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Abstract

In this thesis, we explore the problem of facial attribute analysis and editing in images, from

the scope of two major fields of Machine Learning, those of Components Analysis (CA) and Deep

Learning (DL). First, we present a CA method for analysing and editing facial data. Then, we

present a DL algorithm for animating facial images according to expressions and speech. Finally,

we present a method for improving gaze estimation generalisation to unseen image domains and

showcase applications to eye gaze editing.

Although CA methods are able to capture only linear relationships in data, they can still be

useful with well-aligned data, such as UV maps of facial texture. In this Thesis, we propose robust

extensions of the Joint and Individual Variance Explained (JIVE) method, for the recovery of joint

and individual components in visual facial data, captured in unconstrained conditions and possibly

containing sparse non-Gaussian errors and missing data. We demonstrate the effectiveness of the

proposed methods to several computer vision applications, namely facial expression synthesis and

2D and 3D face age progression in-the-wild.

CA methods usually fall short in image generation, as they fail to generate details. On the

contrary, Image-to-image (i2i) translation, which is the problem of translating images between

image domains, has recently seen remarkable progress since the advent of DL and Generative

Adversarial Networks (GANs). In this Thesis, we study the problem of i2i translation, under a set

of continuous parameters that correspond to statistical blendshape models of facial motion. We

show that it is possible to edit facial images according to expression and speech blendshapes using

“sliders”, which are more flexible than discrete expressions or action units.

Lastly, realistically animating gaze is crucial for achieving high quality facial animations. To

this end, large datasets of faces with gaze annotations are required for training. In this Thesis,

we present a weakly-supervised method for improving gaze estimation generalization to unseen

domains, by harnessing arbitrary unlabelled “in-the-wild” face images. Unlike previous meth-

ods, we tackle gaze estimation as end-to-end, dense 3D reconstruction of eyes and experimentally

validate the benefits of this choice. Particularly, we show improvements in semi-supervised and

cross-dataset gaze estimation. Finally, we showcase how our methods can be employed for training

efficient models for gaze editing.
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1.1 Problem Scope

In recent years, it has been more popular than ever to use digital media in various aspects of human

life such as entertainment, communication and education. This is mainly due to the interactivity they

offer in comparison to more traditional means, as well as the possibilities they offer for new and

exciting applications or products. For example, video conferences have eliminated the consideration

of distance from effective human communication and collaboration, while modern digital animation

tools have long enabled the production of high quality films and video games which would otherwise

be impossible.

The human face is one of the most expressive parts of the human body, while at the same time it is

one of the most challenging to parameterise and reproduce by digital means. Undoubtedly, facial rep-
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resentation and animation of very high quality have already been achieved and showcased by modern

movies and video games. However, these results are mostly the outcomes of the significant manual

effort of tens or hundreds of 3D character creators and animators working for their production. There-

fore, to decrease the cost and time required to produce such works, as well as to be able to incorporate

the human face in more common interactive digital applications, automatic methods to support face

analysis, editing and animation have to be developed.

Face attribute analysis and editing is a prominent problem in the field of Computer Vision, which

refers to the process of automatically identifying and manipulating characteristics of the human face

such as age, expression, gender, identity, gaze direction, hair style, hair colour, etc. Significant ad-

vancements have been recently made in this field, mainly due to the advent of Deep Learning (DL)

and the large amounts of available data. In particular, generative modelling has seen substantial im-

provements following the developments of Generative Adversarial Networks (GANs) [1], leading to

unprecedented levels of detail achieved in 2D face generation and animation [2, 3].

Through the years, multiple approaches have been adopted for analysing and editing facial features

in images and 3D data, including Component Analysis (CA) methods and Deep Learning (DL) ones. In

more detail, Component Analysis (CA) methods have been employed to discover underlying structures

in facial data, which have been useful for performing both discriminative and generative tasks, such

as face identification [4, 5, 6], facial expression recognition [7, 8, 9] and image imputation [10, 11].

Especially, methods based on CA can still achieve high performance in 3D shape modelling of the

human face and head [12, 13].

Joint and individual variation among different views of facial data is a type of underlying structure

with particular importance for identifying and manipulating facial attributes. Several CA methods that

attempt to address this problem have been proposed in literature [14, 15, 16]. However, gross, sparse,

non-Gaussian errors in facial data, such as the salt-and-pepper noise in imaging devices, occlusions

in facial images, etc., can cause the above methods to be unstable. In the first part of the Thesis we

present a CA algorithm for discovering joint and individual variation in facial data, while also handling

data contaminated by errors. We demonstrate the merits of our technique in 2D and 3D face attribute

manipulation and identity verification.

Even though CA methods have been successfully applied to various face analysis and editing tasks as
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mentioned above, they are still restricted by their ability to recover only linear relationships between

data. In contrast, DL-based approaches can deal with more complex and demanding tasks, such as

high-quality image generation where GANs have exhibited significant improvements.

Facial expression synthesis in images is an application which has greatly benefited by the develop-

ment of GANs and DL. Recent methods, have been able to learn translations between two or more

distinct image domains (e.g. collections of images of people in two or more different facial expres-

sions), capturing high frequency details, such as wrinkles and details of eyes and teeth [17, 18, 19, 20].

However, none of the above techniques allow continuous editing of faces regarding arbitrary facial

motion. In this Thesis, we present an approach to address this problem by utilising 3D statistical

blendshape models of expression as a more intuitive means to control facial motion and demonstrate

its benefits for face editing in images regarding both expression and speech.

Among facial attributes discussed above, such as facial expressions, age, identity, etc., gaze is one

of the most important characteristics in achieving realistic facial animations. Gaze constitutes an es-

pecially informative visual cue for understanding someone’s emotional state or level of attention, thus,

even slight mistakes can cause animated faces to seem unrealistic or robotic. Additionally, manu-

ally animating gaze direction can be particularly demanding due to saccadic movements of eyes, i.e

fast movements that abruptly change the point of someone’s attention. The above reasons pose the

requirement for developing automatic techniques for accurate gaze following and editing.

In order to train effective methods for gaze editing, large datasets of faces with gaze annotations

are required. Employing pseudo-annotations using off-the-shelf gaze estimation networks, is an at-

tractive but sub-optimal option, especially due to the cross-domain generalisation problems of most

gaze retrieval methods [21, 22, 23, 24, 25]. In this Thesis, we present a method for improving gen-

eralisation of automatic monocular gaze estimation models that operate on RGB images, harnessing

arbitrary unlabelled face images which are abundantly available in the internet, through our weak su-

pervision training framework. Moreover, we employ our models to extract robust gaze annotation from

“in-the-wild” data, which we employ to train efficient gaze editing systems.
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1.2 Motivation and Objectives

In this Thesis, we explore the problem of face attribute analysis and editing, proposing and experiment-

ing with novel algorithms from two different areas of Machine Learning (ML), namely Component

Analysis (CA) and Deep Learning (DL). First, we present linear CA methods for analysing and editing

face data according to specific attributes. Then, we report an algorithm for editing face expressions in

images, based on DL and Convolutional Neural Networks (CNNs). Finally, by specifically modeling

the human eyes in 3D, we propose to recover gaze in a weakly-supervised fashion and develop an

algorithm for gaze manipulation on facial images. A common aspect of all methods presented here is

that 3D representations and codes of the face are imposed in the structure of the algorithms or data.

Here, we present the motivation behind each of the three main research questions we attempt to answer

in this Thesis, before progressing into defining the objectives of this work. In particular, the problems

we try to solve are the following:

• Problem 1 Face images consist of hidden components largely connected to the inherent struc-

ture and properties of human faces, as well as components related to explicit attributes such

as age, gender and facial expression. Discovering those over collections of face images annot-

ated with regards to single or multiple attributes, could be crucial for the tasks of face image

synthesis and editing. However, images captured in unconstrained conditions pose significant

challenges due to occlusions and missing values, rendering common CA techniques unsuitable

for the task. Thus, we pose the following question: Can we develop robust alternatives to known

CA algorithms in our attempt to discover useful components from “in-the-wild” face data and

employ them to improve performance in attribute transfer and face editing tasks?

• Problem 2 DL techniques and particularly Generative Adversarial Networks (GANs) have re-

volutionised image-to-image (i2i) translation tasks, outperforming previous solutions by large

margins. Particularly, face expression synthesis has been greatly benefited by recent i2i trans-

lation methods. However, early techniques were limited to handling single basic expressions

and specific expression intensities. Since expressions cause continuous deformations to the

human face and are not limited to a particular set of labeled expressions, is it possible to de-

velop algorithms that control expressions in images based on continuous, generalised and easily

perceivable codes, such as the weights of statistical 3D expression blendshapes? Therefore,
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is it possible to develop i2i translation techniques, based on Generative Adversarial Networks

(GANs), that can be used to produce continuous and smooth animations from single input faces?

• Problem 3 Gaze estimation has been one of the tasks that have been benefited from the ad-

vent of DL algorithms and novel related datasets. Nevertheless, difficulties in collecting diverse

data both in terms of the number of different subjects and capturing environments, have led to

gaze estimation techniques that do not generalise well to unseen conditions. Recent attempts

to improve generalisation are still limited by their approach to inferring gaze as angle or vector

regression, ignoring the fact that gaze is inherently a 3D space problem. Based on both previous

observations, would it be possible to build gaze estimation methods that consider the 3D struc-

ture of eyes and at the same time employ “in-the-wild” face data to improve cross-domain gaze

estimation? Moreover, being able to extract robust gaze labels from “in-the-wild” images, could

we propose an i2i translation method for accurate gaze manipulation in facial images, further

demonstrating the possible applications of facial attribute editing?

Having presented the main challenges we have identified and considered in this work regarding

facial attribute editing using Machine Learning methods, we summarise the objectives of this Thesis

as follows:

• Objective 1 Having a collection of “in-the-wild” face images annotated for a single attribute,

such as expression or age, we aim to develop robust algorithms to discover joint and individual

components, referring to face and attribute-specific components respectively. Particularly, we

are able to extend the so-called Joint and Individual Variance Explained (JIVE) method, and

propose a robust alternative that can handle occlusions and missing data. We demonstrate the

effectiveness of the proposed method on several computer vision applications, namely facial

expression synthesis and 2D and 3D face age progression “in-the-wild”.

• Objective 2 Most face expression synthesis methods operate under a limited number of condi-

tion labels corresponding to distinct expressions. Other methods, rely on AUs to model expres-

sion with continuous codes, however, AUs cannot be easily employed for annotating images or

generating expressions, unless these tasks are done by experts. Therefore, we aim to develop i2i

translation algorithms to overcome both previous limitations, by relying on continuous and easily
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perceivable 3D expression blendshapes and expression pseudo-labels extrcted by 3D Morphable

Model (3DMM) fitting. In that way, we demonstrate continuous control of face deformation in

images not only regarding facial expressions but also speech, indicating that blendshape coding

can be an efficient generalised approach to i2i translation-based face image editing.

• Objective 3 Most gaze estimation algorithms rely on existing annotated datasets and infer gaze

directly as angles, vectors or points on screen. However, predicting dense geometry instead of

few parameters has been beneficial for tasks such as body and face pose estimation. Moreover,

weak-supervision has been already successfully employed for training body pose estimation

algorithms without any annotated data. In this work, we aim to combine the previous observa-

tions and develop a gaze estimation system which is based on 3D eye reconstruction and is not

limited by the available gaze datasets. Instead, it can learn gaze from any “in-the-wild” face

dataset through a weakly-supervised training framework. As we demonstrate, incorporating

“in-the-wild” face images in training, can significantly improve gaze estimation generalisation

to unseen domains. Especially, robust models for gaze estimation can be trained without any

gaze supervision. Lastly, we demonstrate the quality of robust gaze pseudo-labels extracted by

the above algorithms, by proposing a single-shot, multi-face gaze estimation method and an i2i

translation application for gaze editing on faces “in-the-wild”.

1.3 Contributions and Thesis Overview

In this Section, we provide a concise overview of the structure of this Thesis, delving into more de-

tails about the exact contributions achieved by completing the objectives described in Section 1.2. In

particular:

• In Chapter 2, we provide technical background knowledge which is necessary to comprehend

the content of the following chapters, as well as we present methods from literature that inspired

and challenged our developed methodologies. Particularly, we first provide a short review, as

well as details on methods for 3D reconstruction of faces “in-the-wild”. Especially, We focus

on 3D Morphable Models (3DMMs) of the face, as they are employed by the work in Chapter 3

for obtaining aligned unwrapped textures (UV maps) from images and the work in Chapter 4
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as a method to encode expression deformations in face images. Then, we detail the CA meth-

ods JIVE [14], COBE [15] and RCICA [16], which are all prior work to our RJIVE method

presented in Chapter 3. Lastly, we provide background knowledge on GANs [1, 26] and present

the fundamental image-to-image (i2i) translation methods pix2pix [17], CycleGAN [18] and

StarGAN [19] which have constituted the basis for developing SliderGAN in Chapter 4.

• In Chapter 3, we present our work “Recovering Joint and Individual Components in Facial

Dat” [27], in which we introduce a robust extension to the JIVE algorithm [14], able to handle

sparse, gross errors and missing information in facial data. The proposed RJIVE decomposes

the data into three terms: a low-rank matrix that captures the joint variation across views, low-

rank matrices accounting for structured variation individual to each view, and a sparse matrix

collecting the sparse gross errors. Different alternatives of RJIVE are introduced regarding the

automatic estimation of the rank of the recovered components, as well as their orthogonality.

Additionally, two optimisation problems to reconstruct test samples based on the extracted com-

ponents are proposed along with algorithms based on the Alternating-Directions Method of Mul-

tipliers (ADMM) [28] to tackle them. The proposed methods are applied in three challenging

computer vision tasks, namely facial expression synthesis and face age progression in 2D images

and 3D data captured “in-the-wild”.

• In Chapter 4, we present our work “SliderGAN: Synthesising Expressive Face Images by Slid-

ing 3D Blendshape Parameter” [29], in which we introduce SliderGAN, an algorithm to create

synthetic expressions from face images by controlling the weights of a statistical model. Partic-

ularly, we are motivated by the successes in 3D face reconstruction methodologies from “in-the-

wild” images [30, 31, 32, 13, 33], which make use of a statistical models of 3D facial motion,

and propose a methodology for facial image translation using GANs driven by the continuous

parameters of the linear blendshapes. Contrary to StarGAN [19] which requires discrete annota-

tions and GANimation [20] which requires annotations of AUs, SliderGAN’s training is solely

based on pseudo-annotations provided by fitting a 3D Morphable Model (3DMM) to images [13]

(for expression deformations) or by aligning audio signals [34] (for speech deformations). We

support training by the use of synthetic data leveraging the reconstruction capabilities of stat-

istical shape models and demonstrate that SliderGAN-RaD, a variation of SliderGAN trained

within a Relativistic GAN framework [35], is able to produce textures of higher quality than
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when trained with the standard Wasserstein GAN with gradient penalty [36]. Finally, we show-

case that SliderGAN is able to synthesise smooth deformations of expression and speech for

on-demand animation, as well as for expression and speech transfer from source images and

videos.

• In Chapter 5, we provide details on our work “Weakly-Supervised Gaze Estimation from Syn-

thetic Views” [37], in which we propose a method to tackle gaze estimation as 3D reconstruc-

tion of eyes and exploit the abundant “in-the-wild” face images to improve gaze estimation

generalisation. Based on a unified 3D representation of eyes, i.e. a 3D eyeball template, we

obtain 3D pseudo-ground truth from existing gaze datasets and enforce multiple geometric con-

straints during training to learn gaze. Inspired by work on self-supervised 3D body pose es-

timation [38, 39, 40], we propose to train robust cross-domain gaze estimators from unlabeled

images of faces “in-the-wild”, by designing a weakly-supervised framework in which we en-

force multi-view geometric constraints that encourage consistent eye geometry across synthetic

views of the same subject. We demonstrate the benefits of our methodology in cross-domain

gaze estimation and social activity detection scenarios. Lastly, we demonstrate the validity of

our method’s results in two tasks a) single-shot, multi-face gaze estimation, which performs gaze

estimation in O(1) with regards to the number of faces in the scene and b) gaze re-targeting in

images, based on robust gaze pseudo-labels extracted without any gaze supervision.

• In Chapter 6, we provide a summary of the contents of this Thesis, draw conclusions and dis-

cuss about possible extensions and future works that could follow the research presented in the

previous Chapters.

1.4 Impact and Applications

The Chapters of this Thesis cover CA and DL methodologies developed to tackle specific tasks re-

garding face attribute editing. Even thought the main target of these chapters is to present effective

generative models, discriminative aspects exists in all our approaches. Combining the advantages of

both, our methods can be used in applications of various fields, such as:

Biometrics All methods proposed in this Thesis can be employed for improving the accuracy of bio-

metric applications. For example, face identification systems can benefit from low-rank representa-
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tions extracted by our CA method, from expression neutralisation performed by our DL expression

editing algorithm and from gaze frontalisation performed by our gaze editing system. Besides, our

“in-the-wild” gaze estimation can be employed to ensure liveliness and attention of the user in user

authentication scenarios.

Health and safety The human face, as well as the eye gaze constitute visual cues for the overall

health, attention, mental state and tiredness of individuals. Thus, our face analysis and editing and

gaze tracking methods could be employed to improve applications in which knowledge of the above

information is crucial, such as driver state monitoring systems in vehicles or remote health monitoring

systems.

Entertainment Automatic editing and animation methods have been extremely popular recently as

they have been deployed in mobile phones, video and photo editing software. All face editing tech-

niques presented in this thesis can be utilised for editing photographs of faces regarding various attrib-

utes or creating facial animations. Moreover, our gaze tracking could be utilised for foveated rendering

in VR/AR games and applications.

Human-Computer Interaction Understanding human emotions and intentions is a crucial aspect of

making human-computer interaction interfaces feel organic. Virtual assistants and automated customer

service systems, are some examples of applications which could benefit from the face attribute ana-

lysis and editing methodologies of this Thesis. Moreover, accessibility features could be enhanced in

interactive applications, by offering control via gaze.

Dataset Augmentation Training robust DL systems extensively relies on acquiring large amounts

of training data, covering as much as possible of the variation of the test sets. Our face attribute

editing methodologies can be directly employed for dataset augmentation supporting training of human

perception tasks such as emotion recognition, face landmarks localisation and gaze estimation.

1.5 Publications

In this Section, I provide the list of publications resulted from work I either lead or contributed in,

during the years I have been working as a PhD student at Imperial College London. In particular, I

first list the publications which are directly relevant to the work presented in this Thesis and then, the
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In this Chapter, we provide technical information, crucial for understanding the content of the fol-

lowing Chapters. In particular, we provide elaborate details on methods and subjects employed by

the works of this Thesis, as well as fundamental and related methodologies which have motivated and

challenged the development of our works. First, we discuss the subject of acquiring 3D representations

of faces from images and how these can be utilised as the main data representation by 2D face attribute

editing algorithms. Then, we present three CA methods, whose limitations we attempt to overcome

by the RJIVE algorithms of Chapter 3. The chapter continues with a discussion on some fundamental

works on generative modelling and i2i translation, which, since their inception, have inspired numer-

ous face attribute editing and animation techniques including ours, SliderGAN of Chapter 4 and our

gaze editing application of Chapter 5. We close the chapter, with a review on the more recent methods

of generative face image generation and editing which have recently revolutionize the field with the

image fidelity they provide, including 2D and 3D-aware GAN methods, volumetric avatar models and

diffusion-based approaches.

2.1 3D Reconstruction of Faces In-The-Wild

3D reconstructions of faces from natural 2D images refers to the process of recovering 3D models of

the shape and texture of the face, as well as models of the camera projection and illumination conditions

of the scene. Blanz and Vetter [41, 42] where the first to show that it is possible to reconstruct the facial

shape and texture from images by fitting on them statistical models of the facial shape and texture,

called 3D Morphable Models (3DMMs). Fitting 3DMMs on images involved solving an analysis-by-

synthesis problem, expressed as a nonlinear optimisation problem, constrained by the statistical models

of shape and texture as well as projection and illumination models reconstructing the scene.

Among face 3DMMs, the Basel model [43], build from scans of 200 people, has been the most

popular, while more models of larger scale have been made available through the years. To name

a few, the Large-Scale-Facial-Model (LSFM) [44] is a model of facial shape and texture built from

10K face scans, the Liverpool-York-head-Model [45] has been built from 1.2K head scans, modelling

the shape and texture of the whole head, while the Unified-Head-Model (UHM) [46] combines the

LSFM and LYHM and explicitly models the ears and eyes. Moreover, the FLAME (Faces Learned
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with an Articulated Model and Expressions) model [47] is built from 3.3K head scans and additional

articulation of pose and expression and the CoMA (Convolutional Mesh Autoencoder) model [48] is

built from 12.5K head scans from 12 subjects and models shape using mesh convolutions.

Since the work of Balnz and Vetter [41, 42], numerous methods for 3D face reconstruction based on

3DMMs have been proposed [49, 50, 51]. In particular, in [13] the authors proposed to employ stat-

istical texture models of the face, based on image features such as Scale Invariant Feature Transform

(SIFT) and Histogram Of Gradients (HOG), avoiding in this way to explicitly model scene illumina-

tion. Even thought [13] does not reconstruct facial texture, it can still achieve state-of-the-art results

in 3D facial shape reconstruction from “in-the-wild” images. Recently, the focus has been shifted

from traditional 3DMM fitting towards approaches that leverage Deep Convolutional Neural Networks

(DCNNs). According to these, DCNNs can be employed to learn a regression from images to the para-

meters of a 3DMM [52] in a supervised fashion, or unsupervised by harnessing differentiable renderers

or multiple images of the same person [53, 54, 30, 55, 56]. To obtain higher quality textures and facial

shape, some methods such as [31, 32] employ additional networks, called correctives, that operate on

top of those regressed by a 3DMM, while others utilise Generative Adversarial Models (GANs) to

model texture and fit it on images based on robust identity features [12].

Our aim is to employ 3D reconstruction strategies to recover 3D representations of faces from im-

ages, focusing on reconstruction of the facial shape rather than texture. In particular, we aim to employ

3D reconstructed faces from images to create data representations and codes useful for developing 2D

facial attribute editing algorithms. That is, in Chapter 3 we develop CA methods based on unwrapped

3D textures (UV maps) which are extracted by 3DMM fitting on images and provide a more elaborate

alignment space than 2D alignment. Moreover, in Chapter 4 we utilise 3D expression blendshapes as

a method to encode facial expressions in images and train DCNNs to edit expressions based on that

encoding. For both our goals described above, we have employed the 3DMM fitting strategy of [13],

as its feature-based texture model significantly helps recovering robust reconstructions from faces in

arbitrary conditions. To model identity and expression variation we utilise the LSFM and 4DFAB mod-

els respectively. In the rest of Section 2.1, we provide details on expression blendshapes, the 3DMM

fitting we use and how UV texture maps are extracted from 2D images.
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mean b/s 1 b/s 2 b/s 3 b/s 4 b/s 5

−3σ −3σ −3σ −3σ −3σ

+3σ +3σ +3σ +3σ +3σ

Figure 2.1: Visualisation of the 5 most significant components of the blendshape model of 4DFAB [59]
according to their eigenvalue magnitude. The 3D faces of this figure have been generated by applying
the components multiplied by weights equal to three times the standard deviation (3σ) to a mean face.
The image has been taken from [29]. The figure shows how each individual expression component
controls specific parts of the 3D human face.

2.1.1 Expression Blendshape Models

Traditionally 3DMMs of the face or head are built from 3D scans of subjects in neutral poses, allowing

them to model shape variation with regards to identity, ethnicity, gender and age. To jointly model

expression, those shape models are usually fused with datasets focusing on facial deformation due to

expression. Such datasets are the Dynamic 3D FACS Dataset (D3DFACS) [57] which includes 10

subjects performing between 19 and 97 different motions specifically mapped to the Facial Action

Coding System (FACS) of Action Units, the FaceWarehouse [58] dataset which includes 3D scans of

20 expressions from each one of 150 participants and the 4DFAB [59] dataset which consists of 4D

videos of 180 subjects resulting in almost 2 million 3D face scans. Among those datsets, 4DFAB

includes the largest expression variation resulting in more powerful expression models [59], known

also as blendshape models.

Blendshape models are frequently used in computer vision tasks as they constitute an effective

parametric approach for modelling facial motion. The localised blendshape model [60] proposed a

method to localise sparse deformation modes with intuitive visual interpretation. The model was built

by sequences of manually collected expressive 3D face meshes. In more detail, a variant of sparse

Principal Component Analysis (PCA) was applied to a matrix D = [d1, ...,dm] ∈ R3n×m, which

includes m difference vectors di ∈ R3n, produced by subtracting each expressive mesh from the
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neutral mesh of each corresponding sequence. Therefore, the sparse blendshape components C ∈

Rh×1 where recovered by the following minimisation problem:

argmin ‖D−BC‖2F + Ω(C) s.t. V (B) , (2.1)

where, the constraint V can either be max (|Bk|) = 1, ∀k or max (Bk) = 1, B ≥ 1, ∀k, with

Bk ∈ R3n×1 denoting the kth component of the sparse weight matrix B = [B1, · · · ,Bh]. According

to [60], the selection of the constraints mainly controls whether face deformations will take place

towards both negative and positive direction of the axes of the model’s parameters or not, which is

useful for describing shapes like muscle bulges. The regularisation of sparse components C was

performed with L1/L2 norm [61, 62], while to compute optimal C and B, an iterative alternating

optimisation was employed. The exact same approach was employed by [59], in the construction of

the 4DFAB blendshape model exploited in this work. The 5 most significant deformation components

of the 4DFAB expression model are depicted in Fig. 2.1.

The blendshape models discussed above are most commonly 3D representations of the Facial Ac-

tion Coding System (FACS) as specific blendshapes control specific parts of the face as they have been

defined by this encoding. FACS-based blendshapes have been a popular tool the past few decades

for face animation employed for film and video game production, however significant skill is required

from artists to synthesize realistic animations. Other disadvantages include limited muscle separation,

redundancy and difficulty in localization [63]. To overcome these issues, a common solution for anim-

ators is to employ specific additional corrective deformers which increase the total number of involved

components.

Inspired by Mimic [64], an anatomically grounded language for facial deformation, authors in [65]

presented Animatomy, a novel representation of 3D human face modelling and animation, aiming to

solve the above problems. Animatomy models facial muscles as fiber curves and facial deformations

as the contraction and relaxation of those fibers. The model is built similarly to FLAME [47] as a 3D

shape decoder trained, according to the authors, with a significant amount of curated ground truth data.

While FLAME is associated with PCA parameters of some principal components which have limited

physical interpretation, Animatomy provide a more anatomically intuitive method to control animation

based on the muscle contraction via a set of facial fibers. Their end-to-end system can be employed

for automatic fitting on dynamic facial scans of a particular subject, face animation using expres-
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sion transfer from an acor’s performance and interactive face manipulation similarly to FACS-based

blendshapes. Experiments in [65] demonstrate superior reconstruction performance of Animatomy

compared to FACS-based blendshape models, while the feedback they have received in a conducted

survey with professional animators is mostly positive, highlighting its representation power and ease

of use.

Lastly, Animatomy is a recently published method and has not been employed by the face modelling

community yet as a facial motion representation for 3D or 2D animation. FACS-based systems have

been well established in the past decades with more new models emerging based on the same encoding.

Nevertheless, they do not come without limitations, as for example redundancy and limited muscle

disentanglement. Animatomy could provide a more fine-grained representation for animation.

2.1.2 3D Morphable Models

A 3DMM consists of three parametric models: the shape, camera and texture models. Here we fo-

cus on the components of the 3DMM of [13] which we have employed in our works, but the basic

techniques are the same across most 3DMMs.

Shape Modelling

The shape model must be able to represent faces of different individuals and with various expressions.

This is achieved by combining an identity shape model Sid which models face variation across different

individuals in neutral expression, and an expression shape model Sexp which models expression as

offsets from a given identity shape.

An identity shape model is built based on a collection of 3D face scans which are first brought into

dense correspondence with a common shape template by an ICP-based algorithm [66, 67, 68, 69],

then aligned by applying Generalised Procrustes Analysis before performing Principal Component

Analysis (PCA) which results in {s̄id,Uid,Σid}, where s̄id ∈ R3N is the mean shape vector, Uid ∈

R3N×nid is the orthonormal basis after keeping the first np principal components and Σid ∈ Rnid×nid

is a diagonal matrix with the standard deviations of the corresponding principal components. Letting

standard deviation to be absorbed by the principal components as Ũid = UidΣid, a 3D shape instance
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can be expressed as function of the parameters pid as:

Sid(pid) = s̄id + Ũidpid. (2.2)

An expression blendshape shape model is built by a collection of expressive 3D face scans as described

in Section 2.1.1. Similarly to Sid, the expression model consists of {s̄exp,Uexp,Σexp}, where s̄exp ∈

R3N is the mean expression offset, Uexp ∈ R3N×nexp is the expression basis, (which is not necessarily

orthonormal) having nexp principal components and Σexp ∈ Rnexp×nexp is the diagonal matrix with the

corresponding standard deviations. Again, standard deviation is absorbed by the principal components

as Ũexp = UexpΣexp. Then a 3D expression instance can be expressed as function of the parameters

pexp as:

Sexp(pexp) = s̄exp + Ũexppexp. (2.3)

Combining the models requires them to be in correspondence with a common reference template.

Assuming this is the case, the combined facial shape model of identity and expression is written as

follows:
S(p) = S(pid,pexp) = s̄ + Ũidpid + Ũexppexp

= s̄ + [Ũid, Ũexp][p
T
id,p

T
exp]

T

= s̄ + Ũp,

(2.4)

where s̄ = s̄id + s̄exp is the overall mean shape, pid is the vector with the identity parameters, pexp

is the vector with the expression parameters, Ũ is the matrix of combined identity and expression

components and p the vector of the respective combined parameters.

Camera Modelling

The camera model projects a 3D mesh instance s from the 3D Cartesian coordinates into the 2D

Cartesian coordinates on an image plane. In more detail, a 3D point x = [x, y, z]T is transformed to

a 2D location x′ = [x′, y′]T in the image plane, by first applying a view transformation such that v =

[vx, vy, vz]
T = Rvx + tv, where Rv ∈ R3×3 and tv = [tx, ty, tz]

T are the camera’s 3D rotation and

translation components, respectively. Then a camera projection is applied as x′ = π(cintr,v), where

cintr is a vector with the camera’s intrinsic parameters and π(cintr,v) is a perspective or an orthographic

camera model. To ensure computational efficiency, robustness and simpler differentiation, rotation

matrix Rv can be parameterised by quartenions instead of Euler angles. The projection operation
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performed on the points of a 3D mesh s by the camera model can be expressed as a function P(s, c) :

R3N → R2N , where c =
[
cTintr,q

T, tT
]T is the vector of camera parameters. When s is an instance

S(p) of the 3D shape model of the face, the camera function can also be written as:

W(p, c) ≡ P (S(p), c) . (2.5)

Texture Modelling

Contrary to texture models built based on texture from 3D face scans captured in controlled envir-

onments [70, 44, 41], building feature-based texture models out of “in-the-wild” facial images has

allowed to avoid the estimation of illumination parameters during fitting, while it has also made fitting

robust to occlusions [13].

To build a feature-based texture model, first a dense feature extraction function is defined as F :

RH×W×Ncolors → RH×W×C , where C is the number of channels of the feature-based image, and

applied on a collection of “in-the-wild” facial images {Ii}M1 . Then, assuming that shape and camera

parameters {p, ci} are available for each image by fitting the combined shape model on sparse face

landmarks, texture samples can be extracted by sampling the feature-based image representations at

the vertices of the projected 3D meshes, forming vectors ti = Fi (W(pi, ci)) ∈ RCN .

As texture samples ti include missing information and gross but sparse non-Gaussian errors caused

mainly by self-occlusions inherent in facial data, a texture reconstruction step needs to take place

before building the final model. That is, the Principal Component Pursuit problem [71] is solved to

recover a low-rank matrix L ∈ RCN×M representing the clean facial texture and a sparse matrix

E ∈ RCN×M accounting for gross but sparse non-Gaussian noise such that X = L + E, where

X = [t1, . . . , tM ] ∈ RCN×M is a matrix including the concatenated M feature-based texture vectors.

The final texture model is created by applying PCA on L, the set of reconstructed feature-based

textures. This results in {t̄,Ut}, where t̄ ∈ RCN is the mean texture vector and Ut ∈ RCN×nt is the

orthonormal basis after keeping the first nt principal components. This model can be used to generate

novel 3D feature-based texture instances based on texture parameters λ = [λ1, . . . , λnt ]
T with the

function T : Rnt → RCN as:

T (λ) = t̄ + Utλ. (2.6)
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3D Morphable Model fitting

3DMMs of the face are employed to reconstruct 3D facial meshes from input images. To do so,

an optimisation problem needs to be formed and solved for each input image I, in order to recover

parameters {pid,pexp, c} which reconstruct a model instance that best represents the face in image

I. In particular, in [13] the authors, based on the extensive literature in Lucas-Kanade 2D image

alignment [72, 73, 74, 75, 76, 77], form a Gauss-Newton-style minimisation problem as:

min
p,c
‖F (W(p, c))− T (λ)‖2 + cl ‖Wl(p, c)− `‖2 + cp ‖p‖2 , (2.7)

where the first term is a texture term depending on shape, texture and camera parameters and penalises

the squared L2 norm of the difference between the image feature-based texture that corresponds to the

projected 2D locations of the 3D shape instance and the texture instance of the 3DMM, the second

term is a sparse landmarks term defined on the image coordinate system and aims to drive the op-

timisation procedure using the selected sparse landmarks as anchors, and the last term is a parameter

regularisation term employed to avoid over-fitting.

The problem of (2.7) is solved by adopting a project-out optimisation approach, which enables

optimisation on the orthogonal complement of the texture subspace. This eliminates texture parameter

increments at each iteration and makes the process faster than the more widely-used Simultaneous

algorithm [75, 78, 33]. More details on the optimisation algorithm can be found in [13].

2.1.3 Facial Expression Coding with AUs and Expression Blendshapes

Facial Action Units (AUs) [79] coding constitutes a comprehensive approach for quantifying facial

motion, which is based on identifying the activation of individual muscles of the human face. Partic-

ularly, each AU corresponds to a specific muscle of the human face, while the level of activation of

each AU can also be measured. In total there exist 44 Action Units, some of which are depicted in Fig-

ure 2.2. The level of detail offered by AU coding makes it ideal for defining rigorous representations

of facial expressions and emotions. Because of that, multiple works have employed AUs for training

emotion and expression recognition systems [80, 81, 82, 83, 84].

However, identifying the activated AUs in a facial image is a tedious task which requires particular

expertise. This makes acquiring AU annotations for large datasets of facial images costly and ineffi-

cient. Moreover, automatic Action Unit detection is currently an open problem both in controlled, as
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Figure 2.2: Action Units describing the motion of specific facial muscles in the human face. Individual
AUs focus on the motion of specific muscles of the face, allowing the encoding of complex expressions
using distinct and exact AU combinations. A drawback of AU coding is that expert knowledge is
required to extract AU annotations. Image is taken from [88].

well as in unconstrained recording conditions. In particular, recent AU detection techniques achieve

around 50% F1 in EmotioNet challenge and from our experiments OpenFace [85] achieves lower than

20-25% [86, 87]. Another drawback of automatic AU detection is that it can be performed for specific

subsets of AUs only, not covering the full range of possible facial motion (e.g. motion of the lips).

On the contrary, simpler, more flexible, intuitive and automatically identifiable representations of

facial motion would make a better fit for applications such as expression recognition, facial animation

and expression editing. 3D expression blendshapes constitute such a representation of facial motion

which is already a standard for 3D animation. They can be manually sculpted by 3D artists or built

from collections of expressive 3D face scans as described in Section 2.1.1, which results in more

realistic facial deformations. An example of a facial deformation blendshape model is the model

of 4DFAB [59] which is presented in Figure 2.1. In comparison to AUs, blendshape components
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Image Image Image Image

Figure 2.3: 3D representation of expression in images, given by the blendshape model Sexp and para-
meters pexp recovered by fitting the 3DMM of [13] on the corresponding images. The 3D reconstruc-
tions demonstrate that 3D blendshape coding can be a useful expression embedding for face images.
Images are taken from [29].

correspond to possible motions of the human face (for example, opening the mouth, squinting, raising

eyebrows, moving mouth and nose together from side to side) which might involve multiple facial

muscles, while AUs correspond to specific muscles of the face. One advantage of 3D blendshapes over

AUs is that manipulating expressions or creating new ones does not require expert knowledge, as the

edited 3D face instance can be directly observed within a 3D viewer. Moreover, automatic estimation of

expression blendshapes from facial images has been an active research topic with significant reported

advancements [13, 12, 53, 54].

In the works of Chapter 3 and Chapter 4 of this Thesis, we have adopted the method of [13] to

recover representation from images based on 3D expression blendshape coding. In Chapter 3, the

technique serves as a means to recover aligned UV map representations from expressive “in-the-wild”

facial images, while in Chapter 4 as a method to extract pseudo-annotations about expression which are

employed to train a system for expression editing in images. Particularly, by fitting the 3DMM of [13]

in an input image I, we can extract identity and expression parameters pid and pexp that instantiate the

recovered 3D face mesh S(pid,pexp), as described in Section 2.1.2. Based on the independent shape

parameters for identity and expression, we exploit parameters pexp to compose an annotated dataset

of images and their corresponding vector of expression parameters {Ii,piexp}Ki=1, with no manual

annotation cost. Examples of images and the 3D instances recovered by the above procedure and
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(a) (b) (c) (d)

Figure 2.4: Generation of a UV texture map with missing values from a standard 2D image. Given
an image (a), we recover the 3D facial shape by fitting a 3DMM on it (b) and sample texture at the
locations of the projected vertices (c). In this way, we compute the UV texture map along with the
occluded parts (d).

including only expression deformation are depicted in Figure 2.3.

2.1.4 Dataset Alignment in UV Spaces

A 3D mesh can be represented by a matrix X = [x1
T,x2

T, . . . ,xN
T]T ∈ R3N of N vertices

xi = [xix, x
i
y, x

i
z] ∈ R3 and a list of triangles T = [t1

T, t2
T, . . . , tM

T]T, where the triad ti =

[ti1, t
i
2, t

i
3], tij ∈ {Z+ | tij ≤ N} indicates the vertices forming triangle i. Moreover, a mesh’s

texture is given as a 2D image I from which colour is sampled using specific texture coordinates

C = [c1
T, c2

T, . . . , cN
T]T ∈ R2N , where ci = [ciu, c

j
v] ∈ R2, which map vertices of the mesh to

specific 2D image locations.

Texture coordinates C essentially constitute 2D representations of 3D meshes. Forming continuous

2D representations of meshes enables us to process 3D meshes using image-based techniques. UV

spaces U ⊂ R2 are such continuous spaces for which a bijective mapping exists between X and

U such that f(x) 7→ u and f−1(u) 7→ x for all u ∈ U, meaning that exact correspondence exists

between the 3D coordinates of a mesh and the 2D coordinates of a UV space. Cylindrical and spherical

coordinate projections are commonly used to define UV spaces for facial meshes.

Having established a UV space mapping, texture of 3D meshes can also be projected into that space

forming continuous UV maps [89], which are suitable for processing using standard image processing

and parameterisation techniques. For example, aligning 3D face scans with specific mesh templates

have been achieved by aligning the UV map images using 2D image alignment techniques instead
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Image 3D (UV space)
alignment

2D
alignment Image 3D (UV space)

alignment
2D

alignment

Figure 2.5: Images aligned in a common 2D shape defined by sparse 2D facial landmarks and in
a common UV space defined by unwrapping the template of the LSFM [44] 3D face model. Even
thought texture is sampled and distributed by the same mechanism of piece-wise affine transformations,
3D fitting of a dense 3D model on images results in aligned representations with fewer artifacts. In
yellow rectangles are highlighted some artifacts of 2D alignment.

of directly working in 3D [44, 24]. Besides, when exact correspondence exists between a set of 3D

meshes, the corresponding UV texture maps are also rigorously aligned, making them suitable for

building statistical texture models by applying Component Analysis techniques.

Texture acquired from 3D scanning devices can be directly projected to UV spaces forming com-

plete UV maps. However, aligning standard 2D face images in UV space is also possible by fitting a

3DMM on “in-the-wild” images and sampling them at the locations of the projected vertices. Then, the

sampled textures are projected on UV space using the texture coordinates C. The steps of this process

are presented in Figure 2.4. As it can be seen, UV maps recovered from natural facial images include

missing values (depicted with black) along with sparse, non-Gaussian noise caused by occlusions, ac-

cessories and capturing noise. On the contrary, aligning images in UV space provides the advantage

of having less warping effects in comparison to 2D image alignment methods, as shown in Figure 2.5.

In our work presented in Chapter 3 of this Thesis, we employ UV texture maps that are precisely

mapped to 3D models of human faces and particularly to instances of the LSFM face model [44], as
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for example the ones depicted in Figure 2.5. There, we develop robust, linear models of texture, which

we employ for facial image reconstruction and editing, leveraging the benefits and overcoming the

challenges posed by UV maps.

2.2 Component Analysis Methods for Face Attribute Analysis and

Editing

Component Analysis (CA) methods are useful to discover important underlying structures in all sorts of

data including datasets of facial images. Structures discovered through these methods can be employed

for downstream tasks by discriminative models or for image generation and editing as in RJIVE [27].

Undoubtedly, Principal Component Analysis (PCA) [90, 91, 92], is the most widely used method for

dimensionality reduction. PCA projects the data in a lower dimension space maintaining the maximum

variance between them. Focusing on extracting joint components among data, the Canonical Correl-

ation Analysis (CCA) [93] can be employed to extract linear correlated components among two or

more sets of variables, while the inter-battery factor analysis [94] also determines the common factors

among two sets of variables.

To discover both joint and individual structures in datasets, the Joint and Individual Variation Ex-

plained (JIVE) [14], the Common Orthogonal Basis Extraction (COBE) [15], and the Robust Correl-

ated and Individual Component Analysis (RCICA) [16] were proposed. In this Section, we briefly

review the three methods, as they are the most closely related methods to our CA method, the RJIVE,

presented in Chapter 3.

2.2.1 Joint and Individual Variation Explained (JIVE)

The JIVE recovers the joint and individual components among M ≥ 2 data-sets {X(i) ∈ Rd(i)×J , i =

1, 2, . . . ,M}, where J is the number of samples of each data-set. In particular, each matrix is decom-

posed into two terms: a low-rank matrix J(i) ∈ Rd(i)×J capturing joint structure between data-sets and

a low-rank matrix capturing individual structure A(i) ∈ Rd(i)×J to each data-set. That is,

X(i) = J(i) + A(i), i = 1, 2, . . . ,M. (2.8)
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Let X and J, be
∑M

i=1 d
(i)×J matrices constructed by the concatenation of the corresponding matrices

i.e., X = [X(1)T,X(2)T, . . . ,X(M)T]T, J = [J(1)T,J(2)T, . . . ,J(M)T]T, the JIVE solves the rank-

constrained least-squares problem [14]:

min
J,{A(i)}Mi=1

1

2

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T∥∥∥∥2

F

.

s.t. rank(J) = r, {rank(A(i)) = r(i),JA(i)T = 0}Mi=1

(2.9)

Problem (2.9) imposes rank constraints on joint and individual components and requires the rows

of J and {A(i)}Mi=1 to be orthogonal. The intuition behind the orthogonality constraint is that, sample

patterns responsible for joint structure between data types are unrelated to sample patterns responsible

for individual structure [14]. By adopting the least squares error, the JIVE assumes Gaussian dis-

tributions with small variance [95]. Such an assumption rarely holds in real word data, where gross

non-Gaussian corruptions are in abundance. Consequently, the components obtained by employing the

JIVE in the analysis of grossly corrupted data may be arbitrarily away from the true ones, degenerating

their performance.

2.2.2 Common Orthogonal Basis Extraction (COBE)

A closely related method to the JIVE is the COBE which extracts the common and the individual

components from M data-sets of the same dimensions by solving a set of least-squares minimisation

problems [15]. More specifically, each data-set X(i) ∈ RJ×d(i) is factorised as A(i)B(i)T where a

column of A(i) signifies a latent variable to be found and B(i) signifies a matrix of weights. A(i)

is assumed to be decomposable in blocks as
[
ĀÃ(i)

]
where Ā ∈ Rn×m, Ã(i) ∈ Rn×(d(i)−m) and

m ≤ min{d(i), i = 1, · · · ,M}. In other words, Ā is assumed to be common to all factorisations and

hence it presents joint structure while Ã(i) is assumed to represent individual structure. Similarly, B(i)

splits as B̄(i) and B̃(i). The optimisation problem of the COBE takes the following form:

min
Ā,Ã(i)

M∑
i=1

∥∥∥X(i) − ĀB̄(i)T − Ã(i)B̃(i)T
∥∥∥2

F
.

s.t. ĀTĀ = I, {Ã(i)TÃ(i) = I, ĀTÃ(i)T = 0}Mi=1.

(2.10)

Similarly to the JIVE, the usage of the least square error makes the COBE non-robust against sparse,

non-Gaussian errors.
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2.2.3 Robust Correlated and Individual Component Analysis (RCICA)

The goal of the RCICA [16] is to extract both the correlated and the individual components between

two known high-dimensional datasets or views namely, {X(i) ∈ Rd(i)×J}2i=1, in the presence of sparse

noise (or errors). To this end, the RCICA seeks a decomposition of each data matrix {X(i)} into three

terms:

X(i) = C(i) + A(i) + E(i), i = 1, 2. (2.11)

where C(i) ∈ Rd(i)×J and A(i) ∈ Rd(i)×J are low-rank matrices, with rank(C(i)) ≤ kc and rank(A(i))

≤ k(i) and mutually independent columns, capturing the correlated and individual components, re-

spectively and E(n) ∈ Rd(i)×J is a sparse matrix accounting for the sparse noise.

To find the correlated components C(i) ∈ Rd(i)×J , the cost function of the Canonical Correl-

ation Analysis (CCA) [93] is adopted. That is, by further decomposing the matrix {C(i)}2i=1 as:

C(i) = U(i) V(i)T X(i), the maximally correlated components are derived by minimising the CCA

cost, namely λc
2 ‖V

(1)TX(1) −V(2)TX(2)‖2F . Here, U(i) are orthonormal basis, transforming the cor-

related components back to the observation space X(i). Since, the column space of the individual

components A(i) is desired to be orthogonal to the one of the correlated components we have to en-

force {Q(i)TU(i)}2i=1 = 0, where Q(i) are column orthonormal basis spanning the column space of

the individual components A(i), that is A(i) = Q(i) H(i).

Consequently, a natural estimator accounting for the upper-bounded rank of the correlated and inde-

pendent components and the sparsity of {E(i)}2i=1 is to minimise the objective function of CCA, i.e.,
1
2‖V

(1)TX(1) −V(2)TX(2)‖2F as well as the rank of {C(i) = U(i) V(i)T X(i),A(i) = Q(i) H(i)}2i=1

and the number of nonzero entries of {E(i)}2i=1 measured by the `0-(quasi) norm, e.g., [96].

To avoid the NP-hardness of rank and `0-norm minimisation,the nuclear- and the `1- norms are

typically adopted as surrogates to rank and `0- norm, respectively [97, 98]. By employing the unitary

invariance of the nuclear norm e.g., ‖Q(i)V(i)T‖∗ = ‖V(i)T‖∗ the optimisation problem of RCICA is
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formulated as the following constrained non-linear one:

min
V

2∑
i=1

[
‖V(i)T‖∗ + λ

(i)
∗ ‖H(i)‖∗ + λ

(i)
1 ‖E

(i)‖1
]

+
λc
2
‖V(1)TX(1) −V(2)TX(2)‖2F ,

s.t. (i) X(i) = U(i)V(i)TX(i) + Q(i)H(i) + E(i)

(ii) V(i)TX(i)X(i)TV(i) = I,

(iii) U(i)TU(i) = I, Q(i)TQ(i) = I,

(iv) Q(i)TU(i) = 0, i = 1, 2,

(2.12)

where the positive parameters λc, λ
(1)
∗ , λ(2)

∗ , λ(1)
1 and λ(2)

1 control the correlation, rank and sparsity

of the derived spaces and V = {U(i),V(i),Q(i),H(i),E(i)}2i=1 collects the optimisation variables.

The constraints (ii) in (2.12) have been adopted from the CCA [93] while the constraints (iii) and (iv)

ensure that both the recovered correlated and individual components are linearly independent.

Although the RCICA is robust to sparse, non-Gaussian error, its extension to more than two data-

sets is not trivial due to the orthogonality among the correlated and individual components and column

of orthonormality of the basis matrices U(i) and Q(i), i = 1, 2, . . .M , with M being the number of

different views. This makes the resulting optimisation problem highly-nonlinear and hence difficult to

solve.

2.3 Image-to-Image Translation for Face Attribute Analysis and

Synthesis

Component Analysis methods identify low-rank spaces of certain variations in facial data, which can

be employed for downstream tasks (e.g. age group classification, identity verification, etc.) or image

reconstruction and facial attribute manipulation (e.g. age group, identity, expression transfer etc.).

Nevertheless, due to the low-rank nature of the recovered structures, CA-based image reconstruction

and editing cannot produce photorealistic results with high frequency details, such as face wrinkles,

detailed eyes and teeth, etc.

Undoubtedly, Generative Adversarial Networks (GANs) [1] have recently revolutionised the field

of Computer Vision and especially generative tasks including but not limited to image generation.
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Unlike CA methods, GAN-generated images can achieve high levels of photorealism [2], influencing

numerous image generation and editing applications, including image-to-image translation. Image-

to-image (i2i) translation refers to the task of transferring a given image from a source domain X

to a target domain Y . For example, i2i translation tasks include, but are not limited to, transferring

sketches to images, black and white images to coloured ones, label maps to realistic images, paintings

to images, neutral faces to expressive ones, etc.

In this line of research, pix2pix [17] was one of the first methods to leverage the architecture of

the conditional GANs (cGANs) [26] to carry out the task of i2i translation. In pix2pix source images

operate as the condition of the generator and discriminator networks. Utilising pairs of images in

two different domains for training, pix2pix is able to transfer input images from a source to a target

domain. Following pix2pix, more i2i translation models where proposed to transfer images between

two or more distinct image domains [18, 19, 99], but soon more flexible methods for image generation

based on continuous domain codes were introduced [20, 29].

Arguably, face attribute editing in images is most often expressed as i2i translation based on an input

image and additional attribute specific codes. In the rest of this Section, we provide concise information

on GANs, conditional GANs, as well as some of the most important i2i translation methods, which

have constituted the basis for our face expression editing method, SliderGAN [29], presented in detail

in Chapter 4.

2.3.1 Generative Adversarial Networks

GANs normally consist of two modules, namely the generator G and the discriminator D, trained to

optimise two competing tasks. That is, given a vector of random noise z, the generator tries to produce

images as close as possible to the ones from a given distribution, while the goal of the discriminator

is to correctly classify images as real or fake, i.e. generated by G. By the end of the training process,

ideally,D cannot tell the difference between the two sources of images. The competing goals optimised

during training is ultimately the reason for the characterisation “Adversarial” to this class of generative

models. A visual representation of a typical GAN is presented in Figure 2.6 (a).

In mathematical terms, assuming pdata, pgen, pz are distributions of the real data, of the generated

ones and of random noise z, and x is a given real data point, the competitive task optimised by the

48



2.3. Image-to-Image Translation for Face Attribute Analysis and Synthesis

(a) GAN architecture

real sample

fake sample

Generator Discriminator

random
noise

fake
sample

(b) Fashion-MNIST real images (c) Fashion-MNIST generated images

Figure 2.6: (a) Overview of the architecture of GANs [1]. A Generator G produces images given a
noise vector z. Additionally, a Discriminator D tries to classify real and synthetic images as either
real or fake boosting the quality of the generated images. Real (b) and fake (c) samples of Fashion-
MNIST [100], generated by a GAN. The image with generated samples has been taken from [101].

generator and the discriminator can be expressed as:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))], (2.13)

where D maximises the probability of the correct label to be assigned to a given data sample, while

G tries to improve the quality of the generated data. Samples generated by a GAN trained on the

Fashion-MNIST dataset [100], as well as real ones are presented in Figure 2.6 (b)-(c).

Since the inception of GANs [1], numerous variations have been proposed in the literature, including

methods that introduce different GAN architectures [26, 102, 103, 17, 104, 2], as well as different

cost functions [105, 36, 106]. These methods are proposed to enhance the generation capabilities of

GANs and alleviate problems in training, such as vanishing gradients (if the discriminator is too good,

it doesn’t provide enough information for the generator to make progress) and mode collapse (the

generator produces only certain types of images that succeed in ”fooling” the discriminator).
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(a) cGAN architecture
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(b) Fashion-MNIST generated images

Figure 2.7: (a) Overview of the architecture of cGANs [26]. The Generator G
and discriminator are conditioned on a class label c additionally to the noise vec-
tor z. (b) Fake samples from specific classes of Fashion-MNIST [100], gen-
erated by a cGAN. The image with generated samples has been taken from
https://www.kaggle.com/arturlacerda/pytorch-conditional-gan/notebook,
which has been released under the Apache 2.0 open source license.

One characteristic of the original GAN architecture is that the generation process is random, mean-

ing that G randomly produces data from a learnt data distribution. To achieve some control over the

type or class of data to be generated, conditional GANs (cGANs) [26] were introduced. For example,

we might want to produce images from a specific class of clothes of the Fashion-MNIST dataset, e.g.

”T-shirts”. To solve that cGANs proposed to introduce class labels in the inputs of both the generator

and the discriminator, in addition to the random noise z or the real/generated samples respectively. A

overview of the cGAN architecture along with generated samples from specific classes of Fashion-

MNIST are depicted in Figure 2.7.

2.3.2 pix2pix

The pix2pix model [17] solves the problem of learning one-way translations between images of the

same object depicted in two different domains (e.g. night/day, winter/summer, segmentation map/image,

sketch/image, facial expression A/facial expression B, etc.). In particular, having a collection of im-
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Fake Pair Real Pair

Fake / Real Classification
Input Output

(1) (2)

(1) (2)

Figure 2.8: A diagram of the pix2pix model and data flow during training. Pairs of images of the same
scene/object but in two different domains are used to train the Generator. The Discriminator is trained
with pairs of images where the target domain image is either a real or a generated one. Images are
taken from the original paper [17].

ages (x1, . . . , xN ) of a source domainX and their corresponding instantiations (y1, . . . , yN ) in a target

domain Y , pix2pix attempts to learn a mapping between domains X and Y as F : X → Y .

To achieve that pix2pix utilises the cGAN framework to train a generator network G, which is con-

ditioned on input images x to produce the outputs as G : {x, z} → y, where z is random noise which

aids to avoid deterministic outputs. The generator G is a particular encoder-decoder architectures with

skip connections, named U-net [107], which helps to pass low-level information from input images to

the output ones in contrast to standard encoder-decoder networks which might be restricted by the ca-

pacity of the bottleneck. As in GANs and cGANs, the generator is trained to produce realistic images

by enforcing an adversary by simultaneously training a discriminator network D which operates on

images patches, coined PatchGAN [17], to distinguish between real images and fake ones produced by

G. A diagram of pix2pix is presented in Figure 2.8.

To optimise pix2pix the objective of cGANs is employed along with an L1 distance loss between

the pixels of the generated images and the ground truth ones to encourage G to produce outputs which

are as close as possible to the available ground truth. The total objective can then be written as:

min
G

max
D
LGAN (G,D) + λLL1(G), (2.14)

where:

LGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z))] (2.15)

is the cGAN objective,

LL1(G) = Ex,y,z[‖y −G(x, z)‖1] (2.16)

the pixel wise loss and λ a regularizer.
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Figure 2.9: A diagram of the CycleGAN model and data flow during training. Images of two separate
domains are employed during training and no pairs are required. During training, two separate map-
pings (Generators) and two Discriminators are trained within a cyclic loss. Images are taken from the
original paper [18].

2.3.3 CycleGAN

One drawback of pix2pix is the requirement for image pairs of the same object/subject in both source

and target domains, which is posed by the L1 pixel loss between generated and ground truth images.

To overcome this, authors in [18] proposed CycleGAN, a cGAN training framework based on cyclic

consistency of the image translation process. That is, exact image pairs are not necessary anymore, but

arbitrary images of the two domains are enough for training.

CycleGAN is trained to learn mappings between two image domains X and Y in both directions,

i.e. mappings G : X → Y and F : Y → X . Mappings G and F are implemented by two separate

generator networks with encoder-decoder architectures adopted from [108]. Two adversarial discrim-

inatorsDX andDY are also employed, whereDX aims to distinguish between images from domainX

and the ones generated as F (y), y ∈ Y , while DY aims to distinguish between images from domain Y

and the ones generated as G(x), x ∈ X . The above networks are trained by optimising the adversarial

loss of [1], which for networks G and DY is

LGAN (G,DY ) = Ey∼pdata(y)[logDY (x, y)] + Ex∼pdata(x)[log(1−DY (x,G(x))], (2.17)

where x ∼ pdata(x) and y ∼ pdata(y) are the data distributions, while for networks F and DX it is

similarly expressed as LGAN (F,DX).

Adversarial losses alone cannot guarantee that the learned functions can map inputs x to specific

outputs y. That is why a reconstruction loss is required to restrict the space of possible mapping
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outcomes. In pix2pix, this is achieved by the L1 loss between ground truth and generated images. In

CycleGAN, a cyclic mapping x → G(x) → F (G(x)) → x′ is assumed to be able to bring x back

to the original image. Similarly, reconstructions y′ of images of domain Y should be obtained by the

mapping chain y → F (y) → G(F (y)) → y′. These observations are employed to formulate a cycle

consistency loss as

Lcyc(G,F ) = Ex∼pdata(x)[‖x− F (G(x))‖1 + Ey∼pdata(y)[‖y −G(F (y))‖1]. (2.18)

An overall diagram of CycleGAN’s data flow during training is provided in Figure 2.9. Moreover,

the total objective is formed by combining the GAN and the cycle consistency losses weighted by a

regularising parameter λ as:

min
G,F

max
DX ,DY

LGAN (G,DY ) + LGAN (G,DY ) + λLcyc(G,F ). (2.19)

2.3.4 StarGAN

According to cycleGAN, generator networks can be trained to translate images between two specific

image domains without the requirement of exact supervision during training. However, if translations

between more than two domains need to be learnt, these must be learnt in pairs which means separate

models must be utilised and trained for each pair of image domains.

StarGAN [19] solves the previous issue by training a single generator model G to perform transla-

tions between multiple domains. This is achieved by conditioning G to the target domain label, i.e.

learning a mapping G : {x, c} → y. Additionally, the discriminator D of StarGAN is not only trained

to distinguish real and fake images, but also to predict the domain of an input image either it is real or

generated, which encourages the generator to produce images that match the desired domain distribu-

tion. That is, D is a CNN with two heads producing probability distributions for both image source

and image domain such as D : x→ {Dsrc(x), Dcls(x)}. A model diagram of StarGAN is provided in

Figure 2.10.

StarGAN is trained using the adversarial loss Ladv = LGAN (G,Dsrc), similarly to the previous

methods, which drives G to produce realistic images of a target domain c. Besides, classification

losses are introduced to train the classification head of D with both real and fake images, which are
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Figure 2.10: A diagram of the StarGAN model and data flow during training. In StarGAN a single
Generator G is trained conditioned on a target domain class vector c to perform image translation
between multiple domains. No pairs are required as supervision is obtained through cycle consistency.
The Discriminator D predicts the domain class vector of its input images along with classifying them
as real or fake, which enables domain specific generation for G. Images are taken from the original
paper [19].

formulated as:

Lrcls = Ex,c′ [− logDcls(c
′|x)] (2.20)

Lfcls = Ex,c[− logDcls(c|G(x, c))] (2.21)

Lastly, a reconstruction loss is employed to ensure that the generated images maintain the content of

input images changing only the domain specific information. The reconstruction loss is defined by a

cyclic transformation similarly to cycleGAN, with the difference of using a single generator model and

selecting the target domain by a domain label. That is the L1 reconstruction loss is defined as:

Lrec = Ex,c,c′ [‖x−G(G(x, c), c′)‖1]. (2.22)

The optimisation objectives for G and D are finally formulated as:

min
G
Ladv + λclsLfcls + λrecLrec, (2.23)

max
D
− Ladv + λclsLrcls, (2.24)
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where λcls and λrec are hyper-parameters controlling the contribution of the corresponding losses in

the total loss.

The StarGAN is closely related to our model SliderGAN discussed in Chapter 4 of this thesis. While

StarGAN controls domain translation by discrete domain codes, SliderGAN employs continuous codes

allowing for smooth translations in facial expression editing applications.

2.4 Recent Methods for Generative Editing and Implicit Modelling of

Faces

Recently, significant progress has taken place in the field of generative modelling of images including

images of the human face. These methods have allowed the generation and manipulation of face images

while maintaining significant levels of detail and realism. Four categories in which recent techniques

can be divided into, according to their 2D or 3D nature and their fundamental model structure are:

(a) Image-based methods, which include generative models such as GANS that directly act on the 2D

space of images, (b) 3D-aware GAN methods which leverage implicit 3D representations to model

the 3D geometry and offer pose consistent generation, (c) methods that create and modify Volumetric

Neural Face Avatars and (d) Diffusion-based models that handle generation as image demonising.

2.4.1 Image-Based Methods

Early face synthesis and editing methods were relying on reconstruction of the shape and texture us-

ing morphable models followed by forward rendering [109, 110, 111]. Because of the 3DMM, these

methods offer continuous and accurate deformations, nevertheless fail to model the non-facial parts

such as hair and the mouth interior and produce artifacts around the rendering area. To tackle these

problems, hybrids between 3DMM rendering and learning-based methods were developed. Starting

from 3DMM renderings, some methods have attempted to enhance their realism and add facial details

[112, 3, 113, 114, 115, 116, 117, 118]. Deep Video Portraits [114] and Deferred Neural Rendering

[117] are among the earliest methods that learn i2i translation networks for face image generation

based on rendered dense correspondence maps and correspondence-aware feature maps respectively.

In contrast, the methods in [118, 119, 120] rely on landmarks which is a more sparse face representa-

tion. Estimating motion in videos, First Order Motion Model [121] is able to transfer face animation
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between a source and a target video. Combining insight from the above, HeadGAN [3, 122] estimates

motion between a source and a target state, warps the source image and generates realistic faces based

on rendered dense [3] or sparse [122] face landmarks.

A key attribute of face image editing methods is the disentanglement of different facial character-

istics and motions. In such methods disentanglement cannot only be achieved by imposing 3D priors

such as the 3DMM, but also via optimizing the latent space of a network to learn decoupled repres-

entations that can be controlled by users to edit specific facial attributes. DiscoFaceGAN [112] learns

a disentangled latent space in an imitative-contrastive scheme, based on 3D face priors. Other works,

operate directly on pre-trained GAN models such as the StyleGAN [2], and attempt to disentangle

their latent space [123, 124, 125, 116] offering parametric control over the generation process. Dif-

ferently from these approaches, controlled image-based face manipulation has also been achieved via

editing 2D semantic masks [126, 127, 128, 129] or sketches [130, 131]. Among these SPADE [128] is

a general semantic-guided image generation method that utilizes spatially adaptive normalization and

produces appealing results with high semantic alignment.

Even though the above methods achieve photorealistic results and flexibility in face editing and

generation, they do not understand the 3D nature of objects and thus, they suffer from the lack of

multi-view geometric consistency, i.e. the generated face images are not consistent for different head

poses, as well as generation artifacts for large expression changes as expression is not completely

disentangled from the head pose.

2.4.2 3D-Aware GAN Methods

To offer explicit 3D camera control in image generation, numerous methods have recently been pro-

posed that lift image synthesis to 3D [132, 133, 134, 135, 136, 137]. EG3D [132] combines the high

fidelity of StyleGAN [2] with neural-volume rendering to offer multi-view consistency and state-of-

the-art 3D face generation. Inspired by EG3D, HFA-GP [133] learns personalized 3D generative priors

and reconstructs reliable individual characteristics. Moreover, π-GAN [134] combines 3D shape and

texture under global latent codes which are employed as conditions to a siren-based neural implicit

representation. Even though these methods demonstrate image generation of impressive quality, they

do not offer fine-grained face editing controlled by a user.
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Focusing on the editability of 3D-aware GANs the models in[138, 139, 140, 141, 142, 143, 144,

145, 146, 147, 148] allow for controlled face image generation and editing. In particular, the works

in [142, 141, 147, 146] perform image editing via semantic masks. FENeRF [142] and IDE-3D [141]

employ radiance fields to model the semantic representtaions rather than only shape and texture and

involve GAN inversion to map input images to a pre-trained model’s latent space. NeRFFaceEditing

[147] allows for disentangled editing of both shape and texture via decomposing and recomposing

triplane features. SofGAN [146] employs multi-view images paired with ground-truth 3D shapes

to learn the semantic volumes as semantic occupancy fields, which are used in test time for image

synthesis and editing. A drawback of the above methods is that they do not produce consistent and

continuous results, thus are prohibited for video editing. On the contrary [138, 140, 143, 144, 148]

incorporate different 3D priors to guide synthesis and produce consistent animations. Common weak

points of these approaches include that they require more elaborate losses and that the topology changes

are not supported as in the case of semantically-guided methods. Lastly, Next-3D [149] overcomes

the topology limitation by combing semantic 3D volumes and mesh-guidance, offering 3D-consistent

animations.

2.4.3 Volumetric Neural Face Avatars

Implicit Neural Representations (INR) have recently been employed by many works to represent face

appearance and geometry. Signed Distance Functions (SDF) [150], Neural Radiance Fields (NeRF)

[151], discrete feature voxel grids [] and Tri-planes [] are four commonly used representations that

have allowed to implicitly model animatable Neural Face Avatars. Compared to classic graphics based

reconstruction and editing approaches, INRs can be used to encode non-skin facial structures such as

hair and the mouth interior. Particularly NerFs combined with volumetric rendering [], due to their

recent success in 3D scene reconstruction, have recently led to an extensive list of publications on

learning deformable and photo-realistic head avatar models from multi-view images or videos [152,

153, 154, 155, 156, 157, 158, 159, 160, 161, 162]. Compared to 2D and 3D GAN methods for face

image animation, implicit volumetric avatar models offer more strict pose and expression control but

generally lack the fidelity of GANs.

Nerfies [156] was among the first NeRF based methods to generate static face avatars from unposed

images or videos from a mobile phone via introducing a deformation field between the observations
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and a canonical space. To allow interpolations and better control of deformed parts, HyperNeRF [157]

introduced a hyper-space which extended the deformation filed by an additional slicing surface offering

more fine-grained sampling in canonical space. To achieve strict 3D consistency and animation, many

methods have incorporated 3DMM priors or audio signals into the INRs [163, 152, 159, 160, 161, 164].

In NerFace [152] deformation field is conditioned on per-observation expression parameters recovered

from a 3DMM. Although is can produce interpolated expressions and poses, it struggles to create

new ones. RigNeRF [163] estimates a deformation residual over one calculated from reconstructed

3D meshes and provides full control of the pose and expressions. IMvatar [161] uses neural implicit

surfaces and an analytical gradient to control head avatars via 3DMM parameters. [165] learns separate

neural radiance fields for each 3DMM expression component. PointAvatar [166] represents the avatars

via deformable points, while ConFies [167] employs automatic AU tracking to control the face. Lastly,

CoNeRF [168] leverages manual semantic segmentations to control the face without any prior model.

The methods mentioned above construct head avatars for specific subjects meaning that they cannot

generalize to new ones. As fine-grained details of faces are not always visible in short videos used

to train the above models, many methods are using multi-view image datasets obtained under struc-

tured camera and lighting conditions [158, 169, 170, 171, 172]. Aiming to generalize to new subjects

and construct avatars from as few as one face image, Pixel-aligned Volumetric Avatars [158] employs

trains an encoder to estimate per-pixel features from input images and uses them to condition a NeRF.

HeadNeRF [169] learns a generic radiance field from a combination of mutli-subject structured data-

sets and FFHQ, and employs per-pixel features and 2D neural rendering to generate images. MorF

[171] is a similar model trained on a structured multi-subject dataset and generates images from the

predicted density, albedo and specular information using volume rendering. Mofanerf [172] addition-

ally employs adversarial training to achieve more detailed results. All the above methods can be fitted

on target images and perform animation. Lastly, [170] proposed an approach to personalize a generic

prior volumetric avatar model to new identities using only a short phone capture.

2.4.4 Diffusion methods

Diffusion models such as the Diffusion Probabilistic Models (DMs) [173, 174, 175] are generative

models which first map images to a latent variable by gradually adding noise using a Markov chain,

and then gradually denoising it to obtain the generated result via a learned denoising process. Diffusion
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models are trained with score-matching objectives [176] at the various noise levels of the denoising

process, which are less complex than the GAN losses leading to more stable training than GANs.

Diffusion models have recently demonstrated high quality results in various image generation tasks

[174, 177, 175, 178] including text-to-image generation [179, 180], super resolution [181] image in-

painting [182], video generation [183, 184] and image restoration [185]. What is more, the latest works

in diffusion models have shown superior performance than GANs in multiple image generation tasks

[186, 187, 188, 189, 190].

A specific field which has seen tremendous advancements with the rise of diffusion models is test

guided image generation or text-to-image generation [191, 187, 192, 179, 193, 180]. StableDiffusion

[190], Imagen [194], and DALL-E 2 [189], DiffusionCLIP [193], dreambooth [180] and Imagic [179]

are state-of-the-art methods for general image synthesis which allow the customization of the style and

contents of the synthesized results, based on text guidance. However, regardless of the power of text-

to-image diffusion models, they are not ideal for face image synthesis and editing as language guidance

does not provide as accurate control as other encodings, such as semantic image masks and 3D prior

embeddings. For example, face editing requires to edit attributes such as head pose, expression or skin

tone while maintaining all other attributes unchanged including the identity of the subject.

The above models are not desigend to handle such cases and thus, attempts to provide methods

tailored to the problem have arose [195, 196, 197, 198]. FADM [195] is a diffusion model with

attribute guidance for face animation. To address the difficulties in controlling diffusion models, an

Attribute-Guided Conditioning Network is proposed to combine coarse animation results with outputs

from a 3D face reconstruction network and condition the diffusion process. FADM produces consistent

animations and outperforms 2D GAN methods in image generation quality [121, 199]. In [198] the

authors propose Collaborative Diffusion to achieve control of existing, pre-trained diffusion models

based on both text and 2D semantic masks, without the need to fine-tune the base models. DiffTalk

[197], addresses the problem of talking-head synthesis, using Latent Diffusion models which they

condition on reference images and driving landmarks, while successfully preserving the face attributes

of the reference subject. Lastly, Dual Condition Face Generator (DCFace) [196] proposes a method for

controllable face image synthesis, aiming to improve the task of face verification. DCFace produces

consistent face images with different styles of the same subject, using a patch-wise style extractor and

enforcing an ID loss at various time steps
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2.5 Conclusions

In this Chapter, we presented technical details on methods and datasets that we have employed in the

works of the next chapters, as well as discussed recent advancements in generative image modelling.

Moreover, we discussed works which have motivated and challenged the development of our meth-

odologies. In particular, we started by reviewing developments in 3D reconstruction of faces from

images, providing details on employed methods for obtaining useful representations for training our

algorithms. We continued by reviewing CA methods which are related to ours, highlighting the im-

portance of developing robust alternatives to handle corrupted data. Then, we reviewed fundamental

works in generative modeling with an emphasis on image generation with GANs and image-to-image

translation methods. Lastly, we presented an overview of recent developments on generative image

processing which have revolutionised the field. In the next Chapters, we present our works which

attempt to mitigate the above problems.
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3.1 Introduction

Facial images convey rich information, which can be perceived as a superposition of components asso-

ciated with attributes, such as facial identity, expression, age etc. For instance, a set of images depicting

61



3. Recovering Joint and Individual Components in Facial Data

expressive faces consists of components that are shared across all images (i.e., joint components) and

imparts to the depicted object the properties of human faces. Besides joint components, an expressive

face consists of individual components that are related to different expressions. Such individual com-

ponents can be expression-specific deformation of face, i.e., deformations around lips and eyes in case

of smiles. Similarly, a set of images depicting faces in different ages can be seen as a superposition

of joint components that are invariant to the age and age-specific components that are individual to

each age group (e.g., wrinkles). Consequently, being able to extract such joint and individual com-

ponents from facial images is crucial for applications such as facial expression synthesis and face age

progression [200, 201, 202, 203, 204, 205], among other visual data analysis tasks.

Extracting the joint components among data has created a wealth of research in statistics, signal

processing, and computer vision. Two mathematically similar but conceptually different models un-

derlie the bulk of the methodologies. In particular, the Canonical Correlation Analysis (CCA) [93]

and its variants e.g.,[206, 207] have been proposed for extracting linear correlated components among

two or more sets of variables. Similarly, inter-battery factor analysis [94] and its extensions e.g., [208]

determines the common factors among two sets of variables. The main limitation of the aforemen-

tioned methods is that they only recover the most correlated linear subspace of the data, ignoring the

individual components among the different views or datasets.

The above mentioned limitation is alleviated by recent methods such as the Joint and Individual

Variation Explained (JIVE) [14], the Common Orthogonal Basis Extraction (COBE) [15], and the

Robust Correlated and Individual Component Analysis (RCICA) [16], which are briefly described in

Section 2.2. Besides the rich structure in facial visual data, images are subject to various types of errors,

distortions, and noise. Common dense distortions such as ambient noise or quantisation noise are of

small magnitude and it is natural to assume that they follow a Gaussian distribution of small variance.

Methods such as the CCA and its variants, the JIVE, and the COBE are stable in the presence of

Gaussian noise.

Apart from these small but dense noises, there are gross errors that are sparsely supported but of

large or even unbounded magnitude, such as the salt-and-pepper noise in imaging devices, occlusions

in facial images, registration errors, or errors due incorrect localisation and tracking. These errors

rarely follow a Gaussian distribution and due to their sparse nature (i.e.,the number of errors is bounded
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below some constant) are collectively referred to as sparse gross errors or noise. Except for the most

recent RCICA, the COBE and JIVE rely on least squares error minimisation and thus they are prone

to gross errors and outliers [95]. That is, the estimated components can be arbitrarily away from the

true ones. Hence, the problem of joint and individual components recovery is rather challenging when

dealing with facial images and in general visual data captured under unconstrained (i.e., “in-the-wild”)

conditions.

In this work, we investigate the problem of recovering the joint and individual components from

facial (and in general visual) data consisting of an arbitrary number of views, captured “in-the-wild”.

Such data are therefore contaminated by sparse, gross, non-Gaussian noise and possibly contain miss-

ing values. To this end, we propose robust alternatives to the JIVE (coined collectively as Robust

JIVE- RJIVE), where the components are estimated by employing the L1-norm. The L1-norm is suit-

able for robust estimation in the presence of sparse gross errors [95]. The contributions of this work

are summarised as follows:

• We propose a novel, general framework, the RJIVE in Section 3.2.1, for the robust recovering of

joint and individual components from multi-view data in the presence of sparse gross errors and

possibly missing values. The proposed RJIVE decomposes the data into three terms: a low-rank

matrix that captures the joint variation across views, low-rank matrices accounting for structured

variation individual to each view, and a sparse matrix collecting the sparse gross errors.

• In particular, the RJIVE consists of 4 different models, namely, L1-RJIVE, NN-L1-RJIVE,

SRJIVE, and RJIVE-M. In the L1-RJIVE, the rank of both joint and individual components

are user-defined, while in the NN-L1-RJIVE the rank of each one of the individual components

is automatically estimated via nuclear norm minimisation. As opposed to the previous two

models, the SRJIVE directly extracts the orthonormal bases of joint and individual components

and improves their scalability. Finally, the RJIVE-M extends the SRJIVE in order to handle

missing values.

• Based on the recovered joint and individual components from training data, two suitable optim-

isation problems that extracts the corresponding modes of variation (i.e., joint and individual

components) of unseen test samples, are proposed in Section 3.2.3.
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3. Recovering Joint and Individual Components in Facial Data

• To tackle the proposed optimisation problems, algorithms based on the Alternating-Directions

Method of Multipliers (ADMM) [28] are developed in Sections 3.2.1 and 3.2.3.

• We demonstrate the applicability of the proposed methods in three challenging computer vision

tasks, namely facial expression synthesis, face age progression in 2D images and 3D data cap-

tured “in-the-wild”. Experimental results corroborate the effectiveness of the proposed approach

in Section 3.3.

• Furthermore, a new challenging data-set of 19.000 images captured “in-the-wild” with annota-

tions in terms of age, is introduced in Section 3.3.3 for age-invariant face verification.

Notation: Throughout this Chapter, scalars are denoted by lower-case letters, vectors (matrices) are

denoted by lower-case (upper-case) boldface letters i.e., x, (X). I denotes the identity matrix. The j-th

column of X is denoted by xj .

Several norms and metrics will be used.TheL1 and theL2 norms of x are defined as ‖x‖1 =
∑

i |xi|

and ‖x‖2 =
√∑

i x
2
i , respectively. | · | denotes the absolute value operator. The matrix L1 norm is

defined as ‖X‖1 =
∑

i

∑
j |xij |, and the Frobenius norm is defined as ‖X‖F =

√∑
i

∑
j x

2
ij , and

the nuclear norm of X (i.e., the sum of singular values of a matrix) is denoted by ‖X‖∗. The vector

(matrix) L0 -(quasi) norm returns the total number of non-zero elements in a vector (matrix). The rank

function is denoted by rank(·).

The minimisation of both the rank function and the L0-norm are NP-hard [209, 210] problems.

Consequently, the rank function and the L0-norm are typically replaced by their convex surrogates [97,

98].

Operators: The solution of the several problems appeared in this Chapter rely on different (prox-

imal) operators which are defined next. Let, for any matrix X = UΣVT be the Singular Value

Decomposition.

• Shrinkage operator [96]: Sτ [σ] = sgn(σ) max(|σ| − τ, 0).

• Singular Value Thresholding (SVT) operator [211]: Dτ = USτVT .
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• Rank-r SVD operator:

Qr [X] =
[
U(:, 1 : r)Σ(1 : r, 1 : r)V(:, 1 : r)T

]
.

• Procrustes operator: P [D] = PRT (given the rank-r SVD of a matrix D = GPRT ).

Datasets Joint Components Individual Components Error

Figure 3.1: A visual representation of the proposed RJIVE decomposition. Given a arbitrary number
of data-sets or views captured under totally unconstrained conditions, the proposed method extracts
components that capture the joint structure between the data-sets (J), the individual structure to each
data-set (A), and a sparse matrix collecting the sparse non-Gaussian errors (E).

Applica ons

>Facial Expression Synthesis >Face age progression

27 5136 56

0-3 08-15 21-30 41-50 61-70

George 

Clooney

Figure 3.2: A visual representation of the applications considered in this Chapter i.e., facial expression
transfer and face age progression. Images highlighted in red boxes are given as input to the RJIVE.

3.2 Methodology

Here we formulate the various versions of RJIVE, as well as methods for their optimisation. Addition-

ally, we construct problems for image reconstruction based on recovered components and present their

solutions.

65



3. Recovering Joint and Individual Components in Facial Data

Happiness

Sadness

Surprise

Fear

Face
Components

Happiness
Components

Sadness 
Components

Surprise 
Components 

Fear 
Components 

Error

Figure 3.3: A visual representation of the RJIVE decomposition in the example of analysing data
annotated with respect to four facial expressions. As can be seen, the ordered dataset X is analysed
into a matrix of joint components J, matrices A1, A2, A3 and A4 each corresponding to a specific
annotated expression and matrix E which collects sparse, non-gaussian noise allowing for cleaner data
matrices J and Ai, i = {1, 2, 3, 4}.

3.2.1 Robust JIVE

Consider data consisting of M views {X(i) ∈ Rd(i)×J}Mi=1, with x
(i)
j ∈ Rd(i) , j = 1, . . . , J being a

vectorised (visual) data sample, possibly contaminated by gross, sparse errors. The goal of the RJIVE

is to robustly recover the joint components which are shared across all views as well as the components

which are deemed individual for each view. That is:

X = J +
[
A(1)T , · · · ,A(M)T

]T
+ E, (3.1)

where X =
[
X(1)T , · · · ,X(M)T

]T
∈ Rq×J , J =

[
J(1)T , · · · ,J(M)T

]T
∈ Rq×J , {A(i) ∈ Rd(i)×J}Mi=1,

q = d(1) + · · · + d(M), are low-rank matrices capturing the joint and individual variations, respect-

ively and E ∈ Rq×J denotes the error matrix accounting for the gross, but sparse, non-Gaussian noise.

Figure 3.3 presents the structure of the decomposition that RJIVE aims to achieve in the particular

example of analysing facial expression data. In order to ensure the identifiability of (3.1), the joint

and common components should be mutual incoherent, i.e., {JA(i)T = 0}Mi=1. Assuming that the

number of errors is bounded below some constant, the number of errors in the estimated components

is similarly bounded and hence a natural estimator accounting for the sparsity of the error matrix E,

is to minimise the number of the nonzero entries of E measured by the L0-quasi norm [96]. However

as in case of the RCICA, to make the problem computationally tractable the L0-norm is replaced by

its convex surrogate, namely the L1-norm. Thus, the joint and individual components as well as the
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sparse error are recovered by solving the following constrained non-linear optimisation problem:

min
J,{A(i)}Mi=1

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T∥∥∥∥
1

.

s.t. rank(J) = r, {rank(A(i)) = r(i),JA(i)T = 0}Mi=1

(3.2)

Clearly, (3.2) is a robust extension to JIVE [14] and requires an estimation for the rank of both joint

and individual components. However, in practice those (M + 1) values are unknown and difficult to

estimate since an extensive tunning procedure is required. To alleviate this issue, we propose a variant

of (3.2) which is able to determine the optimal ranks of individual components directly. By assum-

ing that the actual ranks of individual components are upper bounded i.e., {rank(A(i)) ≤ K(i)}Mi=1,

problem (3.2) is relaxed to the following one:

min
J,{A(i)}Mi=1

λ

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T∥∥∥∥
1

+
M∑
i=1

∥∥∥A(i)
∥∥∥
∗
,

s.t. rank(J) = r, {JA(i)T = 0}Mi=1

(3.3)

where the rank function is replaced by its convex envelope, namely the nuclear norm and λ > 0 is a

regularizer.

3.2.2 Optimisation Algorithms

In this section, algorithms for solving (3.2) and (3.3) are developed.

To solve (3.2), the Alternating-Direction Method of Multipliers (ADMM) [28] is employed. To this

end, problem (3.2) is reformulated to the following separable one:

min
J,{A(1)}Mi=1,E

‖E‖1 ,

s.t. X = J +
[
A(1)T , · · · ,A(M)T

]T
+ E,

rank(J) = r, {rank(A(i)) = r(i),JA(i)T = 0}Mi=1,

(3.4)

where E is an auxiliary variable. To solve (3.4), the corresponding augmented Lagrangian function is

given by:

L(J, {A(i)}Mi=1,E,L) = ‖E‖1 −
1

2µ
‖L‖2F

+
µ

2

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T
−E +

L

µ

∥∥∥∥2

F

,

(3.5)
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Algorithm 1: ADMM solver for (3.4) (L1-RJIVE).

Input : Data {X(i) ∈ Rd(i)×J}Mi=1. Rank of joint component r. Ranks of individual
components {r(i)}Mi=1. Parameter ρ.

Output : Joint component J, individual components {A(i)}Mi=1

Initialise: Set J0, {A(i)
0 }Mi=1, E0, L0 to zero matrices, t = 0, µ0 > 0.

1 X =
[
X(1)T , · · · ,X(M)T

]T
;

2 while not converged do

3 M = X−
[
A

(1)T

t , · · · ,A(M)T

t

]T
−Et + µ−1

t Lt;

4 Jt+1 = Qr [M], [U,Σ,V] = svd(M);
5 P = I−V(:, 1 : r)V(:, 1 : r)T ;
6 for i = 1 : M do
7 A

(i)
t+1 = Qr(i)

[(
X(i) − J

(i)
t+1 −E

(i)
t + µ−1

t L
(i)
t

)
P
]

8 E = S 1
µt

[
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
− µ−1

t L

]
;

9 Lt+1 = Lt + µt

(
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
−Et+1

)
;

10 µt+1 = min(ρ · µt, 107);
11 t = t+ 1;

where L is the Lagrange multipliers matrix related to the equality constraint in (3.4), and µ is a positive

parameter. Then, by employing the ADMM, (3.5) is minimised with respect to each variable in an al-

ternating fashion and finally the Lagrange multipliers L are updated. The ADMM solver of (3.4) is out-

lined in Algorithm 1 which terminates when
∥∥∥∥X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
−Et+1

∥∥∥∥2

F

/ ‖X‖2F
is less than a predefined threshold ε or the number of iterations reach a maximum value.

To solve problem (3.3) via ADMM, we firstly reformulate it as:

min
J,{A(i),R(i)}Mi=1,E

M∑
i=1

∥∥∥R(i)
∥∥∥
∗

+ λ ‖E‖1 ,

s.t. X = J +
[
A(1)T , · · · ,A(M)T

]T
+ E,

rank(J) = r, {R(i) = A(i),JA(i)T = 0}Mi=1

(3.6)

where {R(i) ∈ Rd(i)×J}Mi=1, {R(i) = A(i)}Mi=1 are auxiliary variables and the corresponding con-
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Algorithm 2: ADMM solver of (3.6) (NN-L1-RJIVE).

Input : Data {X(i) ∈ Rd(i)×J}Mi=1. Rank of joint component r. Ranks of individual
components {r(i)}Mi=1. Parameter ρ.

Output : Joint component J, individual components {A(i)}Mi=1

Initialise: Set J0, {A(i)
0 ,R

(i)
0 ,Y

(i)
0 }Mi=1, E0, F0 to zero matrices, t = 0, µ0 > 0.

1 X =
[
X(1)T , · · · ,X(M)T

]T
;

2 while not converged do

3 Jt+1 = Qr

[
X−

[
A

(1)T

t , · · · ,A(M)T

t

]T
−Et + Ft

µt

]
;

4 for i = 1 : M do

5 A
(i)
t+1 =

(
X(i)−J

(i)
t+1−E

(i)
t +F(i)

µt
+R

(i)
t +

Y
(i)
t
µt

)
P

2 ;

6 R
(i)
t+1 = D1/µt

[
A

(i)
t+1 −

Y
(i)
t
µt

]
;

7 Y
(i)
t+1 = Y

(i)
t + µt(R

(i)
t+1 −A

(i)
t+1);

8 Et+1 = S λ
µt

[
X− Jt+1 −

[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
+ Ft

µt

]
;

9 Ft+1 = Ft + µt(−Jt+1 −
[
A

(1)T

t+1 , · · · ,A
(M)T

t+1

]T
−Et+1 + X);

10 µt+1 = min(ρµt, 107);
11 t = t+ 1;

straints, respectively. The augmented Lagrangian function of (3.6) is then formulated as:

L({J, {A(i),R(i),Y(i)}Mi=1,E,F}) =
N∑
i=1

∥∥∥R(i)
∥∥∥
∗

+ λ ‖E‖1

+
µ

2

∥∥∥∥X− J−
[
A(1)T , · · · ,A(M)T

]T
−E +

F

µ

∥∥∥∥2

F

− 1

2µ
‖F‖2F

+

M∑
i=1

µ
2

∥∥∥∥∥R(i) −A(i) +
Y(i)

µ

∥∥∥∥∥
2

F

− 1

2µ

∥∥∥Y(i)
∥∥∥2

F

 ,

(3.7)

where F, {Y(i)}Mi=1 are the Lagrange multipliers related to the equality constraints and µ is a posit-

ive parameter. Then, by employing the ADMM algorithm, (3.7) is minimised with respect to each

variable {J, {A(i),R(i),Y(i)}Mi=1,E,F} in an alternating fashion and finally the Lagrange multipliers

{F, {Y(i)}Mi=1} are updated. The ADMM solver of (3.6) is wrapped up in Algorithm 2. The conver-

gence criterion employed here is similar to Algorithm 1.

69



3. Recovering Joint and Individual Components in Facial Data

3.2.3 RJIVE-Based Reconstruction

Having recovered the individual and common components of theM views or different data-sets during

training, we can exploit them them in order to extract the joint and individual modes of variations of a

test sample. For instance, the components recovered by applying the RJIVE on a set of facial images

of M different expressions can be utilised in order to reconstruct M expressive images {y(i)}Mi=1 of

an input face t. The key motivation here, is that the expression-related patterns of the image t in the

expression (i) lie in a linear subspace spanned by D(i) ∈ Rd(i)×W
(i)
A , where D(i) has been obtained by

applying the SVD onto extracted A(i) components. Thus, the expression-related (individual) part of the

test image t in expression (i) can be represented as a linear combination of the orthonormal bases D(i)

i.e., y(i)
individual ≈ D(i)c(2) with c(2) ∈ RW

(i)
A ×1 being a sparse coefficient vector. Similarly, the joint part

y
(i)
joint is expressed as a linear combination of the orthonormal bases B(i) ∈ Rd(i)×W

(i)
J extracted from

the corresponding joint component J(i) i.e., y
(i)
joint ≈ B(i)c(1), c(1) ∈ RW

(i)
J ×1. Thus, the expressive

image y(i) of the unseen input face t is reconstructed by solving the following constrained optimisation

problem:

min
{c(n),v(n)}2n=1,y≥0

2∑
n=1

∥∥∥v(n)
∥∥∥

1
+ λ ‖e‖1 ,

s.t. {v(n) = c(n)}2n=1

t = B(i)c(1) + D(i)c(2) + e, y = B(i)c(1) + D(i)c(2)

(3.8)

where λ is a positive parameter that balances the norms, v(1), v(2) are auxiliary variables which are

employed in order to make the problem separable, y corresponds to the non-negative clean recon-

struction, and e is an error term accounting for the gross, non-Gaussian sparse noise. Equation (3.8)

resembles the dense error correction model proposed in [212], which is suitable for guaranteed recov-

ery of sparse representations from high-dimensional measurements, such as images of high resolution

(e.g., 22000 pixels in this method) in the presence of noise. The augmented Lagrangian function of
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problem ( 3.8) is given by:

L
(
{v(n)c(n)}2n=1,y, e, {h(n)}4n=1

)
=

2∑
n=1

∥∥∥v(n)
∥∥∥

1
+ λ ‖e‖1

− 1

2µ

4∑
n=1

∥∥∥h(n)
∥∥∥2

2
+
µ

2

( 2∑
n=1

∥∥∥∥∥v(n) − c(n) +
h(n)

µ

∥∥∥∥∥
2

2

+

∥∥∥∥∥t−B(i)c(1) −D(i)c(2) − e +
h(3)

µ

∥∥∥∥∥
2

2

+

∥∥∥∥∥y −B(i)c(1) −D(i)c(2) +
h(4)

µ

∥∥∥∥∥
2

2

)
,

(3.9)

By employing the ADMM, (3.8) is minimised with respect to each variable {{v(n)c(n)}2n=1,y, e}

in an alternating fashion and finally the Lagrange multipliers {h(n)}4n=1 are updated. The ADMM

solver of (3.8) is outlined in Algorithm 3. Algorithm 3 terminates when the reconstruction error∥∥∥t−UJ(i)c
(1)
t+1 −UA(i)c

(2)
t+1 − et+1

∥∥∥2

2
/ ‖t‖22 is less than a predefined threshold ε or the number of

iterations reached.

3.2.4 Scalable RJIVE

The computational complexity of the vanilla JIVE as well as the L1-RJIVE and NN-L1-RJIVE at each

iteration isO(max(q2J, qJ2))+
∑M

i=1O(max(d(i)2J, d(i)J2)) = O(max(q2J, qJ2)), due to the SVD.

Clearly, this is computationally prohibitive when dimension of the images {d(i)}Mi=1 becomes very

large, e.g., 22500 in our case. To alleviate the aforementioned computational complexity issue and at

the same time learn the orthonormal bases that are used for reconstruction , we propose to factorise the

matrices J, {A(i)}Mi=1 as products of orthonormal basis matrices B ∈ R(d(1)+···d(M))×WJ ,BTB = I,

{D(i) ∈ Rd(i)×W
(i)
A D(i)TD(i) = I}Mi=1 and low-rank coefficients matrices G, {C(i)}Mi=1 such that

J = BG and {A(i) = D(i)C(i)}Mi=1. It can be easily shown that the constraints are now written as

{JA(i)T }Mi=1 = GC(i)T = 0 and rank(J) = rank(BG) = rank(G) = r. In addition, due to the

unitary invariance property of the nuclear norm we have
∥∥A(i)

∥∥
∗ =

∥∥D(i)C(i)
∥∥
∗ =

∥∥C(i)
∥∥
∗. Thus,

by incorporating the factorisations of joint and individual components the optimisation problem now
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Algorithm 3: ADMM solver of (3.8) (RJIVE-based Reconstruction)

Input : Input sample t. Orthonormal bases B(i) ∈ Rd(i)×W
(i)
J ,D(i) ∈ Rd(i)×W

(i)
A .

Parameters λ, ρ.
Output : Clean reconstructed image y.
Initialise: Set {v(n)

0 , c
(n)
0 }2n=1, {h(n)

0 }4n=1, y0, and e0 to zero vectors, t = 0, µ0 > 0.
1 while not converged do
2 for n=1:2 do

3 v
(n)
t+1 = S 1

µt

[
c

(n)
t −

h
(n)
t
µt

]
;

4 t̃1 = t−D(i)c
(2)
t − et + h

(3)
t µ−1

t ;

5 t̃2 = y −D(i)c
(2)
t + h

(4)
t µ−1

t ;

6 c
(1)
t+1 =

B(i)T
(
t̃1+t̃2

)
+v

(1)
t+1+h

(1)
t µ−1

t

3 ;

7 t̃1 = t−B(i)c
(1)
t+1 − et + h

(3)
t µ−1

t ;

8 t̃2 = y −B(i)c
(1)
t+1 + h

(4)
t µ−1

t ;

9 c
(2)
t+1 =

D(i)T
(
t̃1+t̃2

)
+v

(2)
t+1+h

(2)
t µ−1

t

3 ;

10 yt+1 = max
(
B(i)c

(1)
t+1 + D(i)c

(2)
t+1 − h

(4)
t /µt, 0

)
;

11 et+1 = S λ
µt

[
t−B(i)c

(1)
t+1 −D(i)c

(2)
t+1 + h

(3)
t µ−1

t

]
;

12 h
(1)
t+1 = h

(1)
t + µt(v

(1)
t+1 − c

(1)
t+1);

13 h
(2)
t+1 = h

(2)
t + µt(v

(2)
t+1 − c

(2)
t+1);

14 h
(3)
t+1 = h

(3)
t + µt(t−B(i)c

(1)
t+1 −D(i)c

(2)
t+1 − et+1);

15 h
(4)
t+1 = h

(4)
t + µt(y −B(i)c

(1)
t+1 −D(i)c

(2)
t+1);

16 µt+1 = min(µtρ, 107);

is as follows:

min
B,G,{D(i),C(i),∆(i)}Mi=1,E

M∑
i=1

∥∥∥∆(i)
∥∥∥
∗

+ λ ‖E‖1 ,

s.t. X = BG +

[(
D(1)C(1)

)T
· · · ,

(
D(M)C(M)

)T]T
+ E,

rank(G) = r,BTB = I,

{∆(i) = C(i),GC(i)T = 0,D(i)TD(i) = I}Mi=1,

(3.10)

where {∆(i) ∈ Rd(i)×J}Mi=1, {∆(i) = A(i)}Mi=1 are auxiliary variables and the corresponding con-

straints, respectively. The augmented Lagrangian function that corresponds to problem ( 3.10) is given
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by:

L({B,G{C(i),D(i),∆(i),Z(i)}Mi=1,E,Γ}) =
M∑
i=1

∥∥∥∆(i)
∥∥∥
∗

+ λ ‖E‖1

+
µ

2

∥∥∥∥∥X−BG−
[(

D(1)C(1)
)T
· · · ,

(
D(M)C(M)

)T]T
−E +

Γ

µ

∥∥∥∥∥
2

F

− 1

2µ
‖Γ‖2F

+
M∑
i=1

µ
2

∥∥∥∥∥∆(i) −C(i) +
Z(i)

µ

∥∥∥∥∥
2

F

− 1

2µ

∥∥∥Z(i)
∥∥∥2

F

 ,

(3.11)

where Γ and {Z(i)}Mi=1 are the Lagrangian multipliers related to the equality constraints of ( 3.10).

Similarly to the previous problems, (3.10) is minimised with respect to each variable in an alternating

fashion and finally the Lagrange multipliers are updated. The ADMM solver of the proposed SRJIVE

method is outlined in Algorithm 4.

The computational complexity of Algorithm 4 is dominated by the cost of the SVD involved in the

computation of SVT and Procrustes operators in Steps 4 and 5, respectively. Thus, the computational

complexity of each iteration is O(max(W 2
JJ,WJJ

2)) and O(max(q2WJ, qW
2
J)), respectively. Given

thatWJ � q = d1+· · · d(M) (in this work q = 225000 andWJ ≤ 600), which impliesWJJ+qWJ �

qJ , the proposed scalable version of JIVE, i.e., the SRJIVE has a significantly reduced computational

cost compared to that of JIVE and RJIVE.

Regarding the convergence of the presented Algorithms 1, 2, 4 there is currently no theoretical

proof known for the ADMM in problems with more than two blocks of variables. However ADMM

has been applied successfully in non-linear optimisation problems in practice [16, 213, 214, 215, 216].

In addition, the thorough experimental evaluation of the proposed methods, presented in Section 3.3,

indicates that the obtained solutions are good for the data that RJIVE tested.

3.2.5 RJIVE with missing values and application to face aging using 3D Morphable

Models

3D Morphable Models (3MMs) can be employed to extract aligned texture representations from stand-

ard 2D face images, as described in Section 2.1.4. In brief, after fitting a 3DMM on a test image, a

UV texture map can be calculated by projecting the reconstructed 3D shape on the image plane and

sampling the image at the locations of the shape’s vertexes. The UV space constitutes a densely aligned
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3. Recovering Joint and Individual Components in Facial Data

Algorithm 4: ADMM solver of (3.10) (Scalable NN-L1-RJIVE, SRJIVE).

Input : Data {X(i) ∈ Rd(i)×J}Mi=1. Rank of joint component r. Number of bases to be
extracted from the Joint and Individual components WJ and W (i)

A , respectively.
Parameter ρ.

Output : Orthonormal Joint and Individual bases matrices B, {D(i)}Mi=1. Coefficient matrices
G, {C(i)}Mi=1.

Initialise: Set G0, B0, {∆(i)
0 ,D

(i)
0 ,C

(i)
0 ,Z

(i)
0 }Mi=1, E0, Γ0 to zero matrices, t = 0, µ0 > 0.

1 X =
[
X(1)T , · · · ,X(M)T

]T
;

2 while not converged do

3 M = BT
t

(
X−

[(
D

(1)
t C

(1)
t

)T
· · · ,

(
D

(M)
t C

(M)
t

)T]T
−Et + µ−1

t Γt

)
;

[U,Σ,V] = svd(M);
4 Gt+1 = Qr [M];

5 Bt+1 = P

[(
X−

[(
D

(1)
t C

(1)
t

)T
· · · ,

(
D

(M)
t C

(M)
t

)T]T
−Et + µ−1

t Γt

)
GT
t+1

]
;

6 M = X−Bt+1Gt+1 −Et + µ−1
t Γt;

7 for n=1:M do
8 D

(i)
t+1 = P

[
M(i)C

(i)T

t

]
;

9 C
(i)
t+1 = 0.5

(
D

(i)T

t+1 M(i) + ∆
(i)
t + µ−1

t Z
(i)
t

) (
I−VVT

)
;

10 ∆
(i)
t+1 = D 1

µt

[
C

(i)
t+1 − µ−1Z

(i)
t

]
;

11 Z
(i)
t+1 = Z

(i)
t+1 + µt

(
∆

(i)
t+1 −C

(i)
t+1

)
;

12 Et+1 = S λ
µt

[
X−Bt+1Gt+1 −

[(
D

(1)
t+1C

(1)
t+1

)T
· · · ,

(
D

(M)
t+1 C

(M)
t+1

)T]T
+ µ−1

t Γt

]
;

13 Γt+1 = Γt + µt

(
X−Bt+1Gt+1 −

[(
D

(1)
t+1C

(1)
t+1

)T
· · · ,

(
D

(M)
t+1 C

(M)
t+1

)T]T
−Et+1

)
;

14 µt+1 = min(ρ · µt, 107);
15 t = t+ 1;

domain for 2D images, which is ideal for use with CA methodologies, such as the one discussed in

this Chapter. However, extracting the 3D texture from a 2D image in this way leads to incomplete

3D texture representations, mainly, due to the presence of self-occlusions, especially when the person

depicted in the image is not in a frontal pose. Therefore, data collected with the aforementioned tech-

nique include missing values. In order to specify the location (i.e., image coordinates) of the missing

values in a UV texture image, a self-occlusion mask for each image is calculated by casting a ray from

the camera to each vertex of the reconstructed shape. Each element of the extracted mask denotes
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whether a value of the UV texture map is missing or not (please see the Input rows of Figure 3.14 for

examples of the extracted UV space).

Even thought, the RJIVE can robustly recover joint and individual components in the presence of

sparse non-Gaussian errors of large magnitude, it is not able to handle data with missing values. To

overcome this limitation of the RJIVE we propose the RJIVE-Missing (RJIVE-M). Consider M data-

sets of different ages {X(i) ∈ Rd(i)×J}Mi=1, with x
(i)
j ∈ Rd(i) , being a vectorised form of the j-th gross

corrupted and incomplete UV texture, j = 1, . . . , J , that displays a face within the i-th age group,

i = 1, . . .M . The goal of the RJIVE-M is not only to recover the joint and individual components

but also to perform completion on the UV textures with missing values. To this end, problem (3.10) is

reformulated to the following one:

min
B,G,{D(i),C(i),∆(i)}Mi=1,E

M∑
i=1

∥∥∥∆(i)
∥∥∥
∗

+ λ ‖W ◦E‖1 ,

s.t. X = BG +

[(
D(1)C(1)

)T
· · · ,

(
D(M)C(M)

)T]T
+ E,

rank(G) = r,BTB = I,

{∆(i) = C(i),GC(i)T = 0,D(i)TD(i) = I}Mi=1,

(3.12)

where ◦ denotes the Hadamard (element-wise) product and W =
[
W(1)T , · · · ,W(M)T

]T
∈ Rq×J ,

W(i) = [w
(i)
1 ,w

(i)
2 , · · · ,w(i)

J ] ∈ {0, 1}q×J , with w
(i)
j being a vectorised form of the self-occlusion

mask that corresponds to the j-th UV texture of the i-th data-set. The Algorithm for solving the

proposed RJIVE-M problem is similar to the SRJIVE one and has the same complexity and con-

vergence criterion. The only difference is in the updating step of the error matrix E. More spe-

cifically, the following additional step is performed after executing the step 12 of the Algorithm 4:

E = W ◦E + W ◦
[
X−Bt+1Gt+1 −

[(
D

(1)
t+1C

(1)
t+1

)T
· · · ,

(
D

(M)
t+1 C

(M)
t+1

)T ]T
+ µ−1

t Γt

]
.

Similarly, the presented RJIVE-based reconstruction method can be also extended to handle missing

values in a test image. To this end, given a test sample with missing values (e.g., face UV texture) and

the vectorised form of the corresponding occlusion mask w, problem (3.8) is extended to the following
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one:

min
{c(n),v(n)}2n=1,y≥0

2∑
n=1

∥∥∥v(n)
∥∥∥

1
+ λ ‖w ◦ e‖1 ,

s.t. {v(n) = c(n)}2n=1

t = B(i)c(1) + D(i)c(2) + e, y = B(i)c(1) + D(i)c(2)

(3.13)

An ADMM-based solver similar to the Algorithm 3 is employed in order to solve problem (3.13). More

specifically, the update step of the error vector performed in step 11 of the Algorithm 3 is followed by

the following one: et+1 = w ◦ e + w ◦
[
t−B(i)c

(1)
t+1 −D(i)c

(2)
t+1 + h

(3)
t µ−1

t

]
.

3.3 Experiments

The performance of the proposed RJIVE method is assessed on synthetic data corrupted by sparse,

non-Gaussian noise (Section 3.3.1), as well as on data captured under constrained and “in-the-wild”

conditions with applications to (a) facial expression synthesis, (b) 2D and (c) 3D face age progression.

Parameters selected for these experiments are summarised in Table 3.1.

Table 3.1: Parameters used in the conducted experiments.

Section r W
(i)
J W

(i)
A λ ε

3.3.2 (controlled) 20 70 70
1√

max(q,J)
= 0.03 10−53.3.2 (in-the-wild) 150 300 300

3.3.3 300 600 600

3.3.1 Synthetic

In this section, the ability of RJIVE to robustly recover the common and individual components of

synthetic data corrupted by sparse non-Gaussian noise, is tested. To this end, sets of matrices {X(i) =

J
(i)
∗ + A

(i)
∗ + E

(i)
∗ ∈ Rd(i)×J}2i=1 of varying dimensions were generated. In more detail, a rank-r

joint component J∗ ∈ R(q=d(1)+d(2))×J was created from a random matrix X = [X(1)T ,X(2)T ]T ∈

Rq×J . Next, the orthogonal to J rank-r(1), r(2) common components A
(1)
∗ and A

(2)
∗ were computed

by [A
(1)T

∗ ,A
(2)T

∗ ]T = (X− J∗)(I−VVT ), where V was formed from the first r columns of the row

space of X. E
(i)
∗ is a sparse error matrix with 20% non-zero entries being sampled independently from

N (0, 1).
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Table 3.2: Quantitative recovering results produced by JIVE [14], COBE [15], RCICA [16], L1-
RJIVE (3.4), and NN-L1-RJIVE (3.6) under Gaussian and gross non-Gaussian noise. Each compared
method was applied on the same data generated by utilising each set of parameters. The average rel-
ative reconstruction error (RRE) and computation time (in CPU seconds) were computed by repeating
the experiment 10 times.

(
d(1), d(2), J, r, r(1), r(2)

)
Method RRE(J) RRE(A) Time (in CPU seconds)

non-Gaussian Gaussian non-Gaussian Gaussian non-Gaussian Gaussian

(500, 500, 500, 5, 10, 10)

COBE 3.6403 1.0927 1.0975 1.0002 0.06 0.07
JIVE 0.5424 1.3558e− 04 0.9349 2.0782e− 04 4.62 1.22
RCICA − − 7.1379e− 07 5.6337e− 03 1.14 1.36
L1-RJIVE 5.5628e− 08 1.3558e− 04 3.5073e− 08 2.0782e− 04 3.11 4.78
NN-L1-RJIVE 5.1515e− 08 1.4720e− 04 4.3416e− 08 3.3904e− 04 4.06 5.06
SRJIVE 2.7770e− 08 1.6564e− 04 3.8706e− 08 2.0012e− 04 0.91 1.97

(1000, 1000, 1000, 10, 20, 20)

COBE 4.9982 1.08555 1.1890 0.9982 0.122 0.11
JIVE 0.8398 1.8880e− 04 1.4810 2.9261e− 04 14.69 4.45
RCICA − − 6.7260e− 07 9.6371e− 04 6.36 5.84
L1-RJIVE 8.5033e− 08 1.8879e− 04 5.5423e− 08 2.9260e− 04 8.23 18.01
NN-L1-RJIVE 9.3804e− 08 2.0738e− 04 7.6262e− 08 1.1801e− 04 17.34 23.11
SRJIVE 6.8905e− 08 2.3406e− 04 6.0017e− 08 1.2041e− 04 3.99 9.05

(2000, 2000, 2000, 20, 40, 40)

COBE 6.9981 1.088417 1.3469 0.9976 0.83 0.69
JIVE 1.3961 2.6525e− 04 2.1977 4.1133e− 04 203.25 49.06
RCICA − − 5.9359e− 05 7.6497e− 03 48.51 49.86
L1-RJIVE 1.2305e− 07 2.6525e− 04 1.0512e− 07 4.1133e− 04 142.44 160.21
NN-L1-RJIVE 8.8570e− 08 2.9010e− 04 9.1058e− 08 5.6000e− 04 110.36 120.01
SRJIVE 9.7434e− 08 2.7074e− 04 1.0117e− 07 5.1173e− 04 18.96 43.07

(a) (b) (c)

Sparse
Error

Figure 3.4: Procedure followed to generate data contaminated by sparse, non-Gaussian noise (c). Four
images (a) were superimposed by a common painting (b) and added sparse noise sampled formN (0, 1)
for the 20% of the pixels of each image.

The Relative Reconstruction Error (RRE) of the recovered components is employed as evaluation

metric, which is defined as:

RRE(Q) =

q∑
i=1


∥∥∥Q(i)
∗ −Q(i)

∥∥∥2

F∥∥∥Q(i)
∗

∥∥∥2

F


2

, (3.14)

where Q(i) represents the recovered joint or individual components for the i-th sample and Q
(i)
∗ the

ground truth ones. The RRE of the joint and individual components achieved by both L1-RJIVE and

Nuclear-Norm regularised (NN-L1-RJIVE) for a varying number of dimensions, joint and individual
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JIVE RJIVEInput

Figure 3.5: Joint, individual components and error matrices produced by the compared JIVE and
RJIVE methods. JIVE is able to recover the main parts of the common structure (1st column of the
highlighted blocks), however including more noise compared to RJIVE. Additionally, the recovered
individual components of JIVE (2nd column of the highlighted blocks) are heavily contaminated by
noise, which is not the case for the results of RJIVE. Lastly, RJIVE recovers much more efficiently
sparse, non-gaussian errors in the error components (3rd column of the highlighted blocks.)

ranks, are reported in Table 3.2. The corresponding RRE obtained by JIVE [14], COBE [15], and

RCICA [16] are also presented. As it can be seen, the proposed methods accurately recovered both the

joint and individual components. It is worth mentioning that the NN-L1-RJIVE successfully recovered

all components by utilising only the true rank of the joint component. In contrast, all the other methods

require knowledge regarding the true rank for both joint and individual components. Furthermore, the

SRJIVE achieved same results to the NN-L1-RJIVE by reducing the computation times more that five

times. Based on the performance of SRJIVE on the synthetic data, we decided to exploit it in the

experiments described bellow and referred to as RJIVE hereafter.

Furthermore, we tested the RJIVE on synthetic data contaminated by Gaussian error. The RJIVE,

can implicitly handle data contaminated by Gaussian noise by vanishing the error term. That is by

setting the regularizer λ in problems (3.4), (3.6), (3.10) λ→∞ i.e. E = 0. In such case, the Frobenius

norms corresponds to the equality constraints X = J + [A(1)T , · · · ,A(M)T ]T + E, X = BG +

[(D(1)C(1))T , · · · ,A(M)T ]T +E appearing in the corresponding augmented Lagrangian functions are
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deemed as the appropriate regularizer for handling Gaussian noise. The RRE of all compared methods

are reported in Table 3.2. As it can be seen, the proposed methods accurately recovered both the joint

and individual components.

The efficiency of the JIVE and RJIVE methods was qualitatively evaluated on real data contamin-

ated by sparse, non-Gaussian noise. In order to generate the corrupted data we firstly superimposed

the paintings of Figure 3.4(a) with the painting appeared in Figure 3.4(b) and subsequently a sparse

error matrix was added. In each image the error matrix has 20% non-zero entries being sampled inde-

pendently from N (0, 1). Then, the concatenation of the generated paintings (Figure 3.4(c)) was given

as input to the JIVE and RJIVE. The joint and individual components as well as the corresponding

error matrices obtained from the compared methods are depicted in Figure 3.5. As it can be observed,

RJIVE accurately recovered both the joint and individual components. In contrast, the joint compon-

ents extracted from JIVE are not accurate, while the corresponding individual ones are contaminated

by the spare error. This is due to the fact that the JIVE is not robust to sparse, non-Gaussian noise.

3.3.2 Facial Expression Synthesis

In this section, we investigate the ability of the RJIVE to synthesise a set of different expressions of

a given facial image. Consider M data-sets where each one contains images of different subjects that

depict a specific expression. In order to effectively recover the joint and common components, the

faces of each data-set should be put in correspondence. Thus, their N = 68 facial landmark points are

localised using the detector [217, 218] and subsequently employed to compute a mean reference shape.

Then, the faces of each data-set are warped into corresponding reference shape by using the piecewise

affine warp function W(·) [73]. After applying the RJIVE on the warped data-sets, the recovered

components can be used for synthesising M different expressions of an unseen subject. To do that, the

new (unseen) facial image is warped to the reference frame that corresponds to the expression that we

want to synthesise and subsequently is given as input to the solver of (3.8).

The performance of RJIVE in FES task is assessed by conducting inner- and cross-databases exper-

iments on MPIE [219], CK+ [220], and “in-the-wild” facial images collected from the internet (ITW).

The synthesised expressions obtained by RJIVE are compared to those obtained by the BKRRR [221]

method. In particular, the BKRRR is a regression-based method that learns a mapping from the ‘Neut-
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(a) (b) (c)

Figure 3.6: Mean average correlation achieved by JIVE and BKRRR methods on (a) MPIE, (b) CK+,
and (c) ITW databases. For (a) a subset of 89 subjects of MPIE (6 experiments) was used to train the
compared methods and the remaining 58 were used for testing, synthesising all expressions. (b) and
(c) present cross-dataset results with methods trained on 69 subjects of MPIE and tested on CK+ and
ITW images (blue and red bars). In both experiments RJIVE outperforms BKRRR in terms of Mean
Average Correlation. Augmenting the training set of RJIVE with ITW images, Average Correlation is
further increased for both experiments (b) and (c) (grey bar).

ral’ expression to the target ones. Then, given the ‘Neutral’ face of an unseen subject, new expressions

are synthesised by employing the corresponding learnt regression functions. The performance of the

compared methods is measured by computing the correlation between the vectorised forms of true

images (ttrue) and the reconstructed ones (trec):

Cr(ttrue, trec) =
tTtruetrec√

‖ttrue‖22 ‖trec‖
2
2

. (3.15)

Controlled Conditions

In the first experiment, 534 frontal images of MPIE database that depict 89 subjects under six expres-

sions (i.e., ‘Neutral’, ‘Scream’, ‘Squint’, ‘Surprise’, ‘Smile’, ‘Disgust’) were employed to train both

RJIVE and BKRRR. Then, all expressions of 58 unseen subjects from the same database were syn-

thesised by using their images that correspond to ‘Neutral’ expressions. In Figure 3.6(a) the average

correlations obtained by the compared methods for the different expressions are visualised. As it can

be seen the proposed RJIVE method achieves the same accuracy to BKRRR without learning any kind

of mappings between the different expressions of the same subject. Specifically, the RJIVE extracts

only the individual components of each expression and the common one.

Furthermore, the performance of both methods is compared by performing a cross-database experi-

ment on CK+ database. More specifically, we employed the ‘Neutral’, ‘Smile’, and ‘Surprised’ images
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Input
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(a) (b) (c)

Figure 3.7: synthesised expressions of MPIE’s subject (a) ‘014’ (b) ‘015’ and (c) ‘250’ produced by the
BKRRR and RJIVE methods. The methods were trained with images from the 6 available expressions
from 89 subjects of MPIE. RJIVE is able to produce more fine-grained details compared to BKRRR,
such as eyes, the mouth interior and details of the skin.

of MPIE for training purposes while images of 69 subjects (three images per subject) of CK+ were used

as test ones. In Figure 3.6(b) we can see that RJIVE outperforms by a large margin the BKRRR. This

is due to the fact that the BKRRR performs the regression based on how close the unseen ‘Neutral’

face is to the training ones. Thus, in cases that the unseen subjects (e.g., subjects of CK+) present

enough differences compared to the training ones (e.g., subjects of MPIE), the synthesised expressions

are characterised as non-accurate. Figure 3.6(c), which includes results on expression synthesis on

“in-the-wild” images will be discusses in the following subsection (In-The-Wild Conditions). Laslty,

the synthesised expressions of subjects ‘014’, ‘015’ and 250 from MPIE produced by the BKRRR

and RJIVE are visualised in Figure 3.7. Clearly, the proposed method produces expressive images of

higher quality compared to the BKRRR.

The accuracy of the components recovered by JIVE and RJIVE in FES is also qualitatively assessed.

Figure 3.8 displays the obtained components and the corresponding error matrices after applying JIVE

and RJIVE on images used in the previous experiments which were additionally contaminated by

sparse errors. Clearly, the proposed RJIVE method successfully recovered all the components. It

is worth mentioning that the RJIVE removes the sparse noise and outliers e.g., occlusions due to

eyeglasses (please see the red boxes of Figure 3.8). Clearly, the JIVE is not able to cope with the

additive noise and occlusions.
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JIVE RJIVE JIVE RJIVE JIVE RJIVE JIVE RJIVE JIVE RJIVE JIVE RJIVE

Figure 3.8: Joint, individual components and error matrices produced by the compared JIVE and
RJIVE methods on “in-the-wild” images. The results show that RJIVE successfully decomposes in-
puts (1st row) into clean shared (2nd row) and individual (3rd row) components, as well as an error
component (4th row), while JIVE is not able to disentangle sparse, non-gaussian noise from the clean
information. The red rectangles demonstrate examples of sparse details not handled by JIVE.

In-The-Wild Conditions

As an additional experiment, we collected from the internet 180 images depicting 60 subjects with

‘Surprise’, ‘Smile’, and ‘Neutral’ expressions (three images for each subject). Then, all the expressions

were generated by employing the ‘Neutral’ images and the BKRRR and RJIVE methods trained on

MPIE. Figure 3.6(c) depicts the obtained correlations for each subject. Clearly, the RJIVE outperforms

the BKRRR. Compared to the previous experiments, there is a drop in performance for both methods.

This is attributed to the fact that the methods were trained by employing only images captured under

controlled condition. Thus, synthesising expressions of “in-the-wild” images is a very difficult task.

In order to alleviate this problem we can augment the training set with “in-the-wild” images. Al-

though the RJIVE can be trained from “in-the-wild” images of different subjects, this is not the case

of BKRRR, which requires the correspondence of expressions across the training subjects. Collecting

“in-the-wild” images of same subjects under different expressions is a very tedious task. In order to

improve the performance of RJIVE, we augmented the training set with another 1200 images from

WWB database [222] (400 images for each expression). As it can be observed in Figure 3.6(c), the

“in-the-wild” train set improved the accuracy of RJIVE in both CK+ and ITW data-sets. Figure 3.9

depicts examples synthesised “in-the-wild” expressions produced by the RJIVE. The images from the

‘Input’ column were given as input to the RJIVE and subsequently the synthesised expressions were
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Input RJIVE GT RJIVE Input RJIVE GT RJIVE

Figure 3.9: Synthesised in-the-wild expressions produced by the RJIVE method. RJIVE was trained
with images of 69 subjects from MPIE, as well as 1200 “in-the-wild” images. RJIVE consistently
reproduces facial details of the input images.

warped and fused with the actual images [223]. Clearly, the produced expressions are characterised by

high quality of both expression and identity information. It is worth mentioning that RJIVE synthesise

almost perfectly the input images without using any kind of information about the depicted subject.

3.3.3 Face Age Progression In-The-Wild

2D age progression of an unseen subject

Face age progression consists in synthesising plausible faces of subjects at different ages. It is con-

sidered as a very challenging task due to the fact that the face is a highly deformable object and its ap-

pearance drastically changes under different illumination conditions, expressions, and poses. Various

databases that contain faces at different ages have been collected in the last couple of years [224, 225].

Although these databases contain huge number of images, they have some limitations including lim-

ited images for each subject that cover a narrow range of ages and noisy age labels, since most of

them have been collected by employing automatic procedures (crawlers). In order to overcome the

aforementioned problems, we collected a new data-set called Age In-The-Wild (ATW). More specific-

ally, 19.000 images that depict 540 subjects from 0 to 100 years old were collected from the internet.

Subsequently, each image was manually annotated in terms of age and identity of the depicted subject.

On average, there are 36 images that span 55 years for each subject.
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Figure 3.10: Progressed faces produced by the compared methods on the FG-NET database. ATW
dataset was used for training. RJIVE maintains the facial shape and identity characteristics and pro-
duces images closer to the ground truth compared to the rest methods.
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Figure 3.11: Progressed faces produced by the compared methods on the FG-NET database. ATW
dataset was used for training. RJIVE better maintains face and identity characteristics such as skin
tone and eye shape compared to the rest methods.

In order to train the RJIVE, the ATW was divided into M = 10 age groups: 0 − 3, 4 − 7, 8 − 15,

16−20, 21−30, 31−40, 41−50, 51−60, 61−70, and 71−100. Then, following the same procedure as

in FES task, the RJIVE was employed to extract the joint and common components from the warped

images. The performance of RJIVE in face age progression “in-the-wild” is qualitatively assessed

conducting experiments on images from the FG-NET database [226]. To this end, we compare the

performance of RJIVE with the Illumination Aware Age Progression (IAAP) method [200], Coupled

Dictionary Learning (CDL) method [201], Deep Ageing with Restricted Boltzmann Machines (DARB)

method [202], Craniofacial Growth (CG) [203] model, Exemplar-based Age Progression (EAP) [204]
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Figure 3.12: Comparisons between the IAAP, DARB, and RJIVE methods. ATW dataset was used for
training. RJIVE maintains the facial shape and identity, while DARB produces heavy identity shift and
IAAP synthesises black and white images.

method, Face Transformer (FT Demo) [227], and Recurrent Face Aging (RFA) method [205]. In

Figures 3.10, 3.11 progressed images produced by the compared methods are depicted. Note, that

all the progressed faces have been warped back and fused with the actual ones. Figure 3.12 depicts

faces synthesised by the DARB, IAAP, and RJIVE methods. By observing the results, it can be clearly

seen that the identity information is not preserved in case of DARB. In particular, the progressed

faces of all subjects for a specific age group are very similar between them. Instead, the identity

information remains in the faces produced by the proposed RJIVE method, while the age progression

result looks more natural. Finally, progressed example faces in all the age-groups produced the RJIVE

are visualised in Figure 3.13.

3D age progression of an unseen subject

Here, the ability of the proposed RJIVE-M method to perform 3D face age progression is demon-

strated. Similarly to the 2D face age progression experiments presented previously, the ATW database

was divided into M = 6 age groups (21-30, 31-40, 41-50, 51-60, 61-70, 71+) and used to train the

RJIVE-M. In order to acquire the 3D training data for this task the 3DMM-ITW [33] was employed.

The optimal shape and camera parameters were extracted by fitting the model to each one of the images

of all age groups as described in Section 2.1.2. In order to recover 3D shapes of high quality, we used
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Figure 3.13: Progressed faces produced by the proposed RJIVE method. Trianed on the ATW dataset,
RJIVE produces plausible progressed faces across all age groups from arbitrary input face images.

the age and gender specific versions of the LSFM shape model introduced in [44] to describe identity

and the blendshapes of [58] to describe facial expressions. After recovering the 3D shape of each face,

we computed the self-occlusion mask by using ray-tracing (see Input rows of Figure 3.14). Then, the

completed joint and individual components of the grossly corrupted and incomplete UV textures were

obtained by employing the RJIVE-M. The joint components obtained by applying a variant of JIVE

with missing values, i.e. JIVE-M, and the RJIVE-M on UV textures are displayed in Figure 3.14. By

observing the results, we can clearly see that the RJIVE successfully removed the occlusions produced

from eyeglasses and fingers in all images. This is attributed to the fact that the matrix L1-norm was

adopted in RJIVE, which effectively handles sparse noise of possibly large magnitude.

Similarly, to the 2D face aging experiment we can apply the RJIVE-M to the recovered UV maps

to learn components that can be used to age the UV texture of a test unseen subject. Since, the 3D

shapes are produced by the LSFM model they neither have missing values nor are contaminated by

noise. Hence, for training aging components for the 3D shape we used standard JIVE.

In the test phase, the 3D facial shape of the test face is obtained by using the 3DMM-ITW algorithm

[33]. Then, the UV texture and the corresponding self-occlusion mask are computed by employing the
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Input
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Figure 3.14: Input images and corresponding joint components produced by the compared JIVE-M
and RJIVE-M methods. As it can be observed the proposed method is able to remove occlusions such
as fingers and glasses from unwrapped UV maps, producing cleaner textures.

recovered 3D shape. The progression of the texture of the test subject in an age group is obtained by

solving the problem (3.13) (for the shape we use the problem in (3.1)). Progressed unseen subjects in

all age groups, projected back in the image plane, are visualised in Figure 3.15. After calculating a

progressed 3D texture image and 3D shape the result face model is projected back in the image plane

using the camera parameters initially acquired by fitting the 3DMM-ITW in the test image.

Figure 3.16 presents additional results that demonstrate the ability of the RJIVE-M to perform not

only age progression but also completion. For each subject the original and two side poses are depicted.

The extracted by the 3DMM-ITW 3D face model of the input image is displayed on the first row. By
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Figure 3.15: Progressed faces produced by the proposed RJIVE-M method, projected back in the
image plane using the 3D face shapes and camera parameters acquired by fitting the 3DMM-ITW.
The same fitting technique was employed to extract incomplete UV maps from ATW which were used
for training. The progressed faces demonstrate plausible age-specific details such as wrinkles, while
maintaining the identity of the subjects.

observing the results it becomes obvious that due to the self-occlusions, the instance of the 3D model

with pose different to the input one contains huge areas of missing values (black color). This is not

the case for the progressed and completed results produced by the RJIVE-M (second row). As it can

be seen, the completion of the regions with missing data blends naturally with the rest of the texture

which proves the significant representational power of the bases extracted from RJIVE-M.

Age-invariant face verification in-the-wild

The performance of the RJIVE is also quantitatively assessed by conducting age-invariant face verific-

ation experiments. Following the successfully used verification protocol of the LFW database [228],

we propose four new age-invariant face verification protocols based on the proposed ATW database.

Each one of the protocols was created by splitting the ATW database into 10 folds, with each fold

consisting of 300 intra-class pairs and 300 inter-class pairs. The essential difference between these

protocols is that in each protocol the age difference of each pair’s faces is equal to a predefined value

i.e., {5 ages, 10 ages, 20 ages, 30 ages}.

In order to assess the performance of RJIVE, the following procedure was performed. For each fold
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Figure 3.16: Progressed and completed 3D texture images, produced by the proposed RJIVE-M
method. The 3D face models are visualised in the original and two side poses, so that the missing
and the completed data become visible. RJIVE is able to produce plausible progressed faces with
age-specific details, while simultaneously competing the missing information of UV textures.

of a specific protocol the training images were split into M = 10 age-groups and subsequently the

RJIVE was employed on their warped version in order to extract the joint and individual components.

All images of each training pair were then progressed into M = 10 age groups resulting into 10 new

pairs. The progressed images of six subjects are depicted in Figure 3.13. As we wanted to represent

each pair by using a single feature, gradients orientations were extracted from the corresponding im-

ages and subsequently the mean value of their cosine difference was employed as the pair’s feature.

M different Support Vector Machines (SVM) were trained by utilising the extracted features. Finally,

the scores produced by all the SVMs were fused by using SVM.

In Figure 3.17, Receiver Operating Characteristic (ROC) curves computed based on the 10 folds of

each one of the proposed protocols are depicted. The corresponding mean classification accuracy and
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(‘Protocol 5 years’) (‘Protocol 10 years’)

(‘Protocol 20 years’) (‘Protocol 30 years’)

Figure 3.17: ROC curves of RJIVE on the proposed four protocols. ‘Original images’ corresponds
to the results obtained by employing the actual images. Augmenting the existing images with RJIVE
synthesised ones for the tasks of age-invariant face verification boosts performance compared to using
just the originals. In particular, larger performance improvements are seen for protocols referring to
the larger age differences.

Area Under Curve (AUC) are reported in Table 3.3. In order to assess the effect of progression, the

results obtained by utilising only the original images are also provided. Some interesting observations

are drawn from the results. Firstly, the improvement in accuracy validates that the identity information

of the face remains after the RJIVE-based progression. Furthermore, the improvement in accuracy is

higher when the age difference of images of each pair is big enough. For instance, the improvement

in accuracy in ‘Protocol 30 years’ is higher than the corresponding in ‘Protocol 5 years’. Finally, the

produced results justify that the problem of age-invariant face verification becomes more difficult when

the age difference is very large (e.g., 30 years).

The performance of RJIVE in age-invariant face verification is also compared against the IAAP [200]

by conducting experiment on the FG-NET database. The experimental protocol employed is as fol-

lows. By selecting images where the depicted subjects are older than the age of 18 years, we created
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Figure 3.18: ROC curve of the
RJIVE and IAAP on FG-NET data-
base. RJIVE outperforms the com-
pared method, meaning that it pro-
duces more realistic face images, as
validated by our face verification task.

Table 3.3: Mean AUC and Accuracy on the proposed
four protocols. Employing RJIVE synthesised images
in the tasks of age-invariant face verification boosts
performance compared to using only the available real
images. In particular, larger performance improve-
ments are seen for protocols referring to the larger age
differences.

RJIVE Original Images

Protocol AUC Accuracy AUC Accuracy

5 years 0.686 0.637 0.646 0.609
10 years 0.654 0.621 0.624 0.591
20 years 0.633 0.598 0.585 0.552
30 years 0.584 0.552 0.484 0.495

a subset of the FG-NET database consisting of 518 images. Then, based on the selected images we

created 1250 intra-class pairs i.e., the images of each pair depict the same subject under different ages,

and another 1250 inter-class pairs. The experiment protocol was finally created by dividing the pairs

on 5 folds with each fold containing 250 intra-class pairs and 250 inter-class ones. All images were

then progressed by employing the RJIVE and IAAP methods. A similar to previous experiment pro-

cedure was followed in order to perform the age-invariant verification. The produced ROC curves are

displayed in Figure 3.18. As it can be observed the proposed RJIVE method outperforms the IAAP by

a large margin indicating that the RJIVE produces progressed images of high quality without removing

the identity information.

3.4 Conclusions

A general framework for robust recovering of joint and individual variance among several data-sets

possibly contaminated by gross non-Gaussian errors and incomplete has been presented in this Chapter.

Four different models namely, L1-RJIVE, NN-L1-RJIVE, SRJIVE, and RJIVE-M have been pro-

posed. Furthermore, based on the recovered components from training data, two novel optimisation

problems that extracts the joint and individual components of an unseen test sample, are introduced.

The effectiveness of the RJIVE was first tested by conducting experiments on synthetic data. Then,
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extensive experiments were conducted on facial expression synthesis and 2D an 3D face age pro-

gression by utilising five data-sets captured under both controlled and “in-the-wild” conditions. The

experimental results validate the effectiveness of the proposed RJIVE method over the state-of-the-art.
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4.1 Introduction

Interactive editing of the expression of a face in an image has countless applications including but

not limited to movies post-production, computational photography, face recognition (i.e. expression

neutralisation) etc. In computer graphics facial motion editing is a popular field, nevertheless mainly

revolves around constructing person-specific models having a lot of training samples [229]. Recently,

the advent of machine learning, and especially Deep Convolutional Neural Networks (DCNNs) provide

very exciting tools making the community to re-think the problem. In particular, recent advances in

Generative Adversarial Networks (GANs) provide very exciting solutions for image-to-image (i2i)

translation.

i2i translation, i.e. the problem of learning how to transform aligned image pairs, has attracted a

lot of attention during the last few years [17, 18, 19]. The so-called pix2pix model and alternatives

demonstrated excellent results in image completion etc. [17]. In order to perform i2i translation in

absence of image pairs the so-called CycleGAN was proposed, which introduced a cycle-consistency

loss [18]. CycleGAN could perform i2i translation between two domains only (i.e. in the presence of

two discrete labels), utilising separate generators and discriminators for each mapping direction. The

more recent StarGAN [19] extended the idea of cycle consistency further to accommodate multiple

domains (i.e. multiple discrete labels) based on single generator and discriminator networks.

StarGAN can be used to transfer an expression to a given facial image by providing the discrete

label of the target expression. Hence, it has quite small capabilities in expression editing and arbitrary

expression transfer. Over the last few years, quite some deep learning related methodologies have

been proposed for transforming facial images [19, 230, 20]. The most closely related work to us

is the recent work [20] that proposed the GANimation model. GANimation follows the same line of

research as StarGAN to translate facial images according to the activation of certain facial Action Units

(AUs) and their intensities. According to [79], AUs is a system to taxonomise motion of the human

facial muscles. Even though AU coding is a quite comprehensive model for describing facial motion,
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detecting AUs is currently an open problem both in controlled, as well as in unconstrained recording

conditions [86, 87]. Recent AU detection techniques achieve around 50% F1 in EmotioNet challenge

and from our experiments OpenFace [85] achieves lower than 20-25%. In particular, in unconstrained

conditions the detection accuracy for certain AUs is not high-enough yet [86, 87], which affects the

generation accuracy of GANimation. More specifically, GANimation’s accuracy is related to both the

AU detection, as well as the estimation of their intensity, since the generator is jointly trained and

influenced by a network that performs detection and intensity estimation.

One of the reasons of the low accuracy of automatic annotation of AUs, is the lack of annotated data

and the high cost of annotation which has to be performed by highly trained experts. Finally, even

though AUs 10-28 model mouth and lip motion, only 10 of them can be automatically recognised i.e.

AUs 10, 12, 14, 15, 17, 20, 23, 25, 26, 28. To make matters worse, the 10 AUs can only be recognised

with low accuracy, thus they cannot describe all possible lip motion patterns produced during speech.

Hence, GANimation cannot be used in straightforward manner for transferring speech.

In this work, we are motivated by the recent successes in 3D face reconstruction methodologies

from “in-the-wild” images [30, 31, 32, 13], which make use of a statistical model of 3D facial mo-

tion by means of a set of linear blendshapes, and propose a methodology for facial image translation

using GANs driven by the continuous parameters of the linear blendshapes. The linear blendshapes

can describe both the motion that is produced by expression [59] and/or motion that is produced by

speech [34]. On the contrary, neither discrete emotions nor facial Action Units can be used to describe

the motion produced by speech or the combination of motion from speech and expression. We demon-

strate that it is possible to transform a facial image along the continuous axis of individual expression

and speech blendshapes.

Moreover, contrary to StarGAN, which uses discrete labels regarding expression, and GANimation,

which utilises annotations with regards to action units, our methodology does not need any human an-

notations, as we operate using pseudo-annotations provided by fitting a 3D Morphable Model (3DMM)

to images [13] (for expression deformations) or by aligning audio signals [34] (for speech deforma-

tions). Building on the automatic annotation process exploited by SliderGAN, a by-product of our

training process is a very robust regression DCNN that estimates the blendshape parameters directly

from images. This DCNN is extremely useful for expression and/or speech transfer as it can automat-
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ically estimate the blendshape parameters of target images.

i2i translation models have achieved photo-realistic results by utilising different GAN optimisation

methods in literature. pix2pix employed the original GAN optimisation technique proposed in [1].

However, the loss function of GAN may lead to the vanishing gradients problem during the learning

process. Hence, more effective GAN frameworks emerged that were employed by i2i translation

methods. CycleGAN uses LSGAN, which builds upon GAN adopting a least squares loss function for

the discriminator. StarGAN and GANimation use WGAN-GP [36], which enforces gradient clipping

as a measure to regularise the discriminator. WGAN-GP, builds upon WGAN [105] which minimises

an approximation of the Wasserstein distance to stabilise training of GANs.

A recent approach of efficient GAN optimisation which has been proven to enhance the texture

quality in i2i translation and particularly in super-resolution problems [231], is the Relativistic GAN

(RGAN) [35]. RGAN was suggested in order to train the discriminator to simultaneously decrease

the probability that real images are real, while increasing the probability that the generated images

are real. In our work, we incorporate RGAN in the training process of SliderGAN and demonstrate

that it can improve the generator which produces more detailed results in the task of i2i translation for

expression and speech synthesis, when compared to training with WGAN-GP. In particular, we employ

the Relativistic average GAN (RaGAN) which decides whether an image is relatively more realistic

than the others on average, rather than whether it is real or fake. More details, as well as the benefits

from this mechanism are presented in Section 4.2.1.

To summarise, the proposed method includes quite a few novelties. First of all, we showcase that

SliderGAN is able to synthesise smooth deformations of expression and speech in images by util-

ising 3D blendshape models of expression and speech respectively, as demonstrated in Figure 4.1.

Moreover, it is the first time to the best of our knowledge that a direct comparison of blendshape and

AU coding is presented for the task of expression and speech synthesis. In addition, our approach is

annotation-free but offers much better accuracy than AUs-based methods. Furthermore, it is the first

time that Relativistic GAN was employed for the task of expression and speech synthesis. We demon-

strate in our results that SliderGAN trained with the RaGAN framework (SliderGAN-RaD) benefits

towards producing more detailed textures, than when trained with the standard WGAN-GP framework

(SliderGAN-WGP). Finally, we enhance the training of our model with synthesised data, leveraging
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Input Sliding single parameters

Input Sliding multiple parameters

Input Speech synthesis

Figure 4.1: Expressive faces generated by sliding a single or multiple blendshape parameters in the
normalised range [−1, 1]. Rows 1 and 3 depict 3D expressive faces generated by a linear blendshape
model of natural face motion and a set of expression parameters. The corresponding edited images
generated by SliderGAN using the same set of parameters are depicted in rows 2 and 4. As it is ob-
served, the generated images accurately replicate the 3D faces’ motion. The robustness of blendshape
coding of facial motion allows SliderGAN to perform speech synthesis, as demonstrated in rows 5
(target speech) and 6 (synthesised speech), for which a 3D blendshape model of human speech was
utilised.

the reconstruction capabilities of statistical shape models.

4.1.1 Facial Attribute Editing and Reenactment in Images

Over the past few years, quite some models have been proposed for the task of transforming images

and especially facial attributes in images of faces, e.g. expression, pose, hair color, age, gender etc.

A rough categorisation of them can be made depending on whether they are targeted to single image

manipulation or to face reenactment in a sequence of frames.

Single image manipulation We have already discussed Pix2pix [17], CycleGAN [18], StarGAN [19]

and GANimation [20] which are are all methodologies developed to tackle single image editing via

i2i translation. Similarly, developed for single image manipulation, DIAT [232] uses an adversarial
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loss to learn a one directional mapping between images of two domains. ICGAN [99] is a conditional

GAN for image attribute editing, which can handle multiple attributes with one generator. ICGAN

learns an inverse mapping from input images to latent vectors and manipulates attributes by changing

the condition for fixed latent vectors. Moreover, PuppetGAN [233] introduced a new approach to

training image manipulation systems. In particular, PuppetGAN transforms attributes in images based

on examples of how the desired attribute affects the output of a crude simulation (e.g. a 3D model of

facial expression). Also, PuppetGAN uses synthetic data to train attribute disentanglement eliminating

the need for annotations for the real data, as the disentanglement is extended to the real domain, too.

Along the direction of developing models for facial expression editing without supervision from

expression annotations, StyleRig [116] has enabled rig-like control of face generation performed by a

pre-trained StyleGAN [2] generator, associating the parameter space of a 3D blendshape model with

the latent space of StyleGAN. Generating smooth facial animation by discovering interpretable direc-

tions in the latent space of GANs has also been explicitly studied by the works in [234, 235], in which

linear and non-linear paths are discovered respectively. Moreover, in [236] the authors propose to dis-

cover semantically meaningful attributes (e.g. gender, expression) of generated images by clustering

the features of pre-trained generators and learning mappings in latent space between cluster-specific

latent codes and the latent space of the pre-trained generators.

Instead of learning a generator, X2Face [230] changes expression and pose from driving images,

pose or audio codes, utilising an embedding network and a driving network. It is trained with videos

requiring no annotations apart from identity, but can be tested on single source and target frames.

Besides, we acknowledge [237] which is a concurrent work, very closely related to ours. In this work,

the authors similarly to us employ blendshape parameters for expression editing but follow a different

approach in image editing, handling 3D texture (UV maps) and shape separately and composing them

in a final output image by rendering. This method produces realistic results in expression manipulation,

but involves 3DMM fitting and rendering during testing which can be computationally demanding.

Nevertheless, it demonstrates the usefulness of blendshapes in the task of automatic face manipulation.

Sequence manipulation Face reenactment is the process of animating a target face using the face,

audio, text, or other codes from a source video to drive the animation. Differently to most of i2i trans-

lation methods, face reenactment methods most often require thousands if not millions of frames of
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the same person for training, testing or both. Targeted to sequence manipulation, Face2Face [110]

animates facial expression of the target video, based on rendering a face with the requested expression,

warping the texture from the available frames of the target video and then blending. Face2Face, also,

does not require training. Deep Video Portraits [114], produces similar results to Face2Face but anim-

ates the whole head and is trained for specific source and target videos, meaning that training has to be

repeated when the source or target changes. Other methods drive the animation using audio or text as

driving codes [229, 113]. Finally, Deferred Neural Rendering (DNR) [117] is based on learning neural

textures, feature maps associated with the scene capturing process, employed by a neural renderer to

produce the outputs. DNR is trained for specific source and target videos, too.

4.2 Proposed Methodology

In this section, we develop the proposed methodology for continuous facial expression editing based

on sliding the parameters of a 3D blendshape model.

4.2.1 Slider-based Generative Adversarial Network for continuous facial expression

and speech editing

Problem Definition: Let us here first formulate the problem under analysis and then describe our pro-

posed approach to address it. We define an input image Iorg ∈ RH×W×3 which depicts a human face

of arbitrary expression. We further assume that any facial deformation or grimace evident in image

Iorg, can be encoded by a parameter vector porg = [porg,1, porg,2, ..., porg,N ]>, of N continuous scalar

values porg,i, normalised in the range [−1, 1]. In addition, the same vector porg constitutes the para-

meters of a linear 3D blendshape model Sexp that, as in Figure 4.3, instantiate the 3D representation

of the facial deformation of image Iorg which is given by the expression:

Sexp(porg) = s̄ + Uexpporg, (4.1)

where s̄ is a mean 3D face component and Uexp the expression eigenbasis of the 3D blendshape model.

Detailed information on expression modelling using blenshapes, as well as how parameters porg are

extracted from images are included in Section 2.1.

Our goal is to develop a generative model which given an input image Iorg and a target expression
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Generator Training

Relativistic Average Discriminator Training

Real Image Fake Image

Figure 4.2: Synopsis of the modules, losses and the training process of SliderGAN. An attention-based
generator G is trained to generate realistic expressive faces from continuous parameters by employing
a set of adversarial, generation, reconstruction, identity and attention losses. The performance of our
model is significantly boosted by employing synthetic image pairs through the Lgen loss. Moreover,
a relativistic discriminator D is trained to classify images as relatively more real or fake, as well as to
regress expression parameters of the input images in order to increase the generation quality of G.

parameter vector ptrg, will be able to generate a new version Igen of the input image with simulated

expression given by the 3D expression instance Sexp(ptrg).

Attention-Based Generator: To address the above challenging problem, we propose to employ a

Generative Adversarial Network architecture in order to train a generator network G that performs

translation of an input image Iorg, conditioned on a vector of 3D blendshape parameters ptrg; thus,

learning the generator mapping G(Iorg|ptrg) → Igen. In addition, to better preserve the content and

the colour of the original images we employ an attention mechanism at the output of the generator as

in [238, 20]. That is we employ a generator with two parallel output layers, one producing a smooth
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Figure 4.3: Examples of the 3D representation of the expression of an image by the model Sexp. The
3D faces of this figure have been generated by 3DMM fitting on the corresponding images.

deformation mask Gm ∈ RH×W and the other a deformation image Gi ∈ RH×W×3. The values of

Gm are restricted in the region [0, 1] by enforcing a sigmoid activation. Then,Gm andGi are combined

with the original image Iorg to produce the target expression Igen as:

Igen = GmGi + (1−Gm)Iorg. (4.2)

Relativistic Discriminator: We employ a discriminator network D that forces the generator G to

produce realistic images of the desired deformation. Different from the standard discriminator in

GANimation which estimates the probability of an image being real, we employ the Relativistic Dis-

criminator [35] which estimates the probability of an image being relatively more realistic than a

generated one. That is if Dimg = σ(C(Iorg)) is the activation of the standard discriminator, then

DRaD,img = σ(C(Iorg) − C(Igen)) is the activation of the Relativistic Discriminator. Particularly,

we employ the Relativistic average Discriminator (RaD) which accounts for all the real and generated

data in a mini-batch. Then, the activation of the RaD is:

DRaD,img =


σ(C(I)− EIgen [C(Igen)]), if I is a real image

σ(C(I)− EIorg [C(Iorg)]), if I is a generated image
(4.3)

where EIorg and EIgen define the average evaluations of all real and generated images in a mini-batch

respectively. In the above definitions σ is the activation function of the discriminator and C is the

output of the convolutional structure of the discriminator without activation function. That is, σ is

applied on the difference of two terms (which include multiple evaluations of the discriminator) rather

than directly on the output of the discriminator.

We further extend D by adding a regression layer parallel to Dimg that estimates a parameter vector

pest, to encourage the generator to produce accurate facial expressions, D(I) → Dp(I) = pest.
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Finally, we aim to boost the ability ofG to maintain face identity between the original and the generated

images by incorporating a face recognition module F .

Semi-supervised training: We train our model in a semi-supervised manner with both data with no

image pairs of the same person under different expressions {Iiorg,piorg,pitrg}Ki=1 and data with image

pairs that we automatically generate as described in detail in Section 4.3.1, {Iiorg,piorg, Iitrg,pitrg}Li=1.

The supervised part of training essentially supports SliderGAN being robust on errors of expression

parameters extracted from 3DMM fitting. Further discussion on the nature and effect of such errors is

included in Section 4.3.6. The modules of our model, as well as the training process of SliderGAN are

presented in Figure 4.2.

Adversarial Loss: To improve the photorealism of the synthesised images we utilise the Wasserstein

GAN adversarial objective with gradient penalty (WGAN-GP) [36]. Therefore, the selected WGAN-

GP adversarial objective with RaD is defined as:

Ladv = EIorg [DRaD,img(Iorg)]

− EIorg ,ptrg [DRaD,img(G(Iorg,ptrg))]

− λgpEIgen [(‖∇IorgDRaD,img(Igen)‖2 − 1)2],

(4.4)

where the first two terms correspond to the WGAN critic loss, aiming to minimize the distance between

the distribution of real and generated images, and the third one to the gradient penalty term encouraging

the norm of the gradients to go towards 1. In [36] the authors argue that 1 is a reasonable norm for the

gradients as is equal to the norm of the gradients of the optimal WGAN solution, as well as that using

the penalty term is preferable to gradient clipping.

Based on 4.3 and different from the standard discriminator, both real and generated images are

included in the generator part (the second term) of the objective of 4.4. This allows the generator to

benefit from the gradients of both real and fake images, which as we show in the experimental section

leads to generated images with sharper edges and more details. This contributes to better representing

the distribution of the real data. Based on the original GAN rational [1] and the Relativistic GAN [35],

our generator G and discriminator D are involved in a min-max game, where G tries to maximise the

objective of (4.4) by generating realistic images to fool the discriminator, while D tries to minimise it

by correctly classifying the real images as more realistic than the fake ones and the generated images

as less realistic than the real ones.
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Expression Loss: To make G consistent in accurately transferring target deformations Sexp(ptrg) to

the generated images, we consider the discriminator D to have the role of an inspector. To this end,

we back-propagate a mean squared loss between the estimated vector pest of the regression layer of D

and the actual vector of expression parameters of an image.

We apply the expression loss both on original images and generated ones. Similarly to the classi-

fication loss of StarGAN [19], we construct separate losses for the two cases. For real images Iorg we

define the loss:

Lexp,D =
1

N
‖Dp(Iorg)− porg)‖2, (4.5)

between the estimated and real expression parameters of Iorg, while for the generated images we define

the loss:

Lexp,G =
1

N
‖Dp(G(Iorg,ptrg))− ptrg)‖2, (4.6)

between the estimated and target expression parameters of Igen = G(Iorg,ptrg). Consequently, D

minimises Lexp,D to accurately regress the expression parameters of real images, while G minimises

Lexp,G to generate images with accurate expression according to D.

Image Reconstruction Loss: The adversarial and the expression losses of (4.4), (4.5) and (4.6), would

be enough to generate random realistic expressive images which however, would not preserve the

contents of the input image Iorg. To overcome this limitation we admit a cycle consistency loss [18]

for our generator G:

Lrec =
1

W ×H
‖Iorg − Irec‖1, (4.7)

over the vectorised forms of the real image Iorg and the reconstructed one Irec = G(G(Iorg,ptrg),porg).

Note that we obtain image Irec by using the generator twice, first to generate image Igen = G(Iorg,ptrg)

and then to get the reconstructed Irec = G(Igen,porg), conditioning Igen on the parameters porg of

the original image.

Image Generation Loss To further boost our generator towards accurately editing expression based

on a vector of parameters, we introduce image pairs of the form {Iiorg,piorg, Iitrg,pitrg}Li=1 that we

automatically generate from neutral images as described in detail in Section 4.3.1. We exploit the

synthetic pairs of images of the same individuals under different expression by introducing an image
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generation loss:

Lgen =
1

W ×H
‖Itrg − Igen‖1, (4.8)

where Itrg and Igen are images with either neutral or synthetic expression of the same individual. Here,

we calculate the L1 loss between the synthetic ground truth image Itrg and the generated by G, Igen,

aiming to boost our generator to accurately transfer the 3D expression Sexp(ptrg) to the edited image.

Identity Loss: Image reconstruction loss of (4.7), aids to maintain the surroundings between the ori-

ginal and generated images. However, the faces’ identity is not always maintained by this loss, as also

show by our ablation study in Section 4.3.9. To alleviate this issue, we introduce a face recognition

loss adopted from ArcFace [239], which models face recognition confidence by an angular distance

loss. Particularly, we introduce the loss:

Lid = 1− cos(egen, eorg) = 1− ‖egen‖‖eorg‖
e>geneorg

, (4.9)

where egen = F (Igen) and eorg = F (Iorg) are embeddings of Igen and Iorg respectively, extracted

by the face recognition module F . According to ArcFace, face verification confidence is higher as

the cosine distance cos(egen, eorg) grows. During training, G is optimised to maintain face identity

between Igen and Iorg which minimises (4.9).

Attention Mask Loss: To encourage the generator to produce sparse attention masksGm that focus on

the deformation regions and do not saturate to 1, we employ a sparsity loss Latt. That is, we calculate

and minimise the L1-norm of the produced masks for both the generated and the reconstructed images,

defining the loss as:

Latt =
1

W ×H

(
‖Gm(Iorg,ptrg)‖1 + ‖Gm(Igen,porg)‖1

)
, (4.10)

Total Training Loss: We combine losses (4.4) - (4.10) to form loss functionsLG andLD for separately

training the generator G and the discriminator D of our model. We formulate the loss functions as:

LG =



Ladv + λexpLexp,G + λrecLrec + λidLid + λattLatt,

for unpaired data {Iiorg,piorg,pitrg}Ki=1

Ladv + λexpLexp,G + λrecLrec + λgenLgen + λidLid + λattLatt,

for paired data {Iiorg,piorg, Iitrg,pitrg}Li=1

(4.11)
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LD = −Ladv + λexpLexp,D, (4.12)

where λexp, λrec, λgen, λid and λatt are parameters that regularise the importance of each term in the

total loss function. We discuss the choice of those parameters in Section 4.3.2.

As can be noticed in (4.11), we employ different loss functions LG, depending on if the training data

are the real data with no image pairs or the synthetic data which include pairs. The only difference is

that in the case of paired data we use the additional supervised loss term Lgen.

4.2.2 Implementation details

Having presented the architecture of our model, here we report further implementation details. For the

generator module G of SliderGAN, we adopted the architecture of CycleGAN [18] as it is proved to

generate remarkable results in image-to-iamge translation problems, as for example in StarGAN [19].

We extended the generator by adding a parallel output layer to accomodate the attention mask mech-

anism. Moreover, for D we adopted the architecture of PatchGAN [17] which produces probability

distributions of the multiple image patches to be real or generated, D(I) → Dimg. As described

in Section 4.2.1, we extended this discriminator architecture by adding a parallel regression layer to

estimate continuous expression parameters.

4.3 Experiments

In this section, we present a series of experiments that we conducted in order to evaluate the per-

formance of SliderGAN. First, we describe the datasets we utilised to train and test our model (Sec-

tion 4.3.1) and provide details on the training setting for each experiment (Section 4.3.2)). Then, we

test the ability of SliderGAN to manipulate the expression in images by adjusting a single or multiple

parameters of a 3D blendshape model (Section 4.3.3). Moreover, we present our results in direct ex-

pression transfer between an input and a target image (Section 4.3.4), as well as in discrete expression

synthesis (Section 4.3.5). Next, we test Ganimation on expression editing when trained with blend-

shape vectors instead of AUs (Section 4.3.6). We examine the ability of SliderGAN to handle face

deformations due to speech (Section 4.3.7) and test the regression accuracy of our model’s discrimin-

ator (Section 4.3.8). We close the experimental section of our work by presenting an ablation study
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Figure 4.4: Synthetic expressive faces, generated by fitting a 3DMM on the original images and ren-
dering back with a randomly sampled expression. The images with a red frame are the original images.

on the contribution of the different loss functions (Section 4.3.9) and a discussion on limitations and

failure cases of our technique (Section 4.3.10).

4.3.1 Datasets

Emotionet: For the training and validation phases of our algorithm we utilised a subset of 250,000

images of the EmotioNet database [240], which contains over 1 million images of expression and

emotion, accompanied by annotations about facial Action Units. However, SliderGAN is trained with

image - blendshape parameters pairs which are not available. Therefore, in order to extract the ex-

pression parameters we fit the 3DMM of [13] on each image of the dataset in use. To ensure the high

quality of 3D reconstruction, we employed the LSFM [70] identity model concatenated with the ex-

pression model of 4DFAB [59]. The 4DFAB expression model was built from a collection of over

10,000 expressive face 3D scans of spontaneous and posed expressions, collected from 180 individu-

als in 4 sessions over the period of 5 years. SliderGAN exploits the scale and representation power

of 4DFAB to learn how to realistically edit facial expressions in images. The method described above

constitutes a technique to automatically annotate the dataset and eliminates the need of costly manual

annotation.

3D Warped Images: One crucial problem of training with pseudo-annotations extracted by 3DMM

fitting on images, is that the parameter values are not always consistent as small variations in expression

can be mistakenly explained by the identity, texture or camera model of the 3DMM. To overcome this

limitation, we augmented the training dataset with expressive images that we render and therefore know
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the exact blendshape parameter values. In more detail, we fit with the same 3DMM 10,000 images of

EmotioNet in order to recover the identity and camera models for each image. A 3D texture can also

be sampled by projecting the recovered mesh on the original image. Then, we combined the identity

meshes with randomly generated expressions from the 4DFAB expression model and rendered back on

the original images. Rendering 20 different expressions from each image, we augmented the dataset

by 200,000 accurately annotated images. Some of the generated images are displayed in Figure 4.4

4DFAB Images: A common problem of developing generative models of facial expression is the

difficulty in accurately measuring the quality of the generated images. This is mainly due to the lack

of databases with images of people of the same identity with arbitrary expressions. To overcome this

issue and quantitatively measure the quality of images generated by SliderGAN, as well as compare

with the baseline, we created a database with rendered images from 3D meshes and textures of 4DFAB.

In more detail, we rendered 100 to 500 images with arbitrary expression from each of the 180 identities

and for each of the 4 sessions of 4DFAB, thus rendering 300,000 images in total. To obtain expression

parameters for each rendered image, we projected the blendshape model Sexp on each corresponding

3D mesh S such that the obtained parameters are p = U>exp(S− s̄).

Lip Reading Words in 3D (LRW-3D): Lip Reading in the Wild (LRW) dataset [241] consists of

videos of hundreds of speakers including up to 1000 utterances of 500 different words. LRW-3D [34]

provides speech blendshapes parameters for the frames of LRW, which were recovered by mapping

each frame of LRW that corresponds to one of the 500 words to instances of a 3D blendshape model

of speech. This was achieved by aligning the audio segments of the LRW videos and those of a 4D

speech database. Moreover, to extract expression parameters for each word segment of the videos

we applied the 3DMM video fitting algorithm of [13], which accounts for the temporal dependency

between frames. In Section 4.3.7, we utilise the annotations of LRW-3D as well as the expression

parameters to perform expression and speech transfer.

4.3.2 Training Details

In all experiments, we trained our models with images of size 128× 128 pixels, aligned to a reference

shape of 2D landmarks. As condition vectors we utilised the 30 most significant expression compon-

ents of 4DFAB and the 10 most significant speech components of LRW-3D [34]. The later where only
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used for the combined expression and speech synthesis experiments. We set the batch size to 16 and

trained our models for 60 epochs with Adam [242] (β1 = 0.5, β2 = 0.999). Moreover, we chose loss

weights λadv = 30, λexp = 1000, λrec = 10, λgen = 10, λid = 4 and λatt = 0.3. Larger values for

λid significantly restrict G, driving it to generate images very close to the original ones with no change

in expression. Also, lower values for λatt, lead to mask saturation.

In all our experiments training was performed in two phases over a total of 60 epochs. Particularly,

we first trained our models for 20 epochs, utilising only the generated image pairs of the ”3D warped

images” database presented in Section 4.3.1. This training phase makes our models robust to parameter

errors as further discussed in Section 4.3.6. Then, we proceeded to unsupervised training for another

40 epochs with a dataset of unpaired real images, which we selected depending on the task. In this

training phase, our models learn to generate the realistic details related to expression and speech. For

speech synthesis, we train the model from the beginning with an extended parameter vector of 40

elements, setting the speech parameters to zero for the first phase of training where we train only for

expression.

In more detail, the datasets we employed for the second phase of training in our experiments are as

follows. We employed:

• EmotioNet for our experiments on:

– 3D model-based expression editing (Section 4.3.3),

– expression transfer and interpolation on images of Emotionet (Section 4.3.4),

– discrete expression synthesis (Section 4.3.5),

– comparing with Ganimation conditioned on blendshape parameters (Section 4.3.6),

– 3d expression reconstruction (Section 4.3.8),

– the ablation study (Section 4.3.9),

– limitations of our model (Section 4.3.10),

• 4DFAB Images for the experiment on expression transfer and interpolation on images of 4DFAB

(Section 4.3.4),

• LRW-3D for the combined expression and speech synthesis experiment (Section 4.3.7).
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4.3.3 3D Model-based Expression Editing

Sliding single expression parameters: In this experiment, we demonstrate the capability of Slider-

GAN to edit the facial expression of images when single expression parameters are slid within the

normalised range [-1, 1]. In Figure 4.5 we provide results for 10 levels of activation of single para-

meters of the model (-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1), while the rest parameters remain

zero. As can be observed in Figure 4.5, SliderGAN successfully learns to reproduce the behaviour

of each blendshape separately, producing realistic facial expressions while adequately maintaining the

identity of the input image. Also, the transition between the generated expressions is smooth for suc-

cessive values of the same parameter and the intensity of the expressions dependent on the magnitude

of the parameter value. Note that when the zero vector is applied, SliderGAN produces the neutral

expression, whatever the expression of the original image.

Sliding multiple expression parameters: The main feature of SliderGAN is its ability to edit facial

expressions in images by sliding multiple parameters of the model, similarly to sliding parameters in

a blendshape model to generate new expressions of a 3D face mesh. To test this characteristic of our

model, we synthesise random expressions by conditioning the generator input on parameter vectors

with elements randomly drawn from the standard normal distribution. Note that the model was trained

with expression parameters normalised by the square root of the eigenvalues ei, i = 1, ..., N of the

PCA blendshape model. This means that all combinations of expression parameters within the range

[-1, 1] correspond to feasible facial expressions.

As illustrated by Figure 4.6, SliderGAN is able to synthesise face images with a great variability

of expressions, while adequately maintaining identity. The generated expressions accurately resemble

the 3D meshes’ expressions when the same vector of parameters is used for the blendshape model.

This fact makes our model ideal for facial expression editing in images. A target expression can first

be chosen by utilising the ease of perception of 3D visualisation of a 3D blendshape model and then,

the target parameters can be employed by the generator to edit a face image accordingly.

4.3.4 Expression Transfer and Interpolation

A by-product of SliderGAN is that the discriminator D learns to map images to expression paramet-

ers Dp that represent their 3D expression through Sexp(Dp). We capitalise on this fact to perform
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Input B/s values / Synthesized expressions Input B/s values / Synthesized expressions

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 4.5: Expressive faces generated by sliding single blendshape (b/s) parameters in the range
[−1, 1]. As it is observed, the edited images accurately replicate the 3D faces’ motion in the whole
range of parameter values.

Input Random synthesized expressions

Figure 4.6: Expressive faces generated by sliding multiple blendshape (b/s) parameters in the range
[−1, 1]. As it is observed, the wide range of the edited images accurately replicate the 3D faces’
motion.
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Input Target

Figure 4.7: Expression interpolation between images of 4DFAB. First, we employ D to recover the
expression parameters from an input and the target images. Then, we capitalise on these parameter
vectors to animate the expression of the input image towards multiple targets.

direct expression transfer and interpolation between images without any annotations about expression.

Assuming a source image Isrc with expression parameters psrc = Dp(Isrc) and a target image Itrg

with expression parameters ptrg = Dp(Itrg), we are able to transfer expression ptrg to image Isrc by

utilising the generator of SliderGAN, such that Isrc→trg = G(Isrc|ptrg). Note that no 3DMM fitting

or manual annotation is required to extract the expression parameters and transfer the expression, as

this is performed by the trained discriminator.

Additionally, by interpolating the expression parameters of the source and target images, we are able

to generate expressive faces that demonstrate a smooth transition from expression psrc to expression

ptrg. Interpolation of the expression parameters can be performed by sliding an interpolation factor a

within the region [0,1] such that the requested parameters are pinterp = apsrc + (1− a)ptrg.

Qualitative Evaluation: Results of performing expression transfer and interpolation on images of

the 4DFAB rendered database and Emotionet are displayed in Figure 4.7 and Figure 4.8 respectively,

where it can be seen that the expressions of the generated images obviously reproduce the target expres-

sions. The smooth transitions between expressions psrc and ptrg indicate that SliderGAN successfully
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Input Target

Figure 4.8: Expression interpolation between images of Emotionet. First, we employ D to recover the
expression parameters from an input and the target images. Then, we capitalise on these parameter
vectors to animate the expression of the input image towards multiple targets.

learns to map images to expressions across the whole expression parameter space. Also, it is evident

that D accurately regresses the blendshape parameters from images Itrg by observing the recovered

3D faces. The accuracy of the regressed parameters is also examined in Section 4.3.8.

To further validate the quality of our results, we trained GANimation on the same dataset with AU

annotations extracted with OpenFace [85] as suggesed by the authors. We performed expression trans-

fer between images and present results for SliderGAN-RaD, SliderGAN-WGP and GANimation. In

Figure 4.9, it is obvious that SliderGAN-RaD benefits from the Relativistic GAN training and produces

higher quality textures than SliderGAN-WGP, while both SliderGAN implementations better simulate

the expressions of the target images than GANimation. In particular, details such as the eyes, teeth,

the inside of the mouth and wrinkles are better defined by SliderGAN-RaD while with SliderGAN-

WGP such details are more blurry (for example, the mouth of the the 10th generated image of the 2nd

input subject) and the generated images include more artifacts (for example, the mouth of the the 8th

generated image of the 2nd input subject). In comparison to both SliderGAN models, GANimation

produces images with more blurry details (for example, the inside of the mouth in the 10th generated

images of the 1st input subject) and less accurate expressions (for example, the 4th generated image of

112



4.3. Experiments

Table 4.1: Image Euclidean Distance (IED), calculated between ground truth images of 4DFAB and
corresponding generated images by Ganimation [20], SliderGAN-WGP and SliderGAN-RaD. Results
from SliderGAN-RaD produce the lowest IED between the three methods.

Method IED

GANimation [20] 1.04e− 02

SliderGAN-WGP 7.932− 03

SliderGAN-RaD 6.84e− 03

the 4th input subject).

Quantitative Evaluation: In this section, we provide quantitative evaluation on the performance of

SliderGAN on arbitrary expression transfer. We employ the 4DFAB rendered images dataset which

allows us to calculate the Image Euclidean Distance (IED) [243] between ground truth rendered images

of 4DFAB and images generated by SliderGAN. Image Euclidean Distance is a robust alternative

metric to the standard pixel loss for image distances, which is defined between two RGB images x and

y each with M ×N pipxels as:

1

2π

MN∑
i=1

MN∑
j=1

exp{|Pi − Pj |2/2}(‖xi − yi‖2)(‖xj − yj‖2) (4.13)

where Pi and Pj are the pixel locations on the 2D image plane and xi, yi, xj , yj the RGB values of

images x and y at the vectorised locations i and j.

We trained SliderGAN with the rendered images from 150 identities of 4DFAB, leaving 30 identities

for testing. To allow direct comparison between generated and real images, we randomly created

10,000 pairs of images of the same session and identity (this ensures that the images were rendered

with the same camera conditions) from the testing set and performed expression transfer within each

pair. To compare our model against the baseline model GANimation, we trained and performed the

same experiment using GANimation on the same dataset with AUs activations that we obtained with

OpenFace. Also, to showcase the benefits of the relativistic discriminator in image quality of the

generated images, we repeated the experiment with SliderGAN-WGP. The results are presented in

Table 4.1 where it can be seen that SliderGAN-RaD produces images with the lowest IED.
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Figure 4.9: Expression transfer between images of Emotionet. First, we employ D to recover expres-
sion parameters from the target images. Then, we utilise these parameter vectors to transfer the target
expressions to the input images. From the results, SliderGAN-RaD produces higher quality textures
than any of the other two methods (mostly evident in the mouth and eyes regions). Moreover, GAN-
imation reproduces the target expressions with lower accuracy. (Please, zoom in the images to notice
the differences in texture quality.)
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4.3.5 Synthesis of Discrete Expressions

Specific combinations of the 3D expression model parameters represent the discrete expressions anger,

contempt, fear, disgust, happiness, sadness, surprise and neutral. To directly translate input images into

these expressions, we need appropriate blendshape parameter vectors which reproduce the correspond-

ing 3D model instances. Of course, as our condition vectors consist of real numbers, there do not exist

unique 3D instances for each expression, but infinitely many with varying intensity.

To extract such parameter vectors we adopted the following approach. First, we manually picked

10 images for each category of the questioned expressions from EmotioNet. Then, we employed D

to estimate parameter vectors for each image, similarly to the expression transfer of Section 4.3.4.

We computed the mean vectors for each of the 7 expressions and manually adjusted the values trough

visual inspection of the 3D model instances, to create 3D faces that depict the expressions in average

intensity (removing any exaggeration or mistakes from the discriminator).

We employ these parameter vectors to synthesise expressive face images of the aforementioned

discrete expressions and test our results both qualitatively and quantitatively.

Qualitative Evaluation: To evaluate the performance of SliderGAN in this task, we visually compare

our results against the results of five baseline models: DIAT [232], CycleGAN [18], ICGAN [99],

StarGAN [19] and GANimation [20]. In Figure 4.10 it is evident that SliderGAN generates results that

resemble the queried expressions while maintaining the original face’s identity and resolution. The

results are close to those of GANimation, however the Relativistic GAN training of SliderGAN allows

for slightly higher quality of images.

The neutral expression can also be synthesised by SliderGAN when all the elements of the tar-

get parameter vector are set to 0. In fact, the neutral expression of the 3D blendshape model is also

synthesised by the same vector. Results of image neutralisation on “in-the-wild” images of arbitrary

expression are presented in Figure 4.11, where it can be observed that the neutral expression is gener-

ated without significant loss in faces’ identity.

Quantitative Evaluation: We further evaluate the quality of the generated expressions by performing

expression recognition with the off-the-self recognition system [244]. In more detail, we randomly se-

lected 10,000 images from the test set of Emotionet, translated them to each of the discrete expressions
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Input

DIAT

CycleGAN

ICGAN

StarGAN

GANimation

SliderGAN-
RaD

(a) (b) (c) (d) (e) (f) (g)

Figure 4.10: Generation of the 7 discrete expressions a) anger, b) contempt, c) disgust, d) fear, e)
happiness, f) sadness, g) surprise. By comparing SliderGAN against DIAT [232], CycleGAN [18],
ICGAN [99], StarGAN [19] and GANimation [20] we observe that our model generates results of
high texture quality that resemble the queried expressions. The results of the rest of the methods where
taken from [20].

Input Neutral Input Neutral Input Neutral

Figure 4.11: Neutralisation of “in-the-wild” images of arbitrary expression. The neutralisation takes
place by setting all blendshape parameter values to zero.
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Table 4.2: Expression recognition results by applying the off-the-self expression recognition sys-
tem [244] of images generated by GANimation [20], SliderGAN-WGP and SliderGAN-RaD. Ac-
curacy scores from both SliderGAN models outperform those of GANimation, while SliderGAN-RaD
achieves thehighest accuracy in all epressions.

Method Anger Disgust Fear Happiness Sadness Surprise Neutral Average

GANimation [20] 0.552 0.446 0.517 0.658 0.632 0.622 0.631 0.579

SliderGAN-WGP 0.550 0.463 0.514 0.762 0.633 0.678 0.702 0.614

SliderGAN-RaD 0.591 0.481 0.531 0.798 0.654 0.689 0.708 0.636

anger, disgust, fear, happiness, sadness, surprise, neutral and passed them to the expression recognition

network. For comparison, we repeated the same experiment with SliderGAN-WGP and GANimation

using the same image set. In Table 4.2 we report accuracy scores for each expression class separately,

as well as the average accuracy score for the three methods. The classification results are similar for

the three models, with both implementations of SliderGAN producing slightly higher scores, which

denotes that GANimation’s results include more failure cases.

4.3.6 Comparison with Ganimation conditioned on blendshape parameters

It would be reasonable to be assumed that by just substituting AUs with blendshapes, Ganimation

could be used to manipulate images based on blendshape conditions. However, this is not the case

because Ganimation cannot handle errors of the expression parameters.

3DMM fitting, being an inverse graphics approach to 3D reconstruction, often produces errors re-

lated to mistakenly explaining identity and pose of faces as expression and the opposite. For example,

a face with a long chin in a slightly side pose might be partially explained by a 3DMM fitting algorithm

as a slightly open and shifted mouth or some other similar expression. This is the case for 3D mesh

projection (as in the case of recovering parameters from the 4DFAB meshes), too, with which iden-

tity can be mistakenly reconstructed to an extend by the linear 3D expression model. This makes the

extracted expression parameters to be associated with more attributes of images than only expression.

In the setting of Ganimation, these errors have a negative impact on the robustness and generalisation

ability of the model. Particularly, the discriminator becomes dependent on more facial attributes than

just expression in regressing the 3DMM parameters. This motivates the generator to reproduce the
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Input Target expressions / Synthesized images

Ganimation
with

blendshapes

SliderGAN

Figure 4.12: Evaluation of Ganimation when switching AUs with blenddshapes. Ganimation is not
able to handle the errors in expression parameters extracted from 3DMM fitting. The synthesised data,
as well as the additional identity loss enables SliderGAN to better translate input images to target
expressions.

identity, pose and style of the training images rather than only the target expression, as the two modules

compete in the min-max optimisation problem of the GAN.

This problem is handled in SliderGAN by two of the main contributions of our work. First, the

3D warped images used for the 20 first epochs of the training, help the generator produce expressions

consistent with the expression blendshapes, even though realistic texture deformations are missing at

this stae (e.g wrinkles when smiling). Second, the face recognition error Lid substantially supports

retaining the identity between input and generated images, making SliderGAN robust to the errors of

3DMM fitting. The contribution of both losses in training is further examined in Section 4.3.9. As it

can be seen in Figure 4.12, the results produced by Ganimation include significant artifacts which are

directly related to the identity pose and style of the target images. Contrarily, images generated from

SliderGAN do not present such artifacts in most cases and when such artifacts are visible they exist to

a considerably lesser extent.

4.3.7 Combined Expression and Speech Synthesis and Transfer

Blendshape coding of facial deformations allows modelling arbitrary deformations (e.g. deformations

due to identity, speech, non-human face morphing etc.) which are not limited to facial expressions,

unlike AUs coding which is a system that taxonomises the human facial muscles [79]. Even though
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Input Target video / Synthesized expression and speech

Figure 4.13: Combined expression and speech animation from a single input image. We utilise as
targets the expression and speech blendshape parameters of consecutive frames of videos of LRW, to
synthesise sequences of expression and speech from a single input image.

AUs 10-28 model mouth and lip motion, not all the details of lip motion that takes place during speech

can be captured by these AUs. Moreover, only 10 (AUs 10, 12, 14, 15, 17, 20, 23, 25, 26 and 28)

out of these 18 AUs can automatically be recognised, which is achieved only with low accuracy. On

the contrary, a blendshape model of the 3D motion of the human mouth and lips would better capture

motion during speech, while it would allow the recovery of robust representations from images and

videos of human speech.

We capitalise on this fact and employ the mouth and lips blendshape model of [34], Sspeech(q) =

s̄ + Uspeechq, to perform speech synthesis from a single image with SliderGAN. Particularly, we

employ the LRW-3D database which contains speech blendshape parameters annotations for the 500

words of LRW [241], to perform combined expression and speech synthesis and transfer, which we

evaluate both qualitatively and quantitatively.

LRW contains videos with both expression and speech. Thus, to completely capture the smooth face

motion across frames we employed for each frame 30 expression parameters recovered by 3DMM fit-

ting and 10 speech parameters of LRW-3D which correspond to the 10 most significant components
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Input Target video / Synthesized expression and speech
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SliderGAN-
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Figure 4.14: Comparison of combined expression and speech animation from a single input image
between GANimation [20], SliderGAN-WGP and SliderGAN-RaD. We utilise as targets the expres-
sion and speech blendshape parameters of consecutive frames of a video of LRW. Then we reconstruct
the expression and speech from a single input frame of the same video. Both SliderGAN imple-
mentations reconstruct face motion more accurately than GANimation. Also, the texture quality of
the results is higher in SliderGAN-RaD than in SliderGAN-WGP as expected. (Please, zoom in the
images to notice the differences in texture quality.)

of the 3D speech model Sspeech. That is we combined the parameters of two separate 3D blend-

shape models, Sexp and Sspeech, under our SliderGAN framework by stacking all 40 parameters in a

single vector, to train a model which can generate frame sequences where both facial expression and

lip/mouth motion varies. Simply stacking the parameters in one vector is a reasonable way to combine

them in this case because Sexp and Sspeech are linear models and have the same mean component (the

LSFM mean face), which means that simple addition of instances of the two models yields possible 3D

faces. Also, both include values in the interval [−1, 1]. We trained SliderGAN with 180,000 frames

of LRW, after training with the warped images, without leveraging the temporal characteristics of the

database, that is we shuffled the frames and trained our model with random target vectors to avoid
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Table 4.3: Image Euclidean Distance (IED), calculated between ground truth images of LRW and
corresponding generated images by Ganimation [20], SliderGAN-WGP and SliderGAN-RaD. Res-
ults from SliderGAN-RaD produce the lowest IED between the three methods, which indicates the
robustness of blendshape coding for speech utlised by SliderGAN.

Method IED

GANimation [20] 3.07e− 02

SliderGAN-WGP 1.14e− 02

SliderGAN-RaD 9.35e− 03

learning person specific deformations.

Qualitative Evaluation: Results of performing expression and speech synthesis from a video using a

single image are presented in Figure 4.13 where the the parameters and the input frame belong to the

same video (ground truth frames are available) and in Figure 4.14 where the parameters and the input

frame belong to different videos of LRW.

For comparison we trained GANimation on the same dataset with AU activations obtained by Open-

Face. As can be seen by Figure 4.14, GANimation is not able to accurately simulate the lip motion of

the target video. On the contrary, SliderGAN-WGP simulates mouth and lip motion well, but produces

textures that look less realistic. SliderGAN-RaD produces higher quality results that look realistic in

terms of accurate deformation and texture.

Quantitative Evaluation: To measure the performance of our model we employ Image Euclidean

Distance (IED) [243] to evaluate the results of expression and speech synthesis when the input frame

and target parameters belong to the same video sequence. Due to changes in pose in the target videos,

we align all target frames with the corresponding output ones before calculating IED. The results are

presented in Table 4.3, where it can be seen that SliderGAN-RaD achieves the lowest error.

4.3.8 3D Expression Reconstruction

As also described in Section 4.3.4, a by-product of SliderGAN is the discriminator’s ability to map

images to expression parameters Dp that reconstruct the 3D expression as Sexp(Dp). We test the

accuracy of the regressed parameters on images of Emotionet in two scenarios: a) we calculate the

error between parameters recovered by 3DMM fitting and those regressed by D on the same image
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Table 4.4: Expression representation results on SLiderGAN-RaD (blendshape parameters coding) and
Ganimation (AUs activations coding). SliderGAN is capable to accurately and robustly recover ex-
pression representations, while GANimation fails to detect AUs activations.

SliderGAN GANimation [20]

1
N

∑N
i=1

‖p3DMM,i−pD,i‖
‖p3DMM,i‖ 0.131 0.427

1
N

∑N
i=1

‖ptrg,i−pD,i‖
‖ptrg,i‖ 0.258 0.513

(Table 4.4 row 1) and b) we test the consistency of our model and calculate the error between some

target parameters ptrg and those regressed by D on a manipulated image which was translated to

expression ptrg by SliderGAN-RaD (Table 4.4 row 2).

For comparison, we repeated the same experiment with GANimation for which we calculated the

errors in AUs activations. For both experiments we employed 10000 images from our test set. The

results demonstrate that the discriminator of SliderGAN-RaD extracts expression parameters from

images with high accuracy compared to 3DMM fitting. On the contrary, GANimation’s discriminator

is less consistent in recovering AU annotations when compared to those of OpenFace. This, also,

illustrates that the robustness of blendshape coding of expression over AUs, makes SliderGAN more

suitable than GANimation for direct expression transfer.

Nevertheless, as it is reasonable to assume, 3DMM fitting is more stable and accurate in recovering

expression parameters from images, than the trained discriminator. The superiority of 3DMM fitting is

mostly evident in images with difficult faces and extreme expressions. As it can be seen in Figure 4.15,

D produces substantially close 3D reconstruction results to those of 3DMM fitting for the easier image

cases, which result in almost identical translated images. Contrarily, the regressed 3D expression

reconstructions of D are obviously less accurate for the harder cases, which affects the quality of

expression transfer between input and target images.

Lastly, D does not achieve state-of-the art results in 3D reconstruction of expression but allows our

model to be independent from additional 3DMM fitting during testing, which is clearly an advantage.

Alternatives, for more stable expression transfer between images would be to employ different DCNN-

based models dedicated to blendshape parameters regression, or 3DMM fitting but with a higher cost

in required resources and execution time.
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input target input target input target input target

easy for D
3DMM D 3DMM D 3DMM D 3DMM D

input target input target input target input target

hard for D
3DMM D 3DMM D 3DMM D 3DMM D

Figure 4.15: Comparison of image translation with expression parameters recovered from 3DMM
fitting and the discriminator of SliderGAN.D recovers expressions adequately close to those of 3DMM
fitting for most images which are noted as ”easy”. Then, the image translation in the two cases is almost
identical. However, on ”hard” cases the accuracy of D drops, as also does the quality of expression
editing.

4.3.9 Ablation Study

In this section, we investigate the effect of the different losses that constitute the total loss functions LG

andLD of our algorithm. As discussed in Section 4.2.1, both training in a semi-supervised manner with

loss Lgen and employing a face recognition loss Lid between the original and the generated images,

contribute significantly in the training process of the generator G. In fact, we only focus on these

two terms as they are essential for making SliderGAN robust against errors in expression parameters

used as ground truth during training. These errors, caused by limitations of 3DMM fitting, make

parameters to be mistakenly associated to more attributes of images than just expression (e.g pose,

identity), as further discussed in Section 4.3.6. The rest loss terms of SliderGAN are either essential in
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Figure 4.16: Results from the ablation study on SliderGAN’s loss function components. It is evident
that both losses Lid and Lgen have significant impact on the training of the model.

GAN training (Ladv), or common in similar architectures such as the StarGAN and Ganimation (Lrec,

Lexp,D, Lexp,G, Latt) and thus are not explicitly discussed.

To explore the extend at which these losses affect the performance of G, we consider three different

models trained with variations of the loss function of SliderGAN which are: a) LG does not include

Lid, b) LG does not include Lgen and c) LG does not include both Lid and Lid. Figure 4.16 depicts

results for the same subject generated by the three models as well as SliderGAN. As it can be observed

in row ”without Lid”, the absence of Lid results in images that clearly reflect the target expressions,

but with changed identity and artifacts. Thus, Lid substantially supports retaining the identity between

input and generated images. As it is shown in row ”without Lgen”, training our model utilising Lid and

not Lgen results in images with only slightly changed identity between input and output images, that

however reflect other attributes of the target images along with expression such as pose, head shape

and color.

When both Lid and Lgen are omitted as in row ”without Lid +Lgen”, both the identity preservation

and the expression accuracy decrease drastically. Generally, the GAN loss is responsible for generating

realistic images with higher frequency details that an l1 or l2 reconstruction loss cannot produce. How-
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Identity drift Difficult input Difficult target

input target output input target output input target output

Figure 4.17: Limitations of SliderGAN. The main limitations are the identity transfer from target
images to the output, the unsuccessful manipulation of non-natural images and the compromised gen-
eration of extreme expressions.

ever, in this case the GAN loss is not enough, because of the inconsistency of expression parameters

which makes image generation problematic.

Finally, including both loss functions in training, enables SliderGAN to produce images that pre-

serve all attributes of the input images but expression, which is manipulated according to the target

expressions.

4.3.10 Limitations

In this section, we discuss the main limitations of our proposed model to indicate possible directions

for improvement.

One important limitation is that SliderGAN does not always maintain the identity of the input im-

ages completely unchanged as can be seen in Figure 4.17. This happens mainly, in cases of extreme

expressions or expressions with few close samples in the training set of real images. Thus, in those

cases SliderGAN over-fits to specific images, reproducing the identity in the generator’s output. This

could probably be solved if a more balanced database in terms of expressions was employed. It is

worth noting that the identities are perfectly maintained in the case of training with 4DFAB, which is

a controlled database and includes lots of images for every expression.

Another limitation is generating extreme expressions or manipulating images with extreme expres-
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sions. In both cases, images often present a lot of artifacts as shown in Figure 4.17. This is because

extreme expressions are not well represented in the training dataset and of course, bigger parts of the

image have to be edited which makes it a more difficult task for the generator.

Lastly, editing non real faces, such as sketches of faces, faces of character models, faces with makeup

etc., most often produces artifacts as shown in Figure 4.17, for the same reasons as editing extreme

expressions.

4.4 Conclusion

In this Chapter, we presented SliderGAN, a very flexible way for manipulating the expression (i.e.,

expression transfer etc.) in facial images driven by a set of statistical blendshapes. To this end, a novel

generator based on Deep Convolutional Neural Networks (DCNNs) is proposed, as well as a learning

strategy that makes use of adversarial learning. Motivated by the success of relativistic discriminators

in the task of super-resolution, a relativistic discriminator was employed to challenge our generator

and enhance the resolution of the produced images. Moreover, a by-product of the learning process is

a very powerful regression network that maps images into a number of blendshape parameters, which

can be directly applied on target images to drive expression transfer without relying on any external

models or 3DMM fitting. Lastly, we demonstrated that SliderGAN is able to edit images not only with

regards to expresison, but any deformation type that can be expressed with blendshape models, such

as speech.
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5.1 Introduction

Eye gaze serves as a cue for understanding human behavior and intents, including attention, commu-

nication and mental state. As a consequence, gaze information has been exploited by a lot of applica-

tions of various fields of interest, ranging from medical and psychological analysis [245, 246, 247] to

human-computer interaction [248, 249], efficient rendering in VR/AR headset systems [250, 251, 252],

virtual character animation [253, 254] and driver state monitoring [255, 256].

Undoubtedly, the most common approach to tackle gaze estimation has been by learning a direct

mapping between eye or face images and few gaze coordinates or angles. To this end, numerous model

design settings have been investigated recently, including the face region to use as input [22, 21, 25],

the model architecture [257, 258, 24] and what external stimuli to utilise to improve performance [259].

Nevertheless, much effort has also been made to design models that generalise well to unseen subjects

and environments, by employing either few labeled samples [260, 261, 262] or completely unlabeled

data of the target domain [263, 264, 265]. Better yet, in recent works it has been shown that learning

gaze from images can be achieved in fully unsupervised settings. Particularly, valuable gaze represent-

ations can be extracted from image encoder-decoder architectures by applying gaze redirection [266]

or disentanglement [267] constraints. In addition, [268] shown that it is possible to train gaze estima-

tion by employing geometric constraints in scenes depicting social interaction and particularly scenes

of people looking at each other (LAEO).

Differently from the above, sparse or semantic representations of the eye geometry have also been

employed by some methods to infer gaze from images [269, 23, 270, 271, 258]. However, such repres-

entations do not convey information about the 3D substance of eyes and are prone to noisy predictions.

In contrast, by predicting 3D eye meshes we are able to learn a much more robust representation,

from which we can retrieve any other sparse or semantic one just by indexing. Recovering dense 3D

geometry of the eye region from images by fitting parametric models of the shape and texture has

been previously proposed [269]. However, restrictions posed by building large-scale parametric mod-

els and fitting to “in-the-wild” images have resulted in low gaze accuracy compared to learning-based

methods.

Most of the above methods predict gaze as either a 3D vector or spherical coordinates indicating
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the direction that someone is looking at, without considering any geometric representation of the eyes.

Nevertheless, it has been shown that unconstrained face and body pose estimation from single images

benefit from replacing predicting few pose or model parameters by directly predicting dense 3D geo-

metry [272, 273, 274, 275]. To our knowledge, this observation has not been leveraged for eyes, and

thus recovering gaze as a by-product of 3D eye reconstruction remains open for investigation.

Training to predict 3D geometry from images requires supervision from related ground truth. In [276]

the authors have proposed a dataset of IR images and 3D eyes parameterised by the radius and eye

center. However, IR images cannot be directly employed for RGB based methods. In addition, sev-

eral gaze datasets have become recently available [277, 259, 278, 279, 280, 21, 281, 282, 283]. A

straightforward approach to obtain 3D ground truth for these data, is to fit an eyeball using sparse

eye landmarks and the available gaze labels. Still, collecting gaze datasets is a costly and challenging

process which restricts them being captured in controlled environments and often consisting of limited

different identities. This causes the most common challenge in gaze estimation, which is cross-domain

generalisation. Nevertheless, images and videos of people “in-the-wild” are abundantly available in

the internet. Thus, a reasonable question would be: ”Is it possible to utilise “in-the-wild” face images

for improving generalisation of eye 3D reconstruction and thus, gaze-estimation?”.

In this work, we propose to tackle gaze estimation as end-to-end 3D reconstruction of eyes using a

dense coordinate regression approach. We acquire compatible 3D ground truth by defining a unified

eye representation for all employed datasets, i.e. a 3D eyeball template (Fig. 5.3 (a)), which we fit on

existing gaze datasets based on sparse landmarks and the available gaze labels. Additionally, we tackle

the challenge of cross-domain generalisation by taking advantage of largely available “in-the-wild”

face data and recent advances in weak-supervision of training CNNs for human perception tasks [39,

38, 284, 285, 40]. An overview of our method is presented in Fig. 5.1.

To obtain viable supervision from face data, we combine multiple geometric and multi-view consist-

ency constraints. Particularly, we enforce geometric constraints which drive the outputs to follow the

geometry of our defined 3D eyeball template. Additionally, to extract meaningful gaze information, we

implement a weak-supervision, multi-view constraint which encourages our model to maintain con-

sistency between the 3D eyes across multiple synthetic views of the same subject. We acquire novel

views of a face by employing HeadGAN [3], a recently proposed method for face reenactment, which
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Figure 5.1: Overview of our 3D eye reconstruction approach to gaze estimation. a) Using weak-
supervision from synthetic views of faces “in-the-wild”, or semi-supervision by additionally employ-
ing data with exact ground truth, we are able to train 3D eye reconstruction. b) We exploit pseudo
ground truth generated by our model to train a network for single-shot, multi-face 3D reconstruction
of eyes “in-the-wild”.

enables us to animate single images. HeadGAN manages to synthesise novel head poses while main-

taining the relative difference between the gaze direction and head orientation in the generated image.

This is because in HeadGAN image synthesis is conditioned on dense 3D representations of the face,

which includes the eye regions.

We evaluate our 3D eye reconstruction method on common gaze estimation datasets including the

“in-the-wild” Gaze360 [281]. We demonstrate that learning meaningful gaze information from “in-

the-wild” face images is possible by our weakly supervised training approach and that including this

loss in gaze estimation improves generalisation. Particularly, we demonstrate improvements in semi-

supervised scenarios, where utilising “in-the-wild” face data helps to close the gap between different

domains. Lastly, we prove the validity of our “in-the-wild” reconstruction results, by proposing and

tackling the novel task of single-shot 3D reconstruction of eyes from multiple faces of an image or

video frame.

To summarise, the key contributions of our work are:

• We revise the common approach of tackling 3D gaze estimation and propose to learn gaze as a

by-product of dense 3D reconstruction of eyes from images. To the best of our knowledge, we

are the first to adopt an end-to-end, regression-based approach to 3D eye reconstruction for gaze

estimation.
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• We propose a weakly-supervised framework to train 3D reconstruction of eyes, based on un-

labeled images of faces “in-the-wild”. We employ synthetic views of face images and design

specific, multi-view geometric constraints which allows us to effectively learn gaze.

• We introduce the novel task of single-shot gaze estimation for all faces depicted in a particular

frame, which we tackle based on robust gaze predictions extracted by our weakly-supervised

framework. We demonstrate that we are able to achieve similar results with the state-of-the art,

in O(1) regarding the number of faces in an image.

• We demonstrate the effectiveness of robust gaze pseudo-labels for the task of 3D gaze editing

in images “in-the-wild” and showcase results similar to utilizing ground truth-supervised gaze

estimation models.

5.2 Methodology

5.2.1 Problem Definition and Motivation

It is well known from previous work on “in-the-wild” face and body 3D reconstruction [272, 273,

274, 275], that accuracy and robustness benefit from predicting dense coordinates. To our knowledge,

this observation has not been leveraged for estimating the geometry of eyes, replacing training for

sparse points or few pose parameters with dense 3D coordinates. In this work, our goal is to learn to

extract 3D gaze from images “in-the-wild”, as a by-product of estimating dense 3D eye meshes. In

more detail, we aim to design a method which given a face image I, it estimates 2×Nv 3D coordinates

V = [VT
l ,V

T
r ]T, where Vl ∈ RNv×3 are coordinates corresponding to the left eye while Vr ∈ RNv×3

to the right, from the subject’s point of view.

Inspired by recent work in self-supervised 3D body pose estimation [38, 39, 40], we adopt multi-

view constrains to train 3D reconstruction of eyes based on face images “in-the-wild”. By enforcing

additional geometric constraints, we are able to recover coordinates that adhere to a common 3D eye

representation. To the best of our knowledge, this is the first time that “in-the-wild” face data without

any gaze related annotation have been employed for eye 3D reconstruction and gaze estimation.

To train our model using multi-view losses, we assume that images of the same subject with different

face poses and the same gaze direction relatively to the face are available. For example, this condition
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Original Image 3d Face Representation
(original shape)

3d Face Representation
(rotated shape) Synthetic Image

Pose Manipulation

HeadGAN

(a)

Examples of Synthetic Images

(b)
Figure 5.2: (a) We use HeadGAN [3] to generate novel views by manipulating the 3D pose of the face.
During synthesis the face rotation angle θz is transferred to all facial parts, including the eyes, thus
the relative angle between the head and eyes is maintained. (b) Synthetic examples generated with
HeadGAN by rotating the face depicted in the original image.

3D view Frontal view

Side view Top view

(a) (b)

Figure 5.3: (a) Our eyeball mesh consisted of N = 481 vertices and T = 928 triangles. (b) Ground
truth data generation pipeline, applied on samples of gaze estimation datasets for which gaze ground
truth is available. The eyeball template is first rotated according the a 3D gaze annotation. Then,
iris landmarks are employed to align the rotated eyeball in the image space, maintaining the original
proportions in the depth axis.

is satisfied when a face picture is taken from different angles at the same time. As such images are not

commonly available for “in-the-wild” datasets, we employ HeadGAN [3], a recent face reenactment

method, to generate novel face poses from existing images. HeadGAN is able to synthesise face anim-

ations, using dense face geometry as driving signal and single source images. Using dense geometry

guaranties that the relative angle between the head and eyes is maintained when synthesising novel

poses, as it is shown in Fig. 5.2.

132



5.2. Methodology

5.2.2 Unified 3D Eye Representation

Learning meaningful and consistent eye geometry across different images and datasets, requires es-

tablishing a unified 3D representation of eyes. To that end, we define a 3D eyeball template as a 3D

triangular mesh with spherical shape, consisting of Nv = 481 vertices and Nt = 928 triangles. We

create two mirrored versions, Ml and Mr, of the above mesh to represent a left and a right reference

eyeball respectively. This representation allows us to allocate semantic labels to different sets of ver-

tices of the eyeball, such as the cornea and iris, as well as retrieving sparse point sets, such as the iris

border (Fig. 5.3 (a)).

When gaze labels are available, as for example in gaze estimation datasets, exact supervision can

be acquired by automatically fitting the eyeball template on face images, based on sparse landmarks

around the iris and the available gaze labels, as also described in Fig. 5.3 (b). To create such ground

truth data for our experiments, we employed the method of [23] to extract sparse iris landmarks from

images, but any similar method could have been used.

5.2.3 Weakly-supervised 3D Eye Reconstruction

Given an input face image I, we utilise 5 face detection landmarks to crop patches around each one

of the two eyes. We resize the patches to shape 128 × 128 × 3 and stack them channel wise, making

sure that the first three channels correspond to the left eye while the next three to the right. We employ

a simple model architecture consisting of a ResNet-34 [286] to extract features from the eye images,

followed by a fully connected layer which maps features to eye coordinates in the image space. We aim

to train the above network relying on supervision by pairs of images of the same subject with different

face pose, but the same relative angle between the face and gaze direction. By enforcing additional

geometric constraints to ensure that the output will adhere to the eyeball templates Ml and Mr, we

are able to recover 3D meshes that correctly represent the shape and size of eyes in images but also

provide meaningful gaze predictions. A visual representation of our approach, as well as the data flow

and losses used n training can be seen in Figure 5.4. In the rest of this section we detail the multiple

losses employed by our algorithm.

Pair Supervision Loss: Recovering dense 3D face geometry and pose from images has recently been

quite reliable [272, 272, 12, 287]. Having a pair of images I1 and I2 of the same subject and their
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Image with GT View 1 View 2

3D Transformation
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Inputs Network / Outputs Losses

Figure 5.4: Overview of our weakly-supervised approach to 3D eye reconstruction from pairs of syn-
thetic views of faces “in-the-wild”. a) Overview of the main training components employed by our
method. Input can be either pairs of synthetic images of the same subject with different head poses or
single images with ground truth gaze annotations. The designed model outputs both left and right 3D
eyes in image space in a single network pass. Different sets of losses are employed depending on the
type of supervision. b) Detailed demonstration of Lpair. 3D transformation P which maps view 1 to
view 2, is employed to transform points Vl,1 and Vr,1, before calculating an L1 distance loss against
Vl,2 and Vr,2.

reconstructed 3D faces, we can compute a transformation matrix P ∈ R3×4 which aligns the two

faces in image space. Assuming that gaze direction in both images remains still relatively to the face,

as is the case with images created by HeadGAN, we are able to supervise 3D reconstruction of eyes

without depending on ground truth. That is, we are able to restrict our model’s reconstruction to be

consistent over the image pair, as output vertices should coincide when transformation P is applied to

one of the pair’s outputs. Particularly, we form the following pair vertex reconstruction loss:

Lpair =
1

Nv

∑
j={l,r}

Nv∑
i=1

∥∥∥V1,j,iP
T −V2,j,i

∥∥∥
1
, (5.1)

where V1,j ,V2,j ∈ RNv×4 for j = {l, r} are the output matrices for left and right eyes, which

correspond to input images I1 and I2. V1,j,i,V2,j,i ∈ R4 are the specific homogeneous 3D coordinates

indexed by i in the above matrices. We add an extra column of ones on both output matrices to ensure

coordinates are homogeneous and thus, compatible with transformation P.

Mesh Reconstruction Losses: To obtain meaningful eye geometry on our network’s output, we aug-

ment our overall loss with two mesh reconstruction losses. In particular we employ a vertex loss and an
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edge length loss between the model outputs and reference meshes, both of which regulate the locations

of vertices to be close to the reference topology.

As we need eye reconstructions to follow gaze direction, direct comparison of the vertices between

outputs and the frontal facing reference meshes is not possible. To overcome this obstacle, we simply

compute a transformation P ∈ R3×4 between the model output and the reference eyeball template and

apply it on the first, repeating it for both left and right eye. Then, our vertex reconstruction loss for

each image of a training pair can be written as:

Lvert =
1

Nv

∑
j={l,r}

Nv∑
i=1

∥∥∥Vj,iP
T
j −Mj,i

∥∥∥
1
, (5.2)

where Vj ∈ RNv×4, Mj ∈ RNv×4, Pj ∈ R3×4 for j = {l, r} are the output matrices, the cor-

responding reference coordinates and the transformations between them for both left and right eyes.

Finally, to compute the loss for a pair of images, we just add the two losses.

Similarly to the vertex loss, calculating the edge length loss requires aligning the output coordinates

to the reference meshes to maintain consistent scaling. By employing the fixed mesh triangulation of

our template meshes, we compute the following loss for each image:

Ledge =
1

3Nt

∑
j={l,r}

3Nt∑
i=1

‖Ej,i −EM,i‖1 (5.3)

where Ej ∈ R3Nt for j = {l, r} are the edge lengths of the predicted eyes, EM ∈ RNt the edge

lengths of the reference mesh and 3Nt is the number of edges of our eye template. As edge length we

define the euclidean distance between two vertices of the same triangle. Finally, for a pair of training

images we calculate the loss independently and add the two losses.

By combining the vertex and edge length losses, we get a mesh reconstruction loss written as:

Lmesh = Lvert + λeLedge, (5.4)

where λe is a parameter which regularises the contribution of the two terms in the overall loss. From

our experiments we have selected its value to be λe = 1.

Sparse 2D Landmarks Loss: Estimating eye coordinates in image space benefits by applying an

additional sparse landmarks loss. In particular, we employ a 2D supervision loss between a set of
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Niris 2D landmarks on the iris contour and Niris points picked from the output using specific indexes

known by the eyeball template. The 2D landmarks loss can be written as:

L2d =
1

Niris

∑
j={l,r}

Niris∑
i=1

∥∥∥V2d
j,i −V2d

j,i
∗
∥∥∥

1
, (5.5)

where V2d
j ∈ RNiris×3 for j = {l, r} are estimated 2d coordinates for the left and right eye and

V2d
j
∗ ∈ RNiris×3 for j = {l, r} are ground truth sparse landmarks obtained by an existing eye land-

mark localisation method. In our case we employed the method of [23]. L2d constitutes the only

ground truth supervision included in our weakly supervised training method. However, L2d does not

include any cues about gaze direction, which is learnt mainly by Lpair.

Weakly-supervised and Semi-supervised Training We consider two scenarios for training our al-

gorithm. One is to weakly-supervise training, utilising only pairs of synthetic images of faces “in-the-

wild”. In that case, we calculate the overall loss as the weighted sum of the three losses described

above:

L = Lpair + λmLmesh + λ2dL2d, (5.6)

where λm and λ2d are parameters, regularising the contribution of the three terms in the overall loss.

From our experiments we have selected the parameter values to be λm = 0.1 and λ2d = 10.

The next training scenario is referred to semi-supervised training, in which pair supervision from

synthetic images supports training with exact ground truth from gaze datasets. In more detail, we first

train our network to convergence with full supervision from the exact eye coordinates. To this end, we

optimise the mesh loss only, which we calculate between the predicted and the ground truth coordinates

without aligning them as they already lie in the same space. We refer to this loss as supervised mesh

loss, Lmesh,SP , and keep the same value for the weighting parameter λe = 1. We then substitute the

supervised loss by the loss in Eq. 5.6 and continue training as in the weakly-supervised case.

5.2.4 Single-shot 3D Reconstruction of Eyes from Multiple Faces

In Fig. 5.5, we present the framework of the proposed single-shot, multi-face gaze estimation method

inspired by RetinaFace [272]. As can be seen, our model consists of two main components: the feature

pyramid network and the multi-task loss. In the feature pyramid network, we use ResNet-34 [286]
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Figure 5.5: Network structure and multi-task loss function of the proposed single-shot multi-face gaze
estimation. We synthesise multi-face images by putting weakly-supervised gaze data on the WIDER
FACE images [290].

as the backbone, Path Aggregation Feature Pyramid Network (PAFPN) [288] as the neck, and two

stacked 3 × 3 convolutional layers for the head. For the anchor setting, we tile multi-scale anchors of

32, 64, 128 and 256 on the feature maps of stride 8, 16, 32, and 64, respectively. The anchor ratio is

set as 0.5. For each training anchor i, we minimise the following multi-task loss:

L = Lcls(pi, p∗i ) + λ1p
∗
iLbox(ti, t

∗
i ) + λ2p

∗
iLmesh(vi, v

∗
i ). (5.7)

where ti, vi are eye region box and 3D eye vertices predictions, t∗i , v
∗
i is the corresponding ground-

truth generated by the proposed weakly supervised learning, pi is the predicted probability of anchor i

being an eye region, and p∗i is 1 for the positive anchor and 0 for the negative anchor. The classification

loss Lcls is the softmax loss for binary classes (eye/not eye). For eye box regression and eye vertices

regression, we follow [289] and use the smooth-L1 loss. The loss-balancing parameters λ1 and λ2 are

both set to 1. The proposed method employs fully convolutional neural networks, thus it can be easily

trained in an end-to-end way.

5.3 Experiments

In this section, we evaluate our gaze estimation approach under full, weak and semi supervision set-

tings, comparing against state-of-the-art methods. We, then, provide an ablation study on the loss terms

of our weak supervision algorithm. Lastly, we evaluate the performance of our single-shot, multi-face

gaze estimator and demonstrate its application in the task of Looking At Each Other (LAEO).
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5.3.1 Datasets

Gaze Datasets: To build gaze datasets, typically, subjects are captured by multi-camera set-ups, under

controlled lighting conditions while their gaze is tracked by specialised gaze tracking hardware. Col-

lected by this method, ETH-XGaze [278] includes large variation in face pose and gaze and consists

of 756K frames of 80 subjects. Similarly, UTMV [282], for which face pose and gaze variation is

acquired by a reconstruction and synthesis pipeline, consists of 64K real frames of 50 subjects. Ad-

ditionally, Columbia [277] consists of 5880 images of 56 subjects. Another common approach for

collecting gaze datasets is by asking subjects to follow visual targets on the screen of a phone or tablet,

while being captured by the device’s camera. Collected in this way, MPIIGaze [280] includes smaller

face pose and gaze variation and consists of 213,659 frames of 15 subjects, while GazeCapture [21]

contains almost 2M frontal face images of 1474 subjects. In contrast to the above datasets, which have

been collected in indoor environments, Gaze360 [281], is the only gaze dataset captured both indoors

and outdoors and include large variation in face pose and gaze as well as lighting and backgrounds.

Besides, it consists of 127K training sequences from 365 subjects.

In-The-Wild Face Dataset: In contrast to gaze datasets, face datasets “in-the-wild” consist of sig-

nificantly more unique subjects and capturing environments. Incorporating variation of face data in

gaze estimation could be valuable for improving generalisation to unseen and “in-the-wild” scenarios.

To this end, we employed VGGFace2 [291], a large-scale dataset for face recognition, which includes

3.31M images of 9131 subjects downloaded from the internet, containing large variations in pose, age,

illumination and ethnicity. To train our weakly-supervised method we synthesised one novel head

pose from each image using HeadGAN, sampling the pitch and yaw angles, relatively to the original

ones, by Gaussians with zero mean and 20 degrees standard deviation. We name this collection of

images as ”In-The-Wild Gaze” dataset (ITWG) and employ it in our experiments to improve gener-

alisation of gaze estimation and create robust gaze annotations to build our single-shot, “in-the-wild”

gaze estimator.

Social Interaction Datasets: To prove the effectiveness of our single-shot method, we employ it to

predict the Looking At Each Other (LAEO) task in the wild. To that end, we leverage the large-scale

human activity dataset AVA [292] with LAEO annotations [293, 294]. It contains 40,166 and 10,631

frames in its train and validation subsets respectively. The annotations of these frames are formed by
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pairs of head bounding boxes, with one of the three labels: {LAEO, not-LAEO, ambiguous}. In total,

AVA-LEAO consists of 19K LAEO pairs and 118K not-LAEO pairs in the training subset while 5.8K

LAEO pairs and 28K pairs not-LAEO pairs in the validation subset. Apart from the LAEO task, we

employ the visible faces of AVA for weak supervision, in Section 5.3.4, for which we acquire novel

views using HeadGAN. Similarly, we employ CMU Panoptic [295], which captures interactions of

multiple people in the same scene.

5.3.2 Implementation Details.

Training Details of Single-face Gaze Estimation: For the proposed weakly-supervised training and

semi-supervised training, we initialise ResNet-34 with weights pre-trained using ImageNet [296]. We

use a batch size of 32 pairs/images to train our network with weak/full supervision. We train using

the Adam optimiser [242] with a learning rate of 10−4. We stop weakly-supervised training when

Lpair converges, which is usually after 10-15 epochs for semi-supervision and 15-20 epochs for weak-

supervision.

For the training of single-shot multi-face gaze estimation, we adopt the SGD optimiser (momentum

0.9, weight decay 2e-4) with a batch size of 8 × 4 and train on four Tesla V100 GPUs. The learning

rate is linearly warmed up to 0.01 within the first epoch, and then multiplied by 0.1 at the 10-th and

16-th epochs. The learning process terminates at the 20-th epoch.

Training Details of Single-shot Multi-face Gaze Estimation: For the training of the proposed single-

shot multi-face gaze estimation, we employ the open-source MMDetection [297], which is implemen-

ted in PyTorch. We first synthesise multi-face images by putting weakly-supervised gaze data on the

WIDER FACE images [290]. The eye region box is the bounding box of the left and right eye mesh.

For the scale augmentation, square patches are cropped from the original images with a random size

([0.3, 1.5]), and then these patches are resized to 640× 640 for training. Besides scale augmentation,

the training data are also augmented by color distortion and random horizontal flipping, with a prob-

ability of 0.5. Inspired by RetinaFace [272] and SCRFD [298], we employ Adaptive Training Sample

Selection (ATSS) [299] for positive anchor matching. In the detection head, weight sharing and Group

Normalisation [300] are used. The losses of classification and regression branches are Generalised

Focal Loss (GFL) [301] and DIoU loss [302], respectively.
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(a) Input (b) Initial 3D gaze (e) Final 3D gaze(d) Mean gaze
vector

(c) Gaze vectors
from eye meshes

Figure 5.6: Calculating 3D gaze from eye meshes. Given 3D eye meshes extracted by our method, we
calculate gaze direction as the mean of the two independent gaze vectors from the left and right eyes.

For the look at each other task, we train a three-layer fully connected network taking the gaze

estimation results of two persons as the input. The detailed settings of the MLP are as follows: (1) 3

layers; (2) hidden layer 1024; (3) PRelu; (4) BN; (5) no dropout; (6) batch size 4096; and (7) shortcut

connection in the middle layer.

Calculating gaze direction from 3D eye meshes: In this work, we have proposed a method to estimate

3D eye meshes from images and employ them for gaze estimation. During test time, having recovered

a 3D eyeball meshes for both eyes, with topology adhering to our 3D eyeball template, we calculate

gaze from the orientation of the central axis of the eyeballs. Particularly, we calculate 3D gaze vectors

using the centre of each eyeball and the centre of the iris as shown in Fig. 5.6 (c). After obtaining 3D

gaze vectors from both left and right eyes, we add the two vectors to retrieve a final gaze prediction,

Fig. 5.6 (d).

5.3.3 Gaze Estimation via 3D Eye Reconstruction

Here we experimentally evaluate our suggestion that gaze estimation performance benefits from re-

placing the training target from gaze vectors or angles to 3D dense eye coordinates. To this end we

employ the fully supervised version of our model, utilising data with exact ground truth and Lmesh,SP
for training. We conduct within-dataset, cross-subject experiments on 5 commonly utilised gaze data-

bases, namely Columbia [277], MPIIGaze [280], UTMV [282], and Gaze360 [281] and GazeCap-

ture [21], for which specific data split for training and testing are provided. Additionally, for Gaze360
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Table 5.1: Comparison between state-of-the-art gaze estimation methods, our 3D reconstruction ap-
proach (mesh) and 3D gaze vector regression (vector), on within-dataset experiments. Training with
mesh targets leads to lower gaze error in all experiments. We also report the performance of our
”Unified” gaze estimation model, which achieves further decrease in the gaze error, due to the larger
variation of the combined datasets. In all experiments, the gaze error is measured in degrees.

Dataset Other methods Within-dataset Unified
[303] [266] [271] [263] [25] [267] [260] [281] [268] vector mesh vector mesh

Columbia 1.3 3.4 3.6 - - 3.5 - - - 3.8 3.7 3.6 3.4
MPIIGaze 5.3 - 4.6 3.7 4.1 - 5.3 - - 4.1 4.0 4.4 4.0

UTMV - 5.5 - - - 4.8 - - - 5.6 4.1 5.5 3.9
Gaze360 - - - - - - - 11.1 10.1 12.7 10.4 12.4 9.8

GazeCapture - - - - - - 3.49 - - 3.3 3.1 3.1 2.7

we consider only the frontal facing images as our method operates on eye patches. Additionally, we

employ all 5 datasets under our unified 3D eye representation to train a ”Unified” gaze estimation

model and report results on testing on the test set of each dataset.

We compare against state-of-the-art methods [303, 266, 271, 263, 25, 267, 260, 268, 281] and

demonstrate that by simply utilising 3D dense coordinates instead of gaze vectors or angles, we are

able to get close or even beat their performance. We report results in Table 5.1. For reference, we also

report results of our fully-supervised design, trained on predicting 3D gaze vectors instead of coordin-

ates (vector). The reason behind the lower gaze error achieved when training with 3D mesh targets

(mesh) is that the final gaze is calculated from a large number of predicted parameters (the dense 3D

eye coordinates), which makes predictions robust to small errors. On the other hand, when regressing

few pose or sparse shape parameters, small prediction errors might lead to large errors in gaze direc-

tion. This finding is in line with results on dense face prediction [272], where the motivation of this

work comes from. It also is worth noting here that our method employs a simple network architecture

and training pipeline, while most methods consist of elaborate models or training schemes, designed

to improve gaze accuracy. Lastly, with our unified 3D eye representation we are able to achieve fur-

ther improvement in gaze accuracy because of integrating variation from multiple datasets which is

particularly important for shape regression applications.
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Table 5.2: Weakly-supervised method evaluation across three experimental settings. In all three set-
tings we calculate the gaze error in degrees, on the test split of Gaze360. Particularly, we consider
only the frontal facing images of Gaze360 (yaw angle of head pose from -90 to 90 degrees). For weak
supervision we employ our In-The-Wild Gaze dataset (ITWG), as well as CMU and AVA to provide
a clearer comparison with [268]. Throughout the experiments we investigate the effect of different
supervision and datasets in the gaze error. In all cases, our method achieves the best performance,
outperforming [268], when training with the large scale ITWG dataset, leveraging the wide variation
of “in-the-wild” faces and capturing conditions.

(a) Within-dataset (b) Cross-dataset (c) Cross-dataset
Gaze + Synthetic Views Synthetic Views Gaze + Synthetic Views

Dataset [281] [268] Ours

G360 11.1 10.1 10.4
G360+AVA - 10.2 9.8
G360+ITWG - - 9.0

Dataset [268] Ours

CMU 29.0 30.3
AVA 26.0 28.4
CMU+AVA 22.5 25.4
ITWG - 21.2

Dataset [278] [268] Ours

EXG 27.3 20.5 22.3
EXG+AVA - 16.9 18.9
EXG+ITWG - - 16.2

GC 30.2 29.2 29.5
GC+AVA - 19.5 20.9
GC+ITWG - - 18.1

5.3.4 Semi-supervised Method Evaluation

Within-dataset and Cross-dataset Evaluation

In this section, we evaluate our approach in both the weakly-supervised and semi-supervised settings.

We believe that [268] is the most similar method to ours, as it improves gaze estimation generalisation

based on weak-supervision from “in-the-wild” data of social interaction between people.

We design three experiments to test the performance of our method on the “in-the-wild” gaze dataset

Gaze360 (G360) and report the results on Table 5.2. Particularly, the experiments are the following:

a) within-dataset evaluation on Gaze360 with additional weak supervision from AVA and ITWG, b)

cross-dataset evaluation in which we train on the CMU, AVA and ITWG datasets in a purely weakly-

supervised approach and test on Gaze360 and c) cross-dataset evaluation on Gaze360 with ground

truth supervision from ETH-XGaze (EXG) or GazeCapture (GC) and weak supervision from AVA and

ITWG (semi supervision experiment).

From the above experiments, it becomes obvious that weak supervision from multiple views ef-

fectively supports gaze estimation generalisation to unseen domains, even without any available gaze

annotation. From Table 5.2, it can be seen that our method always outperforms [268] when our ITWG
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Table 5.3: Ablation study on the losses of our weakly-supervised method, in which we train on
CMU+AVA as well as ITWG and evaluate on the test set of Gaze360 (frontal facing images of Gaze360
with yaw angle of head pose from -90 to 90 degrees). In all cases the gaze error is measured in degrees.
Results show that Lmesh and Lpair are crucial to learn any meaningful gaze information as leaving any
of these out of the training process leads to large gaze errors. Especially, without Lmesh there is no
supervision about the shape of eyes, leading to output meshes of random shapes.

Dataset Lpair+L2d Lmesh+L2d Lmesh+Lpair all

CMU+AVA 55.4 39.1 34.2 25.4
ITWG 60.3 41.6 35.0 21.2

dataset is employed. This proves the ability of our method to benefit from large scale “in-the-wild”

face datasets, without requiring LAEO or gaze annotations. In experiments (b) and (c), [268] performs

better when AVA or CMU datasets are employed for weak supervision. This is because [268] benefits

from the LAEO labels of these datasets, as well as the fact that our method employs only the visible

faces and not the ones turned more that 90 degrees away from the camera.

As expected, ground truth gaze labels allow for better gaze estimation performance in cases (a) and

(c) when compared to (b), while in (a) training with data from the same domain leads to the highest

accuracy. Moreover, based on our experimentation, even though novel synthetic views are useful for

weak supervision, similarly augmenting existing gaze datasets for full supervision in within-dataset

experiments does not improve gaze estimation accuracy, even though exact gaze labels are available.

This is probably due to slight inaccuracies in face synthesis.

Ablation Study of Weakly-supervised Losses

To better understand the effect of each term of Eq. 5.6, we repeat the weakly-supervised experiments

(b), in which we employ different subsets of the three loss terms, and present results in Table 5.3.

It is natural to expect Lmesh to be crucial for our gaze estimation algorithm, as it reassures possible

output eye meshes, without which Lpair cannot operate as designed. Besides, removing Lpair removes

any gaze learning capabilities from our algorithm. The increased gaze accuracy is only due to having

possible eyeballs on the model’s output. Contrary to the above, our method maintains some gaze

learning potential even without L2d, which however is far from optimal. L2d is also important for

convergence as removing it led many times to unstable training in our experiments.
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5. Weakly-Supervised Gaze Estimation from Synthetic Views

Table 5.4: Comparison between single- and multi-
face gaze estimation models on the Gaze360 test
set (frontal facing images of Gaze360 with yaw
angle of head pose from -90 to 90 degrees). “Uni-
fied” refers to all five datasets with gaze annota-
tions. In all experiments the gaze error is meas-
ured in degrees. Results show that the two meth-
ods are adequately close in gaze error, while the
multi-face one provides the benefit of unchanged
processing time regardless of the number of faces
in a particular image.

Training Data Single-face Multi-face

Unified 9.8 10.3
Unified+ITWG 8.9 9.5

Table 5.5: Comparison of LAEO results on the
AVA-LAEO dataset. We report Average Preci-
sion (AP) at the pair@frame level for AVA-LAEO.
Results show that combining LAEO-NET++ with
outputs of our multi-face gaze estimation model,
leads to the highest AP.

Method AP

LAEO-Net (pre-trained) [293] 50.6
LAEO-Net++ (self-supervised) [294] 68.7
Gaze Estimation 42.5
LAEO-Net++ & Gaze Estimation 70.6

5.3.5 Evaluation of Multi-face Gaze Estimation

In this section, we experimentally evaluate the effectiveness of the proposed single-shot multi-face

gaze estimation method. As shown in Tab. 5.4, we first compare the accuracy of gaze estimation

models trained under single-face and multi-face settings. When the unified labelled data are used for

training, the multi-face gaze estimation model achieves 10.3.

Even though the single-face gaze model is slightly better than the multi-face gaze model, the com-

plexity of the multi-face gaze model is O(1) regarding the number of faces in an image. By employing

the proposed large-scale ITWG, the multi-face gaze model obtains 9.5, which indicates that the pro-

posed weakly-supervised gaze data is effective for improving gaze estimation in the wild. In Fig. 5.7,

we show some multi-face gaze estimation results on AFW [304] and PASCAL [305]. As we can see

from the last row, the proposed single-shot method is robust under pose variations and occlusions (e.g.,

sunglasses and hats), which indicates that our model also takes the context information to estimate the

gaze. Regarding the performance of eye detection, we associate the face boxes and eye boxes by using

RetinaFace [272], and the APs on AFW and PASCAL are 89.05% and 84.52%, respectively. Under

the input resolution of 640× 640, the proposed multi-face gaze estimation model can run in real-time

(23.5ms) on GPU-2080ti.

Besides, we also evaluate the multi-face gaze estimation model for the task of Looking At Each

Other (LAEO). A detected pair is correct if both heads are correctly localised and its label (LAEO/
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Figure 5.7: Visualisation of multi-face gaze estimation on AFW [304] and PASCAL [305]. Last row
shows the face crops by zooming in the eye meshes. Our method estimates 3D gaze sa well as 3D eye
meshes for all faces in an image in a single network pass.

not-LAEO) is correct. The evaluation metric is Average Precision (AP) computed as the area under

the Precision-Recall (PR) curve. Here, we choose the open-source method, LEAO-Net++ [294], as

our baseline. LAEO-Net++ is a three-branch track network, which takes two head tracks and the

relative position between the two heads encoded by a head-map as the input. By fusing these temporal

information, LAEO-Net++ determines a confidence score on whether the two people are looking at

each other or not on each frame. We first run our single-shot gaze estimator on each frame of the AVA-

LAEO dataset. Then, we train an MLP network taking eye meshes of two persons as input. Without

using the temporal information, our gaze estimation can achieve an AP of 42.5% based on the frame-

wise inference. As shown in Fig. 5.8, we visualise the eye mesh prediction results from our single-shot

gaze estimator. Our method is robust under large-pose variations. When the eye region is totally not

visible, the estimated gaze can be inaccurate as shown in the second case of Fig. 5.8. Besides the

frame-wise training, we also exploit the gaze estimation results into the fusion block of LEAO-Net++.

As given in Tab. 5.5, the gaze information can obviously improve the AP by 1.9%, confirming the
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5. Weakly-Supervised Gaze Estimation from Synthetic Views

Figure 5.8: Visualisation results of our multi-face gaze estimation on the AVA-LAEO dataset. Our
single pass gaze estimation method, trained with a large collection of “in-the-wild” and controlled
images, is useful for improving detection accuracy of the LAEO task in real conditions.

effectiveness of the proposed single-shot gaze estimation in the wild.

5.3.6 Qualitative Results for Single-Face 3D Eye Reconstruction

Here we demonstrate a qualitative comparison of results retrieved from “in-the-wild” face images for

which gaze labels are not available. We compare two versions of our model one with only ground

truth supervision (GT-sup) and one with semi-supervision (Semi-sup). The first one is trained on

ETH-XGaze [278] and Gaze360 [281] datasets combined until convergence. The second one is further

trained on our ITWG dataset with weak supervision. The quantitative results on Fig. 5.9 demonstrate

that weak supervision improves results on domains for which ground truth is not available.

5.3.7 3D Gaze Editing Application

To demonstrate the benefits of our method in a facial attribute editing context, we design a gaze redir-

ection experiment in which we aim to train neural networks to manipulate 3D gaze direction in face

images “in-the-wild”. To this end “in-the-wild” training data with gaze labels are required and thus,

most gaze datasets are not suitable for the task as they are captured in controlled conditions or include

limited environment and identity variation.

Therefore, in our experiment we employ arbitrary “in-the-wild” facial images and consider two

training scenarios regarding the source of gaze labels used for supervision. In particular, in the first

scenario we use pseudo-labels of gaze from “in-the-wild” images, extracted by the fully-supervised

version of our model. In the contrary, in the second scenario we employ robust pseudo-labels which
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Input Input InputSemi-sup GT-sup Semi-sup Semi-supGT-sup GT-sup

Figure 5.9: Results from applying our weakly-supervised and fully-supervised models on faces “in-the-
wild”. Employing semi-supervision from arbitrary face images improves the generalisation capabilities
of gaze estimation.

we extract with our weakly-supervised model, which is trained without any gaze annotation. By these

two settings, we aim to examine the validity of pseudo-labels extracted based on weak-supervision

and evaluate their applicability to the gaze redirection task, when compared to labels extracted by

traditional fully-supervised estimators.

To implement gaze redirection in images we follow the training paradigm of SliderGAN [29], which

is based on the one of StarGAN [19], changing certain aspects of it, such as the conditioning signal,

to adapt to the problem at hand. That is, given an input eye image x and a target gaze vector gtrg, a

generator network G produces image y which contains the desired 3D gaze direction. To ensure that,

we employ our gaze estimation networkNgaze to obtain gaze labels gest = Ngaze(y) from synthesised

images and calculate a loss between the desired and estimated gaze vectors as:

Lgaze = (180/π) arccos(gT
trggest) (5.8)

Following the standard adversarial training approach, we employ a discriminator network D to

ensure that the generated images are photo-realistic. D is trained to distinguish real images from

generated, driving the generator to produce images as close as possible to the real ones. To achieve
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Figure 5.10: Gaze editing model based on the architecture of SliderGAN. An additional gaze estima-
tion model is employed to make sure that the generated images adhere to the correct gaze inputs.

that we utilize the WGAN-GP loss [36] as:

Ladv = Ex[D(x)]− Ex,gtrg [D(G(x,gtrg))]− λgpEy[(‖∇xD(y)‖2 − 1)2]. (5.9)

Moreover, to make sure that the eye identity is maintained between the input and generated images,

we employ an image reconstruction loss between images x and G(y,gsrc), where gsrc is the gaze

label of image x according to the training set. The reconstruction loss is calculated for images of size

W ×H as:

Lrec =
1

W ×H
‖x−G(y,gsrc)‖1, (5.10)

Lastly, assuming λrec and λgaze are a reguralisation parameters, we optimise the following problems

for the generator and discriminator respectively:

min
G
Ladv + λrecLrec + λgazeLgaze, (5.11)

max
D
− Ladv. (5.12)

A diagram of the model architecture, as well as the data flow during training is presented in Figure 5.10.
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pitch

yaw

Input

Figure 5.11: Continuous editing of gaze in pitch and yaw angles independently. The gaze editing
generator has been trained with robust gaze labels from our weakly-supervised gaze estimation method.

To train the method described above, we employ a subset of 100K images of the VGGFace2 [291]

dataset and extract gaze labels using two different methods. One is by applying our unified gaze

estimation model, trained on gaze datasets using exclusively ground truth supervision. We name this

model as Mgt. The other method is by applying our weakly-supervised training algorithm directly on

the 100K images, based on synthetic views acquired by employing HeadGAN. We name the model

trained with weak gaze labels as Mweak. We employ eye patches of size 64 × 64 and train only with

left eyes, vertically flipping the right ones. In both cases, we train the models for 40 epochs, with batch

size of 32, using the Adam optimiser [242] with β1 = 0.5, β2 = 0.999.

To validate our models we perform two different tasks, namely continuous gaze redirection and

gaze transfer between source and target images. In Figure 5.11, we present synthetic images obtained

by applying model Mweak to manipulate gaze across the pitch and yaw angles demonstrating the

effectiveness of robust gaze labels coming from weakly-supervised models. In Figure 5.12, we present

gaze transfer results between source and target images. Particularly, after applying models Mgt and

Mweak on the tested samples, we obtain similar gaze transfer results, meaning that weak labels are not

far off from labels obtained from fully-supervised models.
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source

source

targets

source

Figure 5.12: Gaze transfer on images “in-the-wild”. The generator trained with robust labels from our
weakly-supervised gaze estimation method (Mweak) performs similarly to the one that uses the ground
truth-supervised model for extracting gaze labels (Mgt).

5.3.8 Limitations

In this section, we discuss limitations of our work, as well as possible solutions. One common chal-

lenge in 3D reconstruction systems is handling occlusions. In our case the biggest challenge comes

from faces in profile pose and cases of people wearing glasses. Some examples of applying our model

on such cases are depicted in Figure 5.13. While transparent glasses do not pose a significant challenge,

sunglasses and profile faces make the eyes completely invisible, which causes our model’s accuracy

to drop. This is most probably due to inaccurate training data because of compromised performance
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Figure 5.13: Results from applying our model on faces with glasses (1st row), sunglasses (2nd row)
and faces in near-profile pose (3rd row). While normal glasses do not pose a significant challenge,
sunglasses and profile poses are more difficult to handle.

of 2D iris localisation and face manipulation on such faces. Improving accuracy of those tasks could

improve accuracy of our method, too. Additionally, profile images have only recently been included

in gaze datasets [281, 278]. Having more ground truth cases of varying face poses would benefit any

gaze estimation system including ours.

Another limitation of our method lies in the use of synthetic images for weakly-supervised train-

ing. For this algorithm, we assume that images of the same subject with different pose but the same

difference between head and eye orientation are available. To acquire such data we employ a face

reenactment method, HeadGAN [3], which animates the human head given single input images. How-

ever, relying on synthetic data for training means that performance is compromised by the quality of

image generation. Higher quality of face image synthesis, could lead to easier optimisation and better

performance for our method.

Lastly, another limitation of our model is that it does not consider the anatomical differences of

eyes between people. In more detail, an offset angle exists between the optical and visual axes of eyes

according to their real anatomy as shown in Fig. 5.14. This angle is subject-dependent and usually

mentioned as the kappa coefficient of the eyes. Some methods have attempted to model this offset or

incorporate it in their models’ parameters [306, 259]. In our method, 3D gaze predictions are calculated

by the orientation of the central axis of our 3D eyeball template, which coincides with the optical axis
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Figure 5.14: Eyeball anatomy demonstrating the offset between the optical and visual axis. This offset
is often modeled by methods that solve controlled gaze estimation or train person-specific models. In
our case, gaze generalisation to unseen and “in-the-wild” domains is not heavily affected by the 3o

possible offset, as gaze errors are much larger than that. The aim of our method is to provide a simple,
yet effective way for robust gaze estimation that can be employed without any re-training or fine-tuning
to real world scenarios.

of the human eyes. To make our system robust to variations of face identity, we rely on large “in-the-

wild” face datasets. However, employing an anatomically aware 3D eyeball template or designing a

strategy for personalising our model constitutes an interesting direction for further research.

5.4 Conclusion

In this Chapter, we presented a novel weakly-supervised method for gaze estimation, based on 3D

eye mesh reconstruction. We demonstrated that by simply replacing the training target from few gaze

parameters to dense 3D eye coordinates we can improve prediction accuracy. Additionally, for the

first time, we explored the possibility of exploiting the abundantly available “in-the-wild” face data for

improving gaze estimation generalisation. By enforcing specific multi-view geometric constraints, we

have been able to successfully utilise such data and achieve improvements in cross-dataset and within-

dataset experiments. Moreover, we proposed a method for single-shot, multi-face gaze estimation

“in-the-wild”, which we employed for predicting the task of Looking At Each Other (LAEO). Using

this method, we demonstrates improvement in the AVA-LAEO dataset. Lastly, we demonstrated the

effectiveness of weak gaze labels acquired by our weakly-supervised algorithm for the task of gaze

editing in images “in-the-wild”.
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6.1 Conclusion

In this Thesis, we presented novel techniques for analysis and editing of facial attributes in images,

ranging from Component Analysis methods with solid mathematical formulations which result in

meaningful outputs, to Deep Learning ones which are capable to address more complex problems

and produce more realistic results regarding image generation and editing.

More specifically, in Chapter 3 we presented a CA method for recovering joint and individual vari-

ations from facial data in multiple scenarios. Our developed algorithm Robust Joint and Individual

Variation Explained (RJIVE) and its variants, is capable of discovering joint and individual structures

between an arbitrary number of datasets or views of the same dataset. Moreover, unlike previous

methods, RJIVE can handle data contaminated by gross, sparse, non-Gaussian errors, such as the salt-

and-pepper noise in imaging devices, occlusions in facial images, registration errors, or errors due

incorrect localisation and tracking. Additionally, we presented a variant of RJIVE which is tailored

for use with UV texture maps acquired by 3DMM fitting on arbitrary facial images. Through quantit-

ative and qualitative experiments with both synthetic and real data, we demonstrated that our method

outperforms the compared ones in 2D and 3D face age progression and expression transfer.
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In Chapter 4, we presented an image-to-image translation method for face editing in images re-

garding motion due to expression and speech. Previous works were trained using images annotated

for a specific number of discrete expressions or based on the Facial Action Coding System (FACS)

which requires particular expertise. This caused their generation capabilities to be limited. Unlike

those methods, we addressed face editing in images using continuous codes of expression, adapted

from 3D blendshape modelling. Those codes are (a) very easily and with high accuracy recoverable

from “in-the-wild” face images, (b) intuitive in the sense that their effect can be directly replicated by

a 3D face model and (c) universal as any facial motion can be expressed through blendshapes (e.g.

expression, speech). In our experiments, we demonstrated the usefulness of our technique in various

expression editing and expression/speech transfer applications. Moreover, we showed that our method

outperforms the compared ones through our quantitative and qualitative experiments.

In Chapter 5, we introduced a method to improve gaze estimation from monocular facial images “in-

the-wild”. In particular, unlike previous methods which predict gaze through few output parameters,

we consider the 3D structure of eyes and propose to predict gaze via 3D eye reconstruction. Moreover,

for the first time, to the best of our knowledge, we showed that it is possible to harness arbitrary,

unlabelled face images to improve gaze estimation generalisation to unseen domains. To this end,

we developed a weakly-supervised algorithm and designed particular multi-view, geometric losses to

train our 3D eye reconstruction models. Through our experiments, we showed that our algorithm

outperforms the compared ones in both within- and cross- domain gaze estimation, under various

supervision settings. Lastly, we demonstrated the validity of weak gaze labels acquired by our methods

from “in-the-wild” images, in two applications, namely, single-shot, multi-face gaze estimation and

gaze direction editing in images.

6.2 Considerations for Future Work

The works presented in this Thesis focus on the problem of facial attribute editing, with the ones of

Chapters 3 and 4 dealing with attributes such as facial expression and age, while the work of Chapter 5

is related to efficient gaze learning and editing. In all three works, there can be identified direct ex-

tensions and improvements that if implemented could lead to better performance or to a wider scope

of applications. However, the significant breakthroughs which have been achieved recently in face im-
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age re-animation and synthetic media creation [2, 307, 3, 308], have pointed to new exciting research

directions which are worth following.

As presented in Chapter 3, RJIVE is a CA method which discovers joint and individual structures in

data annotated regarding a specific attribute. That is, for example, if a dataset of facial images is annot-

ated with regards to the age of the subjects, RJIVE can be employed to recover age-specific (individual)

components, as well as joint components including universal information about faces. However, one

issue which arises from the formulation of RJIVE is that even if a dataset is annotated with regards to

multiple attributes (for example, a dataset of faces might include labels about age, expression, identity,

etc.), they cannot be simultaneously considered by the algorithm, meaning that in case we need to learn

components for all available attributes, we would have to execute RJIVE multiple times. This is not

only time-inefficient but also sub-optimal, in terms of learning from all available information during

training. In [309], the authors have proposed a CA method to handle multiple attributes by learning

generic and specific components for each attribute along with componentns for universal face struc-

ture. One drawback of [309] is that the generic components learned for each attribute are of rank 1. To

overcome this issue, RJIVE could be extended to a multi-attribute setting and model both generic and

specific components as linear subspaces of rank > 1 in order to include more information.

SliderGAN, introduced in Chapter 4, is an i2i translation method which employs blendshape para-

meters as codes to transfer images to target expressions. As shown by our experiments and particularly

in Section 4.3.10 were we discus the limitations of the method, SliderGAN can be affected by mistakes

in recovering blendshape parameters through 3DMM fitting. In particular, during 3DMM fitting iden-

tity and pose information can be mistakenly explained as expression, causing SliderGAN to over-fit to

specific training examples. This effect is partially handled by incorporating synthetic data pairs in the

training process, however, it is not completely eliminated. An extension of SliderGAN which could

possibly overcome this issue, would be to utilise dense 3D information as condition of the generator,

instead of few parameter values. That is, target 3D face shapes could be generated by combining the

identity of test images and the target expression and be rendered appropriately before passed to the

generator. Additionally, another possible extension direction would be to train the model to produce

more types of animations, including free-head movement as shown in [3].

In Chapter 5, we presented a weakly-supervised method for monocular 3D gaze estimation. Even
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thought our method is able to extract gaze information from arbitrary, unlabelled face images and

improve cross-domain generalisation, it is still restricted by the quality and accuracy of the synthetic

images. In [268], the authors proposed to leverage datasets of social interaction to recover pseudo-

labels about gaze. Indeed, discovering ways to supervise gaze estimation from abundantly available,

real image and video data is an exciting line of research to follow. In particular, combining single-shot,

multi-face gaze estimation with data regarding interaction between multiple subjects, or interaction

between subjects and objects, could constitute a possible path worth exploring. Regarding eye editing

in images, an obvious extension would be to train our model to edit additional attributes, such as eye

colour, the size of the iris and pupil, and the overall shape of the eyelids. Of course, this can only

be possible if available data become available or weakly-supervised techniques are devised, to extract

related information from arbitrary face data.

Finally, in recent years, significant breakthroughs have been achieved in synthetic media creation

using machine learning techniques. For example, StyleGAN [2] was among the first methods to have

shown incredible results in unconditional face synthesis. In contrast to methods of Chapters 3 and 4, re-

cent methods focus on full head animation, which is also referred to as re-enactment, and have shown

remarkable results in synthetic image and video creation [199, 307, 310, 3, 308]. The high quality

offered by these methods, have the potential to revolutionise numerous digital media fields includ-

ing social media, teleconference systems, automatic image and video production, virtual/augmented

reality and video games. This is directly reflected to the fact that multiple companies have recently

emerged, which focus on synthetic media production such as images, video, speech and text, building

on top of recent machine learning methods and developing new ones. Therefore, the current state-of-

the-art clearly point to new exciting research directions to follow in facial attribute editing and face

animation.
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and C. Theobalt, “Deep video portraits,” ACM Transactions on Graphics (TOG), vol. 37, no. 4,

pp. 1–14, 2018. 55, 99

[115] Y. Ren, G. Li, Y. Chen, T. H. Li, and S. Liu, “Pirenderer: Controllable portrait image generation

via semantic neural rendering,” in ICCV, pp. 13759–13768, 2021. 55

[116] A. Tewari, M. Elgharib, G. Bharaj, F. Bernard, H.-P. Seidel, P. Pérez, M. Zollhofer, and C. Theo-
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