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Abstract

Diffusion magnetic resonance imaging (diffusion MRI) is an imaging technique which is
sensitive to the micrometre scale movement of water molecules within a medium. It
is routinely used in clinical practice, as well as increasingly in biomedical research as
a quantitative tool. However, mathematical relations describing the image signal in a
heterogeneous medium are poorly established. There is therefore a need for a better
mathematical foundation for diffusion MRI which accounts for the heterogeneous nature
of biological tissue, both in terms of molecular transport and magnetic properties.

By using a novel distribution function formulation describing diffusion-weighted spin-
echo (DW-SE), which is the most common form of diffusion MRI, it is shown that the local
modulation wave-vector, known as the q-vector, and the time scale define the operating
regime of a DW-SE pulse sequence. Different locations in the q-t parameter space therefore
correspond to respective asymptotic models describing DW-SE.

The effects of micro-scale magnetic heterogeneities are then analysed using multiple
scales. It is found that in the long-time regime of DW-SE, local induced variations in
the q-vector are typically of comparable magnitude to the macro-scale applied q-vector,
whereas they are negligible in the short-time regime. Therefore, in the subsequent analysis
of the long-time regime, the spatial q-vector variation is considered simultaneously with
transport heterogeneities. Using multiple scales homogenisation, a multi-compartmental
effective medium model has been derived. The effective diffusion tensors can be calculated
by solving a cell problem over a periodic cell of the microstructure, however it is shown
that the leading order effect of the spatial q-vector variation integrates exactly to zero.

Meanwhile, the short-time regime of DW-SE is analysed using a boundary layer model.
It is first considered using an unphysical assumption of instantaneous modulation of spins,
with results agreeing with literature. Taking advantage of the reduced problem complex-
ity, the effects of realistic gradient pulses are then numerically computed. The image signal
is found to vary approximately linearly with the pulse duration of a rectangular pulse,
thus leading to a proposed two-point extrapolation method for correction. Meanwhile, for
more general irregular pulse shapes, it is found that as long as they are symmetric, they
correspond to an equivalent rectangular pulse with easily computable parameters.

Finally, for the intermediate-time regime, numerical solutions to the full problem are
sought, using simple model geometries and a microscopy-derived realistic microstructure.
The results agree with the two derived models at the respective asymptotes, with a tran-
sitional region of about a decade in the q-value. Additionally, the transitional region
occurs at smaller q-values for isolated intra-cellular spaces compared to the connected
extra-cellular space. This finding can inform future experiment design and modelling,
particularly in relation to separating and analysing the intra-cellular signal component.
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Chapter 1

Introduction

1.1 Background

Diffusion-weighted magnetic resonance imaging (diffusion MRI) refers to a family of imag-

ing methods which are sensitive to the microscopic motion of MRI-visible molecules, usu-

ally water, within a medium. In biomedical applications, the power of diffusion MRI lies

in its ability to non-invasively probe micro-scale tissue structure and potentially allow the

inference of micro-scale biophysical processes. In clinical practice, it has found important

applications in the diagnosis and management of acute stroke patients. As diffusion MRI

is able to detect early changes to microscopic water transport properties in the brain

before macro-scale structural change, valuable time is gained to determine the optimal

treatment to minimise permanent damage. Furthermore, diffusion MRI has become a

standard tool for neuroscience research, where it is used to characterise the white-matter

fibre structure and the connectivity between different areas of the brain.

In recent years, there is an increasing trend of using diffusion MRI as a quantitative

rather than qualitative technique. The quantitative use of diffusion MRI originates all

the way back from the initial diffusion spin-echo experiment by Stejskal and Tanner [108],

where the diffusion coefficient of a homogeneous sample of dry glycerol. However, the

complex nature of biological tissues presents many difficult challenges in the quantitative
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1.2 Asymptotic methods in multi-scale problems

interpretation of diffusion MRI measurements. The microstructure of tissue introduces

heterogeneities both in terms of tracer transport and magnetic properties, such as cell

membranes introducing impermeable barriers, or diamagnetic substances such as deoxy-

haemoglobin and lipids causing magnetic inhomogeneities. Many modelling methods have

been proposed to infer properties of tissue microstructure and hence their clinical implica-

tions from diffusion MRI measurements, for example the apparent diffusion coefficient for

the assessment of acute cortical ischaemia [72, 112], the q-space concept for investigating

axon diameter and direction in the white matter [4, 21, 47, 54], diffusion tensor imaging

(DTI) to measure anisotropic diffusion [10], and the intravoxel incoherent motion (IVIM)

concept to model blood flow in vascularised tissue [64, 66, 114]. However, since these

modelling methods arise from separate clinical needs or interests, they require bespoke

assumptions either explicitly or implictly, and the relationship between model parame-

ters and the physical anatomy is often unclear. There is therefore a need for a better

mathematical foundation for these techniques.

1.2 Asymptotic methods in multi-scale problems

Many engineering problems can be described and solved by differential equations. How-

ever, such equations do not necessarily possess analytical solutions, making them difficult

to solve exactly. For practical purposes, mathematical methods are therefore required to

obtain meaningful approximate solutions. In practice, these problems are often posed in

multi-scale settings. For example, co-existing physical processes may have magnitudes of

different scales, meaning that some are dominant over others. Heterogeneous structures

within the domain of definition may also occur at multiple length or time scales. By

studying the limit behaviour as the scale separation tends to infinity, asymptotic methods

provide a powerful approach to derive approximate solutions to these problems. These

methods disentangle scale-separated phenomena in a systematic manner, thus breaking

down a complex multi-scale problem into several simpler ones.

2



1.2 Asymptotic methods in multi-scale problems

One type of asymptotic methods which is particularly relevant to biological tissue is

multi-scale homogenisation. This method applies to problems with a scale separation

presented by a heterogeneous microstructure which is much smaller than the macroscopic

observation scale; examples of such multi-scale heterogeneous media include composite

materials and porous media. The aim of homogenisation is to derive an approximate

continuum model at the macro-scale, based on the asymptotic behaviour of the hetero-

geneous medium at the large scale separation limit. Although the method was originally

developed in engineering disciplines such as geotechnics, it has also found application in

modelling biological tissues, for example vascular tumours [102], myocardium [106] and

the cerebral cortex [36]. Typically, the scale separation between cellular or microvascular

structures and the macroscopic scale is exploited to apply multi-scale homogenisation.

Another type of asymptotic methods which is relevant is boundary layer analysis.

This method applies when there is a scale separation between the local processes near a

boundary and the bulk behaviour in a domain. The essence of the method is to isolate the

heterogeneous behaviour in the local scale by considering a simpler problem within the

boundary layer, so its effect in the context of the global domain can then be summarised

by an integration through the layer. This method is also commonly used in engineering

disciplines, for example in fluid mechanics and thermodynamics.

The motivation to use multi-scale asymptotic methods is twofold. Firstly, at a practical

level it greatly reduces the complexity of the problem, particularly when further numerical

approximation of the solution is required. If numerical methods are directly applied on a

multi-scale problem, the discretisation scheme needs to resolve all scales simultaneously.

This comes with a huge computational cost – for example a typical MRI voxel size is about

1 mm while an axon has a diameter of order 1 µm, so to directly discretise a voxel-sized

volume of white matter would require at least 1 billion elements already. Secondly and

perhaps more importantly, at a theoretical level it systematically extracts the important

parameters which govern the overall physical behaviour. This allows the comparison and

analysis of solutions from different situations in a mathematically justified manner. Take

3



1.3 Outline of thesis

civil engineering as an example – the flow field of water seeping through one particular

soil sample can indeed be solved numerically, if one has the computational resources,

but arguably it is more meaningful to describe it using the macroscopic Darcy’s law.

This concept is equally applicable in clinical imaging, as information about the collective,

overall behaviour of tissue is more likely to be diagnostically useful, compared to the

observation of every single living cell in one’s body. The work in this thesis therefore aims

to use this methodology to investigate the link between diffusion MRI and multi-scale

media. By deriving mathematically justified models to explain the MRI signal, they can

inform us about how the measured signals relate to microstructure properties, and allow

for better quantitative imaging methods to be developed.

1.3 Outline of thesis

In Chapter 2, a literature review on the basic concepts of diffusion MRI and its current

developments is presented. The underlying physics and the technical aspects of diffusion

MRI implementation are reviewed with focus on the mathematical aspects, in particular

the validity of a partial differential equation description using the Bloch-Torrey equations.

The need for modelling in the quantitative interpretation of diffusion MRI is discussed.

A review on current diffusion MRI modelling methods then reveals a gap in the literature

in the mathematical understanding of diffusion MRI in general heterogeneous media and

appropriate models to describe it.

In Chapter 3, a novel distribution function formulation of diffusion-weighted spin-

echo (DW-SE), which is the most common form of diffusion MRI, is proposed. Using this

formulation, the relevant scales defining an operating regime of DW-SE are identified.

These are the local spatial modulation wave-vector (the q-vector) and the time scale

respectively, leading to the use of the q-t parameter space to characterise diffusion MRI

experiments.

In Chapter 4, the local perturbation of the q-vector arising from magnetic hetero-

4



1.3 Outline of thesis

geneities is modelled using multi-scale homogenisation. This leads to Chapter 5, which

covers the long-time regime by using multi-scale homogenisation to model transport and

magnetic heterogeneities simultaneously. The short-time regime is then covered in Chap-

ter 6 with the use of boundary layer analysis. The intermediate-time regime is also

considered in Chapter 7 through the use of numerical simulations. Finally, Chapter 8

concludes the thesis with some final remarks and outlines the future research directions

arising from this thesis.

5



Chapter 2

Principles of diffusion-weighted MRI

2.1 Introduction

This chapter covers the basic principles of diffusion-weighted MRI and its current devel-

opments, which include the theoretical aspects of the underlying physics, the technical

aspects to implement a transport-sensitive MRI experiment, and finally the modelling as-

pects of quantitatively interpreting these images. The aim of this chapter is to critically

review the existing literature on these topics, so as to identify gaps of current knowledge

as discussed in the previous chapter.

2.2 Nuclear magnetic resonance in diffusive and ad-

vective media

The underlying physics that is responsible for diffusion-weighted MRI is the behaviour

of nuclear magnetic resonance in media which is diffusive and/or advective. This section

aims to give a brief overview of this topic, with particular focus on its mathematical

descriptions at length scales relevant to biological tissue.

6



2.2 Nuclear magnetic resonance in diffusive and advective media

Figure 2.1: Larmor precession of magnetisation vector M about the direction of a
strong magnetic field B for a positive gyromagnetic ratio, assuming no relaxation ef-
fects. Adapted from [90].

2.2.1 The phenomenon of nuclear magnetic resonance

Central to the field of MRI physics is the phenomenon of nuclear magnetic resonance

(NMR), which occurs when certain atomic nuclei are placed in a strong magnetic field.

Its discovery dates back to 1946 when two groups of researchers independently reported

the NMR phenomenon experimentally [15, 95], with its importance recognised by the 1952

Nobel Prize for Physics shared between Felix Bloch and Edward Purcell. This topic is

covered comprehensively in many texts, for example an exposition at a level appropriate to

imaging applications has been given by Jezzard and Clare [52], while detailed descriptions

of its physical origins can be found in Chizhik et al. [26] and Levitt [70].

Nuclear magnetic resonance is observed when atomic nuclei possessing a magnetic

moment, such as those of 1-hydrogen (1H), are placed in a strong magnetic field and

perturbed from the magnetic equilibrium. At the atomic level, such behaviour is quantum

mechanical and is related to the splitting of energy states of the particles under a magnetic

field. At a bulk continuum level, however, the collective behaviour of an ensemble of

particles can be described using a phenomenological approach, as suggested by Bloch

[14]. At equilibrium, nuclear magnetic moments preferentially align to the strong magnetic

field, resulting in a net magnetisation in the field direction. When they are perturbed

from equilibrium, the misalignment causes magnetic moments to precess about the field

7



2.2 Nuclear magnetic resonance in diffusive and advective media

direction at the Larmor frequency, which is proportional to the magnetic flux density.

The time-variation of the net magnetisation concentration M under a magnetic field B,

assuming no relaxation, is therefore described by:

dM
dt = γM×B, (2.1)

where γ is the gyromagnetic ratio, determined by the quantum properties of the atomic

nuclei in consideration. If a static magnetic field is applied in the positive z-direction:

B = (0, 0, B0)T , the solution to (2.1) takes the form of a rotation about the z-axis:

M =


a cosω0t+ b sinω0t

−a sinω0t+ b cosω0t

c

 ,

where a, b, c are some constants and ω0 = γB0; the rotation is clockwise if the gyromag-

netic ratio is positive (Figure 2.1). For the nucleus of 1H, which is responsible for almost

all MRI applications, the value of γ is approximately 267.52 × 106 rad s-1 T-1. For mod-

ern clinical MRI scanners, the static field strength is in the range of 1.5 to 7 Teslas, so

the nominal Larmor frequency (f0 = γB0/2π) is in the radiofrequency (RF) range of 63.9

to 298 MHz.

2.2.2 Relaxation and transport of nuclear magnetisation

Equation (2.1) describes the immediate non-equilibrium behaviour of magnetisation, how-

ever over time the spins have a tendency to restore a state of dynamic equilibrium through

irreversible, random processes. This is known as the relaxation of magnetisation. When

there is a strong magnetic field with flux density B0, conventionally applied in the z-

direction, a net magnetisation M0 in the same direction is induced at equilibrium. Equa-

tion (2.1) can then be modified to model relaxation as exponentially-decaying processes

8



2.2 Nuclear magnetic resonance in diffusive and advective media

[14]:

dMx

dt = γ(MyBz −MzBy)−
Mx

T2
, (2.2)

dMy

dt = γ(MzBx −MxBz)−
My

T2
, (2.3)

dMz

dt = γ(MxBy −MyBx)−
Mz −M0

T1
, (2.4)

where T1 and T2 are the longitudinal and transverse relaxation time constants respectively.

These equations are collectively known as the Bloch equations, and are valid when the

magnetic field perturbation is negligible compared to the static B0 field, so the equilibrium

magnetisation is only ever slightly perturbed from (0, 0,M0)T . Under a static field B =

(0, 0, B0)T , the solution to (2.2)-(2.4) is in the form:

M =


e−t/T2(a cosω0t+ b sinω0t)

e−t/T2(−a sinω0t+ b cosω0t)

M0 − ce−t/T1

 ,

which precesses at the Larmor frequency but exponentially decays towards the equilibrium

state.

Similar to precession, the physical origin of longitudinal and transverse relaxations

at an atomic level is not classical. They are driven by random thermal processes that

stochastically affect the discrete energy states of the nuclei, providing a pathway to re-

store equilibrium eventually. The relaxation time constants depend on the rate in which

mixing occur between the energy states, therefore they vary with both the magnetic field

Tissue B0 = 1.5T1 3.0T2,3 4.0T4

White matter T1 640 860 1040
Grey matter T1 880 1200 1410
White matter T2 80 80 50
Grey matter T2 80 110 50
1 MacFall et al. (1987). Magn. Reson. Imaging 5, 209-220.
2 Wansapura et al. (1999). J. Magn. Reson. Imaging 9, 531-538.
3 Clare and Jezzard et al. (2001). Magn. Reson. Med. 45, 630-634.
4 Duewell et al. (1996). Radiology 199, 780-786.

Table 2.1: Average values of T1 and T2 (units: ms) in the human brain, cited in [52]
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2.2 Nuclear magnetic resonance in diffusive and advective media

strength B0 and the environment in which the nuclei are situated in, as shown in Ta-

ble 2.1. In biological tissues, the dominant contribution of transverse relaxation is the

irreversible decoherence in Larmor frequencies among the ensemble of nuclei, caused by

random fluctuations in local magnetic field induced by neighbouring tumbling molecules.

However, this effect does not contribute to longitudinal relaxation, therefore generally T2

is shorter than T1 [52, 69].

A completely separate mechanism, which causes an apparent loss of transverse mag-

netisation, is often attributed as a type of ‘relaxation’ termed T2* relaxation [52]. This is

caused by spatial inhomogeneities in the static field B0, leading to a bulk rather than ran-

dom decoherence of Larmor frequencies. Therefore, this effect is not a true relaxation, as

the process involved is reversible and is not responsible for the restoration of equilibrium.

Indeed, the T2* reversibility is exploited in the spin-echo experiment [44], in which a pulse

of rotating magnetic field is used to flip the magnetisation by 180 degrees, thus reversing

the bulk dephasing effect and refocusing the magnetisation. In fact, the T2* effect is only

observed due to the lack of spatial specificity to resolve an inhomogeneous static B0 field,

whereas true transverse (T2) relaxation occurs among the ensemble of nuclei at every

infinitesimal volume of space, so it is observed irrespective of spatial resolution.

In the Bloch equations (2.2)-(2.4), the magnetisation is assumed to only vary in time,

ignoring any effects caused by spatial variation. However, spatial variation of magnetisa-

tion concentration introduces another pathway to dynamic equilibrium, which is through

the irreversible, diffusive transport of these resonating nuclei. At a molecular level, spatial

transport occurs as Brownian motion as postulated by kinetic theory. This effect was first

observed and described by Hahn [44]; the modelling of this random walk behaviour of nu-

clei in magnetic resonance was subsequently proposed by Carr and Purcell [23]. However,

at a continuum level, the effects of spatial magnetisation transport can be described by

considering its associated flux quantities over an infinitesimal volume. This approach is

first adopted by Torrey [113], who modified the Bloch equations by adding diffusive terms

10



2.2 Nuclear magnetic resonance in diffusive and advective media

which obey Fick’s law:

∂Mx

∂t
= ∇ · (D∇Mx) + γ(MyBz −MzBy)−

Mx

T2
, (2.5)

∂My

∂t
= ∇ · (D∇My) + γ(MzBx −MxBz)−

My

T2
, (2.6)

∂Mz

∂t
= ∇ · (D∇Mz) + γ(MxBy −MyBx)−

Mz −M0

T1
, (2.7)

where D is the diffusion coefficient of the nuclei in the medium, and M(x, y, z, t) is the

magnetisation density which depends on both space and time. In the original formulation

of Torrey the diffusion behaviour is assumed to be isotropic, therefore the diffusion coeffi-

cient is a positive scalar; for anisotropic media this can be generalised by replacing it with

a diffusion tensor. The same as the Bloch equations, here the magnetic field perturbation

is assumed to be negligible so the equilibrium state is effectively constant. Equations

(2.5)-(2.7) are collectively known as the Bloch-Torrey equations, and are partial differen-

tial equations in both space and time variables, rather than ordinary differential equations

in just the time variable in (2.2)-(2.4). A logical, simple extension to (2.5)-(2.7), as pro-

posed by Stejskal [107], is the addition of advective transport terms caused by a bulk flow

of velocity u:

∂Mx

∂t
= ∇ · (D∇Mx − uMx) + γ(MyBz −MzBy)−

Mx

T2
, (2.8)

∂My

∂t
= ∇ · (D∇My − uMy) + γ(MzBx −MxBz)−

My

T2
, (2.9)

∂Mz

∂t
= ∇ · (D∇Mz − uMz) + γ(MxBy −MyBx)−

Mz −M0

T1
. (2.10)

The detectable signal of NMR originates from the transverse components of mag-

netisation, which resonates nominally at the Larmor frequency during free precession.

Therefore, it is conventional to denote the transverse component of M as a complex pha-

sor: Mxy = Mx + iMy. It is also often convenient to express the T2 relaxation term using

the rate constant R2 = 1/T2. Since the transverse components of the magnetic field (Bx

and By) are negligible during free resonance, (2.8) and (2.9) can be simplified to a more

11



2.2 Nuclear magnetic resonance in diffusive and advective media

compact form:

∂Mxy

∂t
= ∇ · (D∇Mxy − uMxy)− iγBzMxy −R2Mxy. (2.11)

2.2.3 Validity of deterministic continuum formulation

As explained above, at the atomic or molecular level (nanometre scale) both magnetic

resonance and spatial transport of nuclear magnetic moments are stochastic in nature.

However, as observed by Einstein [35], the time evolution and spatial variation of proba-

bility distributions arising from the stochastic processes satisfy some deterministic partial

differential equations. Macroscopic quantities, which are some expected values of many

samples from these distributions, are therefore governed by deterministic laws. Subse-

quently, with the introduction of stochastic calculus and its analysis, this equivalence

between stochastic and deterministic points of view has been justified with mathematical

rigour [8]. Since the number of stochastic steps taken is large at a continuum scale, the

nanoscale stochastic effects are averaged out and contained in the coefficients of the PDE.

In the case of resonating spins in an infinite homogeneous diffusive medium, this can be

explained using the central limit theorem, as illustrated by Carr and Purcell [23]. The

mathematical equivalence also holds when the domain contains boundaries, as it can be

demonstrated that absorption, instantaneous reflection and partial reflection conditions

in the stochastic sense correspond to Dirichlet, Neumann and Robin boundary conditions

in the PDE sense respectively [98, 105, 117].

For the description of NMR in advective-diffusive media, the validity of a determin-

istic continuum formulation is dependent on the scaling condition of stochastic collisions

being frequent. This can be assessed by the Knudsen number, which is the mean free

path between collisions divided by the length scale of interest. In liquids, the mean free

path is comparable to the molecular size (<1nm), while cellular structures of biological

tissue is at the micrometre scale. The Knudsen number therefore is very small, implying

that a large number of molecular collisions, responsible for relaxation and transport, hap-

12



2.3 Implementing transport-sensitive MRI

pen over the length scale of interest, thus justifying the deterministic approach. In fact,

the use of the Bloch equations already implicitly assumes this scale separation anyway,

through the bundling of resonance and relaxation processes into the gyromagnetic ratio

and relaxation time constants. Delving into the underlying stochastic processes is only

insightful when inferring nanoscale properties, such as chemical composition or molecular

structure, from observed continuum parameters. For the purpose of modelling the effect

of cellular structures in MRI, the stochastic and deterministic approaches are mathemat-

ically equivalent. The PDE formalism of (2.8)-(2.10) together with appropriate boundary

conditions is therefore sufficient, contrary to the suggestion in some NMR/MRI texts that

the Bloch-Torrey equations do not hold in heterogeneous media and hence the necessary

language of atomic stochastic processes in modelling [19, 20].

2.3 Implementing transport-sensitive MRI

This section outlines the implementation of diffusion-weighted MRI, which are MRI exper-

iments that are sensitive to magnetisation transport. The aim of this section is to provide

the necessary context for the mathematical description of diffusion-weighted MRI, rather

than covering the technical details such as hardware consideration or pulse sequence de-

sign. A more comprehensive discussion of these topics is available in the literature [104,

122].

2.3.1 Hardware setup for gradient fields and RF pulses

The generic hardware setup of an MRI scanner is schematically shown in Figure 2.2. The

outermost layer is the superconducting magnet, which generates a strong, static magnetic

field B0 in the longitudinal (z-) direction so that magnetic resonance can occur inside

the bore. The next layer comprises three sets of gradient coils which, when powered

up, generate magnetic fields with longitudinal components that vary linearly in the x-

, y- and z-directions respectively. The innermost layer, just surrounding the imaged
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2.3 Implementing transport-sensitive MRI

volume, are sets of RF coils which are tuned to the nominal Larmor frequency. Depending

on whether they are in transmitting or receiving mode, the RF coils either generate or

detect oscillatory magnetic fields in the transverse direction. The gradient and RF coils

are connected, via amplifiers and electronics, to a computer console which coordinates

their inputs and outputs according to a programmed pulse sequence, and subsequently

reconstruct an MR image from the acquired information.

The role of the gradient coils is to spatially modulate the resonance frequency in a vol-

ume by introducing spatial variation of longitudinal field strength Bz. By superimposing

some combination of the three gradient fields onto the static field, the Larmor frequency

as a function of space becomes: ω = γ(B0 +Gxx+Gyy+Gzz), with the origin set at the

middle of the bore. A spatial gradient of Larmor frequency can therefore be specified at

any direction by setting an appropriate combination of inputs (Gx, Gy, Gz).

Meanwhile, the role of the RF coils in magnetic resonance is more complex. In receiving

mode, they are used to detect the resonating magnetisation by passively sensing the

oscillatory induced voltages. In transmitting mode, the coils are responsible for generating

pulses of oscillatory transverse magnetic field, usually referred to as RF pulses, that can

rotate the magnetisation vector about an axis on the transverse plane. RF pulses are

essential in any magnetic resonance experiment, as the spins need to be perturbed away

from their equilibrium longitudinal alignment. They can also be incorporated into more

sophisticated pulse sequences to manipulate magnetic resonance in specific ways. To

Figure 2.2: Block diagram of hardware arrangement in a generic MRI scanner, reproduced
from [52].
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2.3 Implementing transport-sensitive MRI

illustrate the principle, consider a rotating RF magnetic field of magnitude B1, which can

be generated by a quadrature drive, superimposed on a strong static field of magnitude

B0:

Bx = B1 cos(ωt), By = −B1 sin(ωt), Bz = B0.

The duration of this pulse is much shorter than relaxation and transport time scales, so

its effect on magnetisation can be described by the Bloch equation without decay terms

(2.1). Using a change of variable from the stationary frame (x, y, z) to the rotating frame

(x′, y′, z) with respect to the driving frequency:

Mx′ = Mx cosωt−My sinωt,

My′ = Mx sinωt+My cosωt,

Equation (2.1) then becomes:

dMx′

dt = −(ω − γB0)My′ , (2.12)
dMy′

dt = γB1Mz + (ω − γB0)Mx′ , (2.13)
dMz

dt = −γB1My′ . (2.14)

In the case of excitation, the equilibrium magnetisation is the initial condition: M(0) =

(0, 0,M0)T . Defining ωeff =
√
γ2B2

1 + (ω − γB0)2, the solution to (2.12)-(2.14) can be

written exactly, and then approximated for |ω − γB0| � |γB1|, as:

Mx′ = M0
γB1(ω − γB0)

ω2
eff

(1− cosωefft) ≈ 0, (2.15)

My′ = M0
γB1 sinωefft

ωeff
≈M0 sin γB1t, (2.16)

Mz′ = M0

(
γ2B2

1 cosωefft

ω2
eff

+ (ω − γB0)2

ω2
eff

)
≈M0 cos γB1t. (2.17)

As both the amplitude and frequency are approximated in the above expressions, they

are only valid for small t and diverges after time. The approximations are exact when

ω = γB0, which is if the driving frequency exactly matches the Larmor frequency. In

this case, the magnetisation vector rotates about the x′-axis at an angular rate of −γB1
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2.3 Implementing transport-sensitive MRI

Figure 2.3: Rotation of magnetisation vector by an RF pulse shown in (a) stationary and
(b) rotating frames, reproduced from [48].

(Figure 2.3), therefore if the pulse has a duration of t = π/(2γB1), the magnetisation

will be rotated by 90° ending up on the transverse plane. Similarly, if either the dura-

tion or the amplitude is doubled, the magnetisation will be rotated by 180°. These two

pulses are particularly useful in MRI: the 90° pulse generates the maximum amount of

transverse magnetisation and hence signal from equilibrium, whereas the 180° pulse com-

pletely reverses the magnetisation and can be used for refocusing transverse magnetisation

or sensitising contrast in T1 relaxation.

In the simple example, the rotating B1 field only has one specific frequency component,

therefore the excitation is maximum when it matches the Larmor frequency and drops

Figure 2.4: Frequency-selective excitation using a sinc-function modulated RF pulse.
When applied in conjunction with a linear field gradient, spatial selectivity of excitation
(slice selection) is achieved. Reproduced from [52].
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off either side. This is because the approximations in (2.15)-(2.17) worsen as |ω − γB0|

increases. In practice, the frequency content of RF pulses can be carefully designed to

achieve a certain excitation profile over a range of Larmor frequencies, trading off a number

of factors such as selectivity required, pulse duration or energy deposition. For example,

a sinc-function pulse envelope can be used for an approximate ‘top-hat’ excitation profile

(Figure 2.4), with the bandwidth of frequencies excited determined by the sinc envelope

duration. This is often used in conjunction with a magnetic field gradient to achieve spatial

excitation selectivity, also known as slice selection as the pulse only rotates magnetisation

within a slice of the volume.

2.3.2 Diffusion-weighted spin-echo (DW-SE) pulse sequence

The simplest, and by far the most common, pulse sequence that is sensitive to spatial

transport of magnetisation is the diffusion-weighted spin-echo (DW-SE) sequence with

pulsed gradients [61]. It is a simple modification of the common spin-echo technique for

T2-weighted imaging, which involves a 90° pulse followed by a refocusing 180° pulse (Fig-

ure 2.5), by adding pairs of large field gradients either side of the 180° pulse (Figure 2.6).

Other less common transport-sensitive pulse sequences exist as well, such as stimulated

echo [74, 75, 111] and steady-state free precession (SSFP) [59, 63, 76] methods, although

they are beyond the scope of this thesis.

In the spin-echo sequence without diffusion weighting, the signal undergoes T2* decay

after the initial excitation by a 90° pulse, due to bulk decoherence of spins caused by B0

Figure 2.5: The spin-echo pulse sequence, reproduced from [52].
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Figure 2.6: Diagram of a typical diffusion-weighted spin-echo (DW-SE) pulse sequence.

inhomogeneities. The spin dephasing is reversed by applying a 180° pulse at the midpoint

of the sequence, so the magnetisation is refocused and produces an echo in the detected

signal, the amplitude of which now reflects the true transverse (T2) relaxation over the

echo time (TE). By introducing spatial encoding during signal detection, a T2-weighted

image can be reconstructed. The details of the spatial encoding and image reconstruction

methods depend on the image acquisition protocol (see [52]), although for the purpose of

modelling and interpreting DW-SE it can be treated as a black box providing an image,

which effectively is an array of numbers containing voxel-averaged signal values.

Meanwhile for the diffusion-weighted sequence, extra signal attenuation is introduced

by the pair of field gradients, which are usually referred to as the ‘diffusion gradients’. The

first lobe of diffusion gradients before the 180° pulse causes a spatial modulation of mag-

netisation phase along the applied gradient direction. If there is no translational motion

of spins, they would be perfectly demodulated by the second lobe of diffusion gradients,

which has the same area under the curve as the first lobe. In a diffusive and/or advective

medium, however, spins can mix with each other through spatial transport in the time

between the two diffusion gradients (the mixing period), leading to further signal atten-

uation on top of the intrinsic T2 decay when demodulated. Therefore, when the image

is acquired and reconstructed, the signal values are weighted by both T2 and transport-

induced decay. In clinical science, the transport-induced decay is usually attributed solely

18



2.4 Current methods of diffusion MRI modelling

to diffusion with the advective behaviour ignored, hence the transport-induced compo-

nent of signal attenuation is commonly referred to as ‘diffusion-weighting’. However, the

role of advection in DW-SE has also been recognised, with the more general and accurate

terminology of ‘intra-voxel incoherent motion’ (IVIM) preferred by some authors [62, 65,

114].

There is a huge variety of DW-SE implementations in the literature. For example, the

diffusion gradient pulses may be comparable to the diffusion time [65, 66, 114], or much

shorter than the diffusion time to allow for a delta-function modelling approach [21, 107,

108]. More general waveforms of pulsed diffusion gradients, such as oscillatory waveforms

(OGSE), have also been proposed [85, 115, 119]. To achieve the same level of diffusion

sensitisation, short or oscillatory pulses require stronger hardware, therefore they are

more common for research rather than clinical use. In most clinical applications, DW-SE

is used as a stand-alone pulse sequence to produce images that are T2- and diffusion-

weighted. Less commonly, it can also act as a module integrated into more complex

pulse sequences, for example the magnetisation can be prepared, prior to DW-SE, by

sequences such as arterial spin labelling (ASL) [100], resulting in an ASL image which

is subsequently diffusion-weighted. Despite the variety of implementations (and their

associated acronyms), the fundamental principles and mechanisms are the same. The

action of any DW-SE pulse sequence can be formulated by the extended Bloch-Torrey

equations (2.8)-(2.10), with the various implementations being subsets of the general

DW-SE description.

2.4 Current methods of diffusion MRI modelling

In this section, the quantitative aspects of modelling and interpreting diffusion-weighted

MRI data are covered. Firstly, the concept of quantitative imaging as an inverse problem is

explained, demonstrating the need for modelling using suitable assumptions. The models

found in the current literature are then summarised and categorised, critically reviewing
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their associated assumptions and identifying the links and gaps between them.

2.4.1 The need for modelling: quantitative imaging as an in-

verse problem

With the insertion of the pair of diffusion gradients, the acquired image signal of a DW-SE

pulse sequence is weighted by both T2 and transport-induced decay. The extra transport-

induced attenuation qualitatively relates to the diffusive and advective rates, as well as the

magnitude, direction and duration of the diffusion gradients. Quantitatively, the action

of DW-SE on magnetisation can be formulated by the extended Bloch-Torrey equations

(2.8)-(2.10) with appropriate boundary conditions, which describes the behaviour of NMR

in a general diffusive-advective medium from a continuum perspective, as explained in

Section 2.2. Equations such as (2.8)-(2.10) therefore serve as the link between the physical

quantities and the observed signal quantities that an MRI scanner picks up.

When we have full knowledge about the physical properties of the imaged medium,

such as the configuration of its boundaries, diffusion coefficient, advection velocities etc.,

we can predict the eventual image signal resulting from a pulse sequence by solving the

Bloch-Torrey equations. This is known as the forward problem, which solves for a pre-

diction of signal quantities given the full knowledge of physical properties. However, the

setting of quantitative imaging is the inverse problem: we aim to infer some unknown

physical properties of a medium through some measurement of signal quantities. Unlike

the forward problem, the inverse problem usually is not well-posed. Without even con-

sidering the effects of noise, the finite number of obtained signal values is not enough to

determine the exact configuration of the medium, for example the geometry of domain

boundaries, which has essentially infinitely many degrees of freedom. Therefore, assump-

tions need to be made about the unknown medium, thus representing the physical problem

by a model with a finite number of parameters. These model parameters, which have a

known relation to the actual physical quantities when the assumptions are satisfied, can

then be determined by regression against the signal data gathered experimentally.
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An ideal choice of model for a particular diffusion MRI application should reflect

the physical reality of the expected imaged medium, while providing the right level of

quantitative information required. For example, the simplest, two-parameter modelling

approach to DW-SE is the characterisation using only T2 and the diffusion coefficient,

assuming the medium to be infinite, homogeneous and isotropic with no advection. Com-

monly, the effect of T2 relaxation is not estimated, with its effect being considered as

common mode signal attenuation and factored out by comparing images taken at the

same echo time, thus effectively leading to a one-parameter estimation model. This ap-

proach is used extensively for diffusion coefficient quantification in chemistry [22, 110],

as the physical assumption is indeed justified for a still, homogeneous chemical sample

placed in an NMR magnet. However, the assumption no longer holds in a heterogeneous

medium. Although the same one-parameter model can be applied to data collected from

a heterogeneous medium, and indeed produces a good fit under some limiting conditions,

the data-derived ‘apparent diffusion coefficient’, a commonly used quantity as proposed

by Stejskal and Tanner [108] and Le Bihan et al. [65], can no longer be interpreted strictly

as the physical diffusion coefficient of the constituent molecules.

There exists some confusion in current MRI literature between physical and signal

quantities. In a recent review article, Novikov et al. [86] claimed that diffusion tensor

imaging (DTI, the tensor generalisation of the aforementioned apparent diffusion coeffi-

cient concept) is not a model, and thus reflects a ‘time-dependent physical quantity’ in the

diffusion tensor with no assumption. However, rather than being a true physical quantity

describing the behaviour of magnetisation within the medium, the ‘time-dependent dif-

fusion tensor’ in the definition of Novikov et al. is really a signal quantity determined by

polynomial fitting of the logarithm of observed signal magnitudes. Indeed, in this logic

the deduction of such quantities involves no assumption, as they are merely some partic-

ular summary of the signal data. However, the interpretation of the signal quantity as

physical quantities itself involves the use of some model and assumptions, either explicitly

or implicitly.
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2.4.2 Apparent homogeneous continuum modelling

This modelling approach of an apparent homogeneous continuum has been studied and im-

plemented extensively, and includes the concepts of apparent diffusion coefficient (ADC)

[65, 114] and diffusion tensor imaging (DTI) [10, 11, 67, 93, 94]. As mentioned in the pre-

vious section, the simplest approach to model a DW-SE sequence is to assume the medium

to be homogeneous and isotropic, with no advection and to have far away boundaries.

The transverse magnetisation in each voxel can therefore be characterised by its trans-

verse relaxation time constant and diffusion coefficient. However, in clinical imaging there

is inevitably some motion of the patient during the pulse sequence, leading to some bulk

coherent motion of the medium, therefore a constant, spatially coherent advection veloc-

ity should also be included in the model. Recall the Bloch-Torrey equation for transverse

magnetisation in the absence of RF fields (2.11), which is valid either side of the 180°

refocusing pulse of the DW-SE sequence:

∂Mxy

∂t
= ∇ · (D∇Mxy − uMxy)− iγBzMxy −R2Mxy. (2.18)

Since the medium is assumed to be magnetically homogeneous, the magnetic field gener-

ated by the static magnet and gradient coils can be written as a function of space and

time:

Bz(x, t) = B0 + g(t) · x

where B0 is the uniform static magnetic field and g(t) is the field gradient, assuming

that the field variation generated by the gradient coils is linear in space. Equation (2.18)

can then be written in the rotating frame with respect to the nominal Larmor frequency

ω0 = γB0:
∂M⊥
∂t

= ∇ · (D∇M⊥ − uM⊥)− iγg(t) · xM⊥ −R2M⊥. (2.19)

where M⊥ = Mxy exp(iγB0t). To take into account the phase reversal effect of the 180°

pulse, which can be assumed to be instantaneous, the following effective quantities can be
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defined and used in (2.19) so that the equation holds continuously across the 180° pulse:

M eff
⊥ =


M⊥ if 0 < t < t180,

M⊥ if t > t180,

geff =


g if 0 < t < t180,

−g if t > t180.

With the assumption that D, u, γ and R2 are all constants and the initial condition

M eff
⊥ (x, 0) is spatially homogeneous, the solution to (2.19) when posed on an infinite

domain is given by:

M eff
⊥ (x, t) = M0 exp

(
−R2t− ix · q −D

∫ t

0
|q|2 dτ + iu ·

∫ t

0
q dτ

)
, (2.20)

where q(τ) =
∫ τ

0 γgeff(τ ′) dτ ′. Since the pair of diffusion gradients have the same time

integral, q equals zero when the signal is measured at echo time, meaning that the spatial

modulation is perfectly cancelled. Therefore, the image signal given by (2.20) has two

amplitude attenuation components, from T2 and diffusion-induced decay respectively,

and a phase shift arising from the uniform advection velocity. The effect of the diffusion

gradients on the signal amplitude can be written compactly as:

|Mxy| = M0 exp(−R2t) exp(−bD), (2.21)

where b =
∫ t

0 |q|
2 dτ , which has units of time per length squared, is known as the b-value

of the DW-SE pulse sequence, with b = 0 corresponding to the normal spin-echo without

diffusion weighting.

Using this model, the diffusion coefficient can be inferred by acquiring images at two

or more b-values and fitting the magnitude data with an exponential curve. However,

the fitted coefficient only reflects the true, physical diffusion coefficient when the model

assumptions are satisfied, which is the case for homogeneous chemical samples but not for

cellular biological tissues. Therefore, in clinical imaging the fitted parameter is referred

to as the apparent diffusion coefficient (ADC) [65], which is dependent on many effects

that violate the model assumptions, such as incoherent advection, diffusion or magnetic

heterogeneity, existence of diffusion barriers etc. The ADC can also vary depending on
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the b-value used to solve the inverse problem [61].

Diffusion tensor imaging (DTI) is a simple extension to the ADC concept by relaxing

the isotropic assumption of the medium, whilst keeping all other assumptions including

homogeneity in place. The diffusion coefficient is therefore replaced by the symmetric,

second-order diffusivity tensor D. The derivation of the model is conceptually identical

to the isotropic case, with (2.20), the solution to the Bloch-Torrey equation, modified as:

M eff
⊥ (x, t) = M0 exp

(
−R2t− ix · q −D :

∫ t

0
q ⊗ q dτ + iu ·

∫ t

0
q dτ

)
, (2.22)

where the tensor product of two vectors is defined as (v⊗w)ij = viwj and the double-dot

product of two second-order tensors is defined as A : B = ∑
i

∑
j
AijBij. The b-value in

(2.23) is therefore replaced by the b-tensor or b-matrix: b =
∫ t

0 q⊗ q dτ , resulting to the

signal magnitude expression for DTI:

|Mxy| = M0 exp(−R2t) exp(−b : D). (2.23)

In a three-dimensional domain, the diffusivity tensor has six degrees of freedom. There-

fore, together with the degree of freedom of the T2 time constant, they can be uniquely

determined by seven MR images with different encoding directions by the diffusion gra-

dients [12]. If the sequence of diffusion gradients is designed such that the b-matrix is

isotropic: b = bI, then (2.23) is only sensitive to the trace of the diffusivity tensor. This

allows the apparent diffusion trace (tr D), an empirical measure which may be clinically

useful, to be evaluated from as few as two MR images taken with different isotropic

b-matrices.

Qualitatively, the apparent diffusivity coefficient or tensor derived from the continuum

approach relates to the translational mobility of the spins within the medium. However,

these apparent quantities can be interpreted as a true physical diffusivity only when the

model assumptions are satisfied. The quantitative relation between the observed ap-

parent diffusivity and the physical properties of a heterogeneous medium, such as its

microstructure geometry or local diffusivity variations, requires further modelling with
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relaxed assumptions to reflect the physical reality. For the restricted diffusion behaviour

in interconnected porous domains such as the extracellular tissue space, the concept of

tortuosity has been proposed in the literature [60, 79, 81, 92]. However, there is a lack of

mathematical justification of the tortuosity factor, which is usually arbitrarily defined as

the ratio between the actual path length and the net displacement of a particle. Little is

also mentioned about the assumptions required for its valid use in modelling. Meanwhile,

the recently proposed effective medium theory [84] is an attempt to mathematically re-

late the ADC with local diffusivity variations, although it only considers a very specific

scenario when the local diffusivity is slightly perturbed from the mean diffusion coeffi-

cient, rather than the generalised case with considerable differences in diffusivity or the

existence of impermeable boundaries within the microstructure. There is therefore a gap

in understanding of the mathematical relations between general microstructure proper-

ties and observed apparent parameters and their required assumptions. These will be

addressed in the work of this thesis, which aims to derive mathematically these apparent

models using a set of assumptions which are as general as possible, while reflecting the

physical reality of porous media such as biological tissue.

2.4.3 Multi-compartmental modelling

The multi-compartmental approach is widespread in literature for modelling substance

transport in biological tissue, for example water, oxygen or drug molecules, by assign-

ing compartment-specific properties to the different physical environments of intracellu-

lar, extracellular or vascular spaces. For diffusion MRI, a common approach is a two-

compartment model which modifies the diffusion-induced attenuation in (2.21) to a bi-

exponential function [78, 80, 101]:

|Mxy| = M0e
−R2t(fe−bD1 + (1− f)e−bD2), (2.24)
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where D1, D2 are different apparent diffusion coefficients (ADCs) and f is the volume

fraction. This can be extended to n compartments in the form:

|Mxy| = M0e
−R2t

n∑
i=1

fie
−bDi , (2.25)

where fi is the volume fraction of the ith compartment totalling to one.

The theoretical justification of multi-compartmental models has been controversial

and is the subject of much debate in literature. The compartmentalisation is likely to

be due to microstructure boundaries in the medium, as almost all 1H nuclei in biological

tissue exist as water molecules, so it is unlikely for multiple species of 1H nuclei which

have different diffusion coefficients to coexist. Therefore, multi-compartmental models

face the same challenges as apparent continuum models, in terms of the quantitative

relation between microstructure boundaries and observed apparent diffusion coefficients,

with the additional complexity of possible coupling between these compartments. For

the two-compartment model, the ‘slower’ and ‘faster’ diffusion compartments have been

attributed to uncoupled intra- and extracellular spaces by some authors [30], although

this has been contested by a number of experimental investigations. For example the

volume fractions fitted from this approach are found to be approximately 0.25 and 0.75

for the slow and fast compartments respectively, disagreeing with accepted volume frac-

tions of intra- and extracellular water which are pretty much the opposite way round [2].

Moreover, the ADCs of the two compartments are observed to be substantially different,

although the physical diffusion coefficient are measured to be of similar magnitude using

compartment-specific techniques [34, 103], suggesting a dominant role of microstructure

boundaries rather than the biochemical environment in reducing the ADCs. The math-

ematical explanation of the observed ADCs and volume fractions, based on the physical

anatomy of biological tissues, remains an open question.
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2.4.4 Q-space imaging and the concept of propagators

The concept of q-space imaging (QSI) has been proposed as another way to characterise

signal attenuation behaviour observed in porous media [21, 73, 99], which cannot be

described by the mono-exponential decay of expressions (2.21) or (2.23). Central to the

q-space formalism is the assumption that diffusion gradients are strong but instantaneous,

in other words they are modelled as Dirac delta functions. This clearly is an unphysical

assumption, as it requires an infinite strength of gradient magnetic fields; in practice, the

limitations of gradient coils hardware means the diffusion gradients take the form of finite

lobes instead. There has been limited literature on the effect and validity of the short

pulse assumption in practice. Even though some authors claim to use this formalism to

model generalised gradients [18, 97], they are still modelled as a train of delta functions.

Such pulse trains can be thought of as many two-pulse sequences patched together, so the

modelling principles for the typical two-pulse gradients apply.

In terms of the mathematical principle of q-space imaging, the q-vector is defined as

the wave-vector of the spatial modulation of spins:

q(t) =
∫ t

0
γgeff(τ) dτ. (2.26)

Since the narrow pulse spatially modulate or de-modulate the phase of spins instanta-

neously, q(t) is a piecewise constant function of time – for two-pulse PGSE it steps up

from zero to a constant during the first pulse and steps back down to zero during the

second. In the literature, the notation for q(t) sometimes varies by a factor of 2π if the q-

vector is defined as the spatial frequency instead of the wave-vector; throughout this thesis

the wave-vector convention is used. The pulse sequences can therefore be characterised by

the wave-vector (q) and the duration between the two gradient pulses (∆), which is also

known as the mixing or diffusion time. This means that if the medium is magnetically

homogeneous (B0 and R2 being constant), magnetisation precesses and relaxes during the

mixing period at the same rate independent of its position. Therefore, the precession and
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relaxation terms of the transverse Bloch-Torrey equation (2.18) become separable from

the transport terms, effectively reducing it to a classical diffusion-advection problem.

In the literature, q-space imaging data are most often modelled and interpreted by

the propagator formalism [31]. The transport propagator essentially is the probability

distribution of a stochastic transport process given an initial position, or the Green’s

function (also known as the fundamental solution) of the diffusion-advection equation

with some boundary conditions; as explained in Section 2.2.3 the two interpretations are

equivalent. Define P (x,x0, t− t0) as the propagator, or Green’s function, of the following

diffusion-advection equation with some boundary conditions:

∂c

∂t
= ∇ · (D∇c− u c), (2.27)

where x0, t0, x, t are the initial and final position and time variables respectively and

t > t0. When t = t0 the Green’s function is the Dirac delta function i.e. P (x,x0, 0) =

δ(x− x0). Since the diffusion-advection problem is time-invariant, its Green’s function is

a function of the time difference (t−t0) rather than both t and t0. If the domain is infinite

and homogeneous in space, then the propagator is a scaled Gaussian function which only

depends on (x − x0) and (t − t0), while if the domain has boundaries or the equation is

heterogeneous in space, then it depends on both x and x0. For the diffusion-advection

behaviour of spins during the mixing period, the initial condition is given by:

Mxy(x, t0) = M0(x) exp(−iq · x) (2.28)

where M0(x) is the complex transverse magnetisation density monetarily before the in-

stantaneous modulation by the first gradient pulse. The magnetisation density after the

mixing time and just before the demodulation gradient pulse (t = t0 + ∆−) is then given

by a convolution of the transport propagator with the initial condition, multiplied by the

coherent precession and relaxation:

Mxy(x, t0 + ∆−) = exp(−iγB0∆−R2∆)
∫
M0(x0) exp(−iq · x0)P (x,x0,∆) dx0. (2.29)
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Momentarily after the instantaneous demodulation by the second gradient pulse (t =

t0 + ∆+), the magnetisation density becomes:

Mxy(x, t0 + ∆+) = exp(iq · x)Mxy(x, t0 + ∆−)

= exp(−iγB0∆−R2∆)
∫
M0(x0) exp(iq · (x− x0))P (x,x0,∆) dx0.

(2.30)

The concept of an averaged propagator has been proposed to interpret the signal

attenuation, initially in the spectroscopy context [32, 53]. However, the mathematical

basis of such averaging is somewhat unclear. The transport-induced signal attenuation

for a particular (q,∆) is given by:

E(q,∆) =
∫∫

M0(x0) exp(iq · (x− x0))P (x,x0,∆) dx0dx, (2.31)

which is the integral of the transport part in (2.30) over a volume. For spectroscopy,

which has no spatial resolution, both x and x0 are integrated over the entire domain;

however for imaging x should be integrated over a voxel instead. The proposed averaged

propagator involves a change of variable from (x,x0) to (R = x− x0,x):

P (R,∆) =
∫
M0(x0)P (R,x0,∆) dx0, (2.32)

so (2.31) becomes [21, 53]:

E(q,∆) =
∫
P (R,∆) exp(iq ·R) dR. (2.33)

A problem arises in this expression as the domain of integration for the displacement

variable R is only well defined when both x and x0 are variables over a domain without

boundaries, for example an infinite domain. However, the q-spaced approach is most often

used to probe heterogeneous media with irregular boundaries, in which case the justifi-

cation of this formalism is unclear, and likely requires some non-trivial scale separation

arguments to allow a valid approximation by an infinite domain.

An alternative approach to make sense of (2.33) is to interpret P (R,∆) as the Green’s
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function of an apparent space-invariant continuum model, rather than an averaged prop-

agator of a heterogeneous domain, so it is well defined by the displacement variable R

irrespective of its location in the domain. This effectively uses the assumptions for ADC

and DTI models discussed in Section 2.4.2, with such equivalence recognised by Basser

[9]. In DTI, the transport behaviour of the apparent continuum is modelled using the

second-order diffusion-advection equation, so the transport propagator is restricted to

be a shifted and scaled Gaussian function with its second moment tensor (covariance)

equating to 2Dapp∆. This restriction can be relaxed to allow more general forms of

Green’s functions in the model, for example a non-zero fourth moment (kurtosis) can be

allowed, equivalent to modelling the apparent continuum with a fourth-order differential

equation. This method is known as diffusional kurtosis imaging (DKI) [51], with some

suggestions that the apparent kurtosis may be a clinically useful biomarker [25, 58]. In

theory, the propagator can take the form of any function in some function space if an

infinite number of moments are considered, with the truncation at the nth-order moment

corresponding to an nth-order apparent continuum model. This can be approached using

cumulant expansions, which some authors claim to be a universal mathematical descrip-

tion of diffusion-weighted signals [56, 86]. However, as explained above this approach does

not hold for heterogeneous media because of the fundamental assumption of an appar-

ent space-invariant continuum; as for ADC and DTI models the mathematical relation

between these apparent parameters and the physical heterogeneities remains unresolved.

To summarise q-space imaging, it is a formalism that characterises pulsed gradient

spin-echo (PGSE) in magnetically homogeneous media by the modulation wave-vector

(q) and mixing time (∆), with the assumption that diffusion gradients are very narrow

pulses modelled as delta functions. The modelling of QSI in current literature is through

the notion of the transport propagator, which is the Green’s function of the diffusion-

advection equation with appropriate boundary conditions. However, in heterogeneous

domains the mathematical treatment of the propagator can be cumbersome, or involves

non-trivial assumptions that are yet to be clarified.
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2.4.5 “Diffusion-diffraction” modelling

A closely related modelling concept to propagators in q-space imaging is the apparent

phenomenon of “diffusion-diffraction”. When there is no advection, the diffusion propa-

gator in heterogeneous media has also been modelled explicitly as a function of both x

and x0 without using the displacement variable [17, 91], through a standard eigenmode

decomposition of the Green’s function of the diffusion equation [88]:

P (x,x0, t− t0) =
∞∑
m=0

e−λm(t−t0)φm(x)φm(x0) (2.34)

where (φm, λm) solve the Helmholtz eigenvalue problem under some boundary conditions:

∇2φm + λmφm = 0, (2.35)

with λ0 ≤ λ1 ≤ λ2 ≤ · · · . The non-zero eigenfunctions φm are respectively scaled such

that:

δ(x− x0) =
∞∑
m=0

φm(x)φm(x0). (2.36)

Since the Helmholtz equation (2.35) is also used to solve for steady-state wave propa-

gation, in MRI literature this is referred to as ‘diffusion-diffraction’ despite having no

physical connection to diffraction phenomena. However, since there are infinitely many

exponentially-decaying eigenmodes in (2.34), this approach is only insightful at the long

time limit (t→∞) which reduces the propagator to the dominant mode of (φ0, λ0). For

pure Neumann problems in a bounded domain λ0 = 0 and φm is constant, reflecting the

non-decaying steady state governed by material conservation. This greatly simplifies the

calculations – indeed this is the setting usually considered in MRI literature. However,

for other boundary conditions λ0 is not necessarily zero, making calculations cumbersome

with the additional complexity of selecting a timescale long enough for the m = 0 mode

to be dominant, but short enough so it does not decay away and becomes effectively

undetectable.
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2.4.6 Apparent time and frequency dependency of diffusion

In the more recent literature on diffusion MRI, the notion of diffusion in heterogeneous

media being ‘time-’ or ‘frequency-dependent’ has gained significant popularity. Initially

proposed by Mitra et al. [77] and Stepišnik [109] respectively, these two interrelated for-

malisms have since been extensively used in experimental and numerical studies of diffu-

sion MRI [5, 57, 68, 82, 85, 119, 120]. It must be stressed, however, that the temporal

dependency is apparent, as it refers to the dependency of the apparent diffusion coefficient

or tensor on the observation timescale, rather than the physical diffusion behaviour in the

medium not being time-invariant.

In the original description of the formalism, Mitra et al. [77] used an averaged prop-

agator ansatz to model diffusion in porous media, and reasoned that while the second

moment tensor of the diffusion propagator is equal to 2Dt in an infinite homogeneous

medium, this linear relationship with time does not necessarily hold when the medium is

heterogeneous. Therefore, the observed apparent diffusion tensor varies depending on the

observation timescale. In particular, they suggested that at short timescales, the apparent

diffusion coefficient is sensitive to the surface-to-volume ratio, while at long timescales the

connectivity and tortuosity of the pore space is encapsulated in an asymptotic diffusion

tensor.

Mitra et al. [77] defined the time-dependent apparent diffusion coefficient as:

Dapp(t) = 〈|r(t)− r(0)|2〉
2ndt

, (2.37)

where nd = 3 is the number of spatial dimensions. They suggested that at the t → 0

short-time limit, the quantity of (2.37) asymptotically equates to:

Dapp(t) = D0

(
1− 4

3nd
√
π

|S|
|V |

√
D0t+O(D0t)

)
, (2.38)

showing its dependence on the |S|/|V | surface-to-volume ratio of the porous medium.

Equation (2.38) is frequently cited in MRI literature and is considered a standard and

32



2.4 Current methods of diffusion MRI modelling

universal expression for the short-time regime [19, 43, 87].

Meanwhile, the apparent ‘diffusion frequency spectrum’ formalism applies to oscil-

latory gradient spin-echo (OGSE) methods, which use the timescale of the oscillatory

gradients to probe the apparent time-dependency of diffusion. The diffusion frequency

spectrum is usually defined in a stochastic formulation by the Fourier transform of the

velocity autocorrelation function in time [19, 109]:

D(ω) = 1
2

∫ ∞
−∞
〈v(t)⊗ v(0)〉 eiωtdt, (2.39)

where v(t) is the velocity probability distribution. However, the two-sided Fourier trans-

form in this definition is ill-defined due to the time-irreversible nature of diffusion pro-

cesses, since the integrand of (2.39) is undefined for negative time with no information

about any behaviour before the specified initial condition at t = 0. This problem can

be avoided by multiplying the autocorrelation function with a step function [85], effec-

tively reducing (2.39) to a one-sided Fourier transform for positive time, in which case

the transport-induced attenuation is suggested to be:

E(T ) = exp
(
−T

2

2π

∫ ∞
−∞

q(−ω) ·D(ω)q(ω) dω
)
, (2.40)

where q(ω) = 1
T

∫ T
0 q(t) exp(iωt) dt is the approximate frequency spectrum in time of q(t),

the spatial modulation wave-vector defined in (2.26).

In general, since the diffusion equation poses a time-irreversible initial value problem,

the more appropriate transform method for the time variable is the Laplace transform,

with exponentially-decaying non-equilibrium behaviour contained in the real part of the

complex Laplace variable (s). The Laplace transform relates to the one-sided Fourier

transform by taking the s → iω limit, which by the final value theorem describes the

frequency-dependent behaviour of a system at the T →∞ limit. Therefore, the formalism

of the diffusion frequency spectrum D(ω) requires implicitly a time scale long enough

for non-equilibrium initial conditions to decay away, similar to the ‘diffusion-diffraction’

analysis described previously.
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2.4.7 Modelling advection in microstructure

As discussed in Section 2.3.2, diffusion MRI is sensitive to any spatial transport of mag-

netisation, including both diffusion and advection. When the advection velocity is con-

stant in space, it causes a coherent phase shift to the transverse magnetisation signal as

shown in Section 2.4.2. However, if the advection velocity is incoherent within a voxel,

there is a spread in phase shift experienced by spins at different position. Therefore, in an

analogous way to T2* decay (see Section 2.2.2), additional attenuation is observed when

the signal density is integrated over the voxel, leading to the terminology of ‘intra-voxel

incoherent motion’ (IVIM) proposed by Le Bihan et al. [65, 66].

In the work of Le Bihan et al. [66], a two-compartment model has been proposed to

quantify the effect of microvascular perfusion in DW-SE images, in which the blood flow

in the capillary bed is modelled as an effective random walk. The underlying physical

assumption of this approach is the vascular compartment being a collection of capillaries,

which are chains of straight segments of random lengths and orientations (Fig 2.7). Each

capillary chain contains a plug flow of constant speed and is assumed to not interact with

other capillaries. Under these conditions, the translational motion of spins in the vascu-

lar compartment can be modelled as a pseudo-diffusion process, while the extravascular

compartment is assumed to be an isotropic apparent continuum with no advection. The

overall IVIM attenuation is then described by the bi-exponential model of (2.24):

|Mxy| = M0e
−R2t(fe−bD∗ + (1− f)e−bD), (2.41)

Figure 2.7: Microvascular geometry in the IVIM perfusion model, reproduced from [66].
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where f and D∗ are the volume fraction and pseudo-diffusion coefficient of the vascular

compartment respectively. However, contrary to the physical assumption of the IVIM

perfusion model, more recent studies on the capillary bed using microscopy has revealed

an interconnected mesh-like structure [24], leading to the suggestion that microcircula-

tion behaves as a pressure-driven flow through a porous medium [36]. Coincidentally, the

phantom study conducted in the same work of Le Bihan et al. used a gravity-driven flow

through a porous chromatographic column, which consisted of packed hydrogel micro-

spheres, to validate the IVIM perfusion model. When the bi-exponential model of (2.41)

is applied to their phantom data, the fitted perfusion volume fraction was reported to

increase from 4% to 7% when the flow rate changed only slightly from 3.7 to 4.2 mL/min,

inconsistent with the physical volume fraction of the porous space which is expected to

be constant. Questions are therefore raised over the validity of the IVIM perfusion model

for pressure-driven flow in interconnected porous media, similar to the microvasculature

of biological tissues.

2.4.8 Effects of magnetic susceptibility heterogeneities

In all of the above models, the resultant longitudinal magnetic field (Bz) from the static

(B0) and gradient (g · x) fields has been assumed to bear a perfectly linear profile within

the medium. However, in biological tissues local magnetic susceptibility variations, or

even discontinuities, may exist, leading to spatially-varying perturbations to the static

B0 field. In particular, these magnetic field perturbations occur at multiple length scales.

At the bulk tissue level, this can occur at tissue-air interfaces, where there is a discon-

tinuous change in magnetic susceptibility between the two media. Meanwhile, at the

microstructure level, certain cellular structures may also contain substantial amounts of

weakly magnetic substances. Notably, in the brain where diffusion MRI finds most clinical

applications, the myelin sheath of white matter is very lipid-heavy, whereas deoxygenated

red blood cells contain deoxyhaemoglobin; both of these substances are diamagnetic and

cause magnetic field perturbations [89, 121].
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It has been suggested that such local magnetic field fluctuations effectively act as local

diffusion gradients [29], which can couple with magnetisation transport and contribute to

spin-echo signal attenuation as well. The models in the existing literature on such local

field perturbation effects have focused on the case when the globally-applied diffusion

gradient is absent [50, 55, 83], although it has been suggested that transport-induced

attenuation components from local and global gradient fields are coupled together [19].

The general mathematical description of such cross-coupled behaviour in diffusion MRI,

in particular when microstructure transport barriers are also present, is under-explored.

2.5 Concluding remarks

To summarise this chapter, the basic principles of diffusion-weighted MRI and its current

developments in modelling methods have been presented. At length scales relevant to bio-

logical tissues, the behaviour of nuclear magnetic resonance (NMR) in diffusive-advective

media can be described by the extended Bloch-Torrey equations (2.8)-(2.10) and appro-

priate boundary conditions. The diffusion-weighted spin-echo (DW-SE) pulse sequence,

which utilises a pair of strong gradient fields to spatially modulate and demodulate the

phase of transverse magnetisation, is a common method to introduce sensitivity to trans-

port of spins. Given the knowledge of the physical properties of the imaged medium,

the resulting DW-SE signal can be calculated by solving the Bloch-Torrey equations as a

forward problem. However, quantitative imaging is an inverse problem which is ill-posed

in general. There is therefore a need for modelling to characterise the unknown imaged

medium with a finite number of parameters, which can be obtained through regression of

DW-SE measurements.

A number of DW-SE modelling methods for heterogeneous media are found in the

literature and have been reviewed in Section 2.4. These models come in various levels of

complexity, although there is a lack of rigorous mathematical or physical justifications.

In particular, the majority of the models involve a common assumption of an apparent
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homogeneous continuum, however the validity of these apparent continuum parameters

and their mathematical relations to the physical heterogeneous medium remain unclear.

Most models have also ignored the effect of magnetic susceptibility heterogeneities, which

may cross-couple into the signal attenuation weighting from the DW-SE gradients. There

is currently a gap in the literature in the understanding of diffusion MRI in general

heterogeneous media and how they can be represented by mathematically justified models.

This thesis therefore aims to address this gap by considering DW-SE in a general setting

and systematically study the Bloch-Torrey equations in certain asymptotic regimes.
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Chapter 3

Relevant scales and parameter space

of DW-SE

3.1 Introduction

This chapter seeks to identify the relevant scales which characterise a diffusion-weighted

spin-echo (DW-SE) MRI experiment. The motivation of doing so is to deduce a param-

eter space which show the different possible operating regimes of DW-SE, based on the

relative strengths of physical processes. This is particularly important for the subsequent

asymptotic analysis, as the parameter space gives a clear definition to the asymptotic lim-

its being considered, as well as their physical interpretation. These will lay the foundation

for the content in the rest of the thesis.

Prior to the definition of the parameter space, a novel interpretation of spin-echo

MRI based on a distribution function formulation is first proposed in Section 3.2. Even

though this formulation is not strictly necessary for the subsequent work in this thesis, it

provides an easy, intuitive insight to the mechanism of DW-SE, so its relevant scales and

parameters can be easily explained. This leads to the identification of the key parameters

characterising DW-SE in Section 3.3, namely the instantaneous modulation wave-vector

(q) and the time duration (t). The comparison of these parameters with the physical
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properties of an imaged medium, i.e. the characteristic diffusivity and microstructure

length, thus defines the operating regime of a DW-SE pulse sequence. Then, a brief review

of the literature is conducted to associate existing experimental and clinical studies to the

locations within the q-t parameter space.

The q-t characterisation of diffusion MRI itself is not novel, with a similar concept

having been proposed by [39] with more detailed discussions in [38]. However, the novelty

of this chapter lies with the distribution function formulation, which allows for more

intuitive interpretation of DW-SE signal behaviour, and allow for easier mathematical

analysis by drawing a direct analogy to the classical class of diffusion-advection problems.

This treatment also leads to the concept of the q-vector being a spatially-varying variable

reflecting the local micro-structural magnetic variation, instead of being a constant vector

through space, which is a novel formulation.

3.2 Distribution function formulation for spin-echo

MRI

3.2.1 Transport of tracers of different phases in a volume of fluid

At a given point x in space and at time t in a three-dimensional volume Ω, consider

P (x, t, θ) to be the concentration distribution of MR tracers that has transverse magneti-

sation at phase θ. This distribution shall satisfy the θ-periodic condition:

P (x, t, θ) = P (x, t, θ + 2π) for all θ.

The change of P over time can be summarised by four simultaneous processes, namely

(i) the advection of tracers in space by the fluid bulk flow, (ii) the diffusion of tracers

in space within the fluid, (iii) Larmor precession of phase in the presence of a strong

longitudinal magnetic field, and (iv) the decoherence of phase due to random processes.
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Figure 3.1: The change of a point concentration over time, i.e. the Green’s function, in
space or phase of an infinite homogeneous domain, showing their equivalence.

These processes are modelled individually with the following equations:

∂P

∂t
= −∇x · (uP ) (Advection in space), (3.1)

∂P

∂t
= ∇x · (D∇xP ) (Diffusion in space), (3.2)

∂P

∂t
= γBz

∂P

∂θ
(Precession of phase), (3.3)

∂P

∂t
= R2

∂2P

∂2θ
(Decoherence of phase). (3.4)

where u, D, γ, Bz and R2 are the fluid velocity, diffusivity tensor of the tracer in the fluid,

gyromagnetic ratio, longitudinal magnetic field strength and decoherence rate respectively.

It is assumed that all these coefficients have no dependence on the phase θ, but that they

may be heterogeneous in the space or time variables (x, t).

Equation (3.1) describes the flux of material being carried by the bulk fluid flow,

whereas (3.2) is Fick’s law of diffusion. In an infinite, homogeneous domain, these two

processes combine to describe a shifted Gaussian profile of material displacement by advec-

tion and diffusion. Equations (3.3) and (3.4) are analogous to (3.1) and (3.2) respectively,

describing the collective shift of phase and a Gaussian profile of decoherence over time.

The equivalence between the spatial and phase equations in terms of their respective

Green’s functions is shown in Fig 3.1.

In the case when there is no creation or destruction of tracers, such as from radiofre-

quency pulses, the combined effect of the processes (i)-(iv) can be described by the fol-
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lowing equation:

∂P

∂t
= −∇x · (uP ) +∇x · (D∇xP ) + γBz

∂P

∂θ
+R2

∂2P

∂2θ
in Ω. (3.5)

3.2.2 Consistency with equations existing in literature

The formulation of equation (3.5) is consistent with both the classical diffusion-advection

equation for mass transport and the Bloch-Torrey equation. Consider the total tracer

concentration at (x, t), which is given by:

C(x, t) =
∫ 2π

0
P (x, t, θ)dθ. (3.6)

When (3.5) is integrated over a 2π period of θ, the θ-derivatives vanishes due to the

periodicity condition. Since D and u are θ-independent, the order of spatial operators

and the θ-integration can be interchanged. This results in the classical diffusion-advection

equation:
∂C

∂t
= ∇x · (D∇xC − uC) . (3.7)

Meanwhile, the total transverse magnetisation, which is measured by MR imaging, is the

integral of all the magnetisation phasors:

M(x, t) =
∫ 2π

0
P (x, t, θ)eiθdθ. (3.8)

which is equivalent to taking the first Fourier moment of P (x, t, θ) over the phase variable

θ. Using integration by parts along with the θ-periodicity condition of P , the following

identities hold:

∫ 2π

0
eiθ
∂P

∂θ
dθ = −i

∫ 2π

0
eiθPdθ,∫ 2π

0
eiθ
∂2P

∂θ2 dθ = −
∫ 2π

0
eiθPdθ.

Therefore when (3.5) is multiplied by eiθ and then integrated over a 2π period of θ,

using the above identities it reduces to the extended Bloch-Torrey equation for transverse
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magnetisation (Chapter 2, Equation 2.11):

∂M

∂t
= ∇x · (D∇xM − uM)− iγBzM −R2M. (3.9)

3.2.3 Treatment of boundary conditions

To ensure uniqueness of the solution to the governing differential equation, boundary

conditions are needed on the surface(s) that bound the domain of definition, in this case

a four-dimensional volume in the (x, θ) space. In the phase dimension, θ-periodicity of

P implies a periodic boundary condition. Meanwhile for the spatial boundaries, it is

assumed that tracers at all phases are subject to the same boundary conditions. This

means the θ-independence assumption that has been made for tracer behaviour (i.e. the

coefficients u, D, γ, Bz and R2) shall also apply on the boundary conditions.

As an example, one simple boundary condition is the no-flux condition, where no

tracers of any phase can enter or leave the volume across the boundary. This is expressed

as:

n · (−D∇xP + uP ) = 0 for all θ, (3.10)

where n is the normal vector of the boundary surface. In the case when there is also no

bulk flow across the boundary, we have n · u = 0 on the boundary, reducing (3.10) to:

n · (−D∇xP ) = 0 for all θ. (3.11)

Integrating (3.11) over a 2π period of θ using either (3.6) or (3.8), the boundary conditions

for the total tracer concentration and transverse magnetisation can also be recovered:

n · (−D∇xC) = 0, (3.12)

n · (−D∇xM) = 0. (3.13)

The same treatment can be applied for other more complicated spatial boundary condi-

tions regarding the transport of tracers across the boundary, by assuming its independence

of θ.
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3.2 Distribution function formulation for spin-echo MRI

3.2.4 Augmented phase dimension formulation

The formulation of equation (3.5) introduces an extra dimension θ to the degrees of

freedom of the tracers, in addition to the three spatial dimensions of x. In particular,

the processes that occur in the spatial dimensions and phase dimension are equivalent

mathematically. The first derivatives in either space or phase represent the collective

movement of tracers in the respective dimensions due to an externally applied velocity or

magnetic field, while the second derivatives represent the decoherence of the distribution

over time in either space or phase. Therefore, (3.5) can be rewritten in a four-dimensional

form by augmenting the phase variable θ as an extra dimension alongside the three spatial

variables of x, grouping the differential operators together as:

∂P

∂t
+∇x,θ ·

−
D 0

0 R2

∇x,θP +

 u

−γBz

P
 = 0 in Ωx,θ, (3.14)

where Ωx,θ denotes the augmented four-dimensional volume in which the differential equa-

tion holds.

The resulting partial differential equation (3.14) has the same form as the classical

diffusion-advection equation (3.7) , except that the divergence and gradient operators are

now applied over all four dimensions of x, θ rather than the usual three. The diffusion

tensor D and velocity vector u are also augmented to account for the movement of tracers

in the extra θ dimension.

The same augmentation formulation can also be used for boundary conditions. For

example, the boundary condition of (3.10) can be written as:

n ·

−
D 0

0 R2

∇x,θP +

 u

−γBz

P
 = 0 on ∂Ωx,θ, (3.15)

where surface ∂Ωx,θ is the boundary of four-dimensional volume Ωx,θ with normal vector

n. Since the boundary is the same for all θ, the boundary surface is always parallel

to the θ-axis. Hence, the θ-component of n is always zero. This implies that only the
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3.2 Distribution function formulation for spin-echo MRI

x-components of (3.15) need to be considered:

n ·
(
−
[
D 0

]
∇x,θP + uP

)
= 0 on ∂Ωx.

The same form of augmentation can be applied to more complicated boundary conditions

as well, as long as the θ-independence condition is satisfied.

3.2.5 Augmented dimension formulation in the spin-echo MRI

context

The augmentation of an extra phase dimension onto a spatial domain, as described in

(3.14) and (3.15), allows us to consider the interaction of tracers with the fluid flow

and the applied magnetic field altogether in one framework. This can be interpreted as

‘stacking up’ identical copies of the spatial domain in an extra phase dimension θ, as

shown in Figure 3.2, where for ease of visualisation the spatial domain is in 2D. Although

the domain is heterogeneous in space, the augmented volume Ωx,θ and its associated

boundaries ∂Ωx,θ have a structure parallel to the θ-axis due to their phase independence.

A diffusion-weighed spin-echo MRI experiment typically consists of the following se-

quence of events: at t = 0, a pulse of RF transverse magnetic field rotates longitudinal

spins by 90° onto the transverse plane. The transverse magnetisation then undergoes

Larmor precession due to the longitudinal Bz magnetic field, which can vary in both time

and space. At t = TE/2, the midpoint of the echo time, another RF pulse rotates the

spins by 180° about an axis on the transverse plane, thus reversing the precession phase.

Finally at t = TE, the end of the echo time, the transverse magnetisation is imaged.

The implication of these events in terms of the tracer phase distribution P (x, t, θ) are

explained below.

3.2.5.1 90° pulse as an initial condition

At the start of the pulse sequence, a 90° pulse is applied to rotate the spins from the

longitudinal direction into into the transverse plane. In terms of transverse magnetisation,
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Figure 3.2: (a) A heterogeneous spatial domain consisting of volume Ω and boundaries
Γ, and (b) the augmentation of the heterogeneous spatial domain in the phase dimension,
showing the parallel structures. For ease of visualisation, the augmentation of a 2D
domain is shown; the same concept applies for the 3D case.

this means an initial distribution of tracers which are coherent in phase are created.

Therefore, the 90° pulse acts as an initial condition for the augmented diffusion-advection

problem in the (x, θ) space. DenoteM0(x) as the magnitude of longitudinal magnetisation

in space prior to the 90° pulse, and α(x) as the spatial selectivity of the 90° pulse (for an

ideal non-selective pulse, α = 1 for all x). Without loss of generality, the initial phase of

the spins can be set as zero. The initial condition for P is then given by:

P (x, t = 0, θ) =
∞∑

n=−∞
M0(x)α(x)δ(θ − 2nπ), (3.16)

where δ denotes the unit impulse distribution.

3.2.5.2 Spatially varying Bz field during echo time

In the absence of the rotating transverse magnetic field, the augmented diffusion-advection

model of (3.14), (3.15) applies. The effect of a spatially varying Bz field can be interpreted

as a “velocity” gradient advecting on P in the θ-direction, moving tracers to varying

magnetisation phase depending on the location in space.
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3.2 Distribution function formulation for spin-echo MRI

3.2.5.3 180° pulse as a mirror image operation

An ideal, instantaneous 180° RF magnetic field pulse completely reverses the phase of

magnetisation. Therefore, for a 180° pulse that occurs at t = t180, the phase distribution

is flipped to its mirror image about the θ direction:

P (x, t = t+180, θ) = P (x, t = t−180,−θ) (3.17)

where t−180 and t+180 represent the time momentarily before and after the pulse respectively.

For notational convenience, it is often easier to consider magnetisation to be continuous

in time. Using the equivalent perspective of reversing the sign of Bz rather than the phase,

consider the following effective quantities:

P eff(x, t, θ) =


P (x, t, θ) if 0 < t < t180,

P (x, t,−θ) if t > t180.

Beff
z (x, t) =


Bz(x, t) if 0 < t < t180,

−Bz(x, t) if t > t180.

With P eff and Beff
z replacing P and Bz respectively, the augmented diffusion-advection

model of (3.14), (3.15) now holds continuously over time before and after the 180° pulse.

Throughout the thesis, the use of effective quantities P eff and Beff
z is assumed without

explicit notation.

3.2.5.4 Signal measurement as a volume integral

Finally, at the end of a spin-echo MR experiment, the spatial distribution of total trans-

verse magnetisation M is measured. However, since the imaging is done in a finite reso-

lution, the eventual intensity of each voxel is inevitably a weighted volume average of M ,

with the weighting function dependent on the exact imaging method that is implemented.

The signal intensity of each voxel is thus represented by the following expression:

I =
∫∫∫
V

w(x)M(x, t)dV =
∫∫∫
V

∫ π

−π
w(x)P (x, t, θ)eiθdθdV (3.18)

where w(x) is the weighting function for the corresponding voxel.
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3.2.5.5 Signal attenuation induced from tracer transport

From expression (3.18), it can be seen that signal attenuation can arise from two fun-

damentally different modes: pointwise or spatial phase decoherence. Pointwise phase

decoherence occurs when P (x, t, θ) spreads out in the θ direction at each point in space;

the R2 term of the Bloch-Torrey equation is one, but not the only, origin. Since this mode

of decoherence causes a pointwise reduction in magnetisation M , the resulting attenua-

tion is independent of the voxel size and weighting function. Spatial phase decoherence,

however, occurs when P (x, t, θ) is not constant over a voxel, leading to loss from volume

averaging when the signal is measured. This mode of decoherence can arise from un-

balanced Bz field inhomogeneities, spatial variation of bulk flow, etc., and its associated

signal attenuation increases with voxel size.

“Magnetic advection” by the Bz field on P alone is a time-reversible process. This

means by applying an equal but opposite “velocity” gradient, tracers can be brought back

into phase with no net loss of coherence, in the absence of spatial tracer transport. As

explained above, in spin-echo MRI this is achieved by the 180° pulse in the midpoint of

the echo time.

However, diffusion is a time-irreversible transport process. When there is a Bz field

gradient, it introduces a concentration gradient of P in space, thus causing diffusive

losses. Pointwise phase decoherence is enhanced through the diffusive exchange of tracers

in space. Therefore, even though the spatial coherence of mean phase can be recovered

eventually by the 180° pulse, it is not lossless and the measured signal has a diffusion-

enhanced attenuation component. This loss mechanism is due to the decoherence in the

phase dimension, and therefore is observed irrespective of spatial resolution.

Meanwhile, advective transport poses a different mode of attenuation. Although ad-

vection is time-reversible, in practice we have no control over the flow field to reverse

it, unlike the effective Bz magnetic field that can exploit the phase-reversing 180° pulse.

When both the flow and magnetic fields are spatially inhomogeneous, signal attenuation

is caused by spatial phase decoherence. Similar to T2* decay, this signal loss is observed
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only because of the lack of spatial specificity to resolve the inhomogeneous flow field.

In practice, signal attenuation is a combination of both modes of decoherence. The

dominant mode is governed by the relative strengths of the diffusive and advective terms

in (3.14) at the voxel length scale. However, in either mechanism the signal attenuation

originates from the coupling between a Bz field gradient and spatial tracer transport. This

therefore motivates the use of a coordinate system that follows the action of the spatially

varying Bz field on the mean phase distribution, which is presented in the following

section.

3.2.6 Transformation to co-rotating frame of reference

Define the co-rotating phase variable: φ = θ +
∫ t

0 γBzdτ . The coordinate system (x, φ)

then represents the co-rotating frame of reference, as the locus of φ = 0 is exactly the

phase accumulation, caused by the action of Bz via the gyromagnetic ratio, at any given

time t. Using the chain rule and the assumption that Bz is θ-independent, equation (3.14)

becomes:

∂P

∂t
+∇x,φ ·

−
 D Dq

qTD qTDq +R2

∇x,φP +

 u

qTu

P
 = 0 in Ωx,φ, (3.19)

with the no flux boundary condition along the x-direction becoming:

n · (− [D Dq]∇x,φP + uP ) = 0 on ∂Ωx,φ. (3.20)

The vector q is defined as:

q(x, t) = ∇xφ =
∫ t

0
∇x(γBz)dτ. (3.21)

This transformation vector can be understood by considering the time-dependent curvi-

linear co-ordinate system of (x, φ). As shown in Figure 3.3. the co-ordinate system (x, φ)

keeps track of the phase accumulation at any given time t, so the local infinitesimal element

(dx, dφ) is sheared. The transformation of each infinitesimal element in the (x, φ) frame
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Figure 3.3: Transformation between the stationary co-ordinate sytem (x, θ) and the time-
dependent curvilinear co-ordinate system (x, φ), which follows the phase modulation ac-
tion by the magnetic field Bz. The q-vector is therefore the local gradient of the phase
accumulation at time t.

back to the stationary frame (x, θ) is therefore the gradient of the phase accumulation,

which is the amount of shearing that has occurred.

The vector q defined in (3.21) is closely related to the q-vector used in the q-space

imaging (QSI) modelling concept, which is reviewed in Chapter 2, Section 2.4.4, which is

the reason for the choice of the same notation. The only difference, however, is that the

q-vector is assumed to be constant in the q-space imaging formalism. However, in the

definition of q here, any generic local variation of the magnetic field Bz is also allowed,

hence it is possible that q is a function of both space and time. In terms of physical

interpretation, the generalised q-vector defined here is the local, instantaneous spatial

modulation wave-vector, which can be spatially varying for a generic non-uniform Bz.

In the co-rotating frame of reference, the magnetisation Mrot can be defined by inte-

grating P over a period of φ:

Mrot(x, t) =
∫ 2π

0
P (x, t, φ)eiφdφ = M(x, t)e

∫ t
0 γBzdτ . (3.22)
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Integrating (3.19), (3.20) over φ, or substituting (3.22) into (3.9), (3.13), yields:

∂Mrot

∂t
+ (∇x − iq) · (−D(∇x − iq)Mrot + uMrot) +R2Mrot = 0 in Ω, (3.23)

with no-flux boundary condition:

n · (−D(∇x − iq)Mrot + uMrot) = 0 on ∂Ω. (3.24)

If the phase decoherence rate R2 is constant, its contribution to magnetisation decay in

(3.23), (3.24) can be separated out by introducing the co-decaying attenuation variable

S = e−R2tMrot, resulting in the co-rotating, co-decaying Bloch-Torrey equation:

∂S

∂t
+ (∇x − iq) · (−D(∇x − iq)S + uS) = 0 in Ω, (3.25)

n · (−D(∇x − iq)S + uS) = 0 on ∂Ω. (3.26)

In theory, the co-rotating and stationary frames are equivalent at both t = 0 and

t = TE, as the action of γBz either side of the 180° pulse should perfectly cancel out, so

Mrot = M from (3.22). However, in practical diffusion MRI settings, some bulk movement

of the domain Ω through the magnetic field gradient is inevitable. The phase of the

measured signal is very sensitive to this motion, but since motion phase accumulates

uniformly over a voxel, the signal magnitude is unaffected. The use of the co-rotating

Bloch-Torrey equation to model the attenuation magnitude is therefore justified.

3.2.7 Relevant scales in the co-rotating, co-decaying formulation

In the co-rotating, co-decaying Bloch-Torrey equation, the different terms represent the

various processes that are involved within the imaged medium. Therefore, the respective

magnitudes of the terms specify the relative scale of these processes.

Consider a medium which has a microstructure of characteristic length scale dc and

diffusivity Dc. Given these two physical quantities, the magnitude of the ∇x · D∇xS

term is set, thus defining a set of scales which can be used a benchmark to compare

the other terms in the equation. These comparisons can then be summarised in a set
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3.2 Distribution function formulation for spin-echo MRI

of dimensionless groups which define the operating regime given certain characteristic

parameters.

Firstly, the time scales can be compared by considering the relative magnitude of the

time-derivative term. The ratio between that and the benchmark ∇x ·D∇xS term yields

the first dimensionless group:

π1 = tcDc

d2
c

. (3.27)

In other words, the quantity d2
cD
−1
c defines a time scale based on the diffusivity and geom-

etry of the medium itself, which can be interpreted physically as the characteristic time

for diffusion to occur over the microstructure length. Its comparison with the character-

istic time tc of a DW-SE pulse sequence therefore defines whether the pulse sequence is

in a long- or short-time regime.

Secondly, the scale related to the phase modulation can be compared to the microstruc-

ture length scale by comparing the spatial derivatives and the ∇x · D∇xS benchmark.

This yields the second dimensionless group:

π2 = qcdc. (3.28)

This means q−1
c defines a length scale associated with the phase modulation of spins. Its

comparison with the geometric length scale therefore defines whether the DW-SE pulse

sequence is operating in a high q-value or low q-value regime.

Finally, the comparison between the advection and diffusion terms can be summarised

by the third dimensionless group, which is the Péclet number:

π3 = Pe = ucdc
Dc

. (3.29)

In practice, unless perfusion from the vasculature is considered, in most biomedical ap-

plications of diffusion MRI the advection is negligible, meaning that the Péclet number

is very small. Indeed, when advection is not present at all, the Péclet number simply

reduces to zero and the relevant term can be ignored.

One benefit of using the co-rotating formalism to understand DW-SE is that the
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3.3 The q-t parameter space

scales relevant to the local signal behaviour become very clear. If we were considering

the original Bloch-Torrey equation, since the longitudinal magnetic field Bz is dominated

by the static field B0, the underlying coupling between diffusion and the magnetic field

gradient is somewhat masked. However, once we move into the co-rotating frame, it

becomes clear that it is the local q-vector which is the relevant quantity to consider, as

demonstrated by the dimensionless group above.

To conclude, the operating regime of a DW-SE pulse sequence can be summarised by

the three dimensionless groups listed above, however in practice the Péclet number can

effectively be ignored due to the negligible advection in most diffusion MRI applications.

The other two dimensionless groups reflect the strength of the q-vector, and the time

scale of the DW-SE pulse sequence. Therefore, the space of DW-SE operating regimes is

defined by the q-t parameter space, which will be elaborated in the following section.

3.3 The q-t parameter space

3.3.1 Overview

As explained in the previous section, the two parameters which define the operating regime

of DW-SE are the characteristic values of |q| and t. A parameter space can therefore

be drawn out to explain the various possible regimes of DW-SE, given a medium with

certain microstructure properties. This is shown in Figure 3.4 as a log-log plot, where

the horizontal and vertical axes denote the scaling of time and q-value respectively. The

central region denotes the regime where all terms in the co-rotating Bloch-Torrey equation

are balanced, as tc ∼ d2
cD
−1
c and qc ∼ d−1

c . As we move away from the central region,

some terms in the equation will start to dominate over others. This leads to some scale

separation in the problem, which can be indexed by a small parameter ε. Asymptotic

behaviour in these regimes can then be modelled by analysing the ε→ 0 limit.

52



3.3 The q-t parameter space

3.3.2 Implication of practical considerations

So far, when presenting the q-t parameter space, there has not been any consideration

as to whether all locations in the q-t parameter space can be reached in practice. This

section therefore looks at the implication of some practical considerations on the reachable

regimes in the parameter space.

Firstly, a major limitation to the attainable q-value of a DW-SE sequence is the

strength of the gradient field that can be generated by the gradient coils. Consider a

hardware system that has a maximum possible gradient strength of |g|max. Its maximum

contribution to the q-vector over a time period of t is therefore |q|max = γ|g|maxt. Hence,

the bound on the q-t parameter space due to the maximum gradient strength can be

represented by a straight line on the q-t parameter space, as shown in Figure 3.5.

Secondly, another practical consideration is the signal-to-noise ratio (SNR) and the

contrast-to-noise ratio (CNR) in the resulting image data. Generally, if we consider

the solution to the co-rotating Bloch-Torrey equation, the final image signal intensity
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Figure 3.4: The q-t parameter space.
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is expected to scale as exp(−|q|2Dt). The implication of this is that there will be a

compromise between the signal intensity and diffusion-related contrast in the DW-SE

image. If q2
cDctc is small, there is better signal as it has not decayed away, but the

contrast is small as all the diffusion-related information effectively ends up being a small

perturbation to the signal. Meanwhile, if q2
cDctc is large, the diffusion-related contrast

will be amplified, at a cost of lower signal. There may be exceptions to this in the case

of isolated pores leading to restricted diffusion, which may preserve the signal intensity

at longer times, however in any case the signal at long times is limited by T2 relaxation

too. As shown in Figure 3.6, there is therefore a region, in the form of a diagonal strip

stretching from top-left to bottom-right through the central region, which offers both O(1)

signal and O(1) contrast.

3.3.3 Review of experimental and clinical studies

In this section, a brief review of some diffusion MRI studies is conducted. The purpose

of this review is to locate existing diffusion MRI protocols on the q-t parameter space, so

that relevant regimes can be visualised and identified.

The five studies reviewed are listed in Table 3.1. Their approximate locations on the

q-t parameter space, as well as their associated theoretical bounds based on the gradient

strength used, are then plotted in Figure 3.7. On the q-t parameter space, the regions

associated with characteristic microstructure lengths of d = 2 to 10 µm and diffusion

coefficient of D = 3.0 µm2 ms-1 are also shown, with the length scales chosen based on

white matter axon diameters reported in [5].

Table 3.1: Details of selected diffusion MRI studies. Gradient strength units: mT m-1.

MRI study Year Imaged medium Study type |g|max

Le Bihan et al. [65] 1986 Human brain, in vivo Experimental 4.86
Warach et al. [116] 1995 Human brain, in vivo Clinical 30
Ferizi et al. [37] 2015 Human brain, in vivo Experimental 285
Howard et al. [46] 2022 Macaque brain, post-mortem Experimental 320
King et al. [54] 1994 Mouse brain, in vivo Experimental 5859
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The first three reviewed studies all involve diffusion MRI of the human brain in vivo.

The first study by Le Bihan et al. [65] is one of the earliest example of diffusion MRI of

biological tissue. The hardware at that time were relatively limited, therefore the study

could only be limited to the long-time, low q-value regime. The second study by Warach

et al. [116] is a clinical study of the use of diffusion MRI as a diagnosis tool for acute

ischaemic stroke. Compared to the first study, the gradient field strength had improved

by an order of magnitude, thus pushing the location in the q-t parameter space closer to

the central region. This study is particularly relevant, as it is a clinical study rather than

an experimental one, so it reflects the use of diffusion MRI in day-to-day clinical care.

The third study by Ferizi et al. [37] is a more recent one, which takes advantage of recent

hardware developments to gather vast amount of diffusion MRI data at multiple q-values

and diffusion times, as shown by the scatter of points on the plot.

Meanwhile, the fourth and fifth studies are animal model studies. The fourth study by

Howard et al. [46] operates with a maximum gradient strength similar to the third study,

but instead on a macaque brain post-mortem. This study is unique in the sense that the

same sample is used in other imaging and microscopy modalities, so a dataset relating

the diffusion MRI data and the microstructure has been obtained. Finally, the study by

King et al. [54] utilised ultra-high gradient field strengths to image the mouse brain in

vivo. This is possible as the bore size for the mouse MR system is much smaller than that

of a whole-body human scanner, so the gradient field strength can get to nearly twenty

times that of the third study. The study only utilised a pair of very short (1 ms) gradient

pulses which were spaced up to 201 ms apart, hence the location in the q-t parameter

space is on the top-right. However, if the spacing between the strong gradient pulses are

reduced, the gradient hardware in this study allows the short-time, high q-value regime

to be reached as well, as depicted by the solid line in Figure 3.7.

To summarise these studies, with the advancement of modern hardware in human MR

systems, the operating regimes of diffusion MRI are now pushing from the long-time, low

q-value region into the central mixed region on the q-t parameter space. Meanwhile, in
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Figure 3.7: Approximate locations of selected experimental and clinical diffusion MRI
studies in the q-t parameter space. Shaded regions denote the times and q-values associ-
ated with characteristic microstructure lengths of d = 2 to 10 µm and diffusion coefficient
of D = 3.0 µm2 ms-1. Respective lines show the theoretical bounds in the q-t space based
on the maximum gradient strength (units: mT m-1) used in the studies.

animal research, the smaller sizes of MR systems mean that much higher gradient field

strengths are possible, therefore even the short-time, high q-value regime can potentially

be reached.

3.4 Summary

In this chapter, a novel formalism of DW-SE based on the phase distribution function

of spins has been proposed. By considering the change of co-ordinates in the phase

space into the co-rotating frame of reference, the image signal can be described by the

co-rotating, co-decaying Bloch-Torrey equation and its boundary condition (Equations
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(3.25) and (3.26)), in which the action of the magnetic field is summarised in the local

spatial modulation wave-vector. This wave-vector is a generalisation of the q-vector in

existing literature, as it also accounts for possible local magnetic field variations.

Dimensional analysis of the co-rotating, co-decaying Bloch-Torrey equation then re-

veals three dimensionless groups which define the operating regime of DW-SE, respectively

relating to the characteristic q-vector, time scale and advection strength. In practice, ad-

vection is likely to be negligible and can be ignored. Therefore, the different operating

regimes can be described by regions in the q-t parameter space. Practical considerations,

such as hardware limitations, and image signal and contrast, have also been considered in

the context of the q-t parameter space. Finally, a brief review of the literature has shown

that in vivo diffusion MRI of the human brain is found mainly in the long-time, small

q-value regime, with a recent trend of pushing into the central mixed region. Meanwhile,

the stronger gradient field strength available on animal MR systems means virtually all

regimes on the q-t parameter space can be reached in in vivo animal research. This there-

fore motivates us to consider asymptotic modelling approaches for both the small-time

and long-time regimes, as well as numerical simulations for the central mixed regime.
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Chapter 4

Magnetic field perturbation due to

susceptibility variations

4.1 Introduction

In this chapter, the perturbation to the magnetic field within a magnetically heterogeneous

sample is analysed. As discussed in the literature review (Chapter 2, Section 2.4.8), bio-

logical tissue contains magnetic susceptibility variations at multiple length scales. These

cause local variations in the magnetic field, which may interfere with the applied magnetic

field gradient, which is essential to diffusion MRI pulse sequences. Therefore, the aim of

this chapter is to systematically analyse such magnetic field perturbations using a multi-

scale approach, so that the relative significance of these perturbations, depending on the

operating regime, can be evaluated in the context of diffusion MRI. The work in this

chapter has close relation to that of Jenkinson et al. [49], however here we extend their

perturbation approach to account for magnetic susceptibility variations at both macro-

scale, such as tissue-air interfaces, and micro-scale, such as around myelin sheath and

other cellular structures.
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4.2 Model formulation

Figure 4.1: Schematic of porous medium: (a) macroscopic domain Ω, (b) periodic ref-
erence cell Υ, or the representative elementary volume (REV), over which the magnetic
permeability varies.

4.2 Model formulation

4.2.1 Governing equation and boundary condition

In this model, we consider a heterogeneous, weakly magnetic sample being placed in a

scanner, as shown in Figure 4.1. The sample, which is denoted by Ω ∈ R3, is modelled

to contain periodic micro-scale variations in magnetic permeability, whereas the air sur-

rounding the sample has a uniform, isotropic permeability. The periodicity length scale d

is assumed to be much smaller than the characteristic length scale of the sample L, with

the ratio denoted by a small parameter ζ � 1, thus leading to the following expression

for the magnetic permeability:

µ(x) =


µsample(x/ζ) in Ω,

µair in R3\Ω,
(4.1)

where µsample(x/ζ) is a periodic function posed over the reference cell Υ of the microstruc-

ture (Figure 4.1b).

Assuming non-conductivity in the medium, the magnetic field is governed by the

60



4.2 Model formulation

relevant Maxwell’s equations:

∇×H = 0, (4.2)

∇ ·B = 0, (4.3)

with the magnetic field strength H related to the flux density B via the magnetic perme-

ability:

B = µH. (4.4)

By defining a scalar potential via H = ∇Φ, the two differential equations can be combined

into a single elliptic PDE:

∇ · (µ∇Φ) = 0. (4.5)

The boundary condition for the governing equation (4.5) originates from the modelling

of the scanner hardware which induces the magnetic field within the sample medium. Such

hardware (the superconducting magnet and gradient coils) is modelled as a system acting

at the far field which is decoupled from the characteristics of the medium. Therefore,

a far field boundary condition for the scalar potential Φ → Φff is prescribed for the

equation. The hardware is calibrated such that when the sample is absent, the magnetic

field generated is dominant in the z-direction, with the z-component of the magnetic flux

density linearly varying in space, i.e. Bz(x) = B0 +g ·x (see Section 2.3.1). This suggests

that the far-field applied potential should be set as:

Φff(x) = 1
µair

(
B0x3 + g1(x1x3) + g2(x2x3) + g3

(
x2

3
2 −

x2
1 + x2

2
4

))
, (4.6)

where the indices i = 1, 2, 3 denote the three Cartesian vector components. When µ = µair

uniformly, this then satisfies Equation (4.5) itself and gives rise to the desired Bz field.

We note that since the magnetic permeability µ is expected to be discontinuous across

boundaries, both between the sample and the air and within the sample across inho-

mogeneities, the strong derivatives in the governing equation (4.5) may not exist. Nev-

ertheless, the problem remains well posed if the derivatives are considered in a weaker,
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4.2 Model formulation

distributional sense, with appropriate decay conditions at the far field for Φ− Φff → 0.

4.2.2 Non-dimensionalisation and relevant scales

In order to represent the relative scaling between variables in the model as non-dimensional

parameters, so that their asymptotic limits can be studied, the model is normalised with

respect to relevant characteristic physical quantities:

x = Lx∗, µ = µairµ
∗, Φ = B0L

µair
Φ∗, g = B0

L
g∗. (4.7)

In this section, the asterisk notation is explicitly used to notate the non-dimensional form

of variables. Substituting these into the dimensional model leads to the non-dimensional

form of Equation (4.5) and its far-field boundary condition:

∇x∗ · (µ∗∇x∗Φ∗) = 0, with Φ∗ − Φ∗ff → 0 at |x∗| → ∞. (4.8)

The far-field prescribed magnetic potential, in its non-dimensional form, is given by:

Φ∗ff(x∗) = x∗3 + g∗1(x∗1x∗3) + g∗2(x∗2x∗3) + g∗3

(
x∗23
2 −

x∗21 + x∗22
4

)
. (4.9)

Since the magnetic field component generated by the gradient coils is much weaker than

the static field B0, the magnitude of the normalised gradient field is small, i.e. g∗ =

|g∗| � 1.

For the magnetic permeability, the condition that the medium is weakly magnetic is

normally denoted by a small magnetic susceptibility χ, which originates from normalising

µ against the magnetic permeability of free space µ0 through the relation µ = µ0(1 + χ).

However, as the far field condition for our physical model is calibrated against air rather

than vacuum, here it is simpler to normalise µ against µair instead. Since air itself is also

weakly magnetic (χair = 3.6× 10−7 � 1), the difference µsample − µair is small relative to

both µ0 and µair as well. Therefore, the non-dimensional magnetic permeability can be
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4.3 Asymptotic analysis

written as:

µ∗(x∗) =


1 + ηf(x∗/ζ) in Ω∗,

1 in R3\Ω∗.
(4.10)

Here η is the characteristic relative variation in µ∗(x∗), which is small, and f(x∗/ζ) is a

periodic function over a non-dimensional reference cell Υ∗ which is scaled to O(1) in both

magnitude and periodicity.

Therefore, the non-dimensionalised model is constituted by Equation (4.8), supple-

mented by the far-field boundary condition (4.9) and the non-dimensionalised definition

of magnetic permeability (4.10). For ease of presentation, the asterisk notation for non-

dimensional variables will be dropped, as we will only use non-dimensional variables from

here on in the derivations, so explicit notation is no longer needed.

4.3 Asymptotic analysis

As we can see, in the non-dimensionalised problem there are three small parameters,

namely ζ, η and g, which respectively represent the scale separation between the macro-

and microstructure, the weak magnetic permeability variations, and the weak gradient

field strength relative to background static field. Based on this model, we investigate the

asymptotic behaviour of the magnetic field as these parameters tend to zero.

Since the three small parameters are independent of each other, their limits can be

evaluated in any order. Here we first consider the ζ → 0 limit, which is a singular

perturbation in the length scale variable, using multi-scale homogenisation. This is done

by assuming a two-scale series expansion Ansatz for Φ within Ω:

Φ = Φ(0)(x,y) + ζΦ(1)(x,y) + ζ2Φ(2)(x,y) + · · · . (4.11)

In this expansion, x is the macro-scale variable over Ω, and y = x/ζ is the micro-scale

variable over the scaled periodic reference cell Υ. These two spatial variables are treated

as independent variables, with x describing the location in the macroscopic medium,
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4.3 Asymptotic analysis

while y describes the precision location with respect to the periodic reference cell. To

ensure uniqueness of this expansion, an additional zero-mean constraint in the micro-scale

variable is required for all non-leading terms:

1
|Υ|

∫
Υ

Φ(n)(x,y) dy = 0 for all n ≥ 1. (4.12)

The a priori assumption of the ansatz is standard in formal homogenisation methods for

elliptic problems [7, 33], and can be justified analytically using multi-scale notions of

convergence [3, 28].

To derive relations which solve for the Φ(n) terms, the expansion (4.11) is substituted

into the governing equation (4.8), replacing the spatial derivatives with ∇x + ζ∇y using

the chain rule at the same time. Balancing each power of ζ then yields a cascade of elliptic

problems in y posed over the periodic reference cell Υ, beginning with:

∇y · (µ∇yΦ(0)) = 0, (4.13)

∇y · (µ∇yΦ(1)) = −∇y · (µ∇xΦ(0))−∇x · (µ∇yΦ(0)), (4.14)

∇y · (µ∇yΦ(2)) = −∇y · (µ∇xΦ(1))−∇x · (µ∇yΦ(1))−∇x · (µ∇xΦ(0)). (4.15)

Periodicity in the leading order problem (4.13) means Φ(0) is constant in the micro-scale

variable y and is a function of only x. Using this information and the linearity of (4.14),

we can deduce that Φ(1) relates to Φ(0) in the form of:

Φ(1)(x,y) = a(y) · ∇xΦ(0). (4.16)

The zero-mean, periodic vector function a(y) uniquely solves the cell problem, defined

over a periodic cell:

∇y · (µ(y)(∇ya + I)) = 0, (4.17)

with I denoting the identity tensor. Substituting (4.16) into the next order yields:

∇y · (µ∇yΦ(2)) = −∇y · (µ∇xΦ(1))−∇x · (µ(∇ya + I)∇xΦ(0)). (4.18)

To ensure well-posedness of (4.18), the compatibility condition requires the integral of
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4.3 Asymptotic analysis

the right-hand side over Υ to vanish. Using the divergence theorem on the Φ(1) term, the

condition simplifies to:

∇x ·
(∫

Υ
µ(∇ya + I) dy

)
∇xΦ(0) = 0. (4.19)

Equation (4.19) thus constitutes a macro-scale governing equation for the leading order

potential Φ(0) within Ω. In particular, it takes the exact same form as the original equation

(4.8), but with a homogenised effective permeability instead. Therefore, by defining the

effective permeability tensor as:

µeff =


|Υ|−1 ∫

Υ µ(∇ya + I) dy in Ω,

I in R3\Ω,
(4.20)

the homogenised problem including the surrounding air and the far-field boundary con-

dition can be written compactly as:

∇x · (µeff∇xΦ(0)) = 0, with Φ(0) → Φff at |x| → ∞. (4.21)

We now consider the asymptotic behaviour with respect to η for each ζ-expansion

term. Since the material is weakly magnetic throughout, we expect µeff to be weakly

perturbed from I as well. Indeed, this can be confirmed by looking at the cell problem

(4.17) in terms of η. From the formulation of µ in (4.10) we have µ = I +O(η), therefore

(4.17) can be expressed as:

∇y · (∇ya + I +O(η)(∇ya + I)) = 0. (4.22)

The leading-order problem in η, which is ∇2
ya = 0, has a trivial vanishing solution. Hence,

it can be concluded that a(y) = O(η), and as corollaries, Φ(1) = O(η) and µeff = I+O(η).

Considering ∆Φ = Φ(0)−Φff , the homogenised problem (4.21) can be expanded in orders

of η as:

∇x · (I +O(η))∇x(∆Φ) = −∇x · (I +O(η))∇xΦff , with ∆Φ→ 0 at |x| → ∞. (4.23)
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4.3 Asymptotic analysis

Again, since the applied potential satisfies ∇2
xΦff = 0, the leading order of (4.23) in η

becomes ∇2
x∆Φ = 0 which has a trivial vanishing solution, hence ∆Φ = O(η). Moving

on to Equation (4.15), we have:

∇y · (I +O(η))∇yΦ(2) = O(η)−∇x · (I +O(η))∇x(Φff +O(η)). (4.24)

Using the same argument, we can conclude that Φ(2) = O(η). The subsequent cascade of

Φ(n) problems all follow the same form of (4.15) for n ≥ 2, so all higher order terms scale

as O(η) as well.

As discussed in the previous chapter, the relevant quantity in DW-SE MRI is the

instantaneous phase modulation wave-vector, or q-vector, within the sample Ω. This is

given by the following expression:

q = γ
∫ t

0
±∇Bzdτ = γ

∫ t

0
±∇(e3 · µ∇Φ)dτ, (4.25)

with e3 denoting the unit vector in the z-direction. The sign of the integrand depends

on which side of the 180° reflection pulse of the spin-echo sequence. The multiple scales

expansion in ζ for the magnetic field gradient term ∇(e3 ·µ∇Φ), simplified using the fact

that Φ(0) is constant in y, is given by:

∇(e3 · µ∇Φ) = ζ−1∇y(e3 · µ(∇yΦ(1) +∇xΦ(0)))

+∇y(e3 · µ(∇yΦ(2) +∇xΦ(1)))

+∇x(e3 · µ(∇yΦ(1) +∇xΦ(0))) + · · · .

(4.26)

Using (4.16) and the information on the η-scaling of Φ(n), the above expression in orders

of η can be written as:

∇(e3 · µ∇Φ) = ζ−1∇y(e3 · µ(∇ya + I)(∇xΦff +O(η))) +∇x(e3 · ∇xΦff) +O(η). (4.27)

The definition of Φff from (4.6) gives the following:

∇xΦff = e3 +O(g), ∇x(e3 · ∇xΦff) = g. (4.28)
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4.3 Asymptotic analysis

Therefore, by substituting the above into (4.27), the expression reduces to:

∇(e3 · µ∇Φ) = ζ−1∇y(µ(∇ya + I))33 + g + H.O.T. in Ω. (4.29)

If we consider the first term in this expression, since µ = I+O(η) and a = O(η), it can be

concluded that the tensor∇y(µ(∇ya+I)), which is dependent solely on the microstructure

via the cell problem solution, scales as O(η). This leads to:

∇(e3 · µ∇Φ) = ζ−1η b + g + H.O.T. in Ω, (4.30)

with the microstructure information contained in the vector b(y) = η−1∇y(µ(∇ya + I))33

which has been normalised to O(1).

It is now clear that the two leading order terms of the local magnetic field gradient

scale as O(ζ−1η) and O(g) respectively. To consider this back in physical terms, the

dimensional form of expression (4.30) is given by:

gloc(x,y, t) = d−1B0 ηb(y) + g + H.O.T. (4.31)

Consequently, if the local q-vector is considered, it is given by the following expression in

dimensional quantities:

q(x,y, t) = d−1
∫ t

0
±γB0 ηb(y) dτ + qapp + H.O.T., (4.32)

where qapp =
∫ t
0 ±γg dτ is the “applied” q-vector assuming a homogeneous medium.

In this expression for the local q-vector, there is a perturbation term due to the

microstructure-level susceptibility variation, which induces some local magnetic field vari-

ations. If we consider the magnetic field alone, this perturbation is O(η) and hence is

small; however this is amplified if the magnetic field gradient is considered, as such vari-

ations occur at a much smaller length scale and become more significant once the spatial

derivative is taken. This amplification means that the O(ζ−1η) perturbation term can

become comparable, or even take over, the original O(g) q-vector term. Therefore, both

of these terms will need to be considered as leading order in the expression.
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4.4 Discussion

4.4 Discussion

In the previous sections, multi-scale analysis has been performed for the heterogeneous

magnetic susceptibility problem in the context of diffusion MRI. In particular, the per-

turbation to the local q-vector due to the induced magnetic field variations has been

analysed, resulting to the expression in (4.32). This reveals two leading order terms for

the q-vector, with an O(ζ−1η) term originating from the microstructure-induced mag-

netic field variation and an O(g) term from the magnetic field gradient applied from the

far-field.

In practice, these two competing leading order terms may become comparable in

magnitude, depending on the parameters of the DW-SE pulse sequence. Using the Warach

et al. [116] study as a benchmark, the values of the nominal static field and q-vector are

1.5 T and 1.6 × 105 m-1 respectively, and the DW-SE sequence has a duration of ∼ 50 ms.

A typical cell diameter within the white matter of a human brain is ∼ 5 µm [5], whereas

the local susceptibility variation is estimated to be ∼ 100 ppb [118], so η ∼ 10−7. Using

these characteristic values yields d−1γB0 ηt ∼ 2.7 × 105 m-1, which is comparable to the

applied q-vector.

The above example is at a relatively long-time, low q-value regime. However, if we

consider a shorter time and higher q-value, assuming B0 stays the same, the first term

in (4.32) reduces in magnitude due to the shorter time, whereas the second term for the

applied q-vector increases in magnitude. Therefore, it is anticipated that the applied

q-vector will dominate in this regime, with the local induced magnetic field perturbation

becoming negligible. These will be the assumptions employed in the asymptotic models

of Chapters 5 and 6 respectively.
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Chapter 5

Homogenisation model of DW-SE for

the long-time regime

5.1 Introduction

In this chapter, the long-time regime of diffusion-weighted spin-echo (DW-SE) in hetero-

geneous media is considered. The long-time regime is characterised by the duration of the

pulse sequence being significantly longer than the characteristic time needed for diffusion

to occur over the microstructure length scale. As shown in Figure 5.1, this regime is

located in the q-t parameter space to the right of the central region where all scales are

balanced. Associated with this scaling of time is also a natural scaling of the q-vector.

Since the nominal signal scales as exp(−|q|2Dt) after the diffusion-induced decay in a

DW-SE sequence, in order for the scaling of the exponent to remain as O(1), the q-value

needs to be small when the characteristic time is long. This is represented by the diagonal

strip in the q-t parameter space. Therefore, the regime that is of interest in this chapter

is represented by the bottom-right corner in Figure 5.1, which is the intersection of the

diagonal strip with the long-time region.

In addition to diffusion and magnetic heterogeneities, an additional weak advection

term is considered in the homogenisation analysis. In practice, this advection term is
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5.1 Introduction
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Figure 5.1: Definition of the long-time regime on the q-t parameter space.

likely to be negligible in DW-SE experiments, nevertheless the optional advection term

is still included and can be omitted subsequently. In the context of biological tissues,

this analysis can be used to model the intra- and extra-cellular spaces, as the imperme-

able cell membranes lead to diffusion and advection heterogeneities, as well as magnetic

heterogeneities in the case of lipid-rich structures such as the myelin sheath. The multi-

scale homogenisation approach for the diffusion-advection equation in Auriault et al. [7]

is extended for this problem, which aims to asymptotically derive a continuum model for

porous media at a scale separation limit. In particular, the novel modelling methodology

presented here accounts for microscale heterogeneities in both transport and magnetic

behaviour simultaneously.

Finally, the homogenisation results are evaluated numerically. This is first done on a

simple white matter model to demonstrate its principles. The numerical method is then

applied on realistic geometries, obtained from transmission electron microscopy (TEM)
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5.2 Model formulation and relevant scales

data from mouse white matter from a previously published study [121]. This gives us

some insight to what the model might mean in realistic heterogeneous media.

5.2 Model formulation and relevant scales

5.2.1 Structure of porous medium

In this model we consider a periodic porous medium with characteristic length L (Fig.

5.2a), which is denoted as Ω ⊂ R3 and is composed of multiple fluid-filled regions, with

the ith region denoted as Ωi. The interfaces between compartments Γij = ∂Ωi ∩ ∂Ωj are

modelled as impermeable boundaries. The periodic reference cell of the microstructure,

denoted as Υ with compartments Υi, has a characteristic length d much shorter than L

(Fig. 5.2b). The spatially periodic assumption required in this approach is justified for

random media with scale separation [6], as long as the periodic reference cell, referred

to as the representative elementary volume (REV), contains sufficient instances of the

random heterogeneities to allow a good approximation to the homogenised behaviour.

Since behaviours in the compartments are decoupled from each other, the deriva-

tions for each compartment are identical. It therefore suffices to consider one particular

compartment Ωα with internal boundaries Γα, and then models of the same form but

with compartment-specific parameters can be combined into a complete description of

the porous medium.

5.2.2 Formulation at micro-scale

As described in the previous chapter, the behaviour of the complex transverse magnetisa-

tion density Mxy(x, t) within the compartment can be described by the extended Bloch-

Torrey equation given some initial condition:

∂Mxy

∂t
= ∇ · (D∇Mxy − uMxy)− iγBzMxy −R2Mxy in Ωα, (5.1)
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5.2 Model formulation and relevant scales

Figure 5.2: Schematic of porous medium: (a) macroscopic domain Ω, (b) periodic refer-
ence cell Υ, or the representative elementary volume (REV), of the microstructure with
a particular compartment labelled as Υα.

with a no-flux boundary condition introduced by the impermeable boundaries:

n · (D∇Mxy − uMxy) = 0 on Γα, (5.2)

where n is the outward normal of the boundary surface. In the above equations, γ and

R2 are the gyromagnetic ratio and transverse relaxation rate respectively, which are both

assumed to be real constants. The diffusivity tensor D, which is real and positive definite,

varies with the microstructure and therefore is Υ-periodic. For the derivatives in (5.1)–

(5.2) to exist in a strong sense, the diffusivity tensor is normally required to be continuous.

However, by interpreting the derivatives in a distributional sense with an appropriate

specification of function spaces, the problem can be relaxed without losing well-posedness

to allow D to be discontinuous, equivalent to modelling multiple sub-compartments with

perfect transmission interfaces within Υα. Meanwhile, assuming incompressible flow and

no-flux internal boundaries, the Υ-periodic advection velocity u satisfies:

∇ · u = 0 in Ωα, n · u = 0 on Γα. (5.3)

The longitudinal magnetic field Bz is modelled by the following expression:

Bz(x, t) = 〈B0〉α + ∆B0(x) + g(t) · x, (5.4)
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5.2 Model formulation and relevant scales

where 〈B0〉α and ∆B0 are the mean and varying parts in space of the static magnetic field

(B0) over Υα, and g(t) is the strength of the globally applied field gradients. Since the

variation in B0 originates from magnetic susceptibility heterogeneities in the microstruc-

ture, ∆B0 is modelled to be Υ-periodic as well. To account for the phase-reversing 180°

RF pulse (see Section 2.3), the effective quantities:

(M eff
xy , B

eff
0 ,geff) =


(Mxy, B0,g) if 0 < t < t180,

(Mxy,−B0,−g) if t > t180,

are used in place ofMxy, B0 and g, so equation (5.1) holds continuously over the entire echo

time. For clarity of presentation, the use of effective quantities are assumed throughout

this chapter without explicit notation.

Since the attenuation of magnetisation originates from the spatial heterogeneity of

NMR behaviour, for example introduced by an applied diffusion gradient, it is useful to

introduce the co-rotating and co-decaying magnetisation variable:

S(x, t) = exp
(∫ t

0
(iγBz +R2) dτ

)
Mxy. (5.5)

With the phase refocusing effect of the 180° pulse, at the echo time of the spin-echo se-

quence S(x, TE) = exp(R2t)Mxy. The variable S therefore only contains the effect of

transport-induced attenuation, with the coherent R2 relaxation separated out. Substitut-

ing (5.5) into (5.1)–(5.2) yields the co-rotating, co-decaying Bloch-Torrey equation

and its boundary conditions:

∂S

∂t
+ (∇− iq) · (−D(∇− iq)S + uS) = 0 in Ωα, (5.6)

n · (−D(∇− iq)S + uS) = 0 on Γα. (5.7)

Equations (5.6)–(5.7) are the governing equations which form the basis of the following

asymptotic analysis. Here we are interested in the behaviour in the interior of the porous

medium away from the external boundary on ∂Ω, therefore we only consider the conditions

on internal boundaries Γα. In the equations, q(x, t) = ∇
∫ t

0 γBz dτ is the local modulation
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5.2 Model formulation and relevant scales

wave-vector, which can also be expressed as mean and Υ-periodic varying parts using

expression (5.4):

q(x, t) = 〈q〉+ ∆q =
∫ t

0
γg(τ) dτ +

∫ t

0
∇(γ∆B0) dτ. (5.8)

If the medium is magnetically homogeneous i.e. ∆B0 = 0, then q reduces to its spatially-

constant mean part, which is identical to the q-vector defined in existing literature (see

Section 2.4.4). However, if the medium is magnetically heterogeneous the spatially-varying

part cannot be ignored.

5.2.3 Non-dimensionalisation and relevant scales

To estimate the relative dominance of various terms in the governing equations of (5.6)–

(5.7), the model is non-dimensionalised with respect to some characteristic quantities:

x = lcy∗, t = tct
∗, D = DcD∗, u = ucu∗, q = qcq∗, S = McS

∗, (5.9)

where the subscript c and asterisk are used to denote characteristic quantities and non-

dimensionalised variables respectively. The non-dimensional forms of (5.6), (5.7) are then

given by:

π2
2
π1

∂S∗

∂t∗
+ (∇y∗ − π2iq∗) · (−D∗(∇y∗ − π2iq∗)S + Pe u∗S∗) = 0 in Ω∗α, (5.10)

n · (−D∗(∇y∗ − π2iq∗)S∗ + Pe u∗S∗) on Γ∗α, (5.11)

which contain three dimensionless groups, namely:

π1 = q2
cDctc, π2 = qclc, Pe = uclc

Dc

, (5.12)

where Pe is the Péclet number, the ratio between characteristic advective and diffusive

rates.

The first dimensionless group π1 relates the q-value and time scale of the DW-SE pulse

sequence, and is independent of the choice of length scale. If the medium is homogeneous,
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5.3 Multi-scale homogenisation

π1 scales with the logarithm of the diffusion-induced signal attenuation (see Section 2.4.2),

so it is expected that π1 ∼ 1. Meanwhile, π2 and Pe depend on the length scale of interest.

In particular, π2 is the ratio between the characteristic length scale of the domain and

an additional length scale introduced by the reciprocal of the characteristic q-value of

the pulse sequence (1/qc). In this model, we consider the particular regime of small q-

value and weak advection from the microstructure perspective (lc = d), meaning that

π2,d = qcd � 1 and Ped = ucd
Dc
� 1. The small magnitudes of π2,d and Ped therefore

present some scale separation in the problem.

For ease of presentation, the asterisk notation for non-dimensional variables will be

dropped in the rest of the chapter, as we will only use non-dimensional variables from

here on in the derivations, so explicit notation is no longer needed.

5.3 Multi-scale homogenisation

As described in the introduction chapter, multi-scale homogenisation is an asymptotic

method which aims to approximate the physical problem by its scale separation limit. This

involves parameterising the scale separation by a small parameter ε, and then studying

the asymptotic limit of ε → 0. Here, the limit behaviour is derived by assuming a series

expansion Ansatz for the solutions to the ε-problem and truncating it at the leading order,

which is a common method for homogenisation.

5.3.1 Parameterising the scale separation

In multi-scale homogenisation, the scale separation concerned is the one between the

microstructure length scale d and a larger macroscopic scale, which in this problem can

be either L of the physical domain Ω, or 1/qc introduced by the DW-SE pulse sequence.

In practical applications, L is likely to be larger than 1/qc, i.e. d� 1/qc < L. In order to

derive an upscaled model which is valid at both length scales of 1/qc and L, the smaller

separation is chosen as the scaling limit of interest. Therefore, the small parameter ε is
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given by:

ε = qcd� 1. (5.13)

In terms of ε, the regime chosen for this model can be represented by the following scaling

of dimensionless groups:

π1 = O(1), π2,d = O(ε), Ped = O(ε). (5.14)

Using the micro-scale perspective, the scaling can be reflected by setting characteristic

quantities such that:

lc = d, tc = 1
q2
cDc

, uc = qcDc, (5.15)

which then scale the non-dimensional variables in (5.9) to O(1), as well as parameterising

equations (5.10), (5.11) as:

ε2∂S

∂t
+ (∇y − εiq) · (−D(∇y − εiq)S + εuS) = 0 in Ωα, (5.16)

n · (−D(∇y − εiq)S + εuS) = 0 on Γα. (5.17)

Through homogenisation, we aim to find the asymptotic behaviour of the solution to

(5.16)–(5.17) as ε → 0. Physically, this corresponds to studying a family of similar

porous media sharing the same normalised reference cell Υ but with different values of

d. The asymptotic limit being considered is when the microstructure scale becomes finer

and finer (d→ 0), while keeping all other characteristic quantities constant.

5.3.2 Multiple scales series expansion

We look for the solution to (5.16), (5.17) in the form of a multiple scales series expansion:

S = S(0)(x,y, t) + εS(1)(x,y, t) + ε2S(2)(x,y, t) + · · · (5.18)

where x and y are the non-dimensional macro-scale and micro-scale variables related by

x = εy. The two spatial variables are treated as independent variables, with x ∈ Ω

describing the location in the macroscopic medium and y ∈ Υα, a variable on a periodic
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domain, describing the precise location within the periodic reference cell. The properties

D and u are governed by the microstructure and are therefore functions of a sole variable

y. In particular, the flow properties of (5.3) are expressed in the micro-scale variable as:

∇y · u = 0 in Υα, n · u = 0 on ∂Υα. (5.19)

A change of variable is performed on the spatial derivatives in (5.16)–(5.17) using the

chain rule:

∇y → ε∇x +∇y.

Together with the multiple scales expansion of (5.18), these are then substituted into the

non-dimensional equations (5.16)–(5.17); due to constraint of space the fully expanded

equation is not shown here. Balancing coefficients at each order of ε in the expanded

equations yields a series of PDE problems; in the following analysis they are treated as

PDEs in the micro-scale variable y, with functions of x and their derivatives treated as

parameters. This allows us to derive some results about the micro-scale behaviour given

some arbitrary macro-scale conditions, which can then be averaged locally to become a

macro-scale homogenised model.

At order ε0 of the series expansion of (5.16)–(5.17), the corresponding problem is given

by:

∇y · (−D∇yS
(0)) = 0 in Υα, (5.20)

n · (−D∇yS
(0)) = 0 on ∂Υα. (5.21)

It is a standard result that (5.20)–(5.21) only admit solutions constant in y, i.e. S(0) =

S(0)(x, t); its relation to the macro-scale variable will be determined later. Using this

result and the flow properties given by (5.19), the problem for order ε1 can be written as:

∇y · (−D(∇yS
(1) +∇xS

(0) − iqS(0))) = 0 in Υα, (5.22)

n · −D(∇yS
(1) +∇xS

(0) − iqS(0)) = 0 on ∂Υα. (5.23)

This is a modified Laplace’s problem solving for S(1), which contains a driving potential
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term ∇xS
(0) − iqS(0). Again, (5.22)–(5.23) have a unique solution up to an additive

constant, so it can be written as the sum of a mean part and fluctuating contributions

from ∇xS
(0) and S(0):

S(1)(x,y, t) = 〈S(1)〉α + w(y) · ∇xS
(0) + k(y)S(0). (5.24)

The zero-mean, periodic vector and scalar functions w(y) and k(y) are the unique solu-

tions to the respective cell problems over the porous reference cell, given by:

∇y · (−D(∇yw + I)) = 0 in Υα, (5.25)

n · (−D(∇yw + I)) = 0 on ∂Υα, (5.26)

∇y · (−D(∇yk − iq)) = 0 in Υα, (5.27)

n · (−D(∇yk − iq)) = 0 on ∂Υα. (5.28)

Since the physical quantity q originates as the gradient of the accumulated phase preces-

sion:

q(x, t) = 〈q〉+ ∆q =
∫ t

0
γg(τ) dτ +

∫ t

0
∇(γ∆B0) dτ, (5.29)

a particular integral ξ(y), which is zero-mean and periodic, can be found for the micro-

scale fluctuating part of q in (5.27)–(5.28), i.e. ∇yξ = ∆q. Substituting this into (5.27)–

(5.28) then allows the cell problem for k to be related to that for w with the following

relation:

k = −iw · 〈q〉+ iξ. (5.30)

Therefore, the S(1) solution can be written in terms of w as:

S(1)(x,y, t) = 〈S(1)〉α + w(y) · (∇xS
(0) − i〈q〉S(0)) + iξ(y)S(0). (5.31)

The significance of the cell problem solving for w, given by Equations (5.25)–(5.26), will

be discussed in a later section.
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Proceeding to the next order of the expansion, the ε2 problem is given by:

∂S(0)

∂t
+∇y · (−D(∇yS

(2) +∇xS
(1) − iqS(1)) + uS(1))

+ (∇x − iq) · (−D(∇yS
(1) +∇xS

(0) − iqS(0)) + uS(0)) = 0 in Υα,

(5.32)

n · (−D(∇yS
(2) +∇xS

(1) − iqS(1)) + uS(1)) = 0 on ∂Υα. (5.33)

Being a pure Neumann problem solving for S(2) as a function of y, (5.32)–(5.33) introduces

a solvability condition which requires S(0) to relate to the macro-scale and time variables

x and t in a certain way. This is revealed by taking the volume average of (5.32) over the

periodic domain Υα and applying the divergence theorem with (5.33), which yields the

following condition:

∂S(0)

∂t
+ 1
|Υα|

∫
Υα

(∇x − iq) · (−D(∇yS
(1) +∇xS

(0) − iqS(0)) + uS(0)) dy = 0. (5.34)

The ∇yS
(1) term can be related to S(0) by taking the gradient of the expression in (5.31):

∇yS
(1) = ∇yw · (∇xS

(0) − i〈q〉S(0)) + i∆qS(0). (5.35)

Substituting this into (5.34) leads to a relation only involving the leading order coefficient

S(0)(x, t) and its derivatives in terms of the time and macro-scale variables:

∂S(0)

∂t
+ 1
|Υα|

∫
Υα

(∇x − iq) ·
(
−D(∇yw + I)(∇x − i〈q〉)S(0)) + uS(0)

)
dy = 0. (5.36)

This relation governs the value of S(0) at the macroscopic scale. The effects of the mean

and fluctuating parts of the q-vector in (5.36) can be broken down as:

∂S(0)

∂t
+ (∇x − i〈q〉) · (−〈F〉α(∇x − i〈q〉)S(0) + 〈u〉αS(0))

+ i〈∆q · F〉α(∇x − i〈q〉)S(0) − i〈∆q · u〉αS(0) = 0,
(5.37)

where 〈?〉α = 1
|Υα|

∫
Υα ? dy denotes the averaging over a reference cell, and F(y) =

D(∇yw+I) is a tensor field in the periodic domain of Υα obtained from the cell problem.

In particular, the tensor 〈F〉α is identical to the effective diffusion tensor Deff
α derived

from homogenising the diffusion equation in a porous domain; such equivalence will be
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discussed later. Meanwhile, using the fact that ∆q is the gradient of an exact integral,

the 〈∆q · F〉α term can be reduced to zero using integration by parts:
∫

Υα
∆q · Fdy =

∫
Υα
∇ξ · Fdy =

∫
Υα
∇ · (ξF) dy−

∫
Υα
ξ∇ · Fdy

=
∫
∂Υα

ξ(n · F) ds−
∫

Υα
ξ(∇ · F) dy = 0.

(5.38)

Here we have used the divergence-free property of F and its associated no-flux boundary

condition, as constituted by Equations (5.25)–(5.26). The same properties apply to the

advection velocity u as well, hence the 〈∆q · u〉α term reduces to zero too, simplifying

(5.37) to:

∂S(0)

∂t
+ (∇x − i〈q〉) · (−〈F〉α(∇x − i〈q〉)S(0) + 〈u〉αS(0)) = 0. (5.39)

Equation (5.39) therefore serves as the leading-order continuum approximation to the

original problem, as we expect the exact solution to the original problem S to converge

to the leading-order variable S(0) at the asymptotic limit of ε → 0. Since Equation

(5.39) no longer has any dependence on the micro-scale spatial variable y, it serves as a

macro-scale description of a homogenised continuum, with all the relevant effect from the

microstructure contained in the effective parameters of 〈F〉α, 〈u〉α and 〈q〉.

As we can see in Equation (5.39), the homogenised model for the macro-scale variable

S(0) takes the same form as the original equation (Eq. 5.6) . This means at this particular

asymptotic limit considered, the Bloch-Torrey equation is indeed a valid approximation for

a single porous compartment, even with heterogeneities in both transport and magnetic

behaviour. However, as shown in the derivation above, the relations between the effective

parameters in the homogenised model and micro-scale heterogeneities are not trivial, in

particular the computation of the effective diffusion tensor requires solving a cell problem

over the microstructure. Moreover, even though the homogenised effective parameters

are all some form of averaged quantities, they are averaged over different domains. The

effective transport parameters, namely 〈F〉α and 〈u〉α, involve averaging across only the

porous compartment considered, whereas the effective q-vector 〈q〉, somehow counter-
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intuitively, comes from the average across all compartments in the periodic cell, the reason

being that this is the correct quantity such that the remaining micro-scale fluctuations

can be exactly integrated (see Eq. 5.29).

5.3.3 Initial condition for the homogenised problem

Being an initial value problem, both the physical and homogenised problems require

some initial conditions at t = 0. For the homogenised problem given by (5.39), the

variable S(0)(x, t) does not depend on the micro-scale variable y, i.e. it is always constant

locally over a reference cell. However, the initial condition for the physical problem given

by (5.16)–(5.17) does not necessarily satisfy this condition. For example, the excitation

efficiency of transverse magnetisation can be selective to the Larmor frequency (see Section

2.3.1), leading to variable excitation at the micro-scale if the medium is magnetically

heterogeneous. Therefore, an additional relation is required to relate the physical initial

condition to one that is appropriate for the homogenised problem.

The locally-varying initial condition for (5.16)–(5.17), which equates to the initial

transverse magnetisation M0, can be formulated as a function of both macro- and micro-

scale variables:

S|t=0 = S0(x,y) = M0(x,y). (5.40)

This physical initial condition can be related to the homogenised quantity S(0)(x, t) using

boundary layer analysis. Since the highest-order time derivative in (5.16)–(5.17) is small

as it scales with ε2, a thin boundary layer in the time variable is expected near t = 0,

in which S varies at a very fast rate. Its behaviour can be approximated by defining an

inner time variable: tin = ε−2t. Within the inner region, terms which contain q, u or an

x-derivative in the expansion of (5.16)–(5.17) become negligible at the ε→ 0 limit, while

the scaled time-derivative does not vanish. The inner problem is therefore given by:

∂Sin

∂tin
+∇y · (−D∇ySin) = 0 in Υα, (5.41)

n · (−D∇ySin) = 0 on ∂Υα, (5.42)
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with the initial condition Sin|tin=0 = S0(x,y). Equations (5.41)–(5.42) constitute a dif-

fusion problem on a periodic domain with purely Neumann boundaries, leading to the

standard result:

lim
tin→∞

Sin = 〈S0〉α. (5.43)

Meanwhile, in the outer region the homogenised model of (5.37) applies. Using the concept

of asymptotic matching, the inner and outer solutions should match when the respective

limits of tin →∞ and tout → 0 are taken. The limit solution for the inner region given by

(5.43) is consistent with the outer region model, as it is indeed constant over the micro-

scale variable y. Therefore, the appropriate initial condition for the homogenised problem

relates to the physical initial condition as:

S(0)|t=0 = 〈S0〉α = 〈M0〉α. (5.44)

5.3.4 The cell problem and pore connectivity

In the homogenised model of (5.37), a key quantity that contains the information about

the micro-scale behaviour is the non-dimensional tensor field F(y) = D(∇w + I), which

is obtained by solving the cell problem (5.25)–(5.26) for the zero-mean periodic function

w(y). For the ease of the reader, the cell problem is restated here, with subscripts for the

derivatives now unnecessary since y is the only spatial variable:

∇ · (−D(∇w + I)) = 0 in Υα, (5.45)

n · (−D(∇w + I)) = 0 on ∂Υα. (5.46)

It is noted that this cell problem, arising from the homogenisation of (5.6)–(5.7), is iden-

tical to that from the homogenisation of the diffusion equation [7]. Physically, F(y)

can be interpreted as the tensor mapping a macro-scale potential, applied across the mi-

crostructure reference cell, to the local induced flux within the microstructure. When

F(y) is averaged over the microstructure reference cell, the resulting tensor then maps

the macro-scale potential to the macro-scale averaged flux, in other words 〈F〉α is the
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effective diffusivity tensor Deff
α . The origin of the macro-scale potential differs between

the two homogenisation problems – for the diffusion equation it originates solely from a

(real-valued) concentration gradient, whereas in DW-SE the concentration gradient com-

bines with the q-vector to generate a complex-valued potential. Nevertheless, the role of

the cell problem, and more importantly the resulting tensor field F(y), is equivalent in

both problems.

Mathematically, the cell problem (5.45)–(5.46) solving for w(y) should be posed on

the space of zero-mean functions with square-integrable first derivatives, over which the

existence and uniqueness of w(y) follow from the Lax-Milgram theorem [33]. However,

the form of w(y) can differ vastly depending on the domain topology of Υα, which in turn

relates to the physical pore connectivity of the compartment being considered. Evaluating

the component of w along any direction eλ ∈ R3, the resultant wλ = w · eλ is the unique

solution to the following equations:

∇ · (−D(∇wλ + eλ)) = 0 in Υα, (5.47)

n · (−D(∇wλ + eλ)) = 0 on ∂Υα. (5.48)

The trivial solution is given by wλ = −eλ · y, which leads to Feλ = 0. However, this

solution is only well defined if the domain Υα does not contain any closed path P on which

the path integral
∫
P eλ · ds does not vanish, i.e. there are no paths crossing a periodic

boundary in that direction. If such a path P exists, the square-integrable first derivative

condition requires wλ to be continuous, but the function −eλ · y cannot be single-valued

and continuous simultaneously on the path P , which goes round periodically. In this case,

the solution is non-trivial and Feλ is no longer constantly zero.

The physical explanation to the solution triviality is related to the pore connectivity

within the medium. When a macro-scale potential gradient is applied along eλ but the

pores are not connected in that direction, it cannot generate a flux within the microstruc-

ture due to the blockage, therefore Feλ = 0. However, if there exists a path which goes

round the reference cell Υα periodically along the direction of eλ, which is equivalent to
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having a percolation path in the macro-scale porous medium, a non-zero flux which is

Feλ is generated within the microstructure. In particular, if a compartment consists of

isolated domains which are disconnected in all directions, the resulting tensor field F is

constantly zero in all directions, meaning that the compartment has no effective diffusivity

at all.

5.3.5 Homogenised multi-compartmental model

To summarise the homogenisation result, the leading order continuum equation for a

particular compartment is given by (5.37) with initial condition (5.44). Returning to

dimensional quantities, the magnetisation for a particular compartment is described by

the homogenised model:

∂Sα
∂t

+ (∇− i〈q〉) · (−〈F〉α(∇− i〈q〉)Sα + 〈u〉αSα) = 0 in Ω, (5.49)

with the initial condition given by Sα = 〈S0〉α at t = 0, and some boundary conditions

specified on the external boundary ∂Ω. Comparing this to the original equation, the first

term in (5.49) has the same form of (5.6) with the averaged quantities 〈q〉, 〈F〉α and 〈u〉α

replacing q, D and u respectively.

If the initial condition is constant in the macroscopic scale, which is a reasonable

assumption when the RF pulses used in the DW-SE sequence have a low spatial selectivity,

the homogenised model can be further simplified by eliminating the spatial derivatives:

dSα
dt + 〈q〉 · 〈F〉α〈q〉Sα − i〈q〉 · 〈u〉αSα = 0. (5.50)

Solving this equation yields a compartment-specific expression describing the co-rotating,

co-decaying magnetisation density:

Sα(t)
〈S0〉α

= exp
∫ t

0
(−〈q〉 · 〈F〉α〈q〉+ i〈q〉 · 〈u〉α) dτ. (5.51)

From this expression, the full multi-compartmental homogenised model can be assembled.

Due to the refocusing effect of the spin-echo sequence, at echo time the relation Mxy =
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exp(−R2t)S(t) can be used to return to the stationary frame variable. The overall signal

density is then obtained by averaging Si(t) over all compartments with volume fraction

weightings:

〈Mxy〉 =
n∑
i=1

|Υi|
|Υ| exp(−R2,it)Si(t). (5.52)

Dividing this by the initial average magnetisation and using the relation M0 = S0 yields

a multi-exponential expression for the signal attenuation behaviour:

〈Mxy〉
〈M0〉

=
n∑
i=1

|Υi|
|Υ|
〈M0〉i
〈M0〉

exp
(
−R2,it+

∫ t

0
(−〈q〉 · 〈F〉i〈q〉+ i〈q〉 · 〈u〉i) dτ

)
. (5.53)

The signal attenuation expression (5.53) resembles multi-compartmental models in the

literature (see Section 2.4.3). However, by considering a more general problem using the

scale separation assumption, the homogenisation derivation gives a more detailed explana-

tion of the exponents and signal fractions in the multi-exponential model. The exponent

indeed takes the same form as the existing models, with the diffusion and advection parts

being quadratic and linear relative to the global q-vector 〈q〉 respectively. Meanwhile,

the signal fractions in (5.51) derived through homogenisation include not only the vol-

ume fractions, but also account for the compartment-specific transverse magnetisation

excitation efficiency and T2 relaxation rates. When the latter two effects are constant

over all compartments, then the signal fractions reduce to volume fractions, as in existing

multi-compartmental models. These ignored effects may potentially explain the incon-

sistency between fitted signal fractions and accepted volume fraction values suggested in

the current literature.

5.4 Numerical solution of the cell problem

In this section, a simple model of white matter tissue is used to apply the homogenisation

results derived above. As explained previously, the action of diffusion MRI within the

microstructure is captured by the solution to the cell problem over a periodic cell, in par-

ticular the tensor field F(y) = D(∇w+I), from which the parameters of the homogenised
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continuum model can be computed. Here we present a methodology based on the finite

element method to numerically solve the cell problem.

The finite element method is well suited to elliptic problems, such as the cell problem,

even when posed with discontinuous data. Its mathematical theory is well studied and

can be found in numerous texts, for example [16, 27]. The method is common in many

engineering disciplines, with its implementation available as various software packages,

both closed- and open-source. In line with scientific reproducibility principles, the open-

source packages gmsh [41] and FEniCS [71] are utilised as the mesh generator and solver

respectively, with the implementation of the solver based on modifications to the example

codes provided with the FEniCS package. Initially, a simple model is chosen to demon-

strate the methodology. This is then applied to realistic geometries based on microscopy

data.

5.4.1 The finite element method

The finite element method for a well-posed, linear problem can be loosely summarised

by the following steps: Firstly, the PDE and its boundary conditions are formulated as a

variational equality in the form:

Find u ∈ V such that a(u, v) = L(v) for all v ∈ V. (5.54)

Here we seek our solution in an appropriate function space V which reflects the bound-

ary conditions. Secondly, a finite-dimensional subspace Vh is chosen from the infinite-

dimensional function space V , based on the discretisation of the domain into a mesh of

finite elements. This leads to the Galerkin approximation of the original problem, which

is described by:

Find uh ∈ V such that a(uh, vh) = L(vh) for all vh ∈ Vh. (5.55)

The approximation problem inherits well-posedness from the original problem. Finally,

this finite-dimensional problem is assembled into a sparse system of linear equations and
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solved numerically.

5.4.2 Variational formulation of the cell problem

Consider the component of w along a unit vector eλ ∈ R3, then the cell problem for the

resultant wλ = w · eλ is written as:

∇ · (−D(∇wλ + eλ)) = 0 in Υα, (5.56)

n · (−D(∇wλ + eλ)) = 0 in ∂Υα. (5.57)

Here we consider the components in Cartesian coordinates: eλ = e1, e2, e3, which is

sufficient to determine w. However, if the domain has specific symmetries, for instance

hexagonal tessellation, other choices of eλ are possible to simplify the problem. The

equivalent variational form of (5.56)–(5.57) is to solve for wλ over the function space

Wper(Υα) ⊂ H1
per(Υα), i.e. the zero-mean subspace of functions with square-integrable

first derivatives on the periodic domain Υα, such that:

∫
Υα

(D∇wλ) · ∇v dy = −
∫

Υα
(Deλ) · ∇v dy, ∀v ∈ Wper(Υα). (5.58)

The solution to the variational equality minimises the quadratic energy associated with

the system, which is:

J(wλ) = 1
2

∫
Υα

(D∇wλ) · ∇wλ dy +
∫

Υα
(Deλ) · ∇wλ dy. (5.59)

From the energy perspective, it is easy to see why the zero-mean condition is essential:

the energy is not strictly convex if the variational problem is posed on H1
per(Υα) instead.

However, the implementation in FEniCS does not allow the zero-mean condition to be

explicitly enforced in the choice of function space. Instead, this constraint is implemented

in the form of a Lagrange multiplier c, which modifies the energy of the variational problem

to become:

J(wλ, c) = 1
2

∫
Υα

(D∇wλ) · ∇wλ dy +
∫

Υα
(Deλ) · ∇wλ dy +

∫
Υα
cwλ dy. (5.60)
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The corresponding variational problem solving for (wλ, c) ∈ H1
per(Υα)× R is given by:

∫
Υα

((D∇wλ) · ∇v + cv + wλd) dy = −
∫

Υα
(Deλ) ·∇v dy, ∀(v, d) ∈ H1

per(Υα)×R. (5.61)

The solution to (5.61) can be shown to satisfy c = 0 and
∫

Υα wλ dy = 0, thus recovering

the solution to (5.58). This variational problem is now ready to be discretised on a meshed

domain and solved using FEniCS.

5.4.3 Results using a simple test case

To demonstrate the implementation, we consider a simple model of the cellular structure

of white matter, which contains parallel, cylindrical axons in the z-direction of diameter

0.5d arranged in a square grid of spacing d, as shown in Fig. 5.3a. The cell membranes

of the axons are assumed to have negligible thickness and to be impermeable. In both

intra- and extra-axonal spaces, the diffusivity D is modelled to be uniform, isotropic and

equal, hence D = I after non-dimensionalisation. The advection velocity u is assumed to

be constantly zero, and the excitation efficiency is assumed to be constant across both

compartments.

Since the medium is homogeneous without any boundaries in the z-direction, w3 and

all z-derivatives are constantly zero, hence Fe3 = (0, 0, 1)T . Therefore, it suffices to solve

equation (5.61) over a 2D section to determine w1 and w2. For the intra-axonal com-

partment, each individual axon is isolated from each other, therefore the trivial solutions

discussed in Section 5.3.4 apply to w1 and w2. The tensor field Fint is therefore constant

and equal to the non-dimensionalised effective diffusivity tensor, which is given by:

Deff
int = Fint =


0 0 0

0 0 0

0 0 1

 . (5.62)

Meanwhile for the extra-axonal compartment, numerical solution to the cell problem is

required. A 2D mesh (Fig. 5.3b) is generated by triangulation for the non-dimensionalised
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5.4 Numerical solution of the cell problem

Figure 5.3: (a) Schematic of the porous medium showing periodic cell in microstruc-
ture. (b) Two-dimensional mesh generated for the extra-axonal compartment in a non-
dimensionalised periodic cell.

periodic cell. The centre of the cylinder is deliberately offset by 0.1 in the y-direction to

check if the solver is implemented correctly. The maximum element size in the domain is

set to 0.02, with refinement on the curved boundary set to 0.01, which is 4% of the radius

of curvature. Based on the mesh, Lagrange elements of degree 1 are used to define the

finite-dimensional space Vh. This consists of all periodic, continuous functions which are

piecewise linear on each element. The variational equality (5.61) is then implemented in

FEniCS to solve for w1 and w2, with the respective solutions being shown as colour plots

in Fig. 5.4.

From the computed solution for w1, w2 and the fact that w3 = 0, the tensor field Fext

can be computed. The vector fields given by Fextei represent the local distribution of flux

when a macro-scale potential gradient of unit magnitude is applied in direction ei. For the

x- and y-directions, Fexte1 and Fexte2 are shown as vector plots in Fig. 5.4, whereas the

domain homogeneity in the z-direction implies Fexte3 = (0, 0, 1)T . The volume average

of Fext over the reference cell yields the effective diffusivity tensor for the extra-axonal
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5.5 Effective diffusion tensors of real white matter geometries

Figure 5.4: x- (left) and y-components (right) of the solution to the cell problem in the
extra-axonal compartment (w1 and w2) shown as colour plots, with the induced flux
distribution (Fexte1 and Fexte2) overlaid as vector plots.

compartment normalised against D:

Deff
ext = 〈Fext〉 =


0.8359 0 0

0 0.8359 0

0 0 1

 . (5.63)

From expression (5.53), the overall signal density is therefore given by:

〈Mxy〉
〈M0〉

= fint e
−R2,int〈q〉 ·Deff

intD〈q〉+ (1− fint) e−R2,ext〈q〉 ·Deff
extD〈q〉, (5.64)

where fint = 0.1963 is the volume fraction of the intra-axonal compartment, and the

effective diffusion tensors Deff
int,Deff

ext are given in (5.62), (5.63) respectively.

5.5 Effective diffusion tensors of real white matter

geometries

In this section, the numerical method described in Section 5.4 is applied to realistic white

matter geometries derived from microscopy data from mouse white matter. This allows

us to investigate the effective diffusion tensors of the various compartments in an actual

biological sample, which is representative of the heterogeneous media encountered in a

clinical imaging setting.
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5.5 Effective diffusion tensors of real white matter geometries

(a) TEM image (b) Segmentation map

Figure 5.5: Transmission electron microscopy image of mouse white matter, and its hand
segmentation by Xu et al. [121] for the extra-axonal, myelin sheath, and intra-axonal
compartments. Image matrix: 4000 ×4000, resolution: 7.1 nm isotropic.

5.5.1 Data preparation and mesh generation

The data have been collected and previously published by Xu et al. [121] in a study

on a different topic of susceptibility-weighted MR imaging. The image data, obtained

using transmission electron microscopy (TEM), were collected in a 4000 ×4000 matrix

at an isotropic resolution of 7.1 nm, and were subsequently hand segmented into extra-

axonal, myelin sheath and axonal compartments by the original authors, as shown in

Figure 5.5. In this thesis, both the image and its segmentation map are obtained with the

original authors’ permission, and are further processed for use in numerical calculations

of diffusion MRI. Since the microscopy data is only available as one 2D cross-section slice,

similar to the previous section, we assume the microstructure to be uniform and infinite

in the longitudinal direction. This also means it again suffices to solve the cell problem

in two dimensions, as the longitudinal components of the diffusion tensor are trivial.

From the full 4000 ×4000 segmented map, 100 smaller 1000 ×1000 samples were

cropped out for mesh generation. The reason for cropping out multiple smaller samples,

rather than using the whole image, is two-fold. Firstly, since only one microscopy image

is available, if the full image is used the result will only be one single diffusion tensor with
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5.5 Effective diffusion tensors of real white matter geometries

(a) Cropped area (b) Domain augmentation

Figure 5.6: An example of a 1000 ×1000 sample being cropped from the original image,
and then augmented by appending its mirror image to form a larger periodic domain.
The bottom-right of (b) corresponds to the cropped area in (a).

no comparison possible. Therefore, there is limited meaningful analysis which could be

done. Secondly, due to limited computing resources, the mesh quality has to be reduced

if the full image is used. For the 1000 ×1000 samples, the minimum mesh size can go

to as low as 0.5px near the boundaries, so the features of the boundary contours can be

resolved, especially when they are in close vicinity to each other. However, due to the

limited amount of memory, this is not possible if the full image is used. Meanwhile, if

multiple smaller samples are chosen from the full image, a bigger data set is effectively

created, to allow for at least some form of analysis and statistics to gain some insight

about the data.

For each cropped sample, the boundaries between the compartments are obtained

by smoothening and thresholding the segmentation map image. In order to enforce the

periodic boundary conditions, the samples are augmented by appending its own mirror

images, so that a larger periodic domain four times its size is formed, as shown in Figure

5.6. The motivation of this process is to generate periodic domains which are still rep-

resentative of the realistic geometry. Unfortunately, in 21 out of the 100 cropped areas,

the intra-axonal space of some cells cut across a corner of the domain, meaning that after

including the mirror images they form a ring instead. Not only does this lead to mesh
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5.5 Effective diffusion tensors of real white matter geometries

generation failure, it is also not a realistic topology for cells. These samples are therefore

discarded, leaving a total of n = 79 samples to be considered. For more details of the

automated processing and mesh generation pipeline using gmsh, please see Appendix A.

5.5.2 Numerical results and discussion

The cell problem is then solved over the 79 meshed domains using the FEniCS implemen-

tation described in Section 5.4, in order to solve for the effective diffusion tensors. In each

of the meshed domains, only the extra-axonal compartments is considered, as the myelin

sheath and intra-axonal compartments are not connected in both x- and y-directions,

hence their associated effective diffusion tensor is trivial.

For the extra-axonal space, the statistics of the volume fraction and the two principal

components of the effective diffusion tensor are shown in Figure 5.7. As we can see, there

is some considerable variation in terms of the values of the effective parameters over the

set of samples, however this is to be expected given the nature of the data. By inspecting
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Figure 5.7: Statistics over n = 79 samples for the volume fractions and principal com-
ponents of effective diffusion tensor of the extra-axonal compartment. Apart from the
outliers (blue dot), defined by data more than 1.5 times the interquartile range away from
a quartile, the bars denote the maximum and minimum values, whereas the box shows
the median and lower/upper quartiles.
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the full microscopy image, one can see some spatial variation in terms of packing density

of the axons across the 4000 ×4000 sample, which leads to a corresponding variation in the

effective diffusion tensors in the smaller samples, depending on their locations. However,

if the sample size could be increased, the variation in these parameters were expected to

decrease, as the samples should include information from a larger range of locations and

average them out. Unfortunately, due to the limited data available, such analysis has not

been possible. Nevertheless, one can still conclude from this limited dataset that a 1000

×1000 sample size, which equates to 7.1 µm ×7.1 µm, is unlikely to be large enough to

be a good representative elementary volume (REV) for the white matter microstructure.

This is as would be expected, as these samples often only cover as few as three cells in

one direction. It is also noted that this size is still much smaller than the characteristic

length scale of an imaging voxel, and thus in practice much more effective homogeneity

can be expected over the voxel scale.

5.6 Summary and conclusion

To summarise this chapter, multi-scale homogenisation has been applied to model dif-

fusion MRI in heterogeneous media in the long-time, small q-value regime. Although

advection is not expected to play a part in practical scenarios, a weak advection term

has been considered in the model as well. This novel modelling approach allows for a si-

multaneous consideration of both transport and magnetic heterogeneities in the medium.

The result of the homogenisation analysis reveals that the effect of magnetic hetero-

geneities integrate exactly to zero, whereas the heterogeneous diffusion barriers average

out into compartment-specific effective diffusion tensors. The overall diffusion MRI signal

is therefore described by a multi-exponential decay expression, which is similar to existing

multi-compartmental models.

In addition, the homogenisation analysis reveals the mathematical origin of the ef-

fective diffusion tensors, an area which is under-explored in existing literature. The link
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between microstructure properties and the macro-scale multi-exponential signal behaviour

is the cell problem, which is a PDE posed over a representative elementary volume. This

cell problem can be solved numerically by a finite element method, as presented in Section

5.4. This method is applied on realistic microstructure geometries obtained from trans-

mission electron microscopy data of mouse white matter. However, the limited amount

of data means that there are limited meaningful comparisons and quantitative conclusion

that can be drawn from the numerical results. Nevertheless, a working example of a

method to deduce the effective diffusion tensors from a segmented image has been pre-

sented. Given greater availability of data in the future, this work could easily be extended

to evaluating the effective diffusion tensors from multiple samples, at different locations

or of tissues with different pathology, allowing for a basis of more extensive biophysical

modelling.
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Chapter 6

Boundary layer model of DW-SE for

the short-time regime

6.1 Introduction

In this chapter, the short-time regime of diffusion-weighted spin-echo (DW-SE) pulse

sequences in porous media is considered. The definition of this short-time regime is that

the time scale between the spatial modulation and demodulation of spins by the gradient

pulses is shorter than the characteristic time for diffusion to occur over the microstructure

length scale. In terms of the q-t parameter space, this corresponds to the region to the

left of the central region where all scales from various processes are balanced, as shown

in Figure 6.1.

In the current literature, the main model, which is frequently quoted as an universal

expression for short diffusion times, is based on a diffusion propagator approach and taking

a t→ 0 limit (see Chapter 2, Section 2.4.6). However, there are two implicit assumptions

from this approach which do not reflect a practical DW-SE experiment. Firstly, by solely

taking a t→ 0 limit but keeping all other scales constant, particularly that of the q-vector,

the resulting contrast is poor since the signal magnitude scales as exp(−q2Dt) = 1−O(t).

As explained in Chapter 3, Section 3.3.2, in order for both the signal and contrast to
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Figure 6.1: Definition of the small-time regime on the q-t parameter space.

scale as O(1), the product q2Dt needs to scale as O(1) too, which is represented by by

the top-left to bottom-right strip in the q-t parameter space (Figure 6.1). Therefore, at

the same time as taking the t → 0 limit, one should concurrently adjust the scale of

the q-vector. Secondly, the diffusion propagator approach assumes a q-vector which is

constant, in other words spins are spatially modulated and demodulated instantaneously

by an infinitely strong but short gradient pulse. This clearly is an unphysical assumption,

as the rate of modulation is limited by the maximum gradient that the scanner hardware

can offer.

In the following sections, these two limitations of current models will be addressed.

Instead of approaching the problem using a diffusion propagator approach, we start from

the Bloch-Torrey equation itself and consider its asymptotic behaviour as we take the

short time limit. A boundary layer type of behaviour is expected in this regime, as the

effect of the heterogeneities, which are the diffusion barriers on the boundary surfaces,

should not have the time to travel beyond the local boundary layer. We first investigate
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6.2 Model formulation

the effect of the first limitation whilst keeping the assumption of constant q-vector, and

then time-varying q-vector profiles will be considered next.

6.2 Model formulation

6.2.1 Governing equations and scale separation parametrisation

We start from the full, dimensional form of the co-rotating, co-decaying Bloch-Torrey

equation, with no-flux boundary conditions and constant initial condition:

∂S

∂t
+ (∇− iq) · (−D(∇− iq)S) = 0 in Ω, (6.1)

n · (−D(∇− iq)S) = 0 on ∂Ω, (6.2)

S = M0 at t = 0. (6.3)

In the above equations, S(x, t) is the magnetisation quantity under the co-rotating, co-

decaying transformation; at t = 0 the initial magnetisationM0 is assumed to be constant.

The q-vector, q(t), is the spatial modulation wave-vector which is assumed to be spatially

uniform. Although the diffusivity of the medium D can be in general anisotropic in the

Bloch-Torrey equation, here in this chapter it is modelled to be constant and isotropic,

i.e. D = DI, for ease of analysis.

In this chapter, we are interested in the behaviour of this equation at a time scale

which is much shorter than that associated with the microstructure. For a characteristic

length scale corresponding to the microstructure pore sizes lc = d, and characteristic time

scale tc defined by the MRI pulse sequence itself, the scale separation condition for the

short time regime can be expressed as the following relation:

tc = ε2d
2

D
. (6.4)

The small parameter ε � 1 indexes the scale separation between the time scales; the

short-time regime therefore corresponds to the ε→ 0 asymptotic limit. Meanwhile, as for
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Figure 6.2: The asymptotic limit depicted on the q-t parameter space. The central
region corresponds to the regime when all terms in the original equation are balanced;
the asymptotic limit considered lies along the path which results in an O(1) signal.

the q-vector, its natural scaling is:

qc = ε−1d−1 = (Dtc)−1/2. (6.5)

This choice leads to the time-derivative and q terms in (6.1) to be similar in magnitude.

It also means the signal decay rate, which is proportional to |q|2Dt, is at O(1) magnitude.

Finally, the magnetisation is normalised against the initial condition, i.e. Sc = M0. After

rescaling, the non-dimensionalised equation and its boundary and initial conditions, with

the relative ratio of magnitudes parametrised by ε, are given by:

∂S

∂t
− (ε∇− iq) · (ε∇− iq)S = 0 in Ω, (6.6)

n · (ε∇− iq)S = 0 on ∂Ω, (6.7)

S = 1 at t = 0. (6.8)
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This asymptotic regime can be plotted on the digram of the q-t parameter space, as shown

in Figure 6.2. In the diagram, the central region corresponds to the regime when all terms

in the Bloch-Torrey equation are balanced in magnitude; the ε → 0 limit in (6.6)–(6.8)

thus corresponds to the arrow going diagonally to the top-left direction.

6.2.2 Asymptotic boundary layer

In the non-dimensional equation (6.6), the highest-order spatial derivative is multiplied

by the small parameter ε2, contributing to a singular perturbation at the ε → 0 limit.

This suggests a boundary layer behaviour in space, where there is a thin region near the

boundary in which the solution S(x, t) varies rapidly. Indeed, for the bulk of the spatial

domain, the asymptotic solution can be obtained by ignoring the boundary condition and

setting ε = 0 in (6.6), leading to the ‘outer’ problem:

∂Sout

∂t
+ q · q Sout = 0, (6.9)

Sout = 1 at t = 0. (6.10)

which has solution:

Sout(x, t) = exp
(
−
∫ t

0
|q|2 dτ

)
. (6.11)

It can be noted that in the outer problem, all the spatial derivatives vanish under the

ε = 0 approximation, which corresponds to the medium behaving as if it is homogeneous.

This means in the outer region, the behaviour of the signal is not influenced by the effects

of inhomogeneities caused by impermeable boundaries.

However, this outer solution clearly does not satisfy the boundary condition given by

(6.7). Instead, in the close vicinity to the boundary ∂Ω, the presence of the boundary

condition modifies the solution. In this ‘inner’ region, which is also known as the boundary

layer, the solution varies rapidly in space so the spatial derivative terms in (6.6) only

become comparable to other terms in the equation after being multiplied by ε.

To analyse the behaviour of the solution within the inner boundary layer, we can

100



6.2 Model formulation

switch to a local spatial co-ordinate system and then rescale the spatial derivatives to

become O(1) in magnitude. Consider a point on the boundary surface ∂Ω. Using that

point as the origin, we can define the local spatial co-ordinates as (xloc, yloc, zloc) with xloc

pointing in the direction of the inner normal. A scaled inner spatial coordinate system

can then be defined:

(xin, yin, zin) =
(
xloc

ε
,
yloc

ε
,
zloc

ε

)
.

This choice of rescaling is to make the rescaled spatial derivatives to be of a similar mag-

nitude to the other terms in the equation. Assuming the boundary surface ∂Ω is smooth,

then under the above rescaling, the local surface element asymptotically approaches a flat

surface. Therefore, to model the boundary layer behaviour, the original problem (6.6)–

(6.8) can be rescaled, and then posed on the xin > 0 semi-infinite half-space, with an

additional far-field condition that as xin → ∞ the inner solution should asymptotically

match the outer bulk solution at that point. This leads to the following inner problem:

∂Sin

∂t
− (∇in − iq) · (∇in − iq)S = 0, (6.12)

en · (∇in − iq)Sin = 0 at xin = 0, (6.13)

Sin → Sout at xin →∞, (6.14)

Sin = 1 at t = 0, (6.15)

where en is the unit vector of the inward normal at the boundary surface. Since q(x, t)

only varies in the global scale but not locally in the boundary layer, in the inner prob-

lem q is only a function of time and does not depend on the rescaled inner spatial co-

ordinates. Meanwhile, instead of acting as an independent variable, the global spatial

variable parametrises the inner problem through q and Sout.

Furthermore, it can be seen that none of the equations and boundary conditions in

(6.12)–(6.15) has any dependence on the yin and zin variables, in other words within the

boundary layer the inner solution only varies in the direction normal to the boundary

surface. Therefore, the spatial derivative operators can be simplified as ∇in = en(∂/∂xin).
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The inner problem therefore reduces to a problem for Sin(xin, t), a function of just two

variables:

∂Sin

∂t
−
(

∂

∂xin
− iqn

)(
∂

∂xin
− iqn

)
Sin + q2

tSin = 0, (6.16)(
∂

∂xin
− iqn

)
Sin = 0 at xin = 0, (6.17)

Sin → exp
(
−
∫ t

0
(q2
n + q2

t ) dτ
)

at xin →∞, (6.18)

Sin = 1 at t = 0. (6.19)

Here qn and qt respectively represent the normal and tangential components of q with re-

spect to the boundary surface. If we further use a substitution U(xin, t) = Sin exp
(∫ t

0 q
2
t dτ

)
,

we reduce it to the following problem:

∂U

∂t
−
(

∂

∂xin
− iqn

)(
∂

∂xin
− iqn

)
U = 0, (6.20)(

∂

∂xin
− iqn

)
U = 0 at xin = 0, (6.21)

U → exp
(
−
∫ t

0
q2
n dτ

)
at xin →∞, (6.22)

U = 1 at t = 0. (6.23)

This effectively means that the boundary layer behaviour can be characterised by a family

of problems in the two variables of xin and t, parametrised by qn(t) which is the normal

component of the q-vector locally at the boundary surface.

After solving for the normalised inner problem, a model can be formulated for the

volume-integrated signal over a voxel, in conjunction with the solution in the outer region.

In the absence of boundaries, the signal will be given by Sout throughout the voxel; for

each surface element on the boundary ∂Ω, its associated boundary layer causes a deficit in

signal decay. Such signal deficit per unit surface area can be computed through integration

of the inner solution:

∫
BL

(Sin − Sout)dxloc = ε exp
(
−
∫ t

0
q2
t dτ

) ∫ ∞
0

(U − U∞) dxin. (6.24)
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The resulting imaging signal over a voxel, assuming that it is a uniform integration over

the voxel volume, is therefore:

Svoxel =
∫

Ω
Sout dV +

∫
∂Ω

(
ε exp

(
−
∫ t

0
q2
t dτ

) ∫ ∞
0

(U − U∞) dxin

)
dA. (6.25)

6.2.3 Relating boundary layer variables to dimensional quanti-

ties

So far in the above sections, the boundary layer model has been formulated in terms

of non-dimensional variables, which eventually characterises the signal behaviour near a

boundary surface by the ‘inner problem’, described by the partial differential equations

of (6.20)–(6.23). It is useful to establish the relations between the dimensional quantities

and the non-dimensional variables, both in the inner and outer co-ordinates, as this allows

us to go back into describing the image signal in dimensional quantities after obtaining

the solution to the inner problem.

In particular, regarding the inner variables (xin, t), they relate to the dimensional space

and time variables (xdim, tdim) by:

xin = ε−1x = (qcd)x = qcxdim, (6.26)

t = t−1
c tdim = ε−2d−2Dtdim = q2

cDtdim. (6.27)

The relevant dimensionless groups for the inner problem are therefore (qcxdim, q
2
cDtdim),

which are dependent on the characteristic q-value and the diffusion coefficient, but not the

geometrical length-scale of the microstructure. This is a direct result of the length scale

separation assumption between the characteristic diffusion length and the much longer

microstructure length-scale.

Regarding the total signal over a voxel in terms of dimensional quantities, Equation

(6.25) can be re-dimensionalised by multiplying corresponding characteristic quantities to
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become:

Svoxel = M0

∫
Ω

exp
(
−D

∫ tdim

0
|qdim|2 dτ

)
dV

+M0

∫
∂Ω
q−1
c exp

(
−D

∫ tdim

0
q2
t dτ

)(∫ ∞
0

(U − U∞) d(xin)
)

dA. (6.28)

6.3 Solutions to inner problem for constant q-vector

In this section, the specific case when the q-vector is constant in time is considered.

This corresponds to a short-pulse gradient assumption on the DW-SE sequence, as the

q-vector jumps instantaneously between 0 and its constant value at both the start and

the end of the pulse sequence. Clearly, this assumption is not physical, as the finite

magnitude of magnetic fields does not allow for the instantaneous spatial modulation

of spins. Nevertheless, this is the assumption employed in the vast majority of existing

modelling results of surface-to-volume effects in diffusion imaging, therefore in this section

we seek to use the boundary layer methodology in order to compare results with the

literature, as well as to provide further insight to the signal behaviour in the vicinity of

microstructure boundaries.

An interesting observation is that when qn is constant in time, the problem posed by

Equations (6.20)–(6.23) becomes self-similar under the following re-scaling of variables:

Unew(x, t) = U
(
qn xin, q

2
nt
)
. (6.29)

The inner problem for the boundary layer then reduces to a single problem, which effec-

tively corresponds to setting qn = 1:

∂U

∂t
−
(
∂

∂x
− i

)(
∂

∂x
− i

)
U = 0, (6.30)(

∂

∂x
− i

)
U = 0 at x = 0, (6.31)

U → exp(−t) at x→∞, (6.32)

U = 1 at t = 0. (6.33)
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6.3 Solutions to inner problem for constant q-vector

In other words, the behaviours of all boundary layers at different (time-unvarying) q-

vectors correspond to the same solution for qn = 1, except that they are scaled according to

the strength of the normal component of the q-vector. In terms of dimensional quantities,

the invariant set of variables in (6.29) correspond to (x, t) = (qnxdim, q
2
nDtdim). However,

the self-similarity does not apply when qn(t) depends on time, as Equations (6.20)–(6.22)

are no longer invariant under the transformation of variables.

Two analytical methods, one based on the Laplace transform and the other using a

series expansion, will be used to investigate the normalised boundary layer problem. The

inner problem will also be solved numerically using a finite difference method as well. The

results will then be discussed and compared with existing literature.

6.3.1 Laplace transform method

Firstly, the solution to the inner boundary layer for a constant q-vector is analysed using a

Laplace transform method. By applying a Laplace transform on the time variable in Equa-

tions (6.20)–(6.23), the time-dependent behaviour is encapsulated in the Laplace variable

s, resulting to an ODE for the Laplace transformed function UL(xin, s) = L{U(xin, t)}:

d2UL(xin, s)
dx2

in
− 2iqn

dUL(xin, s)
dxin

− (s+ q2
n)UL(xin, s) + 1 = 0, (6.34)

dUL(xin, s)
dxin

− iqnUL(xin, s) = 0 at xin = 0, (6.35)

UL(xin, s)→
1

s+ q2
n

at xin →∞. (6.36)

In these transformed equations, the time derivatives are replaced by the multiplication

by s, whereas the spatial partial derivatives become ordinary derivatives, as the Laplace

variable s acts as a parameter instead. The solution to this second-order ODE is given

by:

UL(xin, s) = − iqn√
s(s+ q2

n)e
(iqn−

√
s)x + 1

s+ q2
n

. (6.37)
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6.3 Solutions to inner problem for constant q-vector

It can be noted that the particular integral corresponds to the far-field solution U∞(t),

hence the deficit between the inner and outer solutions is:

∆UL(xin, s) = L{U(xin, t)− U∞(t)} = − iqn√
s(s+ q2

n)e
(iqn−

√
s)xin . (6.38)

The
√
s within the exponent of the above expression makes it difficult to find an analytical

expression for its inverse Laplace transform. Therefore, rather than solving for the exact

solution for ∆U(xin, t) point-wise in the spatial variable, its integral over the entire inner

boundary layer can be investigated instead. The deficit of UL(xin, s) in the boundary layer

is given by the following expression:

∫ ∞
0

∆UL(xin, s)dxin = iqn√
s(iqn −

√
s)(s+ q2

n) . (6.39)

The inverse Laplace transform of this expression yields:

∫ ∞
0

(U − U∞)dxin = 1
2iπ lim

R→+∞

∫ σ+iR

σ−iR

iqn√
s(iqn −

√
s)(s+ q2

n)e
stds (σ > 0)

= −
√
t

π
+ exp(−q2

nt)
(

1 + 2q2
nt

2qn
erfi(qn

√
t)− iqnt

)
, (6.40)

where erfi(w) = −i erf(iw) is the imaginary error function. It is noted that if the above

expression is multiplied by qn, then it becomes a function solely of the variable qn
√
t. This

is due to the self-similar nature of the problem with the re-scaled variables of (qnxin, q
2
nt),

as demonstrated in (6.30)–(6.33), hence the signal deficit integral over the boundary layer

can be expressed as a one-parameter function of qn
√
t:

∫ ∞
0

(U − U∞)d(qnxin) = F (qn
√
t), (6.41)

where F (w) = − w√
π

+ exp(−w2)
(

1 + 2w2

2 erfi(w)− iw2
)
. (6.42)

The signal deficit at the t → ∞ limit can be evaluated using the final value theorem as

well:

lim
t→∞

(U − U∞) = lim
s→0

s∆UL(xin, s) = 0. (6.43)

106



6.3 Solutions to inner problem for constant q-vector

Hence, the signal deficit indeed should decay to zero at infinite time. However, it must

be noted that the boundary layer analysis is based on the short time assumption, as

described from the definition of the characteristic time in (6.4). In other words, it is

assumed that the far-field is unperturbed from any boundary conditions and behave as if

it is an infinite medium. In reality, at the t→∞ limit, the far-field will also be influenced

by other surfaces; in this case the behaviour can no longer be analysed as an isolated

boundary layer.

Finally, returning to dimensional quantities, the dimensional signal deficit per unit

surface area is given by:

εd
∫ ∞

0
(U − U∞)dxin = q−1

c q−1
n

∫ ∞
0

(U − U∞)d(qnxin) (6.44)

= q∗−1
n F (q∗n

√
Dt∗),

where the asterisks denote the dimensional variables. The total voxel-integrated signal is

therefore:

Svoxel =
∫

Ω
M0 exp

(
−|q∗|2Dt∗

)
dV +

∫
∂Ω
M0 exp

(
−q∗2t Dt∗

)
q∗−1
n F (q∗n

√
Dt∗)dA. (6.45)

In this expression, the subsequent image formation process is assumed to be ideal, in other

words all locations within the voxel region has an equal weighting in the integration. If

the image formation process is imperfect, then the above equation can be easily modified

by including the local signal amplification and phase shift in the integrals.

A particular observation from the above expression is that if the initial condition is

constant and image formation process is ideal, the imaginary part of the signal integrates

exactly to zero. This is because the imaginary part of the voxel signal is given by:

Im(Svoxel) =
∫
∂Ω
M0 exp

(
−q∗2t Dt∗

)
q∗−1
n exp

(
−q∗2n Dt∗

)
(−q∗2n Dt∗)dA

=
∫
∂Ω
−M0 exp

(
−|q∗|2Dt∗

)
|q∗|Dt∗ cos θdA = 0. (6.46)

Here θ is the angle between the surface normal and the applied q-vector at each point on

∂Ω. Since ∂Ω is formed by a union of volume-bounding surfaces, the integral
∫
∂Ω cos θdA
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6.3 Solutions to inner problem for constant q-vector

is constantly zero. This result can be extended to when the voxel signal encounters a

coherent phase shift at all locations, however when there is incoherent phase shift of spins

when the voxel signal is formed, the imaginary part does not necessarily integrate to zero.

6.3.2 Series expansion method for small q-value

A number of modelling results in literature, such as those of [43, 77, 87], are based on

the asymptotic limit of bringing t→ 0 whilst keeping q constant. These models therefore

correspond to going horizontally left on the q-t parameter space (Fig 6.3), instead of

keeping the signal decay rate at O(1) and going diagonally to the top-left. Indeed, these

models are interested in a different regime and the resulting signal decay rate is therefore

much smaller than O(1) too. Nevertheless it is possible to take a further q → 0 limit from

the above boundary layer analysis to relate the two regimes. On the q-t parameter space,

this corresponds to first taking the diagonal asymptotic limit, and then going downwards

by taking a small q limit, thus ending up in the same region, as shown in the dashed

arrows in Figure 6.3.

Their are two motivations for this analysis; firstly it allows the comparison with ex-

isting models derived using a random walk or a diffusion propagator approach. Secondly,

existing models, as well as the Laplace transform method described in Section 6.3.1, only

give the signal deficit integral. Here we attempt to go into further details, and aim to

derive equations (at least at the q→ 0 limit) describing the spatial variation of the signal

within the boundary layer.

Starting from Equations (6.20)–(6.23), we can investigate the behaviour at the qn → 0

limit by assuming a series expansion ansatz:

U = U (0) + qnU
(1) + q2

nU
(2) + · · · (6.47)
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Figure 6.3: In the q-t parameter space, existing surface-to-volume models, such as [43, 77,
87], are derived by considering t → 0 whilst keeping q constant (solid arrow). The same
regime can also be reached by first doing the boundary layer analysis, and then taking a
further q → 0 limit (dashed arrows).

Substituting this into (6.20)–(6.23), the leading order problem gives:

∂U (0)

∂t
− ∂2U (0)

∂x2
in

= 0, (6.48)

∂U (0)

∂xin
= 0 at xin = 0, (6.49)

U (0) → 1 at xin →∞, (6.50)

U (0) = 1 at t = 0, (6.51)

which has a trivial solution of U (0) = 1.
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6.3 Solutions to inner problem for constant q-vector

Proceeding to the next order gives the U (1) problem:

∂U (1)

∂t
− ∂2U (1)

∂x2
in

= 0, (6.52)

∂U (1)

∂xin
= iU (0) at xin = 0, (6.53)

U (1) → 0 at xin →∞, (6.54)

U (1) = 0 at t = 0. (6.55)

This represents a diffusion problem in the xin > 0 semi-infinite domain, with a constant

flux condition at xin = 0 as U (0) is constant. The exact solution for U (1) can be derived

using a similarity solution. This is because if U (1)(xin, t) is a solution, then for any

arbitrary constant a, the function a−1U (1)(axin, a
2t) also satisfies (6.52)–(6.55). Therefore,

by letting η = xin/
√
t be the similarity group, the solution takes the form of U (1) =

t1/2F (1)(η), and the PDE problem in (6.52)–(6.55) reduces to a second-order ODE with

boundary conditions:

d2F (1)

dη2 + η

2
dF (1)

dη − F (1)

2 = 0, (6.56)

dF (1)

dη = i at η = 0, (6.57)

F (1) → 0 at η →∞. (6.58)

We note that the t = 0 initial condition (6.55) is automatically satisfied by the form of

the similarity solution, so it does not appear in the ODE problem. The general solution

to equations of the form of (6.56) can be expressed in terms of repeated integrals of the

error function [1]:

F (1) = A i1 erfc
(
η

2

)
+B i1 erfc

(
−η2

)
, (6.59)

where A and B are constants and i1 erfc(z) =
∫∞
z erfc(w) dw is the first integral of the

error function. Substituting in the boundary conditions yields A = −2i and B = 0, hence

the solution for U (1) is:

U (1) = −2i
√
t i1 erfc

(
xin

2
√
t

)
. (6.60)
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We can see that while the leading order solution U (0) is real, the first order correction

U (1) is a purely imaginary function. This means that when we consider the magnitude,

the contribution from U (1) is in fact of order O(q2
n), as it is effectively a purely quadrature

component of correction. Therefore, in order to evaluate the leading order correction to

the magnitude signal, the second order problem needs to be considered as well. The U (2)

problem is given by:

∂U (2)

∂t
− ∂2U (2)

∂x2
in

+ 2i∂U
(1)

∂xin
+ U (0) = 0, (6.61)

∂U (2)

∂xin
= iU (1) at xin = 0, (6.62)

U (2) → −t at xin →∞, (6.63)

U (2) = 0 at t = 0. (6.64)

Substituting in the solutions for U (0) and U (1) leads to:

∂U (2)

∂t
− ∂2U (2)

∂x2
in
− 2 erfc

(
z

2
√
t

)
+ 1 = 0, (6.65)

∂U (2)

∂xin
= 2√

π

√
t at xin = 0, (6.66)

U (2) → −t at xin →∞, (6.67)

U (2) = 0 at t = 0. (6.68)

This problem can again be solved using the similarity group η = xin/
√
t, but here the

solution takes the form U (2) = tF (2)(η) to match the
√
t-varying flux boundary condition

in (6.66). The corresponding ODE problem and boundary conditions are given by:

d2F (2)

dη2 + η

2
dF (2)

dη − F (2) + 2 erfc
(
η

2

)
− 1 = 0, (6.69)

dF (2)

dη = 2√
π

at η = 0, (6.70)

F (2) → −1 at η →∞. (6.71)

The complimentary function for (6.69) again can be represented by repeated integrals of
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the complementary error function:

F
(2)
cf = A i2 erfc

(
η

2

)
+B i2 erfc

(
−η2

)
, (6.72)

where i2 erfc(z) =
∫∞
z i1 erfc(w) dw is the second repeated integral of the error function.

Meanwhile, the particular integral for the ODE problem is given by:

F
(2)
pi = 2 erfc

(
η

2

)
− 1. (6.73)

Applying the boundary conditions yields A = −8 and B = 0, therefore:

U (2) = t

(
−8 i2 erfc

(
xin

2
√
t

)
+ 2 erfc

(
xin

2
√
t

)
− 1

)
, (6.74)

which gives the second order correction to the inner solution.

By gathering the zeroth, first and second order terms, an approximate solution accu-

rate up to O(q3
n) is therefore given by:

U = 1−iqn
√
t i1 erfc

(
xin

2
√
t

)
+q2

nt

(
−8 i2 erfc

(
xin

2
√
t

)
+ 2 erfc

(
xin

2
√
t

)
− 1

)
+O(q3

n). (6.75)

Note that the above series expression for U is always a function of the following two

variables: qn
√
t and xin/

√
t; this is again consistent with the fact that when the q-vector

is constant in time, the inner problem is self-similar under the variable transformation

described in (6.29).

As discussed previously, the existence of the inner boundary layer is due to mismatch

between the boundary condition and the far-field solution. The presence of the non-

conforming boundary condition propagates over time through the growing boundary layer,

and this phenomenon can be shown by considering the difference between the inter and

outer solutions:

U − U∞ = U − (1− q2
nt) +O(q3

n)

= −iqn
√
t i1 erfc

(
xin

2
√
t

)
+ q2

nt

(
−8 i2 erfc

(
xin

2
√
t

)
+ 2 erfc

(
xin

2
√
t

))
+O(q3

n).

(6.76)
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In terms of the width of the boundary layer, it can be seen that it is proportional to
√
t. Physically, this can be explained by the fact that information propagates spatially,

through diffusion processes, to a distance scaling as
√
t, so the presence of the boundary

condition causes the boundary layer to widen at a corresponding rate.

Considering the deficit between the inner and outer solutions over the boundary layer,

we can integrate the approximation for (U − U∞) over xin:

∫ ∞
0

(U − U∞)dxin = −iqnt+ 4
3
√
π
q2
n t

3/2 +O(q3
n). (6.77)

Then, including back the tangential component qt and multiplying the length scale rescal-

ing factor for the boundary layer:

ε
∫ ∞

0
(Sin − Sout)dxin = ε

(
1− q2

t t+O(q4)
)(
−iqnt+ 4

3
√
π
q2
n t

3/2 +O(q3)
)

= ε

(
−iqnt+ 4

3
√
π
q2
n t

3/2
)

+O(εq3). (6.78)

The eventual voxel-integrated signal is hence:

Svoxel =
∫

Ω
Sout dV +

∫
∂Ω
εe−

∫ t
0 q

2
t dτ

(
−iqnt+ 4

3
√
π
q2
n t

3/2
)

+O(εq3). (6.79)

6.3.3 Comparison between exact and series solutions

To compare the results derived using the two different methods, a series expansion in qn

can be performed to the exact solution for the signal deficit (6.40):

∫ ∞
0

(U − U∞)dx = −iqnt+ 4
3
√
π
q2
n t

3/2 + iq3
nt

2 − 16
15
√
π
q4
n t

5/2 + · · · , (6.80)

the first two terms of which are identical to the result of (6.77). This means the two

results are consistent with each other at the qn → 0 limit.

For larger qn values, the comparison between the series and exact solutions are shown

in Figure 6.4, which plots the time evolution of the total signal deficit. It can be clearly

seen that the series solution approximation is only good for small values of qn; when

q2
nDt = 0.2 the real and imaginary parts of the series solution are over-estimated by
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17.2% and 22.1% already. Meanwhile, for q2
nDt > 0.2, the two solutions diverge very

quickly. In fact, even though the exact solution is bounded and slowly decay to 0 at

infinity, the series solution grows infinitely over time. Therefore, care must be taken when

considering the validity of the series solution, depending on the magnitude of the key

parameter of q2
nDt.

Total signal de-cit over the boundary layer through time
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Figure 6.4: Comparison between the exact solution, derived using Laplace transform, and
the series solution to the inner problem for constant qn.

6.3.4 Numerical solution using a finite difference method

In this section, a numerical solution to the inner problem when qn is constant is presented.

The motivation for this is that although the Laplace transform method in Section 6.3.1

gives an analytical expression for the total deficit integrated over the boundary layer,

the spatial profile of the solution is difficult to obtain analytically. Meanwhile, the series

solution in Section 6.3.2 gives the spatial profile, but is only valid at the qn → 0 limit.

Therefore, in order to compute how the boundary layer evolves over time at qn = O(1),

the inner problem is solved numerically.

As explained above, regardless of the value of qn, the inner problem is self-similar

and reduces to a single problem in the variables of (qnxin, q
2
nt), as given by (6.30)–(6.33).
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For clarity of presentation, this set of normalised variables are denoted as (x, t) in this

section, and again we note that their relation to the dimensional quantities are (x, t) =

(qnx, q2
nDt)dim. To simplify the far-field condition, Equations (6.30)–(6.33) can be rewrit-

ten using the difference between U and the far-field solution, i.e. ∆U(x, t) = U−exp(−t):

∂∆U
∂t
− ∂2∆U

∂x2 + 2i∂∆U
∂x

+ ∆U = 0, (6.81)
∂∆U
∂x
− i∆U − i exp(−t) = 0 at x = 0, (6.82)

∆U → 0 at x→∞, (6.83)

∆U = 0 at t = 0. (6.84)

The spatial domain for the above equation is x ∈ [0,∞), with a far-field decay condition at

infinity. However, to implement the discretisation approximation using finite difference, it

is much more convenient to have a finite interval instead as the spatial domain. Therefore,

the far-field decay condition is replaced by a Dirichlet boundary condition at x = xmax,

which is justified as long as xmax is set to be far away enough from the non-zero behaviour

local to the x = 0 boundary. Since the boundary layer should widen at a diffusive rate of
√
t, for a time window t ∈ [0, tmax] in which the numerical solution is sought, the Dirichlet

boundary condition is justified if xmax/
√
tmax � 1.

The solution domain, given by (x, t) ∈ [0, xmax]× [0, tmax], can then be discretised into

(m+ 1)× (n+ 1) equally spaced grid points, with the grid spacing given by δx = xmax/m

and δt = tmax/n. We therefore seek to solve for ∆Uk
j at all (j, k) ∈ [0,m] × [0, n], which

approximates the value of ∆U(jδx, kδt) in the continuous solution. Using the backward

Euler scheme, which is unconditionally stable, the approximations to (6.81)–(6.84) are
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given by:

∆Uk
j −∆Uk−1

j

δt
−

∆Uk
j+1 − 2∆Uk

j + ∆Uk
j−1

δx2 + 2i
∆Uk

j+1 −∆Uk
j−1

2δx + ∆Uk
j = 0

for (j, k) ∈ [1,m− 1]× [1, n],

(6.85)

∆Uk
1 −∆Uk

0
δx

− i∆Uk
0 − i exp(−kδt) = 0 for k ∈ [1, n], (6.86)

∆Uk
m = 0 for k ∈ [0, n], (6.87)

∆U0
j = 0 for j ∈ [0,m]. (6.88)

The linear equations (6.85)–(6.88) can then be iteratively solved by incrementing the time

step k. At each time step (k ≥ 1), Equations (6.85) and (6.86) stipulate a matrix equation

in the following form:

A
[
∆Uk

0 · · · ∆Uk
m−1

]T
= b.

In particular, since most of the entries in the m×m matrix A are zero, the above matrix

equation can be solved efficiently using a sparse algorithm. In this implementation, the

in-built sparse functionality in MATLAB (ver. R2022a, Mathworks Inc) is used.

For this implementation, the chosen discretisation parameters and its resulting spatial

and temporal resolutions are listed in Table 6.1. The computed solution based on the

discretisation parameters of Set 1 is plotted in Figure 6.5, where the far-field solution is

added back on to show the evolution of U(x, t) over time, with the axes of the plot being

the relevant dimensionless groups of (qnx, q2
nDt) as explained in (6.26) and (6.27).

In terms of accuracy of the numerical solution, a comparison of the total deficit in-

tegrated over x with the analytical expression (6.40) is shown in Figure 6.6(a-b). It can

be seen that the two solutions agree very closely. The magnitude of the relative error for

Table 6.1: Discretisation parameters used for the finite difference method in (6.85)–(6.88).

Parameter xmax tmax m n δx δt xmax/
√
tmax

Set 1 50 10 5,000 5,000 0.01 0.002 15.81
Set 2 10 0.4 5,000 5,000 2e-3 8e-5 15.81
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Evolution of U(x; t) in the boundary layer, constant qn
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Figure 6.5: The evolution of the normalised signal U(x, t) near a boundary over time, when
the normal component of the q-vector (qn) is constant. Note that the spatial axis is clipped
to 20 for ease of visualisation, the numerical solution is computed with (qnx)max = 50.

each case is also computed and plotted in Figure 6.6(c). For the baseline grid spacing

(m,n) = (5000, 5000), the relative error is within 5% for t ≥ 0.05. However, for small

q2
nDt, the relative error is larger due to the small initial magnitude of ∆U . A grid refine-

ment test, where the number of grid points is doubled in the spatial and temporal axes

respectively, has also been performed for the discretisation parameters of Set 1. As shown

in Figure 6.6(c), the error is insensitive to the change in temporal resolution, but it is

halved when the spatial resolution is increased by a factor of two.

As we can see in Figure (6.5), the signal U(x, t) is perturbed from its far-field behaviour

near the boundary at x = 0. The perturbation, in the form of ripples, exist in both real

and imaginary components of the signal, and it spreads into the far field over time. The

region in which such perturbations are significant is the boundary layer. It can be seen

that the peak amplitude of the perturbation initially increases, but subsequently slowly

reduces as the ripples spread over space. The same trend can also be observed in the total

signal deficit integrated over space, as shown in Figure 6.6(a-b).

Meanwhile, to compare the numerical solution to the series solution in Section 6.3.2,

117



6.3 Solutions to inner problem for constant q-vector

0 1 2 3 4 5 6 7 8 9 10

q2nDt

0

0.1

0.2

0.3

0.4

0.5

R
e(

R 1 0
"

U
d
(q

n
x
))

(a) Real part of total de-cit, constant qn

Exact
(m,n) = (5000, 5000)

0 1 2 3 4 5 6 7 8 9 10

q2nDt

-0.5

-0.4

-0.3

-0.2

-0.1

0

Im
(R 1 0

"
U
d
(q

n
x
))

(b) Imaginary part of total de-cit, constant qn

Exact
(m,n) = (5000, 5000)

0 1 2 3 4 5 6 7 8 9 10

q2nDt

0

0.05

0.1

0.15

0.2

0.25

jE
rr
or

j/
jD
e-
ci
tj

(c) Relative error magnitude for backward Euler method

(m,n) = (5000, 5000)
(m,n) = (5000, 10000)
(m,n) = (10000, 5000)

Figure 6.6: Comparison of the total deficit
∫∞
0 ∆U d(qnx) between the numerical solution

(Parameters Set 1) and exact solution from Eq. (6.40). The magnitudes of relative error
are plotted for different grid spacings, with (m,n) being the number of grid points in
space and time respectively.

a second set of discretisation parameters (Set 2) is chosen to solve for smaller values of

q2
nDt. This set of parameters are chosen to improve the solution accuracy for such small

q2
nDt, with a higher spatial and temporal resolution but for smaller ranges of xmax = 10

and tmax = 0.4. The performance and relative error plots for Set 2 is shown in Figure 6.7.

The comparison between the time evolutions of the signal U(x, t) for q2
nDt ≤ 0.4,

derived using the numerical method and the series method, is plotted in Figure 6.8. As

we can see, at this time range the series solution does replicate the shape of the signal
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Figure 6.7: Comparison of the total deficit
∫∞
0 ∆U d(qnx) between the numerical solution

(Parameters Set 2) and exact solution from Eq. (6.40). The accuracy of the solution for
small q2

nDt is much improved by increasing resolution, albeit for a smaller range of xmax
and tmax.

profile, however the overestimation of the signal deficit gets progressively worse over time.

6.3.5 Summary and discussion

In this section, the solution to the inner boundary layer problem has been considered

for the constant q-vector case. This has been approached using three different methods,

using Laplace transforms, a small q-value series expansion, and by numerical solution

respectively. The results from all three methods have been shown to be consistent with
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Figure 6.8: Comparison of between the numerical solution (Parameters Set 2) and series
solution for q2

nDt ≤ 0.4.

each other, however each method has its own strengths and weaknesses. The Laplace

transform method gives an exact and analytic derivation for the total signal deficit over

the boundary layer, however it does not reveal the spatial profile of the boundary layer.

Meanwhile, the small q-value expansion yields an analytic expression for the boundary

layer signal as a function of both space and time, however it is valid only asymptotically

for small q-values. Finally, the numerical solution is the most versatile and describes the

spatial and temporal behaviour of the boundary layer at all q-values, however there may

not be an analytic expression to describe it.

Even though the constant q-vector condition corresponds to an unphysical assumption,

which is the phase of spins being modulated instantaneously by an infinitely strong but

short pulse of gradient field, the main reason for considering this case is to compare with

existing literature (see Chapter 2, Section 2.4.6). Existing literature has focussed on the

magnitude of the complex signal averaged over the entire voxel, whereas the derivations

in this section reveal both real and imaginary contributions to the complex signal. If the

imaginary parts are ignored, the results from the above derivations are consistent with

existing relations. For example, in the small q-value limit, the real part of expression
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6.4 Varying q-vector – rectangular gradient pulse

(6.79) is the same as reported in literature [43, 77, 87]. Meanwhile, for the O(1) q-value

case, the real part of (6.40) is also consistent with the relation derived using a Green’s

function methodology on the diffusion equation [40].

The significance of the additional imaginary part of the boundary layer contribution

is dependent on the image acquisition and formation process from the diffusion-modified

magnetisation signal. For each image acquisition, the resulting signal at each imaging

voxel can be expressed as a convolution between the underlying magnetisation signal and

an imaging kernel. So far in an analysis, the acquired image signal in the voxel has been

idealised as a uniform integration over the voxel volume, as described in Equations (6.25),

(6.79) and (6.40). Under these assumptions, it is shown that the imaginary part of the

expressions integrates constantly to zero. The same result applies when all spins encounter

a coherent phase shift when the signal is formed as well. However, in reality, the image

acquisition methods used for diffusion imaging, typically single-shot echo-planar imaging

(EPI), are susceptible to off-resonance artefacts caused by magnetic heterogeneities [104].

This leads to EPI images being distorted, blurred, or encountering phase shift due to such

effects [13]. Therefore, the convolution kernel for an imaging voxel is no longer a perfect

top-hat function, but instead is spatially varying and complex-valued. In this case, the

newly revealed imaginary part of the boundary layer solution will play a part and will

need to be considered in the modelling of image signals as well.

6.4 Varying q-vector – rectangular gradient pulse

As mentioned in the previous section, the constant q-vector model corresponds to an

unphysical assumption of instantaneous modulation of spins, as this requires an infinite

magnetic field strength. In reality, the finite pulse of gradient magnetic field occurs over

a considerable amount of time, causing the q-vector to ramp up and down instead.

Figure 6.9 shows the diagram of a diffusion-weighted spin-echo sequence with rect-

angular gradient pulses. For such pulse sequences, the modulating and demodulating
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Figure 6.9: Time profile of a DW-SE pulse sequence with rectangular gradient pulses, and
its associated q-vector profile.

gradient pulses are constant and have the same duration, hence the time profile of the

q-vector, being the time integral of the gradient strength, takes the form of a symmetric

trapezium. The timings of such pulse sequences are characterised by the pulse duration

and the spacing between them, also known as the mixing time. In clinical MRI literature,

the pulse and mixing durations are commonly notated as δ and ∆ respectively. However,

for clarity of presentation (as δ, ∆ denotes discretisation intervals and difference quantities

respectively), here we instead notate them as tp and tm, as labelled in Figure 6.9.

In this section, the effect of this time response of the q-vector to the short-time regime

is investigated through numerically solving the boundary layer inner problem with such

q-vector profiles.
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Figure 6.10: Time profiles for the gradient pulses, the normal component of q-vector, and
its contribution to the cumulative b-value. Nominal q-value = 1.0. Note the final b-value
(i.e. the nominal q-value), rather than the peak q-value, is set to be constant across the
profiles.

6.4.1 Numerical study definition

In this study, we consider the solution to the inner problem for the boundary layer for a

number of such q-vector profiles. In particular, we are interested in the effect of a non-

zero pulse duration tp given a fixed mixing time tm, and how the behaviour differs from

the constant q-vector case, which corresponds to tp = 0. The inner problem, in terms of
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6.4 Varying q-vector – rectangular gradient pulse

non-dimensional variables is defined by Equations (6.20)–(6.23), which is presented here

again for ease of reference:

∂U

∂t
−
(

∂

∂xin
− iqn

)(
∂

∂xin
− iqn

)
U = 0, (6.89)(

∂

∂xin
− iqn

)
U = 0 at xin = 0, (6.90)

U → exp
(
−
∫ t

0
q2
n dτ

)
at xin →∞, (6.91)

U = 1 at t = 0. (6.92)

The non-dimensional variables relate to dimensional quantities via the relations of (6.26)

and (6.27), normalising with respective to some characteristic quantities. For this prob-

lem, the time scale of interest is the mixing time tm, hence the associated characteristic

q-value is given by qc = (Dtm)−1/2. The normalised q-vector component normal to the

surface hence depends on the diffusivity and the orientation of the surface relative to the

q-vector. The numerical study therefore investigates the solution to the inner problem for

pulse profiles with a range of pulse durations (tp/tm = 0 to 0.95 at intervals of 0.5), at a

number of nominal q-values (qn,nom = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5 and 2.0).

As we can see in (6.91), the outer bulk signal is the exponential of −
∫ t

0 q
2
ndτ , which in

effect is the non-dimensional version of the b-value in the direction normal to the surface.

Therefore, when comparing between time profiles with different tp, rather than keeping

the q-vector constant, it is more relevant to fix the b-value, and hence the bulk far-field

signal. The time profiles for pulse sequences with a nominal q-value of qn = 1.0 are plotted

in Figure 6.10. As shown in the plots, the peak q-value increases slightly as tp increases,

so that the final b-value remains constant across the profiles.
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6.4 Varying q-vector – rectangular gradient pulse

6.4.2 Discretisation of inner problem

Similar to the constant q-vector case, the inner problem equations are re-written in terms

of the deficit variable ∆U = U−U∞, and then discretised using a backward Euler scheme:

∆Uk
j −∆Uk−1

j

δt
−

∆Uk
j+1 − 2∆Uk

j + ∆Uk
j−1

δx2 + 2iqkn
∆Uk

j+1 −∆Uk
j−1

2δx + (qkn)2∆Uk
j = 0

for (j, k) ∈ [1,m− 1]× [1, n],

(6.93)

∆Uk
1 −∆Uk

0
δx

− iqkn∆Uk
0 − iqknUk

∞ = 0 for k ∈ [1, n], (6.94)

∆Uk
m = 0 for k ∈ [0, n], (6.95)

∆U0
j = 0 for j ∈ [0,m]. (6.96)

In these equations, Uk
∞ = exp(−

∫ kδt
0 q2

ndτ) is the outer bulk signal sampled at the k-th

time step. These equations can again be solved by incrementing through the time steps

using a sparse matrix inversion algorithm at each time step. The discretisation parameters

used are listed in Table 6.2:

Table 6.2: Discretisation parameters used for the finite difference method in (6.93)–(6.96).

Parameter xmax tmax m n δx δt xmax/
√
tmax

Value 20 2.0 5,000 5,000 4e-3 4e-4 14.14

6.4.3 Results of numerical study

Figure 6.11 shows the dependence of the total signal deficit over the boundary layer on the

pulse duration at different nominal q-vector components normal to the boundary surface.

At all nominal q-values, the total signal deficit increases with the pulse duration. The

relationship between the signal deficit and tp/tm, however, is not perfectly linear. This

is expected due to qn being part of the differential operator in the differential equation

itself, leading to a non-linear dependence.
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Figure 6.11: Total signal deficit integrated through the boundary layer thickness for
different pulse durations and nominal q-vector components normal to boundary surface.
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Figure 6.12: Total boundary deficit normalised against the instantaneous pulse case for a
range of nominal normal q-values.
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6.5 Correcting for non-zero pulse duration

To compare with the instantaneous pulse (i.e. constant q-vector) case, the total bound-

ary signal deficit is normalised against the tp = 0 case and plotted in Figure 6.12. It

becomes apparent that the signal deficit in the boundary layer is quite sensitive to the

non-zero pulse duration. For a non-dimensionalised q-value of qn = 1.0, the real signal

deficit at tp = 0.3tm is already 9.9% higher than the tp = 0 case; this increases to 15.6%

at tp = 0.5tm, which is a substantial percentage. The imaginary part of the signal deficit

is also affected, with the value being 5.4% and 9.6% higher at tp = 0.3tm and tp = 0.5tm

respectively.

The strength of this effect from the non-zero pulse duration also has a dependence on

the q-value as well, particularly for the real part of the signal. As depicted in Figure 6.12,

the stronger the q-value, the more sensitive the signal deficit is to the pulse duration, and

the dependence is much more pronounced for the real part compared to the imaginary

part. For a normalised q-value of qn = 2.0, the signal deficit can be as much as 23.7%

and 35.3% higher at tp = 0.3tm and tp = 0.5tm respectively. It is also noted that the

non-linearity also increases as q-value increases; for a non-dimensionalised qn of up to 1.2

the deficit-pulse duration relation is still more or less linear, however the concavity of the

curve becomes remarkably pronounced for higher qn. This means that if the normalised

q-value stays within a reasonable range, the relation between the signal deficit and pulse

duration can be reasonably approximated by a linear relationship, leading to a possible

two-point extrapolation correction method. The details of such a correction method will

be discussed in the next section.

6.5 Correcting for non-zero pulse duration

In the previous section, the effect of time-varying q-vector profiles, which is an inevitable

consequence of the limited gradient strength available from hardware construction, to the

boundary layer signal deficit has been analysed. However, much of the existing literature,

either on the biophysical modelling of tissue under diffusion MRI, or models and algo-
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6.5 Correcting for non-zero pulse duration

rithms to infer medium properties from image signals, is based on the constant q-vector

assumption. A natural question therefore arises: is it possible to correct for the effect of

an unphysical assumption of a constant q-vector, i.e. tp = 0, such that we can estimate

the hypothetical image signal from an imagined diffusion MRI using an unphysical con-

stant q-vector? If such a method or protocol can be found, then it would extend the range

of physical diffusion MRI experiments which could be analysed using existing modelling

methods found in the literature, in particular ones where tp is comparable to tm when the

diffusion time is short, for example z[5, 47].

6.5.1 Concept of two-point extrapolation correction

The results from the numerical study, presented in Section 6.4.3, have shown that the

relation between the signal deficit and pulse duration is roughly linear, as long as the

non-dimensional q-vector (normal component) is not too large. Although the gradients

of these linear relationships depend on the exact parameter of qn, the fact that it is linear

presents an opportunity of extrapolating between two sample points, and hence estimating

the voxel signal if the modulation and demodulation had happened instantly. If we recall

the expression for the voxel-integrated image signal, it is given by:

Svoxel = M0

∫
Ω

exp
(
−D

∫ t∗

0
|q∗|2 dτ

)
dV

+M0

∫
∂Ω

√
Dtm exp

(
−D sin2 θ

∫ t∗

0
|q∗|2dτ

)(∫ ∞
0

(U − U∞)dxin

)
dA, (6.97)

where θ is the angle between the q-vector and the normal of the surface element dA. If

the time profiles of the q-vector are chosen to have different pulse durations but conserve

the final b-value b∗, as shown previously in Figure 6.10, then the
∫ t∗

0 |q∗|2dτ terms can

simply be replaced by the fixed quantity b∗ of the pulse sequence. Meanwhile, the signal

contribution from the boundary layer term, as shown in the analysis in the previous

section, is dependent on the nominal q-vector normal component (qn,nom) and the pulse

duration (tp). This relationship can be approximated by a linear model, in which the
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6.5 Correcting for non-zero pulse duration

slope and intercepts are functions of the nominal q-vector normal component:

∫ ∞
0

(U − U∞)dxin = F (qn,nom, tp) ≈ m(qn,nom)tp + c(qn,nom), (6.98)

where qn,nom =
√
Dtm|q∗nom| cos θ =

√
b∗D cos θ. Due to the linearity of integration over

the boundary surface dA, a linear model can hence be assembled for the dependence of

the voxel-integrated image signal on the pulse duration:

Svoxel ≈Mtp + C, (6.99)

where:

M = M0

∫
∂Ω

√
Dtm exp

(
−b∗D sin2 θ

)
m(qn,nom)dA, (6.100)

C = M0

∫
Ω

exp (−b∗D) dV +M0

∫
∂Ω

√
Dtm exp

(
−b∗D sin2 θ

)
c(qn,nom)dA. (6.101)

In the above expressions, it can be seen that the slope and intercept for the linear voxel

signal model depends on the b-value of the sequence, the diffusivity of the medium, as well

as the geometry of the boundary surface ∂Ω due to the integration of θ-dependent terms.

In practice, the exact diffusivity and microstructure geometry of the imaged medium is

unknown, hence it is not possible to deduce the values of M and C through modelling

alone. Nevertheless, the linear model allows an easy empirical characterisation. As long

as the mixing duration tm and the b-value are held constant, by measuring the value of

Svoxel at two different pulse durations, the above linear model can be applied. The signal

model can then be extrapolated to the tp = 0 point to provide an estimation for the signal

in this unphysical scenario.

6.5.2 Graphical interpretation of two-point extrapolation

Figure 6.13 shows a graphical interpretation of the two-point extrapolation method. In

the plots, the horizontal axis is the ratio between the pulse and mixing durations, whereas

the vertical axis is the boundary layer signal deficit normalised against the tp = 0 case.

The family of curves in dotted lines show the relation between the signal and the pulse
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6.5 Correcting for non-zero pulse duration

2-point extrapolation method, tp=tm = [0:3; 0:6]
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Figure 6.13: Example of a two-point extrapolation to estimate signal deficit with constant
q-vector, using two finite pulses with different durations. Dotted lines: boundary layer
model results; solid lines: linear extrapolation model.

duration, which depends on the dimensionless number of the nominal normal q-value:

qn,nom = q∗n,nom

√
Dtm = |q∗nom|

√
Dtm cos θ =

√
b∗D cos θ. (6.102)

In an actual imaging voxel, the boundary layer signal deficit at each surface element dA on

the boundary surface ∂Ω is represented by an instance from the family of dotted curves,

depending on the local value of qn,nom. Graphically, the extrapolation method is hence

the estimation of each of these curves with a straight line, so that rather than integrating

instances of the curves, instances of linear relations are integrated instead over all surface

elements to get the voxel image signal. As an example, the extrapolation is performed

from the two points of tp = 0.3 tm and tp = 0.6 tm in Figure 6.13. The estimation of the

tp = 0 signal, which should be 1 on the graph, is therefore given by the y-intercept of the

respective straight lines joined from the two extrapolation points.

130



6.6 Varying q-vector – irregular gradient pulses

6.5.3 Accuracy of the two-point extrapolation method

In terms of using the two-point extrapolation method in practice, one of the practical

considerations is the accuracy of such estimation. As we can see in Figure 6.13, the y-

intercepts of the extrapolation lines do not coincide unity exactly, with the error coming

from the non-linearity of the signal-tp relations themselves. The non-linearity is dependent

on the nominal non-dimensional qn, which in turn is dependent on not only the geometric

orientation of the surface element dA in question, but also the physical quantities of the

unknown diffusion coefficient D relative to the parameters q and tm used for the imaging

experiment (see Eq. 6.102). The relative extrapolation error for the example in Section

6.5.2 is plotted against the nominal non-dimensional qn in Figure 6.14. For the real part

of the signal deficit, it can be seen that the extrapolation error increases substantially at

higher values of qn, whereas the imaginary part is affected much less.

In general, for an imaging voxel, since the boundary surface contains surface elements

of different angles, the overall extrapolation error after the surface integration will be

somewhere between zero and the maximum value of q∗n,nom
√
Dtm in the medium. A

conservative estimation of the extrapolation error can therefore be evaluated by assuming

the worst case for all surface elements, which is when the surface normal is aligned with

the q-vector, and using a conservative overestimation of the expected diffusivity D in the

medium.

6.6 Varying q-vector – irregular gradient pulses

So far in the previous section, only gradient pulses with a rectangular shape have been

considered in the boundary layer calculations. However, in reality due to hardware limi-

tations, it is not possible to switch on or off the gradient magnetic field instantaneously,

as the rate of change of the gradient field strength is limited by a maximum slew rate

[122]. More generally, the gradient pulse lobe can have an irregular shape instead, for

example to account for practical considerations such as minimising eddy currents [100].
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6.6 Varying q-vector – irregular gradient pulses

Performance of 2-point extrapolation method, tp=tm = [0:3; 0:6]
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Figure 6.14: Relative extrapolation error at different q-vectors, using tp/tm = 0.3 and 0.6.

In this section, the effect of more irregular gradient pulse shapes on the boundary layer

calculations is investigated through further numerical studies.

6.6.1 Aim and definition of numerical studies

Similar to the previous section, the aim of the numerical studies is to characterise the

effect of irregular gradient pulse shapes, and to evaluate the possibility of approximating

them with equivalent models using simpler pulse shapes with known calculations. The

following numerical studies therefore investigate the following hypothesis: given a certain

irregular gradient pulse shape, is it possible to relate the boundary layer calculations to

an equivalent rectangular pulse? In particular, since in the imaged medium, the boundary

surface orients at an unknown distribution of angles relative to the applied q-vector, thus

leading to a distribution of nominal qn values too. Therefore, it is essential that such an

equivalent rectangular pulse timing is consistent across all nominal qn values.

In the following numerical studies, four different gradient pulse shapes are used, as

shown in Figure 6.15. For these gradient profiles, the pulse and mixing durations are

defined in the same manner as the rectangular pulse profiles in the previous section. In
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6.6 Varying q-vector – irregular gradient pulses

terms of symmetry, the half-wave sinusoidal pulse and triangular pulse are symmetric

themselves, therefore there is always also a symmetry between the modulating and de-

modulating pulses. Meanwhile, the quarter-wave pulse is not symmetric, therefore the

translation and reflection cases for the demodulating pulse are different and are consid-

ered separately. Similar to the previous numerical study, in order to keep the far-field bulk

signal constant over the different cases, the final b-values of the profiles are held constant

across the four different pulse profiles, based on the nominal q-value if the q-vector is

constant for the same b-value. This thus leads to a slightly higher actual peak q-value,

compared to the nominal q-value.

For each of the pulse shapes, four different pulse durations (tp/tm = [0.2, 0.4, 0.6, 0.8])

are considered at the nominal q-values of qn,nom = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 2.0]. In

terms of the implementation of the numerical algorithm, the same equations (6.93)–(6.96)

and discretisation parameters (Table 6.2) as defined for rectangular pulses are used.

6.6.2 Results of numerical studies

In order to evaluate the possibility of finding an equivalent rectangular pulse to approx-

imate the signal from an irregular pulse, the total signal deficit over the boundary layer

after the whole irregular pulse sequence is evaluated and compared against the curves

in Figure 6.11, which show the signal deficit for rectangular pulses at different pulse du-

rations. This set of curves can then be used for interpolation to deduce an equivalent

rectangular pulse duration, given a certain nominal q-value.

The interpolation results for the half-wave and triangular pulses are shown in Figure

6.16. It can be seen that for both shapes of gradient pulses, there are consistent sets of

equivalent rectangular pulse durations, regardless of the nominal normal q-value. Mean-

while, for the interpolation results for the quarter-wave pulses (Figure 6.17), consistent

sets of equivalent rectangular pulse durations could not be found in either of the trans-

lation or reflection cases. An interesting observation is that the inconsistencies over the

nominal q-value mainly appear in the imaginary part for the translated demodulation
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Figure 6.15: The four non-rectangular gradient pulse profiles considered in the numerical
study, shown here with parameters tp/tm = 0.6 and qn,nom = 1.0. Note the final b-value
(i.e. the nominal q-value), rather than the peak q-value, is set to be constant across the
profiles.

case, whereas for the reflected demodulation case they appear in the real part instead.

These interpolation results seem to suggest that the condition for an equivalent rectan-

gular pulse is that the demodulation pulse needs to be simultaneously a translation and

a reflection of the modulation pulse, in other words the pulses need to be symmetric

themselves.

For the symmetric pulses, an additional observation is that the equivalent rectangular
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6.6 Varying q-vector – irregular gradient pulses

Interpolation results for half-wave pulses with respect to rectangular pulses
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Interpolation results for triangular pulses with respect to rectangular pulses
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Figure 6.16: Total signal deficit over boundary layer plotted against normalised pulse
duration for rectangular pulses, with results from half-wave (top) and triangular (bottom)
pulses interpolated onto the curves. Note the equivalent pulse durations are associated
to scaling factors of 0.75 and 0.7 for the two cases respectively.
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Interpolation results for quarter-wave pulses (translated) with respect to rectangular pulses
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Interpolation results for quarter-wave pulses (re.ected) with respect to rectangular pulses
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Figure 6.17: Total signal deficit over boundary layer plotted against normalised pulse
duration for rectangular pulses, with results from quarter-wave pulses (top: translated
demodulation, bottom: reflected demodulation) interpolated onto the curves.
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Figure 6.18: Comparison between three equivalent pulse profiles that produce approxi-
mately the same signal from the boundary layer model.

pulse durations can be described by an approximate scaling factor of about t′p = 0.75tp

for the half-wave pulses, and t′p = 0.7tp for the triangular pulse. In order to examine

the possible origin of such scaling factors, a comparison of the equivalent half-wave and

triangular pulse profiles for a particular rectangular pulse is shown in Figure 6.18. The key

common characteristics between these profiles are that they share the same peak q-value

as well as the final b-value. In fact, it can be shown that for a given pulse shape, these

two conditions uniquely define the pulse amplitude and duration required to obtain the
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6.6 Varying q-vector – irregular gradient pulses

equivalent pulse. For example, the half-wave sinusoidal pulse profiles can be parametrised

by the amplitude A and pulse duration tp as:

|γg(t)| =



A sin(πt/tp), 0 ≤ t < tp

−A sin(π(t− tm)/tp), tm ≤ t < tm + tp,

0, otherwise.

The associated peak q-value and final b-value for this profile are given by:

qmax =
∫ tp

0
|γg(t)|dt = 2

π
Atp,

bfinal =
∫ tm+tp

0

(∫ t

0
|γg(τ)|dτ

)2
dt =

( 2
π
Atp

)2 (
tm −

tp
4

)
.

Meanwhile in a similar fashion, for a rectangular pulse with amplitude A′ and pulse

duration t′p, these two quantities are:

qmax = A′t′p,

bfinal = (A′t′p)2
(
tm −

t′p
3

)
.

By equating the two sets of expressions, one can then deduce that the equivalent rectan-

gular pulse parameters are given by:

t′p = 3
4tp, A

′ = 8
3πA.

Similarly, for the triangular pulse profile, the peak q-value and final b-value are:

qmax = Atp
2 ,

bfinal =
(
Atp
2

)2 (
tm −

7
30tp

)
,

which leads to the equivalent parameters:

t′p = 7
10tp, A

′ = 5
7A.

These relations therefore suggest that the consistent linear scaling for equivalent rectan-
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6.6 Varying q-vector – irregular gradient pulses

gular pulses may relate to the conditions of holding the peak q-vale and final b-value over

the pulse sequence constant. However, these criteria for deducing the equivalent rectan-

gular pulses are only empirical findings from the interpolation studies. This means that

they are only approximate, and may not apply to all general pulse shapes or profiles. In

reality, due to the way the qn terms appear in the differential operator of the PDE prob-

lem, one might expect the dependence of the solution on the parameters of the q-vector

profile to be non-trivial, nevertheless the empirical findings in this section might provide

some insight to how an approximate equivalent model may be deduced with a simple

pen-and-paper calculation, without the need of the full solution of the PDE problem.

6.6.3 Extending to multiple pairs of modulation-demodulation

pulses

So far, in the numerical studies only single pairs of modulation-demodulation pulses have

been considered. However, in some DW-SE experiments, multiple lobes of modulation or

demodulation pulses may be chosen due to various considerations. Therefore, in this sec-

tion, two additional pulse sequences are considered, where the modulation-demodulation

pulses each consist of two lobes rather than one lobe. The profiles of the pulse sequences

are shown in Figure 6.19, and are chosen such that they satisfy the symmetry condition

discovered above. The purpose of simulating these two pulse sequences is to test if the

empirical findings from the previous section also apply to more general cases.

Similar to the other irregular pulse profiles, the simulation results for the two multiple-

lobed sequences are interpolated onto the rectangular pulse data curves, resulting in the

plots in Figure 6.20. According to the empirical findings in the previous section, if the

same criteria of fixing the maximum q-value and final b-value constant are used to deduce

an equivalent rectangular pulse duration, the expected effective pulse durations for the

two pulse sequences should scale respectively as:

t′p = 15
16tp (sequence 1), and t′p =

( 6
π
− 3

4

)
tp (sequence 2).
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6.6 Varying q-vector – irregular gradient pulses

These two expected scaling factors are plotted as black dotted lines in Figure 6.20 as well.

These plots show that the empirical findings from the section above still largely apply to

these two more complicated pulse profiles, albeit with a decreased accuracy. In particular,

the performance worsens at longer pulse durations, and at higher nominal q-values in the

normal direction to the surface. The discrepancy between the empirical model and the

numerical results also appear mainly in the real part, rather than the imaginary part, of

the signal solution. Pulse sequence 1 also performs significantly better than pulse sequence

2, in terms of being in line with the empirical model; this could be because the shape of

pulse sequence 1 is less irregular itself and resembles the rectangular pulses more.
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Figure 6.19: Two pulse sequences with two pairs of modulation-demodulation gradient
pulses, and its associate q-vector profile.
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Interpolation results for two-lobed pulse sequence 1 with respect to rectangular pulses
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Interpolation results for two-lobed sequence 2 with respect to rectangular pulses
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Figure 6.20: Total signal deficit over boundary layer for two-lobed sequences defined
in Figure 6.19, interpolated onto results for rectangular pulses. Blacked dotted lines:
expected equivalent rectangular pulse durations based on findings from previous section.
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6.6.4 Discussion

In this section, the effect of gradient pulse profiles which are irregular in shape, rather

than just being rectangular, has been considered in the boundary layer calculations. A

number of different irregular profiles have been used to numerically solve for the boundary

layer signal. The results are then interpolated back onto the signal-pulse duration curves

for rectangular pulses, in an attempt to find equivalent rectangular pulses that would

result in the same signal, no matter what the nominal q-value is.

The empirical findings from the numerical studies seem to suggest that as long as both

the modulation and demodulation pulses are symmetric themselves, then an approximate

equivalent rectangular pulse does exist. The parameters of this equivalent rectangular

pulse may also be found by equating maximum q-value and final b-value for these two

pulse profiles. This empirical relation was also tested on pulse sequences which contain

multiple pairs of modulation-demodulation pulses, and it still seems to apply, albeit with

slightly poorer accuracy. In particular, it seem to diverge more from the actual solution at

higher q-values and at longer pulse durations, as well as if the shape of the pulse becomes

more irregular and diverges more from a simple rectangular shape.

6.7 Conclusion and implication of results

To conclude this chapter, the behaviour of DW-SE in the short-time regime has been in-

vestigated by the asymptotic analysis of the Bloch-Torrey equation. Under this particular

scale separation between the time scale of the pulse sequence and the characteristic time

needed for diffusion over the microstructure length scale, DW-SE can be described by a

boundary layer model. For the bulk of the signal away from the boundary surfaces, the

signal decays as if there are no diffusion barriers; meanwhile in the close vicinity to the

boundary surface, the signal can be characterised by an inner PDE problem. The contri-

bution of the tangential component of the q-vector can be further factored away, reducing

the inner problems into a single family of problems (6.20)–(6.23), which are of one spatial
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and one time variable, parametrised only by the normal component of the q-vector locally

at the boundary surface element. The boundary condition, which represents the diffusion

barrier in physical terms, thus causes a deficit in signal decay which can be deduced by

solving the inner problem. The overall signal observed over a voxel is thus an integration

of such decay deficit over all boundary surface elements within the voxel.

When the q-vector is constant, the family of inner problems in fact is self-similar and

can be reduced to a single problem by a rescaling of variables. Effectively, the boundary

layer behaviour depends solely on the values of the two non-dimensional groups of qnx

and q2
nDt, which essentially are the relevant rescaled spatial and temporal variables. The

inner problem is then solved using three different methods in Section 6.3, namely a Laplace

transform method, a series expansion method and a finite difference method. The Laplace

transform method yields an analytic expression for the total signal decay deficit over the

boundary layer, meanwhile the series expansion method resolves the spatial profile of the

boundary layer signal evolving over time, albeit at the small q limit. The finite difference

method shows both the spatial and time profile of the boundary layer signal, although only

in a numerical sense rather than as an analytic expression. The results of the analysis all

agree with existing literature, and more importantly reveal an imaginary part contribution

that has been ignored in literature so far. If the subsequent image formation protocol of

the DW-SE experiment is perfect, in the sense that the all spins experience a coherent

phase shift before being integrated to give the final voxel image signal value, then the

imaginary part indeed integrates to zero. However if this is not the case the imaginary

part will have a contribution of comparable magnitude to the real part.

In a realistic DW-SE experiment, unfortunately the constant q-vector assumption is

not physical, as the strength of the gradient pulse has to be finite. Therefore, the profile

of the q-vector varies over time. The effect of this on the boundary layer model has

been investigated by using such time profiles when applying the finite difference scheme

to numerically solve the inner problem. In Section 6.4, the simpler case of the gradient

pulses being rectangular is studied. In this case, given a nominal q-value, the pulse is
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characterised only by the pulse duration tp relative to the spacing between the pulses tm,

also known as the mixing duration. Whilst keeping the integral
∫ t

0 q
2
nDdτ , in other words

the b-value contribution from the normal component, constant over the different profiles,

it is found that the boundary layer signal deficit increases approximately linearly with the

pulse duration. Although it means that if a constant q-vector model is naively applied

it will not be accurate, the approximately linear relationship does allow for a two-point

extrapolation method proposed in Section 6.5. This extrapolation method estimates a

hypothetical, unphysical image signal for a constant q-vector case, based on two physical

measurements at two different pulse durations.

In Section 6.6, the above analysis is extended from rectangular pulses to more general,

irregular gradient pulse profiles. It is found empirically from these numerical results that

if the shape of the gradient pulse is symmetric, then there exists an equivalent rectangular

pulse across that would lead to approximately the same boundary layer signal deficit across

different qn values. This is a particularly useful property, as in an imaged medium the

boundary surface orientates in a distribution of angles relative to the q-vector, hence the

normal components of the q-vectors vary depending on the local orientation. A coherent

equivalent pulse duration means that even after integrating the signal deficits over an

unknown distribution of angles, the equivalency is still valid. However, for asymmetric

pulse shapes, such a consistent equivalent timing does not exist. Furthermore, for the

symmetric pulses, it is found that the equivalent pulse timing can be reliably deduced by

equating the maximum q-value and final b-value between the equivalent pulses. These

two simple relations thus allow the equivalent timings to be deduced by a simple pen-

and-paper calculation, without the need of any numerical simulation.

In practical terms, the above findings can be useful in allowing for a better way to

design DW-SE experiments and analysing the data. In particular, even though the ma-

jority of DW-SE modelling in the literature involve the unphysical and often inaccurate

assumption of a constant q-vector, these models are not rendered useless, as the hypothet-

ical corresponding signal can be estimated from measurements using two different DW-SE

144



6.7 Conclusion and implication of results

pulse sequences and performing the extrapolation, as long as the gradient pulses used are

symmetric. The proposed pipeline is as follows: imagine if we are interested in a hypo-

thetical signal when an unknown medium is imaged at a certain constant q-vector. The

hardware limitations, such as the maximum gradient strength and slew rates, may mean

that there are certain restrictions on possible shapes of the gradient pulses. Nevertheless,

as long as two different symmetric pulse profiles with the same final b-value are used, their

respective image signal measurements can be related to an equivalent rectangular pulse

using the relations described in Section 6.6. Subsequently, the two-point extrapolation

method can be performed using these two equivalent rectangular pulse timings to deduce

the hypothetical image signal. The result will be a better estimation of what would be the

image signal, compared to naively using either image signal measurement and applying

the constant q-vector assumption straight away. The hypothetical image signal can then

serve as a better input to existing models, so that the subsequent analysis can lead to

inferred medium properties with higher fidelity.
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Chapter 7

Numerical simulation of DW-SE for

the intermediate-time regime

7.1 Introduction

In this chapter, the intermediate-time regime of DW-SE is considered. Previously in

Chapters 5 and 6, two asymptotic models for diffusion MRI in porous media have been

derived for the long and short time regimes of DW-SE respectively. However, as all the

terms in the Bloch-Torrey equation are balanced in magnitude in the intermediate-time

regime, there is no scale separation to allow for asymptotic analysis. Therefore, numerical

solution of the full equation is sought instead. A finite element method will be applied

to solve the Bloch-Torrey equation over two simple model geometries of white matter, as

well as a realistic microstructure derived from microscopy data.

In order to evaluate the behaviour of DW-SE in the regime bridging the two asymptotic

models, simulations using constant q-vectors will firstly be considered. Although they

correspond to unphysical assumptions, they simplify the definition of simulation cases

and allow for easier comparison. Subsequently, the effects of time-varying q-vectors due

to realistic gradient pulses will be simulated, with an aim to validate and extend the

correction methods proposed previously in Chapter 6 for the boundary layer regime.
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7.2 Finite element formulation

7.2 Finite element formulation

In this section, the finite element formulation for the Bloch-Torrey equation is described.

As per the previous chapters, we start with the co-rotating, co-decaying form of the

Bloch-Torrey equation:

∂S

∂t
+ (∇− iq) · (−D(∇− iq)S) = 0 in Ω, (7.1)

n · (−D(∇− iq)S) = 0 on ∂Ω, (7.2)

S = M0 at t = 0. (7.3)

The co-rotating, co-decaying formulation provides two major advantages over the orig-

inal equation in terms of implementing the finite element method. The first one relates

to the periodic nature of the domain, in the sense that the transformed variable S is

also periodic given periodic initial conditions. Whereas in the original formulation, the

applied magnetic field Bz contains a component which varies linearly in space, leading

to some kind of jump conditions required to bridge the opposite sides of a periodic cell.

It is therefore much simpler to consider the co-rotating, co-decaying form, as one simply

needs to pose the equation over a periodic domain and enforce a simple periodic boundary

condition to obtain the solution.

The second advantage is the spatial resolution of the mesh needed to resolve the

solution, particularly at high q-values. The original Bloch-Torrey formulation uses a

stationary frame of reference for phase, so the modulation of spins leads to a spatially fast-

varying signal. Hence, the mesh needs to be even finer than the modulation wavelength to

spatially resolve the solution. Meanwhile, the modulation behaviour is already accounted

for in the co-rotating formulation and encapsulated in the q-vector, so the mesh only needs

to resolve the regions where there are significant spatial variations in the co-rotating signal,

i.e. in the boundary layer for high q-values. This thus greatly reduces the computational

expense of the finite element implementation.
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7.2 Finite element formulation

The first step of discretising the parabolic problem is to use a backward Euler scheme

to discretise the time variable. This involves approximating the time derivative at a given

time step k with the finite difference between the k-th and (k − 1)-th time steps:

Sk − Sk−1

δt
+ (∇− iqk) ·

(
−D(∇− iqk)Sk

)
= 0 in Ω, (7.4)

n ·
(
−D(∇− iqk)Sk

)
= 0 on ∂Ω, (7.5)

S0 = M0. (7.6)

Here the superscript k denotes the sampling of a time-varying quantity at the k-th time

step, and δt is the duration of each time step. This leads to an elliptic problem for Sk at

each time step k, with the solution at the previous time step Sk−1 appearing in a source

term in the problem.

At each time step, the elliptic problem can then be solved numerically using a finite

element method, similar to that described previously in Section 5.4. Firstly, the variational

formulation of the problem can be obtained by multiplying any test function to (7.4)

and integrating by parts using the boundary condition (7.5). The equivalent variational

problem of (7.4)–(7.5) is therefore to solve for Sk ∈ H1
per(Ω) such that:

∫
Ω

(
D∇Sk · ∇v̄ + iqk ·D∇Skv̄ − iDqkSk · ∇v̄ +

(
qk ·Dqk + 1

δt

)
Skv̄

)
dx

=
∫

Ω

1
δt
Sk−1v̄ dx, ∀v ∈ H1

per(Ω). (7.7)

Since the PDE is a complex-valued problem, the function space H1
per(Ω), for both the

solution and the test function, is the space of complex periodic functions over the periodic

domain Ω with square-integrable first derivatives, with the cursive notation differentiat-

ing it from the real function space H1
per(Ω). The continuous domain Ω can then be ap-

proximated by a discrete mesh Ωmesh, which leads to a finite-dimensional function space

H1
per(Ωmesh) over which the same variational problem can be posed, resulting to a discrete

linear problem that can be solved numerically.
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7.3 Transitional region between asymptotic regimes

Similar to the numerical solution of the cell problem in Chapter 5, in this chapter the

open-source FEniCS package [71] is used to implement the finite method. The choice of

FEniCS is to be in line with scientific reproducibility principles through reusable codes,

as well as to take advantage of its capability for bespoke variational problems.

7.3 Transitional region between asymptotic regimes

7.3.1 Overview of numerical simulations

In this section, the numerical simulations concern the case when the q-vector is constant

over time. As explained previously in Chapter 6, this corresponds to the unphysical

assumption of instantaneous modulation of spins. Nevertheless, this assumption reduces

the number of parameters needed to define a simulation scenario, allowing for simpler and

fewer simulations as well as easier comparison and analysis of the results. In particular,

the main objective of the numerical studies in this section is to investigate the transition

behaviour between the long-time and short-time asymptotic regimes; the effects of time-

varying q-vectors due to realistic gradient pulses will be considered later in Section 7.4.

The numerical simulations are performed at a range of q-values over several orders of

magnitude, either side of the region corresponding to the characteristic geometric scales.

Similar to the regimes considered in Chapters 5 and 6, we are interested in the region

of O(1) signal and contrast, which corresponds to the |q|2Dt = O(1) diagonal strip in

the q-t parameter space. For each q-value used, the maximum simulation time is set

to correspond to |q|2Dt = 3. This value is chosen as it corresponds to a b-value of

b = |q|2t = 1000 s mm-2 if D = 3.0× 10−9 m2 s-1, which are typical values for DW-SE

imaging of water at 37 °C. 1 Moreover, since the q-vector is constant throughout the

simulation, the results for any shorter times can be obtained simply by looking at the

corresponding time step in the simulation, hence only one run per q-value is needed to
1Note that this typical value of diffusion coefficient is for a homogeneous sample of water, in biological

imaging the effective diffusion coefficient will be lower with the existence of diffusion barriers.
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7.3 Transitional region between asymptotic regimes

cover a range of times in the |q|2Dt ∼ 1 strip.

7.3.2 Domain geometries

In the numerical simulations, the geometries are assumed to be uniform and infinite in

the longitudinal direction, whereas in the transverse directions they are periodic in both

x- and y-directions. These are reasonable assumptions as axons in white matter are usu-

ally in the form of a long bundle of fibres. These are also necessary assumptions for

the numerical implementation, both because of limited availability of data (only a small

2D cross-sectional slice is available) and to reduce computational expense. Under these

assumptions, the problem reduces to only two spatial dimensions, and it only needs to

be posed over a two-dimensional periodic unit cell, with periodic conditions enforced on

respective edges. This is because the behaviour in the longitudinal direction is homoge-

neous and does not couple into the transverse directions. Even if the applied q-vector

contains any longitudinal component, its effect is simply a multiplication of exp(−q2
zDt)

to the signal which can be factored out. Hence, in the simulations, the equations are

solved over the cross-sectional periodic cells of the geometries, and only q-vectors applied

along a direction in the transverse plane are considered.

Three different geometries are considered in this section. The first two are simplified

models of axons in white matter, consisting of periodic cylindrical inclusions. There are

two reasons for using these simple models, one is to test the codes with simpler meshes, the

other is to provide easier insight to the solution behaviour. The cross-sectional periodic

unit cells of the geometries are shown in Figure 7.1. Geometry A, which consists of a grid

of cylinders with spacing d between the centres and radii of 0.25d, is the same as that used

in Chapter 5, Section 5.4.3. The slightly more complicated Geometry B also has a d× d

periodic unit cell, but each cell contains three cylinders of different sizes. The cylindrical

surfaces in both geometries are modelled as no-flux boundaries, separating each geometry

into interior and exterior compartments.

A third geometry based on realistic white matter microstructure is then considered,
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7.3 Transitional region between asymptotic regimes

R = 0.25

O:(0.5, 0.5)

R1 = 0.25

O1:(0.3, 0.3)

R3 = 0.2

O3:(0.75 , 0.45)

R2 = 0.15

O2: (0.45, 0.7)

Geometry A Geometry B

Figure 7.1: Periodic unit cells of the two test geometries. The dimensions are normalised
relative to the periodicity length, which is d in both horizontal (x-) and vertical (y-)
directions. The centres of circles are relative to the bottom-left corner.

as shown in Figure 7.2. It is one of the meshes used in Chapter 5, Section 5.5, which

are derived from the transmission microscopy data of mouse white matter collected by

Xu et al. [121]. The periodic domain consists of three compartments, namely the extra-

axonal space, the myelin sheath and the intra-axonal space. In the simulations, only

the extra-axonal and intra-axonal spaces are considered, with the myelin sheath being

modelled as no-flux barriers between the two compartments. This is because the myelin

sheath consists mainly of layers of lipid, and the image signal from the myelin sheath

compartment is often nulled with the use of fat-suppression imaging techniques. The

domain is augmented by appending mirror images of the image sample, so that periodic

boundary conditions can be enforced to the opposite edges of the domain. For the detailed

description of the meshing method and parameters, please see Appendix A.

7.3.3 Definition of simulation parameters

In all simulations, the diffusion coefficient D of the medium is assumed to be constant

and uniform. As mentioned above, the maximum time for each simulation is set to be

tmax = 3(|q|2D)−1 respectively, and the number of time steps used is 1500. The initial

condition is assumed to be uniform as well, without loss of generality this is set to be one.
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7.3 Transitional region between asymptotic regimes

(a) Location of sample in TEM image (b) Periodic domain

Figure 7.2: Realistic microstructure geometry based on transmission electron microscopy
data. A 7.1 µm ×7.1 µm (1000 px ×1000 px) sample has been cropped from the mi-
croscopy image (a), and then augmented to form the periodic domain (b).

All simulations are implemented in terms of non-dimensional quantities, as this allows

the results to be easily scaled for any geometric length scale d and diffusivity D. Hence,

the results are generally presented in non-dimensional axes as well, with the relevant

non-dimensionalisation labelled on the axes.

For the first two simple geometries, 17 q-values in the range from 0.2d to 100d at

roughly equal intervals on the log axis are considered, where d is the periodicity length.

Meanwhile, for the realistic microstructure, 19 q-values in the range from 1.41× 105 to

1.41× 108 m-1 at roughly equal logarithmic intervals are used. In order to investigate

the angular dependence on the q-vector, for the exterior compartment of Geometry A,

q-vectors are applied at 0°, 15°, 30° and 45° relative to the x-axis. Meanwhile for all other

cases, the q-vectors are only applied along the x-direction.

7.3.4 Results for simple model geometries

Qualitative description of signal behaviour

The signal behaviour of the image signal in Geometries A and B across multiple q-values

and times are shown in Figures 7.3 and 7.4 respectively. From these visualisations, it
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7.3 Transitional region between asymptotic regimes

can be seen the signal behaviour transitions from a multi-compartmental homogenisation

regime at low q-values (ie long time) to a boundary layer regime at high q-values (ie short

time), thus agreeing with the asymptotic derivations in Chapters 5 and 6. Both the real

and imaginary parts are shown in the figures. However, it is found that the imaginary

parts always integrate to zero, which is a result consistent with both long-time and short-

time asymptotic models2. Nevertheless, the spatial distribution of the complex signal

intensity may still be of interest, especially if the image formation process is imperfect

and introduces non-uniform phase shift in the voxel.

In the low q-value regime, the difference in signal magnitudes between the two com-

partments is clear. In particular, there is almost no signal decay in the interior compart-

ment, which is a result of its isolated, disconnected nature. Meanwhile, at the other end

of the spectrum when the q-value is high and the time is short, the signal only differs from

a decaying background intensity within the boundary layers, which are attached to the

diffusion barriers on both sides. The thickness of the boundary layers is largest when the

boundary surface is normal to the q-vector applied and diminishes when they are tangent,

which is consistent with the analysis in Chapter 6. The predicted ripples of the signal in

the boundary layer, which is particularly significant in the imaginary part, can also be

observed in the figures.

As the q-value decreases from the boundary layer regime, the thickness of the bound-

ary layers increase as the scale separation becomes weaker. Eventually, the boundary

layer reaches and interferes with another boundary layer originating from the diffusion

barrier at the other side, thus bringing the signal behaviour into a transition region. In

Figures 7.3 and 7.4, the |q|d = 4.47 case, and to some extent the |q|d = 20 case for

Geometry B, show this kind of transitional signal behaviour quite clearly. In these cases,

neither asymptotic models can describe the spatial distribution of signal intensity accu-

rately. Meanwhile, comparing between the geometries, it can be seen that the transition

behaviour in Geometry B is more complex. This is due to the increased number of ob-
2For the long-time model, this is because the effective diffusion tensor is always real, and the initial

condition has a zero imaginary part. For the short-time model, see Section 6.3, Eq. (6.46).

153



7.3 Transitional region between asymptotic regimes

structions in more irregular locations, leading to boundary layers interacting in a more

complex manner, as shown in the |q|d = 20 case.

Quantitative validation of asymptotic models

In terms of quantitative comparisons between the simulation results and the asymptotic

models, the averaged signal intensities are considered. These correspond to observed MR

image signals assuming they are formed by an ideal image acquisition process. Figures

7.5 and 7.6 show these results over multiple q-values, which are plotted with a log axis,

and at two different times corresponding to |q|2Dt = 1 and 3 respectively. The signals are

averaged over individual compartments, as well as together in the combined signal with

the compartments weighted according to their volume fractions. As mentioned previously,

the imaginary parts of the signals always integrate to zero, therefore only the real parts

are considered in the plots.

These results are overlaid on top of the signal values calculated using the two asymp-

totic models, as well as the signal if there were no diffusion barriers at all. For the low-q,

long-time homogenisation model, the effective diffusion tensors for the exterior compart-

ments are computed by numerically solving the cell problem using the method described

in Section 5.4, whereas that for the interior compartments is trivially zero in both trans-

verse directions. Since these effective diffusion tensors do not depend on the q-value, and

in each plot the b-value i.e. |q|2Dt is held constant, the homogenisation model signals

appear as constant horizontal lines on the plots. Meanwhile for the high-q, short-time

boundary layer model, the boundary layer deficit for each surface element, which is a

function of q
√
t and its angle, is integrated numerically over the boundary surfaces for

each case. The resulting curves converge to the no diffusion barrier line at the |q| → ∞

limit, as the thickness of the boundary layers tend to zero.

As shown in the plots, the simulation results validate the asymptotic models derived

in the previous chapters. The transition region between the two asymptotes, however,

shows some interesting behaviour. There is a trend that the transition region of Geometry
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7.3 Transitional region between asymptotic regimes

B spans across a wider range of q-values compared to that of Geometry A. A likely

explanation for this is that the features in Geometry B are more complex and are of

variable sizes, therefore it takes a wider range of q-values for the boundary layers to extend

and completely “average” these features out to become a homogenised model. Moreover,

the respective asymptotic models are not strictly an upper bound on the signal value

either, with some overshooting and undershooting behaviour in various cases. However,

in these two geometries at least, the overshoot in one compartment seems to partially

cancel out the undershoot in the other, leading to the apparent effect that the transition

region in the combined signal spans over a narrower range of q-values. However, more

test geometries and theoretical analysis will be needed to justify whether this is in general

the case.
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7.3 Transitional region between asymptotic regimes

Figure 7.3: A visualisation of the image signal behaviour in Geometry A across multiple
q-values and times. A separate divergent colour map is used for the imaginary part to
demonstrate its antisymmetric nature. There is a clear transition between the low q-value
(i.e. long time) multi-compartmental homogenisation and high q-value (i.e. short time)
boundary layer regimes.
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7.3 Transitional region between asymptotic regimes

Figure 7.4: Similar visualisation to Figure 7.3 but for Geometry B instead. The signal
behaviour follows a very similar trend, however the interaction of boundary layers becomes
more complex in the transition region, as shown in the |q|d = 20 figures.
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7.3 Transitional region between asymptotic regimes

Exterior compartment of Geometry A, q in x-direction
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Combined signal of Geometry A, q in x-direction
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Figure 7.5: The comparison between numerical solutions and asymptotic models over
a range of q-values and times for Geometry A. The signal intensities are averaged over
individual compartments, as well as the two compartments combined. The plots are
normalised against the periodicity length d and diffusion coefficient D.
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Exterior compartment of Geometry B, q in x-direction
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Interior compartment of Geometry B, q in x-direction
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Figure 7.6: The comparison between numerical solutions and asymptotic models over a
range of q-values and times for Geometry B. The transition region is broader than that
for Geometry A, likely due to the increased number of different features in the geometry.
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7.3 Transitional region between asymptotic regimes

Angular dependence of transition region

In addition to the above studies where the q-vectors are all applied in the same direc-

tion, the angular dependence of the signal behaviour is studied by applying q-vectors at a

number of angles in Geometry A. The specific reason for choosing Geometry A to study

the angular behaviour is because of its interesting property. Its asymptotic models at

both low-q, long-time and high-q, short-time regimes are both isotropic3, yet the lattice

layout of the inclusions in fact breaks the rotational symmetry in the exterior compart-

ment. This means that regardless of the q-vector angle, the signal should converge to the

same asymptotes at both high and low q-value limits, allowing for controlled comparisons

between the transition region behaviours at different q-vector angles.

The simulation results are visualised and plotted in Figure 7.7. At t = (|q2|D)−1,

there is no significant differences between the different q-vector angles. However, at

t = 3(|q2|D)−1, the angular dependence becomes very pronounced, as shown in the visu-

alisation and in the plots by the differing amounts of overshooting in the transition regions.

This phenomenon is closely related to the “diffusion-diffraction” concept proposed in the

literature (see Chapter 2, Section 2.4.5), which uses an analogy to wave diffraction to

explain the behaviour when the modulation wavelength is of a similar magnitude to the

microstructure. However, since it takes time for the eigenmodes of the system to separate

by decaying at different rates, this angular sensitivity is only apparent at longer times.

An inevitable consequence of this is when considering the combined signal across both

compartments, the decaying signal magnitude in the exterior compartment will be domi-

nated by the signal within the interior compartment, which decays at a lower rate due to

its isolated, disconnected nature. In the particular case of Geometry A, the interior com-

partment is genuinely isotropic, since it is a collection of individual symmetric cylinders.

Hence, in the bottom plots of Figure 7.7, it can be seen that the angular sensitivity of

the transition region is somewhat masked in the combined signal.
3For the long-time model, the effective diffusion tensor is isotropic in the transverse directions, see

Chapter 5, Section 5.4.3. For the short-time model, the boundary surfaces have an even angular distri-
bution, hence the boundary layer model stays the same regardless of the q-vector direction.
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7.3 Transitional region between asymptotic regimes

Angular dependence of q in Geometry A exterior compartment
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10!1 100 101 102

jqjd

0

0.1

0.2

0.3

0.4

0.5

0.6

S
vo

x
el
=M

0

t = 1:0(jqj2D)!1

q at 0/

q at 15/

q at 30/

q at 45/

Homogenisation model
Boundary layer model
No di,usion barriers

10!1 100 101 102

jqjd

0

0.05

0.1

0.15

0.2

0.25

0.3

S
vo

x
el
=M

0

t = 3:0(jqj2D)!1

q at 0/

q at 15/

q at 30/

q at 45/

Homogenisation model
Boundary layer model
No di,usion barriers

Figure 7.7: Top row: visualisation of the signal intensity distribution when the q-vector is
applied at different angles. Middle row: the average signal over the exterior compartment,
showing the angular sensitivity of the transition region at longer times. Bottom row:
Average signal over all compartments. The angular dependence is less apparent once the
isotropic interior compartment is also taken into account.
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7.3.5 Results for realistic microstructure

Within the realistic microstructure, the simulations show the same transition behaviour

from the multi-compartmental regime to the boundary layer regime. As with the data

from model geometries, the spatial distribution of the signal intensity over multiple q-

values and times are shown in Figure 7.8, whereas the averaged signals over individual and

combined compartments are plotted in Figure 7.9 along with the results from asymptotic

models.

It can be seen that the transition region spans roughly a decade of q-values. This

is significantly broader in terms of its q-value range in the realistic microstructure than

in the model geometries, which is expected due to the much larger number of irregular

features present in the geometry. Moreover, it can be observed that the transition region

in the extra-axonal space occurs at higher q-values (about 5 times) compared to the

intra-axonal space.

There are two possible explanations or hypotheses for this phenomenon. The first one

relates to the relative locations of the intersections between asymptotes. The boundary

layer curves in the plots reflect the surface-to-volume ratios in the respective compart-

ments; for this microstructure geometry they are similar in the two individual compart-

ments since they have almost the same volume fractions (extra-axonal: 0.341, intra-

axonal: 0.343). However, the homogenisation models differ significantly, as one com-

partment is isolated whereas the other is connected. Therefore, the model intersection

happens at higher q-values for the extra-axonal space, so the transition region should be

located at higher q-values accordingly. The second hypothesis relates to the length scale

reflected by the signal behaviour in each compartment. The close-packing nature of the

microstructure geometry (see Figure 7.2) means that the characteristic length between

different axons in the extra-axonal space is shorter than that within individual axons in

the intra-axonal space.

The two explanations are related to each other, as the similar volume fractions should
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imply the separation in characteristic lengths between connected and isolated domains.

Using a square lattice of cylinders as an example, the diameter needs to be
√

2/π =

0.798 times the periodicity for the volumes in the exterior and interior spaces to be

equal, meaning that the cylinders are only 0.202 times the periodicity apart at the closest

location. This ratio is roughly consistent with the findings from the simulations.

This finding regarding the different locations of transition regions may be useful in

informing the design, interpretation and biophysical modelling of diffusion MRI studies.

Referring to the studies reviewed in Section 3.3.3, recent MRI studies using high gradients

reach q-values of around 5× 105 m-1. The simulation data in Figure 7.9 show that at this

q-value, the extra-axonal space is still described by a homogenisation model, whereas

the intra-axonal space has already entered the transition region. This is also shown

in the spatial distribution of signal intensity at |q| = 6.30× 105 m-1 (see Figure 7.8),

with the signal intensity being much more variable within the axons. This also agrees

with the findings of Grebenkov [42], in which it is suggested that the extra-axonal signal

starts to deviate from a Gaussian behaviour at the order of |q| = 3× 105 m-1. Hence,

for diffusion MRI studies within this regime, the information about the length scales of

the microstructure is only contained in the intra-axonal contributions to the signal, as

the homogenised extra-axonal diffusion tensor does not depend on the length scale of

the feature at all, however if the gradient strength becomes even stronger non-Gaussian

behaviour can start to be expected as we move into the transition regime in the extra-

axonal space as well.
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7.3 Transitional region between asymptotic regimes

Figure 7.8: Spatial distribution of signal intensity in the realistic microstructure across
multiple q-values and times, showing the transition between homogenisation and bound-
ary layer regimes.
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Figure 7.9: The comparison between numerical solutions and asymptotic models over a
range of q-values and times for a realistic microstructure geometry. The transition region
covers a range of about a decade in q-value. It also occurs at higher q-values in the
extra-axonal space (roughly 5 times difference).
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7.4 Effects of time-varying q-vector

7.4.1 Overview of section

In the previous section, the transition behaviour between the asymptotic regimes has been

studied through simulations using a constant q-vector. However, as discussed before, this

corresponds to the unphysical assumption of instantaneous modulation of spins with an

infinitely strong gradient field. In the short-time regime, the effects of time-varying q-

vector have been studied in Chapter 6, at least asymptotically. Meanwhile in the long-time

regime, the derivation of the homogenisation model does not involve the constant q-vector

assumption.

In this section, the finite element simulations are therefore utilised to bridge the gap

and study the effects of time-varying q-vector in the intermediate-time transition regime.

The aim of this section is to firstly validate the results and the two-point correction

method proposal in Chapter 6 for the boundary layer regime. By using the finite element

simulations over the entire geometry, the feasibility and accuracy of extending the same

correction protocols to other regimes can then be evaluated. In particular, since the b-

value is held constant across the pulses used in the two-point correction protocol, and the

signal in the homogenisation model only depends on the b-value but not the time profile of

the q-vector, the correction method is expected to also work in the homogenisation regime

(as there is no need for correction). However, the accuracy of the correction method in

the transition region remains to be seen.

7.4.2 Definition of numerical simulations

In the finite element simulations, time-varying q-vectors are applied along the x-direction

to both extra-axonal and intra-axonal spaces in the realistic microstructure geometry used

in the previous section. Sets of gradient pulses, which give rise to different q-vector profiles,

are considered over four nominal q-values between 1.41× 105 m-1 and 1.41× 108 m-1 at
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7.4 Effects of time-varying q-vector

equal logarithmic intervals of a decade. According to the results from the previous section,

these q-values should cover the whole range of different regimes. For each nominal q-value,

two different mixing durations (tm) are considered, corresponding to |q|2Dtm = 1 and 2.

At each nominal q-value and time, the set of different gradient pulses is defined using

the same methodology in Sections 6.5 and 6.6. Firstly, unphysical pulses in the form of

delta functions, which correspond to the constant q-vector case, are considered. Secondly,

rectangular pulses with pulse durations (tp) being 0.3 and 0.6 times the mixing duration

are considered. The peak q-value for these pulses are adjusted so that the overall b-values

of the pulse sequences, i.e.
∫ t

0 |q|2D dτ , are held constant. Finally, half-wave pulses with

tp/tm = 0.4, 0.8 and triangular pulses with tp/tm = 0.429, 0.857 are considered, as the

analysis in Section 6.6 suggests that they should be equivalent to the rectangular pulses.

The comparison between the equivalent pulse sequences for the teq
p /tm = 0.6 case can be

found in Figure 6.18 in the previous chapter. These gradient pulse profiles are integrated

to give the q-vector profile, which are then discretised in 1000 time steps over t ∈ [0, 2tm]

and implemented in the finite element simulations.

7.4.3 Results

The results of the simulations are plotted in Figure 7.10. Firstly, the signals from the

suggested equivalent pulses are compared, which are shown as differently shaped data

points on the plots. The results show excellent agreement in all cases, with the relative

differences within the expected discretisation error from the backward Euler method. The

performances of the two-point correction method at different q-values are then analysed.

The extrapolations are plotted as lines in the plots, which allow for a comparison between

the extrapolated x-intercept and the actual signal from a hypothetical delta function

pulse. The comparison between the extrapolation error and the estimation error using

a tp/tm = 0.3 pulse alone is shown in Table 7.1. As shown in the figure, there is as

expected little need for correction in the |q|nom = 1.41 × 105 m-1 case, which is in the

homogenisation regime. Meanwhile, for |q|nom = 1.41×107 m-1 and 1.41×108 m-1, which
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Table 7.1: Comparisons between the error in predicting the constant q-vector signal by
using tp/tm = 0.3 pulses alone and extrapolation using tp/tm = [0.3, 0.6] pulses. Ext /
Int = extra-axonal / intra-axonal spaces.

tm = 1.0(|q|2D)−1:
|q|nom (m-1) 1.41× 105 1.41× 106 1.41× 107 1.41× 108

Ext Int Ext Int Ext Int Ext Int
tp/tm = 0.3 only 0.37% 0.72% 2.01% 3.97% 1.06% 1.06% 0.20% 0.17%
Extrapolation 0.33% 0.63% 0.90% 1.54% 0.30% 0.18% 0.08% 0.08%

tm = 2.0(|q|2D)−1:
|q|nom (m-1) 1.41× 105 1.41× 106 1.41× 107 1.41× 108

Ext Int Ext Int Ext Int Ext Int
tp/tm = 0.3 only 0.46% 0.83% 4.68% 7.89% 3.38% 3.68% 0.68% 0.56%
Extrapolation 0.45% 0.77% 2.40% 3.93% 1.12% 0.72% 0.23% 0.21%

are both well into the boundary layer regime, the corrections show good agreement with

the delta function pulse signals. The performance of the correction method, however, is

not as good in the |q|nom = 1.41× 106 m-1 case, which is in the transition region between

homogenisation and boundary layer regimes. However, of all the q-values considered, the

error before extrapolations is the greatest in this case. The extrapolation at least offers

some improvement to the accuracy of predicting the hypothetical constant q-vector signal,

with the error about halved comparing to if only tp/tm = 0.3 pulses are used.

7.4.4 Limitations and future work

The simulations in this section have validated the use of equivalent rectangular pulses

to model the signal from irregular but symmetric gradient pulses over q-values ranging

from the homogenisation regime to the boundary layer regime. Furthermore, even though

only four q-values each a decade apart were considered, the simulations provided some

measurement of the performance and usefulness of the two-point extrapolation correction

method proposed in the previous chapter.

However, as shown in the plots in Figure 7.10, there seems to be a big gap in the transi-

tion regime between |q|nom = 1.41× 106 m-1 and 1.41× 107 m-1, where the extrapolation

correction would be significant and hence of great interest. The range of normalised b-
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Figure 7.10: Effect of time-varying q-vectors due to finite gradient pulses at a range of
nominal q-values. The lines represent the two-point extrapolation correction method pro-
posed in Section 6.5 to estimate the hypothetical constant q-vector signal, which requires
delta function pulses effectively. For the irregular pulses, the equivalent rectangular pulse
lengths are calculated using the method proposed in Section 6.6.
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values, i.e. |q|2Dtm, has been limited to only 2 in the study as well; ideally simulations

should cover a larger range to reflect the higher b-values used in recent diffusion MRI

research experiments.

One major downside of these numerical studies is their computational complexity,

as the lack of time invariance in the q-vector means that each data point comes from

a separate simulation. The simulations took nearly three hours each to run on a six-

core Intel® Xeon® CPU to produce the results presented, thus only four q-values were

considered in this section. This does also highlight, however, the value of the asymptotic

models derived in Chapters 5 and 6 in reducing the computational complexity by orders

of magnitude.

In the future, the analysis and results in this section can be extended to more simu-

lation scenarios to address the gaps in current simulation data. In particular, the finite

element method presented is implemented using parallel computing, hence it is easily

scalable to high-performance distributed computing clusters. Access to such computing

resources will speed up the simulation time significantly, as well as allowing for finer time

steps and bigger meshes to achieve better simulation results.

7.5 Summary

In this chapter, the intermediate-time regime of DW-SE, where all the terms in the Bloch-

Torrey equation are similar in magnitude, is studied using numerical simulations. This is

achieved by discretising the co-rotating, co-decaying form of the Bloch-Torrey equation

using a finite element method. Two simple model geometries of white matter and a re-

alistic microstructure based on microscopy data are considered, with simulations being

conducted over a range of q-values covering three orders of magnitude, extending into the

two asymptotic regimes covered in Chapters 5 and 6. The results show good agreement

with the asymptotic models in their respective limits, whereas a transition region is ob-

served between them. The width of the transition region increases with the complexity of
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the geometry, and it is found to span across about a decade in q-value for the realistic mi-

crostructure. The transition region is also found to be sensitive to the angle of the applied

q-vector in a regular lattice structure. Meanwhile, for the realistic microstructure geom-

etry, it is found that the transition region occurs at a higher q-value in the extra-axonal

space than in the intra-axonal space. This finding might be relevant to recent diffusion

MRI studies, as in their operating regimes the intra-axonal signal contains information

about the microstructure length scale, while the extra-axonal space still behaves as an

effective homogeneous medium.

The effects of time-varying q-vectors, which is a result of finite gradient fields used

in realistic diffusion MRI experiments, are then analysed. The finite element method

allows the evaluation of both the two-point correction method and the equivalent pulse

method, which are proposed originally in the boundary layer regime in Chapter 6, in the

intermediate-time regime as well. It is found that the equivalent pulse method produces

almost identical signals at a wide range of q-values, covering from the homogenisation

regime to the boundary regime. Meanwhile, in the intermediate regime, the two-point

correction method roughly halves the prediction error of a hypothetical constant q-vector

image signal. However, in the future, more data points will be needed to further evaluate

the performance of the two-point correction method, especially in the transition region

between the two asymptotic regimes where the correction has the greatest effect.
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Chapter 8

Conclusion and future directions

8.1 Summary of research

In this thesis, the behaviour of diffusion MRI in heterogeneous media has been modelled

systematically using multi-scale asymptotic methods. Both magnetic heterogeneities in

the form of magnetic susceptibility variations and molecular transport heterogeneities in

the form of no-flux barriers have been considered simultaneously in the modelling.

In Chapter 3, a novel distribution function formulation of diffusion-weighted spin-

echo (DW-SE) has been proposed, which allows for easier interpretation of the signal

behaviour using an augmented dimension diffusion-advection analogy. With a change

of frame of reference in the augmented dimension, the local spatial modulation wave-

vector, i.e. the q-vector, and the time scale were found to be the two relevant scales

to characterise a DW-SE experiment. This is similar in concept to recently proposed

q-t characterisations of diffusion MRI, although the novelty of the change of frame of

reference within the distribution formulation leads to the notion of local variations of

q-vectors, which is essential in the treatment of micro-scale magnetic heterogeneities.

Chapter 4 then considered the local q-vector variations due to magnetic heterogeneities

microstructure. Multi-scale analysis showed that the local q-vector variations are of com-

parable magnitudes to the macro-scale applied q-vector, if current typical research hard-
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ware is used in the long-time regime. This thus led to the simultaneous modelling of

magnetic and transport heterogeneities for the long-time regime of DW-SE in Chapter

5. The result is a multi-compartmental effective homogeneous model, where the effective

diffusion tensors can be computed by solving the cell problem over a representative peri-

odic microstructure cell. However, the effects of microstructure scale q-vector variations

have been found to integrate exactly to zero.

Chapter 6 then considered the short-time regime of DW-SE using boundary layer

analysis. In this regime, the effects of transport heterogeneities are only significant in the

boundary layer near the boundary surfaces. The results when the q-vector is constant

over time agree with the literature, and they also reveal a spatially varying imaginary

part of the complex signal intensity that has not been reported in the literature before.

This imaginary part integrates to zero over the boundary surface, however if the image ac-

quisition process is non-uniform the resulting signal will have a resultant imaginary part.

The effects of time-varying q-vectors to the boundary layer model have then been anal-

ysed. These correspond to finite gradient field strengths, rather than unphysical infinite

fields needed for the constant q-vector assumption. The results led to the proposal of a

correction method for irregular symmetric gradient pulses, firstly by calculating an equiv-

alent rectangular pulse by two simple relations, and secondly by a two-point extrapolation

method to estimate the hypothetical constant q-vector signal.

Finally, in Chapter 7 the intermediate-time regime of DW-SE has been considered

through the use of numerical simulations, both on simple model geometries and a realistic

white matter microstructure. This chapter validated the two asymptotic models derived

in previous chapters, and provided some evaluation of the transition region between the

two asymptotic regimes. The transition region was found to span roughly a decade in

q-value in the white matter sample, and was found to occur at higher q-values in the

extra-axonal space compared to the intra-axonal space. The validity of the correction

method for time-varying q-vectors proposed in Chapter 6 when being extended to the

transition region has also been evaluated.
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8.2 Future research directions

There are some avenues for future research which are opened up by the work of this thesis.

For the asymptotic analysis, there are some modifications to the models which could be

considered to account for different operating conditions of diffusion MRI. These will be

briefly outlined in the following paragraphs.

Consideration of stronger advection

The multi-scale homogenisation model in Chapter 5 has assumed advection to be weak

in the compartment, which is a reasonable assumption when perfusion is not significant.

However, in media where advection is stronger, for instance in vascular tumours, the

homogenisation model can be modified to consider higher Péclet numbers. By drawing

comparison to the homogenisation of the diffusion-advection equation, for Péclet numbers

up to O(ε−1) it is anticipated that the effective diffusion model will transition to an

effective advection-driven dispersion model instead.

This regime of stronger advection will likely be more relevant in heavily vascularised

tissue, for example vascular tumours, than in the white matter of the brain where the

volume fraction of blood is much lower. Multi-scale homogenisation approaches have been

employed in these tissues for the purpose of modelling blood flow and drug delivery [102],

so it will be of much interest to use a similar approach to investigate the behaviour of

diffusion MRI, and whether diffusion MRI can be a feasible tool for quantifying vascular-

isation, and hence a biomarker of the pathological condition of these tumours.

Effects of ultra-high static field

In Chapter 5, the local spatial variation of the q-vector has been considered to be of

comparable magnitude to the macro-scale applied q-vector, based on the hardware used in

typical diffusion MRI experiments. However, there is a trend of using significantly higher

static fields for MRI experiments, with 7 T systems already in use for human whole-body
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imaging and even higher fields available for animal systems. As shown in the analysis of

Chapter 4, this would increase the magnitude of local q-vector variations. The effects of

this can be investigated by modifying the asymptotic formulations correspondingly.

The modelling of this regime may have important implications for future development

of diffusion MRI. Ultra-high field systems have the benefit of higher signal-to-noise ratio

(SNR), which therefore facilitate more complex sensitisation sequences whilst keeping

acceptable signal. 7 T MRI systems has already found its way into diffusion MRI usages

[45], with the increased off-resonance effects at macro-scale tissue interfaces being observed

and corrected for using distortion maps [96]. The modelling of off-resonance at the micro-

scale, which is beyond the spatial resolution of distortion maps, will therefore be an

interesting topic for further research.

Extending to other boundary conditions

So far in this thesis, only no-flux boundary conditions were considered for the heteroge-

neous molecular transport. However, in some pathological conditions such as stroke, there

has been suggestions that water transport between extra-cellular and intra-cellular spaces

is increased. Such effects may be formulated as leaky boundary conditions, and the be-

haviour of this coupling can be investigated in both short-time and long-time asymptotic

models.

The modelling of leaky boundary conditions may offer some further insight into the

pathological pathways of stroke, especially immediately after onset when subtle changes

to the microstructure happen, before the bulk changes to relaxation parameters become

visible. It is therefore important to understand how water might move between vascular-

isation, the extra-cellular space, and within brain cells, and the use of diffusion MRI to

sensitise leaky boundaries may offer some progress.
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8.3 Final remarks

The work in this thesis has demonstrated the value of multi-scale modelling in understand-

ing and interpreting diffusion MRI. Coming from a theoretical modelling perspective, this

thesis complements other research work coming from data-driven approaches. Signal

models are necessary to simplify the inverse problem of interpreting imaging data, and

the systematic asymptotic analysis presented in the thesis provides the theoretical basis

for them. It is hoped that these will inform future diffusion MRI developments, both in

terms of protocol design and data interpretation, and eventually leading to advancements

in biomedical research and improvements in clinical care.
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Appendix A

Automated mesh generation from

segmented microscopy images

In this appendix, the automated process of generating meshes of porous domains from a

segmented microscopy image is presented. The transmission electron microscopy image

of a mouse white matter sample, as well as its segmentation, are obtained from Xu et al.

[121]. The image data were collected at an isotropic resolution of 7.1nm ×7.1nm in a

4000 ×4000 matrix, with each pixel labelled as one of the three compartments, namely

the extra-axonal space, the myelin sheath, and the intra-axonal space. A pipeline is

therefore created to use the segmentation map information to create a finite element

mesh representing the three domains.

As described in Section 5.5, 100 smaller 1000 ×1000 samples were used for the eval-

uation of the effective diffusion tensors. Therefore, 100 locations are picked at random,

with the x and y co-ordinates of the top-left corner sampled from a uniform distribution

between 1 and 3000, to crop out the 1000 ×1000 segmentation maps. In order to cre-

ate a periodic domain which is representative of the microstructure information in these

samples, they are augmented by appending their mirror images along both directions, as

shown in Figure A.1. The details of the definition of the contours in the periodic domain,

as well as the generation of periodic meshes based on the contours, is described below.
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Appendix A: Automated mesh generation from segmented microscopy images

(a) Location of sample in TEM image (b) Periodic domain

Figure A.1: Realistic microstructure geometry based on transmission electron microscopy
data. A 7.1 µm ×7.1 µm (1000 px ×1000 px) sample has been cropped from the mi-
croscopy image (a), and then augmented to form the periodic domain (b).

Since the segmentation map consists only of labels of individual pixels, this means

the edges between the compartments are pixelated and ragged, rather than a smooth

boundary which would be expected in reality. Therefore, the first step of processing is the

smoothing of the edges, and then a threshold can be applied to define contours which are

smoother. By labelling the intra-axonal space as 1 and everywhere else as 0, a threshold

of 0.75 was used to define the interior boundaries, which are shown in blue in Figure A.1.

Similarly, a threshold of 0.75 between 0 as extra-axonal space and 1 as everywhere else

was used to define the exterior boundaries. The threshold process was implemented with

the contour function in MATLAB (R2022a, MATLAB Inc.), with the output being a

set of points on the edges between pixels, where the interpolated signal values cross the

threshold value. The contours are therefore the curves which join these points. The reason

of the choice of 0.75 is because of the segmentation appears to favour an interior label

rather than an exterior label for pixels along the boundary. Due to the closely packed

nature of the cells, if a 0.5 threshold was used, many cells would end up merging together,

leading to unrealistic, disconnected extra-axonal space geometries.

With the set of points defining the contours defined, they can be used to define the

geometry of the meshing domain. This is implemented using the OpenCASCADE geome-
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Figure A.2: Drawing contours on a 4000 ×4000 domain, so the cubic spline loops define
intra-axonal and myelin sheath surface entities. The intersection of these entities with
the 2000 ×2000 square then creates the required entities of the periodic domain.

try backend of the open-source gmsh software [41]. For each contour curve, a cubic spline

is used to join together the points defined by the threshold process. These curves, along

with the boundary edges of the 2000px ×2000px domain, form the bounding curves for

the surface entities in the mesh.

To simplify the geometry definition process, as well as to ensure that the straight

edge segments either side of the 2000px ×2000px domain match each other to enforce

the periodicity condition, instead of drawing the boundary contours in a 2000px ×2000px

domain, they are drawn on a 4000px ×4000px domain instead, again by tessellation of

mirror images. The intra-axonal and myelin sheath entities can then be easily defined by

using the cubic spline loops as bounding curves. The intersection of these entities with

the 2000px ×2000px square thus define the required entities for the periodic domain with

periodicity guaranteed. An example of this process is shown in Figure A.2.

179



Appendix A: Automated mesh generation from segmented microscopy images

Figure A.3: Problematic cellular topology resulting from domain augmentation with mir-
ror images of samples, as shown in shaded region. The domain augmentation is necessary
to enforce periodicity conditions, however it may result in geometries where some cells are
completely contained in another cell, as shown in this figure. In theses cases, the samples
are discarded.

One problem of the augmentation of the domain using mirror images is that sometimes

the straight edges cropping the domain can cut across a cell multiple times, so when the

mirror images are appended unrealistic cell topologies can be formed. This is an unavoid-

able result, but this domain augmentation is necessary due to the need for periodicity to

be enforced, as well as for the microstructure information to be kept as best as possible in

the periodic meshes. If the geometry contains cells completely contained in another cell,

then it is discarded. 29 out of the 100 random samples were therefore discarded, with one

example shown in Figure A.3. Meanwhile, if there are instances when extra-axonal space

is encapsulated by a cell, as shown in Figure A.4, due to their isolated nature, they are

simply treated as part of the myelin sheath domain instead.

Finally, with the geometry defined, the meshes can be generated by triangulation. In
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Appendix A: Automated mesh generation from segmented microscopy images

Figure A.4: In instances when the extra-axonal space is encapsulated by another cell,
such as the example in this figure (small region at the top of figure highlighted in green),
it is treated as part of the myelin sheath compartment instead.

order to resolve the anticipated boundary layer behaviour in the numerical simulations in

Chapter 7, the mesh is refined to resolve the features near the boundaries at a pixel scale.

Therefore, in the regions within one pixel length either side of a boundary curve, the

local mesh size is set to 0.5px. The target mesh size varies linearly as the distance from

a boundary increases, eventually reaching a background mesh size of 10px if a certain

point is at least 30px away from any boundary curve. With these mesh controls in place,

the meshes are generated using Delaunay triangulation. An example of the mesh control

results is shown in Figure A.5. In the resulting meshes, the number of elements in the

extra-axonal and intra-axonal spaces are in the order of 1 to 2 million. The statistics over

the 79 meshes created, along with the associated area fractions, are presented in Figure

A.6.
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Figure A.5: Example of the mesh size control in mesh generation.

Statistics over n = 79 instances
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Figure A.6: Statistics of the area fractions and number of elements over the 79 meshes
generated. The boxes show the range between the lower quartile to the upper quartile,
whereas the whiskers show the range of data excluding the outliers, defined as data points
more than 1.5 times the inter-quartile range away from the box.
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