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Abstract
Learning deformable 3D objects from 2D images is often an ill-posed problem. Existing methods rely on explicit supervision
to establish multi-view correspondences, such as template shape models and keypoint annotations, which restricts their
applicability on objects “in the wild”. A more natural way of establishing correspondences is by watching videos of objects
moving around. In this paper, we present DOVE, a method that learns textured 3D models of deformable object categories
from monocular videos available online, without keypoint, viewpoint or template shape supervision. By resolving symmetry-
induced pose ambiguities and leveraging temporal correspondences in videos, the model automatically learns to factor out
3D shape, articulated pose and texture from each individual RGB frame, and is ready for single-image inference at test time.
In the experiments, we show that existing methods fail to learn sensible 3D shapes without additional keypoint or template
supervision, whereas our method produces temporally consistent 3D models, which can be animated and rendered from
arbitrary viewpoints. Project page: https://dove3d.github.io/.

Keywords Deformable 3D objects · Unsupervised 3D learning

1 Introduction

In applications, we often need to obtain accurate 3Dmod-
els of deformable objects from just one or a few pictures
of them. This is the case in traditional applications such
as robotics, but also, increasingly, in consumer applications,
such as content creation for virtual and augmented reality—
using everyday pictures and videos taken with a cellphone.

3D reconstruction from a single image, or even a small
number of views, is generally very ambiguous and only
solvable by leveraging powerful statistical priors of the 3D
world. Learning suchpriors is however very challenging.One
approach is to use training data specifically collected for this
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purpose, for example by using 3D scanners and domes (Choy
et al., 2016; Girdhar et al., 2016; Wu et al., 2016; Wang et
al., 2018; Groueix et al., 2018; Kato et al., 2018; Mescheder
et al., 2019; Park et al., 2019; Saito et al., 2019; Gkioxari
et al., 2019) or shape models (Loper et al., 2015; Kanazawa
et al., 2018; Zuffi et al., 2017; Sanyal et al., 2019; Zuffi et
al., 2019). This is expensive and can be justified only for a
few categories such as human bodies and faces that are of
particular significance in applications. However, scanning is
not a viable approach to cover the huge diversity of objects
that exist in the real world.

We thus need to develop methods that can learn 3D
deformable objects from as cheap supervision as possible,
such as leveraging casually-collected images and videos
found on the Internet, or crowdsourced datasets such as
CO3D (Reizenstein et al., 2021). Ideally, our system should
take as input a collection of such casual images and videos
and learn a model capable of reconstructing the 3D shape,
appearance and deformation of a new object from a single
image of it.

While several authors have looked at this problem before
(Choy et al., 2016; Girdhar et al., 2016; Wang et al., 2018;
Groueix et al., 2018; Kato et al., 2018; Gkioxari et al., 2019),
so far it has always been necessary tomake additional simpli-
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fying assumptions compared to the ideal unsupervised setting
described above.These assumptions usually come in the form
of additional geometric supervision. The most common one
is to require 2D masks for the objects, either obtained man-
ually or via a pre-trained segmentation network such as He
et al. (2017), Kirillov et al. (2020). On top of this, there is
usually at least onemore additional form of geometric super-
vision, such as providing an initial approximate 3D template
of the object, 2D keypoint detections, or approximate 3D
camera parameters (Kanazawa et al., 2018; Li et al., 2020a;
Kokkinos & Kokkinos, 2021a; Kulkarni et al., 2019; Zuffi et
al., 2019; Goel et al., 2020; Kokkinos & Kokkinos, 2021b;
Niemeyer et al., 2020). There is a small number of works
that require no masks or geometric supervision (Wu et al.,
2020), but they come with other limitations such as relying
on limited viewpoint range.

Our aim in this paper is to learn 3D deformable objects
from complex casual videos while only using 2D masks and
optical flow estimations obtained from off-the-shelf models,
removing the additional geometric supervision from expen-
sive manual annotations that are commonly used in prior
works (keypoints, viewpoint, and templates). In order to com-
pensate for this lack of geometric information, we propose to
learn from casual videos rather than still images, unlike most
prior works.While this adds some complexity to the method,
using videos has the key advantage to allow one to estab-
lish correspondences between different images, for instance
by using an off-the-shelf optical flow algorithm. While this
information is weaker than externally-provided information
such as keypoints, nevertheless it is very helpful in recover-
ing the objects’ viewpoint. Note, though, that videos are only
used for supervision: our goal is still to learn a model that
can reconstruct a new object instance from a single image.

In order to use videos effectively, we make a number of
technical contributions. The first one addresses the challenge
of estimating the viewpoint of the 3D objects. Prior works
addressed this issue by sampling a large number of possible
views (Kulkarni et al., 2020; Goel et al., 2020), an approach

that (Goel et al., 2020) calls a camera multiplex. We find that
this is unnecessary. While viewpoint estimation is ambigu-
ous,we show that the ambiguity ismostly restricted to a small
space of symmetries induced by the 2D projection of the 3D
objects onto the image. The result is that, as the model is
learned, only a very small number of alternative viewpoints
need to be explored in order to escape form the ambiguity-
induced local optima: from, e.g., 40 in Goel et al. (2020)
to just two per iteration, which largely reduces memory and
time requirements for training.

Our second contribution is the design of the object
model. We propose a hierarchical shape representation
that explicitly disentangles category-dependent prior shape,
instance-dependent deformation, as well as time-dependent
articulated and rigid pose. In this way, we automatically
factor shape and pose variations at different levels in the
video dataset, and leverage instance-specific correspon-
denceswithin a video and instance-agnostic correspondences
across multiple videos. We also enforce a bilateral symmetry
on the predicted canonical shape and texture, similar to pre-
viousmethods (Kanazawa et al., 2018; Goel et al., 2020; Li et
al., 2020b; Wu et al., 2020). However, differently from these
approaches,which assume symmetry at the level of the object
instances, here we assume the canonical (pose free) shapes
are symmetric, but individual articulations can be asymmet-
ric (Thewlis et al., 2018; Fernandez-Labrador et al., 2020),
which is much more realistic.

We also address the challenge of evaluating these recon-
structionmethods. Priorworks in this area generally lack data
with 3D ground truth. Instead, they resort to indirect evalu-
ation by measuring the quality of the 2D correspondences
that are established by the 3D models. To address this prob-
lem, we create a dataset of views of real-life animal models
(toy birds). The data is designed to resemble a subset of the
images as found in existing datasets such as CUB (Wah et
al., 2011); however, it additionally comes with 3D scans of
the objects, which can be used to test the quality of the 3D
reconstructions directly. We use this data to evaluate our and

Fig. 1 DOVE—deformable objects from videos. Given a collection of video clips of an object category as training data, we learn a model that is
able to predict a textured, articulated 3D mesh of the object from a single input image
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several state-of-the-art algorithmswithout the need for proxy
metrics such as keypoint re-projection error that are insuffi-
cient to assess the quality of a 3D reconstruction. We hope
that this data will be useful for future work in this area.

Overall, our method can successfully learn good 3D shape
predictors from videos of animals such as birds and horses.
Compared to prior work, our method produces better 3D
shape reconstructions, as measured on the new benchmark,
when not using additional geometric supervision.

2 RelatedWork

We divide the vast literature of related work into two parts.
The first one focuses on learning based approaches for 3D
reconstruction with limited supervision. The second parts
highlights related work for 3D reconstruction from images
and video.

2.1 Unsupervised andWeakly-Supervised 3D
Reconstruction

A primary motivation for introducing machine learning in
3D reconstruction is to enable reconstruction from single
views, which necessitates learning suitable shape priors.
In particular, we focus the discussion on unsupervised and
weakly-supervised methods that do not require explicit 3D
ground-truth for training. Early unsupervised work include
monocular depth predictors trained from egocentric videos
of rigid scenes (Garg et al., 2016; Zhou et al., 2017).

Others have explored weakly-supervised methods for
learning full 3D meshes of object categories (Kato et al.,
2018;Kanazawa et al., 2018; Liu et al., 2019;Kato&Harada,
2019; Wang et al., 2018; Henderson & Ferrari, 2019; Goel
et al., 2020; Li et al., 2020b, a; Wu et al., 2021; Kokkinos
& Kokkinos, 2021b, a). Many of these methods learn from
still images and generally require masks and other additional
supervision or prior assumptions, summarized in Table 1.
In particular, CMR (Kanazawa et al., 2018) uses 2D key-
point annotations (in addition to masks) to initialize shape
and viewpoint using Structure-from-Motion (SfM). This is
extended in the follow-up works in various ways. U-CMR
(Goel et al., 2020),TTP (Kokkinos &Kokkinos, 2021b) and
IMR (Tulsiani et al., 2020) replace the keypoint annotations
with a category-specific template shape beforehand. With
the template shape, extensive viewpoint sampling (camera
multiplex) can be done to search for the best camera view-
point for each training image (Goel et al., 2020). UMR (Li
et al., 2020b) instead uses part segmentations from SCOPS
(Hung et al., 2019), which also requires supervised ImageNet
pretraining.VMR (Li et al., 2020a) extendsCMRwith asym-
metric deformation, and introduces a test-time adaptation
procedure on individual videos by enforcing temporal con-

sistency on the predictions produced by a pre-trained CMR
model. Note that we use videos to learn a 3D shape model
from scratch, whereas VMR starts with a pre-trained model
and only performs online adaptation on videos.CSM (Kulka-
rni et al., 2019) and articulated CSM (Kulkarni et al., 2020)
learn to pose an externally-provided (articulated) 3D tem-
plate of an object category to images. Unsup3D (Wu et al.,
2020) learns symmetric objects, like faces, without masks,
but only with limited viewpoint variation.

Adversarial learning has also been explored to replace the
need of multi-views for training (Kudo et al., 2018; Chen et
al., 2019; Henzler et al., 2019; Nguyen-Phuoc et al., 2019,
2020; Ye et al., 2021; Schwarz et al., 2020; Niemeyer &
Geiger, 2021; Zhang et al., 2021; Chan et al., 2021; Pan
et al., 2021). The idea is to use a discriminator network to
tell whether or not arbitrarily generated views of the learned
3D model are plausible, which provides signals to learn the
geometry. Although this approach does not require view-
point annotations for individual images, it does rely on a
reasonable approximation of the viewpoint distribution in
the training data, from which random views are generated.
Overall, promising results can be achieved on synthetic data
as well as a few real object categories, but general methods
usually recover only coarse 3D shapes or 3D feature volumes
that are difficult to extract.

2.2 Reconstruction fromMultiple Views andVideos

Most works using multiple views and videos focus on recon-
structing individual instances of an object. Classic SfM
methods (Faugeras & Luong, 2001; Hartley & Zisserman,
2004) usemultiple views of a rigid scene, with pipelines such
as KinectFusion (Newcombe et al., 2011) and DynamicFu-
sion (Newcombe et al., 2015) integrating depth sensors for
reconstructing dense static and deformable surfaces. Neural
implicit surface representations have recently emerged for
multi-view reconstruction (Yariv et al., 2020; Wang et al.,
2021; Oechsle et al., 2021). NeRF (Mildenhall et al., 2020)
and its deformable extensions (Park et al., 2021; Gafni et al.,
2021; Tretschk et al., 2021; Raj et al., 2021; Noguchi et al.,
2021; Pumarola et al., 2020) synthesize novel views from
densely sampled multi-views of a static or mildly dynamic
scene using a Neural Radiance Field, from which explicit
coarse 3D geometry can be further extracted. A more recent
line of work, such as LASR (Yang et al., 2021a) and ViSER
(Yang et al., 2021b), optimizes a single 3D deformablemodel
on an individual video sequence, usingmask and optical flow
supervision. BANMo (Yang et al., 2022) further extends the
pipeline and optimizes over a few video sequences of the
same object instance,with the help of a pretrainedDensePose
(Neverova et al., 2020) model. However, these optimization-
based models are typically sensitive to the quality of the
sequences and tends to fail when only limited views are
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Table 1 Related work overview

Supervision Output
Method � � � � � � 3D 2.5D Motion Viewpoint Texture

VMR∗ (Li et al., 2020a) (�)1 � � � � � (�)2

LASR∗ (Yang et al., 2021a) � � � � � � �
ViSER∗ (Yang et al., 2021b) � � � � � � �
BANMo∗ (Yang et al., 2022) (�)3 (�)3 � � � � � � �
Unsup3D (Wu et al., 2020) � � �
CSM (Kulkarni et al., 2019) � � �
CMR (Kanazawa et al., 2018) (�)4 (�)4 � � � � (�)2

U-CMR (Goel et al., 2020) � � � � �
IMR (Tulsiani et al., 2020) � � � � (�)2

TTP (Kokkinos & Kokkinos, 2021b) � � � � (�)2

UMR† (Li et al., 2020b) � � � (�)2

VMR (Li et al., 2020a) (�)1 (�)4 � � � � � (�)2

Ours � � � � � � �

Annotations: � template shape,� viewpoint,� 2D keypoint,� object mask,� optical flow,� video, ∗optimizes a single object instance over a
single or a few sequences, 1shape bases initialized from CMR (Kanazawa et al., 2018), 2outputs texture flow, 3obtained from DensePose (Neverova
et al., 2020), 4obtained from keypoints using SfM, †UMR (Li et al., 2020b) relies on part segmentations from SCOPS (Hung et al., 2019)

observed (see Fig. 6). In contrast, by learning priors over a
video dataset, our model can perform inference on a single
image.

Otherworks that learn 3Dcategories formvideos typically
require some shape prior, such as a parametric shape model
(Loper et al., 2015; Paysan et al., 2009), and hence mostly
focus on reconstruction of human bodies or faces (Tung et
al., 2017; Arnab et al., 2019; Doersch & Zisserman, 2019;
Kanazawa et al., 2019; Zhang et al., 2019; Feng et al., 2018;
Tran & Liu, 2019; Kokkinos & Kokkinos, 2021a; Zuffi et
al., 2019). Novotný et al. (2017) and Henzler et al. (2021)
consider turn-table like videos to learn to reconstruct rigid
object categories. In contrast, our method learns a 3D shape
model of a deformable object category from scratch using
videos.

3 Method

Our goal is to learn a function (V , ξ, T ) = f (I ) that, given
a single image I ∈ R

3×H×W of an object, predicts its 3D
shape V (a mesh), its pose ξ (either a rigid transformation
or full articulation parameters) and its texture T (an image).
We describe below the key ideas in our method and refer the
reader to the sup. mat. for details.

While the predictor f is monocular, we supervise it by
making use of video sequences I = {It }t=1,...,|I|, where
t denotes time. For this, we use a photo-geometric auto-
encoding approach. Let M ∈ {0, 1}H×W be the 2D mask
of the object in image I , which we assume to be given. The
model (V , ξ, T ) = f (I ) encodes the image as a set of photo-

geometric parameters; from these, an handcrafted rendering
function ( Î , M̂) = R(V , ξ, T ) reconstructs the image Î and
the mask M̂ . For supervision, the rendered image and the
rendered mask is compared to the given ones via two losses:

L im = λim‖M̂ � ( Î − I )‖1, (1)

Lmask = λmask‖M̂ − M‖22 , (2)

where λim and λmask weigh each loss. Note that the image
loss is restricted to the predicted region as the model only
represents the object but not the background. Figure2 gives
an overview of the training pipeline.

3.1 Solving theViewpoint Ambiguity

Decomposing a single image into shape, pose and appearance
is ambiguous,which is amajor challenge that can easily result
in poor reconstructions. Some prior works have addressed
this issue by sampling a large number of viewpoints during
training, thus giving the optimizer a chance to avoid local
optima. However, this is a slow process that requires testing
a large number of hypotheses at every iteration (e.g. 40 in
Goel et al. (2020)) and requires a precise template shape to
understand the differences between small viewpoint changes.

Here we note that this is likely unnecessary. The key
observation is that the ambiguities arising from image-based
reconstruction are not arbitrary; instead, they tend to concen-
trate around specific symmetries induced by the projection
of a 3D object onto an image.

123



International Journal of Computer Vision (2023) 131:2623–2634 2627

Fig. 2 Training pipeline. From a single frame of a video, we predict the
3D pose, shape and texture of the object. The shape is further disentan-
gled into category shape, instance shape and deformation using linear

blend skinning. Using a differentiable rendering step, we can train the
model end-to-end by reconstructing the image and by enforcing tem-
poral consistencies

The image to the right illustrates this idea. Here, given
only the mask M , one is unable to choose between the object
pose ξ or its mirrored variant qξ , where q is a suitable
‘mirror mapping’ that rotates the pose back to front (see
sup. mat. for details). We argue that, before developing a
more nuanced understanding of appearance, the model f is
similarly undecided about the pose of the 3D object; how-
ever, the number of choices is very limited: either the current
prediction ξ = fξ (I ) is correct, or its mirrored version qξ

is.
Concretely, during trainingweevaluate the loss L(V , ξ, T )

for the model prediction and the loss L(V , qξ, T ) for the
mirrored pose. We find the better of the two poses ξ∗ =
argmin

ξ̂∈{ξ,qξ} L(V , ξ̂ , T ) and optimize the loss:

Lpose = λpose‖ξ − ξ∗‖22 . (3)

In this way, the model is encouraged to flip its prediction
when L(V , qξ, T ) < L(V , ξ, T ). This assures that the
model eventually learns the correct pose and does not rely
on the flipping towards the end of the training.

3.2 Learning fromVideos

We exploit the information in videos by noting that the shape
V and texture T of an object are invariant over time, with any
time-dependent change limited to the pose ξ . Hence, given a
sequence of images I = {It }t=0,...,|I| of the same object and
corresponding frame-based predictions (Vt , ξt , Tt ) = �(It ),
we feed the rendering function ( Ît , M̂t ) = R(V̄ , ξt , T̄ ) with

the shape and texture averages V̄ = 1
|I|

∑|I|
t=1 Vt and T̄ =

1
|I|

∑|I|
t=1 Tt . The idea is that, unless shape and texture agree

across predictions, their averages would be blurry and result
in poor renderings. Hence, minimizing the rendering loss
indirectly encourages these quantities to be consistent over
time.

Furthermore, while the pose ξt does vary over time, pose
changes must be compatible with image-level correspon-
dences. Specifically, let Ft ∈ R

H×W×2 be the optical flow
measured between frames It and It+1 by an off-the-shelf
method such as RAFT (Teed & Deng, 2020). We can render
the flow F̂t = R(V , ξt , ξt+1) by computing the displacement
of the object vertices V as a pose change from ξt to ξt+1. We
can then add the flow reconstruction loss

Lflow(F̂t , Ft ) = λflow‖Mt � (F̂t − Ft )‖22 , (4)

to encourage consistent motion of the object. Its influence is
controlled by the weight λflow.

3.3 Hierarchical ShapeModel

Next, we flesh out the shape model. The shape V ∈ R
3×K is

given by K mesh vertices and represents the shape of a spe-
cific object instance in a canonical pose. It is obtained by the
predictor fV (I ) = Vbase + �Vtmpl + �V (I ) where: Vbase is
an initial fixed shape (a sphere), �Vtmpl is a learnable matrix
(initialized as zeros) such that Vtmpl = Vbase + �Vtmpl gives
an average shape for the category (template), and �V (I )
is a neural network further deforming the this template into
the specific shape of the object seen in image I . We further
restrict V , which is the rest pose, to be bilaterally symmet-
ric by only predicting half of the vertices and obtaining the
remaining half via mirroring along the x axis. Note that,
while in many prior works the category-level template Vtmpl
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is given to the algorithm, here this is learned automatically
from a sphere.

Finally, the shape V is transformed into the actual mesh
observed in the image by a posing function g(V , ξ).Wework
with two kinds of such functions. The first one is a simple
rigid motion g(V , ξ) = gξV , gξ ∈ SE(3). This is used in
an initial warm-up phase for the model to allow it to learn a
first version of the template V automatically.

In a second learning phase, we further enrich the model to
capture complex articulations of the shape. There are a num-
ber of possible parameterizations that could be used for this
purpose. For instance, Kokkinos and Kokkinos (2021a) auto-
matically initializes a set of keypoints via spectral analysis
of the mesh. Here, we initialize instead a traditional skinning
model, given by a system of bones b ∈ {1, . . . , B}, ensuring
inelastic deformations.

The skinning model is specified by: the bone topology (a
tree), the joint location Jb ∈ R

3 of each bone with respect
to the parent bone, the relative rotation ξb ∈ SO(3) of that
bonewith respect to the parent, and a row-stochasticmatrix of
weightsw ∈ [0, 1]K×B specifying the strength of association
of eachmesh vertex to each bone. Of these, only the topology
is chosen manually (e.g, to account for a different number of
legs for objects in the category). The joint locations Jb and the
skinning weights w are set automatically based on a simple
heuristic (described in sup. mat.).

While topology, Jb andw are fixed, the joint rotation ξb ∈
SO(3), b = 2, . . . , B and the rigid pose ξ1 ∈ SE(3) are
output by the predictor f to express the deformation of the
object as it changes from image to image.

3.4 Appearance Model and Rendering

We model the appearance of the object using a texture map
T ∈ R

3×HT ×WT . The vertices of the base mesh Vbase are
assigned tofixed texture uv-coordinates and the texture inher-
its the symmetry of the base mesh. Given the posed mesh
g(V , ξ) and the texture T , we render an image ( Î , M̂) =
R(V , ξ, T ) of the object using standard perspective-correct
texture mapping with barycentric coordinates using the
PyTorch3D differentiable mesh renderer (Ravi et al., 2020).

3.5 Symmetry and Geometric Regularizers

An important property of object categories is that they are
often symmetric. This does not mean that individual object
instances are symmetric, but that the space of objects is
Thewlis et al. (2018). In other words, if image I contains
a valid object, so does the mirrored image mI . Furthermore,
given the photo-geometric parameters (V , ξ, T ) = f (I )
for I , the parameters for mI must be given by f (mI ) =
(mV ,mξ, Tm) where mV = V (because the rest shape is
assumed symmetric), Tm is the flipped texture image and

mξ is a mirrored version of the pose. Hence, we addition-
ally enforce the pose predictor to satisfy this structure by
minimizing the loss Lsym = λsym‖ fξ (mI ) − m( fξ (I ))‖22 ,

weighted by λsym.
Note the relationship between the mirroring operators qξ

in Sect. 3.1 and mξ here: they are the same, up to a further
rigid body rotation. The effect is that q appears to rotate the
object back to front, and m left to right. This is developed
formally in the sup. mat.

We further regularise learning the mesh V via a loss
Lsmooth(V , Vtmpl) which includes: the ARAP loss (Sorkine
& Alexa, 2007) between V and the template Vtmlp, ensuring
that they do not diverge too much, and a Laplacian and mesh
normal smoothers for V .

3.6 Learning Formulation

Given a video I = {It }t=1,...,|I|, the overall learning loss is
thus:

L = L im + Lmask + Lflow + Lsym + Lsmooth + Lpose.

In practice, we found it important to warm up the model,
activating increasingly more refined model components as
training progresses. This can be seen as a sort of coarse-to-
fine training strategy.

Learning thus uses the following schedule in three phases:
(1) Shape learning: the basicmodel with no instance-specific
deformation (i.e., V = Vtmpl), no bone articulation and only
the mask loss is optimized. This is to allow the model to
learn an initial template shape Vtmpl of the object category
and roughly register the viewpoints of the training images to a
canonical frame. (2) Pose Rectification: the pose rectification
loss Lpose is then activated to correct the wrong viewpoint
predictions due to the front-to-back ambiguity in Sect. 3.1.
(3) Full model: finally, the bones are instantiated, and the
instance deformation, skinning models and appearance loss
are also activated in order to learn the full articulated model.

4 Experiments

We perform an extensive set of experiments to evaluate our
method and compare to the state of the art. To this end, we
collect three datasets, two of real animals, birds and horses,
and one using toy birds of which we can obtain ground truth
3D scans.

4.1 Dataset and Implementation Details

Video Datasets
We experiment with two types of objects: birds and horses.
For each category, we extract a collection of short video clips
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Fig. 3 Examples of the 3D Toy bird dataset. Each bird toy was 3D
scanned and the photographed “in the wild”

from YouTube. The exact links to these videos and the pre-
processing details are included in the sup. mat. We use the
off-the-shelf PointRendmodel (Kirillov et al., 2020) to detect
and segment the object instances, remove the frames where
the object is static, and automatically split the remaining
frames into short clips, each containing one single object. The
frames and themasks are then cropped around the objects and
resized to 128×128 for training.We also run the off-the-shelf
RAFTmodel (Teed &Deng, 2020) on the full frames to esti-
mate optical flow between consecutive frames, and account
for the cropping and resizing to obtain the correct optical
flow for the crops. This procedure creates 1, 962 and 114
short clips of birds and horses respectively, each containing
16 to a few hundred frames with paired image, mask and
flow. We randomly split them into 1, 767/195 and 103/11
training/testing sequences for birds and horses respectively.
3D Toy Bird Dataset
In order to properly evaluate and compare the quality of the
reconstructed 3D shapes produced by different methods, we
introduce a 3D Toy Bird Dataset, which consists of ground-
truth 3D scans of realistic toy bird models and photographs
of them taken in real world environments. Figure3 shows
examples of the dataset. Specifically, we obtain 23 toy bird
models, and used Apple RealityKit Object Capture API [82]
to capture accurate 3D scans from turn-table videos. For each
model, we then take 5 photographs from different view-
points in 3 different outdoor scenes, resulting in a total of
345 images. We will release the dataset and ground-truth for
future benchmarking.

Implementation Details
Our reconstruction model is implemented using three neural
networks ( fV , fξ , fT ) as well as a set of of trainable parame-
ters for the categorical prior shape�Vtmpl. The shapenetwork
fV and the rigid pose network fξ are simple encoders with
downsampling convolutional layers that take in an image and
predict vertex deformations�Vins, skinning parameters ξ2:B ,
and rigid pose ξ1 and J1 as flattened vectors. The texture net-
work fT is an encoder-decoder that predicts the texture map
T from an image. We use Adam optimizers with a learning
rate of 10−4 for all networks, and a learning rate 0.01 for
the category shape parameters �Vtmpl. We use a symmetric
ico-sphere as the initial mesh. For each training iteration, we
randomly sample 8 consecutive frames from 8 sequences.
The models are trained in three phases described in Sect. 3.6.
All details are included in the sup. mat.

4.2 Qualitative Results

Figure4 shows qualitative 3D reconstruction results obtained
from our model. Note that videos are no longer needed dur-
ing inference and the shown predictions come from a single
frame. Despite not requiring any explicit 3D, viewpoint or
keypoint supervision, our model learns to reconstruct accu-
rate 3D shapes from only monocular training videos. The
reconstructed 3D meshes can be animated with our skinning
model by transforming the bones of the learned shape. This
animation can also be transferred between instances.

4.3 Comparisons with State-of-the-Art Methods

We compare our model with a number of state-of-the-
art learning-based reconstruction methods, including CMR
(Kanazawa et al., 2018), U-CMR (Goel et al., 2020), UMR
(Li et al., 2020b) and VMR (Li et al., 2020a). CMR requires
2D keypoint annotations for initializing the 3D shape and
viewpoints and also for the training loss. U-CMR removes
keypoint supervision but requires a 3D template shape,
and UMR replaces that with part segmentation maps from

Fig. 4 Qualitative examples. We show multiple views of the recon-
structed mesh together with a textured view and animated version of
the bird that we obtained by rotating the learned bones. We find that

the model is able to recover the shape well even when seen from novel
viewpoints. The animation is able to generate believable poses
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SCOPS (Hung et al., 2019) which relies on supervised
ImageNet pretraining. VMR (Li et al., 2020a) allows for
deformations but it requires the same level of supervision
as CMR. All of them rely on external geometric supervi-
sion to establish correspondences for learning 3D shapes.We
train all these methods on our video dataset with only mask
supervision and show thatwithout the additional supervision,
all these methods reconstruct poor shapes. We also finetune
their models pre-trained on CUB (Wah et al., 2011) with the
required keypoint, camera view or template shape supervi-
sion on our bird video dataset. Finally, we also train UMR
from scratch on our bird video dataset with SCOPS predic-
tions obtained from the pre-trained SCOPS model.
On 3D Toy Bird Scans
Our toy scan dataset allows for a direct evaluation of shape
prediction. We first scale the predicted shapes to match the
volume of the scans and roughly align the canonical pose

of each method to the scans manually. Each individual pre-
dicted shape is further aligned to the ground-truth scan using
Iterative Closest Point (ICP) (Besl & McKay, 1992) and
the symmetric (average of scan-to-object and object-to-scan)
Chamfer distance is reported in centimeters, Table 2, by
assuming thewidth of each bird to be 10cm.While the recon-
struction quality of other methods is good when trained with
more geometric supervision, it degrades strongly without
this training signal resulting in worse reconstructions when
compared to our method. Note that this metric evaluates the
individual shape predictions regardless the viewpoints. Next
we evaluate the consistency across views.
On Bird Video Dataset
Since we do not have ground-truth 3D shape and viewpoints
for direct evaluation on our video test set, we measure recon-
struction quality via a mask forward projection accuracy
from one frame to another, using the object masks predicted

Table 2 Evaluation on toy bird
scans

Supervision Chamfer Distance (cm) ↓
CMR (Kanazawa et al., 2018) (finetuned) � � � 1.35 ±0.81

U-CMR (Goel et al., 2020) (finetuned) � � 1.82 ±0.93

VMR (Li et al., 2020a) (finetuned) � � � � 1.28 ±0.69

UMR (Li et al., 2020b) (finetuned) �+SCOPS 1.24 ±0.75

CMR (Kanazawa et al., 2018) � 5.94 ±10.33

U-CMR (Goel et al., 2020) � 4.36 ±1.56

VMR (Li et al., 2020a) � 1.90 ±0.96

UMR (Li et al., 2020b) � 2.26 ±1.12

UMR (Li et al., 2020b) �+SCOPS 1.82 ±0.93

Ours � � � 1.51 ±0.89

The bold number indicates the best results
Shape reconstruction quality measured by bi-directional Chamfer Distance between predicted shape and
ground-truth scans. The lower the better. � template shape, � viewpoint, � 2D keypoint, � mask, �
optical flow, � video. “finetuned” indicates pretrained models finetuned on our video dataset

Table 3 Mask forward
projection IoU

Frame offset Supervision �t = 0 �t = 5 �t = 20

CMR (Kanazawa et al., 2018) (finetuned) � � � 0.770 ±0.13 0.722 ±0.13 0.712 ±0.13

U-CMR (Goel et al., 2020) (finetuned) � � 0.790 ±0.06 0.761 ±0.07 0.758 ±0.07

VMR (Li et al., 2020a) (finetuned) � � � � 0.807 ±0.08 0.752 ±0.08 0.737 ±0.09

UMR (Li et al., 2020b) (finetuned) �+ SCOPS 0.847 ±0.05 0.782 ±0.07 0.772 ±0.07

CMR (Kanazawa et al., 2018) � 0.634 ±0.06 0.605 ±0.11 0.596 ±0.11

U-CMR (Goel et al., 2020) � 0.725 ±0.05 0.714 ±0.06 0.700 ±0.06

VMR (Li et al., 2020a) � 0.777 ±0.05 0.720 ±0.07 0.700 ±0.09

UMR (Li et al., 2020b) � 0.853 ±0.04 0.798 ±0.06 0.788 ±0.06

UMR (Li et al., 2020b) �+ SCOPS 0.830 ±0.04 0.766 ±0.07 0.753 ±0.07

Ours (articulation fixed) � � � 0.855 ±0.07 0.810 ±0.07 0.805 ±0.07

Ours (articulation transferred) � � � 0.855 ±0.07 0.844 ±0.07 0.845 ±0.07

The bold numbers indicate the best results
Shape reconstruction quality and temporal consistency measured by projecting the shape predicted at frame
t to a different pose at a future frame t + �t and comparing the masks at t + �t . The higher the better.
“finetuned” indicates pretrained models finetuned on our video dataset
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Fig. 5 Visual comparison. We compare to state-of-the-art methods
trained without external geometric supervision in the form of 2D
keypoints, viewpoint, or template shape. As UMR leverages weak-
supervision using part segmentation maps from SCOPS (Hung et al.,
2019), we show versions trained with and without SCOPS. Our method
consistently reconstructs reasonable 3D shapes and the predictions
cover full 360-degree (azimuth) view, whereas other methods produce

poor reconstructions and their viewpoint predictions collapse to only a
limited range with the exception of U-CMR. Other methods, except for
U-CMR directly copy the texture from the input image using texture
flow. Hence, although the texture appears sharper from the input view,
they are often incorrect as seen from other views. See the sup. mat. for
extended results

by PointRend (Kirillov et al., 2020) as the pseudo ground-
truth. This evaluates the shape and viewpoint quality as the
object from a past frame is projected to a future frame which
can only align when both shape and pose are estimated cor-
rectly, but cannot account for non-rigid deformation between
frames. For each test sequence, we predict the shape at frame
t and render the object mask from the pose at frame t + �t
with an offset�t of 0, 5 and 20 frames. We then compute the
mean Intersection over Union (mIoU) between the rendered
masks and the ground-truth masks at t + �t . Table 3 sum-
marizes the results, which suggest that our model achieves
both better shape reconstruction and viewpoint consistency.
We also compute the metrics on our model with frame-
specific deformations predicted at frame t+�t applied to the
shape predicted at frame t . This further improves the mask
reprojection IoU, confirming that our model learns correct
frame-specific deformations. Other methods tend to overfit
the shape to the image, resulting in a larger decrease in repro-
jection accuracy with increasing �t .

We also compare the distribution of estimated view-
points/object poses by plotting the elevation and azimuth
predicted on the test set in Fig. 5. Our method is able to learn
the full azimuth range, while other methods, with the excep-

tion ofU-CMR, only predict limited range of views (azimuth)
without additional geometric supervision.
Qualitative Comparisons
Figure5 shows a qualitative comparison of different meth-
ods. When methods relying on more geometric supervision
(CMR, U-CMR, VMR) are trained without this learning sig-
nal, they fail to produce reasonable shape reconstructions.
UMR trained without SCOPS part segmentations overfits to
the input views producing inaccurate 3D shapes. Our method
reconstructs accurate shape and pose, despite not using key-
point or template supervision. We refer the reader to the
sup. mat. for more results. Note that our model is trained on
128×128 images, whereas other methods train on 256×256
images and, except U-CMR, sample the texture directly from
the input image, explaining the difference in the texture qual-
ity.
On Horse Video Dataset
For horses, we compare qualitativelywith LASR (Yang et al.,
2021a) in Fig. 6, which is an optimization-based method for
single video sequences. While their reconstruction appears
to be convincing in the original viewpoint, the actual mesh
often does not resemble the shape of a horse. Running LASR
on such a sequence takes over four hours.
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Fig. 6 Comparison with LASR (Yang et al., 2021a). While the render-
ing in the original viewpoint looks convincing, the shape produced by
LASR is distorted and does not resemble the actual shape of a horse.
Since our method trains on multiple sequences it can learn a consistent
shape

4.4 Ablation and Analysis

We ablate the different components of our method quantita-
tively on our toy bird dataset inTable 4 andFig. 7.Wefind that
all components are necessary for the final performance. The
pose distribution in Table 4 shows that the model only learns
the full 360-degree (azimuth) view of the object when all
components are active. Especially the two-view-ambiguity
resolution and the shape symmetry are important to learn the
posewhile video training helps to discover the backside of the
object. Without a good pose prediction the reconstructions
look reasonable in the input view, reveal to be degenerate
from other directions.

The model without symmetry produces unrealistic shapes
indicating that symmetry is a useful prior, even when learn-
ing deformable shapes. Similarly, the shape prior is important
to discover fine details (e.g. beak and tail) that are not vis-
ible in every image. The full model predicts a full range of
viewpoints (Fig. 7) and the most consistent shape (Table 4).

We train another model without the learned category
prior shape, predicting individual shapes for each bird. The
resulting reconstructions are inconsistent across different
instances, shown in Fig. 7. This suggests that the full model

Table 4 Ablation studies with 3D toy bird scans

Chamfer Distance (cm)

Full model 1.51 ±0.89

w/o front-back hypothesis 2.52 ±1.41

w/o symmetry 2.19 ±1.24

w/o video training 2.20 ±1.03

w/o learned prior shape 3.92 ±1.47

Every component of our model helps to improve the final performance

is able to leverage shape prior of the whole category, which
is a major benefit of learning in a reconstruction pipeline.

5 Limitations and FutureWork

Our method still requires segmentation masks obtained from
the off-the shelf model as supervision for training. More-
over, their quality affects the fidelity of our reconstructions.
Thus, similar to comparable methods, our reconstructions do
not capture fine details well, such as legs and the beak. The
texture prediction sometimes results in low quality recon-
structions especially when the input image is affected by
motion blur. Currently, the predicted mesh is deformed from
a sphere with fixed topology. Moreover, we have to hand-
craft a structure for various types of animals, for example
different structures for horses (quadrupeds) and birds. How
to automatically discover plausible bone structures is also an
interesting question to explore for future work.

6 Conclusions

Wehave presented amethod to learn articulated 3D represen-
tations of deformable objects frommonocular videoswithout
explicit geometric supervision, such as keypoints, viewpoint
or template shapes. The resulting 3D meshes are temporally
consistent and can be animated. The method can be trained
fromvideos and only needs off-the-shelf object detection and

Fig. 7 Ablation studies. We train our model without some of the key components and plot the distribution of the predicted poses. Without 2-view
ambiguity resolution or symmetry constraint, the pose prediction collapses. Video training and learning a shape prior also help improve the poses
and shapes
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optical flow models for preprocessing. For reproducibility,
comparison and benchmarking, the dataset, code and mod-
els will be released with the paper.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-023-01819-
5.
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