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Abstract

Genome-wide association studies (GWAS) have led to the identification of thousands
of associations between genetic polymorphisms and complex traits or diseases,
facilitating several downstream applications such as genetic risk prediction and
drug target prioritisation. Biobanks containing extensive genetic and phenotypic
data continue to grow, creating new opportunities for the study of complex traits,
such as the analysis of rare genomic variation across multiple populations. These
opportunities are coupled with computational challenges, creating the need for
the development of novel methodology.

This thesis develops computational tools to facilitate large-scale association
studies of rare and common variation. First, we develop methods to improve
the analysis of ultra-rare variants, leveraging the sharing of identical-by-descent
(IBD) genomic regions within large biobanks. We compare ∼ 400k genotyped UK
Biobank (UKBB) samples with 50k exome-sequenced samples and devise a score
that quantifies the extent to which a genotyped individual shares IBD segments with
carriers of rare loss-of-function mutations. Our approach detects several associations
and replicates 11/14 loci of a pilot exome sequencing study. Second, we develop
a linear mixed model framework, FMA, that builds on previous techniques and
is suitable for scalable and robust association testing. We benchmark FMA and
several state-of-the-art approaches using synthetic and UKBB data, evaluating
computational performance, statistical power, and robustness to known confounders,
such as cryptic relatedness and population stratification. Finally, we integrate FMA
with recently developed methods for genealogical analysis of complex traits, enabling
it to perform scalable genealogy-based estimation of narrow-sense heritability
and association.
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1
Introduction

The last decades have witnessed a dramatic decrease in the cost of DNA sequencing.

During the Human Genome Project [1], which took place roughly 22 years ago,

sequencing an individual’s genetic code required large research teams and significant

costs. Sequencing a human genome today is a fast and highly automated process

requiring only a few hundred dollars 1. In addition to whole genome sequencing

(WGS), a wide range of technologies have enabled reading an informative subset

of the genetic code, such as whole exome sequencing (WES) or array genotyping

of single nucleotide polymorphisms (SNP) [2, 3]. These advances have enabled

building rich data sets comprising genetic, medical, and behavioural information for

thousands of people, such as the UK Biobank (UKBB) [4], PAGE [5], or ATLAS [6].

Statistical and computational methods can be applied to these data sets to

extract knowledge about natural selection, the human dispersal across the globe, or

recent demographic events [7–11]. Genome-wide association studies (GWAS) are

a widely adopted experimental design used to systematically detect associations

between genomic variants and heritable traits or diseases [12–18]. In the era of broad

availability of SNP array data, GWAS have flourished and opened the way for several

downstream biomedical applications, including risk prediction, understanding of
1https://ourworldindata.org/grapher/cost-of-sequencing-a-full-human-genome

1

https://ourworldindata.org/grapher/cost-of-sequencing-a-full-human-genome
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disease aetiology, and faster drug development [19–23]. The field of GWAS is still

growing with recent studies comprising millions of individuals [24, 25].

Most recent biobanks are rich sources of genotypic and phenotypic information

which can assist in the detection of novel associations. However, a larger biobank will

naturally contain more sample structure, such as cryptic relatedness or population

structure, which are known confounders in association studies [26, 27]. To prevent

that, studies often exclude related individuals or whole sub-populations at the cost

of statistical power. Furthermore, methods that were efficient in earlier data sets

might struggle with larger sizes or multiple phenotypes due to large asymptotic

costs or inefficient implementations. As new large and diverse biobanks emerge [5,

6], association studies pose new statistical and computational challenges.

To date, most GWAS have detected associations with variants of high (≥ 5%) or

low (from 0.5% to 5%) frequencies, whereas association with rare variants (< 0.5%)

is still challenging [14, 20, 28–30]. This is primarily due to the small volumes

of whole genome sequencing that is currently available compared to SNP array

data. Statistical imputation of genotyped samples from a sequenced reference panel

offers one route to analyse lower frequency variants [31, 32]. However, because low

frequency variants tend to be population specific [33], genotype imputation is only

accurate when the target sample is sufficiently close to the reference panel in terms of

ancestry. In addition, association studies have predominantly focused on European

samples, complicating complex trait analyses in under-represented populations [34,

35]. Addressing these issues will require the collection of larger and more diverse

sequencing panels, as well as the development of novel computational methods.

There is currently a broad set of methods for association which can be used

to test single variants or whole genomic regions, such as genes. Some of the most

recent examples include BOLT-LMM [36], SAIGE [37], fastGWA [38], and REGENIE

[39]. Methods that enable gene-based testing, often specialised for rare variation,

include SKAT [40], SAIGE-Gene [41] and several others [42–45]. Depending on the

specific association task being considered, each method presents advantages as well

as disadvantages in terms of model specification, statistical power, robustness to
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confounding, or scalability. For example, BOLT-LMM, which usually achieves state-

of-the-art statistical power on quantitative traits [36, 46], is less computationally

efficient than REGENIE or fastGWA, and suffers from high type I errors when handling

unbalanced case/control phenotypes [37, 39]. The development of scalable, powerful,

and robust association methodology therefore remains an active area of research.

This thesis attempts to address some of the challenges raised above by developing

strategies for scalable and robust association of rare and common variants.

1.1 Thesis overview

The next chapters are structured as follows. First, in Chapter 2, I provide an

overview of the relevant background and related work for this thesis. Next, in

Chapter 3, I describe how shared identity-by-descent segments can be utilised to

implicitly impute rare likely-causal variants and detect association with complex

traits. This analysis is part of published collaborative work [11] which I presented

as a platform talk at the American Society of Human Genetics 2020 annual meeting,

where I received a Charles J. Epstein Trainee Award for Excellence in Human

Genetics Research (semifinalist).

Chapter 4 describes a framework for scalable mixed-model association of quanti-

tative phenotypes, called FMA. I benchmark FMA as well as state-of-the-art GWAS

methods through an extensive set of simulations using UKBB genotypes, empirically

verifying key LMM properties [47]. I then apply each method to 20 real quantitative

phenotypes using samples of varying size and up to 38.5 million imputed genotypes.

In Chapter 5, I explore several modifications to the FMA algorithm that may be used

to decrease the computational cost of model fitting for larger sample sizes.

Next, in Chapter 6, building on the recent work of Zhang et al. [48], I introduce

efficient techniques for association and heritability estimation using ancestral

recombination graphs, which may be used to facilitate complex trait analyses

in data sets where the availability of sequencing data is limited. Finally, in Chapter

7, I draw conclusions and suggest directions for future research, and include a set

of supplementary figures and tables in the appendix.
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2
Background and related work

Contents
2.1 Fundamentals of GWAS . . . . . . . . . . . . . . . . . . 5
2.2 Linear Mixed Models . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Dichotomous phenotypes . . . . . . . . . . . . . . . . . 11
2.3 Evaluating the results of association studies . . . . . . 12
2.4 Rare variant association . . . . . . . . . . . . . . . . . . 14

2.4.1 Burden and overdispersion tests . . . . . . . . . . . . . 14
2.4.2 Rare variant association using IBD sharing . . . . . . . 16
2.4.3 Ancestral recombination graphs . . . . . . . . . . . . . . 17

This chapter discusses background theory and is organised as a brief review of

the most relevant work, while highlighting any key concepts that appear throughout

the thesis. My goal is to mainly help the reader become familiar with the context

of the chapters that follow, rather than describing all the theory thoroughly. The

discussion will mostly focus on complex quantitative traits with a brief note on

case/control phenotypes.

2.1 Fundamentals of GWAS

Complex heritable traits are often well modelled using a linear model as follows.

Let N, M denote the number of samples and genetic variants respectively. Assume

5



6 2.1. Fundamentals of GWAS

that y is the vector measuring the phenotype for all samples, X is the N × M

genotypes matrix, and e is a vector representing noise (environmental contribution

to phenotype), assumed to be normally distributed. The phenotype vector and

the columns of X are assumed to be standardized. Then, under the additive

model of genetic effects, the trait is assumed to be in a linear relationship with

the genotype and the environment described by:

y = Xβ + e, (2.1)

where β is the vector of the M effects. However, in genetic studies N ≪ M , thus

we cannot solve the full regression problem and obtain an ordinary least squares

estimator for β. A simple solution to this issue is to perform univariate regression

by only considering the i-th column of the genotype matrix X [4, 12, 15, 17, 49,

50], in which case we can estimate the effect size as

β̂i = x⊤
i y/(x⊤

i xi). (2.2)

The corresponding test statistic has a similar form and, therefore, a genome-wide

analysis with linear regression has cost linear in data size, or O(NM).

This approach however is susceptible to population stratification, a common

confounder in association studies which creates considerable difficulties. In this

context, population stratification refers to the phenomenon where allele frequencies

are different between cases and controls – or otherwise stratified with the phenotype

[51]. When the sample is structured so that differences in frequencies coincide with

phenotypic differences, a simple regression model would find spurious signals of

association. Many techniques to deal with this phenomenon have been proposed, but

there is evidence that residual stratification can still confound genetic studies [10,

52, 53] and might differentially affect the analysis of rare and common variants [33].

A widely adopted solution to control for population stratification is to condition

on principal components of ancestry [51, 54]. In particular, the top eigenvectors

obtained from the PCA of the genotype matrix X are highly correlated with ancestry
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[55], and resemble geographic clines [7, 21]. These vectors can be encoded in a

matrix of fixed effects W to be used in the linear model:

y = βixi + Wγ + e. (2.3)

In practice, additional environmental variables – like age, sex, or smoking status –

are often used as covariates and included in the matrix W. Detecting an association

then involves testing the null hypothesis H0 : βi = 0 for a candidate SNP i. To

that end, we first remove any effects of the covariates by multiplying Eq. (2.3) with

the projection matrix P = IN − W(W⊤W)−1W⊤. This matrix has the property

that PW = 0, and the model thus takes the form ỹ = βix̃i + ẽ, where ỹ and x̃i

are the residualised phenotypes and genotypes respectively. To keep the notation

simple, however, I will simply write y or xi and assume that the covariates, where

necessary, have been regressed out beforehand and thus y or xi are mean-centered.

An alternative approach for conditioning on covariates is to regress their effects

out only from the phenotypes, and thus enable simpler calculations. This yields

similar results in many scenarios, as genotypes are typically less affected by this

transformation, but may lead to biased association statistics (often conservative).

For instance, this is the default approach in the GCTA software suite [38, 56]

and Jiang et al. [45] have empirically shown that the differences with exact

conditioning are minimal.

2.2 Linear Mixed Models

Cryptic relatedness, which refers to the presence of an unknown subset of

individuals who are close genetic relatives [57, 58], might also result in spurious

associations. Cryptic relatedness is likely to be present in large biobanks which

inevitably contain members of the same family. False positive associations due to

relatedness can be avoided by detecting and excluding closely related individuals,

at the cost of reduced statistical power. For instance, the UKBB contains roughly

410k white British individuals (as defined by Bycroft et al. [4]) among which



8 2.2. Linear Mixed Models

thousands of pairs of related individuals have been detected, excluding which

results in a 20% smaller sample [4].

A linear mixed model (LMM) provides an alterantive route to excluding

related samples. In LMMs, the model 2.3 is modified to include a random

variable that captures sample structure [26, 36, 38, 47, 59–63]. Such a model

is often expressed as

y = βixi + g + e, (2.4)

where βi and e are as before (Equation 2.3), and g is the genetic random effect.

In particular, g is assumed to follow a multivariate normal distribution with

mean zero and covariance σ2
gK (i.e. NN(0, σ2

gK)), where σ2
g captures genetic

variance and K denotes the N × N pedigree or genetic relatedness matrix

(GRM); Ki,j quantifies the genome shared between individuals i and j (often called

kinship coefficient). Environmental effects are also assumed to be independent

and identically distributed as e ∼ NN(0, σ2
eIN), where σ2

e captures environmental

variance. Assuming that g and e are uncorrelated, the phenotypic variance is

described by V = cov(y) = σ2
gK + σ2

eIN . Therefore, an LMM uses the covariance

matrix V to account for population stratification and relatedness, without the need

of excluding related samples or including principal components as fixed effects in

the model [47, 64] (see empirical results in Chapter 4). Testing for H0 with an LMM

is achieved by looking at the magnitudes of the test statistic and effect size [65–67]

χ2
LMM = (x⊤

testV−1y)2

x⊤
testV−1xtest

, βtest = x⊤
testV−1y

x⊤
testV−1xtest

, (2.5)

where χ2
LMM is approximately distributed as χ2 with one degree of freedom.

A second LMM formulation which more closely reflects the polygenic architecture

of complex traits is often used in genetic studies. We assume an infinitesimal model

[68], where all genomic variants have a (usually small) phenotypic contribution

according to a Gaussian distribution. This model takes the form

y = βixi + Xb + e. (2.6)
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where b ∼ NM(0,
σ2

g

M
IM) and e is as before. The prior that we now place on the

effect sizes enables to perform a genome-wide joint regression [36, 56]. In this case

the variance-covariance is V = σ2
g

M
XX⊤ + σ2

eIN . In practice, K for model 2.4 is

estimated by 1
M

XX⊤ (which is known as the empirical kinship matrix), in which

case the two formulations are equivalent [36, 56].

Based on the previous formulation and the mixed-model equations [67, 69], we

can estimate the vector of phenotypic effects with the best linear unbiased

predictor (BLUP):

b̂ =
σ2

g

M
X⊤V−1y. (2.7)

Proof of Equation 2.7 For simplicity, let K = σ2
g

M
XX⊤ and δ = σ2

e

σ2
g
, so that

V = K + σ2
eIN . Starting from the mixed-model equations [67] and assuming

that V−1 exists,

b̂ = (X⊤INX + MδIM)−1X⊤INy (2.8)

= [ 1
δM

IM − 1
δM

IMX⊤(IN + X
1

δM
IMX⊤)−1X

1
δM

IM ]X⊤y (2.9)

= 1
δM

X⊤y − 1
δM

X⊤(IN + 1
σ2

e

K)−1 1
σ2

e

Ky

= 1
δM

X⊤y − 1
δM

X⊤V−1Ky

= 1
δM

X⊤(y − V−1Ky)

= 1
δM

X⊤[y − V−1(V − σ2
eIN)y] = 1

δM
X⊤σ2

eV−1y

=
σ2

g

M
X⊤V−1y,

as we get 2.9 from 2.8 using the Woodbury matrix identity. □

The BLUP estimates may be used to obtain a prediction of the phenotype

using Xb̂ = KV−1y. Based on this, the residual y − Xb̂ equals σ2
eV−1y, which

is part of the numerator of the test statistics defined in Eq. 2.5. Therefore, by

using the residualised phenotype, testing with a LMM conditions on polygenic

effects. This removes the genome-wide effects of other variants, allowing to focus on
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the phenotypic contribution of the variant being tested, increasing signal-to-noise

and resulting in higher statistical power [36, 47].

A key element for LMM-based association is the way the GRM is formed. Early

implementations included every genotyped variant which was later shown to be

problematic as including the focal SNP in the GRM led to reduced statistical

power [47, 70]. Listgarden et al. [70] observed that this is due to the fact that the

candidate marker is used both as a fixed and a random effect, a phenomenon which

was called “proximal contamination” [70]. Furthermore, variants that are positioned

closely along the genome are often highly correlated as the corresponding alleles are

inherited together due to lack of recombination in the genealogical history of the

sample [71]. Therefore, the genome consists of blocks of correlated variants which

are said to be in linkage disequilibrium (LD). Based on that, a method that

tackles proximal contamination, Fast-LMM-Select [70], works with region-based

GRMs by excluding variants in close proximity with the tested ones from the

GRM. This, however, can be computationally intensive. An improvement can be

achieved with the leave one chromosome out (LOCO) scheme, whereby all

variants from the same chromosome as the variant being tested are excluded from

the formation of the GRM [47]. Thus, for human genetic studies, a LMM with

LOCO is a combination of 22 models, one for each autosomal chromosome.

A further memory bottleneck might arise due to the covariance matrix V

which can be prohibitive to form, let alone invert, for large sample sizes. Initial

implementations required to explicitly compute V−1 [59, 60, 72] and are thus

not scalable enough for modern biobanks, which comprise hundreds of thousands

of individuals. Recent methodological advances have enabled the development of

efficient approaches, such as BOLT-LMM [36, 46] which avoids the explicit formation of

V and relies on the use of the conjugate gradient iteration [73], or fastGWA [38] which

works with a sparse version of the kinship matrix. REGENIE [39] is a more recent

approximation to model 2.6, which avoids working with the full covariance matrix

and instead leverages Ridge regression. I discuss these methods more in Chapter 4.
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In general, most LMM-based association algorithms involve two steps: first

infer model parameters (hereafter “model fitting”), then use these to calculate test

statistics. The first step typically requires a carefully selected set of variants (e.g.

LD-pruned and within a given MAF range) whereas testing can be applied to any

variant (e.g. hard-called or imputed genotypes [31]). The testing step tends to be

similarly designed for most LMM algorithms and has an O(NMtest) complexity,

for N individuals and Mtest variants. Thus, LMM algorithms mostly differ in

the way they fit the model, with a CPU cost ranging from a few O(NMmodel)

iterations to O(N3Mmodel), and various levels of memory usage depending on

how genotypes are loaded.

In conclusion, LMMs offer increased power and improved control for population

stratification and cryptic relatedness. The aforementioned methods constitute the

state of the art. However, as I will discuss in greater detail in the remainder of

my thesis, most methods rely on approximations that lead to different trade-offs

between scalability, statistical robustness, and association power. The development

of scalable methods for association is a multifaceted problem and continues to

be an active research area.

2.2.1 Dichotomous phenotypes

A dichotomous, or case/control (c/c), phenotype can be encoded with a binary

variable with 1 indicating a case (e.g. an individual affected by a disease) and 0

a control. The simple linear model (2.3) I described earlier may again be used

under certain assumptions, but a more suitable approach is to instead use logistic

regression [12, 17]. Additional approaches (e.g. Fisher’s exact test [15]) may be

used in this setting, but an extensive review is beyond the scope of this thesis. The

logistic linear model for individual j can be written as

logit(µj) = βiXji + w⊤
j γ, (2.10)

where logit(z) = log(z)−log(1−z) and µj = Pr(yj = 1|Xji, wj), the probability that

individual j is a case given the covariates wj (or the environment) and genotype Xji.



12 2.3. Evaluating the results of association studies

A widely used approach for association is the generalised-LMM, which, similarly

to the case of quantitative phenotypes, incorporates random effects to control

for confounding and increase power. SAIGE [37] was the first such method which

enabled large-scale analyses of binary traits, followed by fastGWA-GLMM [45]. Both

mixed models take the form

logit(µj) = βiXji + w⊤
j γ + gj, (2.11)

which is similar to Eq. 2.4 as the vector of random effects g is assumed to be

distributed as NN(0,σ2
gK). SAIGE estimates the kinship matrix K using SNP

data as done by most other LMM algorithms, while fastGWA-GLMM works with

a sparse estimator.

In practice, phenotypes often present unbalanced (c/c = 1 : 10) or extremely-

unbalanced (c/c ≤ 1 : 100) ratios. Studying such traits is challenging as unbalanced

case/control ratios violate the asymptotic assumptions required by most estimators

used in association. This leads to substantially high rates of type I error, particularly

for rare variants [37, 39, 45]. Zhou et al. [37] observed that as the c/c ratio drops, a

standard GLMM finds increasingly more false associations with rare variants. A

solution to this phenomenon involves a calibration of the test statistics. One such

technique, used by SAIGE and fastGWA-GLMM, is the saddle-point approximation

(SPA), which approximates the distribution of the test statistic using the entire

cumulant generating function. REGENIE, on the other hand, works with Firth

correction, suggesting that it provides higher accuracy than the use of SPA [39].

Further discussion on dichotomous phenotypes lies beyond the scope of this thesis.

2.3 Evaluating the results of association studies

Testing for association of variant i to a phenotype amounts to testing whether the

null hypothesis that βi = 0 may be rejected. The determination of an association

depends on some level of significance and the number of tests performed (e.g. Mtest).

An established p-value cut-off for multiple-testing correction in GWAS of common
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variants is 5 × 10−8, reflecting the effective number of variants usually tested and

the correlation among them [13, 15, 16, 74].

I previously mentioned that closely positioned variants are usually highly

correlated due to LD. As a result, a statistically significant association implies

that the candidate SNP is either directly correlated with the phenotype, or is

in high LD with a – possibly not genotyped – causal variant [13, 15]. In either

case, an association signal typically involves many significantly associated variants

at one locus. The findings of a GWAS are often visually summarized using the

so-called Manhattan plots, which depict the − log10(·) of each p-value for any

tested variants along a genomic region (see Fig. 3.3 for an example).

Finally, several strategies have been developed to indicate whether GWAS

association statistics are inflated due to relatedness or population stratification.

One traditional metric is the genomic inflation factor λGC [26, 57], defined as the

observed median χ2 statistic divided by the theoretical median of a χ2 distribution

with one degree of freedom. In general, λ ≈ 1 indicates no stratification, whereas

values larger than 1.05 suggest confounding [26]. The rationale behind this is

that the genetic architecture of a phenotype is generally sparse and most of the

genome should be non-causal. Thus, one way to account for confounding, usually

termed genomic control [26, 33, 57], is to adjust the test statistics by diving with

λGC. However, large sample sizes and high polygenicity can also cause inflation of

the test statistics [75], therefore such an approach is likely to yield conservative

estimates and should be used with caution.

A better approach to discriminate between confounding and polygenicity is

provided by the LD score regression framework (LDSC) [76]. The LD score of

a variant is defined as the sum of the squared correlation between one variant

and all other variants within a region. For polygenic traits, variants with higher

LD scores will tend to tag more associated variants and thus have elevated test

statistics. In contrast, population stratification and cryptic relatedness inflate test

statistics independently of variant LD scores. By regressing observed χ2 statistics

on variant LD scores, LDSC allows the deconvolution of association signal from
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confounders and can also estimate SNP-heritability. An appealing property of

LDSC is that it only requires summary statistics and a reference LD panel to be

applied. However, LD scores may be difficult to accurately estimate and such

biases affect LDSC’s performance. LDER [77] addresses this issue by working with the

eigenvalues of the LD matrix and offers higher accuracy when there the discovery

and the reference panel exhibit differences.

2.4 Rare variant association

The aforementioned methods work well when the trait is affected by common

variants with small or moderate effects and GWAS have successfully identified a

growing number of loci associated with phenotypes [16, 20]. Complex traits are

also affected by a large number of rare variants which are increasingly accessible

thanks to the advent of large whole exome/genome sequenced cohorts. Some rare

variants are expected to have moderate to high effects as they tend to be recent and

thus have less time to be eliminated by natural selection. However, single-variant

tests, as those described in the previous section, are underpowered for rare variants

unless sample sizes are very large [16].

2.4.1 Burden and overdispersion tests

A more effective approach involves merging of multiple rare markers in one score per

region which is then tested using linear models [42]. One such approach, referred

to as burden test, proceeds by collapsing markers within a given region and has

the added benefit of being computationally efficient [78]. More specifically, an

indicator variable for the j-th sample is defined as

Zj =
{

1, if rare variants are present in the region
0 otherwise (2.12)

where the region of interest could be a particular gene. Besides a binary indicator,

Zj could be defined as the total number variants present in the region. Next, a

vector containing all the Zj’s for a given region is used in place of xi in a linear

model as that of Eq. 2.3, and each region of interest can be independently tested.



2. Background and related work 15

The method described here gives all variants the same weight, but this approach

may be generalised by placing weights on variants according to their MAF or

functional role (as with the adaptive burden tests) [42]. Additionally, when sample

sizes are too small, genes can be grouped together into biologically relevant gene

sets (e.g. according to implicated pathways) and tested for enrichment of the

underlying variants of each set [29, 50].

There is a known limitation of burden tests regarding the assumptions made

for the effects. By merging many variants together we assume that they all have

the same direction of effect and have comparable magnitudes. In practice, however,

a region might contain alleles of opposite directions, or variants that have no

effect at all (e.g. synonymous mutations). Violating these assumptions may lead

to decreased statistical power.

A strategy that circumvents this issue is based on over-dispersion tests, such

as the sequence kernel association test (SKAT) [40]. SKAT regresses the phenotype

against a group of genetic variants, while including covariates, and allows different

variants to have different directions and magnitudes of effects by relying on a mixed

model formulation. More specifically, SKAT assumes the following model

y = Wγ + Gβ + e (2.13)

where W encodes a set of relevant covariates with fixed effects γ (as before), G is an

N ×p matrix containing the genotypes for the p variants within the candidate region

with random effects β, and e is the residual error term following a multivariate

normal distribution with mean zero and covariance matrix σ2
eI.

SKAT tests H0 : β = 0 by assuming each βj has mean zero and variance qjτ,

where τ is a variance component and qj is a pre-specified weight for variant j (e.g.

a decreasing function of MAF) [40]. It can be easily shown that, under H0, the

variance-component score statistic is Q = ŷ⊤Rŷ, where ŷ is the covariate-adjusted

phenotype and R = GQG⊤, with a diagonal matrix Q containing the variant

weights. R can be seen as a kernel function R(·,·) defined on genotypes, thus

the name of the method. The use of suitable weights qj and modelling β as a
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random effect offer SKAT increased statistical power compared to burden testing in

cases where underlying assumptions are not met. Although it needs to be applied

independently on every region, parameter estimation is efficient on an exome-wide

scale provided that each gene contains a small number of variants.

Additionally, many of the aforementioned methods have been extended for region-

based testing of dichotomous phenotypes, such as SAIGE-GENE [41], REGENIE[39], and

fastGWA-GLMM [45], while being scalable for hundreds of thousands of individuals.

As an example, Zhao et al. [44] recently optimised SKAT methods by adding the

SPA feature and performed an exome-wide association study of rare variation

(MAF≤ 0.01) in UKBB. After analysing 791 diseases, and running a variety of tests

including conditioning on nearby common variants, they detected 10 significant

associations, providing further evidence that gene-based approaches may be more

powerful, or complementary at least, to single-variant methods for rare variation,

a theme that we will revisit in the next chapter.

2.4.2 Rare variant association using IBD sharing

Burden and overdispersion tests assume that the rare variants have been genotyped.

A different family of approaches relies on the sharing of identical-by-descent (IBD)

genomic segments between individuals to enable testing of rare variants that have not

necessarily been typed. IBD is a fundamental measure of genetic relatedness and can

be particularly suitable for rare variant association studies for the following reason.

IBD segments are co-inherited by modern individuals from common ancestors that

lived in the recent past, thus their presence suggests that individuals who are

IBD also share all genomic variation within the affected region, including rare

variants of recent origin [11, 79, 80]. IBD-based tests might also offer a gain

in statistical power for rare variants as they automatically collapse all markers

within each haplotype [81, 82].

Several algorithms for IBD detection exist relying on a mixture of scalable

heuristics, such as string matching, and more accurate probabilistic approaches

that model the underlying genealogical processes, such as Hidden Markov Models.
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Heuristic strategies rely on the assumption that identical-by-state (IBS) regions are

a good proxy for IBD regions. They are typically scalable and ideal for finding large

IBD regions from recent ancestors (e.g. segments longer than 5 centimorgans)[79].

For shorter segments transmitted by more remote common ancestors, however, the

assumed equivalence between IBS and IBD regions becomes less reliable. In this

case, approaches modelling haplotypic or genealogical information tend to be more

accurate, at the cost of additional computation. FastSMC [11] is a recent method for

IBD detection which scales to large biobanks. It combines a fast heuristic search [81]

for candidate IBD segments with accurate coalescent-based likelihood calculations [9],

and enables estimating the age of the common ancestors who transmit IBD regions.

There are several ways in which genetic relatedness can be exploited for detecting

associations. One approach suitable for dichotomous traits involves the comparison

of IBD sharing rates among case/case pairs versus control/control pairs and a simple

statistic to test for significant differences [82]. Another technique uses IBD segments

to construct haplotype clusters [81]. Each cluster indicates a group of samples

sharing specific rare alleles and the cluster membership can be tested for association

with a phenotype using a LMM. Gusev et al. [81] followed this approach and

detected significant associations in loci where SNPs failed to be associated, indicating

insufficient genotyping to detect rare causal variation. Finally, IBD sharing could

be used as a proxy to associate ultra-rare variants by comparing sequenced with

genotyped samples in the same cohort; I present such an approach in Chapter 3.

2.4.3 Ancestral recombination graphs

The ancestral recombination graph (ARG) is a mathematical object that leverages

relatedness to model the history of genetic recombination and coalescence events

among a sample of genomes [83]. It is a directed acyclic graph in which nodes

represent genomes in time and edges show the flow of genetic material among those

genomes. An ARG can be constructed from genetic data, mainly from sequenced but

also array genotypes, and enables the inference of several evolutionary parameters,

such as population sizes and times to most recent common ancestors. Consequently,
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ARGs are increasingly used in population genetics to study evolution or demography

[83–85], as well as improving association testing or polygenic predictio in comparison

to SNP-based approaches [48, 86, 87].

Initial studies involving ARGs were limited to a handful of samples, due to the

complexity of inferring an ARG from genomic data [83]. However, recent algorithmic

improvements have enabled studies with tens or hundreds of thousands of samples [48,

84, 88]. The ARG-Needle algorithm, developed recently by Zhang et al. [48] has been

used to infer the ARG from SNP array data of 337k UKBB individuals. The inferred

ARG was then used to infer the presence of genetic variation, particularly rare and

ultra-rare variants, that was not observed in the data used to construct the ARG,

enabling to detect associations that would otherwise require sequencing data to be

available. This analysis detected association with variants having frequency as low as

4 × 10−6, some of which were missed by using imputation from an ancestry-matched

reference panel, but were broadly validated based on UKBB exome sequencing

data [48]. Efficient methods for ARG-inference, such as ARG-Needle, may therefore

be used to complement genotype imputation in the analysis of complex traits for

populations under-represented in ongoing sequencing studies [5, 6, 34].

Besides enabling the detection of association, the unobserved variants inferred

through an ARG allow improving other linear-mixed-model analyses, by providing

better estimates of genetic relatedness held within the GRM. As a result, an ARG-

based approach has the potential to yield more accurate estimates of heritability,

better prediction of phenotypic values, and improved power for detecting asso-

ciations between genetic variants and traits, as demonstrated with simulations

by Zhang et al. [48].

For association, in particular, there are two ways an ARG can yield higher power.

First, the ARG clades can be used as a proxy to test for untyped genetic variation,

after training the LMM with SNP data (as described above). Second, utilising a

GRM obtained from a (sufficiently accurate) inferred-ARG to fit the LMM can

improve power in contrast to a SNP-based GRM. The latter was alse demonstrated

by Zhang et al. [48] using simulations, but their approach was based on explicitly
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forming and inverting large covariance matrices, posing several computational

bottlenecks. I revisit all the aforementioned tasks in Chapter 6 where I explore how

ARG-based complex-trait analyses can be improved computationally.
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Genetic relatedness results in the presence of genomic regions that are shared

identical-by-descent (IBD) between individuals, who are usually unaware of their

distant genealogical relationship [79, 80]. This chapter describes how IBD sharing

can be leveraged to characterize the contribution of rare genetic variation in disease

aetiology, and offers an implicit way to test for rare variant association [81, 82]. To

briefly summarise the intuition behind the proposed approach, consider a genotyped

individual who shares IBD segments with a known carrier of an untyped mutation.

This individual is also likely a carrier of that mutation, by inheriting it from the

shared IBD ancestor, as shown in Fig. 3.1. When such a mutation is associated

to disease, both individuals are at increased or decreased risk for disease and IBD

sharing can thus be utilized to test for association with the phenotype.

21
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Figure 3.1: Explanation of IBD-based imputation. This figure depicts two samples,
one of which is exome-sequenced, and a common ancestor who transmitted the blue
segment. The mutation in focus, which we assume is observed only in the sequenced
individual, occurred before the age of the common ancestor, thus the genotyped sample
should also carry it. Using a high enough time threshold, as the one shown, would allow
us to correctly impute this variant.

The following two sections are part of a collaboration currently published in

[11]. The material presented here, which is slightly adapted for coherence with

the rest of the thesis, is work I performed myself regarding the development and

testing of the LoF-segment burden, validating the utility of accurately detecting

IBD segments and extending a few initial findings. Sections 3.4 and 3.5 contain

work I performed independently.

3.1 The LoF-Segment burden test for association

We applied FastSMC [11], an IBD detection method, to 487,409 phased samples

from the UKBB and detected roughly 214 billion IBD-shared segments, revealing an

intricate network of cryptic genetic relatedness among British individuals within the

past two millennia. By focusing on the subset of 49,797 samples who had undergone

whole-exome sequencing (WES) by a pilot study [89], we observed that sharing of

rare alleles was correlated with the sharing of IBD segments, especially for ultra rare
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Figure 3.2: A. Correlation between IBD sharing (average number of IBD segments
per pair of samples in the past 10 generations) and ultra-rare variants sharing (average
number of FN mutations per pair, for increasing numbers of carriers N). B. Venn diagram
representing the sets of exome-wide significant associated loci for 7 blood-related traits
by the IBD-based LoF-segment test we performed (red), the WES-based LoF burden test
reported by Van Hout et al. [89] (petrol), and the WES-based burden test we performed
(grey).

variants (e.g. r = 0.3 for MAF∼ 0.003%, Fig. 3.2A). Based on this, we set out to

detect association to rare and likely trait-associated variation in the non-sequenced

cohort by quantifying the extent to which a genotyped sample shares IBD segments

with exome-sequenced carriers of any loss-of-function (LoF) mutation at each

gene. This set included variants annotated as stop-lost, start-lost, splice-acceptor,

splice-donor, stop-gained, and frameshift, with MAF less than 0.01, following [89].

We used each IBD segment between exome-sequenced, LoF-carrying individuals

and non-sequenced individuals as a surrogate for the latter carrying an untyped

LoF mutation, which we then tested for association with a target phenotype. For a

given gene and a given non-sequenced individual, we define a “LoF-segment” as

any IBD segment shared with an exome-sequenced LoF mutation carrier, within

the gene boundaries. We then compute a LoF-segment burden for each individual

as the sum of probabilities (IBD quality scores) of all LoF-segments involving that

individual, under the assumption that increased IBD probability and incidence

corresponds to increased probability of sharing the LoF variant. Finally, this

burden is tested for association with each phenotype (rank-based inverse normal
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transformed) using linear regression with covariates for age, sex, BMI, smoking

status, and four principal components, similarly to Van Hout et al. [89].

Although this test captures uncertainty about the sharing of IBD segments

through the use of IBD quality scores, it makes use of all LoF-segments, regardless

of their age. As a result, it may be suboptimal in cases where the LoF arose after

the most recent common ancestor, for which a LoF-segment is independent of

the underlying LoF sharing, and thus should not contribute signal to the burden

test. We thus augmented the LoF burden test by separately considering only

LoF-segments older than a specified threshold. For each gene, we divided all

LoF-segments into deciles based on the IBD quality score. For instance, segments

with scores in the tenth decile (which corresponds to the interval [0.47,1]), strongly

suggest the sharing of common ancestors that lived recently and have therefore

transmitted extremely recent variation. Thus we constructed ten separate LoF-

segment burdens, with increasingly more stringent quality score cut-offs (referred

to as time transformations), and performed ten association tests for each gene,

selecting the test that resulted in the lowest p-value after adjusting the significance

thresholds by conservatively assuming independence for all tests. Because not

all genes contained shared LoF-segments for testing, the total number of tested

genes was reduced to 14,249. This resulted in a Bonferroni-corrected exome-wide

significance threshold of 0.05/(10 × 14,249) for our LoF-segment burden analysis.

Gene-based burden tests are meant to implicate specific genes with a known

directional effect on the trait. The observed signal, however, may not always be

driven by a causal variant and instead be due to tagging of causal variants in nearby

genes. In this case, it is possible that the underlying rare causal variant is tagged

by a common variant, which may have been detected in a previous GWAS. In

particular, these common variants may provide better tagging of the underlying

true causal variation than our LoF-segment burden score, and would thus remove or

significantly reduce the association signal if included as covariates in the test. Based

on this principle, for each gene and each trait, we selected up to three genotyped

SNPs that were in proximity (±1 Mb from the gene), which were significantly
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(p < 1 × 10−8) associated by Loh et al. [46], and used them as covariates. We

observed that this approach often improves the association signal (e.g. see Section

3.3), removing signals that were likely caused by tagging of common variants. We

refer to analyses that include top associated SNPs as covariates as SNP-adjusted,

for either the LoF-segment or WES-LoF burden test.

We validated our approaches, both LoF-segment and not SNP-adjusted LoF-

segment burden tests, by testing for association between rare variation and 7 blood-

related phenotypes analysed in the UKBB pilot exome study [89], and comparing

to the results of that same study. Moreover, summary statistics for this analysis

were not available, thus we performed an exome-wide burden testing. Specifically,

we used the same testing framework we used in our LoF-segment burden analysis

to test for association between phenotypes and burden of LoF variants within a

gene in exome-sequenced individuals, adjusting for the same covariates and using

the same rank-based inverse normal transformation of the phenotype. We refer

to this analysis as WES-LoF burden analysis.

Both LoF-segment burden and WES-LoF burden analyses were restricted to

unrelated individuals of White British ancestry, as defined in [4], and the LoF-

segment burden analysis was further restricted to individuals for which exome

sequencing data was not available. This resulted in 303,125 individuals for the

two LoF-segment burden tests and 34,422 individuals for the WES-LoF. On top of

these approaches, and to better account for sample structure or polygenicity (as

explained in Section 2.2), we applied BOLT-LMM [46] on 446,050 European samples

using ∼ 623k SNPs for model-fitting and testing for the LoF-segment burden scores.

Finally, we note that the UK Biobank had released a statement regarding incorrectly

mapped variants in the 50k WES “Functionally Equivalent” (FE) dataset, which

we however believe did not introduce any significant biases in our analyses.

3.2 Results from the exome-wide association study

A comparison of our approaches with the pilot WES study [89] on 7 blood-related

traits is summarised in Fig. 3.2B and Table 3.1. The LoF-segment burden replicated
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11 out of the 14 previously reported associations at p < 0.05/10 = 0.005 (adjusted

for testing of 10 transformations) and, strikingly, 8 of these associations were exome-

wide significant in the non-sequenced cohort (p < 0.05/(10×14,249)). Missing a few

associations could be ascribed to the slightly different testing strategy we adopted,

e.g. the use of a linear model, rather than a mixed model, and the exclusion of

related samples. Indeed, testing the LoF-segment scores using BOLT-LMM increased

the replication ratio to 13/14.

We next aimed at quantifying how effective IBD sharing (through LoF-segment

burden testing) is at detecting associations, compared to testing directly based

on exome sequencing data. We computed the phenotypic variance explained by

the indirect IBD-based test and the direct exome-based test (after subtracting

the effect of covariates from both), focusing on the 14 loci reported in [89]. The

ratio of these variances was 19.64%, on average, corresponding to the decrease in

effect-size (in units of variance) due to estimation error and inclusion of segments

sharing the non-LoF haplotype. We note that, due to phase uncertainty, we expect

the LoF-segment burden to explain at most 50% of the variance explained by

direct sequencing. Assuming the ratio of variances corresponds to the squared

correlation between the LoF-segment burden estimate and the true exome burden,

the LoF-segment burden estimator has statistical power equivalent to a direct

exome sequencing study of 19.64% × 303,125, or ∼60k samples [90] - effectively

doubling the size of the exome study.

Table 3.2 reports the exome-wide set of associations detected by the LoF-segment

burden. An indicative Manhattan plot is given in Fig. 3.3, plots for the rest of

the analysed traits are given in the appendix (figures A.1 - A.6), and a QQ-plot

verifying the calibration of the LoF-segment burden is shown in Fig. 3.4. Our

proposed approach identified a total of 29 associated loci (p < 0.05/(10 × 14,249)),

20 of which were not discovered in either of the exome sequencing studies, possibly

due to lack of statistical power. These loci were obtained by clustering 111 genes

according to their genomic location, which are all listed in Table 3.1. Without

adjusting for common variation we would have identified 186 significant gene
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Gene Trait Van Hout et al. WES LoF LoF-segment Bolt-LMM R2
prop

1 IL33 Eosinophil count 3.30×10−10 2.01×10−3 8.64×10−15 3.8×10−18 72.26
2 GP1BA Mean platelet volume 6.40×10−8 8.84×10−8 1.82×10−19 2.4×10−30 32.57
3 TUBB1 Platelet distribution width 2.50×10−23 7.34×10−18 7.38×10−12 1.7×10−97 07.25
4 TUBB1 Mean platelet volume 2.40×10−8 3.01×10−7 2.15×10−3 1.4×10−25 04.11
5 TUBB1 Platelet count 2.10×10−9 7.45×10−7 4.21×10−5 2.4×10−17 07.84
6 HBB Red blood cell distribution width 5.80×10−8 3.49×10−2 2.25×10−3 1.3×10−13 23.99
7 HBB Red blood cell count 1.70×10−9 7.95×10−2 2.68×10−2 1.3×10−9 18.23
8 KLF1 Red blood cell distribution width 1.50×10−13 6.95×10−13 3.49×10−34 3.6×10−44 32.99
9 KLF1 Mean corpuscular haemoglobin 1.70×10−16 9.11×10−15 6.79×10−21 1.3×10−27 16.76
10 ASXL1 Platelet distribution width 4.70×10−9 1.44×10−6 0.16×100 9.0×10−2 00.98
11 ASXL1 Red blood cell distribution width 2.40×10−11 8.23×10−4 0.32×100 8.2×10−3 01.03
12 KALRN Mean platelet volume 2.70×10−23 3.85×10−18 3.79×10−12 2.3×10−23 07.33
13 IQGAP2 Mean platelet volume 1.10×10−19 3.72×10−15 4.40×10−34 3.0×10−78 27.43
14 GMPR Mean corpuscular haemoglobin 1.10×10−8 2.94×10−6 7.60×10−11 1.3×10−14 22.18

Table 3.1: Power comparison with the UKBB pilot WES study. A comparison
between the pilot WES-based burden test [89] (obtained using a linear mixed model), our
WES-based burden (two-sided t-test; labelled as WES LoF), the LoF-segment (two-sided
t-test), and the corresponding results using Bolt-LMM; the latter approach was not part
of [11]. The Bonferroni-corrected exome-wide significance threshold for the first two
approaches is 3.4 × 10−6, after correcting for multiple testing with ∼15k genes, and
3.51 × 10−7 for the LoF-segment burden, after adjusting for 14,249 genes and 10 time
transformations. The last column estimates the proportion of the phenotypic variation
(in %) of the sequenced samples that can be explained by the non-sequenced cohort; on
average that is 19.64% for all the 14 reported associations, or 27.35% if focusing on the
exome-wide significant signals.

associations spanning 33 genomic loci. This difference suggests that inclusion of

significant common associations in rare variant burden tests may lead to improved

interpretability and fewer false-positives due to tagging.

Our exome-wide significant associations can be partitioned in three groups:

those reported by Van Hout et al. [89] (presented in Table 3.1), those with

support from published GWAS, and previously unreported gene-trait associations

(potentially novel). An example of the latter case is the association between platelet

count and MPL (p = 1.99 × 10−7), which encodes the thrombopoietin receptor

that acts as a primary regulator of megakaryopoiesis and platelet production.

Associations with genes that have been previously implicated in genome-wide

scans for common variants include associations between eosinophil count, GFI1B

(p = 1.92×10−7) and RPH3A (p = 7.63×10−14) [23, 91], or platelet count, IQGAP2

(p = 6.52 × 10−8) and GP1BA (p = 1.43 × 10−7) [23, 92]. We also identify genes

that were previously associated with other blood-related phenotypes in different

populations such as the association between platelet distribution width and APOA5

(p = 1.94 × 10−8). This gene encodes proteins regulating the plasma triglyceride
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levels and linked common variants have been associated with platelet count in

individuals of Japanese descent [93].

Additional associations include the one between red blood cell distribution

width and APOC3 (p = 3.67 × 10−11), which encodes a protein that interacts with

proteins encoded by other genes (APOA1, APOA4 ) associated with the same trait.

The association between APOC3 and platelet count was also detected with our

WES-LoF burden analysis (p = 2.13 × 10−7) and by previous studies based on

common SNPs [23]. We also found links between CHEK2 and mean corpuscular

haemoglobin (p = 1.43 × 10−7) or mean platelet volume (p = 1.93 × 10−7). This

gene plays an important role in tumor suppression and was found to be associated

with other blood traits, such as platelet crit [23, 89] and red blood cell distribution

width [91]. Overall, this analysis highlights the utility of applying FastSMC on

a hybrid sequenced/genotyped cohort to identify novel, rare variant associations

and/or characterize known signals in larger cohorts.
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Figure 3.3: LoF-segment burden exome-wide Manhattan plots for platelet
count with and without SNP-adjustment. Labelled genes are exome-wide significant
after adjusting for multiple testing (t-test p < 0.05/(14,249×10) = 3.51×10−7; dashed red
line). We compare results before (top) and after (bottom) adjusting for common SNP
associations [46]. Both LoF-segment burden analyses used 303,125 British individuals not
included in the exome sequencing cohort. The cluster of genes in chromosome 12 labeled
as RPH3A (the top association) contains KCTD10, TCHP and RPH3A and the signal
with CLDN25 was cleared after SNP-adjustment. Red labels in the lower plot indicate
associations that were not detected in our WES-based LoF burden analysis or reported
by Van Hout et al. [89].
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Figure 3.4: QQ-plots for the LoF-segment burden test. Quantile-quantile plots
for the LoF-segment burden association on mean platelet volume (left) and on the same
trait, but with randomly permuted phenotype values (right). For the latter case, and in
contrast to the proper one, the observed values do not deviate from the expected ones,
suggesting a well-calibrated test.
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Trait Chr Region (Mb) Min. p-value Candidate gene(s)

1 Eosinophil count chr6 26.01:31.10 1.21×10−26

HIST1H1A, HIST1H1C, HIST1H1T, HIST1H2BF,
HIST1H3E, HIST1H4F, BTN3A2, BTN2A2, BTN3A3,
BTN2A1, BTN1A1, ABT1, HIST1H2AG, HIST1H2AH,
PRSS16, POM121L2, ZNF391, HIST1H2BM, PGBD1,
HIST1H2AK, HIST1H2BO, OR2B2, OR2B6, ZNF165,
ZSCAN16, ZKSCAN8, ZSCAN9, ZKSCAN4, NKAPL,
ZSCAN31, ZSCAN12, ZSCAN23, GPX6, PSORS1C2

2 Eosinophil count chr9 6.21:6.25 8.64×10−15 IL33 [23, 89]
3 Eosinophil count chr9 135.82:135.86 1.92×10−7 GFI1B [23]
4 Eosinophil count chr12 113.01:113.41 7.63×10−14 RPH3A, OAS3 [91]
5 Mean corpuscular

haemoglobin chr6 16.23:16.29 7.60×10−11 GMPR [23, 89, 91]

6 Mean corpuscular
haemoglobin chr6 25.72:31.10 3.82×10−69

HIST1H2BA, SLC17A2, HIST1H2AB, HFE [23],
HIST1H4C, HIST1H2BD, HIST1H4D, HIST1H2BG,

HIST1H2AE, HIST1H1D, BTN2A1,
HIST1H2AG, HIST1H4I, ZNF184, PSORS1C2

7 Mean corpuscular
haemoglobin chr19 12.98:12.99 6.79×10−21 KLF1 [23, 89, 91]

8 Mean corpuscular
haemoglobin chr22 29.08:29.13 1.43×10−7 CHEK2

9 Mean platelet
thrombocyte volume chr1 247.87:247.88 1.44×10−8 OR6F1

10 Mean platelet
thrombocyte volume chr3 123.81:124.44 3.79×10−12 KALRN [23, 89, 92]

11 Mean platelet
thrombocyte volume chr5 74.80:76.00 4.40×10−34 POLK, IQGAP2 [23, 89]

12 Mean platelet
thrombocyte volume chr6 26.18:27.92 1.46×10−8 HIST1H4D, POM121L2, OR2B6

13 Mean platelet
thrombocyte volume chr12 122.51:124.49 6.29×10−10 MLXIP, ZNF664

14 Mean platelet
thrombocyte volume chr16 90.03:90.03 2.61×10−7 CENPBD1

15 Mean platelet
thrombocyte volume chr17 4.83:4.83 1.82×10−19 GP1BA [23, 89]

16 Mean platelet
thrombocyte volume chr22 29.08:29.13 1.93×10−7 CHEK2

17 Platelet count chr1 43.80:43.82 1.99×10−7 MPL
18 Platelet count chr5 75.69:76.00 6.52×10−8 IQGAP2 [23]
19 Platelet count chr6 26.59:26.60 1.1×10−7 ABT1 (within HLA region)
20 Platelet count chr12 109.88:113.33 4.82×10−13 KCTD10, TCHP, RPH3A [92]
21 Platelet count chr17 4.83:4.83 1.43×10−7 GP1BA [23, 92]
22 Platelet distr. width chr11 116.66:116.66 1.94×10−8 APOA5
23 Platelet distr. width chr17 4.83:4.83 4.26×10−9 GP1BA [23]
24 Platelet distr. width chr20 57.59:57.60 7.38×10−12 TUBB1 [23, 89]

25 Red blood cell count chr6 26.45:31.10 1.39×10−10
BTN2A1, POM121L2, HIST1H2BM, HIST1H2BO,

ZNF165, ZSCAN9, ZKSCAN4, PGBD1,
ZSCAN31, GPX6, PSORS1C2

26 Red blood cell distr. width chr6 26.01:28.48 3.03×10−15

HIST1H1A, HIST1H3A, HIST1H1C, HIST1H1T,
HIST1H4D, HIST1H4F, BTN3A2, HIST1H2AG,

HIST1H2AH, ZNF391, HIST1H2BM, HIST1H2AM,
ZNF165, ZSCAN16, NKAPL, PGBD1,

ZSCAN31, ZSCAN12, GPX6
27 Red blood cell distr. width chr9 135.82:135.86 8.1×10−8 GFI1B [23, 91]
28 Red blood cell distr. width chr11 116.69:116.70 3.67×10−11 APOC3
29 Red blood cell distr. width chr19 12.98:12.99 3.49×10−34 KLF1 [89]

Table 3.2: Associations detected by the LoF-segment burden. Exome-wide
significant associations (p < 0.05/(14,249 × 10) = 3.51 × 10−7) detected using the LoF-
segment burden (SNP-adjusted). Associated genes are clustered in 29 loci. For each
locus we report the set of associated genes, minimum p-value, and any previous studies
identifying the same loci. The gene corresponding to the minimum p-value is highlighted
in bold.
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3.3 LoF-segment burden analysis of bone mineral
density

In a collaboration with Dr. Matthew Page, I set out to apply this approach to

validate and complement a recent analysis of heel bone mineral density (BMD;

UKBB data-field 3148) performed at Union Chimique Belge (UCB). The analysis

performed at UCB used the SKAT framework [40] to test for association between

BMD and rare (MAF≤ 1%) genotyped variants in the UKBB (unpublished; personal

communication). I prepared the BMD phenotype conditioning on several variables,

including the occurrence of any heel fractures, smoking and menopause status,

and any known history of musculoskeletal or bone related diseases, as advised for

increasing signal-to-noise. This resulted in a sample of size N = 223,915.

I first applied the LoF-segment approach, this time working with BOLT-LMM [36]

to increase statistical power. I used most common SNPs (MAF≥ 0.05, M = 352k)

to fit the model and then tested the burden scores for association. This approach

identified a few genes related to bone function1 including NME8 (p = 1.1 × 10−5,

MAF ∼ 0.4%) and PYY (p = 3.5 × 10−5, MAF ∼ 0.1%).

As a next step, I considered a broader set of variants with those characterised as

either “deleterious” by SIFT or “probably-damaging” by PolyPhen [94], with MAF

not exceeding 1%. This yielded a set of 1,360,009 variants, which was roughly five

times larger than what the LoF analysis considered (247,098 mutations), resulting

in an average of 656 carriers per gene for 16,498 genes. This approach identified

an association between BMD and LRP5 (p = 3.1 × 10−6), which was also the

strongest association in the SKAT analysis performed by UCB, and two additional

genes. Autosomal dominant mutations in LRP5 are known to cause the Van

Buchem disease, a sclerosing bone dysplasia characterised by increased BMD [95].

Overall, this analysis demonstrates the effectiveness of IBD sharing for rare variant

association especially for cohorts with limited sequencing.
1as found in the GWAS Catalogue, https://www.ebi.ac.uk/gwas/.

https://www.ebi.ac.uk/gwas/
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3.4 Utilising IBD to account for recent ancestry

Mathieson and McVean [33] demonstrated with simulations that rare variants may

confound association studies when standard approaches used to control for common-

variant stratification are adopted. This is because rare variants exhibit a different

type of stratification, likely stronger, in comparison to common ones [33]. Recent

studies using UKBB have shown that residual stratification has affected association

studies of complex traits [10, 52, 53]. Moreover, a simulation study by Zaidi and

Mathieson [96] showed that subtle stratification might bias polygenic risk prediction,

and suggested that using IBD may lead to better control for stratification.

To explore that, I compared the correlations between 10 UKBB quantitative

phenotypes and different types of principal components (PCs) of ancestry. To that

end, I worked with the top eigenvectors either from the SNP-based GRM [4, 26,

51] (standard PCA), or the GRM formed by considering IBD segments shared

within the last 10 generations [11] (IBD-based). As illustrated in Fig. 3.5, the

gradient of significance for the PC-phenotype correlation was diverse and quite

different from that of the corresponding eigenvalue. For the standard PCA for

instance, PC-5 was the most significantly correlated covariate for every phenotype,

whereas most of the top-15 had moderate correlation. For IBD-based PCA, the

two most significantly-correlated vectors (18 and 47) had very distinctive patterns,

which implies that using an arbitrary small number of top eigenvectors might only

partially account for sample structure.

The IBD-based PCs could be used as covariates in association, in addition to

standard PCA. This approach was utilised in the latest GWAS of reproductive

success [97] to ensure that recent ancestry did not bias any findings. In particular,

I passed the top-100 principal components obtained from the aforementioned IBD-

based GRM to Gardner et al. [97] who compared this approach with standard

PCA correction and observed no differences or biases. Because it captures fine-

scale population structure [11, 98], IBD information can likely be used to more

effectively control for population structure, although this will require further

methodological development.
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Figure 3.5: Correlation between complex traits and principal components of
ancestry. This figure illustrates the significance of each phenotype-eigenvector correlation,
for 10 quantitative UKBB phenotypes and either the top 40 eigenvectors of the SNP-based
GRM [4] (top), or the top 50 eigenvectors of the IBD-based GRM [11] (bottom), using
N = 315k White British. Each value is the − log(·) of the p-value, capped to 100 to
increase clarity.

3.5 Limitations of the LoF-Segment burden and
next steps

In this chapter I presented results of using IBD sharing to detect association to

ultra-rare variants leveraging a subset of sequenced individuals, as well as an

exploratory analysis of using IBD-derived PCs to control for confounders. I will

close this chapter with a few limitations of this approach, some of which motivated

the work I performed next during my DPhil.

The LoF-segment burden does not rely on phasing information and the IBD

segment shared with a carrier is equally likely to involve or not the haplotype

that harbors the target LoF variant. In principle it may be possible to leverage

phasing information to increase the accuracy of this approach, but phasing of

rare sequenced variants is in general challenging [31, 42, 89, 99]. The LoF-segment

burden approach may be seen as implicitly performing genotype imputation followed

by burden testing. A recent study by Barton et al. [100] performed these steps
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explicitly and obtained high imputation accuracy down to MAF ∼ 5 × 10−5 for

most non-sequenced UKBB samples. This enabled a powerful association study

of N = 459,327 for both common and rare variation effectively outperforming our

LoF-segment and many other burden tests.

On the other hand, UKBB would gradually increase the availability of sequenced

samples [101, 102], making within-cohort imputation less appealing. IBD-based

imputation, in particular, depended on the set of variants to be imputed. Changing

this set, e.g. from LoF to a broader class of likely pathogenic, requires new

imputation and thus new testing analyses, which can be time-consuming. In

contrast, performing explicit imputation [100] enables direct testing of any set of

variants. Finally, our method was phenotype-specific, as we had to condition on

different sets of common variants. Switching to BOLT-LMM [36] – the state of the art

at the time – would improve things only marginally as it also supports only one

phenotype per run. Testing for numerous traits would thus be laborious and this

motivated me to work on a new LMM framework that will be more suitable for

phenome-wide association studies; this work is presented in the next chapter.
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Contents
4.1 Overview of current approaches . . . . . . . . . . . . . . 38
4.2 Testing for association with FMA . . . . . . . . . . . . . . 40
4.3 Association using multiple genetic components . . . . 44
4.4 Setup for evaluation with synthetic phenotypes . . . . 45
4.5 Results from simulations . . . . . . . . . . . . . . . . . . 47

4.5.1 Statistical power to detect association . . . . . . . . . . 47
4.5.2 Robustness to relatedness and population stratification 47
4.5.3 Biased σ2

g estimation and implication in association . . 50
4.6 Analysis of 20 real phenotypes . . . . . . . . . . . . . . 53

4.6.1 Results based on genotyped variants . . . . . . . . . . . 54
4.6.2 Results based on imputed variants . . . . . . . . . . . . 56

4.7 Computational benchmarking . . . . . . . . . . . . . . . 59

In this chapter I describe a new framework for linear mixed model (LMM)

association testing, called Fast Mixed-model Association (FMA). I focus on empirically

verifying the key LMM properties, which were discussed in Section 2.2, using

simulations with genotyped variants. Then, I apply FMA to real phenotypes and

imputed variants in Section 4.6 and use it to perform genealogy-based complex

trait analyses in Chapter 6.

An LMM combines fixed effects, such as a set of covariates or a candidate

37



38 4.1. Overview of current approaches

SNP being tested, with random effects, such as polygenic or environmental effects

[36, 38, 56, 60, 70, 72]. Given N genotyped samples with phenotype vector y,

an LMM can be expressed as

y = βtestxtest + Wγ + g + e, (4.1)

where xtest is the N -dimensional variant we aim to test, βtest is its effect size (a scalar),

W denotes the N ×c matrix of covariates, γ represents the corresponding c×1 fixed

effects (including an intercept term), g and e represent the N -dimensional genetic

and environmental components, respectively. We assume that g ∼ NN (0,σ2
gK) and

e ∼ NN (0,σ2
eIN ), where σ2

g and σ2
e capture the genetic and environmental variance,

typically normalised so that σ2
g + σ2

e = 1. IN is an N × N identity matrix and K

denotes the N × N genetic relatedness matrix (GRM). Assuming that g and e are

uncorrelated, the variance-covariance is cov(y) = V = σ2
gK + σ2

eIN . K is often

estimated via 1
M

XXT , where X is an N × M matrix of standardised genotypes. To

keep the notation clear, I do not discriminate between the corresponding estimate

V̂ and the theoretical term V.

To detect association, we aim to test the null hypothesis H0 : βtest = 0 for a

candidate SNP. For that we typically compute a test statistic χ2
LMM as the one

defined in Eq. 2.5, which is approximately distributed as χ2 with one degree of

freedom and is closely related to the effect size βtest (also defined in Eq. 2.5).

The inclusion of V−1 in the test statistics allows controlling for confounding due

to relatedness and population stratification [26, 47, 59, 60, 62, 103, 104], and

an increase in statistical power is obtained as a result of implicitly conditioning

on genome-wide causal variants that may not be significantly associated [36, 47,

70] (see BLUP in section 2.2).

4.1 Overview of current approaches

LMMs for genome-wide association have been extensively optimized to improve

statistical power and robustness while reducing computational costs [56, 59, 60, 70,

72, 103]. Svishcheva et al. [72] found that the fractions x⊤
mV−1xm

x⊤
mxm

are approximately
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constant for any genetic variant. Such a constant, referred to as GRAMMAR-γ or

just γ, may be estimated using a small number of variants. Having the estimate

γ̂, the test statistics (defined in Eq. 2.5) take the form

β̂test = x⊤
testV−1y

x⊤
testxtest

/γ̂, χ2
LMM = (x⊤

testV−1y)2

x⊤
testxtest

/γ̂, (4.2)

This leads to substantial computational gains, as it allows avoiding to compute

terms of the form x⊤
testV−1xtest for each tested variant. Furthermore, Listgarten et

al. [70] observed that fitting a candidate marker both as a fixed and random effect

may result in reduced statistical power. This may be remedied by excluding the

tested marker as well as variants which are in linkage disequilibrium (LD) with it

when forming the GRM [70]. In the leave-one-chromosome-out (LOCO) approach

[47], all markers on the same chromosome as the one tested are excluded from

the GRM, thus computing association statistics as in Eq. 4.2 for all autosomal

chromosomes requires 22 sets of V−1
−cy vectors, where each V−c is the covariance

matrix computed with all chromosomes excluding c.

More recently, several LMM association algorithms, such as BOLT-LMM [36,

46], REGENIE [39], and fastGWA [38, 45], introduced additional computational

improvements. BOLT-LMM [36, 46] avoids explicit calculations involving the N × N

GRM, by instead relying on numerical techniques such as the use of conjugate

gradient iteration [73], which brings the overall computational cost down from

O(N2M) to O(N1.5M). In addition, BOLT-LMM enables adopting a spike-and-slab

prior, approximated as a mixture of two Gaussians, on the distribution of effect sizes.

This approach, which I refer to as BOLT:MoG, provides improved modelling of the

sparsity of effects, and offers an increase in association power. BOLT-LMM also allows

computing association statistics using a simpler infinitesimal prior (BOLT:Inf),

which does not require variational inference, thereby reducing computation at the

cost of reduced gains in statistical power. The fastGWA algorithm [38, 45] is also

based on the LMM described by Eq. 2.4, but instead works with a sparse version of

the GRM and uses sparse matrix techniques to drastically improve computational

performance. Computing such a sparse GRM requires O(N2M) computation, but
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only needs to be performed once even when multiple traits are analysed in the

same cohort. Finally, REGENIE [39] approximates the LMM framework by using

a stacked ridge regression approach to estimate genetic effects. These approaches

incorporate several of the previously described features: BOLT:Inf, BOLT:MoG, and

fastGWA incorporate a GRAMMAR-γ calibration factor, while BOLT:Inf, BOLT:MoG,

and REGENIE rely on the LOCO scheme. REGENIE is additionally optimized to

process multiple traits in parallel.

4.2 Testing for association with FMA

In this section I describe FMA, a new framework for LMM-based association. This

is similar to BOLT:Inf but makes improvements to the estimation of variance

components and enables a parallel analysis of several quantitative traits. More

in detail, FMA performs the following steps: (a) estimate the variance components

σ2
g , σ2

e ; (b) estimate the calibration factor γ and calculate the 22 sets of LOCO

residuals V−1
-c y; (c) calculate the test statistics based on Eq. 4.2. These steps are

explained in the paragraphs and then summarised in Algorithm 1.

Fast variance-components estimation. FMA relies on a fast moment-based

multiple variance component estimator, RHE-mc [105], which is based on the

Haseman-Elston regression [106, 107]. This approach has a computational cost

of O
(

NMB
log3(N)

)
, where B is the number of random vectors (typically up to 50),

which is drastically better than the O(N1.5M) cost required by likelihood-based

algorithms, such as BOLT-LMM. To facilitate parallel analysis of multiple traits, and in

collaboration with Pazokitoroudi et al. [105], we developed an extension of RHE-mc

that can handle numerous phenotypes with minimal computational overhead. As

a further speed-up, we skip the calculation of standard errors, since association

testing only requires to obtain point estimates for the variance components in

order to build the covariance matrix.
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Efficient conjugate gradient solver for multiple phenotypes. The next step

for LMM-based association involves calculating the residuals V−1
−cy and any V−1

−cxm

products for the estimation of γ. Although these involve computing the inverse of

N ×N matrices, we may avoid the inversion by solving the system of linear equations

V−cu = z instead, using the conjugate gradient method [36, 73], where z is either

a phenotype or a SNP. This procedure costs O(qNM), where q is the number of

iterations needed for convergence, or O(N1.5M) as q typically scales as
√

N [36].

The inversion of V−c is not the only computational bottleneck. Forming these

matrices is also prohibitive for large samples as these require storing N2 double

precision values. An analysis of N = 200k, for instance, requires up to 300GB

just for storing the covariance matrix. However, owing to the conjugate gradient

method, we can solve the system of equations described above in a matrix-free way

since the only operations involving V−c are matrix-vector products involving the

corresponding matrix X of standardised genotypes. The following scheme describes

how we get a matrix-vector product using the GRM but without forming any

intermediate matrices:

XX⊤u = [(G − 1Nµ⊤)diag(σ)−1][(G − 1Nµ⊤)diag(σ)−1]⊤u

= (G − 1Nµ⊤)diag(σ)−2(G⊤u − 1Nµ⊤u)

= GDG⊤u − 1Nµ⊤DG⊤u − GDµ1⊤
Nu + 1Nµ⊤Dµ1⊤

Nu, (4.3)

G is the N × M matrix of raw allele counts (which is cheaper to store than X), 1N

is the N × 1 vector of ones, µ is the vector of variant means and σ contains the

corresponding standard deviations. The key element of Eq. 4.3 is how to decompose

the standardised version X of the genotypes into simple operations involving G and

two matrix-vector products. The product V−cu for a LOCO covariance matrix can

be formed by adding the corresponding XtX⊤
t u terms for all t ̸= c chromosomes.

Previous LMM implementations leveraging conjugate gradients supported mul-

tiple right hand sides (RHS) (for LOCO residuals or SNPs for estimating γ)

[36, 37] only for one phenotype. Dealing with multiple phenotypes requires

different covariance matrices, since the variance components change, but the
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main computational bottleneck is the formation of the GRM, which is shared

across all traits. With this in mind, I developed a conjugate-gradient solver which

forms multiple covariance matrices on the fly, at a small memory cost which is

linear to the number of traits.

More in detail, assume we analyse N samples, P phenotypes, and 22 chromo-

somes. Using 1 SNP per chromosome, per trait, to estimate γ, we need to solve

22 · P · 2 systems of equations of size N , since each LOCO-based covariance matrix

corresponds to P phenotypes and P variants. We can concatenate all the RHS

vectors and form a matrix U, then, for each chromosome t, obtain the N ×44P array

XtX⊤
t U using the expression 4.3, and subsequently update each column according to

the corresponding variance component. Assuming that the genotypes are partitioned

in chunks of size Mb × N (each being sufficiently small to span one chromosome),

we process a chunk Xb at each step and calculate the product X⊤
b XbU.

Implementation in Python To increase scalability with respect to both number

of variants and sample size, FMA streams genotypes from disk in contrast to strategies

that load the whole genotype matrix or GRM in memory. This allows FMA to

potentially scale to several millions of individuals. Streaming operations are

performed using the HDF51 format, which leads to significant speed-ups compared

to other file formats. Any utilisation of files in the plink format in Python is

performed using PySnpTools2.

Repeatedly reading data from disk creates significant I/O overheads which

are offset in FMA through additional optimization, such as code vectorisation and

multi-threading. Moreover, FMA may process several chunks of genotypes in parallel.

This improves speed at the cost of higher memory footprint, but the amount of

memory required grows linearly with the number of parallel processes (see Fig. A.7

for more details) making it preferable to run a few parallel processes (e.g. 4-6),

especially for large data sets.
1https://docs.h5py.org/en/stable/
2https://github.com/fastlmm/PySnpTools

https://docs.h5py.org/en/stable/
https://github.com/fastlmm/PySnpTools
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Algorithm 1
Genome-wide association with FMA

Input: genotypes; phenotypes
Preprocessing: SNP QC; Phenotype QC; LD scores; HDF5 file;
if condition to covariates then

regress covariates from phenotypes;
end
estimate h2 with multi-trait RHEmc;
select markers for γ estimation;
initialise phenotype-specific variables for the CG iteration;
while max-tol ≥ 5 · 10−4 do

for each chunk G of genotypes do
read G from disk;
multiply with G and G⊤ and standardise (Eq. 4.3);
make any LOCO adjustments;
for each phenotype do

calculate CG residuals, directions, and new tol;
end

end
end
save YFMA-LOCO residuals to disk;
collect all V−1x to estimate γ and save to disk;
if test array genotypes then

for each chunk G of genotypes do
read G from disk;
calculate YFMA-LOCO and mean-center;
for each phenotype do

calculate test statistics according to Eq. 4.2;
end

end
end
if test imputed genotypes then

run PLINK using YFMA-LOCO ;
for each phenotype do

convert PLINK’s t-test to χ2;
calibrate according to γ;

end
end
Output: Test statistics; LOCO residuals; γ coefficients
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4.3 Association using multiple genetic compo-
nents

The standard mixed model (2.4) can be generalized to allow for the presence of

multiple variance components, each with distinct assumptions for the distribution

of effect sizes. Consider a partition of the genome in K components g1, g2, ..., gK ,

of sizes M1, M2, ..., MK respectively:

y = βtestxtest + Wγ +
K∑

k=1
gk + e. (4.4)

We assume that variants from component k follow a Gaussian distribution with

mean zero and variance σ2
k/Mk, so that gk ∼ NN (0, σ2

kXkX⊤
k /Mk), where Xk is the

N × Mk matrix of standardized genotypes for component k, M1 + ... + MK = M ,

σ2
1 + ... + σ2

K + σ2
e = 1, and e ∼ NN(0, σ2

eI) as before. By relying on the RHE-mc

algorithm [37], FMA enables fitting models that include multiple variance components

with cost O
(
K2(K +NB)+ NMB

max(log3(N),log3(M))

)
; note that because N ≫ K this cost

is significantly better than the O(KN1.5M) required to perform maximum-likelihood

estimation as in BOLT-LMM [108] (for estimating h2
snp only).

A genetic component can be any class of variants with a specific characteristic,

e.g. low/high allele frequency or biological function, which are assumed to be

drawn from the same underlying distribution. Here I focus on partitions of the

genome according to MAF and LD scores. The single component model, which is

referred to as “infinitesimal”, is a special case and can be obtained by the trivial

partition where k = 1, M1 = M , and σ2
1 = σ2

g . Models with multiple genetic

components have been extensively used in heritability estimation, offering less

biased estimates [105, 109–111], as well as in SNP-based complex trait prediction,

providing increased accuracy [112, 113].

Current approaches for LOCO-based association are limited to the use of a single

variance component, whereas FMA allows LMM association with multiple genetic

components. This is achieved with covariance matrices formed as follows:

V−c = σ2
eIN +

K∑
k=1

σ2
k

Mk⊖c

∑
t̸=c

Xk⊗tX⊤
k⊗t, (4.5)
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where each SNP belongs to a unique component and one chromosome and k ⊗ t

denotes the intersection of component k with chromosome t. As a result, to form

the covariance matrix V−c, component k consists of all Mk variants besides those

in chromosome c; Mk⊖c denotes the cardinality of this set. In this work I consider

FMA:C1, FMA:C8, and FMA:C16 corresponding to one component, a combination

of 2 MAF with 4 LD classes, and a combination of 4 MAF with 4 LD classes

respectively. For C8 I combined 2 MAF ranges, (0.01, 0.05] and (0.05, 0.5], with

LD-score quartiles, and for C16 I combined 4 MAF ranges, (0, 0.028], (0.028, 0.067],

(0.067, 0.212], and (0.212, 0.5], with LD-score quartiles [105].

4.4 Setup for evaluation with synthetic pheno-
types

I performed extensive simulations to evaluate the computational and statistical

properties of BOLT-LMM (using both MoG and Inf algorithms) [36, 46] REGENIE [39],

fastGWA [38], FMA, and linear regression as implemented in PLINK [114] (LinReg).

I used M = 387,700 SNP array variants from chromosomes 1 to 10 of UKBB

and extracted four sets of N = 50,000 individuals, selected based on ancestry and

relatedness described by Bycroft et al. [4]. The first set, referred to as “UWB”,

included 50k randomly selected unrelated White British (self-reported [4]). A second

set, “RWB”, included N = 25k samples from the UWB set and N = 25k individuals

sharing close familial relationships, with an average pairwise kinship coefficient of 0.11

[4]. The third, “EUR”, comprised N = 25k samples from the first set and N = 25k

European individuals who did not self-report as British [4]. Finally, I analysed a

fourth set, “CSR”, involving continental structure and relatedness, consisting of

∼ 34k British, 9k Europeans, and 7k individuals of African or East Asian ancestries,

where 9k pairs of individuals had an average kinship coefficient of 0.10.

I generated sets of 50 synthetic phenotypes with narrow-sense heritability

h2 = 25%. I selected either 4,000 or 19,000 causal variants from the odd chro-

mosomes, corresponding to ∼1% or ∼5% of all variants, while variants on even

chromosomes had no contribution to the phenotype [36, 38, 39]. I simulated
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population stratification for the EUR and CSR samples by introducing correlation

between the top-10 principal components of ancestry (computed by Bycroft et

al. [4]) and the phenotype. In particular, the phenotypes were synthesized as

y =
m∑

j=1
βjgj +

10∑
t=1

γjsj + e (4.6)

for m casual variants, where gj is SNP-j, st represents the top-t principal component,

and e represents environmental effects. For the effect sizes, I followed the setup

of Pazokitoroudi et al. [105] to obtain realistic genetic architectures by adjusting

according to MAF and LD-score, so that βj ∼ N (0, h2wj

m
(2fj(1−fj))−0.75) [105, 115]

where wj and fj are respectively the LD-score (average LD within a 200kb window)

and allele frequency of variant j (in-sample). Finally, the weights γt followed an

exponential decay, adjusted so that the total contribution of stratification was 5%

of the phenotypic variance (only for the EUR and CSR samples).

I measured efficacy in controlling for population stratification by running different

methods both with and without conditioning on the top-5 principal components

of ancestry. Components 6 to 10 were not included as fixed effects, with the

goal of measuring the robustness to residual stratification that is not captured by

the top PCs (approximately 1.5% of phenotypic variance). When running FMA, I

used 50 random vectors to estimate heritability with RHE-mc, using either a single

variance component (FMA:C1), or multiple components based on MAF and LD

as in [105] (defined in the previous section). I ran REGENIE using the –lowmem

flag to keep memory requirements low while storing intermediate files to disk, and

–bsize 1000, as recommended [39]. Because BOLT:MoG, BOLT:Inf, and fastGWA

are not optimized for parallel trait analysis, I ran each sequentially for all traits.

All methods were ran on an Intel Skylake 2.6 GHz CPU architecture, providing

access to 5 CPU cores and up to 75 GB of RAM.
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4.5 Results from simulations

4.5.1 Statistical power to detect association

I first assessed the statistical performance, measured in terms of percentage increase

in average χ2 values compared to LinReg, by applying each method to a sample

of 50k unrelated British, and the two types of genetic architecture. The results

are summarised in Fig. 4.1, where I show the performance gain over LinReg, and

numerical values, including mean test statistics and statistical power, are reported

in Tables B.1 and B.2. BOLT:MoG clearly outperformed all the other methods, with

the largest gain observed in the scenario involving 1% polygenicity, demonstrating

the advantage of non-infinitesimal modelling under sparse genetic architectures

[36, 38, 46]. FMA:C8, FMA:C16, BOLT:Inf, and REGENIE all had similar performance

when the genetic architecture was sparse (power 12.4−12.5%), but REGENIE showed

slightly less power when polygenicity was set to 5% (Fig. 4.1). fastGWA achieved

the least power and in fact behaved similarly to linear regression. This could

be explained by the lack of relatedness in the sample which leads to the sparse

GRM being almost a diagonal matrix.

This scenario only includes unrelated samples of homogeneous ancestry, therefore

we expect to observe controlled type I error rates. Indeed, FMA:C8, FMA:C16,

BOLT:Inf, REGENIE and LinReg all consistently yielded controlled error rates (Tables

B.1,B.2). For similar reasons, running REGENIE, fastGWA, or LinReg with covariates

did not make any noticeable differences. Finally, BOLT:MoG had significantly elevated

error rates (0.051, p-value< 1 × 10−4) for the 1% polygenicity case, but the inflation

was minor and may be due to the overestimation in h2 (see Fig. 4.3 and Section 4.5.3).

4.5.2 Robustness to relatedness and population stratifica-
tion

Family structure and cryptic relatedness can inflate test statistics [36, 59, 60], so

next, I benchmarked association algorithms in scenarios that include the presence

of related individuals. I considered 50k British samples this time including 12,500

pairs of related individuals and measured type I error rates by computing the
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Figure 4.1: Benchmarking of statistical power in 50k UWB samples and
synthetic phenotypes. I measure power as the increase (i.e. ratio) over Linear
Regression in average test statistic at the causal markers with the highest effects (roughly
234 and 895), for each of the 50 replicates. The results for the unrelated British samples
(UWB) and the two types of architecture I investigated (1% or 5% polygenicity; h2 = 0.25)
are plotted here. Similar trends were observed by looking at the average test statistic at
top inferred variants or the total number of significant loci.

fraction of null variants identified as causal using 5% as threshold. To determine

if an error rate was significantly larger than 5%, I used 4.5 × 10−3 as a threshold

accounting for multiple testing and the 11 methods in the benchmarking. As Figure

4.2 (left column) and Tables B.3,B.4 show, every LMM approach was adequately

calibrated, whereas LinReg was always significantly inflated (type I errors ranged in

0.051 − 0.052). This inflation was not fixed after adding covariates, an observation

which agrees with previous studies demonstrating that principal components of

ancestry are not sufficient to control for relatedness [36, 38, 39, 47, 51].

I next sought to investigate which association methods are robust to population

stratification, using the EUR sample consisting of 25k British and 25k non-British

Europeans. I ran FMA:C8, FMA:C16, BOLT:Inf, and BOLT:MoG without any covari-

ates, and REGENIE, fastGWA, and LinReg both with and without covariates. The

results are summarised in Figure 4.2 (middle column) and Tables B.5 and B.6. I

found that proper covariance-based methods, e.g. FMA:C8 and BOLT:Inf, retained

controlled type I error rates in both cases of polygenicity. On the other hand,

approximate mixed-model approaches, i.e. REGENIE and fastGWA, required the

use of covariates in order to achieve the same calibration. In line with previous
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(a) 1% polygenicity

(b) 5% polygenicity

Figure 4.2: Type I error performance on synthetic phenotypes. Type I error rates
are calculated as the proportion of falsely determined causal out of all ∼ 196k non-causal
variants within even chromosomes, at a nominal level of 5%. Showing are results for
the sets of related British (RWB), British and Europeans (EUR), and a combination
of European, African and South-East Asian samples including relatives (CSR), for the
case of (a) 1% and (b) 5% polygenicity. FMA, BOLT:Inf, and BOLT:MoG were invoked
without any covariates, whereas REGENIE, fastGWA, and linear regression were invoked
either without covariates, or after conditioning on the top-5 principal components of
ancestry. See Tables B.3-B.8 for more details.

studies comparing LMMs and PCA when correcting for population stratification

[26, 47, 51, 64], LinReg with covariates on the EUR cases was better than without

but still inflated, indicating confounding from residual stratification (EUR). This

was expected since I used the top 10 components to simulate stratification and

only up to 5 to account for that.

As a final experiment, I assessed the aforementioned methods in the CSR

sample comprising both population stratification and relatedness. The results are

illustrated in Fig. 4.2 (right column) with more details following in tables B.7
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and B.8. As before, FMA, BOLT:Inf, and BOLT:MoG all yielded controlled error

rates, in contrast to fastGWA and REGENIE which required the use of covariates and

were inflated otherwise. LinReg was significantly inflated even after conditioning

on principal components, as expected given the presence of related individuals

in the sample. Moreover, REGENIE without covariates was severely confounded

with error rates reaching 56%. This may be caused by overfitting of the Ridge

predictors to the underlying differences in LD patterns [39]. Overall, these results

highlight the importance of using both an accurate GRM and the LOCO feature

in LMM-based association.

4.5.3 Biased σ2
g estimation and implication in association

I investigated the efficacy of several approaches for estimating narrow-sense heritabil-

ity, equivalently σ2
g , which is an intermediate step for several LMM algorithms for

association, given the samples of increasing structure described above. As presented

previously, I considered two multiple variance-components (VC) approaches: 2 MAF

classes coupled with 4 LD classes (RHE:2MAF x 4LD, or C8) and 4 MAF coupled with

4 LD (RHE:4MAF x 4LD, or C16). I compared these with single-component methods,

namely BOLT-LMM and fastGWA, both of which employ restricted maximum likelihood

(REML) algorithms, and also assessed RHE-mc using one component containing all

the available variants excluding the HLA region (RHE:C1, as in [105]).

Figure 4.3 shows the estimates for all 8 scenarios. RHE:2MAF x 4LD and

RHE:4MAF x 4LD produced similar estimates and were unbiased in most cases, while

keeping small standard errors, in contrast to single component approaches which

showed systematic biases. Overall, and considering the mean absolute bias, RHE:C8

was the least biased method, followed by RHE:C16. fastGWA yielded unbiased

estimates for the cases of RWB and EUR, but was unstable in the UWB and

CSR cases as it either had high variance (estimates ranging (0.0,0.7) while the

true value was 0.25) or repeatedly under-estimated heritability (estimates ≤ 0.04).

Moreover, BOLT-LMM and RHE:C1 over-estimated heritability in every scenario, with

the latter yielding an average bias of roughly 0.10. Interestingly, BOLT-LMM yielded
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a consistent overestimation, with estimates in the range [0.275 − 0.359]. This could

be a result of mis-specifying the contribution of common and rare variants by

assuming the same distribution for all variants, and agrees with a similar study

by Jiang et al. [38] (see their Ext. Fig. 4) showing that BOLT-LMM yields a similar

bias irrespectively of environmental effects. To further investigate the differences

between single and multiple component approaches, I used BOLT-REML 3 [108] and

found that using the 2MAF x 4LD annotation indeed yields less biased estimates

than using a single component (Fig. A.10). This observation is consistent with

previous studies demonstrating the benefits of using multiple VC for avoiding

model-misspecification in h2 estimation [105, 110, 111, 115–117], e.g. when the

genetic architecture depends on MAF or LD as is the case here.

The aforementioned biases might have implications in statistical power for

association. For instance, FMA:C1, which was based on heavily over-estimated σ2
gs,

yielded elevated type I error rates in most cases (Tables B.1-B.6). BOLT:MoG, which

was based on modestly over-estimated σ2
gs, also had inflated error rates for UWB

or EUR with low polygenicity. This is in accordance with a separate experiment I

performed to assess FMA’s robustness to biased VC estimates, illustrated in Fig. 4.4.

This showed that test-statistics inflation is proportional to the bias in σ2
g estimation,

with the inflation being less than 1% for as long as bias was up to 0.10.

3this software is part of BOLT-LMM but specialised for narrow-sense h2 estimation
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(a) h2
SNP estimation in each of the 8 synthetic cases (b) Total bias

Figure 4.3: h2
SNP estimation in UKBB samples and synthetic phenotypes. (a)

Estimates for SNP-based heritability by six methods, averaging for the 50 replicates of
each case, with error bars showing the standard deviation of the 50 estimates. I analysed
sets of 50k samples that were unrelated British (UWB), British including pairs of related
individuals (RWB), British and Europeans (EUR), and a combination of European,
African and South-East Asian samples including relatives (CSR). I used chromosomes
1-10 (M = 387,700) and either 1% or 5% polygenicity, corresponding to roughly 4,000 or
19,000 variants. (b) Mean bias for each of the six methods estimating h2

SNP, calculated
as the mean absolute error between the true value (0.25) and the mean estimate (as in
the left panel).

Figure 4.4: Robustness of FMA to biased σ2
g estimates. Left: I compare the

LOCO residuals obtained using perturbed variance-component (VC) estimates to those
corresponding to the original case, where the true σ2

g was 0.25, and plot the mean of the
squared differences. Next, I calculate test statistics for each case and measure inflation as
the average χ2 at 196k non-causal variants (centre) and at 19k causal variants (right).
Red markers indicate the estimates obtained by RHE-mc.
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4.6 Analysis of 20 real phenotypes

To demonstrate the applicability of FMA to real studies, I focused on a set of 20

quantitative phenotypes with high phenotyping rates and various levels of heritability,

a summary of which is given in Table 4.1. I explored subsets of UKBB genotypes

ranging from 50,000 individuals (consisting only of unrelated British) to 446,050

(consisting of all Europeans); the smaller sets were mainly used for a computational

comparison. For all methods requiring model fitting, I used a fixed set of 623,128

SNPs, consisting mostly of those variants with frequency higher than 1% (possibly

lower on the smaller subsets), stored in the bed/bim/fam format [49]. Testing was

performed both on that set of array data (for all subsets), and on the imputed

genotypes provided by UKBB (version 3, based on the HRC+UK10K reference panel

[4, 32]) using 30 and 38.5 million variants for N = 50k and N = 446k, respectively.

I ran each method while conditioning on sex, age, age2 and 20 principal

components of ancestry as covariates, using 12 computational cores and up to

150GB of memory, using any recommended options. In particular, I ran REGENIE

using –bsize 1000 and –lowmem, as recommended for model fitting, and then

–bsize 400, –ref-first, –minMAC 5 and –minINFO 0.50 for testing. FMA used

6 parallel processes and one variant per chromosome for estimating the calibration

factors. Regarding the imputed genotypes, BOLT:MoG and REGENIE where applied to

the original data in the bgen format [4]. PLINK v2 [114] was restricted to the sample

of N = 328k unrelated British (as a baseline), invoked with –glm, –mach-r2-filter

0.50, –mac 5, after converting the data to the pgen/psam/pvar format. This format

was also used for fastGWA, which was invoked with similar arguments.

To obtain FMA test statistics on imputed genotypes, after model fitting, I first ran

PLINK using the corresponding LOCO residuals V−1
−cy as phenotypes (one set per

chromosome, per trait), and then used Python to convert PLINK’s t-test values to

χ2 and adjust according to each calibration factor (as in Eq. 4.2). This approach is

similar to fastGWA which, by default, avoids the explicit conditioning on covariates

to reduce the runtime of step-2 in association [38, 45].
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Phenotype UKBB code % missing ĥ2
snp

Body mass index 21001 0.30 0.2992
Diastolic blood pressure 4079 5.98 0.1454

Eosinophil count 30150 0.17 0.1977
Eosinophil percentage 30210 0.17 0.2008
Forced vital capacity 3062 8.15 0.1649

Glycated haemoglobin 30750 4.31 0.1419
HDL cholesterol 30760 11.86 0.2175

Mean corp haemoglobin 30050 0.00 0.2457
Mean corp volume 30040 0.00 0.2928

Mean platelet volume 30100 0.00 0.4344
Mean sphered cell volume 30270 1.63 0.2447

Monocyte count 30130 0.17 0.1562
Platelet count 30080 0.00 0.3421

Platelet crit 30090 0.05 0.2972
Platelet distr width 30110 0.05 0.2694

Red blood cell count 30010 0.00 0.2741
Red blood cell distr width 30070 0.00 0.1508

Systolic blood pressure 4080 5.99 0.1500
Total cholesterol 30690 3.97 0.1470

White blood cell count 30000 0.00 0.1885

Table 4.1: List of 20 real phenotypes analysed. I selected traits based on phenotypic
rates and popularity among other studies and mention the UKBB field codes for reference.
The third column reports the fraction of missing values for the N = 446,050 sample,
which is the total number of individuals included in the analysis. I also give the estimates
of total heritability obtained by RHE-mc [105] using the annotation with 2MAF × 4LD
components; the variance-components estimates are shown in Fig. A.11.

4.6.1 Results based on genotyped variants

Figure 4.5 gives a summary of each method’s performance measured by the gain in

χ2 statistics over LinReg, which can be seen as a surrogate for statistical power [36,

46], computed using the 623k genotyped variants I used for model fitting. These

results follow very similar trends to those observed previously with simulations. In

particular, BOLT:MoG achieved the highest mean χ2, followed by FMA:C8, BOLT:Inf,

and REGENIE. fastGWA behaves similarly to LinReg when N = 50k, N = 164k,

or N = 328k, as these samples consist of unrelated individuals resulting in a

sparse GRM which is effectively diagonal. LinReg is expected to be confounded by

relatedness in the N = 446k sample, in contrast to the LMM approaches, therefore
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Figure 4.5: Percentage of increase in χ2 values over linear regression for 20
real quantitative phenotypes. I compare the increase in χ2 values over LinReg across
M = 623,128 genotyped variants – the same as those used for model fitting – and bars
correspond to standard deviations for the 20 phenotypes. The first three samples consist
of unrelated British individuals, and the fourth one contains all Europeans (UKBB). I
report pairwise comparisons in Table B.9.

for this case I compared with the findings of the N = 328k sample, following

Loh et al. [46]. For most methods, the gain over LinReg due to the phenotype

residualisation implicitly performed by LMMs was proportional to sample size,

in accordance to previous studies [36, 47, 75]. Similar results are observed when

considering the most significant associations, as shown in Fig. A.12.

I tested which methods achieved significantly higher performance than others

by comparing the average test statistic at top variants with paired t-tests (Table

B.9). BOLT:MoG, BOLT:Inf, FMA:C8, and REGENIE obtained significantly higher χ2

statistics than both fastGWA and LinReg (p < 0.05/15). No other comparisons

yielded significant differences, after adjusting for multiple testing of 15 pairs. For

instance, REGENIE had a marginally higher average χ2 than FMA:C8 (238.36 vs 235.37;

p = 0.036) but the p-value did not pass the adjusted threshold for significance.
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4.6.2 Results based on imputed variants

I next applied FMA:C8, REGENIE, fastGWA, and LinReg to all 20 phenotypes and

38.5 million imputed variants, using N = 446k samples of European ancestry for

all methods except LinReg, which was restricted to N = 328k unrelated British

samples to avoid confounding due to relatedness [46, 51]. I also ran BOLT:MoG but

only for a computational assessment. A summary of this experiment is given in

Table 4.2, including average test statistics, number of associations, and LDscore

regression [76] intercepts.

To assess if any method is inflated, due to relatedness or residual stratification, I

compared the LDscore regression attenuation ratios (AR) with those by LinReg on

the set of unrelated British, following Loh et al. [46]. In particular, I ran LDscore

regression [76] using LD scores calculated from the 1000 Genomes reference panel

(Phase 3) [3], the “baselineLD” model [109] (which stratifies variants according to

96 annotations), and regression weights from Hap Map 3 [2], resulting in about 1

million variants. I observed no significant differences (Figure 4.7), implying that

all mixed-model approaches are similarly calibrated to LinReg restricted to the

smaller sample. For instance, the mean AR for FMA:C8 was 0.0901 (0.0053), the one

for LinReg was 0.0893 (0.0072), and the difference was not significantly different

from 0. This was also the case for REGENIE and fastGWA, having an average AR

of 0.0876 (0.0053) and 0.0884 (0.0061), respectively.

Next, I assessed the rate at which associated variants replicate in an independent

cohort using summary statistics obtained from Biobank Japan (BBJ) [118]. I looked

at the number of genome-wide significant variants (p < 5e × 10−8) and the number

of loci (considering windows of 100,000 base pairs) which had nominal significance

in BBJ (p < 0.05). Among the 13 phenotypes for which summary statistics were

available (of the 20 analysed), FMA:C8, REGENIE, and fastGWA replicated 19,224,

19,101, and 16,999 variants respectively (the average ratios were 40.8%, 40.8%, and

42.2% respectively; see Table 4.2). In terms of independent loci, FMA:C8 replicated

a total of 4,810, whereas REGENIE and fastGWA had a smaller total of 4,755 and
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4,723 respectively. Although this difference is not significant, it shows that FMA can

have performance better, or at least comparable, to the state of the art.

Phenotype Method
Mean

χ2
LDSC

intercept
Atten
ratio

Loci
repl/ed

SNPs
repl/ed ratio

BMI fastGWA 3.13 1.120 0.057 642 44.7%
BMI FMA:C8 3.25 1.115 0.051 612 44.4%
BMI Regenie 3.29 1.102 0.045 570 45.5%

Diastolic blood pressure fastGWA 2.15 1.057 0.049 228 33.4%
Diastolic blood pressure FMA:C8 2.16 1.079 0.068 242 33.8%
Diastolic blood pressure Regenie 2.21 1.068 0.056 247 34.2%

Eosinophil count fastGWA 2.32 1.088 0.067 298 29.3%
Eosinophil count FMA:C8 2.36 1.104 0.077 323 28.7%
Eosinophil count Regenie 2.43 1.108 0.076 320 28.6%

Eosinophil percentage fastGWA 2.36 1.091 0.066 - -
Eosinophil percentage FMA:C8 2.41 1.099 0.070 - -
Eosinophil percentage Regenie 2.49 1.105 0.070 - -
Forced vital capacity fastGWA 2.52 1.119 0.078 - -
Forced vital capacity FMA:C8 2.40 1.116 0.083 - -
Forced vital capacity Regenie 2.57 1.115 0.073 - -

Glycated haemoglobin fastGWA 2.05 1.127 0.122 230 32.3%
Glycated haemoglobin FMA:C8 2.06 1.137 0.130 232 31.7%
Glycated haemoglobin Regenie 2.11 1.134 0.121 245 31.1%

HDL cholesterol fastGWA 2.57 1.139 0.088 334 36.6%
HDL cholesterol FMA:C8 2.69 1.124 0.073 294 34.2%
HDL cholesterol Regenie 2.89 1.164 0.087 321 32.9%

Mean corp haemoglobin fastGWA 2.39 1.177 0.128 370 53.9%
Mean corp haemoglobin FMA:C8 2.51 1.198 0.131 391 51.6%
Mean corp haemoglobin Regenie 2.59 1.188 0.119 381 51.0%

Mean corp volume fastGWA 2.70 1.237 0.139 492 53.3%
Mean corp volume FMA:C8 2.93 1.255 0.132 467 49.7%
Mean corp volume Regenie 3.01 1.251 0.125 458 49.7%

Mean platelet volume fastGWA 3.24 1.236 0.105 - -
Mean platelet volume FMA:C8 3.83 1.276 0.098 - -
Mean platelet volume Regenie 3.96 1.294 0.099 - -

Mean sphered cell volume fastGWA 2.52 1.210 0.138 - -
Mean sphered cell volume FMA:C8 2.68 1.205 0.122 - -
Mean sphered cell volume Regenie 2.75 1.217 0.124 - -

Monocyte count fastGWA 1.94 1.086 0.091 306 44.9%
Monocyte count FMA:C8 1.95 1.098 0.103 304 44.1%
Monocyte count Regenie 2.01 1.108 0.107 298 44.3%

Platelet count fastGWA 3.11 1.196 0.093 587 45.6%
Platelet count FMA:C8 3.46 1.238 0.097 607 42.1%
Platelet count Regenie 3.53 1.227 0.090 600 42.2%

Platelet crit fastGWA 2.78 1.204 0.115 - -
Platelet crit FMA:C8 3.00 1.208 0.104 - -
Platelet crit Regenie 3.07 1.225 0.109 - -

(continued next)
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Phenotype Method
Mean

χ2
LDSC

intercept
Atten
ratio

Loci
repl/ed

SNPs
repl/ed ratio

Platelet distr width fastGWA 2.72 1.123 0.071 - -
Platelet distr width FMA:C8 2.88 1.143 0.076 - -
Platelet distr width Regenie 3.04 1.140 0.069 - -

RB cell count fastGWA 2.82 1.170 0.093 450 44.6%
RB cell count FMA:C8 2.98 1.174 0.088 506 42.2%
RB cell count Regenie 3.08 1.188 0.090 512 42.3%

RB cell distr width fastGWA 2.08 1.050 0.046 -
RB cell distr width FMA:C8 2.13 1.061 0.054 - -
RB cell distr width Regenie 2.17 1.061 0.052 - -

Systolic blood pressure fastGWA 2.19 1.091 0.076 245 41.8%
Systolic blood pressure FMA:C8 2.19 1.091 0.077 260 41.8%
Systolic blood pressure Regenie 2.25 1.094 0.075 253 41.2%

Total cholesterol fastGWA 1.93 1.069 0.074 180 45.8%
Total cholesterol FMA:C8 1.97 1.080 0.082 193 45.1%
Total cholesterol Regenie 2.03 1.093 0.091 193 44.5%

WB cell count fastGWA 2.20 1.086 0.072 361 42.4%
WB cell count FMA:C8 2.22 1.105 0.086 379 41.6%
WB cell count Regenie 2.26 1.097 0.077 357 42.3%

fastGWA 2.49 1.134 0.088 363 42.2%
Averages FMA:C8 2.60 1.145 0.090 370 40.8%

Regenie 2.69 1.149 0.088 366 40.8%

Table 4.2: GWAS summary of 20 phenotypes and N = 446k. This is a summary of
the results by applying FMA:C8, REGENIE, and fastGWA to N = 446,050 UKBB samples of
European ancestry, using M = 623,128 genotyped variants for model-fitting, and testing
on 38.5 million markers (22 autosomes). I report the mean χ2 statistics, the LD score
regression intercept, and the corresponding attenuation ratio, after selecting about 800k
SNPs for which LD scores were available, using the “baselineLD” annotation [36, 76].
The last two columns show the fractions for the number of loci (after clumping) and the
ratio of single variants that were replicated in Biobank Japan, for the 13/20 phenotypes
for which summary statistics were freely available [118]. The corresponding UKBB codes
are given in Table 4.1.
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Figure 4.6: Time complexity for model fitting in GWAS. I illustrate the duration
for the model-fitting step of each method (without testing), considering 20 real quantitative
phenotypes, M = 623,128 variants, and samples of increasing size. I used 12 CPU cores
and up to 150GB of RAM. For BOLT:Inf, BOLT:MoG, and fastGWA, which process each
trait separately, I considered the total running time of the 20 jobs (one for each phenotype);
the cost for building the GRM for fastGWA is not included.

4.7 Computational benchmarking

Figure 4.6 summarises the running times for model fitting (step-1 of association)

of the 20 real phenotypes. A similar comparison for the 50 synthetic phenotypes

is reported in Fig. A.8. REGENIE achieves the fastest training for N ≤ 164k,

but requires more time than fastGWA for larger samples. Note, however, that

I do not account for the cost of preparing fastGWA’s sparse GRM, which is a

computationally intense pre-processing step (i.e. 74 hours for N = 446k). FMA:C8

comes next achieving a significant speed-up over BOLT:Inf, e.g. 81 vs 183 hours

for N = 446k, owing to the support of multiple phenotypes which compensates

for the time lost in repeatedly reading data from disk. BOLT:MoG is the slowest

method with orders of magnitude higher times, e.g. almost 3 weeks for N = 446k.

These patterns resemble the underlying implementation of each algorithm. REGENIE

performs a single pass over the genotypes (and then another on the intermediate
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Sample Method Step-1 (h) Step-2 (h) Total (h) RAM (GB)
FMA:C8 2.6 5.0 7.6 12

BOLT:MoG 19.7 55.9 75.6 9.1
50k REGENIE 0.5 7.4 7.9 2.5

fastGWA 1.5 2.1 3.6 5.3
LinReg - 5.9 5.9 15
FMA:C8 81 29 110 85

BOLT:MoG 445 742 1187 69
446k REGENIE 5 154 159 13

fastGWA 4 43 47 14
LinRegN=328k - 134 134 15

Table 4.3: Computational benchmarking for large-scale GWAS. I compare the
computational resources needed for the analysis of 20 real quantitative phenotypes (Table
4.1) using either N = 50,000 or N = 446,050 UKBB samples, and testing for 30m or
38.5m imputed variants respectively. I used M = 623,128 genotyped variants for model
fitting (step-1) and each method was given 12 CPU cores and sufficient memory or disk
space. I note that for FMA:C8 I used PLINK v2 ([114]) to test for imputed genotypes in
the pgen format (Supplementary Notes); times for N = 446k are rounded to the nearest
integer for clarity; fastGWA required 74 hours to prepare the sparse GRM. Times for
N = 446k are rounded to the nearest integer for clarity.

results), whereas covariance-based approaches – fastGWA, FMA:C8, BOLT:Inf, and

BOLT:MoG – employ iterative algorithms and the number of iterations is proportional

to the sample size. This effectively results in a complexity of O(N1.5M) and the

corresponding differences can be explained by the intermediate steps, such as the

use of LOCO, how/if the GRM is formed, etc.

The next step in association, calculating test statistics, can be more demanding

than step-1 when millions of variants are considered. This is emphasized in Table

4.3 where I present each method’s total cost for large-scale studies. For N = 446k,

fastGWA was the fastest method overall requiring a total of 47 hours. Interestingly,

FMA:C8 was the one achieving the shortest step-2 with 29 hours, which can be

explained by two factors. First, FMA:C8 avoids the explicit condition on covariates

during testing, as is the case for REGENIE and fastGWA, and instead applies PLINK

on the LOCO residuals. Second, FMA:C8 makes a single pass over the imputed

genotypes, instead of reading each file once for each phenotype, as is the case for

fastGWA. BOLT:MoG could, in theory, complete step-2 in a similar duration, but

I followed the recommended guidelines suggesting the explicit use of principal
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components as covariates for reduced running time [46]. The same ranking was

observed in the N = 50k sample.

To ensure fairness, I ran REGENIE similarly to FMA:C8 or fastGWA, without

explicitly conditioning on covariates. As expected, this was faster requiring about

61 hours in total. However, the corresponding attenuation ratios were significantly

higher with an average of 0.0942 (0.0058) (t-test p = 0.0011; Fig. 4.7) and the

total number of loci replicated in BBJ dropped to 4,741. Furthermore, I compared

this approach to fastGWA and FMA:C8 and found that their attenuation ratios were

significantly lower (t-test p = 0.0038 or 0.0013 respectively; Fig. A.13). These

observations in combination with my simulation study imply that REGENIE requires

explicit conditioning on covariates during the computation of association statistics,

which increases the computational requirements. FMA:C8, in contrast, remains

calibrated when association statistics are computed using a previously residualised

phenotype, resulting in a significant speed-up during testing.

In terms of memory, FMA had the largest requirements, e.g. 85 GB of RAM

for a full-UKBB analysis of 20 traits, or 12 GB for the smaller sample, similar to

BOLT:MoG’s cost for one phenotype (69 and 9 respectively). fastGWA and REGENIE

were more efficient, with REGENIE requiring the least amount of memory, owing to

the feature of writing intermediate files to disk. I note that REGENIE’s disk usage

depends both on the number of traits and number of model-SNPs used, whereas

FMA only stores the N × M genotypes in an uncompressed format and memory

usage depends on N and the number of phenotypes (see Fig. A.7).

Translation to actual cost. The aforementioned observations yield a similar

comparison when actual running costs are considered. To demonstrate that, I will

focus on the N = 446k sample which shows the largest variability. Computing such

costs depends on the architecture of each system and how jobs are prioritised, but

here I will only present rough estimates based on two scenarios; a hypothetical
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cluster with infinite resources and a fixed cost per CPU, and a more realistic setup

whereby an analysis takes place on the UKBB Research Analysis Platform (RAP)4.

First, assuming that utilising a single CPU core costs £0.10 per hour, the

cost in money is proportional to each method’s running time. In this scenario,

the most affordable method would be fastGWA requiring 43 · 12 · 0.10 = 51.6£,

followed by FMA:C8 (£132), REGENIE (£190.8), and BOLT:MoG (£1,440). In practice,

however, there are several limitations for memory and higher costs might occur

when more RAM is needed. To that end, assume that the analysis needs to

take place inside the UKBB-RAP, which offers machine-specific rates. In this

scenario, BOLT:MoG and FMA:C8 should be assigned to machines with large amounts

of RAM, such as m5.4xlarge or i3.4xlarge, whereas REGENIE or fastGWA have

a low memory footprint and can thus use machines with lower costs, such as

c5d.2xlarge. REGENIE, however, makes heavy disk utilisation, thus a more suitable

machine would be one c5.2xlarge (which employs an SSD instead), with a slightly

larger cost. Combining these assignments with the computational requirements

described earlier, the corresponding total costs will be £535, £69, £48, and £11 for

BOLT:MoG, FMA:C8, REGENIE, and fastGWA respectively, as summarised in Table 4.4.

I note that these are only rough estimates and, given the wide range of machines

available and the specifications for each approach, better optimisation may be

achievable. Furthermore, this comparison builds on the observations made earlier

regarding the implicit use of covariates within FMA, and the corresponding overhead

for REGENIE, whereby covariates are accounted for explicitly. Overall, the above

comparisons are in line with the observations made throughout this chapter regarding

the trade-offs between efficiency and statistical power or robustness.

4based on the online rate card, December 2022, provided by DNAnexus
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Method Instance Type Rate (£/hour) Jobs and time Total (£)
FMA i3.4xlarge 0.6256 1 × 110 68.8

BOLT:MoG m5.4xlarge 0.5632 20 × 47.5 534.8
REGENIE c5.2xlarge 0.2520 1 × 211.5 53.3
fastGWA c5d.2xlarge 0.1984 20 × 2.8 11.1

Table 4.4: Estimated costs in GBP (£) for a large-scale GWAS for each method, using
machines available in UKBB-RAP. Times per machine are as in Table 4.3, adjusted to
account for the number of available cores. To clarify the adjustment, c5.2xlarge comprises
8 cores and would thus require roughly 33% more compute time than using 12 cores (159
hours), assuming linear gains; similar adjustments were followed whenever necessary.
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In this section, I discuss how FMA can incorporate approximations to the original

model for higher scalability during step-1 and how these translate to statistical

power. These model extensions are motivated by the difference in the asymptotic

cost for model fitting in comparison to more efficient methods, as depicted in Fig. 4.6.

In general, FMA has an O(N1.5M) complexity, owing to the conjugate gradients

iteration, the number of which increases with sample size. Having that in mind, I

explored a few ways – namely FMA:Pruned, FMA:Cluster, and FMA:AprLoco – to

reduce the computational burden without changing the core algorithm. In the

following, I mostly refer to an estimator for the covariance matrix V, so I do not

discriminate from the estimand to keep the notation clear.

65
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5.1 Variance-component pruning

One type of hyper-parameter in LMM-based association is the selection of genetic

markers to be used in model fitting, e.g. for building the GRM.This may be

addressed in different ways, with criteria involving causal plausibility based on

linear regression [70], and MAF or LD thresholds [36, 37, 39, 105]. Therefore, the first

model approximation I explored involves utilizing multiple variance components (VC)

for heritability estimation, to detect sets of variants that have negligible contribution

to the phenotype. Such sets can therefore be omitted during the conjugate gradient

iteration to reduce the running time. More in detail, the FMA:Pruned approach

is obtained by first applying RHE-mc to an annotation consisting of K equally

sized and contiguous bins (e.g. K = 90 for simulated or K = 130 for real

phenotypes), and then calculating the residuals with the preserved bins. This

way, the I/O cost is reduced and the GRMs are sparser increasing the conjugate-

gradient’s convergence rate.

As a sanity check, I applied FMA:Pruned to synthetic phenotypes described in

Section 4.4. In these particular simulations, only odd chromosomes contain causal

variants, thus the set of markers with reduced contribution to heritability is clearly

defined. As expected, RHE-mc correctly estimated the null contribution of even

chromosomes, and FMA:Pruned performed well in this setting, leading to a ×2

speed-up (1.8 hours against 3.9 for FMA:C8, on average). As shown in Tables B.1-

B.6, FMA:Pruned had similar performance to other approaches when polygenicity

was 5%, but yielded inflated test statistics for the case of 1%. This approach,

however, was not applicable to the CSR samples because the VC estimates had

high errors, making pruning infeasible.

I followed a similar procedure for real phenotypes, applying FMA:Pruned to the

set of N = 328k samples (described in Section 4.6). In this case, the estimates

of ĥ2
SNP varied substantially, so the inclusion threshold I used was 5 × 10−4. This

resulted in keeping 512,539 of the 623,128 total variants, and the corresponding

running time was decreased by roughly 40% (51 vs 30 hours). The speed-up

can be explained by the smaller I/O cost (18% fewer variants) in combination
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with the higher convergence rate for the conjugate gradients (45 vs 50 iterations).

Interestingly, FMA:Pruned had statistical performance similar to that of the full

FMA model, as illustrated in Figure 5.1. Considering the 623k genotyped variants

and the 20 phenotypes I tested, FMA:Pruned had a slightly larger average test

statistic (2.25 vs 2.22) and the two approaches yielded the same average number

of significant markers (4203.3 vs 4202.7).

To conclude, VC-pruning decreased the overall computational cost, with negligi-

ble differences in performance compared to FMA:C8, but the total running time was

still one order of magnitude larger than that of fastGWA or REGENIE (about ×15

and ×13 slower respectively), when applied to the N = 328k sample. Although I

did not explore this further, alternative pruning strategies, for instance based on

functional annotations, could be considered in future work.

5.2 Distributed calculations using IBD clusters

Since FMA’s convergence rate is inversely proportional to the sample size, I explored

splitting the N = 446k samples into smaller sets and processing each in a distributed

way, an approach which I will refer to as FMA:Cluster. This reduces the memory

footprint and increases the convergence rate as each GRM has a smaller size. Such

a technique would be particularly suitable in cases involving large and significantly

structured samples, where the GRM is expected to be block diagonal, and where

clusters of relatives may be efficiently used to estimate variance components. This

principle is also leveraged by fastGWA [38, 45].

Intuitively, close relatives are highly informative in the calculation of variance

components [119]. In FMA:Cluster, the samples are partitioned into subsets,

which are analyzed separately. Subsets are chosen so that groups of related

individuals are likely to belong to the same group, reducing computational costs,

while preserving signal.

To be more precise, assume the existence of k such clusters. The GRM of each

subset would be the same as the resulting block of the complete GRM restricted

to the appropriate set of individuals. As a result, the same would hold for the
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Figure 5.1: QQ-plots comparing FMA:Pruned with FMA:C8 for N = 328k. The
former was obtained by discarding genetic components with low contribution to h2

SNP.
Results on 20 real phenotypes, considering M = 623k genotyped variants with MAF> 0.01.
Each QQ-plot compares the χ2 statistic for each variant, highlighting the number of
genome-wide associations (p < 5 × 10−8) detected by only one method. In total, the two
approaches achieved similar numbers of uniquely-discovered associations (2841 vs 2829),
indicating high concordance.
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corresponding sample covariance V∗ = σ2
gK∗ +σ2

eI∗, if σ2
g is the same across clusters,

therefore V = diag(V1, ..., Vk). Recall that the inverse of a block-diagonal matrix

is a diagonal matrix containing the inverse of each block. Combining all these, and

assuming that ys is the vector of phenotypes for cluster s,

V−1y = [V−1
1 y1, ..., V−1

k yk]. (5.1)

FMA:C8 and FMA:Cluster calculate the left and right hand side, respectively, of this

equation, thus the two approaches will be equivalent if V is indeed diagonal (but

FMA:Cluster is more efficient). In practice, however, the non-diagonal blocks of V

often have non-zero values, in which case FMA:Cluster will be based on a matrix

Vsp obtained after sparsifying V, assuming V−1
sp y ≃ V−1y. FMA:Cluster is thus

conceptually similar to fastGWA [38], which is also based on a matrix like Vsp.

One way to create such a partition is by utilising IBD sharing. Similarly to the

analysis of Chapter 3, and based on Nait Saada et al. [11], I created a GRM for

N = 433k UKBB individuals based on 213 billion shared IBD segments detected

by FastSMC. Then I applied an algorithm for agglomerative hierarchical clustering1

which yielded 4 clusters of genetically related individuals with sizes ranging in

54k−68k, and another set containing the remaining 197k (out of the original

N = 446k set used throughout this chapter). For the FMA:Cluster approach I

worked as follows: I applied FMA to each of the five subsets, using the same set

of VC estimates, to obtain V−1
s ys (s = 1, . . . , 5) which I then merged in order to

calculate test statistics for the whole sample.

Computationally, FMA:Cluster was drastically better than FMA:C8, without

considering the costs for IBD inference which may be seen as a preprocessing step,

as in fastGWA. Assuming 12 cores and up to 85 GB of RAM – which is what FMA:C8

required for the analysis of 20 phenotypes (Section 4.6) – I allocated 6 cores for

the analysis of the N = 197k sample, and 6 cores for the (sequential) analysis of

the smaller samples. The running time was bounded by the processing of the first

batch which took 13 hours, which translates to a ×6 speed-up. Moreover, the first
1https://github.com/khabbazian/sparseAHC/

https://github.com/khabbazian/sparseAHC/
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Figure 5.2: QQ-plots comparing FMA:Cluster with FMA:C8 for N = 446k. The
former was obtained by partitioning to sample to 5 clusters based on IBD, and discarding
3/16 components with low contribution to h2

SNP. Results on 20 real phenotypes, considering
M = 623k genotyped variants with MAF> 0.01. Each QQ-plot compares the χ2 statistic
between FMA:C8 and FMA:Cluster for each variant, highlighting the number of genome-
wide associations (p < 5e-8) detected by only one method. In total, FMA:Cluster had
roughly ×4 fewer uniquely discovered associations (2231 vs 10620), indicating a significant
decrease in statistical power.
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batch required about 44 GB of memory, whereas the second one took up to 14, thus

the total memory used was ∼ 30% less than what FMA:C8 needed (Table 4.3).

These computational gains, however, had a trade-off in statistical performance,

as shown in Fig. 5.2. Considering the 623k variants tested, the average test

statistic for FMA:Cluster was 5% lower than that of FMA:C8 (2.53 vs 2.66), and a

similar decrease was observed in terms of significant associations (5,292 vs 5,711)

which was statistically significant (paired t-test p = 1.2 × 10−4). As far as other

methods are concerned, FMA:Cluster had less power than REGENIE (5,292 vs

5,741; p = 6.8 × 10−5), but was still more powered than fastGWA (5,292 vs 5,034;

p = 2.7 × 10−4). This is in accordance with the assumption that FMA:Cluster’s

power is driven by exploiting broad clusters of relatedness, similarly to how fastGWA

trades power for scalability by using a sparse GRM. Using a more accurate estimate of

kinship for fastGWA (currently using the empirical GRM from genotyped variants, as

recommended [38]), or by considering more distant relatives, could yield performance

closer to that of FMA:Cluster, but this was not part of my investigation.

5.3 Approximate LOCO

As previously shown, leaving one chromosome out improves power, but increases the

computational burden of calculating the residuals by roughly ×22, if 22 autosomal

chromosomes are considered. REGENIE avoids that overhead by predicting the

genome-wide effects once and then masking those accordingly to build 22 predictions.

I investigated a similar strategy within FMA, where I calculated one set of residuals

V−1y and adjusted it appropriately to more rapidly obtain 22 LOCO ones; I refer

to this approach as FMA:AprLoco.

In general, the sample covariance matrix can be written as

V =
σ2

g

M
XX⊤ + σ2

eIN =
σ2

g

M

22∑
c=1

XcX⊤
c + σ2

eIN , (5.2)

which is obtained by writing the (standardised) genotypes matrix X as a vector

[X1, ..., X22] of 22 matrices, one for each autosome. When we leave one chromosome
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out this relation becomes

V−c =
σ2

g,−c

M−c

∑
t̸=c

XtX⊤
t + σ2

e,−cIN , (5.3)

where M−c, σ2
g,−c, σ2

e,−c are the number of variants left, genetic component, and

environmental component respectively of all-but-c chromosomes. Due to polygenic-

ity, we expect the fraction of heritability explained by the held out region to be

proportional to the size of the region itself, so σ2
g,−c/M−c = σ2

g/M and σ2
e,−c ≈ σ2

e .

Therefore, the LOCO residuals can be written as V−1
−cy = (V − σ2

g

M
XcX⊤

c )−1y.

Eq. 2.7 in Section 2.2 describes how to obtain the BLUP b̂ from the residual V−1y.

Based on that, we may get an approximate-LOCO BLUP as b̂−c = σ2
g

M
X⊤

−cV−1y, and

the corresponding residual will be y − K−cV−1y, by setting K−c = σ2
g

M

∑
t̸=c XtX⊤

t .

This is used to obtain a set of 22 residuals by only calculating V−1y (the genome-

wide term) and performing a few more operations, which is substantially more

efficient than calculating the 22 sets of V−1
−cy. However, this is an approximation

to the true-LOCO residual, with a deviation given by

σ2
eV−1

−cy − (y − K−cV−1y) = −K−cV−1
−cy + K−cV−1y = K−c(V−1 − V−1

−c)y. (5.4)

In simulations, the mean squared error between the approximate LOCO and the

original residuals remained fairly small. However, the corresponding test statistics

were inflated, suggesting that further work is required for FMA:AprLoco to be used

as a viable method. By comparing to the test statistics obtained by linear regression,

I noticed that the bias was proportional to the LD score of each variant. To account

for that, I ran FMA:AprLoco with covariates, estimated the bias within quartiles

of the LD distribution, and re-scaled the test statistics accordingly. Note that

working with GRMs requires a γ-type of calibration, but I omitted this part on

FMA:AprLoco to keep the approach simple.

I applied FMA:AprLoco to both simulated and real phenotypes. As expected,

the speed-up was significant in most cases, requiring 49 minutes for N = 50k

and 50 traits, or 9.7 hours for N = 446k and 20 traits (×5.5 and ×8 faster than

FMA:C8, respectively). In simulations (as described in Section 4.4), FMA:AprLoco
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achieved average χ2 values and power similar to BOLT:MoG, while keeping type I

errors less than 5% (tables B.1-B.8). The increase in power, however, is likely due

to inflation of larger χ2 values, rather than improved performance. In addition,

FMA:AprLoco showed moderate statistical power when applied to real phenotypes

(Section 4.6), having an average χ2 value of 2.24, and a total of 3,881 significant

variants, which was significantly lower than FMA:C8 (2.66 and 5,711 respectively). Al-

though FMA:AprLoco does not require any preprocessing, in contrast to FMA:Pruned

or FMA:Cluster, step-2 can be slow as we need to process each variant twice.

Therefore, this approach would have limited applicability to large scale studies

with imputed genotypes.
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The ancestral recombination graph (ARG) was briefly introduced in Section 2.4.2.

In this chapter, building on Zhang et al.’s work [48] and on the tools developed

in the previous chapters, I develop methodology to increase the scalability of

ARG-based complex trait analyses. More in detail, I use FMA to increase the

computational efficiency of estimating narrow-sense heritability and detecting

association using genealogical information. As with the rest of the thesis, I focus

on quantitative phenotypes.

6.1 Utilising FMA for genealogy-wide association

Zhang et al. [48] developed a framework to detect association between a phenotype

and the edges of the ARG of a set of samples, inferred by ARG-Needle. This approach

has the potential to reveal association to variation that has not been observed in

75
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the data utilized to infer the ARG, such as indels, structural variants, or other rare

variants that have not been genotyped or imputed. The authors refer to analyses

that test for association of ARG branches as “genealogy-wide association”, or as

“ARG-MLMA” to indicate the use of a linear mixed model to test ARG branches.

As previously shown, mixed model association provides several advantages over

the use of a simple linear model. These advantages, which include better control

for relatedness and stratification, as well as increased association power due to the

conditioning on polygenic effects, also apply to the case of genealogical association.

The ARG-MLMA approach introduced by Zhang et al. [48] relied on the

BOLT:MoG algorithm to compute LMM association statistics. More in detail,

because BOLT-LMM does not export LOCO-residualised phenotypes, their approach

involved running BOLT:MoG 22 times, each time excluding a different chromosome,

to obtain BLUP effect size estimates [36]. These BLUP estimates were then used

in conjunction with PLINK to obtain LOCO phenotype predictions, which were

then used to obtain LOCO residualised phenotypes. BOLT:MoG was invoked another

time, using all chromosomes, to estimate the genome-wide calibration factor γ̂. The

set of residualised phenotypes and the calibration factors were finally passed to

ARG-Needle to test for association between clades of a previously inferred ARG

and the phenotype. Overall, this approach required a complex scripting pipeline

and significant computational time.

The FMA framework, developed in Chapter 4, can be utilised to simplify ARG-

MLMA, in place of BOLT-LMM. I followed a procedure similar to that of Section 4.6,

where I tested for imputed genotypes, to compute the LOCO residuals V−1
−cy and

estimate the calibration factor γ. I used this approach for an analysis involving

standing height, focusing on the set of N = 337k unrelated British and M = 623k

common variants (MAF≥ 1%) used in previous experiments. FMA:C8 required 20.5

hours to calculate the LOCO residuals and the calibration factor (inlcuding the time

for h2 estimation with RHEmc), which was roughly ×11 faster than using the pipeline

based on BOLT:Inf and PLINK, as in [48]. Because FMA is optimised to parallelly
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process multiple phenotypes, the computational advantages over BOLT:Inf would

have been even greater if more phenotypes were considered.

Figure 6.1 shows an indicative Manhattan plot of this analysis. ARG-MLMA

using the LOCO residuals obtained by FMA:C8 is compared to standard association

testing based on genotyped SNPs or variants imputed using the HRC+UK10K

reference panel [4, 32, 48]. In this example, ARG-MLMA was applied to testing the

edges of an ARG inferred using only SNP array data. As shown in the locus-plot

for the 60.7Mb region of Chromosome 8, ARG-MLMA enabled detecting signal

that would otherwise require imputation from a sequenced reference panel, as well

as association peaks that would not be observed using imputed data. I note that

the original study utilised the non-infinitesimal version of BOLT-LMM (BOLT:MoG),

which better captures sparsity and often achieves more power at the cost of higher

running times (see Chapter 4).

6.2 ARG-based GRMs for heritability estimation

Zhang et al. [48] have shown that an accurately inferred ARG may also be used

to obtain unbiased estimates of narrow-sense heritability. This approach, however,

relied on the explicit calculation of an ARG-based genomic relationship matrix

(ARG-GRM; for additional details see [48], Supplementary Note 2), which was

used within the GCTA framework to obtain heritability estimates. Computing the

ARG-GRM, however, has O(N2M) time and O(N2) space complexity; using GCTA

to estimate heritability further increases computational costs due to the need to

invert a covariance matrix within the REML algorithm [38, 56, 120].

In this section, I introduce a randomised method-of-moments (MoM) approach

for scalable ARG-based heritability estimation. This approach, which I refer to

as ARG-RHE, is closely related to the strategy used by RHE-mc [105], leveraged in

the first step of FMA. ARG-RHE, however, enables working directly with the ARG

rather than relying on a provided set of genotyped, imputed, or sequenced variants.

Using simulations, I show that this approach is orders of magnitude more scalable
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Figure 6.1: Genealogy-wide association of height in UKBB. Manhattan plots for
LMM-based association between ARG branches and height, using 337k unrelated British.
P-values for ARG-Needle were obtained using FMA, whereas for SNP array and imputed
genotypes (HRC+UK10K v3 [4, 32]) were obtained with BOLT:MoG, provided by Zhang
et al. [48]. Dotted lines correspond to p = 3 × 10−9, which was a permutation-based
threshold for significance [48], and triangles indicate associations with p < 10−50.

than the REML-based approach used previously [48], enabling to potentially scale

such analyses to hundreds of thousands of individuals.

More in detail, ARG-RHE implements an approach that is related to the one used

by Zhang et al. [48] to obtain Monte Carlo estimates of an ARG-GRM (referred

to as “Monte Carlo ARG-GRMs” [48]). To that end, the ARG is traversed to

generate mutations on its edges in order to form a genotype matrix X. To obtain an

ARG-GRM, these mutations are used on the fly to compute XX⊤, without the need

of writing X to disk. In ARG-RHE, we are instead interested in performing matrix
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multiplication operations of the kind XU, or X⊤U (as in schema 4.3), for a given

matrix U of appropriate dimensionality, without explicitly forming the genotype

matrix X. Additionally, the MoM estimator requires products with the trace of

the GRM. To achieve this in a matrix-free way, I utilised the Hutchinson’s trace

estimator using random vectors [121], similarly to previous methods [105, 107].

In ARG-RHE, standard errors are obtained with a block jackknife estimator,

following Pazokitoroudi et al. [105], by sequentially processing contiguous parts of

the ARG. Assuming J independent blocks, these are combined in all-but-one samples

of observations, and thus J estimates of heritability are obtained. Assuming that

θ̂(j), j = 1,...,J, are the J jackknife estimates, the variance of the ARG-RHE estimator

is calculated as the variance of those J estimates, or (J − 1)/J
∑J

j=1(θ̂(j) − θ)2,

where θ is the mean of the J estimates [122].

Note that, as explained in [48], the mutations that are generated on the ARG

to obtain X are not necessarily the same variants used to infer the ARG. However,

Zhang et al. [48] showed with simulations that both the true ARG and an ARG

inferred from SNP array data can provide ARG-GRMs which yield improved

heritability estimates compared to those obtained directly from using SNP array

data (see Figure 3b in [48]).

To test the approach described above, and to extend the work of Zhang et al. [48],

I used the msprime coalescent simulator [85] to synthesize an ARG, with sample

sizes ranging from 2,500 to 100,000 diploid individuals, using chromosomes of length

L = 10Mb, recombination rate 1e × 10−8, and a European demographic model [123].

I generated sequencing data for the simulated ARGs using a mutation rate 1e×10−8,

which resulted in datasets comprising 146k to 204k genetic variants (for each sample

size). Next, to emulate the genotyping of array variants, I filtered each set of

mutations according to frequency so that the resulting distribution matches the one

of UKBB genotypes, as done in [48], obtaining roughly 2,260 variants per sample.

I used these simulations to compare the speed and accuracy of two approaches

for ARG-based heritability estimation. First, the ARG-RHE strategy described above;

second, the approach described in [48], where an ARG-GRM (or its Monte Carlo
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estimate) is first computed and then provided to GCTA to obtain a maximum

likelihood estimate, which I call ARG-GCTA. To this end, I generated new sets

of mutations from the simulated ARGs, using a ×2 larger mutation rate, for

either approach.

In addition to ARG-GCTA and ARG-RHE, I assessed the accuracy of two more

approaches for h2 estimation by applying RHE [105] to either sequencing or array

genotypes. Note that all of these approaches implicitly rely on the following

definition for a GRM:

Kα(i,j) = 1
M

M∑
k=1

(xki − 2pk)(xkj − 2pk)
[2pk(1 − pk)]−α

, (6.1)

for the corresponding set of available variants, where xki is the allele count (0,1,

or 2) of individual i at variant k, pk is the frequency of variant k, and α is the

negative selection parameter[115], for which I set to α = −1 in this analysis. I

created phenotypes by sampling effect sizes from a standard normal distribution,

varying the levels of polygenicity (5% or 100%) and heritability (0.25 or 0.50), while

using standardised genotypes (implying α = −1). All methods were invoked using

one genetic component containing all variants, and applied to 20 repeats of each

scenario (sample size, polygenicity, and true heritability). For the computational

benchmarking, I compared ARG-RHE to ARG-GCTA, which I had to independently

run on each replicate, after building the GRM once per sample.

The results of this experiment are summarised in Figure 6.2, where I focus on

the scenario with h2 = 0.50 and 5% polygenicity; similar trends were observed in

other cases (Fig. A.15). Numerical results and standard errors are given in Table

B.10. First, both ARG-RHE and ARG-GCTA yielded estimates that were similar to

those obtained by using a sequencing-based GRM, but with a small downward bias

that may be explained by the use of a relatively low mutation rate to obtain Monte

Carlo estimates [48]. Using the GRM constructed from array genotypes resulted

in a systematic under-estimation, reflecting known limitations of using SNP array

data to estimate narrow-sense heritability [111, 117].
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The computational cost for the two ARG-based approaches is shown in the lower

part of Fig. 6.2. ARG-RHE was dramatically faster than ARG-GCTA, requiring one

order of magnitude more time for larger samples. For instance, ARG-GCTA needed

roughly 19 hours for 25k diploid samples, which was ×77 more than ARG-RHE’s cost

(15 minutes), considering the total time for 20 repeats. This difference is driven

by two factors, namely the O(N2M) cost for building the GRM and the lack of

parallelization for multiple phenotypes during model-fitting, in contrast to ARG-RHE

which implicitly works with the GRM and can handle multiple phenotypes.

6.3 ARG-based GRMs for association

As previously described, LMM-based association studies use the GRM during model-

fitting to account for structure and improve power by residualising the phenotype

from polygenic effects [36–38, 47, 59, 62, 63]. The use of ARG-GRMs in this setting

was shown to potentially improve association power further, compared to the use

of genotyped SNPs, as the ARG enables capturing the contribution of rare or

untyped variants leading to better LOCO residualised phenotypes (see Figure 3c

in [48]). Zhang et al. [48], however, required to explicitly compute an ARG-GRM,

which was then provided as input to GCTA to perform LMM association. As in

the case of heritability estimation, these REML-based operations scale poorly

for large sample sizes.

I developed an alternative approach, which I refer to as ARG-FMA, which uses

a strategy similar to that used in the previous section for estimating heritability,

where the ARG is used instead of the genotype matrix X. For association, which

includes ARG-RHE as an intermediate step, the aim is to use the ARG to perform the

conjugate gradient iteration to obtain LOCO-residualised phenotypes, as described

in Section 4.2. This is again achieved by sampling mutations on the ARG and

multiplying the corresponding vectors into user-provided vectors and matrices to

perform the computations described in Eq. 4.3. These operations enable computing

LOCO-residuals without forming the GRM, which, as shown in previous chapters,

leads to sub-quadratic asymptotic costs.
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Figure 6.2: Estimation of heritability using ARG-based GRMs. Comparison of
estimates (upper plot) and running times (lower) for estimating narrow-sense heritability
using ARG-based GRMs, considering 1 synthetic chromosome with L = 10Mb and
phenotypes generated with h2 = 0.50 and 5% polygenicity. In the top plot, the dashed line
represents the true heritability and bars represent standard errors across 20 independent
simulations; numerical results including standard errors of the estimator are given in
Table B.10. ARG-GCTA was not applied to samples with N ≥ 50,000 because such an
analysis would take more than 2 days (based on a polynomial extrapolation).
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The simulation setup used to test this strategy is similar to the previously

described one, this time using multiple small chromosomes instead of a large one,

in order to apply the LOCO scheme. In particular, I used msprime to simulate

ARGs spanning 10 independent chromosomes, each of length L = 1Mb, using 1e-8

recombination rate, for samples that ranged from 2,500 to 100,000 diploid individuals.

To create phenotypes, I assumed a fully infinitesimal architecture (polygenicity =

100%) and drew effect sizes from a standard normal distribution, while considering

different values for the negative selection parameter, namely α ∈ {0, −0.5, −1}, and

h2 = 0.50. I benchmarked different LMM approaches using GRMs constructed from

sequenced variants (LMM-Seq), array genotypes (LMM-Array), or mutations sampled

from the ARG (ARG-GCTA or ARG-FMA) with mutation rate 1.65 × 10−7. I measured

power to detect association with the set of simulated array variants by comparing

the mean χ2 value of each approach to that obtained by linear regression.

Figure 6.3 (upper part) summarises the results for α = −0.5 and various sample

sizes. Sequence-based and ARG-based GRMs achieved a considerably larger boost

than the array-based GRM, replicating the original study [48]. As expected from

the LMM properties, all mixed-model approaches yielded a power advantage over

linear regression, which was proportional to sample size. All approaches achieved

the largest gains in power (e.g. around 40%) for α = 0, when effect sizes have low

variance, and had lower gains (5 − 8%) for α = −1, when causal variants are harder

to detect (Fig. 6.5), in accordance to previous studies [48, 115].

The computational performance of ARG-GCTA and ARG-FMA is illustrated in the

lower part of Fig. 6.3. ARG-FMA is slower for N ≤ 5,000, due to large constant costs,

but becomes significantly faster than ARG-GCTA as sample size increases, reflecting

the improved asymptotic behaviour. For instance, ARG-FMA required 52.5 hours to

process N = 50k, which would be ×21 less than what ARG-GCTA is extrapolated

to need. This can be ascribed to the lower asymptotic cost of ARG-FMA, which

requires O(N1.5M) to perform the conjugate gradient iteration, compared to the

O(N2M) cost to build each GRM and an additional O(N2.5) cost to perform LMM

association within GCTA [56] (due to matrix inversion). Finally, as illustrated in
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Figure 6.3: Mixed-model association using ARG-based GRMs. Comparison of
statistical power (upper) and running times (lower) for mixed-model association using
10 synthetic chromosomes of length L = 1Mb and phenotypes with h2 = 0.50 and
α = −0.5, considering 20 replicates. Power is measured as the relative improvement of
mean χ2 statistic in comparison to linear regression with array genotypes. ARG-FMA’s cost
includes ARG-RHErunning time (which is independent of α). ARG-GCTA did not complete
for N ≥ 50,000 because of excessive compute time (about 10 days).

Fig. 6.4, ARG-FMA’s memory footprint is significantly lower than that of ARG-GCTA,

owing to the matrix-free operations enabling GRM-based analyses without the

O(N2) memory cost. This also holds for ARG-RHE which is similarly implemented.
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Figure 6.4: RAM usage for ARG-based LMM association. The memory footprint
was measured using a Python profiler for ARG-FMA and the top tool for ARG-GCTA. These
costs correspond to 10 traits for ARG-FMA, but one for ARG-GCTA.

Figure 6.5: Mixed-model association with different selection coefficients.
Comparison of statistical power measured as the relative improvement of mean χ2 statistic
in comparison to linear regression with array genotypes. This analysis involved a sample
of N = 2,500 individuals, using 5 synthetic chromosomes of length L = 0.2Mb. Bars
illustrate standard deviations for the 20 phenotypes simulated.
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6.4 Remarks and limitations

I conclude with a few remarks and direct limitations of the methods presented in

this chapter; additional thoughts for future research are discussed in Chapter 7.

First, although FMA is a multi-threaded software, the benchmarking was limited

to one computational core per task as ARG-Needle does not currently support

multi-threading. Given this limitation, my simulations for association were based

on short genomes focusing on demonstrating the asymptotic advantage of ARG-FMA

(using the conjugate gradient iteration) over ARG-GCTA (working with pre-calculated

GRMs). There is potential to improve the implementation, with one quick avenue

involving parallel processing of different chunks, as is the case for LOCO association.

Second, my analysis was based on GCTA which is the only implementation of an exact

mixed-model allowing for pre-calculated GRMs. Other software were not applicable

to this context; for instance fastGWA [38] works with a sparse GRM which would

not have the beneficial properties of an accurate GRM (as discussed in the previous

chapters), and REGENIE [39] requires genotyped variants for model-fitting thus extra

work would be needed to prepare the appropriate input. Third, estimation of

narrow-sense heritability is currently only implemented for the case of α = −1 due

to a limitation of the method-of-moments estimator, which requires standardised

genotypes with unit variance. We plan to relax this requirement, and also support

for multiple variance components (as in RHE-mc [105]), which reduce the relevance

of which value of α is assumed by enabling non-parametric estimation of h2.
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Discussion

In this thesis, I explored methods for large-scale genome-wide association studies

(GWAS) and introduced FMA, a flexible linear mixed model for association testing.

The key contributions of this work are the following:

• In Chapter 3, I leveraged identity-by-descent information to implicitly perform

within-cohort imputation and detect associations between rare loss-of-function

variation (down to a MAF ∼ 5 × 10−4) and 7 phenotypes in UKBB [4, 11].

• Chapter 4 described FMA, an efficient algorithm for mixed-model association

which builds on BOLT:Inf [36]. I performed extensive benchmarking of state-

of-the-art methods using both simulations and real phenotypes, assessing

statistical power, robustness to confounding, and efficiency.

• In Chapter 5, I explored three modifications to the FMA algorithm that may

further improve the method’s scalability for association. These include the

selection of subsets of informative variants for model fitting, the use of inferred

relatedness clusters, and the use of an approximate leave-one-chromosome-out

scheme.
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• Chapter 6 described methodology to integrate FMA with the ARG-Needle

library [48] to improve the scalability of complex trait analyses based on the

ancestral recombination graph (ARG)

FMA is fully developed in Python and will be released as an open-source package,

facilitating future development. The rest of this chapter provides a few general

conclusions, highlights the limitations of this work, and suggests future directions.

The power-scalability trade-off for LMMs

The analyses of chapters 4 and 5 highlight the trade-off that exists between speed

(measured in CPU hours) and statistical power (measured using true positive rates

or mean χ2 values). In particular, BOLT:MoG consistently achieved higher power than

all the other methods, but was significantly slower for studies with large samples or

multiple phenotypes. On the other hand, REGENIE and fastGWA, which were the

most efficient methods, demonstrated a statistical performance that depended on

sample structure and genetic architecture. REGENIE required the use of covariates

during testing to properly control for sample structure, and fastGWA was well

calibrated but had decreased power. FMA:C8 was more efficient than BOLT:Inf,

requiring ∼ 8 hours to perform a GWAS for 20 phenotypes and 50k samples on a

conventional machine (Table 4.3), but was slower than REGENIE and fastGWA. It

had the same statistical power as BOLT:Inf and REGENIE, and more power than

fastGWA but, like all other methods, less power than BOLT:MoG.

These trade-offs between statistical power, robustness, and computational

efficiency also emerged in the analyses described in Chapter 5. The three LMM

approximations I explored resulted in promising gains in efficiency which, however,

translated into a loss in power. Perhaps not surprisingly, larger speed-ups yielded

lower accuracy. One conclusion that was evident in several parts of this thesis is

that the key LMM features — a high resolution GRM and the LOCO scheme —

are necessary to maximise power and robustness to confounding.
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FMA:C8 showed an advantage in statistical power over REGENIE in synthetic

phenotypes, achieving higher test statistics at causal variants (Fig. 4.1 and Tables

B.1-B.8), which however was not observed in the analysis of real phenotypes

(Fig. 4.5, Table B.9). This difference could be attributed to the length of the

genomes analysed, as I used all 22 chromosomes for the analysis of real phenotypes,

but only 10 for simulations due to computational constrains. To validate that, I

considered an additional synthetic scenario based on 22 chromosomes (Fig. A.9)

and found that REGENIE attained power similar to that of FMA:C8 or BOLT:Inf.

This indicates that REGENIE’s decreased power in these experiments may be linked

to the use of an approximate LOCO scheme.

Apart fron associations studies with common variants, these observations might

have implications to rare variant assocation, as recently illustrated by a Jurgens

et al. [124]. In brief, the authors used a LMM built with a sparse GRM, similar

to fastGWA, to control for sample structure while testing for rare variants. They

demonstrated that adding a SNP-based predictor as a covariate increased statistical

power, as that enabled conditioning to common genetic effects. This was the

case when using a newer version of SAIGE-Gene [125], which is also based on a

sparse GRM. In contrast, the gains were not significant when using REGENIE which

inherently accounts for polygenic effects, similar to how FMA, or BOLT:Inf work.

Overall, given the broad avaialbility of methods for association studies, researchers

need to adopt the one that is optimised for a specific goal, while considering

efficiency, robustness to confounding, or statistical power.

Limitations and future steps

Next I discuss a few limitations and potential next steps, in particular those

related to the development of FMA. First, the current implementation is based on

implicitly conditioning on covariates by regressing them out from the phenotypes

as the first step of model fitting. This is a common technique to reduce the

computational burden [38, 56], but might result in conservative test statistics;

an intermediate approach is to use the exact covariate adjustment only when
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χ2 ≥ 4, indicating signal [45]. My initial observations implied that the resulting

loss in power is marginal, but future work involves a more careful implementation

leading to unbiased test statistics.

Another key difference between FMA and other LMM packages is the way

genotypes are handled. I followed a streaming approach by repeatedly reading

chunks of genomes from an uncompressed file. This enabled analyses with relatively

low memory usage, proportional to the number of phenotypes (Fig. A.7), but

at an increased cost due to the I/O overhead of repeatedly reading data within

FMA’s iterative algorithm. Therefore, a faster implementation can be obtained by

reading the genotypes once and keeping them in memory, while using a custom

data structure to minimise memory usage (e.g. 1 bit per genotype, as in BOLT-LMM

[36]). Although FMA relies on highly optimized Python libraries, reimplementing

some of its core functionality in a compiled language, such as C++, will likely

lead to computational gains.

I note that I did not consider phenotype pre-processing steps, such as the use

of a rank-based inverse normal transformation (INT), which may be leveraged to

increase statistical power [38, 89, 126]. This is because my main objective was to

benchmark different algorithms, rather than detect novel associations. FMA can be

easily extended to incorporate automated filtering steps, such as INT.

FMA can fit models with multiple variance components, by relying on RHE-mc,

which yield better estimates of heritability (Fig. 4.3). This provides increased

robustness because test-statistics may become uncalibrated for significantly mises-

timated σ2
g coefficients (Fig. 4.4), which are applied to scale covariance matrices.

This study was limited to MAF/LD-based components and further work using

functional annotations could lead to additional gains over traditional mixed models.

For example, a recent study using a Bayesian multi-component approach reported

a gain over BOLT:MoG [113].

A natural extension of the proposed framework involves the analysis of binary

phenotypes for large-scale association studies. Traditional mixed-model approaches

might be severely inflated at rare variants when the case/control ratio is low,
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and recent techniques rely on test statistic calibration to avoid that, such as the

saddle-point approximation [37, 45], or Firth correction [39]. My study focused

on quantitative phenotypes, but future work could involve implementing any of

the aforementioned tools for binary phenotypes.

In Section 2.2 I described how LMM-based association is related to both heri-

tability estimation and polygenic prediction through the relation σ2
eV̂−1y = y − Xb̂

(see Eq. 2.7). Therefore, association requires estimating σ2
g , σ2

e (to estimate V), and

calculating the BLUP Xb̂. FMA can be modified to calculate Xb̂ from the residual

V̂−1y (as described in Section 5.3) and therefore perform in-sample prediction. As

a next step, it may be possible to extend FMA to provide out-of-sample predictions,

similarly to the cv-BLUP approach [69], which requires (implicitly) accessing the

trace of KV−1.

Finally, Chapter 6 demonstrated the utility of combining recently developed

techniques for the analysis of complex traits and for inference of genealogical

relationships, building on the work of Zhang et al. [48]. Although this work was

limited to simulations involving single variance components, a natural next step is

the application of such methods to inferred genealogies in real data using multiple

components. To that end, there is work in progress to incorporate RHE-mc [105]

within the ARG-Needle library [48]. Besides the potential increase in power, utilising

ARG-based GRMs for association may better account for population stratification

[33, 48, 63, 96, 98, 127]. The development of these improved methodologies for

ARG-based studies of complex traits may facilitate analyses in under-represented

populations, for which an ancestrally-matched sequenced cohort for imputation

may not be available [6, 17, 34, 35].
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Figure A.1: LoF-segment burden exome-wide Manhattan plot for eosinophill
count. Labelled genes are exome-wide significant (after adjusting for multiple testing,
t-test p-value < 0.05/(14,249 × 10) = 3.51 × 10−7; dashed red line). The LoF-segment
burden analysis (with SNP adjustment) used 303,125 UK Biobank samples not included
in the exome sequencing cohort. We identified one locus previously reported by Van Hout
et al. [89] (black label), and additional loci on chromosomes 6,9 and 12 (labels in red).

Figure A.2: LoF-segment burden exome-wide Manhattan plot for mean
corpuscular haemoglobin. Labelled genes are exome-wide significant (after adjusting
for multiple testing, t-test p-value < 0.05/(14,249 × 10) = 3.51 × 10−7; dashed red line).
The LoF-segment burden analysis (with SNP adjustment) used 303,125 UK Biobank
samples not included in the exome sequencing cohort. We identified two loci previously
reported by Van Hout et al. [89], KLF1 and GMPR (gene labels in black), and two novel
associations at HLA and CHEK2 (labels in red).
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Figure A.3: LoF-segment burden exome-wide Manhattan plot for the mean
platelet (thrombocyte) volume. Labelled genes are in exome-wide significance (after
adjusting for multiple testing, t-test p-value < 0.05/(14,249 × 10) = 3.51 × 10−7; dashed
red line); the y-axis shows − log(p-value). The test statistic was computed using 303,125
samples within the UK Biobank cohort. The Path-IBD method detected three previously-
reported associated loci, KALRN, GP1BA and IQGAP2 (gene labels in black), and
additional hits at chromosomes 1,6,12,16 and 22 (labels in red).

Figure A.4: LoF-segment burden exome-wide Manhattan plot for platelet distr
width. Labelled genes are exome-wide significant (after adjusting for multiple testing,
t-test p-value < 0.05/(14,249 × 10) = 3.51 × 10−7; dashed red line). The LoF-segment
burden analysis (with SNP adjustment) used 303,125 UK Biobank samples not included
in the exome sequencing cohort. We identified one locus previously reported by Van Hout
et al. [89], TUBB1 (black label), and two additional genes, APOA5 and GP1BA (labels
in red).
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Figure A.5: LoF-segment burden exome-wide Manhattan plot for red blood
cell count. Labelled genes are exome-wide significant (after adjusting for multiple testing,
t-test p-value < 0.05/(14,249 × 10) = 3.51 × 10−7; dashed red line). The LoF-segment
burden analysis (with SNP adjustment) used 303,125 UK Biobank samples not included
in the exome sequencing cohort. We detected one novel association at the HLA locus
which was not detected by either of the WES-based LoF burden tests.

Figure A.6: LoF-segment burden exome-wide Manhattan plot for red blood
cell distribution width. Labelled genes are exome-wide significant (after adjusting for
multiple testing, t-test p-value < 0.05/(14,249 × 10) = 3.51 × 10−7; dashed red line). The
LoF-segment burden analysis (with SNP adjustment) used 303,125 UK Biobank samples
not included in the exome sequencing cohort. We identified two previously-reported loci
(black labels), KLF1 (detected by Van Hout et al. [89]) and APOC3 (detected by our
WES-based LoF burden analysis), and two additional (labels in red).
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Figure A.7: Memory usage for FMA. This behaviour is mainly driven by the matrices
required for the conjugate gradients iteration, most of which have dimension N ×[22NT (1+
Nc)], for N samples, NT traits, and Nc markers for estimating the calibration factor,
assuming 22 chromosomes. The number of such matrices is 2+5P , for P parallel processes,
as each process requires a few such matrices to be kept in memory, and each contains
floats requiring 8 bytes per element. For example, a full-UKBB analysis of N = 446k and
10 phenotypes will cost ∼ 40GB.

Figure A.8: Total computational costs for N = 50k samples and 50 synthetic
phenotypes. Left: Total running times for model fitting and testing for each of the six
methods, averaged for the 8 cases of synthetic phenotypes, using M = 387,700 variants.
Diamonds correspond to outliers. fastGWA had a large variance because the algorithm did
not converge for the CSR samples. Right: The corresponding memory usage, considering
all the steps required for association (e.g. h2 estimation, model-fitting etc).
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Figure A.9: Comparison of power for N = 50k unrelated British samples
(UWB) using 22 chromosomes. Similarly to Fig. 4.1, we considered two types of
genetic architecture (1% or 5% polygenicity; h2 = 0.25), but limited this experiment to
10 replicates only due to computational constrains.

Figure A.10: Comparison between single and multiple components approaches
for h2

SNP estimation. Showing are results for the sets of unrelated (UWB) and related
British (RWB), for the case of 5% polygenicity, where the true heritability is set at 0.25.
I report estimates for sets of 10 replicates per case due to computational constraints, as
BOLT-REML would require 10+ days for the complete set of 50 phenotypes. C1 stands for
a single component, whereas C8 corresponds to the 2MAF x 4LD annotation.



A. Supplementary figures 101

Figure A.11: Variance component estimates averaged across the 20 real
phenotypes. Per component estimates of heritability using RHE:mc either with 8 (2MAF
× 4LD), or 16 (4MAF × 4LD) components, applied to N = 50k, N = 164k, N = 328k,
and N = 446k individuals respectively, and M = 623,128 genotyped variants.

Figure A.12: Average χ2 at top genotyped variants for 20 real quantitative
phenotypes. I compare the average χ2 value across “top” variants, defined as the
intersection of BOLT:MoG’s, fastGWA’s, and REGENIE’s 1000 most significant associations,
resulting in 378, 1859, and 4071 markers for N = 50k, N = 164k, and N = 328k, on
average, respectively. Bars correspond to standard deviations for the 20 phenotypes. All
three samples consist of unrelated British (UKBB).
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Figure A.13: Comparison of attenuation ratios for residual-based approaches.
Complementing Fig. 4.7, I compare the LD score regression attenuation ratios between
fastGWA and FMA:C8 or REGENIE, all by using residualised phenotypes instead of explicitly
conditioning on covariates. REGENIE’s attenuation ratios were significantly larger than
any other approach.
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Figure A.14: QQ-plots comparing 3 different methods on 20 UKBB quantita-
tive phenotypes and genotyped variants. X-axis corresponds to BOLT:Inf and y-axis
is either FMA:C8 or REGENIE, where each method was applied to the N = 446K sample of
British and Europeans. Shown are variants from the largest decile of the distribution, i.e.
roughly 62,300 variants, determined by BOLT:Inf.
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(a) h2 = 0.50 and 100% polygenicity

(b) h2 = 0.25 and 5% polygenicity

(c) h2 = 0.25 and 100% polygenicity

Figure A.15: Estimation of heritability using ARG-based GRMs. Estimation
of narrow-sense heritability using ARG-based GRMs, considering different levels of
polygenicity and heritability, similarly to Figure 6.2. ARG-GCTA was not applied to
samples with N ≥ 50,000 because of time constraints.
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Mean χ2

at all causal
Mean χ2

at non-causal Power Type I error (se; pval)
FMA:C1 1.99 (0.013) 1.011 (0.002) 0.125 (6.55e-04) 0.051 (1.95e-04; 0.0e+00)
FMA:C8 1.97 (0.012) 1.000 (0.002) 0.124 (6.11e-04) 0.050 (1.85e-04; 8.8e-01)

FMA:C16 1.97 (0.012) 1.001 (0.002) 0.124 (5.85e-04) 0.050 (1.86e-04; 9.3e-01)
FMA:AprLoco 1.99 (0.015) 0.973 (0.002) 0.127 (8.65e-04) 0.048 (2.60e-04; 0.0e+00)

FMA:Pruned 2.04 (0.013) 1.029 (0.002) 0.129 (6.39e-04) 0.053 (2.18e-04; 0.0e+00)
BOLT:Inf 1.98 (0.012) 1.006 (0.002) 0.125 (6.47e-04) 0.050 (1.84e-04; 4.5e-01)

BOLT:MoG 2.05 (0.013) 1.011 (0.002) 0.130 (7.14e-04) 0.051 (1.86e-04; 0.0e+00)
Regenie 1.97 (0.012) 1.001 (0.001) 0.124 (5.57e-04) 0.050 (1.78e-04; 6.2e-01)

Regenie+PCA 1.97 (0.012) 1.000 (0.001) 0.124 (5.59e-04) 0.050 (1.78e-04; 7.0e-01)
fastGWA 1.94 (0.012) 1.002 (0.001) 0.123 (6.51e-04) 0.050 (1.82e-04; 2.3e-01)

fastGWA+PCA 1.94 (0.012) 1.002 (0.001) 0.123 (6.55e-04) 0.050 (1.84e-04; 4.1e-01)
Lin Reg 1.94 (0.012) 1.002 (0.001) 0.124 (6.45e-04) 0.050 (1.82e-04; 9.6e-02)

LinReg+PCA 1.94 (0.012) 1.002 (0.001) 0.123 (6.56e-04) 0.050 (1.84e-04; 3.5e-01)

Table B.1: Results for the UWB sample with 1% polygenicity. I report the average
test statistic at 3,900 causal variants (sampled uniformly from the odd chromosomes),
and at 196,509 variants from the even chromosomes which are treated as null. Power is
calculated as the proportion of detected out of all causal variants, and type I error as
the proportion of falsely determined causal, out of all non-causal. Parentheses report the
standard errors of the mean, besides the last column which also reports the p-value of the
corresponding z-test. For Type I error I used 4.5e-3 for nominal significance, adjusting for
the 11 methods assessed in Chapter 4 and bold fonts indicate significant inflation based
on that. FMA:AprLoco and FMA:Pruned are described in Chapter 5.

Mean χ2

at all causal
Mean χ2

at non-causal Power Type I error (se; pval)
FMA:C1 1.57 (0.005) 1.013 (0.002) 0.107 (4.23e-04) 0.051 (2.19e-04; 0.0e+00)
FMA:C8 1.55 (0.004) 1.001 (0.001) 0.106 (4.30e-04) 0.050 (1.93e-04; 5.5e-01)

FMA:C16 1.55 (0.004) 1.002 (0.001) 0.106 (4.29e-04) 0.050 (1.89e-04; 1.9e-01)
FMA:AprLoco 1.60 (0.005) 0.978 (0.002) 0.109 (4.21e-04) 0.048 (2.68e-04; 0.0e+00)

FMA:Pruned 1.55 (0.004) 0.995 (0.001) 0.106 (4.08e-04) 0.049 (1.84e-04; 1.2e-03)
BOLT:Inf 1.56 (0.004) 1.008 (0.001) 0.107 (4.02e-04) 0.050 (1.89e-04; 3.7e-02)

BOLT:MoG 1.57 (0.004) 1.009 (0.001) 0.108 (4.26e-04) 0.050 (1.74e-04; 1.0e-02)
Regenie 1.55 (0.004) 1.001 (0.001) 0.106 (3.74e-04) 0.050 (1.81e-04; 3.1e-01)

Regenie+PCA 1.55 (0.004) 1.001 (0.001) 0.106 (3.77e-04) 0.050 (1.80e-04; 3.9e-01)
fastGWA 1.53 (0.004) 1.003 (0.001) 0.104 (4.06e-04) 0.050 (1.89e-04; 1.2e-01)

fastGWA+PCA 1.53 (0.004) 1.002 (0.001) 0.104 (4.16e-04) 0.050 (1.80e-04; 3.1e-01)
Lin Reg 1.53 (0.004) 1.003 (0.001) 0.105 (4.11e-04) 0.050 (1.88e-04; 2.6e-01)

LinReg+PCA 1.53 (0.004) 1.003 (0.001) 0.104 (4.14e-04) 0.050 (1.80e-04; 2.5e-01)

Table B.2: Results for the UWB sample with 5% polygenicity. Description as in
Table B.1, with the difference that this case involves 18,803 causal variants.
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Mean χ2

at all causal
Mean χ2

at non-causal Power Type I error (se; pval)
FMA:C1 2.00 (0.019) 1.005 (0.002) 0.126 (8.08e-04) 0.051 (1.90e-04; 3.1e-03)
FMA:C8 1.99 (0.018) 1.000 (0.001) 0.125 (7.60e-04) 0.050 (1.74e-04; 8.9e-01)

FMA:C16 1.99 (0.018) 1.001 (0.002) 0.125 (7.40e-04) 0.050 (1.69e-04; 4.3e-01)
FMA:AprLoco 1.99 (0.015) 0.973 (0.002) 0.127 (8.65e-04) 0.048 (2.60e-04; 0.0e+0)

FMA:Pruned 2.05 (0.020) 1.024 (0.002) 0.130 (8.60e-04) 0.053 (2.54e-04; 0.0e+00)
BOLT:Inf 1.99 (0.018) 1.004 (0.001) 0.126 (7.83e-04) 0.050 (1.59e-04; 9.5e-01)

BOLT:MoG 2.06 (0.020) 1.006 (0.002) 0.130 (7.67e-04) 0.050 (1.94e-04; 2.3e-01)
Regenie 1.98 (0.018) 0.992 (0.001) 0.125 (7.36e-04) 0.049 (1.58e-04; 0.0e+00)

Regenie+PCA 1.98 (0.018) 0.992 (0.001) 0.125 (7.41e-04) 0.049 (1.59e-04; 0.0e+00)
fastGWA 1.95 (0.017) 0.999 (0.001) 0.122 (7.38e-04) 0.050 (1.59e-04; 4.5e-01)

fastGWA+PCA 1.95 (0.017) 0.998 (0.001) 0.122 (7.41e-04) 0.050 (1.55e-04; 1.4e-01)
Lin Reg 1.98 (0.017) 1.013 (0.001) 0.125 (7.84e-04) 0.051 (1.68e-04; 0.0e+00)

LinReg+PCA 1.98 (0.017) 1.013 (0.001) 0.124 (7.80e-04) 0.051 (1.68e-04; 0.0e+00)

Table B.3: Results for the RWB sample with 1% polygenicity. Description as in
Table B.1, with the difference that this case involves relatedness.

Mean χ2

at all causal
Mean χ2

at non-causal Power Type I error (se; pval)
FMA:C1 1.59 (0.005) 1.008 (0.002) 0.107 (4.15e-04) 0.051 (2.26e-04; 0.0e+00)
FMA:C8 1.58 (0.005) 1.001 (0.002) 0.106 (3.90e-04) 0.050 (2.13e-04; 5.9e-01)

FMA:C16 1.58 (0.005) 1.003 (0.002) 0.106 (3.65e-04) 0.050 (2.23e-04; 9.8e-02)
FMA:AprLoco 1.60 (0.005) 0.978 (0.002) 0.109 (4.21e-04) 0.048 (2.68e-04; 0.0e+00)

FMA:Pruned 1.59 (0.005) 0.994 (0.002) 0.107 (4.18e-04) 0.049 (2.10e-04; 2.0e-04)
BOLT:Inf 1.59 (0.005) 1.005 (0.002) 0.108 (3.91e-04) 0.050 (2.13e-04; 8.1e-01)

BOLT:MoG 1.59 (0.005) 1.005 (0.002) 0.108 (4.02e-04) 0.050 (2.14e-04; 6.4e-01)
Regenie 1.58 (0.005) 0.995 (0.002) 0.106 (3.82e-04) 0.049 (1.97e-04; 4.7e-03)

Regenie+PCA 1.57 (0.005) 0.995 (0.002) 0.106 (3.77e-04) 0.049 (1.96e-04; 3.9e-03)
fastGWA 1.56 (0.005) 1.003 (0.002) 0.105 (3.83e-04) 0.050 (2.06e-04; 2.0e-01)

fastGWA+PCA 1.56 (0.005) 1.002 (0.002) 0.105 (3.79e-04) 0.050 (2.08e-04; 4.2e-01)
Lin Reg 1.58 (0.005) 1.017 (0.002) 0.108 (3.80e-04) 0.051 (2.17e-04; 0.0e+00)

LinReg+PCA 1.58 (0.005) 1.017 (0.002) 0.107 (3.82e-04) 0.052 (2.17e-04; 0.0e+00)

Table B.4: Results for the RWB sample with 5% polygenicity. Description as in
Table B.1, with the difference that this case involves 18,921 causal variants.
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Mean χ2

at all causal
Mean χ2

at non-causal Power Type I error (se; pval)
FMA:C1 1.87 (0.009) 1.011 (0.002) 0.122 (7.04e-04) 0.051 (2.07e-04; 0.0e+00)
FMA:C8 1.86 (0.008) 1.004 (0.002) 0.121 (7.00e-04) 0.051 (2.07e-04; 8.2e-03)

FMA:C16 1.86 (0.008) 1.005 (0.002) 0.121 (6.37e-04) 0.051 (1.96e-04; 1.9e-03)
FMA:AprLoco 1.85 (0.009) 0.973 (0.002) 0.121 (7.92e-04) 0.047 (2.05e-04; 0.0e+00)

FMA:Pruned 1.92 (0.009) 1.026 (0.002) 0.126 (6.97e-04) 0.053 (2.19e-04; 0.0e+00)
BOLT:Inf 1.87 (0.009) 1.008 (0.002) 0.122 (7.38e-04) 0.050 (2.14e-04; 2.5e-02)

BOLT:MoG 1.93 (0.010) 1.012 (0.002) 0.126 (7.80e-04) 0.051 (1.84e-04; 0.0e+00)
Regenie 1.87 (0.009) 1.224 (0.017) 0.122 (6.84e-04) 0.076 (1.97e-03; 0.0e+00)

Regenie+PCA 1.86 (0.009) 1.002 (0.002) 0.121 (6.73e-04) 0.050 (1.83e-04; 1.8e-01)
fastGWA 1.89 (0.009) 1.073 (0.007) 0.126 (8.86e-04) 0.059 (8.03e-04; 0.0e+00)

fastGWA+PCA 1.83 (0.008) 1.003 (0.002) 0.119 (6.56e-04) 0.050 (1.85e-04; 2.8e-02)
Lin Reg 1.91 (0.010) 1.093 (0.008) 0.129 (1.03e-03) 0.060 (1.01e-03; 0.0e+00)

LinReg+PCA 1.83 (0.008) 1.007 (0.002) 0.120 (6.48e-04) 0.051 (1.87e-04; 0.0e+00)

Table B.5: Results for the EUR sample with 1% polygenicity. Description as in
Table B.1, with the difference that this case involves population stratification.

Mean χ2

at all causal
Mean χ2

at non-causal Power Type I error (se; pval)
FMA:C1 1.57 (0.007) 1.013 (0.002) 0.107 (4.30e-04) 0.052 (2.28e-04; 0.0e+00)
FMA:C8 1.56 (0.006) 1.003 (0.002) 0.105 (3.68e-04) 0.051 (2.22e-04; 1.4e-02)

FMA:C16 1.56 (0.006) 1.004 (0.002) 0.106 (4.02e-04) 0.051 (2.17e-04; 1.0e-02)
FMA:AprLoco 1.54 (0.005) 0.971 (0.003) 0.105 (4.44e-04) 0.047 (2.78e-04; 0.0e+00)

FMA:Pruned 1.56 (0.007) 0.993 (0.002) 0.105 (4.00e-04) 0.049 (2.09e-04; 1.2e-03)
BOLT:Inf 1.56 (0.006) 1.008 (0.002) 0.107 (4.14e-04) 0.051 (2.25e-04; 1.3e-02)

BOLT:MoG 1.57 (0.006) 1.010 (0.002) 0.108 (4.24e-04) 0.051 (2.18e-04; 1.0e-03)
Regenie 1.57 (0.008) 1.315 (0.021) 0.107 (6.01e-04) 0.086 (2.41e-03; 0.0e+00)

Regenie+PCA 1.55 (0.006) 1.001 (0.002) 0.105 (4.10e-04) 0.050 (2.05e-04; 3.0e-01)
fastGWA 1.62 (0.013) 1.102 (0.011) 0.113 (1.23e-03) 0.062 (1.36e-03; 0.0e+00)

fastGWA+PCA 1.53 (0.006) 1.002 (0.002) 0.104 (4.07e-04) 0.050 (2.20e-04; 4.2e-01)
Lin Reg 1.65 (0.015) 1.130 (0.014) 0.117 (1.53e-03) 0.065 (1.71e-03; 0.0e+00)

LinReg+PCA 1.54 (0.006) 1.006 (0.002) 0.104 (4.10e-04) 0.051 (2.18e-04; 2.1e-03)

Table B.6: Results for the EUR sample with 5% polygenicity. Description as in
Table B.1, with the difference that this case involves population stratification and 19,081
causal variants.
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Mean χ2

at all causal
Mean χ2

at non-causal Power Type I error (se; pval)
FMA:C1 1.88 (0.011) 1.004 (0.002) 0.120 (7.55e-04) 0.051 (2.72e-04; 3.4e-02)
FMA:C8 1.86 (0.011) 0.988 (0.002) 0.118 (7.19e-04) 0.049 (2.52e-04; 0.0e+00)

FMA:C16 1.85 (0.011) 0.989 (0.002) 0.118 (7.65e-04) 0.049 (2.27e-04; 0.0e+00)
FMA:AprLoco 1.56 (0.035) 0.927 (0.037) 0.099 (2.72e-03) 0.045 (2.93e-03; 1.1e-01)

BOLT:Inf 1.87 (0.011) 0.992 (0.001) 0.119 (7.41e-04) 0.049 (1.65e-04; 0.0e+00)
BOLT:MoG 1.93 (0.012) 0.996 (0.001) 0.123 (7.40e-04) 0.049 (1.62e-04; 0.0e+00)

Regenie 17.19 (0.971) 19.674 (0.982) 0.493 (1.19e-02) 0.526 (1.26e-02; 0.0e+00)
Regenie+PCA 1.88 (0.011) 0.996 (0.001) 0.119 (7.55e-04) 0.050 (1.71e-04; 2.4e-02)

fastGWA 2.12 (0.048) 1.286 (0.049) 0.146 (4.25e-03) 0.082 (5.04e-03; 0.0e+00)
fastGWA+PCA 1.82 (0.020) 0.995 (0.002) 0.114 (2.44e-03) 0.048 (1.02e-03; 1.4e-01)

Lin Reg 13.74 (2.206) 13.348 (2.300) 0.418 (2.55e-02) 0.392 (2.85e-02; 0.0e+00)
LinReg+PCA 1.87 (0.011) 1.012 (0.001) 0.120 (7.62e-04) 0.051 (1.80e-04; 0.0e+00)

Table B.7: Results for the CSR sample with 1% polygenicity. Description as in
Table B.1, with the difference that this case involves continental structure and relatedness.

Mean χ2

at all causal
Mean χ2

at non-causal Power Type I error (se; pval)
FMA:C1 1.49 (0.005) 0.994 (0.002) 0.100 (4.88e-04) 0.049 (2.41e-04; 1.3e-02)
FMA:C8 1.50 (0.005) 1.004 (0.002) 0.101 (4.91e-04) 0.051 (2.08e-04; 9.7e-03)

FMA:C16 1.48 (0.004) 0.987 (0.002) 0.099 (4.45e-04) 0.049 (1.74e-04; 0.0e+00)
FMA:AprLoco 1.47 (0.027) 0.910 (0.026) 0.093 (2.27e-03) 0.042 (2.25e-03; 3.0e-04)

BOLT:Inf 1.49 (0.004) 0.993 (0.001) 0.101 (4.65e-04) 0.049 (1.64e-04; 0.0e+00)
BOLT:MoG 1.49 (0.005) 0.995 (0.001) 0.101 (4.74e-04) 0.049 (1.67e-04; 0.0e+00)

Regenie 20.75 (1.102) 23.390 (1.331) 0.520 (1.46e-02) 0.559 (1.53e-02; 0.0e+00)
Regenie+PCA 1.50 (0.004) 0.997 (0.001) 0.101 (4.12e-04) 0.050 (1.64e-04; 7.3e-02)

fastGWA 1.74 (0.039) 1.263 (0.038) 0.128 (3.95e-03) 0.080 (4.32e-03; 0.0e+00)
fastGWA+PCA 1.47 (0.005) 0.998 (0.002) 0.099 (5.01e-04) 0.050 (2.80e-04; 5.3e-01)

Lin Reg 12.56 (1.855) 12.049 (1.844) 0.403 (2.59e-02) 0.385 (2.80e-02; 0.0e+00)
LinReg+PCA 1.50 (0.004) 1.013 (0.001) 0.102 (4.15e-04) 0.051 (1.67e-04; 0.0e+00)

Table B.8: Results for the CSR sample with 5% polygenicity. Description as in
Table B.1, with the difference that this case involves continental structure and relatedness,
and 18,929 causal variants.
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Sample Methods Mean χ2 (top) p-value
328k BOLT:MoG vs BOLT:Inf 253.54 vs 235.37 6.6e-03
328k BOLT:MoG vs FMA:C8 253.54 vs 235.39 6.7e-03
328k BOLT:MoG vs Regenie 253.54 vs 238.36 7.0e-03
328k BOLT:MoG vs fastGWA 253.54 vs 198.25 2.2e-03
328k BOLT:MoG vs LinReg 253.54 vs 210.32 2.3e-03
328k BOLT:Inf vs FMA:C8 235.37 vs 235.39 4.9e-01
328k BOLT:Inf vs Regenie 235.37 vs 238.36 1.0e-02
328k BOLT:Inf vs fastGWA 235.37 vs 198.25 1.5e-03
328k BOLT:Inf vs LinReg 235.37 vs 210.32 1.1e-03
328k FMA:C8 vs Regenie 235.39 vs 238.36 3.6e-02
328k FMA:C8 vs fastGWA 235.39 vs 198.25 1.4e-03
328k FMA:C8 vs LinReg 235.39 vs 210.32 1.2e-03
328k Regenie vs fastGWA 238.36 vs 198.25 1.6e-03
328k Regenie vs LinReg 238.36 vs 210.32 1.3e-03
328k fastGWA vs LinReg 198.25 vs 210.32 8.8e-03

Table B.9: Pairwise comparisons of χ2 statistics for 20 real phenotypes and
N = 328k. For each pair of methods, I compare the distribution of average test statistic at
top variants, considering all the 20 phenotypes. The set of top variants was defined as the
intersection of BOLT:MoG’s, fastGWA’s, and REGENIE’s 1000 most significant associations.
I used paired t-tests to assess if any averages are significantly different, reporting the
corresponding p-values in the last column. Bold fonts indicate statistically significant
differences, using the threshold of 0.05/15 = 0.0033 to control for multiple testing.

scenario ARG-RHE ARG-GCTA
h2 pol N estimate SE estimate SE

0.25 100% 2500 0.2702 0.0570 0.2563 0.0438
0.25 100% 5000 0.2541 0.0291 0.2488 0.0252
0.25 100% 10000 0.2635 0.0163 0.2560 0.0156
0.25 100% 25000 0.2451 0.0105 0.2499 0.0089
0.5 100% 2500 0.5042 0.0636 0.5107 0.0425
0.5 100% 5000 0.5028 0.0348 0.4964 0.0248
0.5 100% 10000 0.5100 0.0211 0.5031 0.0154
0.5 100% 25000 0.4927 0.0166 0.4947 0.0090
0.25 5% 2500 0.2710 0.0561 0.2537 0.0434
0.25 5% 5000 0.2515 0.0310 0.2422 0.0251
0.25 5% 10000 0.2405 0.0179 0.2449 0.0155
0.25 5% 25000 0.2351 0.0110 0.2441 0.0089
0.5 5% 2500 0.5205 0.0618 0.4981 0.0423
0.5 5% 5000 0.5006 0.0370 0.4920 0.0248
0.5 5% 10000 0.4801 0.0243 0.4938 0.0155
0.5 5% 25000 0.4728 0.0173 0.4890 0.0090

Table B.10: Evaluation of h2 estimation using genealogies. This table reports
the estimates obtained by either ARG-RHE or ARG-GCTA, as in figure 6.2, but this time
reporting standard errors (SE), averaged for the 20 phenotypes. Pol refers to polygenicity.
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