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Genomic‑driven 
nutritional interventions 
for radiotherapy‑resistant rectal 
cancer patient
Joshua Southern 1,8, Guadalupe Gonzalez 1,2,8, Pia Borgas 3, Liam Poynter 4, Ivan Laponogov 4, 
Yoyo Zhong 4, Reza Mirnezami 5, Dennis Veselkov 1, Michael Bronstein 6 & Kirill Veselkov 2,7*

Radiotherapy response of rectal cancer patients is dependent on a myriad of molecular mechanisms 
including response to stress, cell death, and cell metabolism. Modulation of lipid metabolism 
emerges as a unique strategy to improve radiotherapy outcomes due to its accessibility by bioactive 
molecules within foods. Even though a few radioresponse modulators have been identified using 
experimental techniques, trying to experimentally identify all potential modulators is intractable. 
Here we introduce a machine learning (ML) approach to interrogate the space of bioactive molecules 
within food for potential modulators of radiotherapy response and provide phytochemically-enriched 
recipes that encapsulate the benefits of discovered radiotherapy modulators. Potential radioresponse 
modulators were identified using a genomic-driven network ML approach, metric learning and 
domain knowledge. Then, recipes from the Recipe1M database were optimized to provide ingredient 
substitutions maximizing the number of predicted modulators whilst preserving the recipe’s culinary 
attributes. This work provides a pipeline for the design of genomic-driven nutritional interventions to 
improve outcomes of rectal cancer patients undergoing radiotherapy.

Mesorectal excision is the surgical standard of care in rectal cancer (RC)1. The additive benefit of radiotherapy 
(RT) in reducing local recurrence in advanced RC has been extensively documented2–5. However, there is consid-
erable variability in radioresponse across patients, with patients showing either (1) complete tumor destruction, 
(2) moderate tumor regression, or (3) negligible tumor shrinkage. For patients in the last category, the delay in 
proceeding to tumor excision while completing RT may increase the likelihood of distant metastases, therefore, 
modulation of radioresponse to improve RT outcomes is a critical need.

RT response is governed by various molecular mechanisms including response to stress, cell death, and cell 
metabolism6. Current strategies to improve radioresponse focus on the modulation of cell death and response 
to stress using chemotherapies, such as fluorouracil (5-FU), capecitabine, gemcitabine, and cisplatin, to enhance 
tumor sensitivity to RT7. However, combined therapy often produces mixed results and can increase toxicity 
in normal tissues7. In contrast, bioactive molecules within foods appear as a promising alternative to modu-
late radioresponse, through lipid metabolism modulation8,9. Proteins corresponding to up-regulated genes in 
RT-resistant RC patients participate in lipid biosynthetic and metabolic pathways with various roles (Fig. 1A). 
The up-regulation of most of these genes translates into increased lipid availability, which leads to a myriad of 
downstream tumor-promoting effects. For example, CDS1- and CDS2-encoded proteins regulate growth and 
maturation of lipid droplets which serve as storage, providing nutrients necessary for cell growth, and can serve 
as additional nutrients for the uncontrolled growth of cancerous cells10. Moreover, over-expression of PLA2G5, 
the ELOVL family of genes, FASN and the PLP family of genes translates into increased lipid availability leading 
to downstream activation of inflammation and stress pathways. Proteins encoded by these genes increase lipid 
availability through different mechanisms: PLA2G5-encoded protein through the generation of lysophospholip-
ids and free fatty acids, including arachidonic acid10,11; encoded proteins by the ELOVL family of genes through 
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the elongation of long chain fatty acids to provide precursors for synthesis of sphingolipids and ceramides10,12; 
FASN-encoded protein through the synthesis of long-chain fatty acids10; and encoded proteins by the PLP family 
of genes through the hydrolysis and uptake of lipids from extracellular space10,13. Increased lipid availability in 
cancer cells can also lead to increased immunosuppressive properties, as is the case with PTDSS1 over-expression, 
whose encoded protein catalyzes the formation of phosphatidylserine which, exposed on the surface of tumor 
cells, increases their immunosuppressive properties and facilitates tumor growth and metastasis10,14. On the other 
hand, PTEN has documented tumor-suppressing properties10. Loss of PTEN leads to elevated de novo lipogenesis 
through induction of SREBP and FASN expression15. Therefore, over-expression of PTEN in this context might 
be a compensatory mechanism to inhibit FASN in an attempt to decrease lipogenesis.

Bioactive molecules in food can modulate lipid metabolism, have a promising safety profile in toxicity stud-
ies, and have documented chemopreventive and chemotherapeutic effects16–18. This means dietary interventions 
could be a promising strategy to increase treatment efficacy, prevent resistance acquisition and reduce side 
effects19. However, experimental large-scale testing of chemotherapeutic or chemopreventive properties of bio-
active molecules within food is not generally feasible due to a large number of food-based bioactive molecules. 
As a result, a unique wave of research has leveraged network machine learning (ML) and genomic data to carry 

Figure 1.   Overview of approach. (A) Network representation of over-expressed proteins (yellow) and biological 
functions (blue) in RT-resistant RC patients. Over-expressed proteins were experimentally identified by one of 
the authors of this work. Their corresponding biological functions were extracted from the Gene Ontology’s 
Biological Processes32. Over-expression of all genes but PTEN leads to increased lipid availability resulting in 
cancer-promoting effects including increased nutrient storage (CDS1, CDS2), activation of stress and response 
signaling pathways (PLA2G5, ELOVL family, FASN and PLP family), and increased immunosuppressive 
properties (PTDSS1). (B) Radioresponse modulators identification module. Food protein targets and 
RT-resistant-associated proteins are mapped onto a multiscale interactome of proteins and biological functions. 
A biased random walk with restarts (RWR) propagates the effects of food molecules and phenotype, revealing 
the most affected proteins and biological functions. Top food molecules with the most similar propagated 
profiles to the phenotype are used to create a list of food ingredients with potentially beneficial RT response 
modulation activity. (C) Recipe generation module. Using FoodBERT, Recipe1M recipes are optimized to 
increase the number of ingredients with beneficial radioresponse modulation properties.
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out a large-scale screening of anticancer molecules within food20–22. Building on these works, we propose a 
computational genomic-driven approach to mine the space of bioactive molecules within food for potential radi-
oresponse modulators and propose phytochemically-enriched recipes to improve radioresponse of RC patients.

The proposed pipeline, shown in Fig. 1, comprises (1) Identifying over-expressed proteins in RT-resistant RC 
patients (Fig. 1A) (2) a radioresponse modulators identification module (Fig. 1B) and (3) a recipe generation 
module (Fig. 1C). In order to identify radioresponse modulators, we map food molecule protein-coding gene 
targets and RT resistance dysregulated genes onto a heterogeneous network representing proteins and biologi-
cal functions. Using a network propagation algorithm combined with metric learning, we learn effects of food 
molecules and the phenotype across the heterogeneous network, and find food molecules with similar effects to 
those observed in the phenotype. The third stage involves recipe optimization to maximise the number of ingre-
dients with these molecules. Dietary recommendations can then be proposed for RT-resistant RC patients using 
these recipes and taking into account other user-specific requirements such as taste preferences and allergies.

Results
Random walks and metric learning to predict drug‑phenotype associations.  We compute prop-
agated profiles of drugs and diseases on the multiscale-interactome using random-walk with restarts and then 
use metric learning to minimise the distance between a disease and drugs that treat this disease and maximise 
the distance between a disease and drugs with no known benefit. To show the gain of combining metric learning 
with the random walk algorithm, we evaluated the improvement on the multiscale-based drug-disease predic-
tion task proposed in23. We show that the addition of metric learning improves the random walk diffusion 
profiles resulting in a 20% increase in performance ( AUROC = 0.714 vs 0.876 ). Additionally, the choice of the 
restart probability only has a small effect on the results in the initial implementation and no influence when com-
bined with metric learning. These results, shown in Fig. 2, confirm the benefit of fixing the restart probability and 
instead of optimising the weights of the walker, optimizing an MLP by directly back-propagating information 
from the prediction task using a triplet loss function.

The model identifies molecules with therapeutic potential to reverse RT resistance.  Using 
propagated profiles, we find the top 100 food molecules closest to the phenotype. These molecules affect similar 
proteins and biological functions as those responsible for radioresistance, however, diffusion profiles do not 
provide information whether the modulation is positive or negative. Experimental evidence indicates that the 
phenotype-associated genes are over-expressed in patients exhibiting RT resistance leading to a positive modu-
lation of lipid metabolism (Fig.  1A). Therefore, we use domain knowledge and literature search to filter out 
identified molecules with positive regulatory effects on lipid metabolism, leaving 33 modulators to retrieve the 
list of ingredients (Appendix A). Modulators belong to a myriad of compound classes including flavonoids, iso-
flavonoids, and bezenoids, in alignment with the current knowledge on chemotherapeutic bioactive molecules 
within foods11. Overall, predicted modulators are involved in cell signaling, cell growth and lipid metabolism. 
For example, Mangiferol and Dihydrosphingosine modulate downstream effects linked to fatty acid biosynthetic 
and elongation pathways, down-regulating stress and inflammation processes (Figure 3). Additionally, we have 
compiled a list of ingredients with the highest number of modulators (Appendix B).

Highest scoring foods modulating RT response.  In order to validate the recipes, we explored the mech-
anisms by which the substituted ingredients could modulate radiotherapy response. The tables in appendices A 

Figure 2.   The presented model outperforms the baseline approach across all values of restart probability. 
AUROC of purely random walk based approach23 and the proposed approach combining the method with 
metric learning as a function of restart probability on the drug-disease prediction task.
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Figure 3.   The multiscale interactome identifies proteins and biological functions related to RT modulation. 
(A) The multiscale interactome involving Mangiferol and RT modulation. Mangiferol modulates RT response 
by targeting CTNNB1 and TNF which has downstream effects in osteoblast differentiation by being linked to 
FASN. (B) The multiscale interactome involving Dihydrosphingosine and RT modulation. Dihydrosphingosine 
modulates RT response primarily by targeting PLPP2, PLPP3 and CERS2, which are linked to the ELOVL family 
of genes, inhibiting fatty acid biosynthetic and elongation processes.

Figure 4.   Ingredient substitutions using FoodBert embeddings and food-chemical information. (A) 
Visualisation of FoodBert embeddings. 2D representations found using PCA of the 768 dimensional FoodBert 
embeddings for some ingredients. Ingredients close in this space appear in similar contexts. (B) Example 
ingredient substitutions. Some example substitutions found by the K-nearest neighbor algorithm in the 
embedding space and additional filtering to increase the number of beneficial bioactive molecules. (C) Some 
example ingredient substitutions within popular recipes.
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and B give a more extensive treatment of the RT response modulators within food and their potential mecha-
nism for modulation. In Fig. 4, we show how a chicken korma recipe is mutated by substituting kale for spinach 
and new potatoes for beetroot. Whilst it is difficult to evaluate these substitutions from a culinary perspective, 
the substitutions do increase the number of potential radioresponse modulators. New potatoes contain none of 
the found potential modulators, whereas beetroot contains both kaempferol and syringic acid. It has been shown 
that syringic acid-treated cells developed anti-cancer activities by losing MMP, cell viability, and enhancing 
intracellular ROS and kaempferol has been shown to be a potential chemo-therapeutic agent to be used alone 
or in combination with 5-FU to overcome colon cancer drug resistance2425. Additionally, spinach also contains 
kaempferol as well as alpha-lipoic acid. Alpha-lipoic acid can effectively induce apoptosis in human colon cancer 
cells by a mechanism that is initiated by an increased uptake of oxidizable substrates into mitochondria26. The 
addition of these molecules in the recipe, which have been found using our drug-disease association model, and 
have demonstrated chemotherapeutic effects could be beneficial to radiotherapy-resistant rectal cancer patient 
as an added measure alongside their standard treatment.

Discussion
In 2017, dietary risk factors were attributed to approximately 11 million deaths globally, equivalent to about 1 in 
5 deaths27. This stark statistic emphasises the global need for dietary improvements. Furthermore, evidence has 
mounted on the potential benefits of drug-like molecules in foods against diseases such as cancer28,29, Covid-
1930 and other health conditions31. The prospect of dietary recommendations both for the general population 
and patients with specific diseases becomes increasingly important. We delved into understanding the role of 
bioactive food molecules as potential modulators of radiotherapy response. This was achieved by expanding a 
drug-disease prediction model based on RWR with metric learning, pinpointing radioresponse modulators and 
showcasing enhanced results on a benchmark dataset. The integration of these analytical methodologies is pivotal; 
it not only facilitates a comprehensive understanding of intricate interactions but also combines the strengths of 
prediction and metric learning, ensuring a system-wide appraisal of the potential therapeutic influence of bioac-
tive food molecules on radiotherapy efficacy. By utilising propagated profiles from our model, we identified radi-
oresponse modulators in food, subsequently integrating this with experimental evidence from literature reviews 
to determine the modulation direction - either positive or negative. It is important to acknowledge, however, that 
while our findings are encouraging, the model’s transfer-ability may necessitate further validations. This arises 
from discrepancies, albeit reasonable, in data distribution between the dataset for optimisation of propagation 
weights and the datasets for food molecules and phenotypes (Appendix C). In this study, we adopted an assump-
tion of direct correspondence between effects on genes and proteins, neglecting potential post-translational 
modifications. These modifications could be profoundly influenced by dietary intake and merit further explora-
tion in subsequent studies. In terms of advancements, future iterations of the recipe recommendation module 
could contemplate the de novo creation of recipes using text or cooking graph representations, surpassing current 
NLP-based models. Furthermore, the optimal timing for dietary interventions, aimed at maximising radiotherapy 
outcomes, was beyond our current scope but warrants attention, potentially encompassing clinical trials assess-
ing the interplay between dietary intervention timing and therapy outcomes. The current work, in general, 
provides a framework for the discussion of methodological approaches for the task of modulating radioresponse 
using bioactive molecules within foods. We consider this work as a first milestone approach in the design of 
genome-guided phytochemically-enriched recipes to improve RT outcomes in RC patients and envision its use 
as a baseline for future work. Our approach, centred on lipid metabolism modulation, offers a novel avenue to 
augment radiotherapy outcomes. Nevertheless, individual biological and health variations signify that it might 
not universally benefit all patients. Aspects like obesity and BMI, which intrinsically modify lipid metabolism 
and various physiological processes, could dictate the intervention’s effectiveness. In such instances, personal-
ised strategies, ranging from dietary modifications to manage weight to pharmacological measures addressing 
obesity-related comorbidities, might be indispensable. By employing machine learning, our study enables recipe 
adjustments in line with identified potential radiotherapy modulators. This presents an opportunity for bespoke 
recipe alterations aligning with individual patient requirements, considering elements like obesity and BMI. Such 
a comprehensive, personalised treatment paradigm accentuates the essence of optimising radiotherapy outcomes 
and overall patient health. The flexibility of our approach also encompasses patient-specific data such as allergies, 
cost considerations, food preferences, and concurrent treatments, ensuring dietary compatibility and synergy.

Contrasting with gut microbiota modification strategies, our method prioritises direct dietary alterations 
aimed at cellular mechanisms, including lipid metabolism, rather than reshaping the gut microbiome. Never-
theless, dietary effects on gut microbiota composition and functionality are undeniable and can sway health 
outcomes, including therapy responses. Since the gut microbiota orchestrates the bioavailability of bioactive food 
molecules, these two strategies might be synergistically combined for a comprehensive therapeutic approach 
encompassing both cellular mechanisms and microbial interactions. Our proposed pipeline possesses the adapt-
ability to address any disease given the knowledge of target genes, offering a holistic framework for recipe recom-
mendations that complement prevailing treatment standards. We foresee evaluating these findings via clinical 
trials, providing participants with enriched recipes and evaluating dietary intervention impacts through outcomes 
such as progression-free survival (PFS) or disease-free survival (DFS). Moreover, the approach, although pri-
marily centred on radiotherapy for rectal cancer, hints at the broader applicability, extending possibly to other 
therapeutic modalities or diseases.
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Conclusion
We introduce a network machine learning pipeline for predicting radioresponse modulators within foods and 
generating recipes to enhance RT response in RC patients. For the identification of radioresponse modulators 
within foods, we adopted a genomic-driven approach, hypothesising that these modulators should exhibit similar 
effects on protein networks as those observed in RT-resistant RC patients. To model the genomic effects of food 
molecules and phenotype, we integrated metric learning with biased RWR, mapping the influence of food mol-
ecules and the phenotype across a multiscale interactome. This process illuminated the proteins and biological 
functions most impacted. Overall, this study establishes a foundation for discussing methodological strategies 
aimed at modulating radioresponse through bioactive molecules in foods. We view this as a pioneering step in 
creating genome-guided, phytochemically-enriched recipes to enhance RT outcomes in RC patients and see its 
potential as a reference point for subsequent research.

Methods
Identifying radioresponse modulators.  We propose the approach outlined in Fig. 1A for the identifica-
tion of radioresponse modulators within foods. The core of our model is a graph G = (V ,E) representing the 
multiscale interactome described by23, where nodes are proteins and biological functions, and edges represent 
protein-protein, protein-biological functions, and biological function-biological function interactions. Protein-
protein interactions describe physical interactions between proteins. Protein-biological function interactions 
connect proteins to the biological functions they affect and biological function-biological function interac-
tions represent the hierarchy of biological functions using the Gene Ontology’s Biological Processes32. For more 
details on the construction of the multiscale interactome, we refer the reader to23. Specifically, our graph G has 
|V| = N +M = 27, 458 nodes of which N = 17, 660 are proteins and M = 9798 are biological functions. The 
phenotype, i.e., the over-expressed proteins in patients exhibiting RT resistance, is modeled as an N-dimensional 
vector p ∈ {0, 1}N where pi = 1 if gene i is over-expressed and 0 otherwise. Similarly, protein targets of food 
molecules are represented as N-dimensional vectors mj ∈ {0, 1}N where mj

i = 1 if protein i is targeted by food 
molecule j and 0 otherwise. Information of 2100 food molecules and their targets are obtained from FoodDB33 
and STITCH34 datasets. Using the multiscale interactome allows us to explain identified molecules, even when 
they seem unrelated to the phenotype. It additionally allows us to identify which biological functions are being 
modulated in cases where a short protein-protein path exists between food molecule targeted proteins and RC-
resistant over-expressed genes, adding a level of interpretability.

Network propagation algorithm and metric learning.  We combine a network propagation algorithm based on 
biased random walks with restarts with deep metric learning. The network propagation algorithm starts from 
initial nodes encoded in binary vectors encoding food molecules and the phenotype. At every step, the walker 
can restart its walk or jump to an adjacent node. The outputted diffusion profile measures how often each node 
in the multiscale interactome is visited by the RWR, encoding the effect of food molecules and the phenotype 
on every protein and biological function. In23, they optimise the edge weights of the algorithm for a multiscale-
based drug-disease prediction task, in which an AUROC = 0.705 was achieved. The task involves predicting 
whether a drug treats a disease based on known drug-disease pairs taken from the Drug Repurposing Database, 
the Drug Repurposing Hub and the Drug Indication Database with only FDA-approved treatment relationships. 
Given that optimising the edge weights of the random walk algorithm has a very small effect on the predic-
tion task (a fixed random walk probability of α = 0.64 and edge-weights all being 1 gives 0.702 AUROC), we 
propose to fix the edge weights and optimise the weights of a multilayer perceptron (MLP) instead, using deep 
metric learning in order to minimise the distance between known drug-disease pair embeddings and maximise 
the distance to unknown drug-disease pairs. We set the propagation value of the RWR to 10 times the mean 
maximum propagated value over all drugs after propagating with α = 0 , giving a value of α = 0.64 . For each 
disease, we randomly sample both a positive drug (a drug which is known to be beneficial against the disease) 
and a negative drug (a drug which has no known benefit). This triple (disease, positive drug, negative drug) is 
passed to a MLP in order to get an embedding for the disease and the two drugs. A triplet loss is then used in 
order to minimise the distance between the disease and positive drug and maximise the distance to the negative 
drug. We use 5-fold cross-validation to optimize the model in the set of drugs and diseases (N = 1651), and use 
the trained model to give a ranking of food molecules based on distance to the phenotype embedding. In each 
split, we train the model for a maximum of 100 epochs using the Adam optimizer. Final propagation profiles 
reflect protein and biological functions affected. However, the model alone is not sufficient to filter out toxic 
molecules or metals from the food molecule database. Additionally, it is difficult for the model to learn whether 
the molecules affect the biological functions disrupted by the phenotype rather than directly targeting disease 
proteins or their regulators.

Filtering predictions.  Using propagated profiles or the entity embeddings, we find the top 100 food molecules 
closest to the phenotype. These molecules affect similar proteins and biological functions as those responsible 
for radioresistance. Experimental evidence indicates that the phenotype-associated genes are over-expressed 
in patients exhibiting RT resistance leading to a positive modulation of lipid metabolism. Therefore, we use 
domain knowledge and literature search to filter out identified molecules with positive regulatory effects on 
lipid metabolism, leaving 33 modulators to retrieve the list of ingredients (Appendix A). Modulators belong to 
a myriad of compound classes including flavonoids, isoflavonoids, and bezenoids, in alignment with the current 
knowledge on chemotherapeutic bioactive molecules within foods11. Overall, predicted modulators are involved 
in cell signaling, cell growth and lipid metabolism. For example, Genistein works by inhibiting the Arachidonic 
Acid pathway, making it a suitable natural agent for cancer prevention and therapy11.
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Recipe optimisation module.  Having found radioresponse modulators in the previous step, we propose 
to provide patients with recipes that maximize the number of ingredients with these molecules (Fig. 1C). Associ-
ations between foods and the molecules they contain are taken from FoodDB35, and a baseline set of recipes from 
the Recipe1M dataset36. Ingredients from these two datasets were preprocessed (turned to lowercase, spaces and 
plurals removed) and matched if they shared the first or last two words, or if they had the same word in the first 
or in the last position. This meant that ingredients such as king oyster mushroom and dried porcini mushroom 
were treated as being the same ingredient.

After combining these datasets, an enrichment score is calculated for each recipe based on the number of 
radioresponse modulators that they contain. Additionally, ingredient context embeddings from the BERT model37 
are used to optimize the recipes and provide recommended ingredient substitutions to patients. These substitu-
tions are done to increase the amount of anti-RT-resistance molecules whilst also preserving the recipe’s culinary 
attributes. Ingredient substitutions for the Recipe1M dataset were then found using the same method outlined 
in38. Starting with the bert-base-cased model in the Hugging Face library39, the BERT vocabulary was extended 
to include all the ingredients in the dataset. The BERT model, with a hidden representation of dimension 768, was 
then trained on the cooking instructions for each recipe in the dataset. Given that BERT gives different embed-
dings for the same ingredient in different contexts, there ends up being approximately 285,000 embeddings for 
all ingredients. For all the embeddings of a single ingredient, the 200 nearest neighbors were found using KNN 
and a substitute score given to other ingredients based on how often it appeared in the 200 nearest neighbors for 
all the embeddings. Suggested substitutes were then found for an ingredient by finding ingredients which had a 
score of over 100 and which were greater than 1/10 of the highest score for that ingredient.

To visualize the embedding space, we averaged all the embeddings for the same ingredient in order get a sin-
gle embedding of dimension 768 for each ingredient. A 2D projection of this space using Principal Component 
Analysis is shown for a few of the ingredients in Fig. 4A. The suggested ingredient substitutes for a particular 
ingredient were then filtered to only include ingredients that had a higher number of molecules with potential for 
RT modulation than the initial ingredient. Some examples of these substitutions are shown in Fig. 4B. The num-
ber of beneficial molecules for each ingredient was found using the FoodDB database and is shown in Appendix 
A. Recipes in the Recipe1M dataset were optimized by looping through the ingredients and randomly selecting 
a substitute within the filtered list of substitutes. Additionally, it was constrained such that the same substitute 
can not be made for different ingredients within the recipe and a substitute suggestion which is already in the 
recipe is not allowed. Some examples of a mutated recipe are shown in Fig. 4C.

Dietary recommendations.  When recommending recipes to a patient, it is also important to take into 
account other factors such as allergies, food preferences and general nutritional guidance. The flexibility of our 
approach and scoring function makes this possible. We showcase this by further optimising our recipes to take 
into account allergies and food preferences. Additional input is given to the model in the form of a list of user 
allergies and a dictionary of user food preferences. The allergy list contains which of the 14 main food allergens 
the user has and the food preference dictionary has keys corresponding to ingredients and values being a score 
of 1–5 indicating the patient’s like of the food (1 indicating a strong dislike and 5 a strong like). In order to take 
into account this information, we create a database containing all the unique ingredients and whether they 
satisfy each of the 14 allergies. Given an allergy list input, we loop through all recipes and make an ingredient 
substitution for all ingredients where the patient is allergic. If there doesn’t exist a substitution or all substituted 
ingredients also cause allergies then the recipe is removed. We then optimise these new recipes as before to take 
into account both the number of radioresponse modulators and also the patient’s food preferences. This is done 
by making ingredient substitutions in a recipe if either the patient prefers the new ingredient or if there is an 
increase in the number of radioresponse modulators whilst also enforcing that there is not a reduction in the 
other.

Data availability
All data used in the paper is publicly available. Genome data can be collected from STRING40 (https://​string-​db.​
org), UniProt41 (https://​www.​unipr​ot.​org), COSMIC42 (https://​cancer.​sanger.​ac.​uk/​cosmic), and NCBI Gene43 
(https://​www.​ncbi.​nlm.​nih.​gov/​gene/). Drug data can be extracted from DrugBank44 (https://​www.​drugb​ank.​
ca), DrugCentral45 (http://​drugc​entral.​org), and STITCH46 (http://​stitch.​embl.​de). Food data can be extracted 
from FooDB47 (https://​foodb.​ca) and STITCH46 (http://​stitch.​embl.​de). The recipes can be obtained from 
Recipe1M36 (http://​pic2r​ecipe.​csail.​mit.​edu/) and the Multiscale Interactome data and analysis from (github.
com/snap-stanford/multiscale-interactome)23.
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