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Abstract

Whether an outbreak of infectious disease is likely to grow or dissipate is determined through the time-varying

reproduction number, Rt. Real-time or retrospective identification of changes in Rt following the imposition

or relaxation of interventions can thus contribute important evidence about disease transmission dynamics

which can inform policymaking. Here, we present a method for estimating shifts in Rt within a renewal

model framework. Our method, which we call EpiCluster, is a Bayesian nonparametric model based on the

Pitman-Yor process. We assume that Rt is piecewise-constant, and the incidence data and priors determine

when or whether Rt should change and how many times it should do so throughout the series. We also

introduce a prior which induces sparsity over the number of changepoints. Being Bayesian, our approach

yields a measure of uncertainty in Rt and its changepoints. EpiCluster is fast, straightforward to use, and

we demonstrate that it provides automated detection of rapid changes in transmission, either in real-time or

retrospectively, for synthetic data series where the Rt profile is known. We illustrate the practical utility of

our method by fitting it to case data of outbreaks of COVID-19 in Australia and Hong Kong, where it finds

changepoints coinciding with the imposition of non-pharmaceutical interventions. Bayesian nonparametric

methods, such as ours, allow the volume and complexity of the data to dictate the number of parameters

required to approximate the process and should find wide application in epidemiology.
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Highlights

• Identifying periods of rapid change in transmission is important for devising strategies to control epi-

demics.

• We assume that the time-varying reproduction number, Rt, is piecewise-constant and transmission is

determined by a Poisson renewal model.

• We develop a Bayesian nonparametric method, called EpiCluster, which uses a Pitman Yor process to

infer changepoints in Rt.

• Using simulated incidence series, we demonstrate that our method is adept at inferring changepoints.

• Using real COVID-19 incidence series, we infer abrupt changes in transmission at times coinciding with

the imposition of non-pharmaceutical interventions.

1. Introduction

Throughout the SARS-CoV-2 pandemic, the time-varying reproduction number1, Rt, has been estimated

and used to gauge the effectiveness of control measures (e.g. Flaxman et al. (2020); Li et al. (2021); Parag

et al. (2021); Brauner et al. (2021); meta-analysis of such studies: Mendez-Brito et al. (2021)). Rt represents

the average number of secondary cases spawned by a single primary case. When Rt > 1, an outbreak is

expected to grow exponentially; public health interventions try to permanently shift Rt < 1 meaning an

epidemic will, in the long run, die out.

A widely used approach for estimating Rt is through renewal equations which assume that future numbers

of cases depend on the history of case counts, the generation times, representing the typical timescales between

primary and secondary infections, and Rt (theory: Fraser (2007); Nishiura and Chowell (2009); example

software: Thompson et al. (2019)). These models are typically formulated in discrete time (usually at the

daily resolution), and the dynamics are assumed stochastic. Here, we focus on the most popular version of

these models which assume that the population is well-mixed and that there is no demographic heterogeneity.

A variety of approaches exist for estimating Rt using time series incidence data, either in real-time (i.e.

using only information up until a current time t; Cori et al., 2013; Parag, 2021) or retrospectively (Wallinga

and Teunis, 2004). These approaches make diverse assumptions about the continuous structure of Rt: that

it is piecewise-constant within a sliding window of a given prespecified length (Wallinga and Teunis, 2004;

Thompson et al., 2019); that it varies smoothly with the variation controlled by a Gaussian filter (Abbott

et al., 2020; Parag, 2021); or that it is made up of an inferred number of pieces with a single, optimal, number

of pieces inferred by considering a criterion derived from information theory (Parag and Donnelly, 2020).

1Also known as the effective reproduction number.
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Our approach also assumes that Rt is piecewise-constant, and that, within each piece, the epidemic

follows a standard Poisson renewal process (Cori et al., 2013). We do not specify the number of pieces nor

provide a limit on this number a priori. To do so, we use a Bayesian model with a Pitman-Yor process prior

(Pitman and Yor, 1997) to represent the values of Rt across any feasible number of pieces. This process

comes from the field of Bayesian nonparametrics—a broad class of models where the data are modelled by a

(potentially) countably infinite set of parameters, where the complexity of the models, indexed by the number

of parameters, increases in lockstep with the volume and complexity of the data (Ghahramani, 2013). Our

approach, which we call EpiCluster, avoids the need to directly specify how often and how fast Rt need change

to represent a given incidence curve. Instead, the data and a prior jointly determine how many pieces are

needed to approximate the Rt curve, and, in §2, we introduce a default prior meant to find a parsimonious

approximation of it with few changepoints. Our method, being Bayesian, provides a measure of uncertainty

in both the number of pieces and Rt (see Figure 1). We develop an efficient Markov chain Monte Carlo

(MCMC) inference method for fitting our model to incidence data using collapsed Gibbs sampling (Lambert,

2018, Chapter 14), which efficiently steps between models of different dimensionalities (corresponding to

different numbers of Rt pieces). We provide an open-source Python package implementing EpiCluster, which

computes Rt profiles and runs in seconds to minutes (dependent on the length of data series and complexity

of the Rt profile), which is available at github.com/SABS-R3-Epidemiology/epicluster.

By fitting our model to simulated data with known Rt profiles (in §3.1), we show that EpiCluster is

adept at identifying times of rapid change in Rt as may occur following the imposition of major and broad-

scale interventions (Dehning et al., 2020; Flaxman et al., 2020; Brauner et al., 2021)—either in real-time

or retrospectively. It is less well suited to estimate Rt if it changes more gradually, and more appropriate

methods exist for this purpose (e.g. Thompson et al., 2019; Parag, 2021). Unlike methods which directly

model Rt as a function of known intervention timings and severities (e.g. Dehning et al., 2020; Flaxman

et al., 2020; Brauner et al., 2021), our method is purely driven by the incidence series. Because of this, it

provides a straightforward and intervention-agnostic initial step for assessing the impact of interventions, and

similarly agnostic approaches have previously been used in retrospective analyses of COVID-19 transmission

(Parag et al., 2021). Since it does not use additional information about interventions, our approach is likely

to produce estimates with greater variability. But, it requires fewer assumptions to be made, which may

be beneficial, since the assumptions around intervention timing (Soltesz et al., 2020) and modelling details

(Sharma et al., 2020) may affect estimates and their interpretation. In §3.4, we apply our framework to data

from the COVID-19 outbreaks in Australia and Hong Kong and show that it is able to find changepoints in

Rt corresponding to the imposition of known interventions. Our method provides a tool for outbreak analysis

complementary to existing methods and could form part of an analysis pipeline for associating interventions

with changes in transmission.
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Figure 1: Pitman-Yor based inference for the time-varying reproduction number. Panel A represents the intrinsic

assumption underpinning our method: that Rt is piecewise-constant, and the pieces are shown as different coloured bars. Panel

B shows how our nonparametric prior allows a decomposition of the time points into partitions comprising different numbers

of pieces (K). Our MCMC sampler (see Algorithm 1) explores this space over partitions efficiently, resulting in posterior

uncertainty in Rt.

2. Methods

2.1. Renewal process model

We estimate instantaneous reproduction numbers and mean this whenever we write Rt. Instantaneous

reproduction numbers represent the average number of secondary cases that would be generated by an infected

case at time t assuming that future transmission remains the same as at time t (Fraser, 2007). We assume

that the data consist of a series of daily case counts2 for each day, t, from t = 1 to t = T : {It}Tt=1 and that

the case counts are perfectly known. Due to the within- and and between-individual variability in rates of

contact and infectivity, a generation time distribution is used to represent the duration between the time at

which a parent case occurs and its offspring. We model the case count It as arising according to the Poisson

2Technically, the renewal equation is formulated in terms of infections rather than cases, but, since we use the serial interval

distribution in place of the generation time distribution, we keep with defining It as a case count.
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renewal process:

It ∼ Pois (RtΛt) , where Λt =
t−1∑
s=1

wsIt−s, (1)

where Rt ≥ 0 is the time-varying reproduction number on day t, and Λt ≥ 0 is the transmission potential.

The ws terms represent the generation time distribution: 0 ≤ ωs ≤ 1 indicates the probability that a primary

case takes between s− 1 and s days to generate a secondary case, and
∑∞

s=1 ωs = 1. Since it is not typically

possible to know when individuals become infectious, generation times are not directly observed, making it

difficult to estimate the generation time distribution. Here, we use the serial interval distribution in its place,

which describes the time between the onset of symptoms between a primary and secondary cases. This is

easier to estimate from infector-infectee pairs since it is more directly observable and has a similar mean

(Svensson, 2007).

2.2. Model of changing Rt

2.2.1. Exchangeable partition probability functions and the Pitman-Yor process

Here, we assume that the Rt profile can be decomposed into a number of regimes within which Rt

is constant. Our goal is to avoid prespecifying the location of changepoints—representing the boundary

between two different Rt regimes—nor their count, since these choices can bias analyses, but rather to learn an

appropriate configuration of the time points into regimes using Bayesian inference. We develop a probabilistic

model of the division of the time points into regimes. To do so, we use a Pitman-Yor process (Pitman and

Yor, 1997)3 to account for a probabilistic decomposition of data points into clusters and, following Mart́ınez

and Mena (2014), we adjust this model to account for the time series nature of our data. The remainder

of this subsection serves as a brief review of this model, starting with a treatment of the nonparametric

clustering of unordered data points via exchangeable partition probability functions (EPPFs) and followed by

appropriate modifications for the time series case (see §2.2.2).

In the standard clustering problem, we have a set [T ] = {1, . . . , T} (i.e., the labels of T data points),

which we would like to divide into K mutually exclusive subsets {A1, . . . , AK} such that ∪kAk = [T ] where

none of the Ak are empty. We denote the set of all such groupings by P[T ]; each element of P[T ] is called

a partition. Random variables ΠT taking values in P[T ] are termed random partitions of [T ]. A random

partition has the property of exchangeability if its probability distribution can be written as a symmetric

function p of the subset sizes, i.e.,

Prob(ΠT = {A1, . . . , AK}) = p(n1, . . . , nK)

where nk = |Ak| (i.e. nk is the size of the subset, Ak).

3Also known as the two-parameter Poisson-Dirichlet process.
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Under these conditions p is known as an EPPF. A more complete treatment of the concept of EPPFs can

be found in Pitman (2002); Lijoi and Prunster (2010). A fairly general EPPF, which we will employ in this

work, is derived from the Pitman-Yor process, a generalisation of the Dirichlet process (Teh, 2010). This

EPPF is given by (Pitman, 2002, eq. (3.6)):

p(n1, . . . , nK |θ, σ) =
∏k−1

i=1 (θ + iσ)

(θ + 1)T−1↑

K∏
j=1

(1− σ)nj−1↑, (2)

where xm↑ :=
∏m−1

j=0 (x+ j), and σ ∈ [0, 1) and θ > −σ are the two hyperparameters governing the process:

σ is called the discount parameter, which essentially controls how the number of regimes, K, grows with the

size of the dataset; θ is called the strength parameter with larger values giving greater weight to series with

more regimes. In the limit σ → 0, a Pitman-Yor process becomes a Dirichlet process which permits a slower

growth (of order log T opposed to Tσ; Pitman, 2002, section 3.3) in the number of regimes with increases in

data size.

2.2.2. Applicability of EPPFs to time series problems

Unlike the general clustering problem, in the time series case, the data points have an ordering which the

clusters must respect. For example, consider an incidence series of length three: (I1, I2, I3). For this series,

allowable effective reproduction number allocations include: {{I1, I2, I3}}, where all the data points are

generated from a process with the same effective reproduction number: i.e. there is a single regime (K = 1);

{{I1}, {I2, I3}}, where the first data point was generated from a process with one effective reproduction

number and the latter two data points from a process with a different one: i.e. there are two regimes

(K = 2); {{I1, I2}, {I3}}, where the first two points are grouped; and {{I1}, {I2}, {I3}}, where each data

point is generated from a process with a different reproduction number: i.e. there are three regimes (K = 3).

An allocation which would be disallowed is: {{I1, I3}, {I2}}, where the first and third data points come

from the same process which is distinct from that governing the second. Whilst, it is possible that transmission

could return to a previous level, it is an assumption of our modelling process that only consecutive data points

share the same Rt. By avoiding recurrence to historical regimes, we ensure that the changepoints identified

are straightforward to interpret.

For a given EPPF, p′, we can obtain a distribution p which is supported only on those partitions which

respect an ordering of the labels using the following result (Mart́ınez and Mena, 2014):

p(n1, . . . , nK) =


1
K!

 T

n1, . . . , nK

 p′(n1, . . . , nK), if allowable partitioning

0, otherwise,

(3)

where the large bracketed term indicates the multinomial coefficient.
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Combining eqs. (3) and (2), we obtain the following result for the prior distribution on the sequence of

regime sizes in the time series case:

p(n1, . . . , nK |θ, σ) = T !

K!

∏k−1
i=1 (θ + iσ)

(θ + 1)T−1↑

K∏
j=1

(1− σ)nj−1↑

nj !
. (4)

2.2.3. Hyperparameters of the process

In order to learn parsimonious assignments of the time points into regimes, our prior, given by eq. (4),

should favour configurations consisting of longer regimes. We favour longer regimes because they mitigate

against overfitting—for typical data, the likelihood of the renewal process would be maximised by assigning

each time point to its own cluster with an idiosyncratic value of Rt; the resulting profile of Rt values will tend

to be jagged and exhibit spurious fluctuations. Additionally, longer regimes have the advantage of allowing

more data to be leveraged in order to learn more precise estimates of Rt. However, by favouring longer

regimes, it is possible that we miss shorter term fluctuations in Rt—this is akin to the issue of choosing

window lengths for a number of existing methods (e.g. Thompson et al., 2019).

Eq. (4) induces a marginal distribution over the number of clusters whose mean has been derived as (Pit-

man, 2002, eq. (3.13)):

E[K] =
(θ + σ)T↑

σ(θ + 1)T−1↑
− θ

σ
, (5)

for σ ̸= 0. For small values of the hyperparameters θ and σ, E[K] is significantly smaller than the number

of time points T (see Fig. S1), and the marginal distribution of K places little weight on values of K close

to T , thus preferring sparsity in the number of clusters. For all results presented in this paper, we set θ = 0

and choose σ as a function of T such that E[K] = 1.5 (with the appropriate value of σ selected by numerical

optimization of eq. (5)); this represents a prior belief that Rt is generally constant over the time series, but

allows flexibility to add clusters when the data provides evidence that they are needed. For a time series

of length T = 100, our choice of prior hyperparameters induces a marginal distribution over the number of

clusters whose 2.5th percentile is 1 cluster and 97.5th percentile is 4 clusters.

2.3. Marginal likelihood of the data

In this subsection, we calculate the marginal likelihood of the data conditional on a particular arrangement

of the time points into regimes, which involves integrating out Rt with respect to its prior distribution. This

marginal likelihood enables efficient inference for the posterior distribution over regime configurations via

collapsed Gibbs sampling (see § 2.4).

The marginal likelihood for an incidence series conditional on a particular set of subset sizes n1, . . . , nK

(see §2.2) can be written as a product of marginal likelihoods for each regime:

p(I1, . . . , IT |n1, . . . , nK) =

K∏
k=1

Lk(Ik,1, . . . , Ik,nk
|I−k), (6)
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where Ik,j denotes the jth data point in regime k, and Lk is the marginal likelihood of the data in the kth

regime, which we assume is conditional on all cases observed prior to regime k (denoted by I−k). We derive

the regime-specific marginal likelihoods using the renewal model (eq. (1)):

Lk(Ik,1, . . . , Ik,nk
|I−k) =

∫ ∞

0

p(Rk)

nk∏
j=1

Pois(Ik,j |RkΛk,j)dRk,

where Λk,j is the transmission potential calculated for the jth time point in regime k, Rk is the value of the

effective reproduction number for the kth regime, and p(Rk) is the prior on Rk.

We choose a gamma distribution prior for Rk with shape parameter α and rate parameter β.4 With

this choice of prior, the integral in the formula for the regime-specific marginal likelihood can be evaluated

analytically, resulting in:

Lk(Ik,1, . . . , Ik,nk
|I−k) =

βα

Γ(α)
Γ

α+

nk∑
j=1

Ik,j

β +

nk∑
j=1

Λk,j

−α+
∑nk

j=1 Ik,j

×
nk∏
j=1

Λ
Ik,j

k,j

Ik,j !
,

where Γ(·) is the gamma function.

Additionally, with the gamma prior on Rk, the posterior distribution of each Rk, conditional on the data

assigned to regime k, is given by the conjugate gamma posterior (Creswell et al., 2022):

p(Rk|Ik,1, . . . , Ik,nk
, I−k) = gamma(Rk|shape = α+

nk∑
j=1

Ik,j , rate = β +

nk∑
j=1

Λk,j). (7)

As prior hyperparameters, we select α = 1 and β = 0.2. With this choice, the prior mean and standard

deviation are both equal to 5. The high standard deviation provides a relatively uninformative prior, and

the high mean ensures that the outbreak is unlikely to be determined as under control (since > 81% of prior

probability is for Rt > 1) unless there is considerable evidence to suggest otherwise.

2.4. Inference

At particular values of the hyperparameters σ and θ, the target posterior of regime configurations, which

we denote by p(n1, . . . , nK |I1, . . . , IT , σ, θ) is proportional to the product of and eq. (4) and eq. (6):

p(n1, . . . , nK |I1, . . . , IT , σ, θ) ∝ p(I1, . . . , IT |n1, . . . , nK)× p(n1, . . . , nK |θ, σ).

For brevity, we suppress the dependence on cases and hyperparameters and denote the unnormalized posterior

by p(γK), where γK := (n1, . . . , nK) indicates a particular configuration of the time points into K regimes.

4p(R|α, β) = βα

Γ(α)
Rα−1e−βR.

8

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.04.22277234doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.04.22277234
http://creativecommons.org/licenses/by/4.0/


Inference for this posterior is performed via Markov Chain Monte Carlo (MCMC) which provides a

distribution over the number of regimes by jumping between models of different numbers of parameters. We

use the same split-merge-shuffle structure as Mart́ınez and Mena (2014). Each step of our MCMC algorithm

is given in Algorithm 1, and we now describe it.

Different configurations of the time points into regimes are explored through the use of split, merge, and

shuffle proposals. The split proposal takes an existing regime and proposes to split it into two regimes at some

randomly located changepoint. The merge proposal takes two consecutive regimes and proposes to merge

them into one. Both of these proposals consider an update to the total number of regimes, thus allowing the

sampler to explore the marginal posterior distribution over the number of regimes. Additionally, the shuffle

proposal shifts the boundary between two consecutive regimes, thus keeping the same number of regimes but

efficiently exploring uncertainty in the location of a changepoint. At each iteration of the MCMC sampler,

we make one shuffle proposal and randomly choose whether to make a split or merge proposal, with the

MCMC tuning parameter q giving the probability of making the split proposal. For the results presented in

this paper, we fix q = 0.5. The acceptance probabilities for the split, merge, and shuffle proposals are derived

in Mart́ınez and Mena (2014) and are given by min(1, αe), with e ∈ {split,merge, shuffle}.

αsplit is calculated by:

αsplit =

(1− q)(T − 1)p(γK+1)
p(γK) , if K = 1,

1−q
q

p(γK+1)
p(γK)

nsplittable(ns−1)
K , if K > 1,

where nsplittable is the number of splittable regimes (i.e., those with more than one time point assigned to

them) in the original configuration, and ns is the length of the regime selected for a split; γK is the current

regime configuration, and γK+1 is the split configuration.

The corresponding quantity for a merge move is given by:

αmerge =


q

1−q
p(γK−1)
p(γK)

K−1
n∗
splittable(ns+ns+1−1) , if K < T,

q(T − 1)p(γK−1)
p(γK) , if K = T,

where n∗
splittable is the number of splittable regimes in the proposed configuration, and ns and ns+1 are the

sizes of the regimes which are proposed to be merged; γK−1 is the merged regime configuration.

The equivalent quantity for a shuffle move is given by:

αshuffle =
p(γ∗

K)

p(γK)
,

where γ∗
K is the shuffled configuration obtained from γK as described in Algorithm 1.

The values of Rt are updated using Gibbs steps conditional on the current regime configuration.

We run four separate MCMC chains, two initialised with all time points assigned to a single regime (i.e.

K = 1) and the other two initialised with all time points assigned to their own singleton regime (i.e. with

9
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K = T ). We assessed convergence of our MCMC algorithm (Algorithm 1) by monitoring convergence in

K, the number of regimes. To do so, we computed the R̂ statistic (Gelman and Rubin, 1992) and required

R̂ < 1.05. Once convergence was determined, we discarded the first 50% of each of the MCMC chains as

warm-up and combined the rest of the samples in order to calculate posterior percentiles and means.

Algorithm 1 One step of the MCMC sampler.
1: q ← User specified value (MCMC tuning parameter)

2: K ← Current number of regimes

3: for k in 1, . . . ,K do ▷ Update the Rt via Gibbs steps.

4: Draw a value for Rt in the kth regime from its conditional posterior, eq. (7).

5: end for

6: if K = 1 then

7: q ← 1

8: else if K = T then

9: q ← 0

10: end if

11: Sp ∼ Bernoulli(q) ▷ Draw binary variable to allow random choice between split and merge proposals.

12: if Sp = 1 then ▷ Perform a split proposal.

13: Uniformly at random propose a regime to split.

14: Uniformly at random propose an index within that regime at which to split.

15: Accept the split regime configuration with probability αsplit.

16: else ▷ Perform a merge proposal.

17: Uniformly at random propose a regime (not the last) which will be merged with following regime.

18: Accept the merged regime configuration with probability αmerge.

19: end if

20: K ← Current number of regimes

21: if K > 1 then ▷ Perform a shuffle proposal.

22: Uniformly at random propose a regime j (not the last) to shuffle.

23: Uniformly at random propose an index within either regime j or j + 1 to be the new changepoint between these two

regimes.

24: Accept the shuffled regime configuration with probability αshuffle.

25: end if

2.5. Comparator methods

In § 3, we compare the posterior distribution for Rt yielded by our nonparametric method to those yielded

by two comparator methods. This first is the Cori sliding window method (Cori et al., 2013; Thompson et al.,

2019), which assumes that Rt is constant over a sliding window of τ days looking backwards. The sliding

window width has a significant effect on the posterior and the effective bias-variance trade-off. As a result,

we consider two choices of τ (7 days and 28 days) when applying the method to synthetic data. The second

comparator is the EpiFilter method (Parag, 2021), which applies sequential Bayesian smoothing and controls

change in Rt under a random walk prior.
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2.6. Implementation and runtime

We implemented EpiCluster in Python 3. A Python package of the model, including the MCMC in-

ference algorithm, is available at github.com/SABS-R3-Epidemiology/epicluster, while the notebooks

and data for reproducing all results in this paper are available at github.com/SABS-R3-Epidemiology/

epicluster-results. We ran the sliding window method using the branchpro Python package (Creswell

et al., 2022). We ran the EpiFilter method through its R package (Parag, 2021). Using our software library

and typical consumer hardware (3.6GHz CPU), EpiCluster takes from several seconds to several minutes

to learn the posterior, depending on the complexity of the Rt profile. By comparison, the sliding window

method and EpiFilter methods are effectively instantaneous to compute on the time series studied here.

2.7. Handling imported cases

Some of the real data examples we consider (see §3.4) consist of case counts in locations where a sub-

stantial proportion of the case loads are due to imported cases. To account for this, we adapt our renewal

model using the methods described in Creswell et al. (2022). In this approach, cases are classified as either

local or imported. Local cases {It}Tt=1 are those arising from local transmission in the spatial region under

consideration, while imported cases {I imp
t }Tt=1 are those who were infected elsewhere before travelling to

the region. Thus, imported cases contribute to local transmission, but did not arise from it. In outbreaks

where a significant proportion of cases are imported, distinguishing local from imported cases is important

for accurate estimation of Rt (Roberts and Nishiura, 2011; Thompson et al., 2019). We allow local and im-

ported cases to have different risks of onwards transmission by weighting the imported cases by some number

ϵ > 0 (Creswell et al., 2022), and we set ϵ to appropriate values (see §2.8). The default choice of ϵ = 1

corresponds to an equal risk of onwards transmission between local and imported cases. Note, any case and

any subsequent lineages begot by an imported case are classified as local: it is only the rate at which newly

imported cases infect others which is assumed to differ from purely local transmission.

We adapt eq. (1) to model the dynamics of local cases It, resulting in:

It ∼ Pois

(
Rt

t−1∑
s=1

ws(It−s + ϵI imp
t−s )

)
, (8)

where Rt is the effective reproduction number that characterises local transmission on day t. For problems

where imported cases are not considered, we use eq. (1).

2.8. Real incidence data

We fit to real case incidence data for local and imported COVID-19 cases for three regions: Victoria and

Queensland in Australia and Hong Kong. In each of these three locations, we used cases with dates given

by the date of symptom onset. We selected these regions as they exhibit a variety of different trends in

Rt: a gradual decrease in Victoria, a more rapid decrease in Queensland, and a fall in Rt followed by the
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sudden appearance of a second wave in Hong Kong. Data for the Australian regions were obtained from the

Australian national COVID-19 database (Price et al., 2020); data for Hong Kong were obtained from the

Hong Kong Department of Health COVID-19 database (Hong Kong Department of Health, 2022). For the

Australian states, cases of unknown origin were assumed to be local, and in Hong Kong, all cases other than

those listed as “imported case confirmed” were treated as local. We assumed ϵ = 1 in eq. (8) for Victora and

Queensland; however, for Hong Kong, transmission networks suggest that imported cases were significantly

less infective than local cases, so we set ϵ = 0.2 (Liu et al., 2021; Creswell et al., 2022). In all three instances,

we assumed that under-reporting and delays were negligible given the strong surveillance in these countries.

3. Results

3.1. EpiCluster reliably estimates sudden changes in Rt in retrospective analyses

To evaluate the performance of our model, we generated synthetic incidence data using eq. (1) where

the Rt profile was known (see Figure 2). We considered three Rt profiles: one with a precipitous decline

in Rt (“fast drop-off”); another, with a decline in Rt followed by a later resurgence (“fast resurgence”;

we included this profile since resurgences are harder to infer than declines in transmission strength; Parag

and Donnelly, 2022); and another with a more gradual decline in Rt (“slow drop-off”). The fast drop-off

and slow drop-off time series were initialized with 5 cases on each of three days preceding the beginning of

simulation, while the fast resurgence was initialized with 5 cases on each of fifty days preceding the beginning

of simulation. Simulations for fast drop-off and slow drop-off used the COVID-19 serial interval (Nishiura

et al., 2020), while the fast resurgence used the Ebola serial interval as estimated for the 2014 West African

Outbreak (Van Kerkhove et al., 2015).

In Figure 2, we compare Rt estimates from our method with those from two comparator methods: the

sliding window method (Thompson et al., 2019) with two different choices of the sliding window width (7

days and 28 days), and the EpiFilter method (Parag, 2021).

Across the three Rt profiles considered, the estimates from the sliding window method lag behind the

true values (Fig. 2B), since the windows are inherently backward-looking—the longer the window width,

the longer the moving average and the slower it is to respond to changes in Rt; the estimates are also very

variable. The EpiFilter method fares better and is able to reliably infer downward shifts in Rt (Fig. 2C),

corresponding to suppression; this method overly smooths over the upward tick in transmission in the fast-

resurgence example. Our method performs favourably in the two “fast” examples (Fig. 2D). Like the EpiFilter

method, our approach is less able to infer resurgence than suppression (Parag and Donnelly, 2022). In the slow

example, our piecewise-constant method approximates the linear decline in Rt with a staircase-like profile,

which is better estimated by EpiFilter. In Figure S2, we show the effect of changing the hyperparameters of

our method on inference for the slow drop-off example on the number and location of the regimes which are
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learned. As the two hyperparameters, θ and σ increase, more weight is given to a partitioning consisting of

more regimes (see also Fig. 1), and the staircase steps become finer.

To account for stochastic variation in the synthetic data generation, we repeated inference for the fast

resurgence example 10 times (Fig. S3). For the three methods, the posterior means are qualitatively similar

across all runs, suggesting that these results are consistent across different realisations of the renewal process.

In the fast drop off and fast resurgence examples, EpiCluster estimates Rt with low bias and high precision.

This is because the Rt profiles in the simulated examples align well with the assumptions made in our

modelling: namely, that the Rt profile is piecewise-constant. We now consider Rt profiles with notable

deviations from this assumption. In Figure 3, we compare the same methods on both noisy (left and middle

columns) and oscillatory Rt profiles. When the magnitude of the noise is low (left column), the results

mirror those from the previous example. When the noise level increases (middle column), all methods are

late to predict the precipitous decline in Rt, and EpiFilter provides a better quantification of uncertainty

than the nonparameteric model. For the sinusoid example (right column), EpiFilter performs best, since

the assumptions underpinning that method—that Rt follows a random walk—are closer to the reality of the

generated data.

3.2. EpiCluster is effective at detecting sharp changes in transmission in real-time

The results thus far have considered retrospective analysis of outbreaks; these analyses are important for

understanding the timing and impact of interventions following their imposition (e.g. Flaxman et al. (2020);

Brauner et al. (2021)). But, in unfolding epidemics of novels pathogens, it is crucial to know in as close to

real time as data allows whether transmission changes rapidly either after an intervention is instituted or

after it is discontinued. In this section, we compare how the three Rt estimation methods fared in inferring

an epidemic resurgence in real-time: as new case data becomes available subsequent to a jump upwards in

transmission. We used the same fast resurgence data as in Fig. 2 and fit each method for a series of datasets

of different lengths. Each of these datasets began at the same point (at t = 0); the datasets ended at different

points. The endpoints ranged from 5 days to 35 days post-resurgence with gaps of 5 days between them.

The posterior means of the inferred Rt series are shown in Fig. 4, while the full posteriors are shown in

Fig. S4. The results illustrate that all three methods needed considerable data post resurgence to infer changes

in transmission. For each series, EpiCluster generally fared best in inferring the timing and magnitude of

resurgence, with the posterior uncertainty interval reliably including the true Rt profile.

3.3. Data generating processes with greater variability pose issues for all methods and EpiFilter generally

performs best

Variation in transmissibility across different individuals within a population can lead to greater variation

in cases than is accounted for by a Poisson renewal model, and each pathogen exists on a spectrum of
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Figure 2: Recovering synthetic Rt profiles in retrospective analyses. We generated synthetic case data (panel A) using

the Poisson renewal model (eq. (1)) with three prespecified profiles for Rt (dashed red lines in panels B / C / D). In panel B,

we show the inferred Rt profile using a sliding window method (Thompson et al., 2019) for two different choices of the sliding

window size (τ = 7 and 28 days). In panel C, we show the inferred Rt profile using the EpiFilter method (Parag, 2021). In

panel D, we show the inference results when using EpiCluster to recover Rt. In panels B, C and D, shaded regions indicate the

central 90% of the posterior distribution of Rt, while the central line indicates the posterior mean, and the background gray line

indicates Rt = 1.
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Figure 3: Recovering noisy and oscillatory Rt profiles in retrospective analyses. We generated synthetic case data

(panel A) using the Poisson renewal model with three prespecified profiles for Rt (dashed red lines in panels B / C / D). The

Rt profiles were calculated using step functions with additive i.i.d. Gaussian noise of standard deviation 0.025 (left) and 0.1

(middle). In the right column, we show results when Rt follows a sine wave. In panel B, we show the inferred Rt profile using

a sliding window method (Thompson et al., 2019) for two different choices of the sliding window size (τ = 7 and 28 days). In

panel C, we show the inferred Rt profile using the EpiFilter method (Parag, 2021). In panel D, we show the inference results

when using EpiCluster to recover Rt. In panels B, C and D, shaded regions indicate the central 90% of the posterior distribution

of Rt, while the central line indicates the posterior mean, and the background gray line indicates Rt = 1.
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Figure 4: Real-time estimation of a resurgence in Rt. We used the same fast resurgence synthetic data from Figure 2 and

performed inference for Rt based only on the time series up till the number of days after the resurgence indicated in the legend.

In the left panel, we show the mean inferred Rt profile using the EpiFilter method (Parag, 2021). In the right panel, we show

the results when using EpiCluster to recover the mean of Rt. The background gray line indicates Rt = 1.

dictating the degree of overdisperseness (Lloyd-Smith et al., 2005): SARS, for example, is prone to many

superspreading events (Shen et al., 2004); whereas pneumonic plague exhibits less variation in offspring cases

(Lloyd-Smith et al., 2005).

To study the robustness of EpiCluster under more variable data generating processes, we generated

data using the fast drop-off Rt profile and a negative binomial (NB) renewal model with inverse-dispersion

parameter κ > 0: as κ → ∞, the NB model approaches the Poisson. So low values of κ correspond to more

overdispersed data. Using the fast drop-off Rt profile, we generated case data under different values of κ,

and, for each series, we fit the sliding window, EpiFilter and EpiCluster methods.

The results are shown in Fig. S5. When κ is large (i.e. the data are effectively generated from a Poisson

distribution), the results match those observed in Fig. 3. As the data generating process exhibits more

variation, all methods perform worse: generally failing to correctly identify the change in Rt and inferring a

highly noisy Rt profile with many spurious fluctuations. However, the sliding window and EpiFilter methods

generally produced more robust estimates in the presence of strong overdispersion.

3.4. EpiCluster estimates sharp changes in Rt for real COVID-19 incidence curves

Next, we performed retrospective inference of Rt for the early COVID-19 outbreaks in three selected

regions: Victoria and Queensland, Australia, and Hong Kong (see 2.8), which were selected for the variety

of transmission profiles they encompass. The Rt estimates for these regions are shown in Figure 5 again

comparing the sliding window approach (panel B) with the EpiFilter approach (panel C) and EpiCluster

(panel D).
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The first case of COVID-19 in Australia was reported in Victoria state on 25th January 2020 (Storen

and Corrigan, 2020). Subsequently, Victoria quickly became a hub of transmission and declared a state

of emergency on 16th March, including a ban on non-essential gatherings of over 500 people (Storen and

Corrigan, 2020). On 18th March, more restrictions on movement followed with indoor public gatherings

of more than 100 people banned and restrictions in aged care facilities introduced across Australia (Storen

and Corrigan, 2020). On the 22nd March, the state Premier announced that Victoria would implement a

shutdown of all non-essential activity across the state (Storen and Corrigan, 2020). The sliding window

approach (Fig. 5B) and EpiFilter (Fig. 5C) both estimated declines in transmission starting around 22nd

March; EpiCluster infers a sharper decline around 25th March. All methods inferred that transmission

subsequently remained below the level for sustained transmission, apart from an uptick in transmission

estimated from EpiCluster coinciding with a burst of cases around 10th April, which likely reflects a violation

of the assumptions of the model.

The first case of COVID-19 in Queensland, Australia occurred on 29th January 2020 (Storen and Corrigan,

2020), and the first wave began in early March. All three estimation methods inferred that, since imported

cases were the dominant cause of the wave, there was relatively low community transmission, and the bulk

of local Rt estimates were below 1 (Fig. 5). All methods inferred a decline in transmission beginning around

the 16th March—the date when Victoria declared a state of emergency—and EpiCluster estimated a rapid

decline on 17th March. To combat the insurgence of imported cases, the Queensland Premier announced

that the state would restrict access to the border on 24th March: this included termination of all rail services

and border road closures (Storen and Corrigan, 2020), and EpiCluster inferred a small decline occurring on

this date.

Hong Kong, like Singapore and Taiwan, was quick to act on learning of the outbreak of COVID-19

in Wuhan, China, and the government enacted intensive surveillance campaigns and declared a state of

emergency on 25th January, 2020 (Cowling et al., 2020, Fig. 1). On the 7th February 2020, Hong Kong

introduced prison sentences for anyone breaching quarantine rules (OT&P Healthcare, 2022). This date

broadly coincides with the decline in Rt detected across all three methods, and the decline detected by

EpiCluster is especially rapid.

Hong Kong’s second wave of COVID-19 began in March 2020 driven by imported cases from North

America and Europe (Parag et al., 2021), and all three methods detect an increase in the local Rt shortly

after 15th March. Policy responses to this wave by the Hong Kong government included a ban on foreign

travellers (effective 25th March; OT&P Healthcare (2022)) and a ban on gatherings of more than four people

(effective 27th March; OT&P Healthcare (2022)); a significant decrease in Rt is detected by all three methods

around the times when these interventions were imposed. The EpiCluster results mirror the timing of this

intervention most closely, suggesting that there was a short time lag between when the interventions were

imposed and their effect.
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To explore the sensitivity of our estimates for Hong Kong to the hyperparameters of the method, we

performed a series of sensitivity analyses where these parameters were fixed at different values and inference

was performed (Fig. S6). These experiments illustrate that, as either of the hyperparameters are increased,

the Rt profile comprises a greater number of regimes, and there is greater uncertainty in the Rt estimates.

The qualitative behaviour of the majority of estimates, however, remains the same, with a large decline in

transmission around 7th February 2020 and a resurgence in mid March.

4. Discussion

The time-varying reproduction number, Rt, is a threshold metric for facilitating decision making during

epidemics. But, there is also value in using Rt estimates to retrospectively assess whether the imposition of

interventions caused substantive and rapid reductions in transmission (e.g. Dehning et al., 2020; Flaxman

et al., 2020). It is especially key to determine the timing of these reductions, since delays in imposition of

interventions can substantially worsen outcomes, particularly during the growth of an epidemic (Pei et al.,

2020). Here, we present a general Bayesian inference method using Pitman-Yor process priors which allows

any feasible number of changepoints in transmission, and we provide a choice of hyperparameters (see §2.2.3),

such that, a priori, Rt is assumed to remain relatively stable. Through simulated data examples, we show

that the method is adept at estimating sharp changes in transmission: in both retrospective and real-time

analyses. By fitting the model to real data from COVID-19 outbreaks, we infer discontinuous declines

in transmission at times which broadly coincide with the imposition of interventions. The method allows

effectively automated detection of changepoints in transmission and could be adapted to handle different types

of models in epidemiology and, more generally, provides a framework for handling time-varying parameters.

The information available to estimate Rt changes throughout an epidemic: at the start, there is scant

information, and estimates have high uncertainty; when an epidemic is brought under control, cases are

initially higher, providing more information of changes in transmission; and resurgences qualitatively mirror

the conditions at the start of an epidemic meaning Rt has greater uncertainty (Parag and Donnelly, 2022).

Priors thus affect estimates differently at different stages during an epidemic and, by extension, variously for

different types of epidemic. The fits of our model and the two comparator methods to COVID-19 case data

demonstrate the strong information introduced by the priors. This makes sensitivity analyses particularly

important, since no one prior choice satisfies all parties for all situations. We assume that Rt is piecewise-

constant with transmission changing discontinuously with the number of pieces and location of breakpoints

controlled through a Pitman-Yor process. If transmission changes more gradually, these assumptions are

inappropriate, and a model which allows a more gradual change in Rt will perform better (e.g. EpiFilter;

Parag, 2021). Similarly, if the model mischaracterises the data generating process, for example, by assuming

that there are no substantial differences in transmissibility across individuals, estimates will also be poor
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Figure 5: Learning Rt from early COVID-19 epidemic incidence curves in three locations. Data on local and

imported cases from the early COVID-19 pandemic in three selected regions is shown in panel A. In panel B, we show the

inferred Rt profile using a sliding window method (Thompson et al., 2019) for two different choices of the sliding window size

(τ = 7 and 28 days). In panel C, we show the inferred Rt profile using the EpiFilter method (Parag, 2021). In panel D, we show

the inference results when using EpiCluster to recover Rt. In panels B, C and D, shaded regions indicate the central 90% of the

posterior distribution of Rt, while the central line indicates the posterior mean, and the background gray line indicates Rt = 1.
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(Fig. S5). Because of this, it is possible that the sharp changes in COVID-19 transmission identified by

EpiCluster for the three locations considered (Fig. 5) reflected violations in the model’s assumptions, and

future work is to adapt our framework to handle such processes. We did not consider reporting issues here,

and these would likely also introduce biases (Gostic et al., 2020; Pitzer et al., 2021).

The Pitman-Yor process is an example from a broad class of models from Bayesian nonparametrics where

the complexity of the models grows along with the volume and complexity of the data (Ghahramani, 2013).

Gaussian processes belong also to this class (Rasmussen, 2003) and have found wide application across

epidemiology, notably for producing geostatistical maps of disease prevalence for illnesses such as malaria

(Bhatt et al., 2015). More data and data of greater variety and complexity are being routinely collected in

epidemiological surveillance, and there is a host of Bayesian nonparametric models (e.g. those described in

Griffiths and Ghahramani, 2011; Ghahramani, 2013), which are well-placed for their analysis.

Across epidemiology, discretely sampled data are used to infer continuous-time parameters, such as the

time-varying reproduction number, Rt in outbreak analysis, the effective population size in phylogenetic

Skyline models (Pybus et al., 2000) and the historical force of infection in catalytic models (Muench, 2013).

In any of these cases, transmission can change abruptly, and a model such as ours could be used to identify

periods of rapid change.
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graphs eq. (5) and assumes that there are T = 100 datapoints.
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Figure S2: Effect of θ and σ on inference for Rt. We used the same slow drop-off synthetic data from Figure 2, and

performed inference for Rt using the indicated fixed values of θ and σ, the two hyperparameters of the Pitman-Yor process (see

eq. (4)). In all panels, shaded regions indicate the central 90% of the posterior distribution of Rt, while the central line indicates

the posterior mean.
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Figure S3: Posterior mean estimates of Rt in the fast resurgence synthetic example. Using the fast resurgence

Rt profile (Fig. 2), we repeated the generation of synthetic data 10 times and performed inference for Rt for each synthetic

dataset. Panel A shows the posterior means according to the sliding window method (Thompson et al., 2019) for two different

choices of the sliding window size (τ = 7 and 28 days). In panel B, we show the inferred mean Rt profiles using the EpiFilter

method (Parag, 2021). In panel C, we show the inferred means using EpiCluster.

27

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.04.22277234doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.04.22277234
http://creativecommons.org/licenses/by/4.0/


0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

05010
0

15
0

20
0

Cases

0 
da

ys
 a

fte
r r

es
ur

ge
nc

e

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Rt

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Rt

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Rt

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

05010
0

15
0

20
0

Cases

5 
da

ys
 a

fte
r r

es
ur

ge
nc

e

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

05010
0

15
0

20
0

Cases

10
 d

ay
s a

fte
r r

es
ur

ge
nc

e

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

02468 Rt
0

50
10

0
15

0
20

0
Ti

m
e 

(d
ay

s)

02468 Rt

0
50

10
0

15
0

20
0

Ti
m

e 
(d

ay
s)

02468 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

05010
0

15
0

20
0

Cases

15
 d

ay
s a

fte
r r

es
ur

ge
nc

e

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

02468 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

02468 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

02468 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

05010
0

15
0

20
0

Cases

20
 d

ay
s a

fte
r r

es
ur

ge
nc

e

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

05010
0

15
0

20
0

Cases

25
 d

ay
s a

fte
r r

es
ur

ge
nc

e

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

05010
0

15
0

20
0

Cases

30
 d

ay
s a

fte
r r

es
ur

ge
nc

e

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

05010
0

15
0

20
0

Cases

35
 d

ay
s a

fte
r r

es
ur

ge
nc

e Ca
se

s

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

Tr
ue

 R
t

In
fe

rre
d 

R t
 (E

pi
Cl

us
te

r)

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

Tr
ue

 R
t

In
fe

rre
d 

R t
 (

=7
)

In
fe

rre
d 

R t
 (

=2
8)

0
50

10
0

15
0

20
0

25
0

Ti
m

e 
(d

ay
s)

0246 Rt

Tr
ue

 R
t

In
fe

rre
d 

R t
 (E

pi
Fi

lte
r)

A. B. C. D. F
ig
u
re

S
4
:
R
e
a
l-
ti
m

e
e
st
im

a
ti
o
n

o
f
a
r
e
su

r
g
e
n
c
e
in

R
t
.
W

e
u
se
d
th

e
sa
m
e
fa
st

re
su

rg
en

ce
sy
n
th

et
ic

d
a
ta

fr
o
m

F
ig
u
re

2
,
a
n
d
p
er
fo
rm

ed
in
fe
re
n
ce

fo
r
R

t
b
a
se
d
o
n
ly

o
n
th

e
d
a
ta

in
d
ic
a
te
d
a
t
th

e
to
p
o
f
ea

ch
co

lu
m
n
.
In

p
a
n
el

B
,
w
e
sh

o
w

th
e
in
fe
rr
ed

R
t
p
ro
fi
le

u
si
n
g
a
sl
id
in
g
w
in
d
o
w

m
et
h
o
d
(T

h
o
m
p
so
n
et

a
l.
,
2
0
1
9
)
fo
r
tw

o
d
iff
er
en

t

ch
o
ic
es

o
f
th

e
sl
id
in
g
w
in
d
o
w

si
ze

(τ
=

7
a
n
d

2
8
d
a
y
s)
.
In

p
a
n
el

C
,
w
e
sh

o
w

th
e
in
fe
rr
ed

R
t
p
ro
fi
le

u
si
n
g
th

e
E
p
iF
il
te
r
m
et
h
o
d

(P
a
ra
g
,
2
0
2
1
).

In
p
a
n
el

D
,
w
e
sh

o
w

th
e
in
fe
re
n
ce

re
su

lt
s
w
h
en

u
si
n
g
E
p
iC

lu
st
er

to
re
co
v
er

R
t
.
In

p
a
n
el
s
B
,
C

a
n
d
D
,
sh

a
d
ed

re
g
io
n
s
in
d
ic
a
te

th
e
ce
n
tr
a
l
9
0
%

o
f
th

e
p
o
st
er
io
r
d
is
tr
ib
u
ti
o
n
o
f
R

t
,
w
h
il
e
th

e

ce
n
tr
a
l
li
n
e
in
d
ic
a
te
s
th

e
p
o
st
er
io
r
m
ea

n
,
a
n
d
th

e
b
a
ck

g
ro
u
n
d
g
ra
y
li
n
e
in
d
ic
a
te
s
R

t
=

1
.

28

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.04.22277234doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.04.22277234
http://creativecommons.org/licenses/by/4.0/


0 20 40 60 80 100
Time (days)

0

20

40

60

80

100

Ca
se

s

kappa=100

0 20 40 60 80 100
Time (days)

0.5

1.0

1.5

2.0

R t

0 20 40 60 80 100
Time (days)

0.5

1.0

1.5

2.0

R t

0 20 40 60 80 100
Time (days)

0.5

1.0

1.5

2.0

R t

0 20 40 60 80 100
Time (days)

0

50

100

150

200

Ca
se

s

kappa=10

0 20 40 60 80 100
Time (days)

0.5

1.0

1.5

2.0

2.5

R t

0 20 40 60 80 100
Time (days)

0.5

1.0

1.5

2.0

2.5

R t

0 20 40 60 80 100
Time (days)

0.5

1.0

1.5

2.0

2.5

R t

0 20 40 60 80 100
Time (days)

0

20

40

60

Ca
se

s

kappa=1

0 20 40 60 80 100
Time (days)

0

2

4

6

R t
0 20 40 60 80 100

Time (days)

0

2

4

6

R t

0 20 40 60 80 100
Time (days)

0

2

4

6

R t

0 20 40 60 80 100
Time (days)

0

10

20

30

40

50

60

Ca
se

s

kappa=0.5
Cases

0 20 40 60 80 100
Time (days)

0.0

2.5

5.0

7.5

10.0

12.5

R t
True Rt

Inferred Rt (EpiCluster)

0 20 40 60 80 100
Time (days)

0.0

2.5

5.0

7.5

10.0

12.5

R t

True Rt

Inferred Rt ( =7)
Inferred Rt ( =28)

0 20 40 60 80 100
Time (days)

0.0

2.5

5.0

7.5

10.0

12.5

R t

True Rt

Inferred Rt (EpiFilter)

A.

B.

C.

D.

Figure S5: Effect of negative binomial noise on posterior estimates of Rt. We used the same fast drop-off Rt profile

from Figure 2 but generated data according to a negative binomial renewal process with the inverse overdispersion (kappa)

indicated at the top of each column. In panel B, we show the inferred Rt profile using a sliding window method (Thompson

et al., 2019) for two different choices of the sliding window size (τ = 7 and 28 days). In panel C, we show the inferred Rt profile

using the EpiFilter method (Parag, 2021). In panel D, we show the inference results when using EpiCluster to recover Rt. In

panels B, C and D, shaded regions indicate the central 90% of the posterior distribution of Rt, while the central line indicates

the posterior mean, and the background gray line indicates Rt = 1.
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Figure S6: Effect of θ and σ on inference for Rt for the Hong Kong COVID-19 dataset. We used the Hong Kong

data from Figure 4, and performed inference for Rt using the indicated fixed values of θ and σ, the two hyperparameters of the

Pitman-Yor process (see eq. (4)). In all panels, shaded regions indicate the central 90% of the posterior distribution of Rt, while

the central line indicates the posterior mean.
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