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Abstract Background: In patients with advanced ovarian cancer, the modelled CA-125 
ELIMination rate constant K (KELIM) is an early indicator of the tumour intrinsic chemo
sensitivity. We assessed the prognostic and surrogate values of KELIM with respect to those of 
surgery outcome (based on post-operative residual lesions) in the Gynaecologic Cancer 
Intergroup (GCIG) individual patient data meta-analysis MAOV (Meta-Analysis in OVarian 
cancer) built before the emergence of poly(ADP-ribose) polymerase (PARP) inhibitors. 
Methods: The dataset was split into learning and validation cohorts (ratio 1:2). The in
dividual modelled KELIM values were estimated, standardised by the median value, then 
scored as unfavourable (< 1.0) or favourable (≥1.0). Overall survival (OS) and progression- 
free survival (PFS) analyses were performed with a two-step meta-analytic approach and 
surrogacy through a two-level meta-analytic model. 
Results: KELIM was assessed in 5884 patients from eight first-line trials (learning, 1962; validation, 
3922). A favourable KELIM score was significantly associated with longer OS (validation set, 
median, 78.8 versus 28.4 months, hazard-ratios [HR] 0.46, 95% confidence interval [CI], 0.41–0.50, 
C-index 0.68), and longer PFS (validation set, median 30.5 versus 9.8 months, HR 0.49, 95% CI, 
0.45–0.54, C-index 0.68), as were International Federation of Gynaecology and Obstetrics (FIGO) 
stage and debulking surgery outcome. Three prognostic groups were identified based on the surgery 
outcome and KELIM score, with large differences in OS (105.1, ∼45.0, and 22.1 months) and PFS 
(58.1, ∼15.0, and 8.0 months). Surrogacy for OS and for PFS was not established. 
Conclusion: KELIM is an independent prognostic biomarker for survival, complementary to 
surgery outcome, representing a new determinant of first-line treatment success. 
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC 
BY-NC 4.0 (http://creativecommons.org/licenses/by-nc/4.0/).    

1. Introduction 

The standard management of high-grade ovarian car
cinoma (HGOC) relies on a medical-and-surgical ap
proach, combining platinum-based chemotherapy with 
or without debulking surgery, and maintenance treat
ment with targeted drugs [1–3]. The prognostic values of 
the International Federation of Gynaecology and Ob
stetrics (FIGO) disease stage and the surgery com
pleteness are well established. However, there is a need 
for indicators of the tumour chemosensitivity for un
derstanding the prognostic impact of this parameter 
relative to the success of the first-line treatment, as ac
knowledged by the European Society of Medical On
cology-European Society of Gynaecological Oncology 
(ESMO-ESGO) conference consensus [1,2]. 

In 2004, the Gynaecologic Cancer Intergroup 
(GCIG) adopted a response criterion based on the 
cancer antigen-125 (CA-125) percentage decline. 
However, it has been validated in the recurrent setting 
only [4]. The early modelled CA-125 ELIMination rate 
constant K (KELIM), calculated with the CA-125 
longitudinal kinetics during the first 100 days of neo- 

adjuvant or adjuvant chemotherapy, was developed to 
be a reflection of the early serum tumour marker elim
ination rate during systemic treatment [1,5]. In many 
studies, KELIM was identified as a reliable indicator of 
the tumour intrinsic chemosensitivity [1]. Indeed it was 
found to be associated with: (1) the radiological re
sponse during neo-adjuvant chemotherapy; (2) the 
likelihood of complete resection at interval surgery; (3) 
the probability of subsequent platinum-resistant relapse; 
(4) the patient progression-free survival (PFS) and 
overall survival (OS); along with (5) the probability of 
long disease-free > 5 years after first-line treatment, in 
seven independent trial datasets and one national reg
istry, involving altogether more than 7000 patients  
[6–11]. KELIM represents the rate of CA-125 decline 
during systemic treatment, like a kind of CA-125 
‘clearance’, related to the tumour chemosensitivity. The 
higher KELIM, the faster the CA-125 elimination, the 
higher the chemosensitivity. 

A meta-analysis study was warranted to assess the 
magnitude of the prognostic value of KELIM regarding 
survival and the potential surrogate value of KELIM [12]. 
When validated as a surrogate of OS, an intermediate end- 
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point enables an early assessment of the therapeutic anti- 
tumour activity, while avoiding confounding effects related 
to post-progression therapies [13]. The GCIG meta-analysis 
group built a set of individual-patient data from rando
mised clinical trials (RCT) conducted before the PARP 
(poly(ADP-ribose) polymerase)-inhibitor era (MAOV, 
Meta-Analysis in OVarian cancer, CRD42017068135) [14]. 

The aims of the present study performed with MAOV 
were to assess: (1) the magnitude of the prognostic value 
of KELIM for OS and PFS; (2) the impact of tumour 
chemosensitivity with respect to debulking surgery op
timality relative to the success of the medical-and-sur
gical treatment; (3) the potential surrogate value of 
KELIM regarding survival. 

2. Materials and methods 

This meta-analysis was conducted in compliance with the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines (Appendix). The 
selection of trials included in MAOV was previously re
ported [14]. Eligible studies included RCT testing sys
temic treatments in first-line setting HGOC. Those that 
collected individual serum CA-125 measurements 
(minimum three available during the first 100 days of 
treatment) were included. A data-splitting strategy stra
tified on trials, randomly assigned patients into learning 
and validating datasets with a 1:2 ratio considering the 
large dataset size [15]. Disease stage according to FIGO 
criteria (stages I-II, III or IV); debulking surgery outcome 
(optimal surgery when post-operative residual lesions < 1 
cm, sub-optimal when ≥1 cm). 

2.1. Estimation of individual KELIM 

Individual CA-125 longitudinal kinetics were char
acterised using a population-based approach, with the 
non-linear mixed effect model previously reported 
(Supplementary Material) [6,10]. 

The learning dataset was used to estimate the model 
parameters, with trial stratification for KELIM and 
baseline CA-125 level estimations, to account for mul
tiple studies. The population parameters found in the 
learning dataset were used to calculate individual 
KELIM values in the validation set as empirical 
Bayesian estimates [16]. 

2.2. KELIM prognostic value 

To assess the respective prognostic values of KELIM 
and of surgery outcome regarding OS and PFS, uni
variate survival analyses were performed using 
Kaplan–Meier curves and Log-rank tests. Cox propor
tional hazard models enabled adjustments for covari
ates, with a two-stage meta-analytic approach [17]. The 
I2 statistic was used to assess the between-trial hetero
geneity [18]. The discriminatory ability of KELIM 

regarding OS and PFS was evaluated using Harrell’s 
C-index (Supplementary Material) [19]. 

To facilitate the clinical interpretation of survival 
analyses, KELIM was standardised by the median value 
of the dataset, this cutoff being previously found to be 
the optimal one [6,8,11], then dichotomised into a 
KELIM score: std KELIM  <  1.0 was considered as 
unfavourable, whilst std KELIM ≥ 1.0 was considered 
as favourable. Analyses were implemented with a 
landmark time point set-up at 100 days after randomi
sation, excluding patients who died or progressed within 
this period, in order to avoid potential biases related to 
early events and CA-125 kinetics [20]. 

2.3. KELIM surrogate value 

A two-stage meta-analytic approach was applied for the 
assessment of KELIM surrogacy (Supplementary  
Material) [21]. At the individual-level, the association be
tween KELIM and survival outcomes was measured by 
Spearman’s rank-correlation coefficient, obtained from a 
bivariate model based on copulas [22]. Trial-level surro
gacy was performed through a linear regression between 
treatment effects on KELIM and on survival outcomes, 
and quantified by the R2 coefficient of determination [23]. 
Treatment effect on KELIM was measured as the mean 
difference of KELIM natural logarithm between in
vestigational and standard treatment groups, and treat
ment effect on survival outcomes through hazard-ratios 
(HR). A prespecified R2 ≥ 0.80, with a 95% confidence 
interval (CI) excluding 0.60, was required to consider the 
candidate end-point as a reliable surrogate [24]. 

2.4. Statistical analyses and computing process 

NONMEM (NONlinear Mixed Effects Modelling) 7.5 
software (ICON Development Solutions, USA) was used 
to fit CA-125 kinetics to the semi-mechanistic model [25]. 
Parameters were estimated using a maximum likelihood 
approach and the Stochastic Approximation of Expecta
tion-Maximisation (SAEM) algorithm [16]. 

Survival and logistic analyses, concordance prob
ability, meta-analytic and quantile regression analyses 
were performed in R software version 4.0.5. The 
Statistical Analysis System (SAS) macro %NORMS
URV was implemented to assess KELIM surrogacy 
(SAS 9.4 University Edition, SAS Institute Inc., USA). 

Statistical tests were performed using a two-sided 0.05 
alpha-risk, except for Cochran heterogeneity tests, for which 
a P value  <  0.10 was considered statistically significant. 

2.5. Ethics approval and consent to participate 

The Ethics Committee of Gustave Roussy Cancer 
Centre, Villejuif, France, approved this study, and the 
French data protection authority waived the need for 
informed consent for the use of deidentified data. 
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3. Results 

3.1. Trial and patient selection 

Of 11,029 patients from 17 trials included in the MAOV 
database, 5884 patients enrolled in eight RCT were eli
gible for KELIM estimation (Supplementary Table S1)  
[26–33]. Among them, 1962 and 3922 patients were 
randomly assigned to the training and validation co
horts, respectively (Fig. 1). The surgery outcome based 
on the post-operative residual disease was available for 
1912 (97.5%) and 3802 (97.0%) patients, respectively. In 
both cohorts, the median KELIM was 0.06 per day 

(interquartile range 0.04–0.08), ranging from 0.05 to 
0.08 per day across trials. As a consequence, std 
KELIM was calculated as individual KELIM/0.06. 

3.2. Model qualification 

The typical parameter estimates and qualification ana
lyses from the final semi-mechanistic model are pre
sented in Supplementary Table S2 and Fig. S1. Relative 
standard errors of KELIM typical values, representing 
the estimation precision, were low (4.1–11.6%), sug
gesting limited risks of biased individual estimates of 
KELIM. 

Fig. 1. PRISMA-IPD flow diagram for trial and patient selection (learning and validation sets). GCIG, Gynaecologic Cancer Intergroup; 
IPD, individual patient data; OS, overall survival; PFS, progression-free survival; PRISMA, preferred reporting items for systematic 
reviews and meta-analyses. 
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3.3. Prognostic value 

3.3.1. Overall survival 
The data from 1948 and 3894 patients were assessable in 
the learning and validation sets, respectively. The pa
tients with a favourable KELIM score (≥1.0) experi
enced significantly longer OS than those with an 
unfavourable score (< 1.0): learning set, median OS, 
81.8 months (95% CI, 68.7– non-reached (NR)) versus 
31.1 months (95% CI, 29.2–35.7); validation set, median 

OS, 78.8 months (95% CI, 72.9–89.1) versus 28.4 
months (95% CI, 26.7–30.8); log-rank P  <  0.0001 
(Fig. 2A). In univariate OS analyses, the C-index asso
ciated with KELIM were 0.60 (95% CI, 0.58–0.62), and 
0.62 (95% CI, 0.60–0.64) in the two sets, respectively. In 
the multivariate models, a favourable KELIM score was 
independently associated with a better OS (learning set, 
HR, 0.51, [95% CI, 0.44–0.59]; validation set, HR, 0.46, 
[95% CI, 0.41–0.52]), as were the FIGO stage and the 
surgery outcome (Fig. 2B and Supplementary Table S3). 

unfavourable KELIM score
favourable KELIM score

favourable KELIM score better unfavourable KELIM score better favourable KELIM score better unfavourable KELIM score better

unfavourable KELIM score
favourable KELIM score

Fig. 2. Analyses of the prognostic value of KELIM score regarding overall survival. (A) Kaplan-Meier overall survival curves according 
to KELIM score (unfavourable, standardised KELIM  <  1.0; favourable, standardised KELIM ≥ 1.0) in learning set (left panel) and in 
validation set (right panel). Dashed lines indicate the 95% confidence intervals of the Kaplan-Meier estimates; (B) Forest plots of 
standardised KELIM (binary covariate) prognostic value on overall survival in the learning set (left panel) and in the validation set (right 
panel). The impact of KELIM was estimated in each trial with a multivariate Cox regression model, then combined to estimate an overall 
hazard ratio. CI, confidence interval; FE, fixed effect; KELIM, CA-125 ELIMination rate constant K; HR, hazard ratio; OS, overall 
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The inclusion of the three covariates improved the C- 
index to 0.67 (95% CI, 0.64–0.70) and to 0.68 (95% CI, 
0.65–0.71) in learning and validation sets, respectively 
(Supplementary Fig. S2). The prognostic value of 
KELIM was found to be stable through analyses per
formed at different horizon times, on up to a 5-year 
follow-up (Supplementary Fig. S3). 

When OS curves were adjusted for surgery outcome, 
three different prognostic populations were delineated 
(Fig. 3): (1) a good prognosis population, with favour
able KELIM score and optimal surgery (validation co
hort, median OS, 105.1 months; 95% CI, 92.5–NR; (2) 
an intermediate prognosis population, with either fa
vourable KELIM score and sub-optimal surgery 
(median OS, 48.0 months; 95%, CI 44.0–57.1), or un
favourable KELIM score and optimal surgery (median 
OS, 45.0 months; 95% CI, 39.7–52.6); and (3) a poor 
prognosis population, with unfavourable KELIM score 
and sub-optimal surgery (median OS, 22.1 months; 
95% CI, 20.7–24.0). 

3.3.2. Progression-free survival 
The data from 1888 and 3802 patients were assessable 
for PFS analyses in the learning and validation sets, 
respectively. The outcomes were consistent with those 
found for OS. Patients with a favourable KELIM score 

experienced longer PFS: learning set, median PFS, 26.8 
months (95% CI, 23.6–32.1) versus 10.3 months 
(95% CI, 9.6–11.7); validation set, 30.5 months (95% CI 
28.0–34.3) versus 9.8 months (95% CI 9.4–10.3); log- 
rank P  <  0.0001 (Fig. 4A). In the multivariate Cox 
analyses, a favourable KELIM score was associated 
with better PFS (learning set, HR 0.59; 95% CI, 
0.52–0.66; validation set, 0.49; 95% CI, 0.45–0.54,  
Fig. 4B), as were FIGO stage and surgery outcome 
(Supplementary Table S3). The association of KELIM 
with FIGO stage and surgery outcome in the multi
variate model led to a C-index improvement to 0.66 
(95% CI 0.64–0.69), compared to KELIM, FIGO or 
surgery outcome considered alone (0.59 [95% CI 
0.57–0.60], 0.58 [95% CI 0.54–0.61], and 0.60 [95% CI 
0.57–0.62] respectively). KELIM prognostic value was 
stable for up to a 5-year follow-up (Supplementary 
Fig. S4). 

The same three prognostic groups based on the 
combination of both KELIM score and surgery out
come were found, with large median PFS differences: (1) 
58.1 months for the good prognosis population, (2) 15.1 
months in the case of favourable KELIM score and 
suboptimal surgery, 14.9 months with unfavourable 
KELIM score and optimal surgery and (3) 8.0 months 
in the poor prognosis population (Fig. 5). 

Fig. 3. Kaplan-Meier overall survival curves according to KELIM score and to residual disease after debulking surgery. KELIM score 
was determined as unfavourable (standardised KELIM  <  1.0) or favourable (standardised KELIM ≥ 1.0). The optimality of debulking 
surgery was assessed with post-operative lesions <  or ≥1 cm. Data from the learning set are shown on the left panel, and data from the 
validation set are shown on the right panel. DS, debulking surgery; fav, favourable; KELIM, CA-125 ELIMination rate constant K; 
unfav, unfavourable. 
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Continuous std KELIM was also independently as
sociated with a higher probability of long disease-free 
> 5 years (Supplementary Fig. S5). 

3.4. Surrogate value 

Experimental treatments had no effect on OS and 
on PFS at the overall population level, or at the trial 
level (Supplementary Fig. S6). The individual-level 

association between continuous std KELIM and OS, 
measured by the Spearman’s correlation coefficient, 
reached 0.37 (95% CI, 0.32–0.42) and 0.43 (95% CI, 
0.40–0.47) in the learning and validation sets, respec
tively, indicating a low correlation. R2 for trial-level 
association of treatment effects was 0.59 (95% CI, 
0.12–1.00) and 0.19 (95% CI, 0.00–0.72), respectively, 
failing to demonstrate a strong trial association 
(Supplementary Fig. S7A). 

unfavourable KELIM score
favourable KELIM score

unfavourable KELIM score
favourable KELIM score

favourable KELIM score better unfavourable KELIM score better favourable KELIM score better unfavourable KELIM score better

Fig. 4. Analyses of the prognostic value of KELIM score regarding progression-free survival. (A) Kaplan-Meier progression-free survival 
curves according to KELIM score (unfavourable, standardised KELIM  <  1.0; favourable, standardised KELIM ≥ 1.0) in learning set 
(left panel) and in validation set (right panel). Dashed lines indicate the 95% confidence intervals of the Kaplan-Meier estimates; 
(B) Forest plots of standardised KELIM (binary covariate) prognostic value on progression-free survival in learning set (left panel) and in 
validation set (right panel). The impact of KELIM was estimated in each trial with a multivariate Cox regression model, then combined to 
estimate an overall hazard ratio. CI, confidence interval; FE, fixed effect; KELIM, CA-125 ELIMination rate constant K; HR, hazard 
ratio; PFS, progression-free survival. 
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At patient-level, Spearman’s coefficient for PFS was 
0.25 (95% CI, 0.20–0.29) and 0.35 (95% CI, 0.32–0.38), 
respectively, and R2-trial was 0.18 (95% CI, 0.00–0.70) 
and 0.46 (95% CI, 0.00–1.00), indicating no significant 
trial-level association (Supplementary Fig. S7B). 

4. Discussion 

This confirmatory study, based on an individual-patient- 
data meta-analysis database, validates the role of KELIM 
as a reproducible and independent prognostic biomarker 
of OS and PFS, through a highly robust two-step meta- 
analytic approach and cross-validation. Patients with a 
favourable KELIM score consistently experienced higher 
OS than those with an unfavourable KELIM score, with a 
hazard-ratio close to 0.5, and highly clinically significant 
median OS differences (∼80 against ∼30 months), in line 
with previous reports [6–11,34]. 

The official GCIG CA-125 response criterion, de
fined as a reduction of at least 50% in CA-125 levels on a 
28-day period, [4] is considered applicable to patients 
with recurrent ovarian cancers only. Therefore, it was 
not directly compared to KELIM in the present study. 
Nevertheless, we could calculate it for 60% of women 
only, and the univariate C-index was 0.56 for OS 
(95% CI, 0.54–0.58), and 0.55 for PFS (95% CI, 
0.53–0.57) (validation sets). 

A clinically relevant outcome relates to the combination 
of KELIM (representing the biological debulking) and 
surgery outcome, delineating three distinct prognostic 
groups: (1) a good prognosis population with favourable 
KELIM and optimal surgery (median OS ∼105 months); 
(2) an intermediate prognosis in patients with either un
favourable KELIM or sub-optimal surgery (median OS 
∼45 months); (3) a poor prognosis in patients with un
favourable KELIM and sub-optimal surgery (median OS 
∼22 months). Equivalent outcomes with the same prog
nostic groups were found in an exploratory analysis of 
ICON-8 trial [9], thereby highlighting the major in
dependent prognostic values of both components of the 
medical-and-surgical treatment backbone. The poorest 
prognosis group should be prioritised for therapeutic ad
justments and innovative drug development, meant to 
improve the tumour chemosensitivity. 

A recent study from ICON-8 trial showed that the 
weekly dose-dense regimen was associated with im
proved PFS and OS compared to the standard three- 
weekly regimen in patients belonging to this poor 
prognostic group [9]. The addition of bevacizumab may 
also be of interest in this situation. Indeed, an external 
validation study on Gynecologic Oncology Group 
(GOG)-0218 trial data [35] confirmed the hypotheses 
raised in ICON-7 trial [7] that bevacizumab combina
tion to the standard first-line chemotherapy was 

Fig. 5. Kaplan-Meier progression-free survival curves according to KELIM score and to residual disease after debulking surgery. KELIM 
score was determined as unfavourable (standardised KELIM  <  1.0) or favourable (standardised KELIM ≥ 1.0). The optimality of de
bulking surgery was assessed with post-operative lesions <  or ≥1 cm. Data from the learning set are shown on the left panel, and data 
from the validation set are shown on the right panel. DS, debulking surgery; fav, favourable; KELIM, CA-125 ELIMination rate 
constant K; unfav, unfavourable. 
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associated with PFS and OS gains in this high-risk po
pulation. The trials assessing rare subtypes of high- 
grade ovarian cancers (e.g. ovarian cancer clear cell 
carcinoma) were not excluded from the present analyses, 
because we had data from previous studies and the 
present meta-analysis dataset suggesting that the 
KELIM prognostic value would not be impacted by 
these histology types (data not shown) [6,8,9]. 

The present study has some limitations. The optim
ality of debulking surgery was based on post-operative 
residual lesions <  or ≥1 cm, as the standard surgery 
criterion when the trials were conducted, although the 
completeness of surgery with non-visible microscopic 
residual is now the recommended quality criterion [2]. 
More recent studies demonstrated that KELIM in
dependent prognostic value was similar when the com
pleteness of surgery was assessed [8,9]. Furthermore, 
individual data about tumour histology and grade were 
not assessable, due to the absence of central pathological 
review and changes of pathological definitions over time. 
BRCA mutational status or homologous recombination 
deficiencies were not available, since they were not de
termined in standard practice at that time. However, the 
prognostic value of KELIM was found to be independent 
of these covariates in other studies [8,9,11]. 

Two hypotheses can be considered for the lack of 
surrogate value of KELIM despite a strong prognostic 
value. Either KELIM is actually a surrogate marker, 
but it could not be revealed here due to the lack of 
treatment effect in the available trials, as already re
ported with the same database [14], or KELIM would 
mainly exhibit a prognostic value regarding patient 
survival. Of note, such a prognostic value does not ex
clude a predictive value regarding the efficacy of specific 
drugs whose mechanisms of efficacy are related to che
mosensitivity, as it is the case for bevacizumab or PARP 
inhibitors [34,35]. Analyses are currently being con
ducted to assess KELIM prognostic and predictive va
lues in PARP-inhibitor trials. A promising post-hoc 
analysis of the VELIA trial suggested that KELIM 
could be a predictive marker of the benefit from sub
sequent maintenance treatment with veliparib [34]. 
Moreover, KELIM is being prospectively assessed in the 
on-going NIRVANA-1 trial (NCT05183984) and Ar
beitsgemeinschaft Gynäkologische Onkologie Ovarian 
Cancer Study Group (AGO-OVAR) 28/ENGOT (Eur
opean Network for Gynaecological Oncological Trial 
groups)-ov57 trial (NCT05009082), comparing nir
aparib with or without bevacizumab in patients oper
ated with complete primary surgery. 

5. Conclusions 

The outcomes of the present meta-analysis study confirm 
those of previous publications, about the strong asso
ciation of KELIM score with patient prognosis and 
survival, independently on surgery completeness (all 

together on the data from more than 12,000 patients 
enrolled in 14 trials and a national cancer registry,  
Supplementary Fig. S8) [6–9,11,34]. In particular, a poor 
prognostic population of ovarian cancer patients char
acterised with a low chemosensitive disease that could not 
be operated with complete debulking experiencing short 
20-month median OS was identified. Based on these re
sults, the European phase III trial SALVOVAR will 
evaluate in this poor prognosis population the efficacy of 
a weekly dose-dense regimen in order to reverse the 
chemoresistance. 

In the meantime, KELIM individual calculation 
might be integrated in the management algorithms of 
newly diagnosed advanced ovarian cancer, as a help for 
interpreting chemotherapy efficacy [1]. Easily calculable 
with the online calculator and smartphone application 
(https://www.biomarker-kinetics.org/) with blood CA- 
125 concentrations measured at each cycle during the 
first three cycles [36], KELIM is a pragmatic and re
producible tool available for both routine patient 
management, and drug development. 
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