OIS, which swaps a fixed rate for an
accumulated overnight rate (typically unsecured, such as Fed Funds). We
now consider a single–period OIS; for a contract maturing at time T , the
payoff (of the party receiving the floating leg) is

H(T ) = exp

(∫ T

t

rc(u) du

)
− (1 + δOIS(t, T )) ,

where δ := T − t and OIS(t, T ) is the fixed OIS rate prevailing at time t. OIS
are collateralised derivative contracts, so to price this payoff at a point in time
prior to maturity T , the collateral rate should be used for discounting.15 We
assume this collateral rate to be given by the unsecured overnight rate rc on
which the OIS is written.16 In practice, this is typically the case, and is the
case for the OIS and other data we consider later in the paper; see Section
5.1 for further discussions. At time t ∈ [0, T ], the price process of the OIS is
therefore given by

H(t, T ) = Bc(t)EQ [H(T )/Bc(T ) | Gt] ,

where Bc(t) = Bc(0) exp
(∫ t

0
rc(s) ds

)
. Hence, we have

H(t, T ) = 1− P c(t, T ) (1 + δOIS(t, T )) , (3.3)

every business day vs. continuously. See Appendix C.2 for evidence that this distinction is indeed
negligible.

15That is, the cash flows of a fully collateralised contract must be discounted at the collateral
rate in order to obtain risk–neutral martingales. We refer to, e.g., Piterbarg (2010), Fujii, Shi-
mada and Takahashi (2011), Henrard (2014) and references therein, for material on the pricing of
collateralised contracts.

16Thus the credit–risky rate rc corresponds to the collateral rate and we do not need to intro-
duce any additional notation for the latter.
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where
P c(t, T ) := Bc(t)EQ [1/Bc(T ) | Gt] . (3.4)

The market convention is that an OIS has a present value of zero at inception,
i.e. H(t, T ) = 0, for all T ≥ t, at time of inception t. This implies that for
the market OIS rate we have

OIS(t, T ) =
1

δ

(
1

P c(t, T )
− 1

)
. (3.5)

Multi–period OIS involve cash flows, swapping fixed for an accumulated over-
night rate, at the end of multiple accrual periods. See Appendix A.1 for
details.

3.1. Construction of IBOR term rates. An IBOR term rate is a benchmark
meant to reflect the cost of borrowing for a fixed term. It is typically constructed as
a trimmed average of rates reported by members of a panel. The rates themselves
can originate from actual transactions, but are usually best estimates of the rates
at which the panel members themselves can borrow, which is the case for LIBOR.
Alternatively, EURIBOR is calculated by asking a panel what they believe is the
borrowing rate faced by a representative (first–tier) bank within the panel. The
numbers are reported to a datagathering institution, which calculates the average
and publishes the benchmark on a daily basis. If we imagine m panel members
contributing the term offer rates {Lk(t, T )}k=1,...,m

0≤t≤T at time t ∈ R+ for the tenor
δ = T − t, then an IBOR can be roughly thought of as

L(t, T ) := Υ
(
L1(t, T ), . . . , Lm(t, T )

)
. (3.6)

The map Υ is the (jurisdiction–specific) averaging mechanism producing the IBOR
quote. While the contributed individual quotes are made public, proposing a model
for each rate Lk(t, T ) is impractical, not least because observable market data is
insufficient to identify the idiosyncratic model parameters associated with each in-
dividual panel member k ∈ {1, . . . ,m}. In the case of EURIBOR this might even
be misleading, as the individual panel members are not asked to assess at what rate
they themselves can borrow, but merely that of a representative entity.

In our model, the IBOR/OIS spreads are attributed to roll–over risk, which we
decompose into downgrade risk and funding–liquidity risk. Credit default swaps are
instruments by which the default risk of individual entities is traded, so calibrating
the downgrade risk component to individual credit default swap spreads is possible
in principle. However, there are no such instruments by which funding–liquidity risk
of individual entities is traded, rendering a bottom–up approach to the modelling of
L(t, T ), understood as modelling each Lk(t, T ) individually, infeasible. Therefore,
we will calibrate our model of downgrade and funding–liquidity risk as it is reflected
in aggregate by L(t, T ) or, more specifically, by the frequency basis between L(t, T )
for different tenors, as well as by the spread between L(t, T ) and OIS(t, T ). In this,
we focus on the roll–over risk faced by an arbitrary entity, which at time t is able
to borrow at the benchmark rates (i.e., rc(t) overnight and L(t, T ) for a fixed term
ending at T ).

One should note that this also lends itself to an alternative interpretation, where
the term rate benchmark L(t, T ) is based on the lending/borrowing transactions at
time t. In this interpretation, the mapping Υ is the mechanism by which transacted
lending/borrowing rates Lk(t, T ) are mapped to obtain a market benchmark L(t, T ).
By remaining agnostic about the exact nature of Υ, our approach is therefore equally
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applicable regardless of whether the benchmark term rate is transaction–based or
survey–based.

3.2. Short rate model for IBOR. Throughout this section we consider an arbi-
trary entity (be it a bank or highly rated corporate entity) that is assumed repre-
sentative of (highly creditworthy) corporate borrowers in the market at time t, in
the sense that it is able to borrow at the (credit–risky) overnight market benchmark
rate rc(t) at time t, and also in the sense that it faces the level of roll–over risk
priced by the tenor basis observed in the market (in a way formalised below). Since
we only observe the market–aggregated pricing of roll–over risk (aggregated by way
of price discovery in the swap markets), such an entity is sufficient for our mod-
elling purposes. We assume that, at time u > t, this entity faces the instantaneous
funding cost

r̄t(u) := rc(u) + γt(u), (3.7)
where γt(u)t≥0

u≥t is the stochastic roll–over–risk spread. Note that the subscript t
makes explicit that these values are specific to an arbitrary (but fixed from time t
onwards) entity which is representative of the market at time t. Since, at time t,
the entity can borrow at the prevailing overnight benchmark rate rc(t), the initial
condition γt(t) = 0 must hold. However, reflective of the level of roll–over risk
priced by the tenor basis, any entity able to borrow at rc(t) at time t faces the risk
of no longer being able to borrow at rc(u) at u > t. Thus γt(u) > 0 at time u > t
means that the entity has been impacted by roll–over risk and is unable to roll over
its borrowing at the market benchmark rate.

Note that the introduction of the subscript time index t is necessary in order
to make the model amenable to econometric estimation and thus a crucial exten-
sion beyond the static roll–over risk term structure featured in Alfeus et al. (2020),
which one could nest in our framework by fixing t = 0 while allowing u ∈ [0, T ∗] for
some model time horizon T ∗. In other words, Alfeus et al. (2020) only consider the
pricing of roll–over risk for a borrower which is representative of the market at time
t = 0 in the sense that it can borrow at the benchmark rate at that time. At future
times t > 0, market rates price in the future roll–over risk faced by a borrower
which is able to borrow at the benchmark rate at that t—this may be a different
borrower compared to t = 0 (which is why we need this additional dimension). As
we formalise the relationship between (3.7) and market observables below, it will
become clear that the dynamics in the dimension indexed by u (i.e., the dynamics
of the instantaneous funding cost for a fixed borrower) matter only in terms of the
risk–neutral expectations embedded in market prices—the dynamics in this dimen-
sion under the physical probability measure are not empirically observed. What is
observed are the dynamics of market instruments in the process time indexed by
the subscript t.

The roll–over risk spread process γt(u)t≥0
u≥t consists of two components: We in-

troduce φt(u)t≥0
u≥t, the funding–liquidity spread process, and λt(u)t≥0

u≥t, the credit–
downgrade spread process.17 The latter represents the additional credit spread aris-
ing from a deterioration of the credit quality of an entity relative to the market. It
is thus an idiosyncratic component of the total credit spread, with the total credit

17Conceivably, one could extend this to allow also for credit upgrades, i.e. λt(u) < 0. However,
since the level of credit risk reflected by the overnight rate benchmark rc(t), Λ(t), in practice is
for highly creditworthy entities, the risk of credit downgrades vs. the potential of upgrades is very
asymmetric, so we can ignore the possibility of upgrades in the current modelling context.
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spread at time u ≥ t given by Λ(u) + λt(u). In the sequel, for notational simplic-
ity, we will assume that there is zero recovery in default, and therefore the total
credit spread is also the default intensity. This assumption does not represent any
substantial loss of generality, since the relationships we derive below hold either ex-
actly or in close approximation even when this assumption is lifted:18 To verify the
robustness of the empirical results obtained in Section 5 under the zero–recovery
assumption, we reimplemented our model assuming a recovery rate of 40% and the
results were for all intents and purposes unchanged under this departure from the
zero–recovery assumption.

The funding–liquidity spread process reflects the fact that an entity, which is
able to access funding at the benchmark rate at time t, may not be able to do so
at some time u > t even though its credit quality has not deteriorated relative to
the market. Typically, one would expect this to happen during times of insufficient
liquidity in the money market, as when the interbank lending market tightened
following the bankruptcy of Lehman Brothers in 2008.19 Thus we have a roll–over
risk spread process of

γt(u) = φt(u) + λt(u), (3.8)
and the total funding rate r̄t(u), at time u ≥ t, is the risk–free rate plus the funding–
liquidity spread and the total credit spread. That is,

r̄t(u) = r(u) + φt(u) + Λ(u) + λt(u). (3.9)

In steady and mature markets, one would expect that roll–over risk events be rare in
a short time interval (t, T ], and hence γt(u) = 0 to prevail, except on rare occasions,
for u ∈ (t, T ]. This feature of the funding–liquidity and credit–downgrade spreads
will be exhibited by the chosen stochastic model. In Section 4, an explicit model
is proposed that is driven by compound Poisson processes, devised in such a way
as to only jump infrequently. The stochastic jump intensity offers the necessary
parametric freedom to calibrate the expected jump frequency in line with market
data.

A random default time τt can be associated with the default intensity given by
(Λ(u) + λt(u))u≥t, which represents the default time of an entity fixed at t, able to
borrow at the market benchmark rate at that time. Thus we always have τt > t,
since this must be an entity that has not defaulted by time t. For u > t, however,
the possibility of default is controlled by the intensity. Following the standard
intensity–based approach, we consider a market filtration (Gt)t≥0 that consists of
two components: Gt = Ft ∨ Ht for all t ≥ 0, where (Ht)t≥0 is generated by the
default indicator process (1{τs ≤ t})0≤s≤u<t, see Appendix A.2 for details.

We are now in the position to construct the process A(t, T )t∈[0,T ] of the present
value of the unsecured roll–over–risk–adjusted borrowing account. That is, the ac-
count value at time t—given that no defualt has occurred until time t—is given by
the expected discounted value of the repayment at time T of the continuously rolled
borrowing over the period [t, T ], for a borrower which at time t can borrow at the

18For example, one could adopt a “fractional recovery in default”, a.k.a. “recovery of market
value” model as in Duffie and Singleton (1999), in which case a total credit spread of Λ(u) +λt(u)
and a loss fraction in default q would imply a default intensity (Λ(u) + λt(u))/q—but the final
lines of (3.10) and (3.11) below would still apply.

19Arguably it was during the 2008 financial crisis that the market “learned” that such funding–
liquidity squeezes were possible, reflected in the funding–liquidity component of roll–over risk
priced by the market ever since. This component of roll–over risk can be expected to persist even
if there is a move entirely to secured rate benchmarks like SOFR—we treat this case in Section 6.
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market benchmark rate r̄t(t) = rc(t) (i.e., γt(t) = 0). Applying the decomposition
(3.9), we obtain

A(t, T ) := B(t)EQ

[
1

B(T )
exp

(∫ T

t

r̄t(u) du

)
1{τt > T}

∣∣∣∣Gt
]

= EQ

[
exp

(∫ T

t

φt(u) + Λ(u) + λt(u) du

)
1{τt > T}

∣∣∣∣Gt
]

= EQ

[
exp

(∫ T

t

φt(u) du

) ∣∣∣∣Ft
]
, (3.10)

where the last step relies on Lemma A.3 given in Appendix A.2, and is based on a
sub–filtration Ft ⊂ Gt. Here, we assume that all processes (other than the default
indicator process), and especially the default intensities, are adapted to (Ft)t≥0.
Note how the two indexing dimensions t and u from (3.7) enter into this calculation:
The dynamics in the dimension indexed by u only enter in expectation, thus A(t, T )
does not depend on u. On the other hand, t determines the information on which
we condition (via the filtration Gt) and the borrower which we are considering,
characterised by φt(t) = 0, λt(t) = 0. In other words, when considering observable
market prices at time t, these market prices reflect (by definition) the borrowing
cost of a borrower able to borrow at the market benchmark rate, so the departure of
the instantaneous funding cost from the market benchmark must be reset to zero.

The credit spread component Λ(u) + λt(u) of the roll–over–risky borrowing rate
r̄t(u) cancels with the hazard–rate term emerging from the default indicator. Thus,
the present value of the cost of borrowing from time t to T only depends on the
funding–liquidity risk spread in the said time interval.

Again using Lemma A.3, and assuming that no default has occurred until time
t, the price process Q(t, T )t∈[0,T ] of the defaultable zero–coupon bond is given by

Q(t, T ) = B(t)EQ
[

1

B(T )
1{τt > T}

∣∣Gt]
= EQ

[
exp

(
−
∫ T

t

[r(u) + Λ(u) + λt(u)] du

) ∣∣∣∣Ft
]
. (3.11)

This is the expected discounted value, at time t, of a (promised) payment of one
unit of currency at time T by an entity able to borrow at the market benchmark
rate at time t.

In order to arrive at the “fair” term rate available to a market–average entity in
the presence of credit risk, we apply the following argument:

1. Borrow one unit of currency at time t and continuously roll over this loan
until time T . The present value at time t of the repayment at time T is given
by A(t, T ).

2. Suppose now that, alternatively, the entity is in a position to borrow at the
term rate L(t, T ). The value at time t of the repayment at time T is

EQ
[
e−

∫ T
t
r(u)du(1 + δL(t, T ))1{τt > T}

∣∣Gt] = [1 + δL(t, T )]Q(t, T ).



TERM RATES: A ROLL–OVER RISK APPROACH 13

3. In equilibrium, the values of the continuously rolled–over loan must be equal to
that of the term loan.20 One must therefore haveA(t, T ) = [1+δL(t, T )]Q(t, T ),
and thus

L(t, T ) =
1

δ

(
A(t, T )

Q(t, T )
− 1

)
. (3.12)

The multiplicative relation for the IBOR–OIS spread can thus be given by

Sp(t, T ) =
1 + δL(t, T )

1 + δOIS(t, T )
=
A(t, T )

Q(t, T )
P c(t, T ). (3.13)

In our approach, the relations Q(t, T ) ≤ P c(t, T ) and A(t, T ) ≥ 1 hold by construc-
tion, so Sp(t, T ) ≥ 1. Furthermore the spread itself is a stochastic process, depend-
ing on the joint dynamics of all three components. This spread is the premium paid
by the borrower to avoid the refinancing risk that borrowing on a roll–over basis
entails.

Remark 3.1. It is worth noting the distinction between our expression (3.12) for
IBOR and the expression in Filipović and Trolle (2013),

L(t, T ) =
1

(T − t)

(
1

B(t, T )
− 1

)
Ξ(t, T ) (3.14)

where B(t, T ) corresponds to Q(t, T ) in our notation. In (3.14), Ξ(t, T ) is a mul-
tiplicative residual term needed to fit the market data, labelled “funding liquidity
risk” without explanation of any underlying mechanism by which funding liquidity
risk would translate into such a term. The expression (3.12), on the other hand, is
derived from modelling the risk of any individual entity not being able to refinance
roll–over borrowing at the prevailing market rate. It is a consequence of the model
(not an ad hoc assumption) that this risk is one of the determinants of a term rate
via A(t, T ), the present value of the roll–over risk adjusted borrowing account. The
relations (3.12) and (3.14) are neither mathematically nor economically equivalent.

Remark 3.2. The term rate benchmark L(t, T ) and the infinitesimal benchmark
rc(t) are in fact consistent, in the following sense. Assuming that L(t, T ) is differ-
entiable with respect to T , we have:

lim
T→t

L(t, T ) = lim
T→t

1

T − t

(
A(t, T )

Q(t, T )
− 1

)
=

∂

∂T

(
A(t, T )

Q(t, T )
− 1

) ∣∣∣∣∣
T=t

=
∂
∂T A(t, T )

∣∣
T=t
− ∂

∂TQ(t, T )
∣∣
T=t

(Q(t, T ))
2 ∣∣
T=t

=
∂

∂T
A(t, T )

∣∣
T=t
− ∂

∂T
Q(t, T )

∣∣
T=t

= φt(t) + rc(t) + λt(t)

= rc(t), (3.15)

20This ensures that the model is arbitrage–free, internally and with respect to any instruments
to which the model is calibrated. It does not necessarily imply that a departure from model–implied
prices results in exploitable arbitrage. This is because the market is not complete with respect to
all risk sources, implying that Q is not the unique risk–neutral measure. Nevertheless, we follow
the standard approach of pricing with a particular (market–chosen) measure, and identifying the
stochastic dynamics under this measure by calibrating to liquid instruments.
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where we recall that φt(t) = 0 and λt(t) = 0. The result (3.15) states that the roll–
over–risk premium, embedded in L(t, T ), is a premium that is offered only through
term rates.

Remark 3.3. One could argue that consistency between the short– and the long–
term benchmarks is not required, since the short–term benchmarks are calculated
differently than their longer–term counterparts. The dominating short–term bench-
mark in the Eurozone during our data period was EONIA, which was calculated
as the volume–weighted average of actual interbank overnight borrowing transac-
tions. Although the EONIA panel was very similar to the EURIBOR panel, the
EURIBOR term rates were not necessarily linked to actual transactions, but merely
best guesses of a term rate at which a representative entity can borrow. Similarly,
in the US the short–term unsecured benchmark is EFFR, which is calculated as
the weighted average of overnight borrowing rates among all institutions eligible to
make deposits at the Federal Reserve. This arguably makes the potential structural
difference between long–term and short–term rates even greater than in the Euro-
zone. As no true short–term IBOR is observable in either markets, we leave such
extensions for future work, but one could easily extend the model by including an
additional spread process in (3.7).

We conclude the section by noting that IBOR–dependent instruments can be
priced in the above framework, for instance an interest–rate swap, which involves
swapping IBOR–linked payments for fixed payments. For a swap with payment
dates T1, T2, ..., Tn, the rate RLt fixed at time t must satisfy

n∑
i=1

RLt (Ti − Ti−1)Bc(t)EQ [1/Bc(Ti) | Ft] =

n∑
i=1

(Ti − Ti−1)Bc(t)EQ [L(Ti−1, Ti)/B
c(Ti) | Ft] . (3.16)

This ensures equal value for both parties, where the rates {L(Ti−1, Ti)}i=1,2,...,n

determining the IBOR–linked payment leg are given by (3.12). The swap is assumed
to be collateralised, so the cash flows are discounted with the unsecured overnight
rate (which, as in (3.3), we assume to be the collateral rate). It is worth noting the
distinction between the condition (3.16) for interest rate swaps and the condition
(A.1) for multi–period OIS in Appendix A.1. The spread between the fixed–leg
rates of the two instruments is a function of roll–over risk; like the spot IBOR/OIS
spread, it vanishes to zero if we set the components φt(u)t≥0

u≥t and λt(u)t≥0
u≥t of the

roll–over risk process to zero. Similarly, Appendix A.1 shows how a non–zero basis
spread added to the shorter tenor leg of a single–currency floating–for–floating basis
swap (a.k.a. tenor swap) arises from roll–over risk.

Finally, credit–default swaps, where the reference entity can borrow at the market
benchmark rate at time t, can be considered. These do not depend on liquidity risk,
but do depend on the total credit spread (consisting of Λ(t)t≥0 and λt(u)u≥t). See
Appendix A.2 for details.

4. Modelling with specific roll–over risk dynamics. A specific example of
the framework in Section 3 is obtained by specifying the following four processes:
The risk–free short rate r(t)t≥0, the benchmark overnight credit spread Λ(t)t≥0,
and, for a particular entity fixed at time t, the credit–downgrade spread process
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λt(u)u≥t and the funding–liquidity spread φt(u)u≥t. The overnight benchmark and
collateral rate are then implied by the specification, where rc(t) = r(t) + Λ(t).

Before introducing our full model, we treat the special case that does not involve
correlation. At the end of the section, we explain how the affine nature of our model
allows for relevant quantities to be calculated.

4.1. Uncorrelated model. We specify the model initially under the risk–neutral
measure Q, so that expressions in Section 3 can be computed. The specification
uses several scalar Q–Brownian motions, all mutually independent, and all denoted
W (t)t≥0 with some additional superscript and/or subscript, e.g., W c(t) or W c

∗ (t).
All quantities not explicitly dependent on t, e.g., θc∗ or σΛ, are constants.

It is convenient to model rc(t)t≥0 directly, i.e., we specify rc(t) and Λ(t), rather
than r(t) and Λ(t). To accommodate non–trivial changes to the OIS term structure,
and also the possibility of negative OIS rates, we model rc(t)t≥0 with a two–factor
Gaussian process:

drc(t) = κc (θc(t)− rc(t)) dt+ σc dW c(t), (4.1)

dθc(t) = κc∗(θ
c
∗ − θc(t)) dt+ σc∗ (ρc dW c(t) +

√
1− (ρc)2 dW c

∗ (t)). (4.2)

Next, for the benchmark overnight credit spread, we set

dΛ(t) = κΛ(θΛ − Λ(t)) dt+ σΛ
√

Λ(t) dWΛ(t). (4.3)

For λt(u)u≥t, the downgrade risk aspect of the model, we specify the following,
which applies for each fixed t and uses u as the time variable:

dλt(u) = −βλλt(u) du+ dJλt (u), λt(t) = 0, (4.4)

where Jλt (u)u≥t is a pure jump process that models downgrade events for an entity
fixed at time t.

For each time at which an entity can be fixed, we allow for different drivers
of downgrade risk, e.g., Jλs (u)u≥s versus Jλt (u)u≥t. However, we use one (scalar)
stochastic process, denoted ξλ(u)u≥0, to model the jump intensity of Jλt (u)u≥t at
all fixing points t. That is, letting Nλ

t (u)u≥t count the jumps of Jλt (u)u≥t, we have

ξλ(u) = lim
h↓0

Q
[
Nλ
t (u+ h) > Nλ

t (u) | Fu
]

h
, (4.5)

for all t ≥ 0 and u ≥ t.21 All jump sizes are exponentially distributed, with a
fixed mean of 2%.22 Before specifying the stochastic intensity process ξλ(u)u≥0, we
emphasise the fact that all downgrade risk (and, extended below, all roll–over risk)
has a certain stationarity property in our model. Because all jump processes refer
to the same stochastic intensity, conditional on it having a certain value, downgrade
risk is modelled equally in distribution across fixing times.

The stochastic intensity becomes a key state variable, controlling the downgrade
risk outlook over time. We emphasise that the downgrade risk process λt(u)u≥t is
not a state variable of the model; it is initialised at zero by definition, and it is only

21This specifies the distribution (conditional on the stochastic intensity) of the jump times for
the processes initialised at all fixing times t. It does not specify how the processes are related, i.e.,
it does not specify the joint distribution of the processes across t.

22As in Filipović and Trolle (2013), the jump distribution becomes entangled with the effect of
the jump intensity, and it is convenient to fix the former and focus on the latter. Adjusting the
jump size mean, for instance, has a similar effect (on the instruments we consider) to adjusting
the intensity, causing a redundancy and potential identification issues.
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the expectation of the growth from zero that is relevant to, e.g., interbank rates.
We model the intensity with

dξλ(t) = κλ(θλ − ξλ(t)) dt+ σλ
√
ξλ(t) dWλ(t). (4.6)

For the liquidity aspect of the model, our specification is similar to that of down-
grade risk. At each fixed time t, we have

dφt(u) = −βφφt(u) du+ dJφt (u), φt(t) = 0, (4.7)

where Jφt (u)u≥t is a jump process. As formalised in (4.5), jump times (for all the
jump processes) are distributed according to a stochastic intensity process ξφ(u)u≥0.
Reverting to t as the time variable, we specify that

dξφ(t) = κφ(θφ(t)− ξφ(t)) dt+ σφ
√
ξφ(t)dWφ(t). (4.8)

The mean–reversion level above is stochastic, and we find it necessary to implement
a two–factor structure for the liquidity aspect of the model. The downgrade–risk
aspect above could easily be generalised in this way, by making θλ a state variable.
Nevertheless, in Section 5 we show that the one–factor downgrade–risk model gives
a surprisingly good fit. The stochastic mean process satisfies

dθφ(t) = κφ∗ (θ
φ
∗ − ξφ(t)) dt+ σφ∗

√
θφ(t) dWφ

∗ (t). (4.9)

The jump sizes are again all exponentially distributed with mean of 2%.
To model the time–series behaviour of the quantities in Section 3, we specify a

market–price–of–risk process that relates the six–dimensional Brownian motion

WQ(t) =
[
W c(t),W c

∗ (t),W
Λ(t),Wλ(t),Wφ(t),Wφ

∗ (t)

]>
(4.10)

used above to a corresponding Brownian motion W P(t)t≥0 under the physical mea-
sure P. That is,

dWQ(t) = dW P(t) + µ(t) dt, (4.11)

where

µ(t) =
[
µc, µc∗, µ

Λ
√

Λ(t), µλ
√
ξλ(t), µφ

√
ξφ(t), µφ∗

√
θφ(t)

]>
. (4.12)

4.2. Correlated model. The model in Section 4.1 has sufficient cross–sectional
flexibility, but does not include correlation between the various components of the
model. Correlations cannot be added directly to the Brownian motions, because
this prevents the model from being affine, which is essential for the computation
of pricing equations. We propose the following two–step extension to allow for
correlation but preserve the affine nature of the model.

First, instead of specifying rc(t)t≥0 directly, we specify

dXc(t) = κc(θc(t)−Xc(t)) dt+ σc dW c(t), (4.13)

dθc(t) = κc∗(θ
c
∗ − θc(t)) dt+ σc∗ (ρc dW c(t) +

√
1− (ρc)2 dW c

∗ (t)). (4.14)

Then we let rc(t) = Xc(t)+aλξλ(t)+aφξφ(t). The uncorrelated model is recovered
if the correlation parameters aλ and aφ are zero, while non–zero values imply a
correlation between rc(t)t≥0 and other state variables.
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Second, we let the jump intensity of Jλt (u)u≥t be given by

ξλ(u) + ρφξφ(u). (4.15)

That is, in the correlated model, ξλ(u) no longer represents the total intensity of the
downgrade jumps, but only the part of the intensity that is uncorrelated from the
liquidity aspect of the model. Again, if ρφ = 0, the uncorrelated model is recovered.
On the other hand, a non–zero value induces correlation between the downgrade
and liquidity risk aspects of the model.

4.3. Implementing the model. At any fixed time t, using u to denote time
thereafter, the enlarged state process is given by

Xt(u) =
[
Xc(u), θc(u),Λ(u), λt(u), ξλ(u), φt(u), ξφ(u), θφ(u)

]>
. (4.16)

Without the correlation introduced in Section 4.2, Xc(u) reduces to rc(u). The
dynamics specified above ensure that Xt(u)u≥t is an affine jump–diffusion, making
the well–known affine numerical techniques applicable; see Duffie, Pan and Singleton
(2000). For instance, the quoted interbank rate in (3.12) can be written as

L(t, T ) =
1

T − t
(
exp

(
αL(T − t) + βL(T − t)>Xt(t)

)
− 1
)
, (4.17)

where αL(·) and βL(·) are, respectively, R– and R8–valued deterministic functions
that satisfy the Riccati equations in Duffie et al. (2000) and elsewhere. The instru-
ments covered in Appendix A (overnight–index swaps, interest–rate swaps, basis
swaps and credit–default swaps) can be priced in this manner; see the Internet
Appendix for details.

We recall, however, that λt(t) = φt(t) = 0. These processes must be incorporated
into the state space for cross–sectional calculations, but do not have values that
need to be tracked over time; only the anticipation of their change, always from an
initialisation of zero, is relevant. They are therefore excluded from the reduced state
process, which is independent of the fixing times and is given by

X(t) =
[
Xc(t), θc(t),Λ(t), ξλ(t), ξφ(t), θφ(t)

]>
. (4.18)

The dynamics earlier in the section, along with the measure change given by (4.11),
imply the physical–measure dynamics for the reduced state process X(t)t≥0. At any
particular time, it must be enlarged with λt(u)u≥t and φt(u)u≥t to obtain Xt(u)u≥t,
for cross–sectional pricing purposes.

5. Empirical implementation.

5.1. Data. Our data set covers the period 2 January 2014 to 31 December 2021,
with weekly observations therein. We consider data on Eurozone benchmarks EO-
NIA and 3–month and 6–month EURIBOR. EONIA (Euro Overnight Index Aver-
age) is a volume weighted average of unsecured overnight lending in the Eurozone.23

The EURIBOR (Euro Interbank Offer Rate) is calculated as a trimmed average of
daily submissions by the panel banks. The banks are asked what they believe a

23On 2 October 2019, EONIA was reformed to be the new transactions based index eSTR plus
8.5 bps. The major clearing houses switched from EONIA to eSTR discounting on 27 July 2020.
In our empirical analysis we account for this change by simply replacing EONIA based data with
eSTR based data from 27 July 2020. This did not induce any apparent break in the analysis or
the empirical results.
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prime bank would charge another prime bank in an unsecured loan for a given ma-
turity. It thus measures the same as EONIA at a different term, but the calculation
methodology and panel are slightly different. For a full description of the different
EONIA, EURIBOR and eSTR we refer to The European Money Markets Institute
(2021). Our study focuses on the following:
• OIS rates for maturities of 1, 2, 3, 4, 5, 7 and 10 years. The rates are de-

rived from collateralized contracts with EONIA index as the underlying and
as collateral rate. We use the standard approximation method described in
Appendix A.1 to relate OIS rates to discount factors. The discount factors
can then be directly inferred using equation (A.1).

• Interest–rate swap rates, swapping EURIBOR for a fixed rate, and basis swap
spreads, swapping 3–month for 6–month EURIBOR. The market convention
is that standard vanilla swaps are quoted with a 3–month EURIBOR for the
1–year maturity, and 6–month EURIBOR for maturities above 1 year. The
fixed leg is paid annually in both vanilla and basis swaps. Using the OIS
discounting curve, we can easily combine the vanilla swap data with basis–
swap spreads to calculate a synthetic 1–year swap rate for a swap written on
6–month EURIBOR, and synthetic swap rates for maturities above 1 year but
with 3–month EURIBOR underlying. This leaves us with swap rates for both
3–month and 6–month tenors, for maturities of 1, 2, 3, 4, 5, 7 and 10 years.24

• The credit spread of a representative prime bank in the Eurozone is calculated
following Filipović and Trolle (2013) by using the median of the CDS spreads
of EURIBOR panel member banks.25 This number is calculated for maturities
0.5, 1, 2, 3, 4, 5, 7 and 10 years every day in the sample. The results are plotted
in Figure 1 below.

The data set containing swap rates comes from Bloomberg Financial Systems
(2021). The CDS data come from IHS Markit (2021), and the EURIBOR panel
membership data from The European Money Markets Institute (2021).

5.2. Model identification. The main identification issue revolves around disen-
tangling the market–wide level of overnight credit risk from idiosyncratic credit–
downgrade risk. This is a challenge, because the CDS spreads are driven by the
sum of the two (as CDS contracts refer to a specific entity that can downgrade
relative to the panel/market). We now describe this issue, and our resolution, in
more detail. This has a significant bearing on how idiosyncratic credit spread risk,
i.e., downgrade risk, is disentangled from liquidity risk, as we discuss below. The
only other identification issue is more minor, concerning the means of the jumps
that drive φt(u)u≥t and λt(u)u≥t, which cannot be identified separately from the
jump intensity. Recall that these mean values were fixed in Section 4.

The OIS rates, across dates and maturities, are sufficient to identify the model for
rc(t)t≥0 (i.e., to determine the value of this state variable over time, as well as its as-
sociated risk–neutral and physical–measure parameters). Given the OIS model, the

24From informal discussions with market participants we have learned that 3–month and 6–
month tenors carry by far the dominant share of the liquidity in the market. While basis swaps
against other tenors such a 1–month and 12–month do exist we have found the data quality to be
low, with many missing values and stale quotes - especially in the earlier part of the data

25The number of banks in the panel ranges from 32 in the beginning of the sample to 19 in
the end of the sample. We have not been able to find CDS data on CECE, BCEE and Bank of
Ireland.
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Figure 1. CDS term structures for each week in the sample.

CDS data is a function of both overnight–market credit risk, with spread and inten-
sity process Λ(t)t≥0, and idiosyncratic downgrade relative to the market benchmark,
i.e., additional intensity λt(u)u≥t. See Appendix A.2 for the specific expressions.
Strictly speaking, there is insufficient information to separate overnight–market and
idiosyncratic credit spread risk, as they both contribute to the observed spreads.

Previous papers, such as Filipović and Trolle (2013) and Alfeus et al. (2020),
have fixed the overnight–market default intensity at a low, constant value of five
basis points. In those papers, this is justified by comparing the average overnight
repo rate with an average unsecured overnight benchmark rate. Setting the market
component to a small constant means that downgrade risk will account for the vast
majority of the default risk observed in CDS, and for all of the observed variation.
Consider, however, Figure 1, which shows the CDS term structure prevailing at
each date covered by our data sample. Note that the shorter the CDS term, the
less dependent the CDS spread is on downgrade risk; as the term is taken to zero,
there is less and less potential for downgrade, and at the limit, the initial, overnight
intensity completely determines average–panel CDS spreads. Thus, as the CDS
term is shortened, the average–panel CDS spread becomes exactly equal to the
overnight default intensity Λ(t).26

Figure 1 suggests that the short–end of the CDS term structure, and therefore
the value of Λ(t), varies considerably over time, and tends to exceed the five basis
points. In particular, it varies from virtually zero to sixty-five basis points during
the sample, with an average of roughly twenty. We thus find the previous approach

26This is similar to how short–term credit spreads coincide with the default intensity, but note
that these identities rely on our assumption of zero recovery. Under a “fractional recovery in
default”, a.k.a. “recovery of market value” model as in Duffie and Singleton (1999), if the CDS
protection leg recognised a recovery of, e.g., 60%, then short–term CDS spreads would be given by
40% of the default intensity. To first order, under this and other constant recovery assumptions,
a non-zero recovery in default amounts to a scaling between credit spreads and default intensities,
and this scaling is irrelevant to our empirical analysis, which requires only credit spreads, not
defaults.
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to be untenable on our dataset, and instead propose to identify the overnight–
market credit spread with an extrapolation of the CDS term structure to a term
of zero at each observation date. Such an extrapolation gives a direct measure-
ment of overnight–market credit spread, allowing it to be identified separately from
the downgrade risk aspect of the model.27 The regularity of the cross–sectional
term structures, apparent in Figure 1, encourages us that this extrapolation is a
reasonable inference from the data. Indeed, we find that the results are virtually
unaffected by changes to the extrapolation method.28

With measurements of Λ(t) over time, as per the above, the physical–measure
dynamics of this process can be estimated. The market price of risk associated with
changed to Λ(t) cannot, however, be identified. This is because the CDS spreads
depend on a risk–neutral expectation of both the market default intensity and id-
iosyncratic downgrades (i.e., on both Λ(t)t≥0 and λt(u)u≥t; again see Appendix A.2
for details).

We therefore assume that the market price of risk associated with Λ(t) to be
zero (i.e., we assume µΛ = 0).29 This resolves the identification problem. Further-
more, the real–world dynamics of Λ(t), empirically, involve a high degree of mean
reversion. Section 5.4 below confirms this for our data, but this is consistent with
other findings, e.g., Filipović and Trolle (2013). This is a reflection of the so–called
“renewal” effect: panel members that have downgraded sufficiently are excluded,
as the panel is renewed, so there is a continuous selection effect in favour of high
credit–quality banks. Market participants incorporate this into their expectation,
and it limits the effect of the market price of risk (at the limit, higher and higher
mean reversion results in a constant process with no market price of risk).

Finally, note that, given the OIS model, the interest–rate and basis swaps are a
function of total roll–over risk, i.e., liquidity φt(u)u≥t and downgrade λt(u)u≥t (this
stems from the IBOR in (3.12); see Appendix A.1 for full details). The amount
of downgrade risk that is ascertained from the CDS data is therefore a crucial
determinant of how the model decomposes the total roll–over risk that is observed
in interest–rate and basis swaps.

5.3. Estimation method. We apply (quasi) maximum likelihood in conjunction
with a Kalman filter. The likelihood function is constructed as follows. The
physical–measure dynamics from Section 4 are given an Euler discretisation, where
the change over each time step is approximated as Gaussian, giving rise to a tran-
sition equation. A measurement equation links the observed data to corresponding
model–implied quantities, introducing a Gaussian, zero–mean error term between

27We emphasise the importance of the measurement corresponding to a term of zero. Even the
six–month average–panel CDS spread (the shortest CDS term we observe) is a function of both
market and idiosyncratic contributions to default risk, and there will always be an identification
issue relating to this decomposition. For example, the CDS data in isolation would be consistent,
strictly speaking, with zero default risk in the overnight market, and all default risk driven by
idiosyncratic downgrades.

28For example, a simple linear extrapolation of the 6–month and 1–year spreads hardly differs
from a cubic–spline extrapolation based on the whole term structure. We opt for the former, using
the intuition that the comparison between the 6–month and 1–year spreads reflects the potential
for downgrade between these two horizons, and therefore gives a proxy for how much downgrade
potential is inherent in the 6–month spread.

29For the avoidance of doubt: This is the market price of the risk that the benchmark level of
the market overnight credit spread changes. It is not the market price of default risk—the market
price of default risk is not required in our analysis.
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the two (model–implied OIS rates, CDS spreads etc., are computed as per Appendix
B.1). The Kalman filter is the mean–variance optimal algorithm for estimating the
discretised model’s state variable paths. The observed error terms, for a particular
parameter set, imply a likelihood value, which is maximised. The likely parameter
sets are ones that result in small errors, clustered around zero with a small standard
deviations. The errors have a standard deviation of σrates for OIS rates and CDS
spreads (which are of a similar magnitude), and of σspreads for swap–OIS spreads.

The standard Kalman filter assumes a measurement equation that is linear in
the state variables; we use the unscented Kalman filter (see, e.g., Christoffersen,
Dorion, Jacobs and Karoui (2014)) to handle non–linear pricing. This involves
approximating the distribution of estimated state variables with a discrete distri-
bution, and transforming this distribution with the measurement equation, after
which one can estimate the variances and covariances necessary to proceed (i.e.,
to optimally update the state variable estimate, given the week’s prevailing data).
Also, a truncation is occasionally needed, for the CIR–type processes, to prevent
the Gaussian–approximated transition from becoming negative. See Appendix B.2
for details.

As discussed in Section 5.2 above, we first estimate the real–world dynamics of
Λ(t), based on the short–end of the CDS term structure over time. With the as-
sumption of a zero market price of risk for Λ(t), these parameters are fixed before
the remaining parameters are varied to numerically maximise the likelihood func-
tion. Various initialisations are used to verify a global maximum is obtained. We
estimate asymptotic standard errors based on the Fisher information.

5.4. Parameter estimates. Table 1 shows the parameters obtained for the un-
correlated model of Section 4.1 along with asymptotic standard errors. The pre–
estimated overnight–market credit parameters show strong mean reversion to a level
of sixteen basis points, with mild volatility only, as discussed in Section 5.2 above.
The standard errors are relatively high, because these parameters are ascertained
from the time series only.

The risk–neutral parameters are generally in typical ranges given their roles.
One exception is the negative value for θc∗; note, however, that this is paired with
a very low, negative mean reversion rate κc∗.30 The other exception is the very low
value for θφ∗ ; this is bounded below at zero, and although the state variable θφ(t) is
substantially away from zero for a majority of the sample, the optimal fit is obtained
when the risk–neutral mean is very low.

As expected in estimations of this kind, the market–price–of–risk parameters have
large standard errors. However, µφ, associated with downgrade risk, is negative.
This indicates a (positive) risk premium for bearing downgrade risk, a consistent
finding in prior literature (see the discussion in Filipović and Trolle (2013, §5.1)).
In addition, µλ is significantly negative—despite the difficulties in precisely esti-
mated market–price–of–risk parameters, we can conclude that the market awards a
significant risk premium for liquidity risk.

The uncorrelated model gives a close fit to the market data—this is examined in
the next subsection, but is apparent here from the low noise parameters σrates and
σspreads.

30Instead of specifying a drift of κc∗(θc∗ − θc(t)), we could have set a + bθc(t), in which case a
would have a moderate value and b would be small.
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Model aspect OIS O/N–market credit Downgrade Liquidity
State variables rct , θct Λt ξλt , λt ξφt , θ

φ
t , φt

Superscript c Λ λ φ

Model parameters κ 0.0971 4.3104 0.0525 0.2668
(0.0026) (0.7740) (0.0005) (0.0061)

θ - 0.0016 0.3966 -
(0.0002) (0.0034)

σ 0.0012 0.0819 0.8648 0.7929
(0.0001) (0.0030) (0.0062) (0.0534)

κ∗ -0.0172 - - 0.2022
(0.0002) (0.0049)

θ∗ -0.2706 - - 0.0002
(0.0041) (0.0002)

σ∗ 0.0120 - - 0.5526
(0.0006) (0.0403)

β - - 0.0493 4.7920
(0.0021) (0.0912)

ρ 0.2502 - - -
(0.0967)

µ 0.0192 - -1.2081 -1.9761
(0.1354) (1.0706) (0.7443)

µ∗ -0.4035 - - -0.0166
(0.3611) (0.1167)

Filter parameters σrates × 104 σspreads × 104 L × 10−4

4.4240 1.5794 7.4718
(0.0448) (0.0163)

Table 1. Maximum likelihood results for the uncorrelated model,
including asymptotic standard errors in parentheses. The log-
likelihood value is denoted L.

Table 2 shows the results for the full, correlated model from Section 4.2. This
involves estimating three additional parameters: aλ, aφ and ρφ. These take on
non–zero values, much larger in magnitude than their standard errors, and a sig-
nificantly improved likelihood is obtained compared to the uncorrelated case. The
improvement is easily sufficient for the uncorrelated model to be rejected in any
standard statistical test, e.g., a likelihood–ratio test. The parameters aλ and aφ

are negative, indicating a negative correlation between OIS and both downgrade
and liquidity risk. A positive association between downgrade and liquidity risk is
reflected by positive ρφ. This is consistent with the expected mechanism that an
increasing liquidity spread naturally increases the overall credit risk, and in this
model by impacting the credit–downgrade spread. The data thus strongly supports
the inclusion of correlation in the model.
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Model aspect OIS O/N–market credit Downgrade Liquidity
State variables rct , θct Λt ξλt , λt ξφt , θ

φ
t , φt

Superscript c Λ λ φ

Model parameters κ 0.1069 4.3104 0.0278 0.2250
(0.0040) (0.7740) (0.0008) (0.0047)

θ - 0.0016 0.2472 -
(0.0002) (0.0058)

σ 0.0012 0.0819 0.6977 0.7983
(0.0001) (0.0030) (0.0080) (0.0584)

κ∗ -0.0183 - - 0.2098
(0.0003) (0.0045)

θ∗ -0.1953 - - 0.0009
(0.0033) (0.0038)

σ∗ 0.0110 - - 0.5830
(0.0005) (0.0423)

β - - 0.0907 4.7959
(0.0018) (0.0696)

ρ 0.2511 - - 0.0830
(0.0917) (0.0010)

µ 0.0182 - -1.4948 -1.7886
(0.1254) (1.1729) (0.7560)

µ∗ -0.3373 - - -0.0872
(0.3527) (0.2186)

a - - -0.0028 -0.0024
(0.0006) (0.0002)

Filter parameters σrates × 104 σspreads × 104 L × 10−4

4.2031 1.5867 7.5021
(0.0432) (0.0167)

Table 2. Maximum likelihood results for the full, correlated
model, including asymptotic standard errors in parentheses. The
log–likelihood value is denoted L.

The remaining parameters in the correlated model are estimated at similar values
as in the uncorrelated case, including the market price of risk pattern discussed
above.

5.5. Model fit. We hereafter focus on the correlated case. Figure 2 illustrates
the fit to the data obtained by the full, correlated model, plotting time–series of
market data and their model–fitted counterparts. The uncorrelated case is shown
in Appendix C.1, as are the state variable paths that correspond to the fitted rates
and spreads.

The top–left panel considers a short–, medium– and long–term OIS rate, show-
ing that the model accommodates the changing level and shape of the OIS term
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EURIBOR–OIS
OIS CDS 6m 3m

Uncorrelated model 3 .39 5.12 1.33 1.69
Full model 3.29 4.66 1.32 1.71

Table 3. Root mean squared fitting errors, in basis points, for our
two model specifications.

structure, and obtains a close fit. Negative rates are observed and fitted well. The
top–right panel plots CDS spreads, for similarly representative times to maturity.
Recall that the overnight–market credit model is fitted in advance, given the short–
end of the CDS term structure only, with the downgrade risk model capturing the
term structure at non–zero times to maturity. This structure results in a close
fit, with fitting errors no more than a few basis points for a vast majority of the
data (formal fitting measures are follow below). The bottom panels pertain to the
EURIBOR–OIS spread; the two–factor liquidity model (which combines with the
CDS–informed downgrade risk model) achieves a close fit to the six–month spread,
shown in the bottom–left panel, with changes to both the level of the spreads in
general, and the shape across the spread’s term structure being matched by the
model. The fit to the three–month spread is not as close; with the short–term
spread dropping very low relative to the six–month spread during 2016/7. Outside
of this, however, the fitting error is around one basis point in magnitude on average.

The model fit is summarised in Table 3, which gives the root mean square error
between the market data and corresponding model–implied quantities. Like with
the likelihood function, the additional parameters in the correlated model result in
a substantial improvement. The next subsection specifically considers the relative
contributions of downgrade and liquidity risk.

5.6. Downgrade versus liquidity risk. With the EURIBOR–OIS spread being
a function of total roll–over risk, consisting of both downgrade and liquidity risk,
our model allows us to decompose the contributions of the two. Figure 3 shows, for
the full correlated model, the fitted spread (with the six– and three–month tenor in
either panel) as well as the spread our model implies without any contribution from
liquidity.31 On our dataset, downgrade risk never explains a dominant part of the
observed spreads. It tends to constitute a significant part of the total roll–over risk,
but well less than half, and the contribution is small for short–term spreads when
spreads are low (in late 2017 and early 2018). Table 4 summarises the downgrade–
liquidity decomposition we obtain, giving the average percentage contribution of
downgrade risk to total roll–over risk at each term. On average, we estimate the
downgrade component to be roughly 30%.

Finally, we note that we find very little correlation between typical liquidity mea-
sures and our model’s liquidity risk variables, but we do find a positive correlation
with our model’s downgrade risk variable. Computing the correlation coefficients
between weekly changes in the “K–measure” of Schwarz (2019), and weekly changes
in the cross–sectional–average EURIBOR–OIS spread implied by our model, we find
a correlation of about 35%. The K–measure measures the spread between German

31Specifically, the downgrade–risk–only spread is calculated assuming φt(u) = 0 for all u ≥ t,
but with all other aspects and parameters of the model unchanged. That is, we do not re–estimate
the model, but simply set the liquidity component of the estimated model to zero.
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Figure 2. Market data compared to corresponding quantities, fit-
ted by the full, correlated model.

Term (years) 1 2 3 4 5 7 10 Ave.
Uncorrelated model
6–month spread percentage 38.22 34.08 32.56 32.21 32.51 34.21 38.10 34.56
3–month spread percentage 32.43 28.51 27.07 26.70 26.94 28.41 31.90 28.85
Full model
6–month spread percentage 39.53 35.63 33.87 33.05 32.74 33.00 34.56 34.63
3–month spread percentage 33.75 29.98 28.30 27.50 27.20 27.40 28.78 28.99

Table 4. Percentage contribution of downgrade risk to fitted
EURIBOR–OIS spread.
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Figure 3. Fitted EURIBOR–OIS spreads, based on the full cor-
related model, as well as a version of the model that lacks liquidity
risk.

government bonds and less liquid, but still government guaranteed agency bonds
(KfW bonds). However, when we use the spread that is driven by liquidity risk only
(i.e., with λt(u) = 0 for all u ≥ t; see Footnote 31) the correlation drops to less than
5%; when the downgrade-risk-only spread is used instead, the correlation returns
to nearly 35%, showing that this drives the vast majority of the total correlation.
This is likely due to the fact that the K–measure, as explained in Schwarz (2019),
is a non–specific measure of liquidity, whereas our model very specifically measures
the expected funding–liquidity risk of prime banks.

6. Repurchase agreement term rate benchmark. While anticipating future
market developments and in view of the fact that replacement benchmarks such as
SOFR tend to reference collateralised rates (i.e., repurchase agreement (repo) rates),
it is worth considering a specific instance of the framework introduced in Section
3, in which credit risk (and with it, downgrade risk) is “turned off,” leaving only
the funding–liquidity component of roll–over risk. Thus our framework is equally
applicable in an interest rate market in which credit risk is completely mitigated by
collateralisation.32 This will highlight how the presence of roll–over risk confounds
efforts to create proper term rate benchmarks based solely on contracts referencing
SOFR:

1. If one replaces the (unsecured) overnight Fed funds rate underlying an OIS
by SOFR, then a family of such OIS for a set of maturities will imply a term
structure of rates and discount factors. However, even in the absence of any

32In theory, one might be tempted to use this to extend the econometric analysis of the previous
section to include repo rates. In practice, however, at the present stage of development of the
market, there still seems to be a structural break between the repo market and the market for
unsecured borrowing, as evidenced for example by the positive spread of SOFR over the effective
Fed funds rate (EFFR) — credit risk mitigation alone would imply that this spread should go the
other way. Thus including repo rates in the econometric analysis remains beyond the scope of the
present paper.
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market imperfections, these rates will differ from rates for secured borrowing
at term (i.e., repo term rates), due to roll–over risk (now based solely on
funding-liquidity, not credit, risk). That is, we would expect an OIS/repo
term rate tenor basis.

2. Neither will this problem be resolved by averaging SOFR over some longer
accrual period, nor by compounding the SOFR on a unit of investment over
time, which are additional benchmarks published by the Federal Reserve Bank
of New York under the names SOFR Average and SOFR Index, see Federal
Reserve Bank of New York (2020). Aside from not being proper term rates,
these rates are not known until the end of the accrual period, rather than at
the beginning. While the technical issues involved in pricing contracts which
reference backward–looking rates are surmountable,33 irrespective of roll–over
risk, the backward–looking averaging means that SOFR Average and SOFR
Index will have a much lower volatility than fixed–in–advance spot term rates,
be they unsecured (LIBOR) or secured (repo term rates). This issue is re-
moved when one considers the forward rates implied by futures on SOFR
Averages,34 at least as long as the beginning of the averaging period still lies
in the future. However, even after the appropriate convexity adjustments, we
would still expect a tenor basis between such forward rates and the corre-
sponding repo forward term rates due to roll–over risk.

Thus let us now consider the risk–free rate r(t)t≥0 to be equivalent to the
continuous–time approximation of SOFR, and therefore a rate that is represen-
tative of the cost of overnight repurchase transactions in the USA. In our example
we will assume this is a rate at which any entity who has not been impacted by
roll–over risk at time t can lend and borrow. (We recall that such an entity is ex-
posed to being impacted by roll–over risk in the future.) We consider a repurchase
agreement with an underlying security being sold by one counterparty to another.
The agreement requires the asset be repurchased later at a higher value. We assume
the repo, which is of sufficiently low risk such that in the event of default of the
counterparty the market risk of the underlying Treasury is negligible,35 fully mit-
igates credit risk. As in previous sections, the borrowing entity may face the risk
that while it is able to borrow at SOFR at time t, it may not continue to be so at a
future time u > t. This means the rate at which it can “repo out” the asset at time
u > t may change at a future point in time. Therefore, the continuous repo rate
at time u > t, available to a borrower that at time t could borrow at the SOFR, is
given by

r̄t(u) = r(u) + φt(u). (6.1)

We recall that φt(u)t≥0
u≥t is the funding-liquidity spread process with initial condition

φt(t) = 0, for all t ≥ 0.

6.1. Term rates versus OIS–implied rates in the absence of credit risk.
In order to arrive at the “fair” term rate available to a market–average entity when
credit risk is eliminated (by virtue of collateralisation in the repo), we can repeat

33See, e.g., Lyashenko and Mercurio (2019) and Macrina and Skovmand (2020).
34Futures contracts referencing compounded daily SOFR interest during a specified accrual

period (available lengths one and three months) are traded on CME Globex and CME ClearPort,
see CME Group (2018).

35This is a common assumption if the underlying asset is a US Treasury.
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the argument from Section 3 when roll–over risk consists of funding liquidity risk
only:

1. Borrow one unit of currency at time t and continuously roll over this loan
until time T . The present value at time t of the repayment at time T is given
by A(t, T ), though the derivation differs from (3.10) by the absence of credit
risk, i.e.,

A(t, T ) := B(t)EQ

[
1

B(T )
exp

(∫ T

t

r̄t(u) du

) ∣∣∣∣Ft
]

= B(t)EQ

[
1

B(T )
exp

(∫ T

t

r(u) + φt(u) du

) ∣∣∣∣Ft
]

= EQ

[
exp

(∫ T

t

φt(u) du

) ∣∣∣∣Ft
]
. (6.2)

2. Suppose now that, alternatively, the entity is in a position to borrow at the
repo term rate R(t, T ). The value at time t of the repayment at time T is

EQ
[
e−

∫ T
t
r(u)du(1 + δR(t, T ))

∣∣Ft] = [1 + δR(t, T )]P (t, T ).

3. In equilibrium, the values of the continuously rolled–over loan must be equal
to that of the term loan, and consequently

R(t, T ) =
1

δ

(
A(t, T )

P (t, T )
− 1

)
. (6.3)

As noted in the introduction, it is likely that a liquid OIS market with SOFR as
the floating leg benchmark (as opposed to an unsecured rate) will appear in the
near future, meaning that any exposure to interest rate risk in point 1 above can
be eliminated via an OIS. Furthermore, if SOFR is also the collateral rate on such
an OIS, the argument in Appendix A still holds and the discount factors implied
by such an OIS are the P (t, T ). The multiplicative relation for the spread between
a repo term rate and the rate on an OIS referencing SOFR is therefore

Sp(t, T ) =
1 + δR(t, T )

1 + δOIS(t, T )
= A(t, T ). (6.4)

6.2. Term rates versus backward–looking rate indices. The SOFR Index de-
fined in Federal Reserve Bank of New York (2020) is an example of a term risk–free
reference rate, or “term–RFR”, benchmark. It is standard to apply the approxima-
tion (3.2) to the term–RFR in mathematical models, see for example Lyashenko and
Mercurio (2019). For a daily compounded term–RFR, denoted R̄(T,U), covering
the accrual period [T,U ], we thus write

R̄(T,U) ≈ R∗(T,U) =
1

δ

(
BU
BT
− 1

)
, (6.5)

where R∗(T,U) is the continuously compounded term–RFR. The bank account
process B(t) is defined by (3.1), and δ = U − T .

Macrina and Skovmand (2020) highlight several consequences of the fact that
R̄(T,U) and R∗(T,U) are not T–measurable, but rather U–measurable: Comparing
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the “backward–looking” R∗(T,U) with a traditional “forward–looking” risk–free rate
implied by the discount factor over [T,U ], i.e.,

F (T,U) =
1

δ

(
1

P (T,U)
− 1

)
, (6.6)

they note that a single fixed–for–floating payment on a swap (a “swaplet”) covering
the accrual period [T,U ] has the same present value at time t ≤ T regardless of
whether the floating leg references R∗(T,U) or F (T,U), but this is not true for
T < t ≤ U , because at such a time F (T,U) is already known while R∗(T,U) is still
uncertain. This additional uncertainty also means that caplets referencing R∗(T,U)
are more valuable than caplets referencing F (T,U), all other things being equal.

Furthermore, it is worth noting that the spot rate dynamics of fixed time-to-
maturity rates F (t, t+δ) and R̄(t−δ, t) (written here so that both expressions are t–
measurable) will have markedly different volatilities, with the volatility of R̄(t−δ, t)
being much lower due to the fact that R̄(t− δ, t) is an average of realised overnight
rates. For forward rates, this problem disappears, since the relevant expectations
under the forward measure to the end of the accrual period (denoted here by the
superscript U) are the same, i.e., for t ≤ T ,

EU [F (T,U) | Ft] = EU [R∗(T,U) | Ft],
from which it follows that the associated forward rates are the same.

Thus, in the absence of roll–over risk, one can argue that R̄(T,U) is an appropri-
ate benchmark replacement for F (T,U) when considering linear instruments (not
caplets) at times t ≤ T . This is already a lot more restrictive than a blanket claim
that R̄(T,U) is an appropriate replacement for F (T,U).

However, even this restricted assertion fails in the presence of roll–over risk. This
is because the term rate R(t, T ) given by (6.3) differs from F (t, T ) by the presence
of the present value A(t, T ) of the roll–over–risk–adjusted borrowing account, and
therefore replacing a reference term rate R(T,U) by a term–RFR benchmark like
the SOFR Index, i.e. by R̄(T,U) (or its continuous–time approximation R∗(T,U)),
will change the present value of the floating side of a swaplet at any time t < U ,
including t ≤ T .

The correlated model estimated on European data in Section 5 allows us to
construct the theoretical repo term rates defined in (6.3), and compare them to the
theoretical OIS implied rates defined by (6.6). Both rates are completely devoid of
credit risk, but the funding liquidity risk component is present in the repo term rate.
In the Eurozone these rates are not empirically observable at present, as the primary
overnight rate (EONIA/eSTR) is unsecured. Nevertheless, the comparison allows
us to gauge the economic significance and dynamics of the impact of the funding
liquidity component on term rates. In Figure 4 in the left panel, these rates are
plotted for a six–month term and for comparison we have also included the model
implied backward-looking rate. Removing the credit component puts the rates in
negative territory for almost the entire sample period. The presence of the roll–over
risk spread is particularly apparent in the earlier, higher rate regime of the sample
period. Furthermore, we also see that while expectations of forward–looking and
backward–looking rates may be the same, their actual realisations also differ quite
substantially, with the backward–looking rate floating both above and below the
forward–looking rates. The right hand side of Figure 4 demonstrates that the roll–
over risk premium as measured by the spread between the OIS–implied and repo
term rate also scales in a level–dependent fashion with the length of the term. Thus
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Figure 4. Six–month term rates (left panel) and the spread be-
tween repo term rates and OIS–implied term rates (right panel),
all in the absence of credit risk, based on the model parameters and
state variables estimated in the correlated version of the model in
Section 5.

this (at present theoretical) basis spread implied by the funding–liquidity component
as estimated empirically in Section 5 is both economically significant (up to about
30 bps at the twelve–month term) and volatile.

6.3. SOFR futures. In the absence of OIS on overnight RFR benchmarks such as
SOFR, futures contracts can be used to glean information about the term structure
of risk–free interest rates. This involves a model–dependent convexity correction:
Lyashenko and Mercurio (2019) provide an approximation for this in their model,
while Macrina and Skovmand (2020) obtain a closed–form expression in their con-
text. Note that the convexity correction in the case of a SOFR futures, i.e., a
futures on R̄(T,U) or R∗(T,U), differs from the convexity correction for a futures
on F (T,U). In the absence of market imperfections and assuming that the model
used to derive the convexity correction is a sufficiently accurate reflection of reality,
RFR discount factors thus can be extracted from SOFR futures. However, these
discount factors correspond to the OIS–implied P (t, T ), which by themselves are
insufficient to determine the term rates R(t, T ), as noted in (6.3) above. This rein-
forces the argument that the “term–RFRs” R̄(T,U) or R∗(T,U) are not appropriate
replacements for IBOR term rates, even when credit risk is set aside.

7. Conclusion. In the framework for multicurve interest rate modelling developed
in this paper, the presence of roll–over risk blocks the naive arbitrage between term
structures for different payment frequencies (tenors). Unlike Alfeus et al. (2020),
our set–up explicitly models the dynamics of the term structure of roll–over risk,
and therefore of term rates such as LIBOR. Thus a concrete model instance in
our framework lends itself to econometric estimation. For such an instance, one
that is based on affine dynamics, we have performed an empirical analysis on EUR
data for OIS, interest–rate swaps, basis swaps and credit default swaps. Unlike
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a key prior empirical study on similar data (Filipović and Trolle (2013)), we find
that credit risk typically contributes only about 30% of the IBOR/OIS spread,
where the extrapolated short–term credit spread faced by entities able to borrow
at the market benchmark rates is greater than the five basis points assumed in
that study. The balance of the IBOR/OIS spread is due to the funding liquidity
component of roll–over risk, which we have modelled more explicitly than the prior
literature. Our results provide empirical support for the view, expressed for example
in Albanese et al. (2021), that “the [LIBOR] transition’s most problematic aspect
revolves around Funding Risk transfer, which current proposals do not robustly
tackle.”36 In our framework, this funding liquidity component of roll–over risk
is reflected in the present value of a roll–over risk–adjusted borrowing account.
Furthermore, we allow for correlation between the state variables, and we obtain
a substantially better econometric fit than Filipović and Trolle (2013). The model
appears to be robust, i.e., we observe a similar good quality of fit over various
sub–sets of the data.

The framework is “reduced–form” in the sense that it takes a “top–down” ap-
proach by modelling the dynamics of market benchmark rates (of which the specific
instances EONIA and EURIBOR are used in the empirical section) and the risk that
a borrower might not be able to roll–over debt at (a constant spread to) the bench-
mark rates in the future. Consequently, the framework is unaffected by the specific
mechanism by which such benchmark rates are determined, be it panel–based or
transaction–based. Thus, as various jurisdictions transition away from panel–based
benchmarks towards transaction–based ones (such as SOFR in the United States),
the framework presented in this paper remains applicable. Although our empirical
analysis is conducted on EUR data, the issue it identifies is of global relevance for
all jurisdictions in which the future of IBOR–type benchmarks is being debated or
(as in the US and the UK) has been decided.

In fact, our framework allows for a unified treatment of overnight benchmarks
based on unsecured rates (e.g., EONIA) or secured rates (e.g., SOFR). As we have
shown, roll–over risk leads to a term premium beyond the traditional term premia
associated with the market price of interest rate risk. When roll–over risk is decom-
posed into a credit and a non-credit component, the latter is substantial, therefore
even if credit risk is entirely mitigated, the presence of roll–over risk means that
mooted term rate replacements such as SOFR compounded over three months are
not proper term rates at all, nor are proper forward term rates implied by futures
on compounded SOFR. If the market continues to incorporate the risk of not be-
ing able to roll over borrowing at (a constant spread to) the market reference rate
into a basis spread between tenors, then even if there is a move entirely to secured
rate benchmarks, a “multicurve” term structure environment can be expected to
persist. For the Eurozone, the policy implication is that there is certainly utility in
EURIBOR continuing to exist alongside eSTR.

Appendix A. Interest–rate instruments.

A.1. Swaps. We first consider multi–period OIS. For the ith of n payments, let
[Ti−1, Ti] denote the accrual period over which the reference rate is compounded.

36See Albanese et al. (2021), p. 2. In that paper, Albanese et al. (2021) propose that in the
absence of LIBOR, banks be immunaised from funding risks by periodic exchanges of funding
valuation adjustment (FVA) payments, calculated by bespoke independent legal entities created
for this purpose.
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Letting Rct denote the fair fixed rate at time t, we must have
n∑
i=1

Bc(t)EQ [δiRct/Bc(Ti) ∣∣Ft] =

n∑
i=1

Bc(t)EQ
[(

e
∫ Ti
Ti−1

rc(u) du − 1

)
/Bc(Ti)

∣∣Ft] ,
where δi = Ti − Ti−1. This ensures that the two legs of the swap have equal value
at time t. Note the overnight–continuous compounding approximation, as in (3.2).
Both sides can be simplified to obtain

Rct

n∑
i=1

δiP
c(t, Ti) =

n∑
i=1

P c(t, Ti−1)− P c(t, Ti),

and therefore

Rct =

∑n
i=1 P

c(t, Ti−1)− P c(t, Ti)∑n
i=1 δiP

c(t, Ti)
=

1− P c(t, Tn)∑n
i=1 δiP

c(t, Ti)
. (A.1)

Considering now an interest–rate swap with the same payment dates, (3.16) implies
a fixed rate of

RLt =

∑n
i=1 δiB

c(t)EQ [L(Ti−1, Ti)/B
c(Ti) | Ft]∑n

i=1 δiP
c(t, Ti)

.

Note that in the absence of roll–over risk, one has L(Ti−1, Ti) = OIS(Ti−1, Ti); to
see this, compare (3.5) and (3.12) when φt(u)t≥0

u≥t and λt(u)t≥0
u≥t are zero. In this

case, the numerator can be simplified to show that Rct = RLt .
It is possible for the accrual and payment structure to differ between the floating

and fixed legs. To accommodate this, let TL1 , TL2 , ..., TLn denote the dates of the n
floating rate payments, and T fix

1 , T fix
2 , ..., T fix

m the dates of the m fixed payments.
Almost always one has TLn = T cm. Then (3.16) must be modified as follows:

m∑
i=1

RLt (T fix
i − T fix

i−1)Bc(t)EQ [1/Bc(T fix
i ) | Ft

]
=

n∑
i=1

(TLi − TLi−1)Bc(t)EQ [L(TLi−1, T
L
i )/Bc(TLi ) | Ft

]
,

giving

RLt =

∑n
i=1(TLi − TLi−1)Bc(t)EQ [L(TLi−1, T

L
i )/Bc(TLi ) | Ft

]∑m
i=1(Ti − T fix

i−1)P c(t, T fix
i )

.

Finally, basis swaps involve the swapping of IBOR–based floating payment streams
of different frequency. We let T (j)

1 , T (j)
2 , ..., T (j)

nj denote the payment times of the
jth stream, for j = 1 or j = 2 (as above, T (1)

n1 = T
(2)
n2 ). The value of either leg at

time t is
nj∑
i=1

(T
(j)
i − T (j)

i−1)Bc(t)EQ
[
L(T

(j)
i−1, T

(j)
i )/Bc(T

(j)
i ) | Ft

]
. (A.2)

With roll–over risk priced into the IBOR rates, the leg with the lower payment
frequency will be more valuable. The party receiving this leg must therefore pay
the basis swap spread to their counterparty, to ensure the swap is fair. Let T (3)

1 ,
T

(3)
2 , ..., T (3)

n3 denote the spread payment times (which do not necessarily coincide
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with the payment times of either IBOR leg), and let RBS
t denote the spread at time

t. The value at time t of the stream of spread payments is
n3∑
i=1

(T
(3)
i − T (3)

i−1)Bc(t)EQ
[
RBS
t /Bc(T

(3)
i ) | Ft

]
= RBS

t

n3∑
i=1

(T
(3)
i − T (3)

i−1)P c(t, T
(3)
i ).

(A.3)

The spread RBS
t must be set so that the value of the spread payments, in (A.3), is

equal to the difference between the two IBOR–based legs, valued in (A.2).

A.2. Credit–risky instruments. We use the so–called reduced–form approach to
model credit risk in this paper, and follow the setup presented in Bielecki, Jeanblanc
and Rutkowski (2009). On the probability space (Ω,G,Q), we introduce the right-
continuous default indicator process H(t) := 1{τ ≤ t}t>0 generating the filtration
Ht := σ(H(s)0≤s≤t), where τ is the random default time. The market filtration is
given by Gt = Ft∨Ht, and while τ is a Gt-stopping time, it is not necessarily an (Ft)-
stopping time. Next, we introduce the conditional probability F (t) = Q[τ ≤ t | Ft],
and define the (Ft)-adapted hazard process Γ(t)t>0 by Γ(t) = − ln(1− F (t)). The
so-called “key lemma”, can now be recalled, see, e.g., Bielecki et al. (2009):

Lemma A.1. Let X be FT -measurable and Q-integrable. Then for every t ≤ T ,
one has

EQ [X 1{τ > T} | Gt] = 1{τ > t}E
Q [X 1{τ > T} |Ft]
EQ [X 1{τ > t} |Ft]

= 1{τ > t}EQ [X exp [Γ(t)− Γ(T )] | Ft] .

Assumption A.2. The hazard process used to model the credit-risk component
of the roll-over-risk-adjusted borrowing account (3.10) is given by

Γs(s, t) =

∫ t

s

ψs(u)du,

where s ∈ [0, t] and ψs(u) = Λ(u) + λs(u), so that Q[τs ∈ [u, u+ du] | τs ≥ u,Fu] =
ψs(u)du, u ≥ s. In the context of Lemma A.1, one then has

Γ(t)− Γ(T ) = Γ0(0, t)− Γ0(0, T ) = Γt(t, T ) =

∫ T

t

ψt(u)du.

We interpret Γt(t, T )t∈[0,T ] as the total credit hazard process for the time period
[t, T ], and ψt(u)u≥t as the total hazard rate process.

Then, the “key lemma” takes the following form in our intensity-based setting,
c.f., relation (3.10):

Lemma A.3. For an integrable random variable X and the default time τt > t
described above, one has

EQ [X 1{τt > T} | Gt] = 1{τt > t}EQ

[
X exp

(
−
∫ T

t

[Λ(u) + λt(u)]du

) ∣∣∣∣Ft
]
.

One could drop the indicator 1{τt > t} on the right–hand side of the above
equation if one specified that Q[τt ≤ t] = 0. We also note that we have stated the
lemma in terms of sigma-algebras at time t; in general, one may need to evaluate
the above at any time point until T , but this is not required for our purposes.
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Consider now a CDS written at time t, referring to the entity with default time
τt. Let [T0, Tn] denote the period covered by the CDS (where T0 ≥ t), and let T1,
T2, ..., Tn denote the payment dates. The protection leg of the CDS, at time t and
with a unit notional, has value

Bc(t)EQ [1/Bc(τt)1{τt ≤ Tn} | Gt] . (A.4)

Note that here again we are using the assumption of zero recovery in default. As
argued in Section 3.2, this assumption has no material effect on our results.37

In the event of default during the CDS period (i.e., if τt ∈ [T0, Tn]), the protection
seller makes a payment equal to the notional amount (recall that zero recovery is
assumed throughout the paper). Letting Ct denote the annual spread at time t, the
payment leg of the unit–notional CDS has value at time t of

n∑
i=1

Bc(t)Ct(Ti − Ti−1)EQ [1/Bc(Ti)1{τt > Ti} | Gt] (A.5)

+

n∑
i=1

Bc(t)CtEQ [1/Bc(τt)(τt − Ti−1)1{Ti−1 < τt ≤ Ti} | Gt] . (A.6)

The first sum gives the value of future spread payments, in the event that the
reference entity does not default. The second sum gives the value of the partial
spread payment that is made in the event of default. The CDS spread Ct must
ensure that the payment and protection legs are of equal value.

Appendix B. Model implementation.

B.1. Instrument pricing. It is convenient to collate the (risk–neutral) dynamics
of the individual state variables, and write the dynamics of the enlarged state process
in (4.16):

dXt(u) = κ(θ −Xt(u)) du+ σ(u) dWQ(u) + dJt(u), (B.1)

where

κ =



κc −κc 0 0 0 0 0 0
0 κc∗ 0 0 0 0 0 0
0 0 κΛ 0 0 0 0 0
0 0 0 βλ 0 0 0 0
0 0 0 0 κλ 0 0 0
0 0 0 0 0 βφ 0 0
0 0 0 0 0 0 κφ −κφ
0 0 0 0 0 0 0 κφ∗


, θ =



θc∗
θc∗
θΛ

0
θλ

0

θφ∗
θφ∗


,

37As noted in Section 3.2, a robustness check was carried out by repeating the analysis assuming
a 40% recovery rate. In that departure from the zero–recovery assumption, all affected formulas
(including CDS pricing) were appropriately modified.
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σ(u) =



σc 0 0 0 0 0

σc∗ρ
c σc∗

√
1− (ρc)2 0 0 0 0

0 0 σΛ
√

Λ(u) 0 0 0
0 0 0 0 0 0

0 0 0 σλ
√
ξλ(u) 0 0

0 0 0 0 0 0

0 0 0 0 σφ
√
ξφ(u) 0

0 0 0 0 0 σφ∗
√
θφ(u)


,

and where Jt(u)u≥t is an R8–valued process, with Jλt (u) in its fourth element, Jφt (u)
in its sixth, and zeros elsewhere. Using (·)> to denote a transpose, let

σ(u)σ(u)> = v0 +

n∑
i=1

[Xt(u)]ivi

where v0, v1, ...., v8 are each eight–by–eight constant matrices, and [·]i extracts the
ith component of a multi–dimensional vector.

The enlarged state process is an affine jump–diffusion, making the techniques in
Duffie et al. (2000) applicable. Beginning with the OIS bond in (3.4), one has

P c(t, T ) = EQ
[
e−

∫ T
t
rc(u) du ∣∣Gt] = exp

(
αc(T − t) + βc(T − t)>Xt(t)

)
, (B.2)

where αc(·) and βc(·) are, respectively, R– and R8–valued deterministic functions
satisfying
∂αc(u)

∂u
= (κθ)>βc(u) + 1

2β
c(u)>v0 β

c(u),

∂βc1(u)

∂u
= −κcβc1(u)− [R]1,

∂βc2(u)

∂u
= κcβc1(u)− κc∗βc2(u)− [R]2,

∂βc3(u)

∂u
= −κΛβc3(u) + 1

2

(
βc3(u)σΛ

)2 − [R]3,

∂βc4(u)

∂u
= −βλβc4(u)− [R]4,

∂βc5(u)

∂u
= −κλβc5(u) + 1

2

(
βc5(u)σλ

)2
+

βc4(u)

(0.02)−1 − βc4(u)
− [R]5,

∂βc6(u)

∂u
= −βφβc6(u)− [R]6,

∂βc7(u)

∂u
= −κφβc7(u) + 1

2

(
βc7(u)σφ

)2
+

βc6(u)

(0.02)−1 − βc6(u)
+

ρφβc4(u)

(0.02)−1 − βc4(u)
− [R]7,

∂βc8(u)

∂u
= κφβc7(u)− κφ∗βc8(u) + 1

2

(
βc8(u)σφ∗

)2 − [R]8,

and the initial conditions αc(0) = 0 and βci (0) = 0 for i = 1, ..., 8. Note that βci (·)
refers to the ith scalar component of the eight–dimensional function βc(·). Here,
R = [1, 0, aΛ, 0, aλ, 0, aφ, 0]>, i.e., the linear coefficients used to define the short
rate. Recall also that 0.02 was fixed as the mean of the jump sizes.

Standard Runge–Kutta methods can be used to numerically solve the above
system of equation, and accurately approximate the coefficient functions in (B.2).
We note that this calculation, and several of the ones below, can be made more
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efficient by excluding certain non–necessary components of the state process; for
instance, for the above calculation, the processes λt(u)u≥t and φt(u)u≥t are not
necessary to include, and one can reduce the dimension of the equation system.
Further exclusions can be made in the uncorrelated model.

To compute IBOR in (3.12), the quantities in (3.10) and (3.11), respectively, can
be given by

A(t, T ) = exp
(
αA(T − t) + βA(T − t)>Xt(t)

)
,

Q(t, T ) = exp
(
αQ(T − t) + βQ(T − t)>Xt(t)

)
,

(B.3)

where, in both cases, the coefficient functions are computed in the same way as
those in (B.2), except that the linear coefficient vector R must be adjusted. For
A(t, T ), one sets R = [0, 0, 0, 0, 0,−1, 0, 0]>; for Q(t, T ), one sets R = [1, 0, aΛ, 0, 1+
aλ, 0, aφ, 0]>. The coefficient functions in (4.17) are then given by

αL(u) = αA(u)− αQ(u) and βL(u) = βA(u)− βQ(u).

In order to price the IBOR–dependent instruments detailed in Appendix A.1,
one needs to evaluate expressions of the form

Bc(t)EQ [L(T,U)/Bc(U) | Ft]

for t ≤ T < U . Consider the following representation:

Bc(t)EQ [L(T,U)/Bc(U) | Ft]

= Bc(t)EQ
[

1

U − T

(
A(T,U)

Q(T,U)
− 1

)
/Bc(U) | Ft

]
=

Bc(t)

U − T
EQ
[
A(T,U)

Q(T,U)
/Bc(U) | Ft

]
− P c(t, U)

U − T

=
1

U − T
EQ
[
e−

∫ U
t
rc(u) duA(T,U)

Q(T,U)
| Ft
]
− P c(t, U)

U − T

=
1

U − T
EQ
[
EQ
[
e−

∫ U
t
rc(u) duA(T,U)

Q(T,U)
| FT

]
| Ft
]
− P c(t, U)

U − T

=
1

U − T
EQ
[
e−

∫ T
t
rc(u) duA(T,U)

Q(T,U)
EQ
[
e−

∫ U
T
rc(u) du | FT

]
| Ft
]
− P c(t, U)

U − T

=
1

U − T
EQ
[
e−

∫ T
t
rc(u) duA(T,U)

Q(T,U)
P c(T,U) | Ft

]
− P c(t, U)

U − T
.

The right–hand term can be computed as per (B.2); the expectation in the left–hand
term can be written, using (B.2) and (B.3), as

eα
c(U−T )+αA(U−T )−αQ(U−T )

× EQ
[
e−

∫ T
t
rc(u) due(βc(U−T )+βA(U−T )−βQ(U−T ))>XT (T ) | Ft

]
= eα

c(U−T )+αA(U−T )−αQ(U−T )EQ
[
e−

∫ T
t
rc(u) dueβ̂(U−T )>Xt(T ) | Ft

]
,

where β̂(U − T ) is defined as the R8–valued vector equal to βc(U − T ) + βA(U −
T ) − βQ(U − T ) except with the fourth and the sixth elements set to zero. These
two elements correspond to λT (T ) and φT (T ), residing in XT (T ), which are both
equal to zero. The above quantity can then be given as

exp
(
αc(U − T ) + αA(U − T )− αQ(U − T ) + α∗(T − t) + β∗(T − t)>Xt(t)

)
,
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where α∗(·) and β∗(·) are calculated exactly as αc(·) and βc(·) above, except that
the initial condition must be given by β∗(0) = β̂(U − T ) and α∗(0) = 0. The value
for R does not change, i.e., R = [1, 0, aΛ, 0, aλ, 0, aφ, 0]>.

Consider now the CDS detailed in Appendix A.2. The following representation
is essential for computing the protection leg:

EQ [Bc(t)/Bc(τt)1{τt ≤ Tn} | Gt] = lim
m→∞

m∑
i=1

EQ [Bc(t)/Bc(τt)1{ti−1 < τt ≤ ti} | Gt]

= lim
m→∞

m∑
i=1

EQ [Bc(t)/Bc(ti−1)1{ti−1 < τt ≤ ti} | Gt] ,

where ti = t + iTn−t
m for i = 0, 1, ...,m, i.e., {ti} is a even mesh over the interval

[t, Tn]. The above quantity can then be written, using Lemma A.3, as

lim
m→∞

m∑
i=1

EQ [Bc(t)/Bc(ti−1)(1{ti−1 < τt} − 1{ti ≤ τt}) | Gt]

= lim
m→∞

m∑
i=1

EQ
[
Bc(t)/Bc(ti−1)

(
e−

∫ ti−1
t [Λ(s)+λt(s)] ds − e−

∫ ti
t [Λ(s)+λt(s)] ds

)
| Ft
]

= lim
m→∞

m∑
i=1

EQ
[
Bc(t)/Bc(ti−1) [Λ(ti−1) + λt(ti−1)] e−

∫ ti−1
t [Λ(s)+λt(s)] dsTn − t

m
| Ft
]
,

(B.4)

where the final line expresses the increment of the function f(u) = e−
∫ u
t

[Λ(s)+λt(s)] ds

as

f(ti−1)− f(ti) = −f ′(ti−1)(ti − ti−1) =

[Λ(ti−1) + λt(ti−1)] e−
∫ ti−1
t [Λ(s)+λt(s)] ds(ti − ti−1).

Then (B.4), and therefore the CDS protection leg value, can be written as∫ Tn

t

EQ
[
Bc(t)/Bc(u) [Λ(u) + λt(u)] e−

∫ u
t

[Λ(s)+λt(s)] ds | Ft
]
du

=

∫ Tn

t

EQ
[
[Λ(u) + λt(u)] e−

∫ u
t

[rc(s)+Λ(s)+λt(s)] ds | Ft
]
du. (B.5)

Then, the integrand on the right–hand side of (B.5) can be computed with the so–
called extended transform of Duffie et al. (2000), and integrated numerically. That
is, the integrand can be given as(

ᾱCDS(u− t) + β̄CDS(u− t)>Xt(t)
)

exp
(
αCDS(u− t) + βCDS(u− t)>Xt(t)

)
,

(B.6)

where αCDS(·) and βCDS(·) are calculated exactly as αc(·) and βc(·) above, except
with R = [1, 0, 1 + aΛ, 0, 1 + aλ, 0, aφ, 0]>. Then ᾱCDS(·) and β̄CDS(·) must satisfy

∂ᾱCDS(u)

∂u
= (κθ)>β̄CDS(u) + βCDS(u)>v0 β̄

CDS(u),

∂β̄CDS
1 (u)

∂u
= −κcβ̄CDS

1 (u),

∂β̄CDS
2 (u)

∂u
= κcβ̄CDS

1 (u)− κc∗β̄CDS
2 (u),
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∂β̄CDS
3 (u)

∂u
= −κΛβ̄CDS

3 (u) + βCDS
3 (u)β̄CDS

3 (u)
(
σΛ
)2
,

∂β̄CDS
4 (u)

∂u
= −βλβ̄CDS

4 (u),

∂β̄CDS
5 (u)

∂u
= −κλβ̄CDS

5 (u) + βCDS
5 (u)β̄CDS

5 (u)
(
σλ
)2

+

(
β̄CDS

4 (u)

(0.02)−1 − βCDS
4 (u)

)2

,

∂β̄CDS
6 (u)

∂u
= −βφβ̄CDS

6 (u),

∂β̄CDS
7 (u)

∂u
= −κφβ̄CDS

7 (u) + βCDS
7 (u)β̄CDS

7 (u)
(
σφ
)2

+

(
β̄CDS

6 (u)

(0.02)−1 − βCDS
6 (u)

)2

+

(
ρφβ̄CDS

4 (u)

(0.02)−1 − βCDS
4 (u)

)2

,

∂β̄CDS
8 (u)

∂u
= κφβ̄CDS

7 (u)− κφ∗ β̄CDS
8 (u) + βCDS

8 (u)β̄CDS
8 (u)

(
σφ∗
)2
,

and the initial conditions ᾱCDS(0) = 0 and β̄CDS(0) = [0, 0, 1, 0, 1, 0, 0, 0]>.
To compute the value of the payment leg (for a given spread value Ct), the first

summation, (A.5), can be evaluated by first applying Lemma A.3 to each item in
the sum. In particular,

Bc(t)EQ [1/Bc(Ti)1{τt > Ti} | Gt] = EQ

[
exp

(
−
∫ T

t

[rc(u) + Λ(u) + λt(u)]du

) ∣∣Ft]
= exp

(
αCDS(T − t) + βCDS(T − t)>Xt(t)

)
,

where αCDS(·) and βCDS(·) are the same functions used to compute (B.5). The
second summation, (A.6), requires the disintegration technique used to arrive at
(B.5), i.e., one can write

EQ [Bc(t)/Bc(τt)(τt − Ti−1)1{Ti−1 < τt ≤ Ti} | Gt]

=

∫ Tt

Ti−1

(u− Ti−1)EQ
[
[Λ(u) + λt(u)] e−

∫ u
t

[rc(s)+Λ(s)+λt(s)] ds | Ft
]
du,

which can be numerically evaluated in the same manner as (B.5). The representation
(B.6) remains applicable, but the deterministic part of the integrand above must
be included as well.

B.2. Filtering. For a given set of model parameters, the filtering algorithm con-
structs estimates of the reduced state process in (4.18). We let X̂(t) denote the
estimate of X(t), which will be obtained at a number of discrete values of t, corre-
sponding to the observation dates in our data sample described in Section 5.1. We
set ∆t = 1/50 as the time period between observation dates, to approximate the
weekly observation frequency.

The physical–measure dynamics of the reduced state process are of the form

dX(t) = κP(θP −X(t)) dt+ σP(X(t)) dW P(u),

where κP and θP (R6×6– and R6–valued respectively) can be deduced from the
specification (B.1) as well as the measure–change (4.11). Note that σP(X(t)) is
identical to σ(t), except that the fourth and sixth rows are deleted, and that the
quantity is now given as an explicit function of the reduced state process.
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The transition equation is based on an Euler discretisation of these dynamics.
On this basis, the following quantities are defined at each discrete point t:

X̂+(t) = X̂(t) + κP(θP − X̂(t)) ∆t, and

P+(t) = −κPP (t)(−κP)> + σP(X̂(t))σP(X̂(t))>∆t,

representing an estimate for the state process at the next time point, i.e., the ex-
pectation of X(t+ ∆t) conditional on information available before the data at time
t+ ∆t is incorporated, and the associated conditional variance.

Because the observations have a non–linear dependence on the state process,
the conditional distribution of X(t+ ∆t) is approximated with a discrete distribu-
tion over the following thirteen sigma points, constructed symmetrically around the
mean:

X(1)(t+ ∆t) = X̂+(t),

X(i)(t+ ∆t) = X̂+(t) + 1
2γi(t) for i = 2, ..., 7,

X(i)(t+ ∆t) = X̂+(t)− 1
2γi(t) for i = 8, ..., 13,

where γi(t) is the ith column of the Cholesky decomposition of P+(t), so that
γ(t)γ(t)> = P+(t), where γ(t) is the full lower–triangular Cholesky matrix. The
coefficient of one half is due to a particular parameterisation of the discrete distribu-
tion approximation. This value of a half appears several times below, and could be
set differently; some authors favour a low value, such as the 10−3 value mentioned
in Wan and Van Der Merwe (2000). Now define

Y +(t+ ∆t) =

13∑
i=1

z
(
X(i)(t+ ∆t)

)
wi

= z
(
X(1)(t+ ∆t)

)(
1− 6

(1/2)2

)
+

13∑
i=2

z
(
X(i)(t+ ∆t)

) 1

2(1/2)2
,

where z(·) is the pricing function, i.e., a function that computes model–implied OIS
rates, CDS spreads, etc. (see Appendix B.1) corresponding to the market–observed
quantities at each date (see Section 5.1). The weights {wi}i=1,...,13 are specified in
the far right–hand expression; they depend on the one–half value mentioned above,
and the dimension of the state process X(t)t≥0 (six). The quantity Y +(t + ∆t)
aggregates over the various model–implied quantities, giving an estimate for what
will in fact be observed. We let Y (t + ∆t) denote these market observations. We
will see Y +(t+ ∆t) and Y (t+ ∆t) compared below.

Next define

S(t+ ∆t) =

13∑
i=1

(
z
(
X(i)(t+ ∆t)

)
− Y +(t+ ∆t)

)
·
(
z
(
X(i)(t+ ∆t)

)
− Y +(t+ ∆t)

)>
w∗i +R,

where R is a diagonal matrix with σ2
rates in the rows corresponding to OIS or CDS

spreads, and σ2
spreads in rows corresponding to EURIBOR–OIS or basis–swap spread

observations, and where the “second–order” weights {w∗i } are equivalent to the “first–
order” ones {wi}, except that w∗1 = w1 + 1− ( 1

2 )2 + 2. This adjustment is a further
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free aspect of the unscented transform implementation, and this addition of two is
typical. Then define

K(t+ ∆t) =(
13∑
i=1

(
X(i)(t+ ∆t)− X̂+(t)

)(
z
(
X(i)(t+ ∆t)

)
− Y +(t+ ∆t)

)>
w∗i

)
S(t+∆t)−1.

Applying a truncation to the non–negative state variables, we have

[X̂(t+ ∆t)]i =
[
X̂+(t) +K(t+ ∆t)

(
Y (t+ ∆t)− Y +(t+ ∆t)

)]
i

for i = 1, 2, and

[X̂(t+ ∆t)]i = max
([
X̂+(t) +K(t+ ∆t)

(
Y (t+ ∆t)− Y +(t+ ∆t)

)]
i
, 0
)
,

P (t+ ∆t) = P+(t)−K(t+ ∆t)S(t+ ∆t)K(t+ ∆t)>,

for i = 3, 4, 5, 6. This concludes an iteration of the algorithm. Starting from X̂(t)

and P (t), the information inherent in Y (t+∆t) has been used to construct X̂(t+∆t)
and P (t+ ∆t). The log–likelihood is then given by

−1

2

(∑
t

nt log(2π) + log(detS(t)) +
(
Y (t)− Y +(t)

)
S(t)−1

(
Y (t)− Y +(t)

)>)
,

where nt is the number of observations at each observation date t (for us, nt = 29;
see Section 5.1). The model parameters are then varied in order to maximise this
log–likelihood value.

Appendix C. Further results.

C.1. Fit using the uncorrelated model. Figure 5 illustrates the fit to the data
obtained by the uncorrelated model. Figure 6 shows the state variables paths ob-
tained from the Kalman filter at the maximum likelihood parameters. The corre-
lated (uncorrelated) model is considered in the top (bottom) panels.
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Figure 5. Market data compared to corresponding quantities, fit-
ted by the uncorrelated model.
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Figure 6. State variable paths determined by the unscented
Kalman filter. The top (bottom) panels pertain to the correlated
(uncorrelated) model.

C.2. Overnight vs. continuous refinancing in the money–market account.
Our approximation of conflating overnight with continuous roll–over in the money–
market account is a stylistic choice common in interest rate term structure mod-
elling. It is mainly done for reading comprehension and mathematical tractability.
Strictly speaking, this approximation ignores any basis spread between refinancing
continuously vs overnight. However, such basis spreads are indeed negligible: With
our model, using the full model parameters for roll–over risk that we have estimated
from the data, we can calculate the “term rates” for short terms, as well as their
basis spreads to the instantaneous rate rc(u):
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Term Term rate (bps) Term premium (bps)
0 -39.57 0

0.001 -39.53 0.04
0.005 -39.38 0.19
0.01 -39.19 0.38
0.05 -37.74 1.83
0.1 -36.02 3.54

Table 5. Term premia (basis spreads to rc(u)) for very short bor-
rowing terms, based on the fitted model parameters.

A term of “overnight” (i.e., next business day) corresponds to a year fraction of
less than 0.005 (or less than 0.01 if over a weekend). As Table 5 shows, the term
premia (basis spreads to rc(u)) corresponding to these terms are well under half a
basis point.
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