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ABSTRACT
Hyperspectral image classification is vital for various remote sensing applications; however, it
remains challenging due to the complex and high-dimensional nature of hyperspectral data.
This paper introduces a novel approach to address this challenge by leveraging spectral and
spatial features through a lightweight HResNeXt model. The proposed model is designed to
overcome the limitations of traditional methods by combining residual connections and cardin-
ality to enable efficient and effective feature extraction from hyperspectral images, capturing
both spectral and spatial information simultaneously. Furthermore, the paper includes an in-
depth analysis of the learned spectral–spatial features, providing valuable insights into the dis-
criminative power of the proposed approach. The extracted features exhibit strong discrimina-
tive capabilities, enabling accurate classification even in challenging scenarios with limited
training samples and complex spectral variations. Extensive experimental evaluations are con-
ducted on four benchmark hyperspectral data sets, the Pavia university (PU), Kennedy Space
Center (KSC), Salinas scene (SA), and Indian Pines (IP). The performance of the proposed
method is compared with the state-of-the-art methods. The quantitative and visual results
demonstrate the proposed approach’s high classification accuracy, noise robustness, and com-
putational efficiency superiority. The HResNeXt obtained an overall accuracy on PU, KSC, SA,
and IP, 99.46%, 81.46%, 99.75%, and 98.64%, respectively. Notably, the lightweight HResNeXt
model achieves competitive results while requiring fewer computational resources, making it
well-suited for real-time applications.

RÉSUMÉ

La classification d’images hyperspectrales est vitale pour diverses applications de
t�el�ed�etection. Cependant, cela reste difficile en raison de la nature complexe et de la haute
dimensionnalit�e des donn�ees hyperspectrales. Cet article pr�esente une nouvelle approche
pour relever ce d�efi en tirant parti des caract�eristiques spectrales et spatiales grâce �a un
mod�ele HResNeXt l�eger. Le mod�ele propos�e est conçu pour surmonter les limites des
m�ethodes traditionnelles en combinant les connexions r�esiduelles et la cardinalit�e pour per-
mettre une extraction efficace des caract�eristiques des images hyperspectrales, capturant
simultan�ement les informations spectrales et spatiales. En outre, l’article comprend une ana-
lyse approfondie des caract�eristiques spectrales et spatiales apprises, fournissant des infor-
mations pr�ecieuses sur le pouvoir discriminatif de l’approche propos�ee. Les caract�eristiques
extraites pr�esentent de fortes capacit�es discriminantes, permettant une classification pr�ecise
même dans des sc�enarios difficiles avec de petits �echantillons d’entrâınement et des varia-
tions spectrales complexes. Les �evaluations exp�erimentales ont �et�e men�ees sur quatre
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ensembles de donn�ees hyperspectrales de r�ef�erence: PU, KSC, SA et IP. La performance de
la m�ethode propos�ee est compar�ee aux m�ethodes de pointe. Les r�esultats quantitatifs et
visuels d�emontrent une haute pr�ecision des classifications pour l’appropre propos�ee, sa
robustesse au bruit et sa sup�eriorit�e dans l’efficacit�e de calcul. Le HResNeXt a obtenu un OA
sur PU, KSC, SA et IP, de 99,46%, 81,46%, 99,75% et 98,64%, respectivement. Notamment, le
mod�ele HResNeXt l�eger permet d’obtenir des r�esultats comp�etitifs tout en n�ecessitant moins
de ressources de calcul, ce qui le rend bien adapt�e aux applications en temps r�eel.

Introduction

Hyperspectral pictures contain hundreds of continuous
spectral bands that can be utilized to distinguish between
various substances. As a result, hyperspectral pictures
are now widely recognized as a crucial data source in
remote sensing for object recognition and classification.
Numerous classification strategies, notably supervised
models, have been developed for labeling hyperspectral
information. Supervised classification methods have been
used for many classification tasks using random forest
(Sun et al. 2019; Joelsson et al. 2005; Gadekallu et al.
2023) and support vector machine (SVM; Ravi et al.
2022; Saab et al. 2022). A random forest is an algorithm
that averages out a set of data. The final classes of test
samples are chosen either by a majority vote or the
maximum posterior (MAP) rule, and a collection of
decision trees is generated from a set of randomly
selected subsamples of the training data. In contrast, an
SVM seeks a hyperplane to prioritize differences across
classes. However, "shallow" models like the random for-
est and SVM (Melgani and Bruzzone 2004; Waske et al.
2010) are considered inferior to "deep" networks that
can obtain hierarchical, deep representations of features
(Guo et al. 2022; Mou et al. 2020).

Many supervised approaches for HSI categorization
(Audebert et al. 2019) have been proposed over the past
20 years. When HSI classification first began, spectral
data were less available. Standard spectral classification
using the SVM was reported in He and Chen (2021). In
addition, several SVM-based classifiers (Deng et al. 2018;
Ghamisi et al. 2017) have been proposed to manage the
land cover classification of HSI due to SVM (Chen et al.
2022). SVM-based methods have poor sensitivity to
huge dimensionality. The spatial features of HSI have
been extracted using a variety of morphological opera-
tions, including morphological profiles (MPs; Chen et al.
2022), extended morphological profiles (EMPs;
Benediktsson et al. 2005), extended multi-attribute pro-
files (EMAPs; Dalla Mura et al. 2011), and extinction
profiles (EPs; Fang et al. 2018).

The use of deep learning algorithms in processing
remote sensing images, particularly in HSI categorization
(Wang et al. 2023; Xu et al. 2022; Ji et al. 2023), has the

potential to revolutionize the sector radically. Depending
on the different features utilized in the classification pro-
cess, it is feasible to categorize deep learning-based HSI
classification strategies into three primary categories.
These three types of networks have been utilized based
on geographical information, spectral properties, and
hybrid networks. Both spectral–spatial feature-based net-
works and spatial feature-based networks have received
more attention in recent years (Zhuo et al. 2022; Fu
et al. 2023), which is possible because the HSI categor-
ization is dependent not only on geographical informa-
tion but also on spectral information.

The R-VCANet (Pan et al. 2017), Bayesian 2D con-
volutional neural networks (CNNs; Cao et al. 2018),
and the squeeze multi-bias network (SMBN; Fang
et al. 2019) are a few examples that have been used
for land cover classification using spatial features. On
the other hand, an HSI has an excessive number of
channels, which frequently results in two-dimensional
convolution kernels that are overly deep. The number
of parameters has also increased significantly.
Consequently, HSI classification methods could be
based on three-dimensional CNNs. A deep contextual
CNN (Bashir et al. 2023), as defined by (Bashir et al.
2023), employs several three-dimensional local convo-
lutional filters of various sizes. A deep contextual
CNN enables simultaneous utilization of an HSI’s spa-
tial and spectral components. To enhance the extrac-
tion of the essential spectral–spatial aspects of HSIs,
Chen et al. (2016) created a three-dimensional CNN-
based feature extraction model with regularization.

Ben Hamida et al. (2018) created a new three-
dimensional deep learning technique to process spec-
tral and spatial data concurrently using less computer
power (i.e., floating point operations, FLOPs). Even
though the overall number of parameters for a 3D
CNN may be less, it still needs more processing
resources than a 2D CNN. This is due to the depths it
must penetrate and the absence of a bird’s-eye per-
spective of the spectral data. The most current
approach developed by Roy et al. (2020) utilized 3D
and 2D CNN layers to develop a deep learning model
called HybridSN. The HybridSN model improved the
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classification accuracy through joint exploitation of
the spectral and spatial features.

However, deep learning models are difficult to train
despite their impressive HSI classification performance
because of the challenges of obtaining tagged pixels
and the high cost of labeling them. In addition, the
pixels among these labeled data are not distributed
equitably. When dealing with irregularly dispersed
data and a limited number of samples, it is incredibly
challenging to construct reliable deep-learning models
(Hang et al. 2019; Mou and Zhu 2020) that have
excellent performance and need fewer processing
resources. A novel lightweight 3D convolutional
neural network is an asymmetric inception network
(AINet ;Fang et al. 2022). This concentrated on spec-
tral characteristics rather than geographical settings
and utilized a data fusion transfer learning approach
to speed up training and improve the initialization of
the model. However, its performance could be more
optimal when used on smaller samples. The network
was created using the double-branch dual-attention
(DBDA) method described in Li et al. (2020), which
simultaneously utilized spectral and spatial properties
and achieved high accuracy across a broad range of
HSI data sets using channel and spatial attention
mechanisms that enhance the feature maps.

While state-of-the-art performance in CNN models for
HSI classification has developed, certain limitations
remain. For example, while using a CNN-based technique,
some aspects of the input HSI are ignored and must be
thoroughly explored. The CNN technique is vector-based;
therefore, it reads the inputs as a set of pixel vectors
(Linzen et al. 2016). HSI’s data structure in the spectral
domain is fundamentally built on a sequence. Because of
this, CNN might cause data loss while processing hyper-
spectral pixel vectors (Vallathan et al. 2021). Second, the
long-range sequential reliance needed to switch between
band locations can be challenging to model. As the size of
the kernel and the number of layers restrict the receptive
field of CNNs, they could be better at gathering long-
range relationships of input data (Peng et al. 2022). The
convolutional processes focus on a small area around the
input point. Because HIS (Vaswani et al. 2017) often con-
sists of hundreds of spectral bands, understanding its
long-range correlations is challenging.

The Transformer (Glorot and Bengio 2010; Jiang and
Chen 2022; Hong et al. 2022) paradigm was recently pro-
posed for use in natural language processing. The concept
of self-attention serves as the foundation of this approach.
By paying close attention, the Transformer (El-Assal et al.
2022; Xie et al. 2017; Yadav et al. 2022) may infer a world-
wide dependence among a set of inputs. While training,

deep learning models (Saab et al. 2022; Arikumar et al.
2022) like Transformers frequently experience the vanish-
ing-gradient problem, which hinders or even prohibits
convergence. Even while these backbone networks and
their modifications (Garg et al. 2022; Grupo de
Inteligencia Computacional (GIC) 2023) have shown
promise in classification accuracy, they still need to
adequately characterize spectral series information
(Sharma and Biswas 2018; Zhao et al. 2022) – particularly
regarding collecting minor spectral disparities along spec-
tral dimensions. Several recent methods are discussed in
Table 1.

1. To reduce computational resources, spectral fea-
tures are obtained through a single layer of three-
dimensional convolution.

2. We have utilized a modified ResNeXt network
with fewer trainable parameters to improve the
classification accuracy and reduce computation
resources.

3. Four distinct data sets and six different state-of-
the-art methodologies are used to assess the mod-
el’s performance.

Proposed method

We assume the spectral–spatial hyperspectral data cubes,
where Im is the input, W, H, D are the spectral bands’
total number, H is their width, and D is their combined
height. A single HSI pixel in Im has D spectral band and
forms a one-hot label vector L ¼ ðL1, L2, ::::::LcÞ 2
R1�1�c, where c stands for types of land cover. However,
the mixed land cover classes shown in the hyperspectral
pixels give a lot of variety within each class and numer-
ous similarities across classes. The proposed model
architecture is shown in Figure 1.

The classification of the class model would need to be
reliable and effective for it to work. First, to eliminate the
spectral redundancy, the principal component analysis
(PCA) is used along the spectral bands of the initial HSI
data (Im). The number of spectral bands is reduced from
D to A via the PCA, but the spatial dimensions remain
the same (W, width and H, height). We minimized the
number of spectral bands while preserving the essential
spatial information. Following PCA, the reduced data
cube will be S number of bands after principal component
analysis. The data cube is broken up into smaller, overlap-
ping patches, and the pixel in the center of the cube is
used to determine the truth label. The 3D data are then
sent to a 3D CNN. Within this network, convolution is
carried out with a 3D kernel (El-Assal et al. 2022), which
records spectral characteristics from contiguous bands.

CANADIAN JOURNAL OF REMOTE SENSING 3



For the ith feature map of the jth layer’s spatial posi-
tion’s activation value (x, y, z) is calculated as follows.

ux, y, zj, i ¼ U
�
bj, i þ

Xdl�1

s¼1

Xg

k¼�g

Xc

a¼�c

Xd

b¼�d
wb, a, k
j, i, s

� uxþb, yþaþzþk
j�1

�
(1)

where U ¼ activation function, bj, i ¼ bias parameter,
dl�1 ¼ feature map of the (l–1)th layer, 2gþ 1, 2cþ

1, 2dþ 1 is the kernel’s width, height, depth and wj, i ¼
weight parameter of the ith feature map of the jth layer.

Modified ResNeXt

The features obtained from the 3D CNN layers are
first reshaped and fed into the modified ResNeXt for
spatial feature extraction. The original ResNeXt
included 23� 106 parameters, resulting in substantial
calculation costs (Xie et al. 2017). We reduced the

Table 1. Summary of the recent methods used for HSI classification.
Method Model Data Set Overall Accuracy (OA)

Ding et al. [52] Graph attention neural network Pavia University,
Salinas
Houston

71.76%
82.61%
63.82%

Yao et al. [53] Hybrid multi-graph neural network (DHMG) Pavia University,
Salinas
Houston

97.81%
98.33%
93.31%

Zhang et al. [54] Single-source Domain Expansion Network (SDEnet) Pavia center,
Houston
GID Dataset

81.94%
79.96%
77.95%

Liu et al. [55] Deep contrastive learning network (DCLN) Pavia University,
Salinas
Houston
Indiana Pines

89.70%
94.88%
82.19%
83.74%

Zhaou et al. [56] Multiscale convolutional fusion network (AMGCFN) Pavia University,
Salinas
Indiana Pines

97.31%
97.59
93.94%

Wang et al. [57] Transfer fusion network (TFNet) Pavia University,
Salinas
Houston

98.64%
98.56%
90.50%

Dang et al. [58] Double-Branch Feature Fusion Transformer Kennedy Space Center Salinas
University of Pavia Houston

98.64%
98.50%
98.76%
90.08%

Wang et al. [59] Hybrid network model (HNM) Indian Pines
Houston
WHU-Hi-HanChuan

96.59%
97.50%
97.58%

Xie et al. [60] Consistency-based prototype network (FCPN) Pavia University,
Salinas
Indiana Pines

95.15%
94.61%
84.71%

Xu et al. [61] Multiscale and cross-level attention learning (MCAL) network Indian Pines
Pavia Center
HyRANK-Loukia
WHU-Hi-HanChuan

94.925
99.30%
82.16%
95.30%

The main contribution of the methods is as follows.

Figure 1. The model architecture of the proposed method.
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number of trainable parameters down to 9� 106 by
lowering the convolution size of the first layer filter
from 7� 7 to 5� 5 because a larger filter size damp-
ened the intensity of the edge pixels. Because of this,
there was an increase in the number of false negative
values. The sizes of conv2, conv3, conv4, and conv5
are all decreased similarly, as shown in Table 2. The
modified ResNeXt model architecture is shown in
Figure 2.

The modified ResNeXt contains grouped convolu-
tion, ReLU activation and residual blocks. The pooling
layer maps the features of the CNN block obtained
from the cluster of adjacent neurons. Pixels are sepa-
rated, and surrounding pooling units rarely overlap,
reducing overfitting (Saab et al. 2022; Yadav et al.
2022). Further, convolution is performed by the inner
dot product of neurons in the convolution layer to
generate aggregate transform as follows.XN

i¼1
wixi (2)

where, x ¼ ðx1, x2, ::::::xNÞ ¼ input vector to the N
channel and wi ¼ filter weight of the ith neuron. To
reduce the dimension depth, elementary transform
wixi is replaced by a more generic function called
aggregated transformation, as shown in Eq. (3).

FðxÞ ¼
XC

i¼1
TiðxÞ (3)

where TiðxÞ can be an arbitrary function.
Analogous to a simple neuron, Ti should project x
into an (optionally low-dimensional) embedding and
then transform it.

Local response normalization (LRN)

The normalization of the input does not affect the sat-
uration of the deep learning algorithm using ReLU.
ReLU enables the neurons in the model to learn with
fewer positive training examples (Arikumar et al.
2022). Despite this, we determine the action of neu-
rons at a given location (x, y) by employing a kernel
(k) to facilitate generalization. Afterward, ReLU nonli-
nearity is applied in the HResNeXt. The LRN of the
neurons with N layers is determined as follows.

LRNk
x, y ¼ akx, y= t þ a

Xmin ðN, 1, kþn=2Þ
i�max ð0, k, n=2Þ ða

i
u, vÞ2

� �b

(4)

where t, a, b are hyperparameter constants, and n is
the adjacent kernel feature map. The efficiency of
deep CNN models is dependent on their architecture.
The major component of the deep CNN model is
hyperparameters. Through the proper use of hyper-
parameters, CNN classification accuracy can be
improved. The division by zero is avoided by setting
t ¼ 2: The consecutive pixels of input layers that
undergo normalization are defined by n. The normal-
ization process a is set to 10e-4, and the contrasting
constant b is set to 0.65. The feature map generated

Table 2. Parameters comparison of the original ResNeXt and
Modified ResNeXt.

Figure 2. Modified ResNeXt block diagram for HSI classification.
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by the flatten layer is passed to the Softmax layer.
Finally, the Softmax layer converts probabilities into
their corresponding class.

Experimental result and discussion

Data set

The proposed method is evaluated on four standard
open access data sets Salinas scene (SA), Indian Pines
(IP), Pavia University (PU), and Kennedy Space
Center (KSC) (Grupo de Inteligencia Computacional
(GIC) 2023). The 224-band AVIRIS sensor in orbit
took this picture of the Salinas Valley in California,
and it has an impressive level of detail (3.7-m pixels).
In the area that was studied, there are a total of 512
lines and 217–112, 154–167, and 224). Radiance data
were the only way to access this image at the sensor
level. It is made up of both wilderness and agricultural
terrain, namely grapes. The underlying reality of
Salinas may be broken down into 16 different levels.
The Indian Pines test site in northwest Indiana was
the location of the AVIRIS sensor images that were
taken and included in the IP collection. It has a
145� 145 pixel resolution and can pick up wave-
lengths between 0.4 and 2.5� 10–3 m. Cropland
makes up two-thirds of IP, while forests and other
types of perennial natural vegetation comprise the
other third of the territory.

Along with the low-density residences, other build-
ings, and narrower roadways, the region has a rail
line, two large dual-lane highways, two big dual-lane
motorways, and two significant dual-lane highways.
As the shot was taken in June, many crops are still in
their early phases of development, with coverage of
less than 5%. This is because of the date of the photo
acquisition. There are 16 different kinds of ground
truth, all related to one another. The number of spec-
tral bands utilized in this investigation was cut down
to 200 after bands in 220-nm ranges were removed
from consideration. The ROSIS sensor gathered the
information for the PU when it flew over Pavia in
northern Italy. It has a resolution of 610� 610 pixels
and contains 103 spectral bands; however, none of the
samples in either picture is meaningful. The resolution
of the device is 610� 610 pixels. It is possible to
obtain a geometric resolution of 1.3 m. The data from
the sample were divided into 99 different groups
according to the underlying facts.

On March 23, 1996, the Florida-based Kennedy
Space Center (KSC) was photographed by the NASA-
operated AVIRIS satellite. The 224 bands from which
AVIRIS may collect data have a 10-nm bandwidth

and a center wavelength ranging from 400 nm to
2500 nm. The data from KSC have an 18-m spatial
resolution. After considering water absorption and
low SNR bands, the study utilized 176 bands. The
comprehensive land cover maps were created using
color infrared images captured by the Kennedy Space
Center. Because many species in this area have similar
spectral signatures, it is challenging to identify the
vegetation in this area. The diverse land applications
in this place have been organized into thirteen distinct
categories. A detailed description of the data set is
shown in Tables 3–6.

Experimental setup

In the proposed study, the experiment is conducted
using Python 3.8 on NVIDIA Quadro RTX4000 GPU,
having 128GB RAM and a dual graphics card of
8GB. For each data set, the initial learning rate was
set to 0.0001 and trained for 100 epochs using the
Adam optimizer with a mini-batch size of 64.

Quantitative result analysis

SVM, 1D CNN, 2D CNN, 3D CNN, HybridSN, and
Spectral Former (SF) are all machine learning and
deep learning-based approaches that are compared to
gauge the method’s performance [42]. All parameters
are kept at their literature-referenced values for con-
sistency’s sake. Because there are few instances in sev-
eral classes of the IP data set, the experiment is
conducted by splitting the PU, KSC, and SA data sets

Table 3. IP data set description with a land cover color map
(Sharma and Biswas 2018; Zhao et al. 2022).
Class ID Land cover Train Test Color Code

1 Alfalfa_C1 5 41 C1
2 Com-notill_C2 143 1285 C2
3 Com-mintill_C3 83 747 C3
4 Com_C4 23 214 C4
5 Grass-pasture_C5 48 435 C5
6 Grass-trees_C6 73 657 C6
7 Grass-pasture-mowed_C7 3 25 C7
8 Hay-windrowed_C8 48 430 C8
9 Oats_C9 2 18 C9
10 Soybean-notill_C10 97 875 C10
11 Soybean-mintill_C11 245 2210 C11
12 Soybean-clean_C12 59 534 C12
13 Wheat_C13 20 185 C13
14 Woods_C14 126 1139 C14
15 Buildings-Grass-Trees-Drives_C15 39 347 C15
16 Stone-Steel-Towers_C16 9 84 C16
�Color Code Details

.

6 PRASAD YADAV ET AL.



into 5% for training and 95% for validation. We split
the data set in half, using the first 10% for training
and the second 90% for validation. For HSI

classification, we have used the libsvm toolbox3’s sup-
port for SVMs by adjusting the RBF’s two parameters.
The 2D CNN consists of a softmax layer and three
2D convolutional blocks. The convolutional blocks of
2D CNNs use the same 1D conventional layer, BN
layer, max-pooling layer, and ReLU activation func-
tion as their 1D counterparts. Separate spatial and
spectral features extractors of size 3332, 3364, and
11,128 are included in each 2D convolutional layer.
The 3D CNN has two convolutional layers that use
3D max-pooling and batch normalization to provide
optimal results. HybridSN combines three 3D convo-
lutional layers with one 2D convolutional layer. The
spectral former used a cross-layer skip connection to
extract features in both patch- and pixel-based ways.
Local and global attention methods also improve the
HSI’s classifying precision. We have summarized the
classification performance of each method and pro-
posed method from Tables 7–10.

The SVM classification performance is lower in
several classes due to a lack of high-dimensional fea-
tures, whereas 1D CNN improves the classification
accuracy through one-directional convolution.
Further, 2D CNN calculates spatial features via

Table 4. PU data set description with land cover color map.
Class ID Land cove Train Test Color Code

1 Asphalt_C01 332 6299 C01
2 Meadows_C02 932 17117 C02
3 Gravel_C03 105 1994 C03
4 Trees_C04 153 2911 C04
5 Sheets_C05 67 1278 C05
6 Bare Soil_C06 251 4778 C06
7 Bitumen_C07 66 1264 C07
8 Bricks_C08 184 3498 C08
9 Shadows_C09 47 900 C09

.

�Color Code Details for table 4.
Table 8. Performance evaluation on the KSC datas et.
ID SVM 1D CNN 2D CNN 3D CNN HybridSN SF HResNeXt

1 74.34 68.24 78.46 72.28 83.16 86.52 85.27
2 51.26 64.13 58.89 63.13 71.24 76.63 85.64
3 45.26 47.38 51.44 64.72 68.81 78.81 80.12
4 52.15 56.27 46.37 49.64 56.83 75.27 78.12
5 62.24 42.44 64.84 68.86 94.28 87.78 94.05
6 46.62 43.45 49.88 42.43 53.76 68.46 72.78
7 32.18 36.94 38.26 45.34 46.82 68.35 72.14
8 44.38 46.37 54.78 75.22 73.48 65.28 74.64
9 56.67 65.32 48.56 57.78 56.87 68.92 78.16
10 47.24 43.85 45.28 48.54 45.86 48.84 57.43
11 49.24 48.76 55.63 67.26 69.72 78.65 81.72
12 53.23 62.75 65.87 63.72 70.13 81.52 84.36
13 70.82 68.62 67.82 68.27 73.52 86.42 85.20
AA 52.74 53.42 55.85 60.55 66.50 74.73 79.21
OA 53.24 54.84 56.83 61.87 67.68 76.28 81.46
Kappa 52.28 51.84 54.68 59.28 65.82 73.23 78.87

Table 5. KSC data set description with land cover color map.
Class ID Land cover Train Test Color Code

1 Scrub_C01 76 685 C01
2 Willow swamp_C02 24 219 C02
3 CP Hammock_C03 25 231 C03
4 Slash Pine_C04 25 227 C04
5 OakBroadleaf_C05 16 145 C05
6 Hardwood_C06 22 207 C06
7 Swamp_C07 10 95 C07
8 Graminoid marsh_C08 43 401 C08
9 Spartinamarsh_C09 52 468 C09
10 Cattailmarsh_C010 40 364 C10
11 Saltmarsh_C011 41 378 C11
12 Mud flat_C012 50 453 C12
13 Water_C013 92 835 C13

�Color Code Details for table 5.

Table 6. SA data set description with land cover color map.
Class ID Land cover Train Test Color Code

1 Brocoligreenweeds_A_C01 100 1909 C01
2 Brocoli_green_weeds_B_C02 161 3565 C02
3 Fallow_C03 99 1877 C03
4 Fallowroughplow_C04 70 1324 C04
5 Fallowsmooth_C05 134 2544 C05
6 Stubble__C06 198 3761 C06
7 Celery_C07 179 3400 C07
8 Grapesuntrained_C08 564 10707 C08
9 Soilvinyarddevelop_C09 310 5893 C09
10 Comsenescedgreenweeds_C010 164 3114 C10
11 Lettuceromaine4wk_C011 53 1015 C11
12 Lettuceromaine5wk_C012 96 1831 C12
13 Lettuceromaine6wk_C013 46 870 C13
14 Lettuceromaine7wk_C014 54 1016 C14
15 Vinyarduntrained_C015 363 6905 C15
16 Vinyardverticaltrellis_C016 90 1717 C16

�Color Code Details for table 6.

Table 7. Performance evaluation on the PU data set.
ID SVM 1D CNN 2D CNN 3D CNN HybridSN SF HResNeXt

1 91.26 96.47 97.24 98.32 99.64 97.72 98.78
2 96.67 97.72 98.32 99.27 97.38 98.52 99.21
3 64.25 87.36 87.92 91.47 86.75 99.53 98.62
4 93.65 94.83 95.28 96.28 92.71 98.27 99.37
5 97.29 98.42 99.64 98.62 99.12 97.34 99.42
6 87.23 97.32 99.42 97.54 97.98 99.16 99.68
7 88.62 92.54 90.23 87.65 88.37 97.87 98.72
8 82.34 94.84 93.45 92.27 91.28 99.27 98.85
9 87.54 85.68 94.86 96.32 94.45 96.15 98.56
AA 87.65 93.91 95.15 95.30 94.19 98.20 99.02
OA 88.62 94.73 97.68 97.42 96.52 98.85 99.46
Kappa 84.78 92.74 94.65 95.78 93.26 97.18 98.62
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convolution in both directions. 3D CNN computation
cost is high but capable of extracting high-dimen-
sional spectral features. To make use of spectral and
spatial characteristics and enhance classification per-
formance, HybridSN used 3D and 2D CNN layers.
The global and local attention of the feature is pro-
vided using the SF network through a transformer,
which improves the accuracy. However, this requires
high computation costs and large volumes of data.

The proposed HResNeXt utilized spectral and spatial
features via one 3D CNN layer and modified the 2D
convolutional block of the ResNeXt network to
improve the classification. In addition, the computa-
tion cost is less due to fewer parameters.

Performance evaluation on different patch sizes

Path size plays an essential role in the computation
model for HSI data. We can see in Figure 3 that the

Table 9. Performance evaluation on the SA data set.
ID SVM 1D CNN 2D CNN 3D CNN HybridSN SF HResNeXt

1 95.82 96.16 97.52 98.32 99.24 100 100
2 94.84 95.25 96.14 97.35 98.92 99.98 100
3 97.62 98.47 98.54 97.24 100 99.06 99.28
4 98.21 97.24 98.27 98.52 97.82 98.92 99.18
5 96.28 98.52 99.86 100 98.74 97.84 98.28
6 95.32 96.38 98.78 98.12 98.23 99.16 100
7 94.25 95.78 97.28 97.32 98.25 98.63 99.62
8 84.26 86.35 93.76 91.82 96.12 97.16 98.94
9 96.34 97.35 98.74 97.24 98.52 98.82 99.35
10 91.26 92.45 94.26 91.72 94.74 99.88 98.92
11 92.54 94.34 95.34 94.84 97.42 97.37 98.48
12 93.26 94.26 97.67 98.15 98.85 99.64 100
13 90.15 78.17 92.42 88.18 96.29 97.87 98.65
14 97.24 96.22 98.84 99.05 97.28 98.82 99.96
15 85.42 87.72 92.66 95.64 98.76 98.25 99.84
16 85.28 88.76 97.76 92.82 93.65 100 98.54
AA 93.01 93.34 96.74 96.04 97.68 98.83 99.32
OA 95.18 96.46 97.85 97.56 98.25 98.87 99.75
Kappa 92.65 93.28 95.14 95.87 96.84 97.78 98.86

Table 10. Performance evaluation on the IP data set.
ID SVM 1D CNN 2D CNN 3D CNN HybridSN SF HResNeXt

1 48.64 54.25 72.36 84.32 89.25 96.72 98.24
2 74.16 76.46 82.42 85.48 92.53 95.42 97.13
3 69.75 78.32 84.25 96.37 94.46 95.84 95.18
4 64.42 74.86 78.12 98.56 96.34 98.38 98.85
5 78.36 81.24 75.78 95.62 94.54 97.56 98.38
6 81.24 87.12 86.92 98.46 97.73 97.94 96.28
7 75.36 78.38 88.64 97.82 97.64 98.52 99.34
8 85.72 89.53 92.36 95.25 99.28 99.38 100
9 46.38 55.34 64.52 88.28 86.62 88.92 91.53
10 77.53 82.28 82.38 87.58 93.32 98.65 99.48
11 84.18 87.68 92.32 96.74 97.82 96.16 95.19
12 75.32 72.27 98.12 97.36 96.32 96.25 96.87
13 81.96 84.54 87.54 96.32 98.92 97.98 99.57
14 90.28 93.26 96.87 98.66 99.25 98.84 96.45
15 46.25 65.78 78.42 92.26 94.87 95.28 97.32
16 75.86 86.38 91.87 97.82 97.13 97.48 96.10
AA 72.21 77.98 84.56 94.18 95.38 96.83 97.24
OA 74.45 79.36 92.14 95.74 96.14 96.78 98.64
Kapa 71.82 75.84 83.43 92.87 94.82 95.72 96.86

Figure 3. Effect of patch size on classification performance.
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Figure 4. The class visual map of PU data set and GT, 3(a) GT, 3(b) SVM, 3(c) 1D CNN, 3(d) 2D CNN, 3(e) 3D CNN, 3(f) HybridSN,
3(g) SF, and 3(h) HResNeXt, respectively.
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HResNeXt accuracy is less in 9� 9 and 11� 11,
whereas the highest classification accuracy is achieved
on a 15� 15 patch size. Further, increasing the patch
size reduces classification accuracy.

Visual analysis

We present a class visual map of the PU, KSC, SA, and
IP data sets in Figures 4–7. In Figure 4, we can see that
the land cover classification map using SVM is less close

Figure 4. Continued.
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Figure 5. The class visual map of KSC dataset and GT, 3(a) GT, 3(b) SVM, 3(c) 1D CNN, 3(d) 2D CNN, 3(e) 3D CNN, 3(f) HybridSN,
3(g) SF, and 3(h) HResNeXt, respectively.
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to the ground truth (GT) in several classes, especially in
Asphalt, Bitumen, Self-Blocking Bricks, and Shadows
classes. In contrast, the 1D CNN has improved visual
maps in several classes. Much better object visualization

can be seen in the 2D CNN approach, which achieved a
very close map in the Painted metal sheets class com-
pared to GT. The visual map of the Meadows class using
3D CNN is much better than other methods.

Figure 5. Continued.
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In contrast, the HybridSN visual map of the
Asphalt class is similar to GT. The SF utilized global
feature attention to improve the land cover classifica-
tion map. The HResNeXt visual map and GT are very
close in the Trees, Bare Soil, Bitumen, and Shadows
classes. Similarly, in Figure 5, we can observe that the
classification map of SVM, 1D CNN, and 2D CNN in
several land covers suffered from noise. However, 3D
CNN has a better Graminoid marsh class classification
map than other methods. The Oak and Scrub classes’
HybridSN and SF land cover map is much better.

Furthermore, the proposed method classification maps
are very close to GT in several other classes.

In Figure 6, we can see that the classification map
of the land covers using SVM is further from the
ground truth (GT) in several classes. In contrast, the
1D CNN has improved visual maps in several classes.
Much better object visualization can be seen in the
2D CNN approach, which achieved a very close map
in the Celery class compared to GT. The visual map
of the Stubble class using 3D CNN is much better
than other methods. In contrast, the HybridSN visual

Figure 6. The class visual map of SA data set and GT, 3(a) GT, 3(b) SVM, 3(c) 1D CNN, 3(d) 2D CNN, 3(e) 3D CNN, 3(f) HybridSN,
3(g) SF, and 3(h) HResNeXt, respectively.
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map of the Fallow classes is similar to GT. The SF uti-
lized global feature attention to improve the land
cover classification map observed in Brocoli_green_
weeds_1 class. The HResNeXt visual map and GT are
very GT in several other classes.

Similarly, in Figure 7, we can observe that the classifi-
cation map of SVM and 1D CNN suffered from noise.

The 2D CNN has improved the visual map in the
Soybean-clean class. However, 3D CNN has a better clas-
sification map in Corn-mintill and Grass-trees classes
than other methods. The HybridSN and SF land cover
map of the Soybean-min-till and Woods class is much
better. Furthermore, the proposed method classification
maps are very close to GT in several other classes.

Figure 7. The class visual map of IP data set and GT, 3(a) GT, 3(b) SVM, 3(c) 1D CNN, 3(d) 2D CNN, 3(e) 3D CNN, 3(f) HybridSN,
3(g) SF, and 3(h) HResNeXt, respectively.
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The classification accuracy was significantly
improved by using a variety of machine learning and
deep learning techniques. Nevertheless, computation
costs and highly efficient method is less that can be

used for real-time applications. We compared these
methodologies with the proposed HResNext syste g m
by usinquantitative and visual maps. The SVM-based
approach cannot extract high-dimensional features

Figure 8. The training loss of the proposed model on (a) PU, (b) KSC, (c) SA, and (d) IP.
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due to its design limitations. The feature extraction
process used by 1D CNN is called directional convo-
lution. In addition, 2D CNN is capable of calculating
spatial features in both directions, but it does not
have spectral features. 3D CNN computation cost is
high but capable of extracting high-dimensional spec-
tral features.

The training loss of the proposed method on
different data sets

We have performed several experiments on data sets.
We notice no significant changes in the training
accuracy after 100 epochs. Therefore, the model was
trained for 100 epochs only. By doing this, computa-
tion costs can be reduced. The training loss curve pro-
posed method on PU, KSC, SA, and IP is shown in
Figure 8.

The computation time of the proposed method on
training and validation data

We have summarized the training and validation time
of the proposed method on PU, KSC, SA, and IP data
sets. The detailed summary of the training time in
minutes and test time in seconds is shown in
Table 11.

Conclusion

Hyperspectral image classification is challenging and
requires a sophisticated method to better utilize the
rich spatial and spectral features. Many machine
learning and deep learning techniques enhance classi-
fication accuracy. Nevertheless, computation costs and
highly efficient method is less that can be used for
real-time applications. The lightweight HResNeXt
model is specifically designed to overcome traditional
methods’ limitations. The HResNeXt successfully cap-
tures spectral and spatial information concurrently. In
the proposed study, we utilized only one 3D convolu-
tion block for spectral features and a modified 2D
residual block to capture spatial features. The original
ResNeXt has many trainable parameters, which can
increase the computation cost. Hence, first, we
reduced the trainable parameters that reduce the costs.

After that, we jointly extracted spectral and spatial
features to improve the quantitative and visual per-
formance. Subsequently, it enables efficient and effect-
ive feature extraction from hyperspectral images,
resulting in competitive classification accuracy. The
HResNeXt obtained an OA on PU, KSC, SA, and IP,
99.46%, 81.46%, 99.75%, and 98.64%, respectively. In
future study, we will explore more advanced and
lightweight graph CNNs and vision transformers. In
addition, the integration of handcrafted features and
deep features can be used to improve classification
accuracy. Further, high-dimensional features extracted
by the model can be optimized using the nature-
inspired algorithm to enhance the classification per-
formance. The computation cost of the algorithm is
still a big challenge that needs further reduction. In
addition, the dimension reduction algorithm PCA has
been applied in the proposed study. There may be
slight differences in the performance of other dimen-
sion reduction algorithms. Further, the model can be
implemented on a real-time data set.
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