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Generalized Random Gilbert-Varshamov Codes:
Typical Error Exponent and

Concentration Properties
Lan V. Truong and Albert Guillén i Fàbregas

Abstract—We find the exact typical error exponent of con-
stant composition generalized random Gilbert-Varshamov (RGV)
codes over discrete memoryless channels with generalized like-
lihood decoding. We show that the typical error exponent of
the RGV ensemble is equal to the expurgated error exponent,
provided that the RGV codebook parameters are chosen ap-
propriately. We also prove that the random coding exponent
converges in probability to the typical error exponent, and the
corresponding non-asymptotic concentration rates are derived.
Our results show that the decay rate of the lower tail is
exponential while that of the upper tail is double exponential
above the expurgated error exponent. The explicit dependence
of the decay rates on the RGV distance functions is characterized.

I. INTRODUCTION

Introduced by Shannon [1], random coding is the key
technique employed in information theory in order to show
that a code with low error probability exists without explicitly
constructing it. Codes are constructed at random, and the
average error probability over all randomly generated codes
is bounded. Then, it follows that there must exist a code
with error probability at least as low as the ensemble average
error probability over the codes. In particular, for discrete
memoryless channel (DMC), Shannon showed that there exists
a code of rate smaller than the channel capacity with vanishing
probability of error as the codeword length increases.

Since Shannon’s work, random coding has not only been
applied extensively, but has been refined in a number of
ways. For rates below capacity, Fano [2] characterized the
exponential decay of the error probability defining the random
coding exponent (RCE) as the negative normalized logarithm
of the ensemble-average error probability. In [3], Gallager
derived the RCE in a simpler way and introduced the idea
of expurgation in order to show the existence of a code with
an improved exponent the at low rates. An upper bound to the
error exponent for the DMC, called sphere-packing bound,
was first introduced in [4] and it was shown to coincide with
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the RCE for rates higher than a certain critical rate. Nakiboğlu
in [5] recently derived sphere-packing bounds for some sta-
tionary memoryless channels using Augustin’s method [6].

Most proofs invoking random coding arguments, assume
that codewords are independent. Random Gilbert-Varshamov
(RGV) codes were first introduced in [7], and are a family of
random codes inspired by the basic construction attaining the
Gilbert-Varshamov bound for codes in Hamming spaces. The
code construction is based on drawing codewords recursively
from a fixed type class, in such a way that a newly generated
codeword must be at a certain minimum distance from all pre-
viously chosen codewords, according to some generic distance
function. For suitably optimized parameters, the RCE of RGV
codes with maximum-likelihood (ML) decoding is the Csiszár
and Körner’s exponent [8], which is known to be at least as
high as both the random-coding and expurgated exponents.

Most works on random coding and error exponents study
the RCE, the error exponent of the ensemble-average error
probability. In [9], Barg and Forney studied i.i.d. random
coding over the binary symmetric channel (BSC) with ML
and showed that the error exponent of most random codes is
close to the so-called typical random coding (TRC) exponent,
strictly higher than the RCE at low rates. Upper and lower
bounds on the TRC for constant-composition codes and gen-
eral DMCs were provided in [10]. For the same type of codes
and channels, Merhav [11] determined the exact TRC error
exponent for a generic stochastic decoder called generalized
likelihood decoder (GLD), of which ML is a special case.
Merhav derived the TRC exponent for spherical codes over
coloured Gaussian channels [12] and for random convolutional
code ensembles [13], and provided a dual expression of the
TRC for i.i.d. codes in [14]. Tamir et al. [15] studied the upper
and lower tails of the error exponent around the TRC exponent
for random pairwise-independent constant-composition codes
with GLD. It was shown that the tails behave in a non-
symmetric way: the lower tail decays exponentially while the
upper tail decays doubly-exponentially; the latter was first
established for a limited range of rates in [16]. By studying
the behavior of both tails, work in [15] proves concentration
in probability. The TRC was shown to be universally achiev-
able with a likelihood mutual-information decoder in [17].
For pairwise-independent ensembles and arbitrary channels,
Cocco et al. showed in [18] that the probability that a code in
the ensemble has an exponent smaller than a lower bound on
the TRC exponent is vanishingly small. Recently, Truong et
al. showed that, for DMCs, the error exponent of a ran-
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domly generated code with pairwise-independent codewords
converges in probability to its expectation – the typical error
exponent [19]. For high rates, the result is a consequence of
the fact that the RCE and the sphere-packing error exponent
coincide. For low rates, instead, the convergence is based
on the fact that the union bound accurately characterizes the
probability of error. Paper [19] also zooms into the behavior
at asymptotically low rates and shows that the error exponent
converges in distribution to Gaussian-like distributions. From
this body of works it emerges that the TRC is the fundamental
error exponent attained by specific random-coding ensembles.
The performance of poor codes has a critical role in the RCE,
while it does not count much towards the TRC.

A. Contributions

This work focusses on the RGV code ensemble and dis-
cusses concentration properties of error exponents around its
TRC. Compared with constant-composition codes, the depen-
dence among RGV codewords causes standard concentration
inequalities such as Hoeffding’s inequality not to hold. In this
work, we develop new techniques to overcome the challenges
presented by RGV codeword dependence. Our main contribu-
tions include:
• We find the exact TRC for the RGV ensemble by proving

matching upper and lower bounds on the TRC and show
that it is equal to Merhav’s expurgated exponent [20]
for suitably optimized distance function and minimum
distance. In addition, we show that for ML decoding,
the TRC of the RGV ensemble is at least as high as
the maximum of the expurgated exponent and RCE for
constant composition codes.

• We show that the random error exponent converges in
probability to the TRC.

• We characterize the convergence rates of the above con-
vergence and show that it is exponential for the lower
tail and double-exponential for the upper tail under some
technical conditions.

B. Notation

Random variables will be denoted by capital letters, and
their realizations will be denoted by the corresponding lower
case letters. Random vectors and their realizations will be
denoted, respectively, by boldfaced capital and lower case
letters. Their alphabets will be superscripted by their dimen-
sions. For a generic joint distribution PXY = {PXY (x, y), x ∈
X , y ∈ Y}, which will often be abbreviated by P , information
measures will be denoted in the conventional manner, but with
a subscript P , that is IP (X;Y ) is the mutual information
between X and Y , and similarly for other quantities. Natural
logarithms are assumed in the derivations; examples will
employ base 2. The probability of an event E will be denoted
by P[E ], the indicator function of event E will be denoted by
1{E}, and the expectation operator will be denoted by E[·].
The notation [t]+ will stand for max{t, 0}.

For two positive sequences, {an} and {bn}, the nota-
tion an

.
= bn will stand for exponential equality, that is

limn→∞
1
n log(anbn ) = 0. Exponential inequalities an

.
≤ bn

and an
.
≥ bn are defined as limn→∞

1
n log(anbn ) ≤ 0 and

limn→∞
1
n log(anbn ) ≥ 0, respectively. Accordingly, the nota-

tion an
.
= e−n∞ means that an decays super-exponentialy.

For two positive sequences, {an} and {bn}, whose elements
are both smaller than one for all large enough n, the notation
an =̊ bn will stand for double-exponential equality, that is

lim
n→∞

1

n
log

(
log bn
log an

)
= 0. (1)

Similarly, an ≤̊ bn means that

lim sup
n→∞

1

n
log

(
log bn
log an

)
≤ 0, (2)

and an ≥̊ bn stands for

lim inf
n→∞

1

n
log

(
log bn
log an

)
≥ 0. (3)

A sequence of random variables {An}∞n=1 converges to A in
probability, denoted as An

(p)−→A if for all δ > 0 [21, Sec. 2.2],

lim
n→∞

P[|An −A| > δ] = 0. (4)

The empirical distribution, or type, of a sequence x ∈ Xn,
which will be denoted by P̂x, is the vector of relative frequen-
cies, P̂x(x), of each symbol x ∈ X in x. The set of all possible
empirical distributions of sequences of length n on alphabet
X is denoted by Pn(X ). The joint empirical distribution of a
pair of sequences, denoted by P̂xy , is similarly defined. The
set of all possible joint empirical distributions of sequences of
length n on alphabets X and Y is denoted by Pn(X × Y).
The type class of QX , denoted by T (QX), is the set of all
vectors x ∈ Xn with P̂x = QX . The joint type class of
PXY , denoted by T (PXY ), is the set of pairs of sequences
(x,y) ∈ Xn × Yn with P̂xy = PXY . In addition, we also
define Q(QX) ,

{
PXX′ ∈ Pn(X ×X ) : PX = PX′ = QX

}
.

Finally, [M ] denotes the set {1, 2, · · · ,M}, and [M ]2∗ ,
{(m,m′) ∈ [M ]2 : m 6= m′} for any M .

C. Structure of the Paper

In Section II, we introduce error probability and error
exponents. In Section III-A, we introduce the generation of
RGV random codebook ensembles. We also mention about
properties of RGV codes and type-numerators in this section.
We derive the typical error exponent for the RGV in Section
IV. Finally, we study concentration properties of this ensemble
in Section V. Proofs of the main results can be found in the
corresponding sections while the proofs of auxiliary results
can be found in the Appendices.

II. PRELIMINARIES

We assume that a code cn = {x1,x2, . . . ,xM} ∈
Xn,M = enR is employed for transmission over a DMC
channel with channel law W (y|x) for x ∈ X , y ∈ Y .
More specifically, when the transmitter wishes to convey a
message m ∈ {1, 2, · · · ,M}, it sends codeword xm =
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(xm,1, . . . , xm,n) ∈ Xn over the channel. The channel pro-
duces an output vector y = (y1, y2, . . . , yn) ∈ Yn, according
to

W (y|xm) =

n∏
i=1

W (yi|xm,i). (5)

At the decoder side, we assume that a GLD [20] is used
to infer what the transmitted message was. The GLD [20]
extends the likelihood decoder in [22] and [23], and is a
stochastic decoder that randomly selects the message estimate
m̂ according to the posterior probability distribution given the
channel output y as follows

Pr(m̂ = m|y) =
exp{ng(P̂xm,y)}∑M

m=1 exp
{
ng(P̂xm′ ,y)

} , (6)

where g(·), henceforth referred to as the decoding metric, is
an arbitrary continuous function of a joint distribution PXY
on X × Y . For

g(PXY ) =
∑
x∈X

∑
y∈Y

PXY (x, y) logW (y|x), (7)

we recover the ordinary likelihood decoder [23]. For

g(PXY ) = β
∑
x∈X

∑
y∈Y

PXY (x, y) logW (y|x), (8)

β ≥ 0 being a free parameter, we extend this to a parametric
family of decoders, where β controls the skewness of the pos-
terior [11]. In particular, β → ∞ leads to the (deterministic)
ML decoder, denoted by gml(·). Other interesting choices are
associated with mismatched metrics,

g(PXY ) = β
∑
x∈X

∑
y∈Y

PXY (x, y) logW ′(y|x), (9)

W ′ being different from W , and

gsmi(PXY ) = βIP (X;Y ), (10)

which is the stochastic version of the well-known universal
maximum mutual information (MMI) decoder [24], which has
been recently proven to be universal in a typical error exponent
sense [25]. The MMI decoder is approached by letting β →∞
in (10) .

The average probability of error, associated with a given
code cn and the GLD, is given by

Pe(cn) =
1

M

M∑
m=1

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

×
exp{ng(P̂xm′ ,y)}∑M
m̃=1 exp{ng(P̂xm̃,y)}

. (11)

The n-length error exponent of code cn is defined as

En(cn) = − 1

n
logPe(cn). (12)

Let R = limn→∞
1
n logMn be the rate of the code in bits per

channel use. An error exponent E(R) is said to be achievable
when there exists a sequence of codes {cn}∞n=1 such that
lim infn→∞En(cn) ≥ E(R). The channel capacity C is the

supremum of the code rates R such that there exists a sequence
of codes {cn}∞n=1 for which Pe(cn)→ 0.

For a given code ensemble, the RCE is defined as

Erce(R,QX) , lim inf
n→∞

− 1

n
logE[Pe(Cn)] (13)

For GLD, the RCE was derived by [23] (see also [20]) and is
given by

Ecc
rce(R,QX)

= min
PXY :PX=QX

min
P̃XY :P̃X=QX ,P̃Y =PY

D(PXY ‖QX ×W )

+
[
IP̃ (X,Y ) +

[
EP [logW (Y |X)]

− EP̃ [logW (Y |X)]
]
+
−R

]
+

(14)

and was shown to coincide with the constant composition
exponent for ML decoding.

For ML decoding, Csiszár and Körner [8] proved the
existence of a constant composition code with exponent

Ecc
ck(R,QX) = min

P∈TI
D(PY |X‖W |P ) +

[
I(X ′;X,Y )−R

]
+

(15)

and

Tck =
{
PXX′Y ∈ P(X × X × Y) : PX = PX′ = QX ,

EP [logW (Y |X ′)] ≥ EP [logW (Y |X)], IP (X;X ′) ≤ R
}
.

(16)

The Csiszár and Körner exponent, is known to be at least
as large as the RCE and the expurgated exponent for constant
composition codes derived by Csiszár, Körner and Marton [26]
defined as

Ecc
ckm(R,QX) = min

I(X;X′)≤R
E[dB(X,X ′)] + I(X;X ′)−R,

(17)

where dB(·, ·) is the Bhattacharyya distance defined as

dB(x, x′) = − log
∑
y∈Y

√
W (y|x)W (y|x′). (18)

For GLD, Merhav provided an expression for the expurgated
exponent for constant composition codes [20, Eq. (36)], given
by

Ecc
ex(R,QX) = min

PXX′∈Q(QX):IP (X;X′)≤R

{
Γ(PXX′ , R)

+ IP (X;X ′)−R
}
, (19)

where for QX ∈ P(X ),∆ ∈ R, d ∈ Ω, we define

Γ(PXX′ , R) , min
PY |XX′

{
D(PY |X‖W |QX) + IP (X ′;Y |X)

+ [max{g(PXY ), α(R,PY )} − g(PX′Y )]+

}
, (20)

and

α(R,PY ) , max
P
X′|Y :P

X′=QX,

IP (X′;Y )≤R

(
g(PX′Y )− IP (X ′;Y )

)
+R.

(21)
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For a given code ensemble, the TRC defined as

Etrc(R,QX) , lim inf
n→∞

− 1

n
E[logPe(Cn)] (22)

which is known to be strictly larger than the RCE for the same
ensemble at low rates. In addition, Merhav also provided an
expression for the TRC for the constant composition ensemble
and GLD [11, Eq. (18)]

Ecc
trc(R,QX) = min

PXX′∈Q(QX):IP (X;X′)≤2R

{
Γ(PXX′ , R)

+ IP (X;X ′)−R
}

(23)

and showed that for GLD Ecc
trc(R,QX) ≤ Ecc

ex(2R,QX) +R;
this inequality holds with equality for ML decoding.

In the next sections, we introduce RGV codebook ensemble
and derive concentration properties of the error exponent (12)
of sequences of RGV codes Cn in the asymptotic regime.

III. RGV RANDOM CODEBOOK ENSEMBLES AND
PROPERTIES

A. RGV Random Codebook Ensemble

In this section, we describe basic RGV codebook construc-
tion as well as some of its properties. The RGV codebook was
first introduced in [7], which extended code constructions that
attain the Gilbert-Varshamov bound on the Hamming space
[27], [28]. The RGV construction is a randomized constant
composition counterpart of such codes for arbitrary DMCs
and arbitrary distance functions.

Definition 1: Let Ω be the set of bounded, symmetric, and
type-dependent functions d(·, ·) : Xn×Xn → R, i.e., bounded
functions that satisfy d(x,x′) = d(x′,x) for all x,x′ ∈ Xn,
that depend on (x,x′) only through the joint distribution P̂xx′ ,
and that are continuous on the probability simplex.

We refer to d ∈ Ω as a distance function, although it need
not to be a distance in the topological space (e.g., it may be
negative). Some examples of such distance function include
Hamming distance, Bhattacharyya distance, and equivocation
distance [7].

The RGV code cn = {x1,x2, . . . ,xM} ∈ Xn with M
codewords of length n is constructed such that any two distinct
codewords x,x′ ∈ cn satisfy d(x,x′) > ∆ for a given
distance function d(·, ·) ∈ Ω and ∆ ∈ R. This guarantees that
the minimum distance of the codebook exceeds the minimum
distance ∆. The construction depends on the input distribution
QX ∈ Pn(X ) and is described by the following steps:

1) The first codeword, x1, is drawn equiprobably from
T (QX);

2) The second codeword, x2, is drawn equiprobably from

T (QX ,x1) ,
{
x̄ ∈ T (QX) : d(x̄,x1) > ∆

}
(24)

= T (QX) \
{
x̄ ∈ T (QX) : d(x̄,x1) ≤ ∆

}
,

(25)

i.e., the set of sequences with composition QX whose
distance to x1 exceeds ∆;

3) Continuing recursively, the i-th codeword xi is drawn
equiprobably from

T (QX ,x
i−1
1 )

,
{
x̄ ∈ T (QX) : d(x̄,xj) > ∆, j = 1, 2, . . . , i− 1

}
(26)

= T (QX ,x
i−2
1 ) \

{
x̄ ∈ T (QX ,x

i−2
1 )

: d(x̄,xi−1) ≤ ∆
}

(27)

where for j < k, xkj = (xj , . . . ,xk) is a shorthand
notation to denote previously drawn codewords.

This recursive procedure does not necessarily guarantee that
M = enR codewords have been obtained. As [7, Theorem
1], in order to ensure that the above procedure generates the
desired number of codewords, it suffices to choose R such
that, for some δ > 0,

R ≤ min
PXX′∈Q(QX):d(PXX′ )≤∆

I(X;X ′)− 2δ. (28)

For a given RGV code with rate R, type QX , distance
function d, and minimum distance ∆, we define the RCE
associated with decoding metric g as

Ergv
rce (R,QX , g, d,∆) , lim inf

n→∞
− 1

n
logE[Pe(Cn)] (29)

and the TRC error exponent associated with decoding metric
g as

Ergv
trc (R,QX , g, d,∆) , lim inf

n→∞
− 1

n
E[logPe(Cn)], (30)

where the expectation is with respect to the randomness of the
code Cn.

The main result of [7] is that for ML decoding, and
suitably optimized distance function and minimum distance,
the RCE of the constant composition RGV ensemble is equal
to the Csiszár and Körner exponent (15). In this paper, we
study the TRC of the RGV ensemble with GLD. One of the
main results of the paper is to provide a generic expression
for Ergv

trc (R,QX , g, d,∆) as a function of the RGV code
parameters. In addition, we show that

Ergv
trc (R,QX , g, d,∆) = Ecc

ex(R,QX). (31)

for a suitable choice of the RGV ensemble parameters.
While Ergv

rce (R,QX , g, d,∆) potentially includes the asymp-
totic performance of relatively poor codes in the ensemble,
Ergv

trc (R,QX , g, d,∆) provides the expected exponent. Hence,
Ergv

trc (R,QX , g, d,∆) is the relevant exponent of interest. In
addition, we provide bounds on the concentration rates of the
lower and upper tails of the error exponent of RGV codes. We
show that the lower tail decays exponentially while the upper
tail decays double-exponentially.

B. Properties of RGV Codebooks

In this subsection, we introduce several technical results
characterizing the key properties of the generalized RGV
construction. We begin by restating some known properties
from [7]; we will then introduce a number of other properties
that will be helpful in the derivation of our main results.
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Lemma 1: [7, Lemma 1] Under condition (28), for some
δ > 0 and xi−1

1 occurring with non-zero probability (or
d(xk,xl) > ∆,∀k, l ∈ [i− 1], k 6= l), we have that

(1− e−nδ)|T (QX)| ≤ |T (QX ,x
i−1
1 )| ≤ |T (QX)|, ∀i ∈ [M ].

(32)

Lemma 2: [7, Lemma 2] Under the condition (28), for
any k,m ∈ [M ], k 6= m and xk,xm ∈ T (QX) such that
d(xk,xm) > ∆, then we have

1− 4δ2
n

|T (QX)|2
e−2δn ≤ P[Xk = xk,Xm = xm]

≤ 1

(1− e−nδ)2|T (QX)|2
(33)

while P[Xk = xk,Xm = xm] = 0 whenever d(xk,xm) ≤
∆, where,

δn ,
e−nδ

1− e−nδ
. (34)

Lemma 3: [7, Lemma 4] For any message index m, the
marginal distribution of codeword Xm is P(xm) = 1

|T (QX)|
for xm ∈ T (QX).

In order to derive the TRC and convergence properties of
the RGV code ensemble, we need to derive new properties
of this random codebook. Some properties of the pairwise
independent fixed-composition code ensemble [11], [15] are
proven to hold for the RGV codebook under some extra
conditions by other proof techniques. First, the following
lemma can be easily proved using the same arguments as [7].

Lemma 4: Consider the generalized RGV construction with
the rate R satisfying (28). Then, for any A ⊂ [M ] and any
rate R satisfying (28) for some δ > 0, under the condition
that mink,l∈A:k 6=l d(xk,xl) > ∆, it holds that

P
[ ⋂
k∈A

{Xk = xk}
]
≤ 1

(1− e−nδ)|A||T (QX)||A|
. (35)

In addition, if mink,l∈A:k 6=l d(xk,xl) ≤ ∆, it holds that

P
[ ⋂
k∈A

{Xk = xk}
]

= 0. (36)

Furthermore, if mink,l∈[M ′]:k 6=l d(xk,xl) > ∆ for any M ′ ≤
M , it holds that

P
[ ⋂
m∈[M ′]

{Xm = xm}
]
≥ 1

|T (QX)|M ′
. (37)

In general, (37) does not hold for any A ⊂ [M ] as (35), but it
holds for the class of subsets {[M ′]}M ′≤M . If A = [M ′], we
obtain both upper and lower bound on P

[⋂
m∈[M ′]{Xm =

xm}
]
.

Compared with Lemma 2, (37) is tighter at M = 2 if
{k,m} = {1, 2}. However, Lemma 2 is more general, i.e., it
holds for any subset {k,m} : (k,m) ∈ [M ]× [M ], k 6= m}.

Proof: See Appendix A.
Denote by

I(m,m′) , 1{(xm,xm′) ∈ T (PXX′)}. (38)

Then, the following result, whose proof can be found in
Appendix B, holds.

Lemma 5: Let PXX′ be a joint-type in Q(QX) such that
d(PXX′) > ∆. Define

L(PXX′) ,
|T (PXX′)|
|T (QX)|2

. (39)

Then, under the condition (28) and d(PXX′) > ∆, for any
two pairs (i, j), (k, l) ∈ [M ]2∗ such that (i, j) 6= (k, l), it holds
that

(1− 4δ2
n)e−2δnL(PXX′) ≤ E[I(i, j)]

≤ 1

(1− e−nδ)2
L(PXX′), (40)

and

E[I(i, j)I(k, l)] ≤ 1

(1− e−nδ)4
L2(PXX′). (41)

This implies that

E[I(i, j)]
.
= exp{−nIP (X;X ′)}, (42)

E[I(i, j)I(k, l)]
.
≤ exp{−2nIP (X;X ′)}. (43)

C. Useful Properties of Type Enumerators

In this section, we state some important properties of the
type enumerator of RGV codebooks. For a given joint-type
PXX′ ∈ Q(QX), the type enumerator N(PXX′) is defined as
the number of codeword pairs with joint type PXX′ , i.e.,

N(PXX′) ,
∑
m

∑
m′ 6=m

1{(xm,xm′) ∈ T (PXX′)} (44)

=
∑

(m,m′)∈[M ]2∗

I(m,m′), (45)

where I(m,m′) is defined in (38).
Lemma 6: Fix arbitrary small positive numbers δ > 0 and

ε > 0. Let PXX′ ∈ Q(QX) be a joint distribution that satisfies
IP (X;X ′) < 2R− ε and d(PXX′) > ∆. Define

E(PXX′) =

{
Cn : N(PXX′) < (1− 4δ2

n)e−2δn

× exp{n[2R− IP (X;X ′)− ε]}
}
. (46)

Then, for any rate R satisfying (28), it holds (as n sufficiently
large) that

P
[
E(PXX′)

]
≤ 1

(1− e−nε/2)2

[
e4δn(

1− 4δ2
n

)2(
1− e−nδ

)2 e−nε/2
+

e4δn

(1− 4δ2
n)2(1− e−nδ)4

− 1

]
→ 0 (47)

as n→∞ for any fixed δ > 0.
Proof: See Appendix C.
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Lemma 7: Let ε > 0 be given and assume that the
condition (28) holds. Then, for any PXX′ ∈ Q(QX) such
that IP (X;X ′) ≤ 2R and d(PXX′) > ∆,

P
[
N(PXX′) ≥ en(2R−IP (X;X′)+ε)

]
≤̊ exp

{
− en(2R−IP (X;X′)+ε)

}
(48)

.
≤ e−n∞. (49)

Proof: See Appendix D.
Lemma 8: Let ε > 0 be given. Then, for any PXX′ ∈

Q(QX) such that IP (X;X ′) ≥ 2R − ε and d(PXX′) > ∆
such that the condition (28) holds,

P
[
N(PXX′) ≥ enε

]
≤̊ exp

{
− enε

}
(50)

.
≤ e−n∞. (51)

Proof: See Appendix E.
Lemma 9: For any PXX′ ∈ Q(QX) such that IP (X;X ′) ≥

2R and d(PXX′) > ∆ such that the condition (28) holds, we
have

P
[
N(PXX′) ≥ 1

] .
= exp{n(2R− IP (X;X ′))}. (52)

Proof: See Appendix F.
The following lemma is a key result for showing the
exponentially-decay of the lower tail decay.

Lemma 10: Let PXX′ ∈ Q(QX) such that d(PXX′) > ∆.
Then, under the condition (28), we have

P
[
N(PXX′) ≥ ens

] .
= e−nE(R,PXX′ ,s) ∀s ∈ R, (53)

where

E(R,P, s)

=

{
[IP (X;X ′)− 2R]+, [2R− IP (X;X ′)]+ > s

+∞, [2R− IP (X;X ′)]+ < s
. (54)

Proof: See a detailed proof in Appendix G.
The following lemma is a key enabling result to attain the
double-exponential bound for the concentration properties
of the random coding exponent in the RGV codebook. As
opposed to the independent fixed-composition ensemble [15],
a direct application of Suen’s correlation inequality as [15,
Proof of Lemma 2] does not give the double-exponential
bound. More specifically, since all RGV codewords are cor-
related, the number of adjacent pairs of a fixed pair (m,m′)
is now e2nR which causes the term in [15, Eq. (B.18)] to
be equal to 1. For the independent fixed-composition code
ensemble, this term is enR.

To overcome this difficulty, we develop another proof for
this lemma which is not based on the Suen’s correlation
inequality. See Appendix H for a detailed proof.

Lemma 11: Let ε > 0 and D ⊂ {PXX′ ∈ Q(QX) :
d(PXX′) > ∆} be given. Then, under the condition

min
PXX′∈D

IP (X;X ′)− 2δ ≤ R

≤ min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′)− 2δ, (55)

or

R ≤ min

{
min

PXX′∈D
IP (X;X ′)

− min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′),

min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′)

}
− 2δ (56)

for some δ > 0, we have

min
PXX′∈D

P
{
N(PXX′) ≤ e−nεE[N(PXX′)]

}
≤̊ exp

{
−min

(
en(R−2δ), en(2R−minP

XX′∈D
IP (X;X′)))}.

(57)

Observe that for d(PXX′) = −IP (X;X ′) and ∆ = −(R+
2δ), the condition (55) holds since

min
PXX′∈D

IP (X;X ′)− 2δ

≤ max
PXX′ :d(PXX′ )>∆

IP (X;X ′)− 2δ (58)

= max
PXX′ :IP (X;X′)<−∆

IP (X;X ′)− 2δ (59)

< −(∆ + 2δ), (60)

and

min
PXX′ :d(PXX′ )≤∆

IP (X;X ′)− 2δ (61)

= min
PXX′ :IP (X;X′)≥−∆

IP (X;X ′)− 2δ (62)

= −(∆ + 2δ). (63)

Hence, the double-exponential expression in (57) holds for this
special distance d and ∆. The condition (56) also holds for
many other classes of distances d and different values of ∆.

Finally, we state the following key lemma, whose proof can
be found in Appendix I.

Lemma 12: Recall the definition of Γ(PXX′ , R) in (20).
We define the expurgated error exponent for RGV ensemble
as following:

Ergv
ex (R,QX , g, d,∆)

, min
PXX′∈Q(QX):d(PXX′ )>∆,IP (X;X′)≤R

{
Γ(PXX′ , R)

+ IP (X;X ′)−R
}
. (64)

Let

A1 =

{
PXX′ ∈ Q(QX) : d(PXX′) > ∆, IP (X;X ′) > 2R

}
,

(65)

A2 =

{
PXX′ ∈ Q(QX) : d(PXX′) > ∆, IP (X;X ′) ≤ 2R,

Γ(PXX′ , R− ε) + IP (X;X ′)−R ≤ E0 + ε

}
, (66)

and define

F0 ,
⋂

PXX′∈A1∪A2

{
N(PXX′) = 0

}
. (67)
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Under the conditions that R < Ergv
ex (R,QX , g, d,∆) and

min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′)

≥ max
PXX′∈Q(QX):d(PXX′ )>∆

IP (X;X ′), (68)

R ≤ min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′)− 2δ (69)

for some δ > 0, it holds that

P(F0) ≥̊ exp
{
− enmaxP

XX′∈A2
(2R−IP (X;X′)δ)}. (70)

Similarly to the preceeding discussion, setting d(PXX′) ,
−IP (X;X ′), we obtain that

min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′) ≥ −∆, (71)

max
PXX′∈Q(QX):d(PXX′ )>∆

IP (X;X ′) < −∆, (72)

so (68) holds. For (69) being hold, it is required that R ≤
−(∆ + 2δ).

In connection to Lemma 11, the proof of the related result
in [15, Prep. 6] cannot be applied here since it uses the Suen’s
correlation inequality, i.e. [15, Fact 3]. Since all codewords in
RGV ensemble are dependent, the number of adjacent nodes
in the corresponding adjacency graph is too big which makes
this type of arguments invalid. To overcome this difficulty,
in Appendix I, we develop a new technique. However, the
double-exponential constant in (70) is smaller than the one in
[15, Prep. 6] for the fixed-composition code ensemble.

IV. TYPICAL RANDOM CODING EXPONENT OF
GILBERT-VARSHAMOV CODES

In this section, we show an expression for the TRC of the
RGV code ensemble. The expression, when optimized over
the distance function d(·, ·) and minimum distance ∆, recovers
Merhav’s expurgated exponent for the GLD proposed in [20].
The main result, proven in Section IV-A, is stated in the
following.

Theorem 1: Let QX ∈ P(X ),∆ ∈ R, d ∈ Ω. Recall the
definitions of Γ(PXX′ , R) and α(R,PY ) in (20) and (21).
Then, for any R satisfying the condition in (28), the typical
random coding exponent of the RGV code ensemble with the
GLD is given by

Ergv
trc (R,QX , g, d,∆)

= min
P
X′|X :P

X′=PX=QX,

IP (X;X′)≤2R,d(P
XX′ )>∆

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
.

(73)

Before proceeding with the proof of the result, some dis-
cussion is in order. Observe that if we remove the constraint
d(PXX′) > ∆ (i.e., no constraint on the distance between
each codeword pair), the expression of the TRC for the RGV
ensemble code in (73) becomes the TRC of the constant
composition code ensemble with composition QX under GLD
decoding in [11, Eq. (18)]. In addition, as shown below, when
the distance function d(·, ·) is optimized, and ∆ is chosen
appropriately, the TRC expression (73) recovers Merhav’s
expurgated Ecc

ex(R,QX) defined in (19), which is at least as

high as the maximum of the expurgated exponent and the
random coding exponent.

The following results are similar to ones in [7, Section IV].

Corollary 1: Let ε > 0 be given, and let R,P , and
d ∈ Ω be given. The TRC of the generalized RGV construction
with sufficiently small δ, d(PXX′) = −IP (X;X ′),∆ =
−(R + 2δ), sufficiently large n, and GLD rule is such that
Ergv

trc (R,QX , g, d,∆) = Ecc
ex(R,QX), defined in (19).

Proof: First, it is easy to see that the choices d(PXX′) =
−IP (X;X ′) and ∆ = −(R + 2δ) are valid for all R in the
sense of satisfying the rate condition in (28) (see proof of [7,
Cor. 2]). Now, under the same choices, we have

Ergv
trc (R,QX , g, d,∆)

∣∣∣∣
d(PXX′ )=−IP (X;X′),∆=−(R+2δ)

(74)

= min
P
X′|X :P

X′=QX,

IP (X;X′)≤2R,IP (X;X′)≤R+2δ

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
(75)

= min
P
X′|X :P

X′=QX,

IP (X;X′)≤R+2δ

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
. (76)

The result follows by taking δ → 0 and using the continuity
of Ergv

trc (R,QX , g, d,∆) in R.

Corollary 2: The TRC of the generalized RGV construction
with sufficiently small δ, d(PXX′) = −IP (X;X ′),∆ =
−(R+2δ), sufficiently large n particularized for ML decoding
is such that

Ergv
trc (R,QX , g

ml, d,∆)

∣∣∣∣
d(PXX′ )=−IP (X;X′),∆=−(R+2δ)

≥ max
{
Ecc

rce(R,QX), Ecc
ckm(R,QX)

}
(77)

where

Ecc
rce(R,QX) = min

PY |X
D(PY |X‖W |QX) + [I(X;Y )−R]+,

(78)

is the RCE for ML decoding and Ecc
ckm(R,QX) is the Csiszár-

Körner-Marton expurgated exponent defined in (17).

Proof: We lower bound Ergv
trc (R,QX , g, d,∆) for ML

decoding by the typical error exponent for a sub-optimal GLD
based on gsmi(P ) = IP (X;Y ), which is the stochastic mutual
information decoder defined in (10). In this case, it can be
ready verified that α(R,PY ) = R, which yields

Γsmi(PXX′ , R) = min
PY |XX′

D(PY |X‖W‖QX) + IP (X ′;Y |X)

+ [max{IP (X;Y ), R} − IP (X ′;Y )]+. (79)
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Hence, we have

Ergv
trc (R,QX , g

ml, d,∆)

∣∣∣∣
d(PXX′ )=−IP (X;X′),∆=−R

≥ Ergv
trc (R,QX , g

smi, d,∆)

∣∣∣∣
d(PXX′ )=−IP (X;X′),∆=−R

(80)

= min
PX′Y |X :IP (X;X′)≤R,PX′=PX=QX

D(PY |X‖W |QX)

+ IP (X ′;Y |X) + IP (X;X ′)

+ [max{IP (X;Y ), R} − IP (X ′;Y )]+ −R (81)
= min
PX′Y |X :IP (X;X′)≤R,PX′=PX=QX

D(PY |X‖W |QX)

+ IP (X ′;X|Y ) + IP (X ′;Y )

+ [max{IP (X;Y ), R} − IP (X ′;Y )]+ −R (82)
= min
PX′Y |X :IP (X;X′)≤R,PX′=PX=QX

D(PY |X‖W |QX)

+ IP (X ′;X|Y ) + [max{IP (X;Y ), IP (X ′;Y )} −R]+
(83)

≥ min
PX′Y |X :IP (X;X′)≤R,PX′=PX=QX

D(PY |X‖W |QX)

+ IP (X ′;X|Y ) + [IP (X;Y )−R]+ (84)
= Ecc

rce(R,QX), (85)

where (80) follows from (76), and (81) follows from Theorem
1 and (79).

Similarly, by using the same arguments as [11, p.5], for ML
decoding, we have

Ergv
trc (R,QX , g, d,∆) = inf

PX′Y |X∈S(R,QX )

D(PY |X‖W |QX)

+ IP (X ′;X,Y )−R (86)

where

S(R,QX) =
{
PX′Y |X : IP (X;X ′) ≤ R,PX′ = PX = QX ,

EP [logW (Y |X ′)] ≥ max{EP [logW (Y |X)], a(R,PY )}
}

(87)

and

a(R,PY ) = sup
PX′|Y :IP (X′;Y )≤R,PX=PX′=QX

EP [logW (Y |X)].

(88)

Then, we have

Ergv
trc (R,QX , g

ml, d,∆)

∣∣∣∣
d(PXX′ )=−IP (X;X′),∆=−R

≥ inf
PX′Y |X∈Tck

D(PY |X‖W |QX) + IP (X ′;X,Y )−R (89)

= Ecc
ckm(R,QX), (90)

where Tck defined in (16). Here, (89) follows from (86), and
(90) follows from [8, Lemma 4].

The following proposition reveals that the above choice of
(d,∆) is a choice that maximizes the TRC given in Theorem
1.

Lemma 13: Under the setup of Theorem 1 with

R ≤ min
PXX′∈Q(QX):d(PXX′ )≤∆

IP (X;X ′)− 2δ (91)

for some δ > 0, we have

Ergv
trc (R,QX , g, d,∆)

≤ Ergv
trc (R,QX , g, d,∆)

∣∣∣∣
d(PXX′ )=−IP (X;X′),∆=−(R+2δ)

.

(92)

Proof: From (91), for all joint type PXX′ ∈ Q(QX) such
that d(PXX′) ≤ ∆, we have R + 2δ ≤ IP (X;X ′). Hence, if
R+2δ > IP (X;X ′), it holds that d(PXX′) > ∆. This means
that {

PXX′ ∈ Q(QX) : IP (X;X ′) < R+ 2δ

}
⊂
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆

}
. (93)

It follows from (93) that for δ sufficiently small,

Ergv
trc (R,QX , g, d,∆)

= min
P
X′|X :P

X′=PX=QX,

IP (X;X′)≤2R,d(P
XX′ )>∆

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
(94)

≤ min
P
X′|X :P

X′=PX=QX,

IP (X;X′)≤2R,IP (X;X′)<R+2δ

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
(95)

= min
P
X′|X :P

X′=PX=QX,

IP (X;X′)<R+2δ

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
(96)

= Ergv
trc (R,QX , g, d,∆)

∣∣∣∣
d(PXX′ )=−IP (X;X′),∆=−(R+2δ)

,

(97)

where (97) follows from the continuity of
Ergv

trc (R,QX , g, d,∆) in R and (76).
As in [7], the choice d(PXX′) = −IP (X;X ′) is universally

optimal in maximizing the TRC in Theorem 1 (subject to (28)),
in the sense that it does not depend on the channel or input
distribution.

In Fig. 1, we plot various error exponents for the Z-channel
with crossover probability 0.001 and let QX(0) = QX(1) =
1/2. This example was considered in [15], [20]. Specifically,
for reference we plot the random coding exponent Ecc

rce(R),
the expurgated exponent Ecc

ex(R), and the TRC Ecc
trc(R) for

constant composition codes. For the RGV ensemble exponents,
we choose d(PXX′) = −IP (X;X ′) and ∆ = −R so as to
achieve the largest possible exponents. We plot the correspond-
ing random coding exponent Ergv

rce (R) and its corresponding
TRC Ergv

trc (R) and illustrate that they both coincide with
Merhav’s expurgated exponent Ecc

ex(R).

A. Proof of Theorem 1

The proofs for both upper and lower bounds follow similar
lines to those in [11]. The main difference is the dependence
among codeword induced by the RGV ensemble. In order
to analyze this dependence, we developed new concentration
inequalities and applied generalized versions of Hoeffding’s
inequality.
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Fig. 1: Error Exponents for the Z-channels with crossover
probability 0.001 and ML decoding.

1) Lower bound on TRC: First, we prove the following
result.

Lemma 14: Recall the definition of α(R,PY ) in (21). Fix
an ε > 0. For any m ∈ [M ], let

Zm(y) ,
∑
m̃6=m

eng(P̂Xm̃,y
). (98)

and

Am , {Zm(y) ≤ exp
{
nα(R− ε, P̂y)}}. (99)

Then, under the condition (28), it holds that

P
[
Am
] .
≤ exp

{
− enε

[
1− e−n(ε+δ)

1− e−nδ
− e−nε(1 + nε)

]}
(100)

for all m ∈ [M ].
Proof: See Appendix K.

Proposition 1: Under the same assumptions as Theorem 1,
the RGV code ensemble satisfies

Ergv
trc (R,QX , g, d,∆)

≥ min
P
XX′∈Q(QX ),

IP (X;X′)≤2R,d(P
XX′ )>∆

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
.

(101)

Proof: Using the GLD, the error probability is

Pe(Cn) =
1

M

M∑
m=1

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

×
exp{ng(P̂xm′ ,y)}

exp{ng(P̂xm,Y )}+
∑
m̃ 6=m exp{ng(P̂xm̃,y)}

. (102)

From (102), we obtain

E
[
Pe(Cn)

]
≤ E

[
1

M

M∑
m=1

∑
y

W (y|Xm)
∑
m′ 6=m

min

{
1,

eng(P̂X
m′ ,y

)

eng(P̂Xm,y ) +
∑
m̃6=m e

ng(P̂Xm̃,y
)

}]
(103)

= E
[

1

M

M∑
m=1

∑
y

W (y|Xm)
∑
m′ 6=m

d(Xm,Xm′ )>∆

min

{
1,

eng(P̂X
m′ ,y

)

eng(P̂Xm,y ) +
∑
m̃6=m e

ng(P̂Xm̃,y
)

}]
, (104)

where (104) follows from the fact that
minm′ 6=m d(xm,xm′) > ∆ for any code Cn =
(x1,x2, · · · ,xM ) in the RGV codebook ensemble.

Now, we use similar arguments as [11] with some changes
to cooperate the condition d(xm, xm̃) > ∆ in the sum in (104).
From (104) and Lemma 14, for any ε > 0, we obtain

E[Pe(Cn)]

≤ E
[

1

M

M∑
m=1

∑
y

W (y|Xm)
∑
m′ 6=m

d(Xm,Xm′ )>∆

min

{
1,

eng(P̂X
m′ ,y

)

eng(P̂Xm,y ) + enα(R−ε,P̂y)

}]
. (105)

From the method of types [29] we have that

W (y|xm̃) = e−n
[
H(P̂xm̃,y

)−H(QX)+D
(
P̂xm̃,y

‖QX×W
)]
.

(106)

Thus, it follows from (106) that
M∑
m=1

∑
y

W (y|xm)
∑
m′ 6=m

d(xm,xm′ )>∆

min

{
1,

eng(P̂x
m′ ,y

)

eng(P̂xm,y ) + enα(R−ε,P̂y)

}
(107)

.
=

M∑
m=1

∑
y

W (y|xm)
∑
m′ 6=m

d(xm,xm′ )>∆

exp
{
− n

[
max{g(P̂xm,y),

α(R− ε, P̂y)} − g(P̂xm′ ,y)
]
+

}
(108)

=

M∑
m=1

∑
y

∑
m′ 6=m

d(xm,xm′ )>∆

exp
{(
− n

[
H(P̂xm,y )−H(QX)

+D
(
P̂xm,y‖QX ×W

)])}
exp

{
− n

[
max{g(P̂xm,y),

α(R− ε, P̂y)} − g(P̂xm′ ,y)
]
+

}
(109)

.
=

∑
PXX′∈Q(QX):d(PXX′ )>∆

N(PXX′)

×
∑

PY |XX′

exp
{
nHP (Y |XX ′)

}
exp

{(
− n

[
H(PXY )
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−H(QX) +D
(
PXY ‖QX ×W

)])}
× exp

{
− n[max{g(PXY ),

α(R− ε, PY )} − g(PX′Y )]+

}
(110)

.
=

∑
PXX′∈Q(QX):d(PXX′ )>∆

N(PXX′)

× exp
{
− n min

PY |XX′

(
−HP (Y |XX ′) +H(PXY )

−H(QX) +D
(
PXY ‖QX ×W

)
+
[

max{g(PXY ), α(R− ε, PY )} − g(PX′Y )
]
+

)}
(111)

.
=

∑
PXX′∈Q(QX):d(PXX′ )>∆

N(PXX′)

× exp
{
− n min

PY |XX′

(
D(PY |X‖W |QX) + IP (X ′;Y |X)

+
[

max{g(PXY ), α(R− ε, PY )} − g(PX′Y )
]
+

)}
(112)

=
∑

PXX′∈Q(QX):d(PXX′ )>∆

N(PXX′)

× exp{−nΓ(PXX′ , R− ε)}, (113)

where (109) follows from (106), and (113) follows from (20).
Here, the joint type enumerator N(PXX′) has been defined in
(45). From (105), (113), and (45), we obtain

E[logPe(Cn)] ≤ log
(
E
[
Pe(Cn)

])
(114)

≤ log

( ∑
PXX′∈Q(QX):d(PXX′ )>∆

E
[
N(PXX′)

]
× exp

{
− nΓ(PXX′ , R)

})
− nR, (115)

where (114) follows from the concavity of log x in (0,∞) and
Jensen’s inequality.

Now, for any PXX′ ∈ Q(QX) such that d(PXX′) > ∆,
from Lemma 5,we obtain

E
[
N(PXX′)

]
=

M∑
m=1

∑
m′ 6=m

P
[
(Xm,Xm′) ∈ T (PXX′)

]
(116)

.
= en(2R−IP (X;X′)). (117)

Hence, from (115) and (117), we obtain

E[logPe(Cn)]

.
≤ log

( ∑
PXX′∈Q(QX):d(PXX′ )>∆

en(2R−IP (X;X′))

× exp
{
− nΓ(PXX′ , R)

})
− nR. (118)

From (118), we finally have

Ergv
trc (R,QX , g, d,∆)

≥ min
P
XX′ :PX′=PX,

IP (X;X′)≤2R,d(P
XX′ )>∆

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
.

(119)

This concludes the proof of Proposition 1.
2) Upper bound on TRC:
Proposition 2: Under the same assumptions as Theorem 1,

the RGV code ensemble satisfies

Ergv
trc (R,QX , d,∆)

≤ min
P
XX′∈Q(QX ):

IP (X;X′)≤2R,d(P
XX′ )>∆

{
Γ(PXX′ , R) + IP (X;X ′)−R

}
.

(120)

Proof: The following proof follows similar lines to the
proof in [11, Sect. 5.2]. However, the same proof cannot be
used for the RGV ensemble. In addition to the difference
in proofs of Lemmas 6 and (159), we also need to make
additional changes in since the decay rate of P[E(PXX′)] in
Lemma 6 is not exponential as [11, Eq. (48)].

Given a joint-type PXX′ ∈ Q(QX) such that IP (X;X ′) <
2R− ε and d(PXX′) > ∆, let us define

Zmm′(y) =
∑

m̃ 6=m,m′
exp{ng(P̂Xm̃,y)}, (121)

and

Gn(PY |XX′) =

{
Cn :

∑
m

∑
m′ 6=m

I(m,m′)

×
∑

y∈T (PY |XX′ )

1{Zmm′(y) ≤ exp{n[α(R+ 2ε, PY ) + ε]}}

≥ (1− 4δ2
n)e−2δn exp{n[2R− IP (X;X ′)− 3ε/2]}

× |T (PY |XX′)|
}
, (122)

where I(m,m′) is defined in (38). Recall the definition
of E(PXX′) in Eq. (46) Lemma 6. Then, similarly to [11,
Sect. 5.2] we have

P
[
Gcn(PY |XX′) ∩ Ec(PXX′)

]
≤ P

[∑
m

∑
m′ 6=m

I(m,m′)
∑

y∈T (PY |XX′ )

1{Zmm′(y) ≤ (1− 4δ2
n)e−2δn exp{n[α(R+ 2ε, PY ) + ε]}}

≤ exp{n[2R− IP (X;X ′)− 3ε/2]}.|T (PY |XX′)|,

N(PXX′) ≥ (1− 4δ2
n)e−2δn exp{n[2R− IP (X;X ′)− ε]}

]
(123)

≤ P
[∑

m

∑
m′ 6=m

I(m,m′)
∑

y∈T (PY |XX′ )

1{Zmm′(y) > (1− 4δ2
n)e−2δn exp{n[α(R+ 2ε, PY ) + ε]}}

≥
(

exp{n[2R− IP (X;X ′)− ε]}
− exp{n[2R− IP (X;X ′)− 3ε/2]}

)
.|T (PY |XX′)|,
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N(PXX′) ≥ (1− 4δ2
n)e−2δn exp{n[2R− IP (X;X ′)− ε]}

]
(124)

≤ P
[∑

m

∑
m′ 6=m

I(m,m′)
∑

y∈T (PY |XX′ )

1{Zmm′(y) > (1− 4δ2
n)e−2δn

× exp{n[α(R+ 2ε, PXY ) + ε]}}
≥
(

exp{n[2R− IP (X;X ′)− ε]}

− exp{n[2R− IP (X;X ′)− 3ε/2]}
)
.|T (PY |XX′)|

]
(125)

=

∑
m

∑
m′ 6=m

∑
y∈T (PY |XX′ )

ζ(m,m′,y)

exp{n[2R− IP (X;X ′)− ε]}|T (PY |XX′)|
, (126)

where (126) follows from Markov’s inequality and

ζ(m,m′,y) , P
[
(Xm,Xm′) ∈ T (PXX′), Zmm′(y)

> (1− 4δ2
n)e−2δn exp{n[α(R+ 2ε, PY ) + ε]}

]
(127)

=
∑

(xm,xm′ )∈T (P
XX′ ):

d(xm,xm′ )>∆

P(xm,xm′)

× P
[
Zmm′(y) > (1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY ) + ε]}
∣∣Xm = xm,Xm′ = xm′

]
.

(128)

Here, (128) follows from the fact that P(xm,xm′) = 0 if
d(xm,xm′) < ∆ by Lemma 2.

Now, given a fixed pair (xm,xm′) such that d(xm,xm′) >
∆, define

P ∗X′|Y , arg max
PX′|Y

P
[
N(PX′|Y )

> (n+ 1)−|X||Y|(1− 4δ2
n)e−2δn exp{n[α(R+ 2ε, PY )

+ ε− g(PX′Y )]}
∣∣Xm = xm,Xm′ = xm′

]
, (129)

where

N(PX′|Y ) :=
∑

m̃6=m,m′
1
{

(Xm̃,y) ∈ T (PX̃Y )
}
. (130)

Then, we have

P
[
Zmm′(y) > (1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY ) + ε]}
∣∣Xm = xm,Xm′ = xm′

]
= P

[ ∑
m̃ 6=m,m′

exp{ng(P̂Xm̃,y)} > (1− 4δ2
n)e−2δn

× exp{n[α(R+ 2ε, PY ) + ε]}
∣∣Xm = xm,Xm′ = xm′

]
(131)

≤ P
[ ∑
PX′|Y

N(PX′|Y ) exp{ng(PX′Y )}

> (1− 4δ2
n)e−2δn

× exp{n[α(R+ 2ε, PY ) + ε]}
∣∣Xm = xm,Xm′ = xm′

]
(132)

= P
[ ∑
PX′|Y

N(PX′Y ) exp{ng(PX′Y )} > (1− 4δ2
n)e−2δn

× exp{n[α(R+ 2ε, PY ) + ε]}
∣∣Xm = xm,Xm′ = xm′

]
(133)

.
= max
PX′|Y

P
[
N(PX′|Y ) exp{ng(PX′Y )}

> (n+ 1)−|X||Y|(1− 4δ2
n)e−2δn

× exp{n[α(R+ 2ε, PY ) + ε]}
∣∣Xm = xm,Xm′ = xm′

]
(134)

= max
PX′|Y

P
[
N(PX′|Y ) > (n+ 1)−|X||Y|(1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY )

+ ε− g(PX′Y )]}
∣∣Xm = xm,Xm′ = xm′

]
(135)

= P
[
N(P ∗X′|Y ) > (n+ 1)−|X||Y|(1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY )

+ ε− g(P ∗X′Y )]}
∣∣Xm = xm,Xm′ = xm′

]
, (136)

where (136) follows from (129).
Now, for all m̃ ∈ [M ], observe that

P
[
(Xm̃,y) ∈ T (PX′Y )

]
=

∑
xm̃∈T (PX′|Y )

P(xm̃) (137)

=
|T (PX′|Y )

|T (QX)|
(138)

:= p, (139)

where (138) follows from Lemma [7, Lemma 4]. It is easy to
see that p does not depend on m̃.

Now, we consider two cases:
Case 1: IP∗(X ′;Y ) ≤ R+ 2ε. Then, we have

α(R+ 2ε, PY ) + ε− g(P ∗X′Y )

= max
P
X′|Y :P

X′=QX,

IP (X′;Y )≤R+2ε

(
g(PX′Y )− IP (X ′;Y )

)
+R+ 2ε− g(P ∗X′Y ) (140)
≥ g(P ∗X′Y )− IP∗(X ′;Y ) +R+ 2ε− g(P ∗X′Y ) (141)
= R+ 2ε− IP∗(X ′;Y ). (142)

On the other hand, if we let

γ ,
p

1− e−nδ
, (143)

we have

(M − 2)γ
.
=
en(R−IP∗ (X′;Y ))

1− e−nδ
(144)

It follows that

P
[
N(P ∗X′Y ) > (n+ 1)−|X||Y|(1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY )

+ ε− g(P ∗X′Y )]}
∣∣Xm = xm,Xm′ = xm′

]
.
≤ P

[
N(P ∗X′Y ) > (M − 2)γe2nε

∣∣Xm = xm,Xm′ = xm′
]

(145)
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where the last step follows from (144) and (142). Now, let
Zm̃ , 1{(Xm̃,y) ∈ T (PX′Y )}. Then, for all A ⊂ [M ] \
{m,m′}, under the condition (28), by Lemma 4, it holds that

E
[ ∏
m̃∈A

Zm̃
∣∣Xm = xm,Xm′ = xm′

]
=

∑
x1,x2,··· ,x|A|

∏
m̃∈A

1{(xm̃,y) ∈ T (PX′Y )}

× P
[ ⋂
m̃∈A
{Xm̃ = xm̃}

∣∣Xm = xm,Xm′ = xm′

]
. (146)

Now, observe that

P
[ ⋂
m̃∈A
{Xm̃ = xm̃}

∣∣Xm = xm,Xm′ = xm′

]

=
P
(⋂

m̃∈A∪{m,m′}{Xm̃ = xm̃}
)

P
(
Xm = xm,Xm′ = xm′

) (147)

≤ 1

(1− e−δn)|A|+2

(
1

|T (QX)||A|+2

)
|T (QX)|2

1− 4δ2
n

e2δn (148)

where (148) follows from Lemma 4 and Lemma 2 with noting
that d(xm,xm′) > ∆.

Hence, it holds that

E
[ ∏
m̃∈A

Zm̃
∣∣Xm = xm,Xm′ = xm′

]
≤
(

e2δn

1− 4δ2
n

)(
1

(1− e−δn)|A|+2

)
×

∑
x1,x2,··· ,x|A|

∏
m̃∈A

P[Xm̃ = xm̃]

×
∏
m̃∈A

1{(xm̃,y) ∈ T (PX′Y )} (149)

=

(
e2δn

1− 4δ2
n

)(
1

(1− e−δn)|A|+2

) ∏
m̃∈A

∑
xm̃

P[Xm̃ = xm̃]

× 1{(xm̃,y) ∈ T (PX′Y )} (150)

=

(
e2δn

1− 4δ2
n

)(
1

(1− e−δn)|A|+2

)
×
∏
m̃∈A

P
[
(Xm̃,y) ∈ T (PX′Y )

]
(151)

.
=

(
p

1− e−δn

)|A|
, (152)

where (149) follows from Lemma 4 (under the condition (28)).
Hence, by applying Lemma 20, we have

P
[
N(P ∗X′Y ) > (M − 2)γe2nε

∣∣Xm = xm,Xm′ = xm′
]

.
≤ exp

{
− enRD(e−na‖e−nb)

}
(153)

where D(p‖q) is the relative entropy between two Bernouilli
distributions, with success probability p, q, respectively, and
a , IP∗(X

′;Y ) − 2ε + (1/n) log(1 − e−nδ) and b ,
IP∗(X

′;Y ) + (1/n) log(1 − e−nδ). Since b − a = 2ε, by
using the following fact [30, Sec. 6.3]:

D(a‖b) ≥ a log
a

b
+ b− a, (154)

we have

D
(
e−an‖e−bn

)
≥ e−bn

[
1 + e(b−a)n((b− a)n− 1)

]
(155)

.
= e−nIP∗ (X′;Y )e2nε2nε. (156)

From (153) and (156), for any pair (xm,xm′) such that
d(xm,xm′) > ∆, we obtain

P
[
N(P ∗X′Y ) > (M − 2)γe2nε

∣∣Xm = xm,Xm′ = xm′
]

.
≤ exp

{
− en(R−IP∗ (X′;Y ))e2nε2nε

}
(157)

≤ exp
{
− e−2nεe2nε2nε

}
(158)

= exp
{
− 2nε

}
, (159)

where (158) follows from the condition IP∗(X ′;Y ) ≤ R+2ε.
Case 2: IP∗(X ′;Y ) > R + 2ε. For this case, for any pair

(xm,xm′) such that d(xm,xm′) > ∆, we have

P
[
N(P ∗X′Y ) > (n+ 1)−|X||Y|(1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY )

+ ε− g(P ∗X′Y )]}
∣∣Xm = xm,Xm′ = xm′

]
≤ P

[
N(P ∗X′Y ) ≥ 1

∣∣Xm = xm,Xm′ = xm′
]

(160)

≤ E[N(P ∗X′Y )
∣∣Xm = xm,Xm′ = xm′ ] (161)

=
∑

m̃ 6=m,m′
P
(
(Xm̃,y) ∈ T (PX′Y )

∣∣Xm = xm,Xm′ = xm′
)
,

(162)

where (160) follows from the fact that N(P ∗X′Y ) ∈ Z+, and
(161) follows from the Markov’s inequality.

Now, by using (148) with A = {m̃}, we have

P
[
{Xm̃ = xm̃}

∣∣Xm = xm,Xm′ = xm′

]
≤ 1

(1− e−δn)3

(
1

|T (QX)|3

)
|T (QX)|2

1− 4δ2
n

e2δn (163)

.
=

1

|T (QX)|
. (164)

From (162) and (164), for any pair (xm,xm′) such that
d(xm,xm′) > ∆, we obtain

P
[
N(P ∗X′Y ) > (n+ 1)−|X||Y|(1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY )

+ ε− g(P ∗X′Y )]}
∣∣Xm = xm,Xm′ = xm′

]
.
≤ (M − 2)p (165)
.
= en(R−IP∗ (X′;Y )) (166)

≤ e−2nε, (167)

where (166) follows from (139), and (167) follows from
condition IP∗(X ′;Y ) > R+ 2ε.

From (159) and (167), for any pair (xm,xm′) such that
d(xm,xm′) > ∆, we have

P
[
N(P ∗X′Y ) > (n+ 1)−|X|(1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY )

+ ε− g(P ∗X′Y )]}
∣∣Xm = xm,Xm′ = xm′

]
≤ e−2nε. (168)
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From (136) and (168), we obtain

P
[
Zmm′(y) > (1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY ) + ε]}
∣∣Xm = xm,Xm′ = xm′

]
.
≤ e−2nε (169)

where the constant in
.
≤ does not depends on xm,xm′ .

It follows from (128) and (169) that

P
[
(Xm,Xm′) ∈ T (PXX′), Zmm′(y) > (1− 4δ2

n)e−2δn

× exp{n[α(R+ 2ε, PY ) + ε]}
]

.
≤

∑
(xm,xm′ )∈T (P

XX′ )
d(xm,xm′ )>∆

P(xm,xm′)e
−2nε (170)

≤
∑

(xm,xm′ )∈T (P
XX′ )

d(xm,xm′ )>∆

(
1

1− e−nδ

)2
1

|T (QX)|2
e−2nε (171)

.
≤ e−nIP (X;X′)e−2nε, (172)

where (171) follows from Lemma 4. By combining (126) and
(172), we obtain

P
[
Gcn(PY |XX′) ∩ Ec(PXX′)

] .
≤ e−2nε. (173)

On the other hand, by Lemma 6, we also have

Pr[Ec(PXX′)]→ 1. (174)

Now, for any fixed joint-type PXX′ ∈ Q(QX) such that
IP (X;X ′) < 2R− ε, define

Fn(PXX′) ,
⋂

PY |XX′

{
Gn(PY |XX′) ∩ Ec(PXX′)

}
. (175)

Then, from (173) and (174), for any fixed joint-type PXX′ ∈
Q(QX) such that IP (X;X ′) < 2R− ε, we have

P[Fcn(PXX′)]

= P
[ ⋃
PY |XX′

{Gcn(PY |XX′) ∩ Ec(PXX′)} ∪ E(PXX′)

]
(176)

≤ P
[ ⋃
PY |XX′

{Gcn(PY |XX′) ∩ Ec(PXX′)}
]

+ P[E(PXX′)]

(177)

≤
∑

PY |XX′

P
[
Gcn(PY |XX′) ∩ Ec(PXX′)

]
+ P[E(PXX′)]

(178)
.
≤ |T (PY |XX′)|e−2nε + o(1) (179)
→ 0, (180)

which leads to P[Fn(PXX′)]→ 1 as n→∞.
Now, for a given code cn ∈ Fn(PXX′), define

V(cn, PY |XX′) = {(m,m′,y) : Zmm′(y)

≤ exp[n(α(R+ 2ε, PY ) + ε)]}, (181)

and

Vm,m′(cn, PY |XX′) = {y : (m,m′,y) ∈ V(cn, PY |XX′)}.
(182)

Then, by definition of Gn(PY |XX′) in (122), for any fixed
joint type PXX′ ∈ Q(QX) such that IP (X;X ′) < 2R − ε
and d(PXX′) > ∆, and for any cn ∈ Fn(PXX′), it holds that∑
m,m′

1{(xm,xm′) ∈ T (PXX′)}

×
|T (PY |XX′) ∩ Vm,m′(cn, PY |XX′)|

|T (PY |XX′)|
≥ (1− 4δ2

n)e−2δn exp
[
n(2R− IP (X;X ′)− 3ε/2)

]
.

(183)

Now, let

P ∗XX′ := arg min
P
XX′ :PX′=PX,

IP (X;X′)≤2R,d(P
XX′ )>∆

{
Γ(PXX′ , R)

+ IP (X;X ′)−R
}
. (184)

Then, for any ρ > 1, we have

E[(Pe(Cn))1/ρ]

= E
[(

1

M

∑
m

∑
m′ 6=m

∑
y

W (y|Xm)

×
exp{ng(P̂Xm′y)}

exp{ng(P̂Xmy)}+ exp{ng(P̂Xm′y)}+ Zmm′(y)

)1/ρ]
(185)

=
∑
Cn

P[Cn]

(
1

M

∑
m

∑
m′ 6=m

∑
y

W (y|xm)

×
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂xm′y)}+ Zmm′(y)

)1/ρ

(186)

=
∑
Cn

P[Cn]

(
1

M

∑
PXX′∈Q(QX)

∑
m

∑
m′ 6=m

1{(xm,xm′) ∈ T (PXX′)}

×
∑

PY |XX′

∑
y∈T (PY |XX′ )

W (y|xm)

×
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂xm′y)}+ Zmm′(y)

)1/ρ

(187)

=
∑
Cn

P[Cn]

(
1

M

∑
PXX′∈Q(QX)

∑
m

∑
m′ 6=m

1{(xm,xm′) ∈ T (PXX′)}

×
∑

PY |XX′

∑
y∈T (PY |XX′ )

W (y|xm)

×
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂xm′y)}+ Zmm′(y)

)1/ρ

(188)

≥
∑

Cn∈Fn(P∗
XX′ )

P[Cn]

(
1

M

∑
m

∑
m′ 6=m

1{(xm,xm′) ∈ T (P ∗XX′)}

×
∑

PY |XX′

∑
y∈T (PY |XX′ )∩Vm,m′ (Cn,PY |XX′ )

W (y|xm)
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×
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂xm′y)}+ Zmm′(y)

)1/ρ

(189)

.
=

∑
Cn∈Fn(P∗

XX′ )

P[Cn]

(
1

M

∑
PY |XX′

∑
m

∑
m′ 6=m

1{(xm,xm′) ∈ T (P ∗XX′)}

×
|T (PY |XX′) ∩ Vm,m′(Cn, PY |XX′)|

|T (PY |XX′)|

× exp

{
− n[D(PY |X‖W |QX)] + IP (X ′;Y |X)

+ [max{g(PXY ), α(R+ 2ε, PY ) + ε} − g(PX′Y )]+

})1/ρ

(190)

≥
∑

Cn∈Fn(P∗
XX′ )

P[Cn]

(
1

M

∑
PY |XX′

(1− 4δ2
n)e−2δn

× exp
[
n(2R− IP∗(X;X ′)− 3ε/2)

]
× exp

{
− n[D(PY |X‖W |QX)] + IP (X ′;Y |X)

+ [max{g(PXY ), α(R+ 2ε, PY ) + ε} − g(PX′Y )]+

})1/ρ

(191)

.
= P[Fcn(P ∗XX′)]

( ∑
PY |XX′

(1− 4δ2
n)e−2δn

× exp
[
n(R− IP∗(X;X ′)− 3ε/2)

]
× exp

{
− n[D(PY |X‖W |QX)] + IP (X ′;Y |X)

+ [max{g(PXY ), α(R+ 2ε, PY ) + ε} − g(PX′Y )]+

})1/ρ

(192)

.
= P[Fcn(P ∗XX′)]

(
exp

[
n(R− IP∗(X;X ′)− 3ε/2)

]
× exp[−nΓ(PXX′ , R+ 2ε)]

)1/ρ

, (193)

where (188) follows from Tonelli’s theorem [31], (190) follows
from (169), and (191) follows from (183), (193) follows from
δn → 0 and the definition of Γ(PXX′ , R).

From (193), it follows that

Ergv
trc (R,QX , d,∆)

= − 1

n
lim
ρ→∞

ρ log
(
E[Pe(Cn)1/ρ]

)
≤ Γ(P ∗XX′ , R) + IP∗(X;X ′)−R+O(ε) (194)

= min
P
XX′ :PX′=PX,

IP (X;X′)≤2R,d(P
XX′ )>∆

{
Γ(PXX′ , R)

+ IP (X;X ′)−R
}

+O(ε) (195)

for any ε > 0. By taking ε → 0, we obtain (120). This
concludes the proof of Proposition 2.

V. CONCENTRATION PROPERTIES

In this section, we study the concentration properties of the
RGV ensemble with GLD. In particular, we study the lower
tail P

[
− 1
n logPe(Cn) ≤ E0

]
and derive both upper and lower

bounds. We show that both bounds exhibit an exponential
decay. We also derive upper and lower bounds to the upper
tail P

[
− 1

n logPe(Cn) ≥ E0

]
. We show that the upper tail

exhibits a doubly-exponential behavior.

A. Lower Tail

In this section, we derive exponential upper and lower
bounds to the lower tail probability. Before proceeding, we
define the following sets

L(R,E0) , {PXX′ ∈ Q(QX) : d(PXX′) > ∆,

[2R− IP (X;X ′)]+ ≥ Γ(PXX′ , R) +R− E0},
(196)

M(R,E0) ,
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆,

[2R− IP (X;X ′)]+ ≥ Λ(PXX′ , R) +R− E0

}
(197)

where

Λ(PXX′ , R) = min
PY |XX′

{
D(PY |X‖W |QX) + IP (X ′;Y |X)

+ β(R,PY )− g(PX′Y )
}
, (198)

β(R,PY ) = max
PX̃|Y :PX̃=QX

{
g(PX̃Y ) + [R− IP (X̃;Y )]+

}
.

(199)

We have the following result.
Theorem 2: Consider the ensemble of RGV codes Cn of

rate R and composition QX satisfying condition (28). Then,
it holds that

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≤ exp

{
− nEub

lt (R,E0)
}
, (200)

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≥ exp

{
− nElb

lt (R,E0)
}
. (201)

where

Eub
lt (R,E0) , min

PXX′∈L(R,E0)
[IP (X;X ′)− 2R]+, (202)

Elb
lt (R,E0) , min

PXX′∈M(R,E0)
[IP (X;X ′)− 2R]+, (203)

respectively.
Before proceeding with the proof, we discuss an example

in Figure 2 where the lower tail bounds are shown for the Z-
channel with crossover probability w = 0.001 and R = 0.2.
In particular, we show the lower tail upper and lower bounds
on the tail exponent for constant composition and for the RGV
ensemble with d(PXX′) = −IP (X;X ′) and ∆ = −R. The
numerical results show that Eub

lt = Elb
lt for the both constant

composition and RGV ensembles. This can be explained by
the fact that there is only one empirical channel PX′Y for
each output type PY for this case [20, p. 5046]. Hence,
[max{g(PXY ), α(R,PY )} − g(PX′Y )] = [R − I(q)]+ =
β(R,PY ) − g(PX′Y ), which leads to Λ = Γ for any R
and crossover probability. Fig. 2 illustrates that the lower tail
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for the RGV code ensemble decays faster than that for the
constant composition ensemble. This can be explained by the
the fact that at R = 0.2 the typical error exponent of the
RGV ensemble is higher than that for constant composition
(see Figure 1).
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Fig. 2: Lower tail exponents for constant composition and
RGV codes for the Z-channel.

1) Proof of the Lower Tail Upper Bound: Let

Bε(m,y) =
{
Cn : Zm(y) ≤ exp{nα(R− ε, P̂y)}

}
, (204)

and

Bε ,
M⋃
m=1

⋃
y

Bε(m,y). (205)

Then, under the condition (28), by Lemma 14, we have

P
{
Bε(m,y)

}
≤ exp

{
− enε

[
1− e−n(ε+δ)

1− e−nδ
− e−nε(1 + nε)

]}
. (206)

Hence, by the union bound, we have

P{Bε}

≤
M∑
m=1

∑
y

P
{
Bε(m,y)

}
(207)

≤
M∑
m=1

∑
y

exp

{
− enε

[
1− e−n(ε+δ)

1− e−nδ
− e−nε(1 + nε)

]}
(208)

≤ enR|Y|n exp

{
− enε

[
1− e−n(ε+δ)

1− e−nδ
− e−nε(1 + nε)

]}
(209)

where (208) follows from (206), which decays double-
exponentially fast.

Now, by using the same arguments as [15, Proof of Theorem
1], we have

P
[
− 1

n
logPe(Cn) ≤ E0

]
≤ P

[
Cn ∈ Bcε,

1

M

M∑
m=1

∑
m′ 6=m

e−nΓ(P̂Xm,Xm′
,R−ε) ≥ e−nE0

]
+ P{Bε} (210)

.
≤ P

[
1

M

M∑
m=1

∑
m′ 6=m

e−nΓ(P̂Xm,Xm′
,R−ε) ≥ e−nE0

]
(211)

= P
[

1

M

M∑
m=1

∑
m′ 6=m

e−nΓ(P̂Xm,Xm′
,R−ε)

× 1
{
d(Xm,Xm′) > ∆

}
≥ e−nE0

]
(212)

= P
[ ∑
PXX′∈Q(QX):d(PXX′ )>∆

N(PXX′)

× exp
{
− nΓ(PXX′ , R− ε)

}
≥ en(R−E0)

]
(213)

.
= max
PXX′∈Q(QX):d(PXX′ )>∆

P
[
N(PXX′) ≥

exp{n(Γ(PXX′ , R− ε) +R− E0)}
]

(214)

where (210) follows from [15, Eq. (60)], and (212) follows
from the fact that all codes Cn in the RGV ensemble satisfy
d(xm,xm′) > ∆ for all m 6= m′.

Now, define

Sε(R,E0) ,
{
PXX′ ∈ Q(QX) : [2R− IP (X;X ′)]+

≥ Γ(PXX′ , R− ε) +R− E0

}
. (215)

Then, from (214) and Lemma 10, under the condition 28, we
obtain

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≤ e−nE

ub
lt (R,E0,ε), (216)

where

Eub
lt (R,E0, ε)

, min
PXX′ :d(PXX′ )>∆

{
[IP (X;X ′)− 2R]+, PXX′ ∈ Sε(R,E0)

+∞, otherwise
(217)

= min
PXX′∈Sε(R,E0):d(PXX′ )>∆

[IP (X;X ′)− 2R]+, (218)

with the convention that the minimum over an empty set is
defined as infinity. Since ε can take any positive value, from
(216) and (218), we obtain (201). This concludes our proof of
the upper bound in Theorem 2.

2) Proof of the Lower Tail Lower Bound: The proof follows
similar arguments as [15, Section B]. For the RGV ensemble,
however, existing techniques to lower bound on the probability
of the lower tail for the constant composition codes cannot be
applied. For example, due to the dependence among code-
words, key proposition [15, Prep. 4] can no longer be applied.
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We develop new techniques to deal with the dependence
among codewords.

For a given (m,m′) ∈ [M ]2∗, and y ∈ Yn, define

Zm,m′(y) =
∑

m̃∈{1,2,··· ,M}\{m,m′}

exp
{
ng(P̂Xm̃,y)

}
. (219)

Let σ > 0 and define the set

B̂n(σ,m,m′,y)

=
{
Cn : Zmm′(y) ≥ exp{n(β(R, P̂y) + σ)}

}
, (220)

and its complement Ĝn(σ,m,m′,y) = B̂cn(σ,m,m′,y),
where β(R,PY ) is defined in (199). Let

B̂n(σ) =

M⋃
m=1

⋃
m′ 6=m

⋃
y

B̂n(σ,m,m′,y), (221)

and

Ĝn(σ) = B̂cn(σ). (222)

Let ε > 0 and define

Λ̃(PXX′ , R, ε) = min
PY |XX′

{
D(PY |X‖W |QX) + IP (X ′;Y |X)

+ [max{g(PXY ), β(R,PY ) + ε} − g(PX′Y )]+
}
.

(223)

Then, we have

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≥ P

[
Cn ∈ Ĝn(ε),

1

M

M∑
m=1

∑
m′ 6=m

e−nΛ̃(P̂X
m′ ,Xm

,R,ε)

≥ e−nE0

]
(224)

= P
[
Cn ∈ Ĝn(ε),

1

M

M∑
m=1

∑
m′ 6=m

d(Xm,Xm′ )>∆

e−nΛ̃(P̂X
m′ ,Xm

,R,ε)

≥ e−nE0

]
, (225)

where (224) follows from [15, Eq. (83)], and (225) follows
from the fact that d(xm,xm′) > ∆ for any RGV code.

On the other hand, we also have

Λ̃(PXX′ , R, ε) = Λ(PXX′ , R) + ε. (226)

Hence, from (225) and (226), we obtain

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≥ P

[
Ĝn(ε) ∩ G0

]
, (227)

where

G0 =

{
Cn :

M∑
m=1

∑
m′ 6=m

d(Xm,Xm′ )>∆

e−nΛ̃(P̂X
m′ ,Xm

,R,ε)

≥ en(R−E0)

}
. (228)

It then follows that

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≥ P

[
Ĝn(ε) ∩ G0

]
(229)

= P[G0]− P
[
G0 ∩ B̂n(ε)

]
(230)

≥ P[G0]−
M∑
m=1

∑
m′ 6=m

∑
y

P
[
B̂n(ε,m,m′,y) ∩ G0

]
. (231)

Now, observe that

P[G0]

= P
[ ∑
P
XX′∈Q(QX ):

d(P
XX′ )>∆

N(PXX′)e
−n(Λ(PXX′ ,R)+ε)

≥ en(R−E0)

]
(232)

.
=

∑
P
XX′∈Q(QX ):

d(P
XX′ )>∆

P
[
N(PXX′) ≥ en(Λ(PXX′ ,R)+R−E0+ε)

]
.

(233)

Define the set S ′ε(R,E0) = {PXX′ : [2R − IP (X;X ′)]+ ≥
Λ(PXX′ , R) +R− E0 + ε}.

Then, under condition (28), by Proposition 10, it holds that

P[G0]
.
= exp{−nElb

lt (R,E0, ε)}, (234)

where

Elb
lt (R,E0, ε)

= min
P
XX′∈Q(QX ):

d(P
XX′ )>∆

{
[IP (X;X ′)− 2R]+ PXX′ ∈ S ′ε(R,E0)

+∞ PXX′ /∈ S′ε(R,E0)

(235)
= min

P
XX′∈{PXX′∈Q(QX ):

d(P
XX′ )>∆}∩S′ε(R,E0)

[IP (X;X ′)− 2R]+. (236)

Now, we study the second term in (231). For any joint type
PXY ∈ Pn(X × Y), define

Ny(PXY ) ,
∑

m̃∈[M ]\{m̂,m̈}

1
{

(Xm̃,y) ∈ T (PXY )
}
. (237)

Then, we have

P
[
B̂n(ε, m̂, m̈,y) ∩ G0

]
= P

[ ∑
m̃∈[M ]\{m̂,m̈}

eng(P̂Xm̃,y
) ≥ en(β(R,P̂y)+ε),

M∑
m=1

∑
m′ 6=m

e−n(Λ(P̂xm̃,xm
,R)+ε) ≥ en(R−E0)

]
(238)

≤ P
[ ∑
m̃∈[M ]\{m̂,m̈}

eng(P̂Xm̃,y
) ≥ en(β(R,P̂y)+ε)

]
(239)

≤ P
[ ∑
PXY :PX=QX

Ny(PXY )eng(PXY ) ≥ en(β(R,P̂y)+ε)

]
(240)
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.
≤

∑
PXY :PX=QX

P
[
Ny(PXY ) ≥ en(β(R,P̂y)−g(PXY )+ε)

]
(241)

≤
∑

PXY :PX=QX

P
[
Ny(PXY ) ≥ en([R−IP (X;Y )]++ε)

]
(242)

=
∑

PXY :PX=QX

P
[ ∑
m̃∈[M ]\{m̂,m̈}

1
{

(Xm̃,y) ∈ T (PXY )
}

≥ en([R−IP (X;Y )]++ε)

]
(243)

=
∑

PXY :PX=QX ,IP (X;Y )>0

P
[ ∑
m̃∈[M ]\{m̂,m̈}

1
{

(Xm̃,y) ∈ T (PXY )
}
≥ en([R−IP (X;Y )]++ε)

]
,

(244)

where (242) follows from (199), and (244) follows from

P
[ ∑
m̃∈[M ]\{m̂,m̈}

1
{

(Xm̃,y) ∈ T (PXY )
}

≥ en([R−IP (X;Y )]++ε)

]
= 0 (245)

if IP (X;Y ) = 0.
Now, in order to bound P

[∑
m̃∈[M ]\{m̂,m̈} 1

{
(Xm̃,y) ∈

T (PXY )
}
≥ en([R−IP (X;Y )]++ε)

]
for each joint type PXY

such that PX = QX , we will use the following lemma.
Lemma 15: [32, Lemma 1.8] Suppose that X1, X2, · · · , Xn

are random variables such that 0 ≤ Xi ≤ 1, for i =
1, 2, · · · , n. Set p = 1

n

∑
i E[Xi] and fix a real number t such

that np+1 < t < n. If ε0 > 0 is such that t−1 = np(1+ε0),
then

P
[ n∑
i=1

Xi ≥ t
]
≤ 2e−nD(p(1+ε0)‖p). (246)

More specifically, for any m̃ ∈ [M ] \ {m̂, m̈}, observe that

E
[
1
{

(Xm̃,y) ∈ T (PXY )
}]

= P
[
(Xm̃,y) ∈ T (PXY )

]
(247)

=
∑

xm̃∈T (QX):(xm̃,y)∈T (PXY )

P(xm̃) (248)

=
∑

xm̃∈T (QX):(xm̃,y)∈T (PXY )

1

|T (QX)|
(249)

.
= e−nIP (X;Y ), (250)

where (249) follows from 3, and (250) follows from [29].
It follows from (250) that

p ,
1

M − 2

∑
m̃∈[M ]\{m̂,m̈}

E
[
1
{

(Xm̃,y) ∈ T (PXY )
}]
(251)

.
= e−nIP (X;Y ). (252)

Now, there exists a δ(ε) < ε such that min{IP (X;Y ) :
IP (X;Y ) > 0} > δ(ε). Then, we have∑

PXY :PX=QX ,IP (X;Y )>0

P
[ ∑
m̃∈[M ]\{m̂,m̈}

1
{

(Xm̃,y) ∈ T (PXY )
}

≥ en([R−IP (X;Y )]++ε)

]
≤

∑
PXY :PX=QX ,IP (X;Y )>0

P
[ ∑
m̃∈[M ]\{m̂,m̈}

1
{

(Xm̃,y) ∈ T (PXY )
}

≥ en([R−IP (X;Y )]++δ(ε))

]
. (253)

By applying Lemma 15 for the sequence of Bernoulli
random variables {

{
(Xm̃,y) ∈ T (PXY )

}
m̃∈[M ]\{m̂,m̈} with

t = en([R−IP (X;Y )]++δ(ε)), we obtain

P
[ ∑
m̃∈[M ]\{m̂,m̈}

1
{

(Xm̃,y) ∈ T (PXY )
}

≥ en([R−IP (X;Y )]++δ(ε))

]
≤̊ exp

{
−MD

(
en([R−IP (X;Y )]+−R+δ(ε))‖e−nIP (X;Y )

)}
(254)

≤̊ exp
{
− en([R−IP (X;Y )]++δ(ε))

}
(255)

for any joint type PXY ∈ Pn(X × Y) such that PX = QX ,
where (255) follows from the fact that D(a‖b) ≥ a

(
log a

b−1
)

[33].
It follows from that

P
[
B̂n(ε, m̂, m̈,y) ∩ G0

]
≤̊ max

PXY
exp

{
− en([R−IP (X;Y )]++δ(ε))

}
(256)

≤̊ exp
{
− enδ(ε)

}
. (257)

From (231), (234), and (257), we finally obtain

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≥ exp

{
− nElb

lt (R,E0, ε)
}
−

M∑
m=1

∑
m′ 6=m

∑
y

exp
{
− enδ(ε)

}
(258)

.
= exp

{
− nElb

lt (R,E0, ε)
}
− e2nR|Y|n exp

{
− enδ(ε)

}
(259)

.
= exp

{
− nElb

lt (E,E0, ε)
}
. (260)

Due to the arbitrariness of ε > 0, it follows that

P
[
− 1

n
logPe(Cn) ≤ E0

]
.
≥ exp{−nElb

lt (R,E0)}, (261)

which proves the lower bound of Theorem 2.
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B. Upper Tail

In this section, we derive double-exponential upper and
lower bounds to the upper tail probability. First, we intro-
duce some new notation which will be used throughout this
section. Recall the definitions of A1 and A2 in (65) and (66),
respectively. Let

V(R,E0) =
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆,

IP (X;X ′) ≤ 2R,Λ(PXX′ , R) + IP (X;X ′)−R ≤ E0

}
,

(262)

U(R,E0) =
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆,

IP (X;X ′) ≤ 2R,Γ(PXX′ , R) + IP (X;X ′)−R ≤ E0

}
.

(263)

and

A3 =
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆, IP (X;X ′) ≤ 2R,

Γ(PXX′ , R− ε) + IP (X;X ′)−R > E0 + ε
}
. (264)

Theorem 3: Consider the RGV ensemble Cn of rate R and
composition QX satisfying condition (28). Assume that the
conditions in Lemma 11 hold for D = Ṽ(R,E0, σ). Then, the
upper tail can be bounded as

P
[
− 1

n
logPe(Cn) ≥ E0

]
≤̊ exp

{
− exp

{
nEub

ut (R,E0)
}}

(265)

where

Eub
ut (R,E0) = max

PXX′∈V(R,E0)
min

{
2R− IP (X;X ′),

E0 − Λ(PXX′ , R)− IP (X;X ′) +R,R
}
. (266)

In addition, under the conditions

max
PXX′∈A3

IP (X;X ′) ≤ min
PXX′∈A2

IP (X;X ′) (267)

min
PXX′ :d(PXX′ )≤∆

IP (X;X ′) ≥ max
PXX′ :d(PXX′ )>∆

IP (X;X ′),

(268)

we have that

P
[
− 1

n
logPe(Cn) ≥ E0

]
≥̊ exp

{
− exp

{
nElb

ut(R,E0)
}}

(269)

for all E0 < Eex(R,QX), where

Elt
ut(R,E0) = max

PXX′∈U(R,E0)

{
2R− IP (X;X ′)}. (270)

In Figure 3 we show the double-exponential bounds for the
upper tail for constant composition and the RGV ensemble
with d(PXX′) = −IP (X;X ′) and ∆ = −R for R = 0.2.
We observe that for constant composition the decay is indeed
double-exponential even if the bounds only coincide for high
values of E0 (above the TRC exponent). Instead, for the RGV
ensemble, the bound Elt

ut(R,E0) = 0 for values of E0 of
interest. This implies that the decay of the upper tail for
Ecc

trc ≤ E0 ≤ Ecc
ex is sub-double-exponential; for E0 > Eex the

behavior of the upper tail is double-exponential as suggested
by Eut

ut for the RGV ensemble. Figure. 3 also shows that
the decay rate of RGV code is slower than the constant

composition code. This can be explained by the the fact that
the error probability in RGV code is expected to be smaller
than the constant composition codes since the later is more
structured as in the Fig. 2.
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Fig. 3: Upper tail exponents for constant composition and
RGV codes for the Z-channel.

1) Proof of the Upper Tail Upper Bound: The proof is
based on [15, Proof of Theorem 2] with important changes
to account for the dependency among codewords in the RGV
codebook ensemble. See also the proofs of Lemma 11 and
Lemma 16 below for specific changes.

Lemma 16: For every σ > 0, under condition (28) the
following holds

P
{
B̂n(σ)

}
≤̊ exp{−enσ} (271)

where B̂n(σ) has been defined in (221).
Proof: See Appendix L.

We start by defining the following set

Ṽ(R,E0, σ)

,
{
PXX′ ∈ Q(QX) : d(PXX′) > ∆, IP (X;X ′) ≤ 2R,

Λ̃(PXX′ , R, σ) + IP (X;X ′)−R ≤ E0 − ε
}

(272)

for σ > 0, ε > 0, where Λ̃(PXX′ , R, ε) was defined in (223).
Under condition (28), we have that

E[N(PXX′)]

= E
[ ∑

(m,m′)∈[M ]2∗

1{(Xm,Xm′) ∈ T (PXX′)}
]

(273)

=
∑

(m,m′)∈[M ]2∗

P
[
(Xm,Xm′) ∈ T (PXX′)

]
(274)

=
∑

(m,m′)∈[M ]2∗

∑
xm,xm′∈T (PXX′ )

P
(
xm,xm′

)
(275)

.
= en(2R−IP (X;X′)), (276)

where (276) follows from Lemma 2.
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For a given message pair m,m′ ∈ [M ]2∗, and y ∈ Yn, recall
the definitions of Zm,m′(y), B̂n(σ), and Ĝn(σ) in (219), (221),
and (222), respectively. Then, we have

P
[
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

]
(277)

≤ P
[
Cn ∈ Ĝn(σ),

1

M

M∑
m=1

∑
m′ 6=m

∑
y

W (y|Xm)

× eng(P̂X
m′y

)

eng(P̂Xmy) + eng(P̂X
m′y

) + Zmm′(y)
≤ e−nE0

]
(278)

= P
[
Cn ∈ Ĝn(σ),

1

M

M∑
m=1

∑
m′ 6=m:d(Xm,Xm′ )>∆

∑
y

W (y|Xm)
eng(P̂X

m′y
)

eng(P̂Xmy) + eng(P̂X
m′y

) + Zmm′(y)
≤ e−nE0

]
(279)

≤̊ min
PXX′∈Ṽ(R,E0,σ)

P
[
N(PXX′) ≤ en(Λ̃(PXX′ ,R,σ)+R−E0)

]
(280)

≤̊ min
PXX′∈Ṽ(R,E0,σ)

P
[
N(PXX′) ≤ en

(
2R−IP (X;X′)−ε

)]
(281)

≤̊ min
pXX′∈Ṽ(R,E0,σ)

exp
{
−min

(
en(2R−IP (X;X′)), enR

)}
(282)

where (278) follows from (11), (279) follows from the fact that
d(Xm,Xm′) > ∆ with probability 1 by the RGV random
codebook generation, (280) follows the same arguments to
achieve [15, Eq. (146)], (281) follows from (272), and (282)
follows from (276) and Lemma 11.

It follows from (282) that for σ > 0,

P
[
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
≤̊ exp

{
− exp

{
nE1(R,E0, σ)

}}
, (283)

where

E1(R,E0, σ) = max
PXX′∈Ṽ(R,E0,σ)

min{2R− IP (X;X ′), R}.

(284)

Therefore, we have

P
[
− 1

n
logPe(Cn) ≥ E0

]
= P

[
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

]
+ P

[
Cn ∈ Ĝcn(σ),− 1

n
logPe(Cn) ≥ E0

]
(285)

= P
[
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

]
+ P

[
Cn ∈ B̂n(σ),− 1

n
logPe(Cn) ≥ E0

]
(286)

≤ P
[
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

]

+ P
[
Cn ∈ B̂n(σ)

]
(287)

≤̊ exp
{
− exp

{
nE1(R,E0, σ)

}}
+ exp{−enσ} (288)

where (286) follows from B̂n(σ) = Ĝcn(σ), (288) follows from
Lemma 16 and (283).

Finally, by using the same arguments as to obtain [15,
Eq. (175)] from [15, Eq. (153)], from (288), we obtain

P
[
− 1

n
logPe(Cn) ≥ E0

]
≤̊ exp

{
− enE

ub
ut (R,E0)

}
,

(289)

which concludes our proof of the upper bound on the upper
tail.

2) Proof of the Upper Tail Lower Bound: Let

Bε(m,y) =
{
Cn : Zm(y) ≤ exp{nα(R− ε, P̂y)}

}
, (290)

and

Bε ,
M⋃
m=1

⋃
y

Bε(m,y). (291)

Then, under condition (28), by Lemma 14 and the union
bound, we have

P{Bε}

≤ enR|Y|n exp

{
− enε

[
1− e−n(ε+δ)

1− e−nδ
− e−nε(1 + nε)

]}
.

(292)

Now, define Gε(m,y) = Bcε(m,y) and Gε = Bcε.
Recall the definition of Zm(y) in (98). We have that

P
[
− 1

n
logPe(Cn) ≥ E0

]
= P

[
1

M

M∑
m=1

∑
m′ 6=m

∑
y

W (y|Xm)

×
exp{ng(P̂Xm′y)}

exp{ng(P̂Xmy)}+ Zm(y)
≤ e−nE0

]
(293)

= P
[

1

M

M∑
m=1

∑
m′ 6=m:d(Xm,Xm′ )>∆

∑
y

W (y|Xm)

×
exp{ng(P̂Xm′y)}

exp{ng(P̂Xmy)}+ Zm(y)
≤ e−nE0

]
(294)

≥ P
[

1

M

M∑
m=1

∑
m′ 6=m:d(Xm,Xm′ )>∆

∑
y

W (y|Xm)

×
exp{ng(P̂Xm′y)}

exp{ng(P̂Xmy)}+ Zm(y)
≤ e−nE0 , Cn ∈ Gε

]
(295)

≥̊ P
[

1

M

M∑
m=1

∑
m′ 6=m:d(P̂Xm,Xm′

)>∆

exp
{
− nΓ(P̂Xm,Xm′ , R− ε)

}
≤ e−nE0 , Cn ∈ Gε

]
,

(296)
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where (294) follows from the fact that mini 6=j d(xi,xj) > ∆
for all RGV code (x1,x2, · · · ,xM ), and (296) follows from
the same arguments to obtain [15, Eq. (178)].

Now, define

E0 ,

{
1

M

M∑
m=1

∑
m′ 6=m:d(P̂Xm,Xm′

)>∆

exp
{
− nΓ(P̂Xm,Xm′ , R− ε)

}
≤ e−nE0

}
. (297)

Then, we have

P
[

1

M

M∑
m=1

∑
m′ 6=m:d(P̂Xm,Xm′

)>∆

exp
{
− nΓ(P̂Xm,Xm′ , R− ε)

}
≤ e−nE0 , Cn ∈ Gε

]
= P

[
Cn ∈ E0, Cn ∈ Gε

]
(298)

= P
[ M⋂
m̃=1

⋂
y

Gε(m̃,y)
∣∣E0]P(E0) (299)

=

(
1− P

[ M⋃
m̃=1

⋃
y

Gcε(m̃,y)
∣∣E0])P[E0] (300)

≥
(

1−
M∑
m=1

∑
y

P
[
Gcε(m̃,y)

∣∣E0])P[E0] (301)

= P[E0]−
M∑
m=1

∑
y

P
[
Bε(m̃,y) ∩ E0

]
. (302)

Now, observe that

P[E0] = P
[

1

M

M∑
m=1

∑
m′ 6=m:d(P̂Xm,Xm′

)>∆

exp
{
− nΓ(P̂Xm,Xm′ , R− ε)

}
≤ e−nE0

]
(303)

=̊ P
[ ⋂
PXX′∈Q(QX):d(PXX′ )>∆

{
N(PXX′)

≤ en(Γ(PXX′ ,R−ε)+R−E0)

}]
, (304)

where (304) follows by using the same arguments to achieve
[15, Eq. (187)].

Recall the definition of F0 in (67) in Lemma 12, i.e.,

F0 =
⋂

PXX′∈A1∪A2

{
N(PXX′) = 0

}
. (305)

Define

F(PXX′) ,
{
N(PXX′) ≤ en(Γ(PXX′ ,R−ε)+R−E0)

}
. (306)

Then, from (304) and (306), we obtain

P[E0] =̊ P
[ ⋂
PXX′∈Q(QX):d(PXX′ )>∆

F(PXX′)

]
(307)

= P
[ ⋂
PXX′∈A1∪A2∪A3

F(PXX′)

]
(308)

= P
[ ⋂
PXX′∈A3

F(PXX′) ∩
⋂

PXX′∈A1∪A2

F(PXX′)

]
(309)

≥ P
[ ⋂
PXX′∈A3

F(PXX′) ∩ F0

]
(310)

= P
[ ⋂
PXX′∈A3

F(PXX′)
∣∣F0

]
P[F0] (311)

=

(
1− P

[ ⋃
PXX′∈A3

Fc(PXX′)
∣∣F0

])
P[F0] (312)

≥ P[F0]−
∑

PXX′∈A3

P
[
Fc(PXX′)

∣∣F0

]
P[F0] (313)

≥ P[F0]−
∑

PXX′∈A3

P
[
Fc(PXX′) ∩ F0

]
(314)

≥ P[F0]−
∑

PXX′∈A3

P
[
Fc(PXX′)

]
, (315)

where (310) follows from the fact that for each joint type
PXX′ ∈ A1 ∪ A2, it holds that {N(QXX′) = 0} ⊂
{N(QXX′) ≤ en(Γ(PXX′ ,R−ε)+R−E0)}.

Equation (315) resembles [15, Eq. (205)] with subtle dif-
ferences in the definition of sets A1,A2 and A3. However,
since all the codewords in RGV are dependent, [15, Eq. (218)]
does not hold. We proceed with different arguments. For any
PXX′ ∈ A3, we have

P
[
Fc(PXX′)

}
= P

{
N(PXX′) ≥ en(Γ(PXX′ ,R−ε)+R−E0)

]
(316)

≤ P
[
N(PXX′) ≥ enεen(2R−IP (X;X′))

]
,

(317)

where (317) follows from the definition of the set A3, which
implies that

Γ(PXX′ , R− ε) +R− E0 > 2R− IP (X;X ′) + ε. (318)

On the other hand, by Lemma 7, we have∑
PXX′∈A3

P
[
N(PXX′) ≥ enεen(2R−IP (X;X′))

]
≤̊ max

PXX′∈A3

exp
{
− enR(2R−IP (X;X′)+ε)

}
(319)

= exp
{
− en(2R−maxP

XX′∈A3
IP (X;X′)+ε)

}
(320)

≤ exp
{
− en(2R−minP

XX′∈A2
IP (X;X′)+ε)

}
, (321)

where (321) follows from the condition (267).
Now, under the condition (268), by Lemma 12, we have

P{F0} ≥̊ exp
{
− enmaxP

XX′∈A2
(2R−IP (X;X′))}. (322)
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From (315), (321), and (322), we obtain

P[E0] ≥̊ exp
{
− enmaxP

XX′∈A2
(2R−IP (X;X′))

}
− exp

{
− en(2R−minP

XX′∈A2
IP (X;X′)+ε)

}
(323)

=̊ exp
{
− enmaxP

XX′∈A2
(2R−IP (X;X′))

}
. (324)

To bound P[Bε(m̃,y)∩E0], we use the following arguments.
As [15], let

N 2 :=
{

(m,m′) : m 6= m′,m,m′ ∈ {1, 2, · · · , bM/2c − 1}
}
.

(325)

Define

S :=

{
(x1,x2, · · · ,xbMc/2c) ∈ Rn × Rn · · · × Rn︸ ︷︷ ︸

bM/2c times

:

min
i,j∈{1,2,··· ,bM/2c},i6=j

{d(xi,xj)} > ∆

}
. (326)

Since the distance between two codewords in a RGV ensemble
is at least ∆, we have

P[Bε(m̃,y) ∩ E0]

≤ P
[ ∑

(m,m′)∈N 2

e−nΓ(P̂Xm,Xm′
,R−ε) ≤ en(R−E0)

]

× P
[ ∑
m′∈{bM/2c,··· ,M}\{m̃}

eng(P̂X
m′y

) ≤ enα(R−ε,P̂y)

∣∣∣∣{ ∑
(m,m′)∈N 2

e−nΓ(P̂Xm,Xm′
,R−ε) ≤ en(R−E0)

}

∩
{

(X1,X2, · · · ,XbMc/2c) ∈ S
}]
. (327)

Now, for any tuple (x1,x2, · · · ,xbMc) such that
mini,j∈{1,2,··· ,bM/2c},i6=j{d(xi,xj)} > ∆, it holds that

P
(
XbM/2c+1 = xbM/2c+1,XbM/2c+2 = xbM/2c+2, · · · ,

XM = xM
∣∣X1 = x1, · · · ,XbM/2c = xbM/2c

)
=

P(X1 = x1,X2 = x2, · · · ,XM = xM )

P(XbM/2c = xbM/2c, · · · ,X1 = x1)
(328)

.
≤ 1

|T (QX)|dM/2e , (329)

where (329) follows from Lemma 4. Hence, by using the same
arguments as the proof of Lemma 14, we obtain

P[Bε(m̃,y) ∩ E0]

≤ exp

{
− enε

[
1− e−n(ε+δ)

1− e−nδ
− e−nε(1 + nε)

]}
P(E0).

(330)

From (302), (324), and (330), we have

P
[
− 1

n
logPe(Cn) ≥ E0

]
≥̊
(

1− enR|Y|n exp

{
− enε

[
1− e−n(ε+δ)

1− e−nδ

− e−nε(1 + nε)

]})
× exp

{
− enmaxP

XX′∈A2
(2R−IP (X;X′))

}
(331)

=̊ exp
{
− enmaxP

XX′∈A2
(2R−IP (X;X′))

}
(332)

which concludes the proof.

C. Convergence in Probability
This section enumerates properties of the tail exponents

derived in Sections V-A and V-B, respectively, and establishes
the convergence in probability to the TRC exponent of the
RGV. In particular, the following results can be obtained by
using the same arguments as the proofs of [15, Prop. 1], [15,
Prop. 3], [15, Prop. 2], respectively, and are therefore stated
without proof. Define

Ẽ(R) , min
PXX′∈Q(QX):IP (X;X′)≤2R,d(PXX′ )>∆

{
Λ(PXX′ , R)

+ IP (X;X ′)−R
}
. (333)

Proposition 3 (Lower tail): Eub
lt (R,E0) and Elb

lt (R,E0)
have the following properties

1) For fixed R, Eub
lt (R,E0) and Elb

lt (R,E0) are decreasing
in E0.

2) Eub
lt (R,E0) > 0 if and only if E0 <

Ergv
trc (R,QX ,∆, d).

3) Elb
lt (R,E0) > 0 if E0 < Ẽ(R).

4) Elb
lt (R,E0) =∞ for any E0 < Emin

0 (R), where

Emin
0 (R) , min

PXX′∈Q(QX):d(PXX′ )>∆

{
Γ(PXX′ , R)

− [2R− IP (X;X ′)]+ +R
}
. (334)

Proposition 4 (Upper tail): Eub
ut (R,E0) and Elb

ut(R,E0)
have the following properties

1) For fixed R, Eub
ut (R,E0) and Elb

ut(R,E0) are increasing
in E0.

2) Eub
ut (R,E0) > 0 if and only if E0 >

Ergv
trc (R,QX ,∆, d).

3) Elb
ut(R,E0) > 0 if E0 > Ẽ(R).

From Propositions 3 and 4, the following result states the
convergence in probability to the TRC of the RGV ensemble.

Corollary 3: For any RGV ensemble with GLD, under the
conditions in Lemma 11 and Lemma 12, we have that

− 1

n
logPe(cn)

(p)−→Ergv
trc (R,QX , g, d,∆). (335)

Recall that for d(PXX′) = −IP (X;X ′) and ∆ =
−(R + 2δ), the conditions in Lemma 11 and Lemma 12
hold. Hence, Corollary 3 holds for this important case
for which Ergv

rce (R,QX , g, d,∆) = Ergv
trc (R,QX , g, d,∆) =

Ecc
ex(R,QX).
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VI. CONCLUSIONS

We have studied the RGV code ensemble and have studied
the typical error exponent and upper and lower error exponent
tails. We have shown that the lower tail decays exponentially
while the upper tail exhibits a decay that is between expo-
nential and double-exponential; it is sub-double-exponential
below the expurgated exponent and double-exponential above
the expurgated exponent. In addition, we have shown that the
error exponent of a sufficiently long RGV code concentrates
in probability around the typical error exponent; this is also
shown to coincide with the random coding exponent of the
RGV ensemble, known to coincide with the maximum of the
expurgated and the random-coding exponent. This suggests
that every code in the ensemble asymptotically attains as high
an error exponent as it is known from random codes.

APPENDIX A
PROOF OF LEMMA 4

Assume that A = {i1, i2, · · · , il} where 1 ≤ i1 <
i2 < · · · < il ≤ M for some l ∈ [M ]. First, if
minj,k∈[l],j 6=k d(xij ,xik) ≤ ∆, then by the RGV generation,
we have

P(xi1 ,xi2 , · · · ,xil) = 0. (336)

Hence, (36) trivially holds.
Now, under the condition minj,k∈[l],j 6=k d(xij ,xik) > ∆,

we have

P
[ ⋂
k∈A

{Xk = xk}
]

= P(xi1 ,xi2 , · · · ,xil) (337)

=
∑

x
i1−1
1 ,x

i2−1
i1+1 ,··· ,x

il−1

il−1+1:d(xk,xl)>∆∀k,l∈[il],k 6=l

P(xi1−1
1 )

× P(xi1 |x
i1−1
1 )P(xi2−1

i1+1|x
i1
1 )P(xi2 |x

i2−1
1 )

× P(xi3−1
i2+1|x

i2
1 )P(xi3 |x

i3−1
1 ) · · ·

× P(xil−1
il−1+1|x

il−1

1 )P(xll |x
il−1
1 ) (338)

=
∑

x
i1−1
1 ,x

i2−1
i1+1 ,··· ,x

il−1

il−1+1:d(xk,xl)>∆∀k,l∈[il],k 6=l

P(xi1−1
1 )

× P(xi2−1
i1+1|x

i1
1 )P(xi3−1

i2+1|x
i2
1 ) · · ·

× P(xil−1
il−1+1|x

il−1

1 )

l∏
j=1

P(xij |x
ij−1
1 ) (339)

=
∑

x
i1−1
1 ,x

i2−1
i1+1 ,··· ,x

il−1

il−1+1:d(xk,xl)>∆∀k,l∈[il],k 6=l

P(xi1−1
1 )

× P(xi2−1
i1+1|x

i1
1 )P(xi3−1

i2+1|x
i2
1 ) · · ·

× P(xil−1
il−1+1|x

il−1

1 )

l∏
j=1

1

|T (QX ,x
ij−1
1 )|

. (340)

On the other hand, under the condition 28, by Lemma 1, we
have

|T (QX)| ≥ T (QX ,x
i−1
1 )| ≥ (1− e−nδ)|T (QX)|,∀i ∈ [M ]

(341)

for all xi−1
1 occurring with non-zero probability.

From (340) and (341), if minj,k∈[l],j 6=k d(xij ,xik) > ∆,
we obtain

P
[ ⋂
k∈A

{Xk = xk}
]

≤
∑

x
i1−1
1 ,x

i2−1
i1+1 ,··· ,x

il−1

il−1+1:d(xk,xl)>∆∀k,l∈[il],k 6=l

P(xi1−1
1 )

× P(xi2−1
i1+1|x

i1
1 )P(xi3−1

i2+1|x
i2
1 ) · · ·

× P(xil−1
il−1+1|x

il−1

1 )
1

(1− e−nδ)l|T (QX)|l
(342)

≤
∑

x
i1−1
1 ,x

i2−1
i1+1 ,··· ,x

il−1

il−1+1

P(xi1−1
1 )P(xi2−1

i1+1|x
i1
1 )P(xi3−1

i2+1|x
i2
1 ) · · ·

× P(xil−1
il−1+1|x

il−1

1 )
1

(1− e−nδ)l|T (QX)|l
(343)

=
1

(1− e−nδ)l|T (QX)|l
(344)

=
1

(1− e−nδ)|A||T (QX)||A|
, (345)

where (344) follows by summing over xik−1
ik−1+1 for the k-th

conditional distribution, and (345) follows from |A| = l.
In addition, for any M ′ ≤ M , from (340) and (341), if

mink,l∈[M ′]:k 6=l d(xk,xl) > ∆, we also have

P
[ ⋂
k∈[M ′]

{Xk = xk}
]

≥
∑

x
i1−1
1 ,x

i2−1
i1+1 ,··· ,x

il−1

il−1+1

P(xi1−1
1 )P(xi2−1

i1+1|x
i1
1 )P(xi3−1

i2+1|x
i2
1 )

· · · × P(xil−1
il−1+1|x

il−1

1 )
1

|T (QX)|M ′
(346)

=
1

|T (QX)|M ′
. (347)

This concludes our proof of Lemma 4.

APPENDIX B
PROOF OF LEMMA 5

First, we prove (42). Observe that

E[I(i, j)] = P
[
(Xi,Xj) ∈ T (PXX′)

]
(348)

=
∑

(xi,xj)∈T (PXX′ )

P(xi,xj). (349)

Now, let

δn ,
e−nδ

1− e−nδ
. (350)

Then, under the condition (28) and d(PXX′) > ∆, by Lemma
2, we have

(1− 4δ2
n)

|T (QX)|2
e−2δn ≤ P(xi,xj) ≤

1

(1− e−nδ)2|T (QX)|2
(351)
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for all (xi,xj) ∈ T (PXX′) since d(xi,xj) = d(PXX′) > ∆.
From (349) and (351), we have

(1− 4δ2
n)e−2δn

|T (PXX′)|
|T (QX)|2

≤ E[I(i, j)]

≤ 1

(1− e−nδ)2

|T (PXX′)|
|T (QX)|2

. (352)

Recall the definition of L(PXX′) in (39). From (352), we have

(1− 4δ2
n)e−2δnL(PXX′) ≤ E[I(i, j)]

≤ 1

(1− e−nδ)2
L(PXX′). (353)

Now, we prove (43). We consider three cases:
• Case 1: i = k, j 6= l. Observe that

E[I(i, j)I(i, l)]

= P
[
(Xi,Xj) ∈ T (PXX′), (Xi,Xl) ∈ T (PXX′)

]
(354)

=
∑

(xi,xj ,xl)∈T 3(QX)

P(xi,xj ,xl)

× 1{{(xi,xj) ∈ T (PXX′)} ∩ {(xi,xl) ∈ T (PXX′)}}
(355)

≤ 1

(1− e−nδ)3

∑
(xi,xj ,xl)∈T 3(QX)

P(xi)P(xj)P(xl)

× 1{{(xi,xj) ∈ T (PXX′)} ∩ {(xi,xl) ∈ T (PXX′)}}
(356)

=
1

(1− e−nδ)3

∑
xi∈T (QX)

P(xi)

× P
[
(xi,Xj) ∈ T (PXX′)

]
P
[
(xi,Xl) ∈ T (PXX′)

]
(357)

=
1

(1− e−nδ)3

∑
xi∈T (QX)

P(xi)L
2(PXX′) (358)

=
1

(1− e−nδ)3
L2(PXX′), (359)

where (356) follows from Lemma 4 and Lemma 3.
• i 6= k, j = l. The proof is similar to Case 1.
• i 6= k, j 6= l. Then, we have

E[I(i, j)I(k, l)]

= P
[
(Xi,Xj) ∈ T (PXX′), (Xk,Xl) ∈ T (PXX′)

]
(360)

=
∑

(xi,xj ,xk,xl)∈T 4(QX)

P(xi,xj ,xk,xl)

× 1{{(xi,xj) ∈ T (PXX′)} ∩ {(xk,xl) ∈ T (PXX′)}}
(361)

≤ 1

(1− e−nδ)4

∑
(xi,xj ,xk,xl)∈T 4(QX)

P(xi)

× P(xj)P(xk)P(xl)

× 1{{(xi,xj) ∈ T (PXX′)} ∩ {(xk,xl) ∈ T (PXX′)}}
(362)

=
1

(1− e−nδ)4
P
[
(Xi,Xj) ∈ T (PXX′)

]

× P
[
(Xk,Xl) ∈ T (PXX′)

]
(363)

=
1

(1− e−nδ)4
L2(PXX′), (364)

where (362) follows from Lemma 4 and Lemma 3.
From (359) and (364), for any pairs (i, j) ∈ [M ]2∗ and (k, l) ∈
[M ]2∗ such that (i, j) 6= (k, l), we have

E[I(i, j)I(k, l)] ≤ 1

(1− e−nδ)4
L2(PXX′), (365)

and we obtain (41).
Finally, by [29], it is easy to see that

L(PXX′)
.
= e−nIP (X;X′). (366)

Hence, we obtain (42) and (43) from (40) and (41), respec-
tively.

This concludes our proof of Lemma 5.
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Observe that

E[N(PXX′)] = E
[∑

m

∑
m′ 6=m

1
{

(Xm,Xm′) ∈ T (PXX′)
}]

(367)

=
∑
m

∑
m′ 6=m

{ ∑
(xm,xm′ )∈T (P

XX′ ):
d(xm,xm′ )>∆

P(xm,xm′)

+
∑

(xm,xm′ )∈T (P
XX′ ):

d(xm,xm′ )≤∆

P(xm,xm′)

}
. (368)

On the other hand, by Lemma 2, under the condition (28), it
holds that

P(xm,xm′) = 0 (369)

if d(xm,xm′) ≤ ∆, and

1− 4δ2
n

|T (QX)|2
e−2δn ≤ P(xm,xm′) ≤

1

(1− e−nδ)2|T (QX)|2
(370)

if d(xm,xm′) > ∆.
From (368), (369) and (370), for any joint type PXX′ such

that d(PXX′) > ∆, we obtain

E[N(PXX′)]

≥
∑
m

∑
m′ 6=m

∑
(xm,xm′ )∈T (P

XX′ ):
d(xm,xm′ )>∆

P(xm,xm′) (371)

≥
∑
m

∑
m′ 6=m

∑
(xm,xm′ )∈T (P

XX′ ):
d(xm,xm′ )>∆

1− 4δ2
n

|T (QX)|2
e−2δn (372)

= M(M − 1)
∑

(xm,xm′ )∈T (P
XX′ )

d(P
XX′ )>∆

1− 4δ2
n

|T (QX)|2
e−2δn (373)

= M(M − 1)|T (PXX′)|
1− 4δ2

n

|T (QX)|2
e−2δn (374)

≥ (n+ 1)−3|X |2(1− 4δ2
n)e−2δnen(2R−IP (X;X′)), (375)
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where (375) follows from [29].
Then, as n sufficiently large, we have

P
[
E(PXX′)

]
= P

[
N(PXX′) < (1− 4δ2

n)e−2δn

× exp{n[2R− IP (X;X ′)− ε]}
]

(376)

≤ P
[
N(PXX′) < e−nε/2E[N(PXX′)]

]
(377)

= P
[
N(PXX′)

E[N(PXX′)]
− 1 < −(1− e−nε/2)

]
(378)

≤ Var(N(PXX′))

(1− e−nε/2)2
(
E[N(PXX′)]

)2 , (379)

where (377) follows from (375), and (379) follows from
Cauchy-Schwarz inequality.

Now, let

I(m,m′) , 1
{

(Xm,Xm′) ∈ T (PXX′)
}
, (380)

and

L(PXX′) ,
|T (PXX′)|
|T (QX)|2

. (381)

Then, it holds that [29],

L(PXX′) ≥ (n+ 1)−3|X |e−nIP (X;X′). (382)

Hence, as n sufficiently large, we have

M(M − 1)L(PXX′)

≥ (n+ 1)−3|X |en(2R− 1
n−IP (X;X′)) (383)

≥ (n+ 1)−3|X |en(ε− 1
n ) (384)

≥ enε/2, (385)

where (385) follows from ε >> (log n)/
√
n.

In addition, for any two fixed pairs (m,m′) and (m̃, m̂) in
[M ]2∗ such that (m,m′) 6= (m̃, m̂), by Lemma 5, we have

(1− 4δ2
n)e−2δnL(PXX′) ≤ E[I(m,m′)]

≤ 1

(1− e−nδ)2
L(PXX′), (386)

and

E[I(m,m′)I(m̃, m̂)] ≤ 1

(1− e−nδ)4
L2(PXX′). (387)

It follows that

Var(N(PXX′)) = E[N2(PXX′)]−
(
E[N(PXX′)]

)2
(388)

=
∑

m,m′,m̃,m̂

E[I(m,m′)I(m̃, m̂)]−
(
E[N(PXX′)]

)2
(389)

=
∑
m,m′

E[I(m,m′)]

+
∑

(m,m′)6=(m̃,m̂)

E
[
I(m,m′)I(m̃, m̂)

]
−
(
E[N(PXX′)]

)2
(390)

≤M(M − 1)
1

(1− e−nδ)2
L(PXX′)

+M(M − 1)[M(M − 1)− 1]
1

(1− e−nδ)4
L2(PXX′)

−
(
E[N(PXX′)]

)2
. (391)

Now, let

Vn = M(M − 1)
1

(1− e−nδ)2
L(PXX′) +M(M − 1)

× [M(M − 1)− 1]
1

(1− e−nδ)4
L2(PXX′), (392)

Vd =
(
(1− 4δ2

n)e−2δnM(M − 1)L(PXX′)
)2
. (393)

Then, from (374), (379), and (391), as n sufficiently large, we
have

P
[
E(PXX′)

]
≤ Var(N(PXX′))

(1− e−nε/2)2
(
E[N(PXX′)]

)2 (394)

≤ 1

(1− e−nε/2)2

[
Vn
Vd
− 1

]
(395)

≤ 1

(1− e−nε/2)2

[
e4δn(

1− 4δ2
n

)2(
1− e−nδ

)2
×
(

1

M(M − 1)L(PXX′)

)
+

e4δn

(1− 4δ2
n)2(1− e−nδ)4

− 1

]
(396)

≤ 1

(1− e−nε/2)2

[
e4δn(

1− 4δ2
n

)2(
1− e−nδ

)2 e−nε/2
+

e4δn

(1− 4δ2
n)2(1− e−nδ)4

− 1

]
, (397)

where (397) follows from (385).
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It is clear that (48) holds if IP (X;X ′) = 0 since the LHS
of this inequality is equal to 0 for this case. Now, we consider
the case IP (X;X ′) > 0. Then, we can choose δ(ε) such that
0 < δ(ε) << such that IP (X;X ′) > δ(ε). With an abuse of
notation, we assume that δ(ε) = ε.

Now, observe that

N(PXX′) =

M∑
m=1

∑
m′ 6=m

1{(Xm,Xm′) ∈ T (PXX′)}. (398)

By Lemma 5, we have

E[1{(Xm,Xm′) ∈ T (PXX′)}]
.
= e−nIP (X;X′) (399)

for all (m,m′) ∈ [M ]2∗, which leads to

p ,
1

M(M − 1)
E[N(PXX′)] (400)

.
= e−nIP (X;X′). (401)

By choosing t = en(2R−IP (X;X′)+ε) + 1, then it is clear that

M(M − 1)p ≤ t− 1 < M(M − 1)− 1 (402)

as n sufficiently large if IP (X;X ′) > 0 and choose ε such
that 0 < ε <<. Then, by applying Lemma 15, we obtain

P
[
N(PXX′) ≥ en(2R−IP (X;X′)+ε)

]
≤̊ exp

{
−M(M − 1)D

(
e−n(IP (X;X′)−ε)‖e−nIP (X;X′)

)}
.

(403)
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Now, by using the fact that D(a‖b) ≥ a
(

log a
b − 1

)
[33], we

have

D
(
e−n(IP (X;X′)−ε)‖e−nIP (X;X′)

)
≥ e−n(IP (X;X′)−ε)(nε− 1

)
. (404)

From (403) and (404), we obtain (48). Finally, (49) is a
straightforward consequence of (48). This concludes our proof
of Lemma 7.

APPENDIX E
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Similar to the proof of Lemma 8, by applying Lemma 15
with t = enε, we finally have

P
[
N(PXX′) ≥ enε

]
≤̊ exp

{
−M(M − 1)D(en(ε−2R)‖e−nIP (X;X′))

}
.

(405)

On the other hand, we have

D(en(ε−2R)‖e−nIP (X;X′))

≥ en(ε−2R)
(
n(ε− 2R+ IP (X;X ′)− 1). (406)

From (405) and (406), we obtain (50) and (51).

APPENDIX F
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Observe that

E[N(PXX′)] =

M∑
m=1

∑
m′ 6=m

E[I(m,m′)] (407)

.
= en(2R−IP (X;X′)) (408)

where (408) follows from Lemma 5. An upper bound in (52)
simply follows from Markov’s inequality and (408).

To show the lower bound, we use Suen’s correlation in-
equality [15, A]. However, the dependency graph is now
different from the one in [15, Proof of Lemma 6]. In this
new dependency graph, each vertex (i, j) is connected to all
other vertices or M(M − 1)− 1 vertices. Using the results of
Lemma 5, we have

Θ : =
1

2

∑
(i,j)∈[M ]2∗

∑
(k,l)∈[M ]2∗,(k,l)6=(i,j)

E[I(i, j)I(k, l)] (409)

.
≤ 1

2
e2nRe2nRe−2nIP (X;X′) (410)

.
= en(4R−2IP (X;X′)), (411)

and

Ω = max
(i,j)∈[M ]2∗

∑
(k,l)∈[M ]2∗,(k,l)6=(i,j)

E[I(k, l)] (412)

.
= e2nRe−nIP (X;X′) (413)
.
= en(2R−IP (X;X′)). (414)

In addition, we have

∆ = E[N(PXX′)] (415)
.
= en(2R−IP (X;X′)). (416)

From (411), (414), and (416), we obtain

∆2

8Θ

.
≥ 1, (417)

and

∆

6Ω

.
= 1. (418)

Now, by [15, Eq. (A.6)], we have

P[N(PXX′) = 0]

≤ exp

{
−min

(
∆2

8Θ
,

∆

6Ω
,

∆

2

)}
(419)

.
≤ exp

{
−min

(
1, 1,

1

2
en(2R−IP (X;X′))

)}
(420)

= exp

{
− 1

2
en(2R−IP (X;X′))

}
, (421)

where (421) follows from the assumption IP (X;X ′) ≥ 2R.
From (421), by using the same arguments as [15, Proof of

Lemma 6], we obtain

P
[
N(PXX′) ≥ 1

] .
≥ exp{n(2R− IP (X;X ′))}, (422)

which is compatible with the upper bound, proving Lemma 9.
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From Lemma 7 and the fact that 0 = e−n∞, it holds that

P[N(PXX′) ≥ ens]
.
= exp(−n∞) (423)

if s > [2R− IP (X;X ′)]+.
Now, for s < [2R − IP (X;X ′)]+ and 2R ≤ IP (X;X ′),

then s ≤ 0. It follows that

P[N(PXX′) ≥ ens] = P[N(PXX′) ≥ 1] (424)
.
= exp

{
n(2R− IP (X;X ′))

}
(425)

= exp
{
− n[IP (X;X ′)− 2R]+

}
,

(426)

where (425) follows from Lemma 9.
On the other hand, for s < [2R − IP (X;X ′)]+ and 2R >

IP (X;X ′), then we have

P[N(PXX′) ≥ ens] ≤ 1 (427)

= exp
{
− n[IP (X;X ′)− 2R]+

}
.

(428)

In addition, for this case, there exists ε > 0 such that 2ε ≤
min{2R − IP (X;X ′), [2R − IP (X;X ′)]+ − s}. Hence, by
applying Lemma 6, we have

P
[
N(PXX′)

≥ (1− 4δ2
n)e−2δn exp{n[2R− IP (X;X ′)− ε]}

]
→ 1.

(429)
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Furthermore, as n sufficiently large, we also have

P[N(PXX′) ≥ ens]
≥ P

[
N(PXX′) ≥ en(2R−IP (X;X′)−2ε)

]
(430)

≥ P
[
N(PXX′) ≥ (1− 4δ2

n)e−2δn

× exp{n[2R− IP (X;X ′)− ε]}
]

(431)
= 1 + o(1) (432)

= (1 + o(1)) exp
{
− n[IP (X;X ′)− 2R]+

}
(433)

.
= exp

{
− n[IP (X;X ′)− 2R]+

}
, (434)

where (432) follows from (429), and (433) follows from
[IP (X;X ′)− 2R]+ = 0 for 2R > IP (X;X ′).

From (428) and (434), we obtain

P[N(PXX′) ≥ ens]
.
= exp

{
− n[IP (X;X ′)− 2R]+

}
(435)

for s < [2R− IP (X;X ′)]+ and 2R > IP (X;X ′).
By combining (426) and (435), we have

P[N(PXX′) ≥ ens]
.
= exp

{
− n[IP (X;X ′)− 2R]+

}
(436)

for all s < [2R− IP (X;X ′)]+.
Finally, from (423) and (436), we obtain

E(R,P, s)

=

{
[IP (X;X ′)− 2R]+, [2R− IP (X;X ′)]+ > s

+∞, [2R− IP (X;X ′)]+ < s
.

(437)

This concludes our proof of Lemma 10.
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First, we prove the following auxiliary lemma.
Lemma 17: For any x ∈ [0,M−1], the following holds:

1− (1− x)M < 2e−Mx (438)

as M sufficiently large.
Proof of Lemma 17: Let g(x) , 1− (1−x)M −2e−Mx.

This function has positive first-order derivative, hence g(x) is
increasing. Hence, for any x ∈ [0,M−1], we have

g(x) ≤ g(M−1) (439)

= 1−
(

1− 1

M

)M
− 2

e
(440)

→ 1− 3

e
as M →∞ (441)

< 0, (442)

where (441) follows from
(
1 + 1

x

)−x → 1/e as x→∞. This
concludes our proof of Lemma 17.
Now, we return to prove Lemma H. Observe that

N(PXX′) =

M∑
m=1

∑
m′ 6=m

1{(Xm,Xm′) ∈ T (PXX′)}. (443)

It follows that

E[N(PXX′)] =

M∑
m=1

∑
m′ 6=m

P{(Xm,Xm′) ∈ T (PXX′)}

(444)
.
= en(2R−IP (X;X′)), (445)

where (445) follows from Lemma 5. Then, we have

P
{
N(PXX′) ≤ e−nεE[N(PXX′)]

}
.
≤ P

{ M∑
m=1

∑
m′ 6=m

1
{

(Xm,Xm′) ∈ T (PXX′)
}

≤ en(2R−IP (X;X′)−ε)
}
. (446)

We consider two cases:
• The condition (55) holds.

On the space Xn ×Xn · · · × Xn︸ ︷︷ ︸
M terms

define a probability measure

PΠ such that

PΠ(x1,x2, · · · ,xM ) =

M∏
m=1

P[Xm = xm] (447)

for all (x1,x2, · · · ,xM ) ∈ Xn ×Xn · · · × Xn︸ ︷︷ ︸
M terms

. Then, for this

case, for any PXX′ ∈ D, we have

P
{ M∑
m=1

∑
m′ 6=m

1
{

(Xm,Xm′) ∈ T (PXX′)
}

≤ en(2R−IP (X;X′)−ε)
}

=
∑

x1,x2,··· ,xM

P(x1,x2, · · · ,xM )

× 1

{ M∑
m=1

∑
m′ 6=m

1
{

(xm,xm′) ∈ T (PXX′)
}

≤ en(2R−IP (X;X′)−ε)
}

(448)

≤ 1

(1− e−nδ)M
∑

x1,x2,··· ,xM

PΠ(x1,x2, · · · ,xM )

× 1

{ M∑
m=1

∑
m′ 6=m

1
{

(xm,xm′) ∈ T (PXX′)
}

≤ en(2R−IP (X;X′)−ε)
}

(449)

= e−e
nR log(1−e−nδ)

× PΠ

{ M∑
m=1

∑
m′ 6=m

1
{

(Xm,Xm′) ∈ T (PXX′)
}

≤ en(2R−IP (X;X′)−ε)
}

(450)

≤̊ e−e
nR log(1−e−nδ)

× exp

{
−min

(
en(2R−IP (X;X′)), enR

)}
, (451)
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where (449) follows from Lemma 4, and (451) follows from
[15, Lemma 2].

From (446) and (451), we obtain

min
PXX′∈D

P
{
N(PXX′) ≤ e−nεE[N(PXX′)]

}
≤̊ e−e

nR log(1−e−nδ)

× exp

{
−min

(
en(2R−minP

XX′∈D
IP (X;X′)), enR

)}
(452)

≤̊ e−e
nR log(1−e−nδ) exp

{
− en(R−2δ)

}
(453)

=̊ exp
{
− en(R−2δ)

}
, (454)

where (453) follows from minPXX′∈D IP (X;X ′) ≤ R + 2δ
for this case, and (454) follows from − log(1−e−nδ) ∼ e−nδ .
• Case 2: The condition (56) holds.

For this case, observe that

P
{
N(PXX′) > e−nεE[N(PXX′)]

}
≥ P

{{ M∑
m=1

∑
m′ 6=m

1
{

(Xm,Xm′) ∈ T (PXX′)
}

> en(2R−IP (X;X′)−ε)
}

∩
{

min
(m,m′)∈[M ]2∗

d(Xm,Xm′) > ∆

}}
(455)

=
∑

x1,x2,··· ,xM

P(x1,x2, · · · ,xM )

× 1
{{ M∑

m=1

∑
m′ 6=m

1
{

(xm,xm′) ∈ T (PXX′)
}

> en(2R−IP (X;X′)−ε)
}

∩
{

min
(m,m′)∈[M ]2∗

d(xm,xm′) > ∆

}}
(456)

≥
∑

x1,x2,··· ,xM

PΠ(x1,x2, · · · ,xM )

× 1
{{ M∑

m=1

∑
m′ 6=m

1
{

(xm,xm′) ∈ T (PXX′)
}

> e−nεE[N(PXX′)]

}
∩
{

min
(m,m′)∈[M ]2∗

d(xm,xm′) > ∆

}}
(457)

= PΠ

{{ M∑
m=1

∑
m′ 6=m

1
{

(Xm,Xm′) ∈ T (PXX′)
}

> e−nεE[N(PXX′)]

}
∩
{

min
(m,m′)∈[M ]2∗

d(Xm,Xm′) > ∆

}}
, (458)

where (457) follows from Lemma 4 with M ′ = M and
Lemma 3.

From (458), we have

P
{
N(PXX′) ≤ e−nεE[N(PXX′)]

}
≤ Pr

Π

{{ M∑
m=1

∑
m′ 6=m

1
{

(Xm,Xm′) ∈ T (PXX′)
}

≤ e−nεE[N(PXX′)]

}
∪
{

min
(m,m′)∈[M ]2∗

d(Xm,Xm′) ≤ ∆

}}
(459)

= PΠ

{ M∑
m=1

∑
m′ 6=m

1
{

(Xm,Xm′) ∈ T (PXX′)
}

≤ e−nεE[N(PXX′)]

}
+ PΠ

{
min

(m,m′)∈[M ]2∗

d(Xm,Xm′) ≤ ∆

}
. (460)

Now, observe that{
min

(m,m′)∈[M ]2∗

d(Xm,Xm′) ≤ ∆

}
=

{ M⋃
m=1

⋃
m′ 6=m

{d(Xm,Xm′) ≤ ∆}
}

(461)

=

{ M⋃
m=1

⋃
m′ 6=m

⋃
P̃XX′∈Q(QX):d(P̃XX′ )≤∆

{(Xm,Xm′) ∈ T (P̃XX′)}
}
. (462)

Therefore, we have

PΠ

{
min

(m,m′)∈[M ]2∗

d(Xm,Xm′) ≤ ∆

}
= PΠ

{ M⋃
m=1

⋃
m′ 6=m

⋃
P̃XX′∈Q(QX):d(P̃XX′ )≤∆

{(Xm,Xm′) ∈ T (P̃XX′)}
}

(463)

≤
∑

P̃XX′∈Q(QX):d(P̃XX′ )≤∆

M∑
m=1

PΠ

{ ⋃
m′ 6=m

{(Xm,Xm′) ∈ T (P̃XX′)}
}
. (464)

Now, for any joint-type P̃XX′ ∈ Q(QX) such that d(P̃XX′) ≤
∆, we have

PΠ

{ ⋃
m′ 6=m

{(Xm,Xm′) ∈ T (P̃XX′)}
}

= E
[
PΠ

{ ⋃
m′ 6=m

{(Xm,Xm′) ∈ T (P̃XX′)}
∣∣∣∣Xm

}]
(465)

= 1− E
[
PΠ

{ ⋂
m′ 6=m

{(Xm,Xm′) /∈ T (P̃XX′)}
∣∣∣∣Xm

}]
(466)
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= 1− E
[(

PΠ

{
(Xm,Xm mod M+1)

/∈ T (P̃XX′)

∣∣∣∣Xm

})M]
(467)

.
= 1−

(
1− e−nIP̃ (X;X′)

)M
, (468)

where (468) follows from the standard calculation (eg. [29]).
Now, from the condition (56), we have

R ≤ min
P̃XX′∈Q(QX):d(P̃XX′ )≤∆

IP̃ (X;X ′)− 2δ, (469)

which leads to

e
−nminP̃

XX′∈Q(QX ):d(P̃
XX′ )≤∆ IP̃ (X;X′) ≤ e−nR = M−1.

(470)

From (464) and (468), we obtain

PΠ

{
min

(m,m′)∈[M ]2∗

d(Xm,Xm′) ≤ ∆

}
.
≤M

[
1−

(
1− e−nminP̃

XX′∈Q(QX ):d(P̃
XX′ )≤∆ IP̃ (X;X′))M]

(471)

≤̊ 2M exp

{
−Me

−nminP̃
XX′∈Q(QX ):d(P̃

XX′ )≤∆ IP̃ (X;X′)
}

(472)

≤̊ exp

{
− en

(
R−minP̃

XX′∈Q(QX ):d(P̃
XX′ )≤∆ IP̃ (X;X′)

)}
(473)

≤̊ exp

{
− en

(
2R+2δ−minP̃

XX′∈D
IP̃ (X;X′)

)}
(474)

where (472) follows from Lemma 17 with (470), (474) follows
from the condition (56).

On the other hand, by [15, Prep. 6], we have

PΠ

{
N(PXX′) ≤ e−nεE[N(PXX′)]

}
(475)

.
= PΠ

{
N(PXX′) ≤ e−nεen(2R−IP (X;X′))

}
(476)

≤̊ exp

{
− en(2R−IP (X;X′))

}
. (477)

From (474) and (477), under the condition (56), we have

min
PXX′∈D

P
{
N(PXX′) ≤ e−nεE[N(PXX′)]

}
≤̊ exp

{
− en(2R−minP

XX′∈D
IP (X;X′))

}
. (478)

Finally, we obtain by combining (454) for the case 1 and (478)
for the case 2.

This concludes our proof of Lemma H.

APPENDIX I
PROOF OF LEMMA 12

Define a new probability measure Π on Xn ×Xn · · · × Xn︸ ︷︷ ︸
M times

:

PΠ(x1,x2, · · · ,xM ) =

M∏
m=1

P[Xm = xm] (479)

for all (x1,x2, · · · ,xM ).
Observe that

P
(
F0

)
= P

{ ∑
PXX′∈A1∪A2

N(PXX′) = 0

}
(480)

= P
{ ∑
PXX′∈A1∪A2

M∑
m=1

∑
m′ 6=m

1{(Xm,Xm′) ∈ T (PXX′)} = 0

}
(481)

= P
{ ⋂
PXX′∈A1∪A2

M⋂
m=1

⋂
m′ 6=m

{(Xm,Xm′) ∈ T (PXX′)}c
}

(482)

= P
{ ⋂
PXX′∈A1∪A2

M⋂
m=1

⋂
m′ 6=m

{{(Xm,Xm′) ∈ T (PXX′)}

∩ {d(Xm,Xm′) > ∆}}c
}

(483)

= P
{ ⋂
PXX′∈A1∪A2

M⋂
m=1

⋂
m′ 6=m

{(Xm,Xm′) /∈ T (PXX′)}

∪ {d(Xm,Xm′) ≤ ∆}
}

(484)

=
∑

x1,x2,··· ,xM

P(x1,x2, · · · ,xM )

×
∏

PXX′∈A1∪A2

M∏
m=1

∏
m′ 6=m

1

{
{(xm,xm′) /∈ T (PXX′)}

∪ {d(xm,xm′) ≤ ∆}
}

(485)

=
∑

x1,x2,··· ,xM

P(x1,x2, · · · ,xM )

×
∏

PXX′∈A1∪A2

M∏
m=1

∏
m′ 6=m

(
1− 1

{
{(xm,xm′) ∈ T (PXX′)}

∩ {d(xm,xm′) > ∆}
})

(486)

≥
∑

x1,x2,··· ,xM

P(x1,x2, · · · ,xM )

×
∏

PXX′∈A1∪A2

M∏
m=1

∏
m′ 6=m

(
1− 1

{
(xm,xm′) ∈ T (PXX′)}

)
× 1{d(xm,xm′) > ∆} (487)

=
∑

x1,x2,··· ,xM

P(x1,x2, · · · ,xM )

×
∏

PXX′∈A1∪A2

M∏
m=1

∏
m′ 6=m

× 1
{

(xm,xm′) /∈ T (PXX′)}1{d(xm,xm′) > ∆} (488)

≥
∑

x1,x2,··· ,xM

PΠ(x1,x2, · · · ,xM )

×ΠPXX′∈A1∪A2
ΠM
m=1Πm′ 6=m
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× 1
{

(xm,xm′) /∈ T (PXX′)}1{d(xm,xm′) > ∆} (489)

= PΠ

{ ⋂
PXX′∈A1∪A2

M⋂
m=1

⋂
m′ 6=m

{(Xm,Xm′) /∈ T (PXX′)}

∩ {d(Xm,Xm′) > ∆}
}

(490)

= PΠ

{ ∑
PXX′∈A1∪A2

M∑
m=1

∑
m′ 6=m

1
{
{(Xm,Xm′) ∈ T (PXX′)}

∪ {d(Xm,Xm′) ≤ ∆}
}

= 0

}
, (491)

where (483) follows from d(PXX′) > ∆ for all PXX′ ∈
A1 ∪ A2 and d(xm,xm′) = d(P̂xm,xm′ ), (487) follows from
the fact that 1−1

{{
(xm,xm′) ∈ T (PXX′)}∩{d(xm,xm′) >

∆}
}

=
(
1 − 1

{
(xm,xm′) ∈ T (PXX′)}

)
1{d(xm,xm′) >

∆} if d(xm,xm′) > ∆ and 1−1
{{

(xm,xm′) ∈ T (PXX′)}∩
{d(xm,xm′) > ∆}

}
≥ 0 =

(
1 − 1

{
(xm,xm′) ∈

T (PXX′)}
)
1{d(xm,xm′) > ∆} if d(xm,xm′) ≤ ∆, (489)

follows from [7, Lemma 4] and Lemma 4.
To apply Lemma (21), we form a dependency graph as

follows. Define the family of Bernoulli random variables
{I(m,m′, PXX′)}PXX′∈A1∪A2,(m,m′)∈[M ]2∗

, where

I(m,m′, PXX′)

, 1
{

(Xm,Xm′) ∈ T (PXX′) ∪ {d(Xm,Xm′) ≤ ∆}
}
.

(492)

Then, we have

EΠ[I(m,m′, PXX′)]

= PΠ

{
(Xm,Xm′) ∈ T (PXX′) ∪ {d(Xm,Xm′) ≤ ∆}

}
(493)

≤ PΠ{(Xm,Xm′) ∈ T (PXX′)}+ PΠ

{
d(Xm,Xm′) ≤ ∆}.

(494)

On the other hand, we have

PΠ

{
d(Xm,Xm′) ≤ ∆}

=
∑

xm,xm′

PΠ(xm,xm′)1{d(xm,xm′) ≤ ∆} (495)

=
∑

xm,xm′

P(xm)P(xm′)1{d(xm,xm′) ≤ ∆} (496)

=
∑

PXX′∈Q(QX)

∑
(xm,xm′ )∈T (PXX′ )

P(xm)P(xm′)

× 1{d(xm,xm′) ≤ ∆} (497)

=
∑

PXX′∈Q(QX)

∑
(xm,xm′ )∈T (PXX′ )

1

|T (QX)|2

× 1{d(xm,xm′) ≤ ∆} (498)

=
∑

PXX′∈Q(QX)

∑
(xm,xm′ )∈T (PXX′ )

1

|T (QX)|2

× 1{d(PXX′) ≤ ∆} (499)
.
= max
PXX′∈Q(QX):d(PXX′ )≤∆

e−nIP (X;X′) (500)

= e−nminP
XX′∈Q(QX ):d(P

XX′ )≤∆ IP (X;X′) (501)

≤ e−nmaxP
XX′∈Q(QX ):d(P

XX′ )>∆ IP (X;X′), (502)

where (498) follows from 3, and (502) holds by the condition
(69) under (68).

It follows from (494) and (502) that

EΠ[I(m,m′, PXX′)]

≤ PΠ{(Xm,Xm′) ∈ T (PXX′)}

+ e−nmaxP
XX′∈Q(QX ):d(P

XX′ )>∆ IP (X;X′) (503)
.
= e−nIP (X;X′) + e−nmaxP

XX′∈Q(QX ):d(P
XX′ )>∆ IP (X;X′)

(504)

≤ e−nIP (X;X′) + e−nIP (X;X′) (505)
.
= e−nIP (X;X′), (506)

where (505) follows from the fact that d(PXX′) > ∆ for all
PXX′ ∈ A1 ∪ A2.

Now, we set

x(m,m′, PXX′) , 1− exp
{
− enIP (X;X′)

}
. (507)

Then, under the condition minPXX′∈A1∪A2
IP (X;X ′) > R,

for all (m,m′, PXX′) ∈ [M ]2∗ × (A1 ∪ A2), it holds that

EΠ[I(m,m′, PXX′)] (508)
.
≤ e−nIP (X;X′) (509)

.
= 1− exp

{
− e−nIP (X;X′)

}
(510)

.
=

(
1− exp

{
− e−nIP (X;X′)

})
×
(

exp

{
− e−nIP (X;X′)

})|A1∪A2|enR

(511)

= x(m,m′, PXX′)

×
∏

(m̃,m̃′,P̃XX′ )∼(m,m′,PXX′ )

(
1− x(m̃, m̃′, P̃XX′)

)
,

(512)

where (510) follows from the fact that limx→0
e−x

1−x = 1, (511)
follows from |A1 ∪A2| ≤ |Q(QX)| which is sub-exponential
in n and minPXX′∈A1∪A2

IP (X;X ′) > R.
Then, by applying Lemma 21 with A =

[M ]2∗ × (A1 ∪ A2) and B = ∅, under the condition
minPXX′∈A1∪A2

IP (X;X ′) > R we have

PΠ

{ ∑
PXX′∈A1∪A2

M∑
m=1

∑
m′ 6=m

1
{
{(Xm,Xm′) ∈ T (PXX′)}

∪ {d(Xm,Xm′) ≤ ∆}
}

= 0

}
≥ min
PXX′∈A1∪A2

(
exp

{
− enIP (X;X′)

})|A1∪A2|M(M−1)

(513)

=̊ exp

{
− enmaxP

XX′∈A1∪A2
(2R−IP (X;X′))

}
(514)

= exp

{
− enmaxP

XX′∈A2
(2R−IP (X;X′))

}
, (515)
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where (515) follows from the definition of A1 and A2.
Finally, the condition minPXX′∈A1∪A2 IP (X;X ′) > R is

the same as minPXX′∈A2 IP (X;X ′) > R, which is equivalent
to the condition that

E0 < Egex(R,QX , d,∆)

, min
PXX′∈Q(QX):d(PXX′ )>∆,IP (X;X′)≤R

{
Γ(PXX′ , R)

+ IP (X;X ′)−R
}

(516)

= Ergv
ex (R,QX , g, d,∆), (517)

where (516) is obtained by using the same arguments to
achieve [15, I. (30)]. This concludes our proof of Lemma 12.

APPENDIX J
CONCENTRATION INEQUALITIES FOR SUMS OF

BERNOULLI RANDOM VARIABLES

To obtain the TRC or develop concentration inequalities for
the random coding exponents, we need to develop concen-
tration inequalities for a sum of Bernoulli random variables.
Since in RGV codebooks, all the codewords are correlated,
standard concentration inequalities such as Suen’s correlation
inequality [15], [34] cannot be applied. The main reason is
that these standard inequality require a local dependency in
the sum of random variables which only holds for the fixed-
composition or i.i.d. random ensembles but not for RGV
ones. We develop concentration inequalities for a sum of n
terms where each term depends on all the n− 1 other terms.
Thanks to the structure of all these random variables, some
concentration inequalities in the probability literature can be
applied. In this section, we list all these inequalities. For
the newly-developed inequality, the proof can be found in
appendices.

Lemma 18: [32, Lemma 2.1] Fix a positive number n and
let {x1, x2, · · · , xn} be real numbers from the interval [0, 1].
For every A ⊂ [n], let ζA be defined as

ζA =
∏
i∈A

xi
∏

i∈[n]\A

(1− xi). (518)

Then, ∑
A⊂[n]

ζA =

n∑
j=0

∑
A∈∂j [n]

ζA = 1 (519)

and
n∑
i=1

xi =

n∑
j=0

j
∑

A∈∂j [n]

ζA, (520)

where ∂j [n] denotes the family consisting of all subsets of [n]
of cardinality j ∈ {0, 1, 2, · · · , n}.
The following result can be also derived from Lemma 15.

Lemma 19: Suppose that X1, X2, · · · , Xn are random
variables such that Xi ∈ {0, 1}, for i = 1, 2, · · · , n. Set
p = 1

n

∑n
i=1 E[Xi]. Then, for any ν ∈ [0, p), it holds that

P
[ n∑
i=1

Xi ≤ n(p− ν)− 1

]
≤ 2e−nD(p−ν‖p). (521)

Proof: Let X̃i , 1−Xi for all i ∈ [n] and set p̃ , 1−p.
Then, we have

p̃ =
1

n

n∑
i=1

E[X̃i]. (522)

Let t− 1 = n(1− p) + n(1− p)ε0 for some ε0 > 0 such that
(1 − p)(1 + ε0) < 1. Then, by applying Lemma 15 for the
Bernoulli sequence X̃1, X̃2, · · · , X̃n, we have

P
[ n∑
i=1

X̃i ≥ t
]
≤ 2e−nD(p̃(1+ε0)‖p̃) (523)

= 2e−nD((1−p)(1+ε0)‖1−p). (524)

From (524) and X̃i = 1−Xi for all i ∈ [n], we obtain

P
[ n∑
i=1

Xi ≤ n− t
]
≤ 2e−nD((1−p)(1+ε0)‖1−p). (525)

Now, by setting ε0 , ν/(1−p), we have t = n(1−p+ν)+1.
Then, from (525), we have

P
[ n∑
i=1

Xi ≤ n(p− ν)− 1

]
≤ 2e−nD((1−p)(1+ε0)‖1−p)

(526)

= 2e−nD(1−p+ν‖1−p) (527)

= 2e−nD(p−ν‖p), (528)

where (528) follows from D(a‖b) = D(1 − a‖1 − b). Final
note is that (1− p)(1 + ε0) = 1− p+ ν < 1 for all ν ∈ [0, p).

Now, we recall the following result.
Lemma 20: [32, Theorem 1.2] There exists a universal con-

stant c ≥ 1 satisfying the following. Suppose X1, X2, · · · , Xn

are random variables such that 0 ≤ Xi ≤ 1, for i =
1, 2, · · · , n. Assume further that there exists constant γ ∈
(0, 1) such that for all A ⊂ [n] the following condition holds
true:

E
[∏
i∈A

Xi

]
≤ γ|A| (529)

where |A| denotes the cardinality of A. Fix a real number ν
from the interval

(
0, 1

γ − 1
)

and set t = nγ + nγν. Then,

P
[ n∑
i=1

Xi ≥ t
]
≤ ce−nD(γ(1+ν)‖γ), (530)

where D(γ(1+ν)‖γ) is the Kullback-Leibler distance between
γ(1 + ν) and γ.

Now, to bound the probability in (491), we recall the
following version of Suen’s correlation inequality lemma in
[34].

Lemma 21: [34, Lemma 1] Let {Uk}k∈K, where K is a set
of multidimensional indexes, be a family of Bernoulli random
variables. Let G be a dependency graph for {Uk}k∈K, i.e., a
graph with vertex set K such that if A and B are two disjoint
subsets of K, and G contains no edge between A and B,
then the families {Uk}k∈A and {Uk}k∈B are independent. Let
SA ,

∑
k∈A Uk for any A ⊂ K. Moreover, we write k ∼ l if
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(k, l) is an edge in the dependency graph G. Suppose further
that xk, k ∈ K are real numbers such that 0 ≤ xk < 1 and

E[Uk] ≤ xk
∏
l∼k

(
1− xl), k ∈ K. (531)

Then, for any two subsets A,B ⊂ K, it holds that

P
(
SA = 0|SB = 0

)
≥
∏
i∈A

(1− xi). (532)

APPENDIX K
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Fix an m ∈ [M ]. For any conditional type PX′Y ∈ Pn(X ×
Y) such that PX′ = QX and PY = P̂y , define

Nm,y(PX′Y ) ,
∣∣{Xm′ : (Xm′ ,y) ∈ T (PX′Y ),m′ 6= m

}∣∣
(533)

=
∑
m′ 6=m

1
{

(Xm′ ,y) ∈ T (PX′Y )
}
. (534)

Observe that

E
[
1
{

(Xm′ ,y) ∈ T (PX′Y )
}]

= P
[
(Xm′ ,y) ∈ T (PX′Y )

]
(535)

=
∑

x′m∈T (PX′|Y )

P(Xm′ = xm′) (536)

=
∑

x′m∈T (PX′|Y )

1

|T (QX)|
(537)

.
= e−nIP (X′;Y ), (538)

where (537) follows from Lemma 3, and (538) follows from
[29]. Hence, Nm,y(PX′Y ) is a sum of M − 1 binary-valued
random variables, each has the expectation e−nI(X

′;Y ).
Now, from (98) and (534), we can express Zm(y) as

Zm(y) =
∑

PX′|Y :PX′=QX

Nm,y(PX′Y )eng(PX′Y ). (539)

Hence, by considering the randomness of {Xm′}, we have

P
[
Zm(y) ≤ exp

{
nα(R− ε, P̂y)}

]
≤ P

[ ∑
PX′|Y :PX′=QX

Nm,y(PX′Y )eng(PX′Y )

≤ exp
{
nα(R− ε, P̂y)}

]
(540)

≤ P
[

max
PX′|Y :PX′=QX

Nm,y(PX′Y )eng(PX′Y )

≤ exp
{
nα(R− ε, P̂y)}

]
(541)

= P
[ ⋂
PX′|Y :PX′=QX

{
Nm,y(P )eng(PX′Y )

≤ exp
{
nα(R− ε, P̂y)}

}]
(542)

= P
[ ⋂
PX′|Y :PX′=QX

{
Nm,y(PX′Y )

≤ exp
{
nα(R− ε, P̂y)− g(PX′Y )}

}]
. (543)

As mentioned above, Nm,y(PX′Y ) is a sum of M −1 binary-
valued random variables, each has the expectation e−nI(X

′;Y ).
However, different from i.i.d. random codebook ensembles,
these random variables are correlated.

As [20, Appendix B], we argue that by the definition
of α(R − ε, P̂y), there must exist some P ∗X′|Y such that
for P ∗X′Y , P̂y × P ∗X′|Y , IP∗(X

′;Y ) ≤ R − ε and
R− ε− IP∗(X ′;Y ) ≥ α(R− ε, P̂y)− g(P ∗X′Y ). To see why
this is true, assume conversely, that for every PX′|Y , which
define PX′Y , P̂y × PX′|Y , either IP (X ′;Y ) > R − ε or
R− IP (X ′;Y )− ε < α(R− ε, P̂y)− g(PX′Y ), which means
that for every PX′Y ,

R− ε < max
{
IP (X ′;Y ), IP (X ′;Y )

+ α(R− ε, P̂y)− g(PX′Y )
}

(544)

= IP (X ′;Y ) +
[
α(R− ε, P̂y)− g(PX′Y )]+, (545)

which implies that for every PX′|Y , there exists t ∈ [0, 1] such
that

R− ε < max
{
IP (X ′;Y ), IP (X ′;Y )

+ α(R− ε, P̂y)− g(PX′Y )
}

(546)

= IP (X ′;Y ) + t
[
α(R− ε, P̂y)− g(PX′Y )], (547)

or equivalently,

α(R− ε, P̂y)

> max
PX′|Y :PX′=QX

min
0≤t≤1

g(PX′Y ) +
R− IP (X ′;Y )− ε

t
(548)

= max
P
X′|XY :P

X′=QX,

IP (X′;Y )≤R−ε

[
g(PX′Y )− IP (X ′;Y )

]
+R− ε (549)

= α(R− ε, P̂y), (550)

which is a contradiction.
Now, from (543) and the existence of P ∗X′Y as above, it

holds that

P
[
Zm(y) ≤ exp

{
nα(R− ε, P̂y)}

]
≤ P

[
Nm,y(P ∗X′Y ) ≤ exp

{
n[α(R− ε, P̂y)− g(P ∗X′Y )]}

]
.

(551)

Different from [11], Ny(P ∗X′Y ) is now not the sum of i.i.d.
Bernoulli random variables but these random variables are still
identically distributed and weakly dependent.

Now, let

Zm′ , 1
{

(Xm′ ,y) ∈ T (P ∗X′Y )
}
,∀m′ ∈M− , [M ] \ {m},

(552)

and

p , P
[
(X2,y) ∈ T (P ∗X′Y )

]
. (553)

Now, let ν ∈ (0, p) be chosen such that

(M − 1)(p− ν) = exp
{
n[α(R− ε, P̂y)− g(P ∗X′Y )]

}
.

(554)
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The existence of ν is guaranteed since (554) is equivalent to

ν = p−
exp

{
n[α(R− ε, P̂y)− g(P ∗X′Y )]

}
M − 1

(555)

≥ p−
exp

{
n[R− ε− IP∗(X ′;Y )]

}
M − 1

(556)

= p−
exp

{
n[R− ε− IP∗(X ′;Y )]

}
exp(nR)− 1

(557)

.
= exp

{
− nIP∗(X ′;Y )

}
− exp

{
− n(IP∗(X

′;Y ) + ε)
}
> 0, (558)

so ν ∈ (0, p).
By applying Lemma 19 with n = M − 1, Xi = Zi, p =

P
[
(X2,y) ∈ T (P ∗X′Y )

]
, and ν satisfying (554), we have

P
[
Ny(P ∗X′Y ) ≤ exp

{
n[α(R− ε, P̂y)− g(P ∗X′Y )]

}]
.
= P

[
Ny(P ∗X′Y ) ≤ exp

{
n[α(R− ε, P̂y)− g(P ∗X′Y )]

}]
(559)

≤ 2 exp
(
− (M − 1)D(p− ν‖p)

)
(560)

.
= exp(−enRD(p− ν‖p)). (561)

Now, since p .
= exp(−nIP∗(X ′;Y )), from (558), we also

have

(M − 1)
[
(γ − 1)(p− ν)

]
.
≤ exp(nR)

[(
1

1− e−nδ
− 1

)
exp

{
− n(IP∗(X

′;Y ) + ε)
}]

(562)
.
≤ e−n(δ+ε)

1− e−nδ
exp

[
n(R− IP∗(X ′;Y ))

]
. (563)

On the other hand, we have

exp(−enRD(p− ν‖p)) = exp

{
− enRD(e−an‖e−bn)

}
(564)

where a , R+g(P ∗X′Y )−α(R−ε, P̂y) and b , IP∗(X
′;Y ).

It is easy to see that

a− b = R+ g(P ∗X′Y )− α(R− ε, P̂y)− IP∗(X ′;Y ) (565)
≥ ε. (566)

Hence, by using the following fact [30, Sec. 6.3]:

D(a‖b) ≥ a log
a

b
+ b− a, (567)

we have

D(e−an‖e−bn) ≥ e−bn
[
1 + e(b−a)n((b− a)n− 1)

]
. (568)

Hence, we obtain

exp(−enRD(p− ν‖p)) ≤ exp

{
− en(R−IP∗ (X′;Y ))

× [1− e−nε(1 + nε)]

}
. (569)

From (561), (563), and (569), we obtain

P
[
Nm,y(P ∗X′Y ) ≤ exp

{
n[α(R− ε, P̂y)− g(P ∗X′Y )]

}]
.
≤ exp

{
e−n(δ+ε)

1− e−nδ
exp

[
n(R− IP∗(X ′;Y ))

]}
× exp

{
− en(R−IP∗ (X′;Y ))[1− e−nε(1 + nε)]

}
(570)

= exp

{
− en(R−IP∗ (X′;Y ))

×
[
1− e−n(δ+ε)

1− e−nδ
− e−nε(1 + nε)

]}
(571)

≤ exp

{
− enε

[
1− e−n(δ+ε)

1− e−nδ
− e−nε(1 + nε)

]}
, (572)

where (572) follows from the fact that IP∗(X ′;Y ) ≤ R− ε.
From (551) and (572), we obtain

Pr
[
Zm(y) ≤ exp

{
nα(R− ε, P̂y)}

]
.
≤ exp

{
− enε

[
1− e−n(δ+ε)

1− e−nδ
− e−nε(1 + nε)

]}
.

(573)

This concludes our proof of Lemma 14.

APPENDIX L
PROOF OF LEMMA 16

The proof is based on [15, Proof of Prep. 5]. However,
there are some changes to account for the dependency among
the codewords. One such an important change is to replace
the Hoeffding’s inequality in [15, Proof of Prep. 5] by a
generalized version of this inequality in [35].

By using the union bound, we have

P{B̂n(σ)} = P
{ M⋃
m=1

⋃
m′ 6=m

⋃
y

B̂n(σ,m,m′,y)

}
(574)

≤
M∑
m=1

∑
m′ 6=m

∑
y

P
{
B̂n(σ,m,m′,y)

}
. (575)

In addition, for any joint type PXY ∈ Pn(X × Y), let

N(PXY ) ,
∑

m̃∈[M ]\{m,m′}

1{(Xm̃,y) ∈ T (PXY )}, (576)

then we also have

P
{
B̂n(σ,m,m′,y)

}
.
=

∑
PXY :PX=QX,

IP (X;Y )≤R

P
{
N(PXY ) ≥ en(β(R,PY )+σ−g(PXY ))

}

+
∑

PXY :PX=QX,

IP (X;Y )>R

P
{
N(PXY ) ≥ en(β(R,PY )+σ−g(PXY ))

}
(577)

where (577) follows from [15, Eq. (H.6)].
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Now, observe that

P
{
N(PXY ) ≥ en(β(R,PY )+σ−g(PXY ))

}
≤ P

{
N(PXY ) ≥ en(R+σ−IP (X;Y ))

}
(578)

= P
{ ∑
m̃∈[M ]\{m,m′}

1{(Xm̃,y) ∈ T (PXY )}

≥ en(R+σ−IP (X;Y ))

}
(579)

where (578) follows from [15, Eq. (H.9)].
Define a new probability measure Π on Xn ×Xn · · · × Xn︸ ︷︷ ︸

M times

:

PΠ(x1,x2, · · · ,xM ) =

M∏
m=1

P(Xm = xm), (580)

for all (x1,x2, · · · ,xM ).
Note that for any A ⊂ [M ] \ {m,m′}, under the condition

(28) we have

E
[ ∏
m̃∈A

1{(Xm̃,y) ∈ T (PXY )}
]

≤ 1

(1− e−nδ)|A|
EΠ

[ ∏
m̃∈A

1{(Xm̃,y) ∈ T (PXY )}
]

(581)

=
1

(1− e−nδ)|A|
∏
m̃∈A

P
{

(X̃m,y) ∈ T (PXY )
}

(582)

where (581) follows from the change of measure and Lemma
4.

Now, we have

P
{

(X̃m,y) ∈ T (PXY )
}

=
∑

x̃m∈T (PXY |y)

P(x̃m) (583)

=
∑

x̃m∈T (PXY |y)

1

|T (QX)|
(584)

.
= e−nIP (X;Y ) (585)

where (584) follows from Lemma 3, and (585) follows from
[29].

From (582) and (585), we obtain

E
[ ∏
m̃∈A

1{(Xm̃,y) ∈ T (PXY )}
]

.
≤ γ|A| (586)

where

γ = (1− e−nδ)−1e−nIP (X;Y ). (587)

Hence, if R ≥ IP (X;Y ), we have

P
{ ∑
m̃∈[M ]\{m,m′}

1{(Xm̃,y) ∈ T (PXY )}

≥ en(R+σ−IP (X;Y ))

}
.
≤ exp

{
− enRD

(
(1− e−nδ)−1eσ−IP (X;Y )

∥∥∥∥
(1− e−nδ)−1e−nIP (X;Y )

)}
(588)

≤ exp

{
− enR(1− e−nδ)−1e−n(IP (X;Y )−σ)

×
(

log
e−n(IP (X;Y )−σ)

e−nIP (X;Y )
− 1

)}
(589)

= exp

{
− (1− e−nδ)−1en(R−IP (X;Y )+σ)(nσ − 1)} (590)

≤̊ exp{−enσ}, (591)

where (588) follows from Lemma 20, (589) follows from the
fact that D(a‖b) ≥ a

(
log a

b − 1
)

[33, p. 167], and (591)
follows from R ≥ IP (X;Y ).

From (579) and (591), we obtain

P
{
N(PXY ) ≥ en(β(R,PY )+σ−g(PXY ))

}
≤̊ exp{−enσ}

(592)

if IP (X;Y ) ≥ R.
Similarly, for the case R < IP (X;Y ), we have

P
{
N(PXY ) ≥ en(β(R,PY )+σ−g(PXY ))

}
≤ P

{
N(PXY ) ≥ enσ

}
(593)

= P
{ ∑
m̃∈[M ]\{m,m′}

1{(Xm̃,y) ∈ T (PXY )} ≥ enσ
}

≤ exp

{
− enRD

(
(1− e−nδ)−1e−n(R−σ)

∥∥
(1− e−nδ)−1e−nIP (X;Y )

)}
(594)

= exp

{
− (1− e−nδ)−1enσ[n(IP (X;Y )−R+ σ)− 1]

}
(595)

≤̊ exp{−enσ}, (596)

where (594) is obtained by applying Lemma 20 and the change
of measures as the arguments to achieve (591), and (596)
follows from the same arguments to achieve (589), and (596)
follows from IP (X;Y ) > R.

From (577), (592), and (596), we obtain

P
{
B̂n(σ,m,m′,y)

}
≤̊ exp{−enσ}. (597)

From (575) and (597), we finally obtain

P{B̂n(σ)} ≤̊
M∑
m=1

∑
m′ 6=m

∑
y

exp{−enσ} (598)

=̊ exp{−enσ}. (599)
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This concludes our proof of Lemma 16.
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