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Abstract

To represent the biological variability of clinical neu-
roimaging populations, it is vital to be able to combine data
across scanners and studies. However, different MRI scan-
ners produce images with different characteristics, resulting
in a domain shift known as the ‘harmonisation problem’.
Additionally, neuroimaging data is inherently personal in
nature, leading to data privacy concerns when sharing the
data. To overcome these barriers, we propose an Unsu-
pervised Source-Free Domain Adaptation (SFDA) method,
SFHarmony. Through modelling the imaging features as a
Gaussian Mixture Model and minimising an adapted Bhat-
tacharyya distance between the source and target features,
we can create a model that performs well for the target
data whilst having a shared feature representation across
the data domains, without needing access to the source
data for adaptation or target labels. We demonstrate the
performance of our method on simulated and real domain
shifts, showing that the approach is applicable to classi-
fication, segmentation and regression tasks, requiring no
changes to the algorithm. Our method outperforms ex-
isting SFDA approaches across a range of realistic data
scenarios, demonstrating the potential utility of our ap-
proach for MRI harmonisation and general SFDA prob-
lems. Our code is available at https://github.com/
nkdinsdale/SFHarmony .

1. Introduction

Deep learning (DL) models have proved to be power-
ful tools for neuroimage analysis. However, the major-
ity of neuroimaging datasets remain small, posing a chal-
lenge for the training of sophisticated architectures with

many parameters. Thus, it is common practice to com-
bine data from multiple sites and MRI scanners, both to
increase the amount of data available for training, and to
represent the breadth of biological variability that can be
expected in diverse populations. However, the combina-
tion of data across MRI scanners with different acquisi-
tion protocols and hardware leads to an increase in non-
biological variance [25, 26, 50], which can be large enough
to mask the biological signals of interest [49], even after
careful pre-processing with state-of-the-art neuroimaging
pipelines [23]. The development of harmonisation meth-
ods is therefore vital to enable the joint unbiased analysis of
neuroimaging data from different scanners and studies.

The key goal for harmonisation methods is to be discrim-
inative for the main task of interest whilst creating shared
feature representations of the data across acquisition scan-
ners, clearly mirroring the goal of domain adaptation (DA)
[15]. The majority of deep learning based harmonisation
methods are based on DA methods, either using adversar-
ial approaches to create shared feature embeddings [15,24],
or using generative approaches to create harmonised im-
ages [11, 63].

However, the vast majority of existing methods fail to
be applicable in many realistic data scenarios. For exam-
ple, MR images are inherently personal information so their
sharing is protected by legislation, such as GDPR [9] and
HIPAA [39]. Thus, the assumption of centralised data stores
for model training is infeasible, particularly when working
with clinical imaging data, which will be essential in or-
der to produce representative models [14, 52]. Distributed
learning offers a promising solution, but the few proposed
distributed harmonisation methods [8,16] assume the simul-
taneous presence of the source and target data. The source
data may not be available for the adaptation phase, for in-
stance, due to confidentiality agreements, loss of the source
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Figure 1. Schematic of the proposed SFHarmony method. The method fits a GMM to the source features, shares these via a global model
store, and then completes SFDA by aligning the source and target feature distributions utilising a modified Bhattacharyya distance. Qs is
the source feature representation and Qt is the target feature representation, and the figure shows the GMM setup, for a single feature i,
when we are working with K, the number of components, being 2. This trivially generalises to more or less components.

data, or computational constraints [3]. Further, federated
DA methods such as [16] would require retraining of the
model to incorporate any new sites, which is infeasible and
computationally expensive.

Therefore, we explore an unsupervised DA setting where
only the source model, instead of the source data, is pro-
vided to the unlabelled target domain for harmonisation,
known as Source Free Domain Adaptation (SFDA). This
setting inherently protects individual privacy, whilst allow-
ing the efficient incorporation of new sites without requiring
target labels. We propose a simple yet effective solution,
termed SFHarmony, which aims to match feature embed-
dings from the source and target, through characterising the
embeddings as a Gaussian Mixture model (GMM) and the
use of a modified Bhattacharyya distance [4]. This requires
no modifications to the training of the source model, and
the only additional communication is of summary statistics
of the source feature embedding, allowing it to be simply
applied to existing architectures. The summary statistics
contain no information about individuals.

Our contributions are as follows: 1) We propose a new
method for SFDA, SFHarmony, based on aligning feature
embeddings, utilising a modified Bhattacharyya distance,
requiring no changes to source training; 2) We demon-
strate the method’s applicability to classification, segmen-
tation and regression tasks, and show that the approach
outperforms existing SFDA methods for domain shifts ex-
perienced when working with neuroimaging data; 3) We
demonstrate the robustness of the method to additional chal-
lenges likely to be faced when working with real world

imaging data: differential privacy and label imbalance.

2. Related Work

Unsupervised Domain Adaptation (UDA): UDA aims
to exploit the knowledge learned from a source dataset to
help to create a discriminative model for a related but un-
labelled target dataset [33]. DL-based UDA approaches
can broadly be split into three categories [33]: discrepancy-
based, reconstruction-based, and adversarial. Discrepancy
based approaches aim to minimise a divergence criterion,
which measures the distance between the source and tar-
get data distributions encoded in a learned feature space
[10, 27, 35, 48]. Reconstruction-based approaches, instead,
use reconstruction as a proxy task to enable the learning of
a shared representation for both image domains [5, 22, 38].
Finally, adversarial approaches deploy a discriminator that
aims to identify the source of the data; the model is trained
both to do the task and to trick the discriminator, creat-
ing domain invariant features [21, 51]. These methods all
assume simultaneous access to the source and target data,
which poses data privacy challenges.

Federated Learning and Domain Adaptation: Feder-
ated learning (FL) has been proposed as a method to train
models on distributed data [36]. The data are kept on their
local servers, and users train local models with private data
and communicate the weights or gradients between sites
for aggregation. Many FL approaches focus on minimising
the impact of distribution shifts between clients [28,45,55];
however, most approaches assume that the data at all sites
are fully labelled. However, federated DA enables the in-



corporation of an unlabelled site into the federation without
sharing data. FADA [40] is a federated DA method, where
features are shared between sites in a global knowledge
store. The sharing of features, however, still poses privacy
concerns as images may be recoverable from the features
[19]. Thus, instead FedHarmony [16] encodes the features
as Gaussian distributions and thus only the mean and stan-
dard deviations of the features need to be shared. Both of
these methods still assume access to the source data during
training and rely on adversarial approaches that are often
unstable and hard to train. Other federated DA methods pro-
duce domain-specific models or ensembles [19, 41, 59, 61],
meaning that the final predictions depend on the domain of
the data.

Source Free Domain Adaptation: SFDA takes the fed-
erated approach a step further and assumes that there is no
access to the source data available at all: only the source
model is available for model adaptation. The majority
of SFDA methods have been developed for classification
[1, 13, 17, 32, 33, 43, 54, 60], with a few being proposed for
segmentation [30, 31, 34, 44, 57]. There are two main ap-
proaches taken for SFDA. The first set of approaches are
generative, aiming to create source samples using the source
model weights [32, 34]. These approaches, however, pose
concerns about individual privacy, especially when work-
ing with medical images and low numbers of samples [19]
and cannot be simply applied to complex target tasks, lim-
iting their utility when working with MRI data [53]. The
second set aim to minimise model entropy to improve pre-
dictions, guided by various pseudo labelling or uncertainty
techniques to prevent mode collapse [1,13,17,29,33,43,60].
These methods are often effective, but largely limited to
classification tasks, and may require changes to the source
model training to be effective [33, 60]. AdaMI [3] was pro-
posed directly for medical image segmentation, but requires
an estimate of the proportion of each label to prevent mode
collapse. This ratio is hard to estimate for labels with high
variability across populations, such as tumours or lesions.
We could not identify any methods proposed for regression,
where the lack of softmax outputs limit the direct applica-
tion of methods based on entropy minimisation.

Harmonisation: Many existing harmonisation ap-
proaches are based on COMBAT [7, 20, 42], which uses
a linear model to represent the scanner effects on image-
derived features. DL-based approaches for harmonisation
generally utilise a DA approach, with many being gener-
ative, aiming to produce ‘harmonised’ images [6, 11, 37,
62, 63], while the other branch uses adversarial approaches
to harmonise the learned model features for a given task
[15, 24]. All of these methods assume simultaneous ac-
cess to the source and target data, with some even requiring
paired data [11]. The only existing methods for harmon-
isation which consider data privacy are Distributed COM-

BAT [8] and FedHarmony [16]; however, both assume con-
stant communication with the source site.

3. Method
The aim of this work is to create a SFDA method applica-

ble to neuroimaging tasks, and to demonstrate its suitability
for MRI harmonisation. Thus, the goal is to create a model
where two images with the same label would share a fea-
ture embedding, regardless of the acquisition scanner – the
domain of the data. We thus follow the framework of [51]
and consider the network to be formed of a feature extrac-
tor, with parameters Θrepr, and a label predictor, Θp. This
network architecture is the same across source and target
sites. The general schematic for training is shown in Fig. 1.

3.1. Creation of the Source Model

The first stage is the training of the source model. This
assumes the availability of a labelled training dataset Ds =
{Xs, ys}, where the image and label pairs depend on the
task of interest. Unlike some existing methods [33, 60], our
proposed approach requires no changes to the training of the
source model or to the architecture. The model can thus be
flexibly trained following the standard training procedure
for the source data, with the goal being to create a well-
trained source model. In our experiments, we consider the
simplest source training, minimising a loss function (Ltask)
dependent on the task of interest with full supervision:

L(Xs, ys;Θs
repr,Θ

s
p) =

1

Ns

Ns∑
i

Ltask(Xs
i , ysi ) (1)

where Ns is the total amount of labelled source data.

3.2. Global Information Store

For successful SFDA, we need to align the learned fea-
ture embedding, Qs = f(Xs,Θs

repr) for the source and
target data. To achieve this without requiring the source
data, we propose to follow the precedent of existing privacy-
preserving medical imaging approaches [8,16,17] and, thus,
create a global knowledge store to share summary statistics
of the features. In [16], it is proposed that the features can
be encoded as Gaussian distributions, and thus the statis-
tics to be shared would be a mean and standard deviation
per feature. We hypothesise that, for many tasks, espe-
cially classification tasks with discrete categories, simple
Gaussian distributions are unlikely to sufficiently charac-
terise Qs. We thus propose to describe the features using
a Gaussian mixture model (GMM), with each feature being
encoded as an independent 1D GMM, such that, for feature
i ∈ NQs , where NQs is the number of features in Qs:

Qs
i ∼

K∑
k=1

πs
k,iN (Xs;µs

k,i,σ
s2

k,i) (2)



where K is the number of components in the GMM, µs
k,i

and σs2

k,i are the mean and variance defining the kth Gaus-
sian component of the ith feature for the source site, and
πs
k,i is the weighting factor for this kth Gaussian (which

sum to one across components). Note that the features are
considered before the activation function. The same number
of components, K, are fit for all features. Thus, the GMM
for feature i is defined by the parameters:

Θs
i = {πs

k,i,µ
s
k,i,σ

s2

k,i}, k = 1..K (3)

and these parameters can be determined using Expectation
Maximisation (EM), by finding the maximum likelihood es-
timate (MLE) of the unknown parameters:

L(Θi) =

Ns,i∑
n=1

log(

K∑
k=1

πs
k,iN (Xs

n;µ
s
k,i,σ

s2

k,i)) (4)

for each feature i in Qs. This, therefore, produces three
parameter arrays that fully define the GMMs of the source
features, which are communicated alongside the source
weights to target sites:

ΘQs = {µs ∈ RK×NQs ;σs2 ∈ RK×NQs ;πs ∈ RK×NQs }.
(5)

These parameters contain no individually identifying in-
formation, as they represent aggregate statistics across the
whole population.

3.3. Target Model Adaptation

Given that we now have a well trained source model,
with parameters Θs

repr and Θs
p, and the source GMM pa-

rameters, ΘQs , we can now adapt the model at any target
site. We assume access to an unsupervised target, with only
data samples Xt and no labels available.

We initialise the target model using the source trained
weights. Model adaptation only involves finetuning the
feature extractor to match the learned feature distribution
across the two sites. In adversarial approaches, a discrimi-
nator is added to the overall architecture that aims to distin-
guish between source and target samples. We could utilise
this approach, following [16], by drawing feature samples,
using the source GMM parameters ΘQs , but adversarial ap-
proaches are notoriously unstable and difficult to train. We
therefore, instead, propose to minimise the difference be-
tween the source feature distribution and target feature dis-
tribution using the GMM parameters directly.

Therefore, the first step of model adaptation is to cal-
culate the current target features, Qt = f(Xt,Θt

repr), and
then, using the same EM approach as above, we can create
the parameters of the target GMM fit:

ΘQt = {µt ∈ RK×NQt ;σt2 ∈ RK×NQt ;πt ∈ RK×NQt}.
(6)

We propose to use a modified Bhattacharyya distance [4]
as the loss function. The Bhattacharyya distance measures
the similarity of two probability distributions, which for
continuous probability distributions is defined as:

DB(p, q) = − ln(BC(p, q)) (7)

where
BC(p, q) =

∫
x

√
p(x)q(x)dx. (8)

The Bhattacharyya distance has a simple closed form solu-
tion when the two probability distributions are both Gaus-
sian. If p ∼ N (µp, σ

2
p) and q ∼ N (µq, σ

2
q ) then:

DB(p, q) =
1

4

(µp − µq)
2

σ2
p + σ2

q

+
1

2
ln
(σ2

p + σ2
q

2σpσq

)
. (9)

There is, however, no equivalent closed form solution for a
GMM. In [46] they propose an approximation for the GMM
as a sum of the Bhattacharyya distances for each pair of
Gaussians in the mixture model, weighted by the associated
π values. We suggest that this is not the most appropriate
reformulation: we are more interested in the correspond-
ing pairs of Gaussians than in the cross-relationships, as we
do not wish to minimise the difference between cross pairs.
Rather, we wish specifically to make the target distribution
match the source. Thus, if we consider our target and source
GMM distributions, parameterised by ΘQs and ΘQt , we
propose to use the following approximation:

DGMM (ΘQs ,ΘQt) =

M∑
k=1

πs
kπ

t
k

(1
4

(µs
k − µt

k)
2

σs2
k + σt2

k

+
1

2
ln
(σs2

k + σt2

k

2σs
kσ

t
k

))
(10)

such that we find the weighted sum of the Bhattacharyya
distances between each corresponding pair of Gaussians,
where k is the component in the GMM. It can further be
seen that this approximation retains the desirable property
that when ΘQs = ΘQt , then DGMM (ΘQs ,ΘQt) = 0.
The correspondence between Gaussians can be ensured by
simply ordering the parameters by the mean estimates.

Thus, the feature extractor is finetuned for the target site
by minimising DGMM averaged across all of the features in
Qs. However, for each training iteration, only a fixed size
batch is available to estimate the parameters, and for neu-
roimaging applications the maximum batchsize achievable
is often small due to the relatively large image size [14],
which affects the estimate of the GMM parameters. As EM
is sensitive to initialisation, to mitigate the small batch ef-
fect, we initialise the EM algorithm only once per training
epoch, using the previous batch estimate as the initialisation
for the next, providing memory between batches. The EM
algorithm is reinitialised for validation (needed to calculate
validation loss), preventing data leakage.



3.4. Inference Time

Finally, inference for the test data simply involves
combining the finetuned feature encoder, Θt

repr, and
the frozen source label predictor, Θs

p, such that ŷt =
f(Xt,Θt

repr,Θ
s
p). This therefore ensures that, given data

from the source or target domain with the same feature em-
bedding, the same label prediction is achieved across sites.

4. Experimental Results
To validate the effectiveness of our SFDA framework,

we conduct a range of experiments with both simulated data
with known domain shifts, and real multisite MRI datasets,
and we demonstrate the applicability of the method to clas-
sification, segmentation and regression tasks.

4.1. Datasets:

Further details for each dataset and model architectures
are available in the Supplementary Materials. Example im-
ages from each dataset can be seen in Fig. 2.

Figure 2. Example images from each dataset. OrganAMNIST: ex-
ample image from the same class for each of the applied domain
shifts. The T1 MRI images were used for the brain extraction, tis-
sue segmentation and age prediction tasks.

OrganAMNIST [56] (Classification): curated as part of
MedMNIST [58], we use OrganAMNIST as a test dataset.

All images were pre-processed to 28 × 28 (2D) with the cor-
responding classification labels for 11 classes. We created
simulated known domain shifts, to enable exploration of the
method, with the strength of each shift designed to be such
that a degradation in performance was seen across the sites.
The dataset was split into 5 sets, each with 5000 samples
for training and 2000 for testing and the following domain
shifts applied: 1) no shift (source site), 2) decreased inten-
sity range, 3) increased intensity range, 4) Gaussian blur-
ring, 5) salt and pepper noise, to model shifts likely across
imaging sites. The backbone architecture took the form of a
small VGG-like classifier, with categorical crossentropy as
the task loss. Code to reproduce the data is provided.

CC359 [47] (Segmentation): The dataset consists of
brain images of healthy adults (29-80 years) acquired on
MRI scanners from three vendors: Siemens, Philips and
GE, at both 1.5 and 3T, with approximately 60 subjects per
vendor and magnetic field strength. A 2D UNet was trained
on slices from each site, then the performance when ap-
plied to the remaining sites was compared. As a result, the
Phillips 1.5T was chosen as the source site as it had the
largest performance drop. No additional preprocessing was
applied to the images apart from image resizing so that each
subject volume was 128×240×160. The data were split at
the subject level per site, such that 40 subjects were avail-
able for training and 20 for testing. The segmentation task
was skull stripping, using masks from the original study,
and Dice loss was used as the task loss function. Further
details and example segmentation masks can be found in
the Supplementary Material.

ABIDE [12] (Segmentation and Regression): Four sites
(Trinity, NYU, UCLA, Yale) were used, so as to span age
distributions and subject numbers. The data were split into
training/test sets as 80%/20%, yielding a maximum of 127
subjects for training (NYU) and a minimum of 35 (Trinity).
NYU was the largest site, spanning the age distribution of
all of the other sites, and so was chosen as the source site.
For segmentation, we considered tissue segmentation (grey
matter (GM), white matter (WM), CSF), using labels auto-
matically generated using FSL ANAT. We used a 2D UNet
trained on slices with Dice as the main task loss function.
Dice score was averaged across the three tissues. For age
prediction, a separate network was trained, following the
setup and architecture in [16], with MSE as the main task
loss. Further details and example labels can be found in the
Supplementary Material.

Implementation Details: All comparison methods used
the same task-specific backbone architecture as the pro-
posed method. Features were extracted in the second-to-
last layer, before the activation function, following the re-
sult in [15]. Model architectures were chosen to give good
source performance while allowing the use of large batch-
sizes, but most standard architectures could be used. Train-



ing was completed on an A10 GPU, using PyTorch 1.12.0.
All models were trained with five-fold cross validation and
results are presented on the holdout test set. A learning rate
of 1× 10−6 was used for all datasets for adaptation with an
AdamW optimiser.

4.2. Classification: OrganAMNIST

Baselines: For the classification task, we first compare
our approach to supervised oracles: source model only, cen-
tralised data, and target finetuning with frozen label predic-
tor. We then compare to DeepCORAL [48], and two fed-
erated DA approaches: FADA [40] and FedHarmony [16],
both of which require the presence of the source data. Fi-
nally, we compare to SFDA methods: entropy minimisa-
tion; SHOT [33], USFAN [43], and gSFDA [60]. We do not
compare to any generative SFDA methods, as the ability to
create source data would not meet privacy requirements for
many applications [53], especially given that GANs often
replicate training images when trained with small datasets
[19]. Details are provided in the Supplementary Material.

Methods Comparison: We first demonstrate the
method for a range of batchsizes (5, 50 and 500) because
methods that minimise entropy are expected to be more sta-
ble when using large batchsizes, which are rarely achievable
when working with MR images due to the memory con-
straints posed by large image sizes [14]. Thus, robustness
to the batchsize is vital if a SFDA method is to be used
for harmonisation. We use a single source model to allow
fair comparison, trained with a batchsize of 50. We wish to
maximise performance across all sites: as harmonisation is
normally framed as a joint domain adaptation problem [15],
the average performance across all sites is reported.

The results can be seen in Table 1, alongside the baseline
methods. It can be seen that SFHarmony outperforms the
existing SFDA methods, especially when a small batchsize
was used for training (86.22% for batchsize 5). SHOT [33]
showed comparable performance to SFHarmony when
trained with a batchsize of 500 (85.27%), but was highly
dependent on the modified source training. Interestingly,
several of the SFDA approaches outperformed the adver-
sarial approaches despite them having access to the source
data, possibly due to the instability of such approaches.

The proposed DGMM loss is clearly able to align the fea-
tures across sites using only the GMM summary statistics.
This is demonstrated by Fig. 3, which shows the source and
target features for each site before and after DA. Clearly the
features overlap much more after DA, which both leads to
the clear improvement in performance, and shows that the
approach is achieving the harmonisation goals of the model
having a shared feature embedding across sites. The change
shift in the features is more visible for the intensity based
shifts (1-2 and 1-3) suggesting that the two largest PCA
components largely encode intensity. Thus, as the noise

Figure 3. PCA of Qs and Qt for each target site, before and af-
ter domain adaptation for the OrganAMNIST data, with simulated
domain shifts. Black dots are the source features which are fixed
and the colour represents the features for the relevant site. (Best
viewed in colour.)

augmentations do not create values outside of the existing
intensity range, the noise shifts do not lead to large changes
to the features in the PCA space.

We tried modelling the features with K ∈ {1, 2, 3}
GMM components: visual inspection of the features sug-
gested that at least 2 components would be beneficial. This
was confirmed by the results, with the best performance be-
ing achieved when modelling the features with 2 compo-
nents, as shown in Table 1. However, the approach still per-
formed well for 1 and 3 components, showing limited sensi-
tivity to the number of components chosen. The number of
components chosen is the only additional hyperparameter to
be tuned with our approach, with only a single loss function
to minimise. The results clearly show the robustness to the
choice of batchsize, and the results were also robust to the



Method S T C Information
Communicated

Average Accuracy
Batchsize 5 Batchsize 50 Batchsize 500

Source Model ✓ x x - 80.71
Centralised Data ✓ ✓ ✓ All Data 88.34 91.65 91.27
Target Finetune x ✓ ✓ Model Weights 88.15 88.96 83.26
DeepCORAL [48] ✓ x ✓ All Data 82.43 83.85 83.65
FADA [40] ✓ x x Model Weights + Features 81.69 76.77 76.53
FedHarmony [16] ✓ x x Model Weights + Statistics 81.48 76.12 76.20
Minimise Entropy x x x Model Weights 42.59 83.54 83.96
SHOT [33] (no smoothing) x x x Model Weights 66.86 83.60 85.40
SHOT [33] (Source batchsize 5) x x x Model Weights 72.06 74.44 74.61
SHOT [33] (Source batchsize 500) x x x Model Weights 83.10 84.68 85.27
gSFDA [60] x x x Model Weights 60.57 85.87 84.67
USFAN [43] x x x Model Weights 26.94 79.83 83.79
SFHarmony 1 GMM Component x x x Model Weights + Statistics 85.47 85.71 86.16

w/o EM (Direct Fit) x x x Model Weights + Statistics 77.26 76.99 86.03
w/o Batch Memory x x x Model Weights + Statistics 80.25 82.13 84.60

SFHarmony 2 GMM Components x x x Model Weights + Statistics 86.22 86.25 86.21
SFHarmony 3 GMM Components x x x Model Weights + Statistics 86.21 85.70 85.96

Table 1. Results on the OrganAMNIST classification task. S = Source data required, T = Target labels required, C = Centralised data. The
average accuracy is across all 5 sites, weighted equally, and is reported for training batchsizes of 5, 50 and 500. Best SFDA method for
each batchsize is in bold, other methods are included for reference. The w/o (without) components form an ablation study.

choice of learning rate, with the accuracy staying within 1%
of the best result across learning rates from 10−7 to 10−4.
Therefore, deployment of the proposed approach requires
no changes for a new site, only the choice of the number of
components for a new source model. This is in contrast to
many existing SFDA approaches that require the balancing
of several loss functions (e.g. [3, 33]).

Ablation Study: We considered the GMM with K = 1,
allowing us to explore the w/o EM case, where µ and σ2

are calculated directly. We also considered removing the
batch memory across the training loop, reinitialising the EM
algorithm before each batch. From Table 1 it is clear that
both aspects are contributing to the performance, especially
for small batchsizes.

Class Imbalance: In the above experiments, the distri-
bution of class labels was approximately equal across sites.
We now consider the extreme scenario where the source site
contains samples from across all classes but target sites are
missing classes. This is a conceivable scenario when con-
sidering MR images, where a given clinical site specialises
in a certain condition and we are trying to harmonise the
data to a carefully curated research dataset. Figure 4 shows
the average accuracy across sites, when the target sites had
samples from an increasing number of classes removed.
Each comparison method was trained using the best setting
from Table 1. The proposed SFHarmony approach was
more robust to the increased class imbalance than existing
SFDA methods.

Differential Privacy (DP): Finally, we considered sim-
ulating the approach when DP is being used to further pro-
tect privacy. We simply simulated a Laplace mechanism of

Figure 4. Average accuracy across the sites with increasing num-
bers of classes removed from the target site training, creating in-
creasingly imbalanced data distributions. The x axis shows the
classes that were removed.

DP [18], by injecting noise onto the weights before commu-
nication, modelled as: w = w + Lap(|w|f) where f was
varied to create increasing levels of noise. As the GMM
is fit at the local site, ΘQs can be calculated before the
noise is applied. The comparison methods were again all
trained using the best setting from Table 1. Although this
is a very simple model of DP, with many more sophisti-
cated approaches existing, Fig. 5 demonstrates that many
existing methods for SFDA are very sensitive to the applied
noise. SHOT [33] is the most dramatically affected, with
the pseudo-labelling approach suffering a significant degra-
dation in performance. Our proposed approach maintained



Method S T C Information
Communicated

CC359 Average Dice ABIDE Average Dice
Bs 5 Bs 50 Bs 500 Bs 5 Bs 50 Bs 500

Source Model ✓ x x - 0.832 0.775
Centralised Training ✓ ✓ ✓ All Data 0.983 0.985 0.983 0.884 0.885 0.875
Target Finetune x ✓ x Model Weights 0.981 0.982 0.982 0.883 0.884 0.885
DeepCORAL [48] ✓ x ✓ All Data 0.768 - - 0.523 - -
FADA [40] ✓ x x Model Weights + Features 0.967 0.964 0.959 0.830 0.827 0.825
FedHarmony [16] ✓ x x Model Weights + Statistics 0.965 0.962 0.950 0.825 0.810 0.822
Minimise Entropy x x x Model Weights 0.767 0.849 0.951 0.570 0.542 0.659
AdaEnt [2] x x x Model Weights 0.827 0.817 0.962 0.625 0.656 0.682
AdaMI [3] x x x Model Weights 0.820 0.835 0.965 0.606 0.657 0.660
Direct Fit x x x Model Weights + Statistics 0.648 0.696 0.873 0.615 0.803 0.830
SFHarmony 1 GMM Component x x x Model Weights + Statistics 0.950 0.949 0.959 0.831 0.832 0.831
SFHarmony 2 GMM Components x x x Model Weights + Statistics 0.970 0.970 0.970 0.832 0.832 0.832
SFHarmony 3 GMM Components x x x Model Weights + Statistics 0.972 0.968 0.970 0.833 0.832 0.832

Table 2. Results on the CC359 dataset for brain extraction, and the ABIDE dataset for the tissue segmentation. S = Source data required, T
= Target labels required, C = Centralised data, Bs = batchsize. The average Dice score is the performance across all 5 (CC359) /4 (ABIDE)
sites, weighted equally, and is reported for training batchsizes of 5, 50 and 500. The best performing SFDA method for each batchsize for
each segmentation task is in bold.

Features 65536 (Full) 10000 1000 100 10
Average Dice 0.972 0.970 0.968 0.968 0.890

Table 3. Results on the CC359 dataset using only a subset of features to complete the domain adaptation for 3 GMM components and a
batchsize of 5.

Figure 5. Average accuracy across the sites with increasing mag-
nitudes of noise injected into the source weights before communi-
cation. Amplitude is as a proportion of the source weights magni-
tude.

performance well across the applied noise levels, despite the
frozen label predictor imposing a ceiling on performance.

4.3. Segmentation: CC359 and ABIDE datasets

We now demonstrate our approach on two multisite MRI
datasets for segmentation tasks: brain extraction (CC359)
with two labels (brain/background) and tissue segmentation
(ABIDE) with four labels (WM, GM, CSF, background).

Baselines: There are far fewer existing methods for
SFDA, and we again did not compare to generative ap-
proaches. Thus, we compared to supervised oracles: source
model only, centralised data and target finetuning with

frozen label predictor; semisupervised approaches: Deep-
CORAL [48], FADA [40] and FedHarmony [16]. Then,
for SFDA approaches, we compared to minimising entropy,
AdaEnt [2] and AdaMI [3], and Direct Fit (w/o EM in ab-
lation study). We were unable to train DeepCORAL with a
batchsize of more than 5 due to memory constraints.

Methods Comparison: Table 2 shows the results for
both tasks. In the classification task there were only 32 fea-
tures in the fully connected layer; however, now there are
many more, for instance for the CC359 data there are 65536
features across all of the convolutional filters. Despite this
increase in features, SFHarmony was able to complete the
DA for both segmentation tasks, leading to an improved
Dice score over the existing methods, across the batchsizes
considered. Again, the existing SFDA methods were very
sensitive to batchsize, and AdaMI [3] was also sensitive to
the choice of tissue ratio prior: as we were completing the
segmentation tasks on 2D slices, different slices had vary-
ing amounts of the target label present and we had to create
a prior that was dependent on slice depth to achieve rea-
sonable performance. The ABIDE tissue segmentation task
was more challenging, as can be seen by the comparatively
lower Dice Scores, especially due to the large imbalance in
tissues, which affected the performance of AdaMI.

No changes needed to be made to the approach compared
to the classification task, including the learning rate, show-
ing the generalisability of the method across tasks.

Subsampling Features: The increase in the number of
features for segmentation is a potential limiting factor for
the approach, especially if the approach is to be expanded



Method S T C Information
Communicated

Average MAE
Bs 4 Bs 8 Bs 16

Source Model ✓ x x - 4.38
Centralised Training ✓ ✓ ✓ All Data 3.52 3.38 3.36
Target Finetune x ✓ x Model Weights 3.57 3.60 3.58
DeepCORAL [48] ✓ x ✓ All Data 4.58 4.41 4.12
FADA [40] ✓ x x Model Weights + Features 3.55 3.42 3.78
FedHarmony [16] ✓ x x Model Weights + Statistics 3.61 3.50 3.79
Direct Fit x x x Model Weights + Statistics 4.70 4.31 4.05
SFHarmony 1 GMM Component x x x Model Weights + Statistics 4.21 4.13 3.71
SFHarmony 2 GMM Components x x x Model Weights + Statistics 3.87 3.72 3.69
SFHarmony 3 GMM Components x x x Model Weights + Statistics 3.64 3.72 3.73

Table 4. Results on the ABIDE dataset for the age prediction task. S = Source data required, T = Target labels required, C = Centralised
data, Bs = Batchsize. The average MAE is the performance across all 4 sites, weighted equally, and is reported for training batchsizes of 4,
8 and 16: 16 was the largest batch achievable. The best SFDA method for each batchsize is in bold.

to 3D networks. As the features learned by convolutional
layers are highly correlated, large amounts of redundancy
exist between the features; thus we considered selecting
only a random subset of the features. The procedure would
be identical on this subset and the only additional informa-
tion to be shared would be the random subsampling indices
which would be the same across sites. We explored this ap-
proach for the CC359 data (3 components, batchsize 5), and
the result can be seen in Table 3. It can be seen that using
a smaller subset of the features leads to only a small drop
in performance for the segmentation task, such that SFHar-
mony still outperforms the existing methods when less than
1% of the features are shared. Therefore, when expand-
ing the approach to 3D datasets, subsampling the features
is likely to be a sensible compromise between performance
and the amount of information to be shared between sites.

4.4. Regression: ABIDE dataset

Baselines: We could not identify any appropriate SFDA
baselines. Therefore, the only comparison methods were
source model only, centralised data and target finetuning
with frozen label predictor, DeepCORAL [48], FADA [40],
FedHarmony [16] and Direct Fit. The maximum batchsize
possible was 16, and so we tried batchsizes of 4, 8 and 16.

Methods Comparison: It can be seen from Table 4 that
for the age prediction task FADA [40] outperformed our
proposed approach for two of the three reported batchsizes,
unlike in the other tasks. This may well be because the task
was completed in 3D, and thus, a small number of samples
were available, meaning that the presence of the source data
supported the model training. SFHarmony did, however,
show comparable performance, especially when modelling
the features with more components. We could not identify
any SFDA methods in the literature that could be directly
applied to regression tasks. Our method is flexible and can
be directly applied to the regression task without any change
to the model architecture or DA procedure.

5. Conclusion

We have presented SFHarmony, a method for SFDA,
motivated by the need to harmonise MRI data across imag-
ing sites while relaxing assumptions about the availability
of source data. We have demonstrated the applicability of
the method to classification, regression, and segmentation
tasks, and have shown that it outperforms existing SFDA
approaches when applied to MR imaging data. The ap-
proach is general, allowing it to be applied across archi-
tectures and tasks. Possible limitations may arise due the
increase in features when applying the approach to 3D vol-
umes, but the initial results on subsampling the features for
the segmentation task suggest that the approach will still be
applicable.
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