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Migration patterns are fundamentally linked to the spatio-
temporal distributions of prey. How migrating animals can
respond to changes in their prey’s distribution and
abundance remains largely unclear. During the last decade,
humpback whales (Megaptera novaeangliae) used specific
winter foraging sites in fjords of northern Norway, outside of
their main summer foraging season, to feed on herring that
started overwintering in the area. We used photographic
matching to show that whales sighted during summer in the
Barents Sea foraged in northern Norway from late October to
February, staying up to three months and showing high
inter-annual return rates (up to 82%). The number of
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identified whales in northern Norway totalled 866 individuals by 2019. Genetic sexing and hormone
profiling in both areas demonstrate a female bias in northern Norway and suggest higher proportions
of pregnancy in northern Norway. This may indicate that the fjord-based winter feeding is important
for pregnant females before migration. Our results suggest that humpback whales can respond
to foraging opportunities along their migration pathways, in some cases by continuing their
feeding season well into winter. This provides an important reminder to implement dynamic
ecosystem management that can account for changes in the spatio-temporal distribution of
migrating marine mammals.
/journal/rsos
R.Soc.Open

Sci.10:230069
1. Introduction
The spatio-temporal distribution of prey resources is considered foundational to animal movement.
Seasonal migrants, in particular, rely on predictably occurring resources to fuel their year-round
energy demands [1,2]. However, ecosystems undergo changes at multiple scales as a result of natural
variability, anthropogenic drivers, or a combination of these. For example, cyclical changes can occur
naturally on decadal scales or interannually (e.g. fluctuations in ice cover and prey distributions), and
anthropogenically caused alterations can be sudden (e.g. construction projects), or gradual (e.g.
climate change or pollution). Such variability in the physical environment can cause changes that
cascade through the food web, resulting in shifts in the timing and spatial distribution of prey
aggregations important to seasonal predators [3–6]. In response to these types of environmental
variability, migratory species may have to modify their spatio-temporal distribution and movement
patterns, but the extent to which they can do so successfully is unclear [6–8].

Marine predators are generally experts in locating resources in patchy and dynamic marine
environments, so they might be able to respond to interannually changing prey distributions [9,10].
However, animals undertaking long-distance migrations rely on learned information to inform their
movements and time it to match resource peaks. Baleen whales, for example, show strong culturally
transmitted philopatry to foraging and breeding grounds [11] and probably base their movements on
memory of past resource distributions [1]. Both humpback whales (Megaptera novaeangliae) and fin
whales (Balaenoptera physalus) have changed the timing of their migrations in response to earlier sea
ice break up in the Gulf of St Lawrence over a 30 year period [12]. Additionally, changes in the
migratory timing of humpback, blue (Balaenoptera musculus) and grey (Eschrichtius robustus) whales off
California have been hypothesized to be driven by local oceanography, regional upwelling and basin-
scale climate conditions [13]. Some recovering baleen whale populations are also re-populating
historical foraging grounds decades after they had nearly been extirpated from over-exploitation [14,15].

When such changes in the phenology or distribution of migratory animals are observed, secondary
effects on other parts of the annual cycle of migratory animals are expected [8,16]. However, these
secondary effects are difficult to detect and may impact population vital rates, so it is important to
consider them in context of the annual cycle to assess potential long-term effects [17]. Furthermore,
dynamically changing spatio-temporal patterns of movement pose challenges to the management and
monitoring of highly mobile animals [7]. It is therefore essential to describe the habitat use of
migratory animals throughout the annual cycle and to integrate this knowledge into an ecosystem
management framework [16]. This is particularly important where sensitive parts of a population,
such as pregnant or nursing females, aggregate and in coastal regions where overlap with human
activity is concentrated [18–20].

During the last decade, humpback whales in the North Atlantic have started to aggregate in fjord
systems of northern Norway during the winters (between November and February), hereafter referred
to as ‘northern Norway’ [21]. Here, they forage extensively on Norwegian spring-spawning (NSS)
herring that shifted their wintering distribution into these areas [22–24]. This shift resulted in a dense
and energy-rich prey resource along the migratory path of humpback whales [21,25]. NSS herring
have shifted their wintering distribution regularly in the past [26], a phenomenon thought to be
related to the stock’s age structure, potentially acting in conjunction with environmental changes
[22,27]. Northeast Atlantic humpback whales generally forage throughout the Norwegian and Barents
Seas during summer and autumn [28–30] and migrate to breeding grounds in the West Indies [31]
and Cape Verde Islands [32], where most of them are observed in March–April and April–May,
respectively. During the era of commercial whaling in the northeast Atlantic (1881–1904), humpback
whales were caught off northern Norway in areas occupied by forage fish during the winter
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[30,33,34]. No substantial numbers of humpback whales have been observed in the fjords since then,
especially not during wintertime, apart from occasional sightings of humpback whales by fishing and
whale-watching vessels, which are common throughout Norwegian waters at most times of the year.

This novel or re-established foraging site appears to represent additional foraging opportunities for
humpback whales after the presumed main summer foraging season, before their long southward
migration towards tropical breeding grounds. Recent satellite tracking data and photographic matches
have confirmed that animals observed during winter in northern Norway can still migrate to the
breeding grounds during the same year [25,32]. However, no studies have quantified the connectivity
between the Barents Sea and northern Norway, described the duration and spatial distribution of the
foraging aggregation in northern Norway, or assessed whether the demographic composition in both
feeding areas differs. The importance of northern Norway as a foraging opportunity for various
demographic groups of humpback whales and the population should thus be explored in detail, given
that the foraging season in northern Norway occurs unusually late in the year compared to the
foraging seasons of humpback whales elsewhere.

In this study, we aimed to describe the foraging aggregation within the context of the northeast
Atlantic humpback whales’ annual cycle, its demographic composition and spatio-temporal
distribution. To this end, we used photographic identity (ID) matching to (i) quantify the connectivity
between the Barents Sea and northern Norway, (ii) establish the duration and geographical
distribution of the foraging area in northern Norway, and (iii) to assess the return rate of individual
whales that foraged in the fjords of northern Norway both within and between years. Finally, we used
genetic and hormone screening of biopsy samples to (iv) quantify the sex ratio and pregnancy rate of
humpback whales in the Barents Sea and northern Norway.
2. Material and methods
Study site and data collection
We collected photo-identification data and biopsies in several fjords of northern Norway and waters of
the Barents Sea surrounding the Svalbard Archipelago (figure 1). Northern Norway is not affected by sea
ice during the winters, as it is characterized by warm north Atlantic water. The sea ice edge occurred
around the Svalbard Archipelago during the peak of sea ice coverage in April between 2005 and 2018
(see [29]), and the area is generally free of ice between June and December. The North Norwegian
Humpback Whale Catalogue (NNHWC) was established in 2010 when humpback whales started
aggregating in northern Norway during the late autumn and winter. From hereon, we refer to
‘summer’ as the foraging season spanning June to September, and ‘winter’ as the foraging season
from October to February. The study sites included waters around Andøya (2010–2012), Kvaløya
(2012–2017) and Kvænangen (2017–2019) (figure 1). Photographic sampling was conducted using
small vessels and was dictated by weather and light conditions. During the polar night (December–
January), sampling was usually restricted to a few hours around midday. However, on some sampling
trips, a flash system allowed sampling to continue in low-light conditions. The sampling effort
differed between years and study sites (table 1). The public and other research organizations also
submitted pictures, and an interactive online web portal for the submission of fluke photographs was
established in 2015 (hvalid.no) and active until 2017, after which data collection continued with the
existing network of contributors.

From the 3–11 September 2018, a research cruise was conducted in cooperation between the Institute
of Marine Research (IMR, Bergen, Norway) and UiT—The Arctic University of Norway (UiT, Tromsø,
Norway), surveying the northern Barents Sea, east of the Svalbard archipelago close to the island
group of Kong Karls Land (figure 1). We chose the timing and area based on information on
humpback whale occurrence from prior annual joint Norwegian/Russian ecosystem surveys in the
Barents Sea and adjacent waters (IMR, Norway/PINRO, Russia). When humpback whales were
sighted, a small boat was launched to allow closer approaches. We took fluke photographs from both
the small boat and the larger research vessel using DSLR cameras. In addition to this cruise,
photographs from incidental humpback whale encounters around Svalbard, and the Barents Sea were
submitted by various contributors (2012–2019), mostly nature-tourism expedition vessels that typically
spend multiple weeks around Svalbard and Franz Josef Land, and to a smaller extent research cruises
not targeted at marine mammals).



Figure 1. Left panel shows the Svalbard Archipelago with black dots close to Kong Karls Land representing GPS locations of
photographic records of humpback whales (Megaptera novaeangliae). The inset shows the three main locations (Andøya,
Kvaløya and Kvænangen fjord) of the northern Norwegian foraging area. Not all pictures were submitted with GPS locations,
those without are not included in the figures.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230069
4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 S

ep
te

m
be

r 
20

23
 

We took biopsies from either the fluke or flank of each individual from small open boats (20–26 ft)
using an airgun (ARTS launching system, LKARTS-Norway) to deploy a floating arrow with a 4 or 6
cm long sterile stainless steel biopsy tip (CetaDart, DK). Depending on the shooting distance, usually
about 4–20m, the shooting pressure was between 6 and 10 bars.

Sampling procedures were approved by the Norwegian Food Safety Authorities (Mattilsynet), under
permits FOTS-ID 14 135 and FOTS-ID 8165. We collected skin (n = 169) and blubber samples (n = 112)
from humpback whales between 2011 and 2019 in the Troms area of northern Norway, and during
September 2018 in the northern Barents Sea. Samples were stored at −20°C in either tin foil or glass
vials (blubber) or 96% ethanol (skin).

2.1. Photo-identification
We identified individual humpback whales using the unique pigmentation pattern on their ventral flukes
[35] and created sighting histories from re-identifications of photo-identified whales. Intervals between
an individual’s first and last sightings within a season indicate the minimum length of stay during the
season. We calculated the annual return rate, a measure of site fidelity on a population level, as the
number of photographically recaptured individuals in a given year divided by the total number of
individuals sighted in that year [36].

Individual sighting histories for this study relied on 3677 sightings of 1169 unique humpback whales
documented in the NNHWC between 2010 and 2019. The catalogue covers a latitudinal range from 67° to
80� N. It contains sighting records of individual humpback whales throughout the year, with summer
sightings mainly from the Barents Sea and winter sightings from northern Norway (figure 1).
In northern Norway, we collected fluke photographs of 866 individual humpback whales, 856 (98.9%)
of these during the winter. Most (54.7%) photographs were collected during dedicated sampling
conducted between October and February, while remaining photos were contributed by third parties,
including all summer sightings (1%).

Over 9 years of study, we conducted 170 days of dedicated photo-identification survey effort, with
considerably less effort during the first two winters (table 1). The average annual sampling effort



Table 1. Table of effort-based photo ID sampling and non-effort-based data collection for each location within the northern
Norwegian fjords (2010/11 to 2018/19). (Sampling was mainly conducted by UiT and the founder of the NNHWC (effort-based).
Other records (non-effort-based) represent days in which various contributors submitted fluke identification photographs. The
period depicts the first and last humpback whale fluke capture in a season, with days indicating the duration between them,
indicative of minimum season duration.)

Andøya Kvaløya Kvænangen

winter
season

survey
effort
(days)

other
records
(days)

survey
effort
(days)

other
records
(days)

survey
effort
(days)

other
records
(days) period days

2010/

2011

2 1 27 Dec–

19 Jan

23

2011/

2012

1 3 2 06 Dec–

29 Jan

54

2012/

2013

15 19 25 03 Nov–

11 Feb

100

2013/

2014

33 22 35 07 Nov–

06 Feb

91

2014/

2015

14 39 44 28 Oct–

15 Feb

110

2015/

2016

12 29 51 29 Oct–

24 Feb

118

2016/

2017

18 27 5 23 Oct–

24 Jan

93

2017/

2018

10 5 10 Nov–

13 Jan

64

2018/

2019

28 26 26 Oct–

28 Jan

94

total 3 78 129 182 38 36 747

mean 1.5 13 21.5 36.4 19 12 83
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across all winter seasons was 17 days (±13.1) and 23.6 days (±9.4), excluding the first two seasons. We
identified 342 individual whales in the Barents Sea, with most identification photographs (95%)
obtained during a research cruise in September 2018. Other collaborators submitted fluke photographs
from incidental humpback whale encounters between 2012 and 2019.

2.2. Sex determination
Wedetermined the sex of individuals using skin samples [37], using the odontocete oligonucleotide primer
set, ZFYX0582F, ZFY0767R and ZFX0923R, which showed clear bands on the gel electrophoresis.
As a control, samples from four killer whales (Orcinus orca) of known sex (two males and two
females) were used in every polymerase chain reaction. After initial testing, primer concentrations were
optimized to 1 μl of 10 μM for the Y primer-set (ZFYX0582F/ZFY0767R) and 0.5 μl of 5 μM for the X
primer-set (ZFYX0582F/ZFX0923R).

2.3. Resampling rate in biopsy material
To estimate the within-season recapture rate in our dataset, we conducted a relatedness analysis on a
subset of the samples for which genetic sequences were available (n = 107). We used NGSrelate v2 [38]
to calculate the coefficients of relatedness, based on genotype likelihoods calculated with ANGSD
v.v0.935-53-gf475f10 [39]. See the electronic supplementary material, S2 text for more details.
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2.4. Progesterone concentrations and pregnancy status
We used progesterone concentrations as a proxy for pregnancy status and extracted the progesterone
from blubber samples as described in [40,41], with minor adjustments to the method. See the
electronic supplementary material, S1 text and table S3 for more details. Progesterone was measured
in 82 female blubber samples and 19 male control samples. Blubber samples taken from flukes were
excluded since they usually do not contain enough blubber to conduct the analysis and may have
different fat and hormone profiles leading to potential misclassifications.

We quantified progesterone concentrations using two commercially available progesterone enzyme
immunoassays (EIA; Enzo Life Sciences, kit ADI-900-011 and ELISA; DRG International Inc.
EIA-1561), see the electronic supplementary material, S1 text and table S3 for more details on the
difference between the two methods. The dried hormone extract was re-suspended in 1 ml phosphate
buffered saline (pH 7.5) containing 1% bovine serum albumin, vortexed, and then samples kept at
−20°C. The EIA and ELISA kits we used have 100% reactivity with progesterone; the detection limit is
between 15−500 pg ml−1 and 0−40 ng ml−1, respectively, based on the standard curves. Two
additional standard dilutions were added to lower the detection limit of the EIA standard curve to
3.81 pg ml−1. We ran samples blind and in duplicate and re-ran samples that fell outside the detection
limit at varying dilutions. The progesterone EIA’s inter-assay coefficient of variation (COV) and intra-
assay COV ranged from 2.7–8.3% and 4.9–7.6%, respectively. The mean inter-assay COV was 14.7%
for the EIA, and the mean intra-assay COV was 5.2% for the ELISA. Progesterone values are reported
as nanograms per gram of blubber (ng g−1). We repeated the extraction and measurements for a
subset of the blubber samples, in which case we report the averaged resulting progesterone level and
ran multiple samples at several dilutions.

We assigned pregnancy status based on blubber progesterone concentrations using previously
established models developed from female humpback whales of known pregnancy status from the
Gulf of Maine and the Gulf of St Lawrence [40,41]. Previous studies successfully applied this
modelling approach to other populations (e.g. western Antarctic Peninsula [41], Oceania [42]).
Pregnancy rates were determined as the number of pregnant females divided by the total number of
assayed females for years in which at least five samples were available, i.e. in which sample size
allowed for reasonably robust estimation.

2.5. Statistical analysis
We checked whether the sex ratio deviated significantly from parity (1 : 1) for each region (northern
Norway in winter, Barents Sea in summer) using a two-tailed exact binomial test for the Barents Sea,
and one-tailed test for Norway. We then tested whether the pregnancy rate differed between the
summer (samples obtained in June and September) and winter season (samples obtained between
October and February in northern Norway), using a χ2 test of independence. Quasi-binomial
generalized linear models (GLMs) were used to investigate variation in annual pregnancy rates
between 2011 and 2018, and over the feeding season between June and February, using a ‘logit’ link
function to take into account overdispersion in the pregnancy rate data. Given the limited and
variable biopsy sample sizes and the variability in pregnancy rate estimates, it was important to
consider these data in the context of their power to detect significant changes over time. The power of
the GLMs was estimated using the pwr.f2.test function in the pwr package (R v. 3.6.2 [43]). The
power to detect a trend in the pregnancy rate over the 8 year study period was 17.4%, and the power
to detect a trend through the feeding season was 6.08%. Thus, the variability in pregnancy rate
estimates makes the detection of significant temporal trends unlikely. A significance threshold of
p < 0.05 was used to determine significance in all statistical tests. Results are presented as mean ±
standard deviation, unless otherwise noted.
3. Results
3.1. Photographic collections
In northern Norway, the total number of photo-identified humpback whales per winter season ranged
from a minimum of six individuals in the first year off Andøya (2010) to a maximum of 408
individuals in the 2015/2016 season off Kvaløya (figure 3; electronic supplementary material,



humpback whale sightings
sighting area
86% of all sightings

Figure 2. Map of the sampling area in the Barents Sea (in grey and orange) with the number of identified individuals in the Barents
Sea (including the Svalbard Archipelago) and northern Norway, respectively, and the number of within-season matches between
those two areas. The beginning of grey lines indicate first sighting locations within the Barents Sea of the individuals that were
subsequently re-sighted in northern Norway. In total, 86% of all humpback whale IDs in the Barents Sea were collected in the
orange-shaded area.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230069
7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 S

ep
te

m
be

r 
20

23
 

table S1). The peak in sightings occurred between November and January. The cumulative curve of
identifications began to plateau after the winter of 2015/2016 but showed a slight increase in 2018/
2019 in Kvænangen (figure 3). In the Barents Sea, we registered humpback whale sightings from May
to September, although most were photographed in September 2018. In total, we found five between-
season re-sightings in the Barents Sea.

3.2. Connectivity between Barents Sea and Norway
We matched 39 individual humpback whales sighted during summer in the Barents Sea to northern
Norway during the winter (figure 2). One individual was photographed in two different summers in
the Barents Sea and subsequently re-sighted off northern Norway during winter both these years.
Seventeen matches of 16 individuals occurred within the same year (figure 2), showing that
individuals transitioned between Barents Sea and northern Norway in the succession of one foraging
season. Most of the re-sightings were first recorded in northern Norway at the end of November
(electronic supplementary material, table S2).

3.3. Site fidelity in northern Norway
Between the winter of 2010/2011 and 2018/2019, we photo-identified 866 individual humpback whales
in northern Norway (figure 3). The majority (53.4%, n = 457) returned in two or more winters. Most of
these whales were seen in two (n = 202), three (n = 131) or four (n = 83) different years. The longest
period over which an individual was re-sighted was 7 years. Re-sightings between seasons occurred
most frequently in sequential years (69.4%), followed by two-year intervals (20.6%) (figure 4). Until
the winter of 2013/2014, new fluke captures accounted for more than 70% of the total number of
whales identified in a season. In all following winters, the number of re-sightings was higher than
first captures, on average 70.9% (±10.5) (figure 3).
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Figure 3. (a) Total number of individual humpback whales (Megaptera novaeangliae) photo-identified each winter season in
northern Norway between 2010 and 2019. Light grey shading indicates newly identified individuals, and dark grey shading
indicates re-sights of previously identified individuals. (b) Discovery curve illustrating the trend in the cumulative number of
individual photo-identified humpback whales during winter in northern Norway (2010/2011 to 2018/2019).
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The annual return rate, a measure of population-level site-fidelity, progressively increased until a peak in
the 2016/2017 season (the final winter season off Kvaløya, 81.8%; figure 4), decreasing to 70 and 79% during
the following twowinter seasons (2017/2018, 2018/2019) in Kvænangen.Within a season 43.2%of thewhales
were seenmore than once. The time interval betweenwithin-season re-sightings ranged from aminimumof 2
days to a maximum of 15 weeks, on average 27.5 days (±11.5; figure 3). More than half the whales identified
across the 9 years of study were re-sighted, with 27% returning to feed for more than 3 years, most often in
sequential years. In the winter of 2016/2017, considerably fewer humpback whales were encountered
around Kvaløya, and the first individuals were sighted in Kvænangen fjord. In the consecutive winter, the
fjords around Kvaløya were deserted, and the feeding activity had shifted to Kvænangen fjord.

3.4. Resampling rate in biopsy material
A relatedness analysis based on a subset of the samples for which genetic sequences were available (107
individuals) indicated that no individuals were biopsied repeatedly within the same season (coefficients
of relatedness <1; electronic supplementary material, table S4).
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3.5. Sex ratio
The sex ratio in the Barents Sea was 1.4 (18 M:13 F, n = 31) and in northern Norway 0.6 (48 M:76 F,
n = 124). No significant deviation from parity was found for the Barents Sea sample (p = 0.473),
but the sex ratio differed significantly from parity in northern Norway with a bias in favour of
females (p = 0.007). The sex ratio in northern Norway differed significantly between years in our
sample (χ2 = 12.9, p = 0.019). In years with low sample sizes (2011/2012, 2017/2018), the ratio of males
in the sample was higher. The sex ratio did not differ significantly between months throughout the
winter season (χ2 = 3.2, p = 0.571; electronic supplementary material, figure S1).

3.6. Pregnancy rate
All but three of the females for which blubber samples were available (n = 82) were successfully assigned
a reproductive status (i.e. pregnant or non-pregnant) by the reference model (with 99.9% confidence), and
all male controls (n = 19) were correctly classified as non-pregnant.

All progesterone concentrations are reported in the electronic supplementary material, table S3. The
pregnancy rate was low in the summer (22% northern Norway in June, 20% Barents Sea in September
2018) and higher (median = 38%, 25th quantile = 24%, 75th quantile = 49%) during winter in northern
Norway when pooled over all years (table 2). However, the difference between the Barents Sea and



Table 2. Numbers of female humpback whales assessed for progesterone levels and pregnancy rates in the Barents Sea and
northern Norway by area and season. (The pregnancy rate (pregnant females/all assayed females) is reported for months with at
least five samples.)

area season females pregnant not pregnant pregnancy rate (%)

northern Norway June 2011 2 1 1 —

June 2012 7 1 6 14

Barents Sea September 2018 10 2 8 20

northern Norway winter 2013/2014 7 2 5 29

winter 2015/2016 12 1 11 8

winter 2016/2017 9 5 4 56

winter 2017/2018 2 0 2 —

winter 2018/2019 30 14 16 47

total 79 26 53

Table 3. Numbers of female humpback whales assessed for progesterone levels and pregnancy rates in the Barents Sea and
northern Norway by area and month. (The pregnancy rate (pregnant females/all assayed females) is reported for months with at
least five samples.)

area month females pregnant not pregnant pregnancy rate (%)

northern Norway June 9 2 7 22

Barents Sea September 10 2 8 20

northern Norway October 2 0 2 —

November 14 6 8 43

December 11 8 3 73

January 27 7 20 26

February 6 1 5 17

total 79 26 53
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northern Norway in 2018/2019 (20% versus 47%) was not statistically significant (χ2 = 2, p = 1). Rates in
winter varied across years between 8 and 56% (table 2). During the winter season, the pregnancy rate
declined after a peak in December (73%), to 26% in January and 17% in February (table 3). Owing to
the limited sample size and high variance, the power to detect a relationship in the pregnancy rate
over winters in the 8 year study period was low (17.4%), and over the months during the feeding
season even lower (6.1%). Thus, the variability in pregnancy rate estimates makes the detection of
significant temporal trends unlikely.
4. Discussion
Within-season matches between the Barents Sea and northern Norway confirm that some northeast
Atlantic humpback whales continued their foraging season in fjord systems of northern Norway.
Studies on other humpback whale feeding grounds have shown that females generally leave feeding
grounds later than males, resulting in a female bias late in the foraging season [11,41,44] consistent
with our observation of a female bias in northern Norway but not the Barents Sea. Per our
expectations, the pregnancy rate estimated during winter in northern Norway was higher than in June
and September, indicating that pregnant animals may indeed be more likely than the general
population to maximize their energy intake by continuing their foraging season in northern Norway.
An increase in pregnancy rates in the temporal progression of the foraging season was also observed
in other areas ([41]; summer 59%, autumn 72%), a pattern consistent with knowledge obtained from
whaling data [44].
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The establishment of the foraging site in northern Norway coincided with dense herring concentrations
in the area since 2010 (documented in detail since 2015 by [22]). During the overwintering period between
October and February, the NSS-herring spawning stock can use separate areas concurrently including near
and offshore waters [27], and fishing vessels reported that individual humpback whales foraged further
offshore in previous years. Before 2010, the overwintering distribution of this herring stock was
concentrated in fjords further south, and humpback whales were not present at this site [21]. Shifts in
NSS-herring overwintering distribution have occurred repeatedly and are most likely related to changes
in the stock’s age structure mediated by oceanographic conditions and fishing pressure [26,27]. Since
humpback whales established the northern Norway winter foraging aggregation in 2010, NSS-herring
slightly shifted their distribution northwards within the fjord systems until 2019, followed by a
corresponding shift in whale distribution. The high annual return rate, comparable to main feeding
grounds in other areas [36,45,46], indicates that foraging in northern Norway has become an important
part of the annual routine for some northeast Atlantic humpback whales. Since the feeding activity is
coupled to herring overwintering distribution, future shifts in the whales’ winter distribution can be
expected as the herring stock changes its migration patterns and overwintering areas.

Information on the migration phenology of northeast Atlantic humpback whales remains sparse
owing to the logistic challenges involved in surveying the Barents Sea region. Therefore, the duration
of the summer foraging season is unknown. Our sighting data from the Barents Sea confirm that the
area east of the Svalbard archipelago is an important foraging ground for humpback whales in late
summer/autumn. This supports previous evidence from annual ecosystem surveys, whaling records
and tracking data [29,47,48]. Tracking data from 2018 indicates that whales initiated migration from
the Barents Sea between October and December in 2018, the same year most sightings and all biopsies
were collected in the Barents Sea [29].

Within-season resighting patterns in northern Norway show that most whales stayed longer than two
weeks, many for about one month and some up to three months. This should be considered a minimum
estimate, as whales might arrive before their first sighting or stay after the last recorded sighting. In the
north Pacific, groups of humpback whales have also been observed foraging on herring during some
periods of the winter, however, this seems to be representing smaller numbers of whales than in the
present study [49,50]. In Iceland, humpback whales have also been reported throughout the year [51].
The humpback whale aggregation in northern Norway is to our knowledge the largest, longest-lasting,
and most stable documented winter foraging aggregation.

Photographic matching to the breeding grounds in the West Indies [31], along with a recently
recorded round-trip migration by a female humpback whale [25] and unpublished tracking data show
that many animals migrate to breeding areas after foraging in northern Norway during the winter.
However, pregnant females delaying their migration until late in the season may give birth along the
migration route despite increasing their migration speed [25], indicating carry-over effects from the
long foraging season into the next stages of migration.

Our results provide, to our knowledge, a first indication that pregnant females might preferentially
visit northern Norway as a continuation of the feeding season in the Barents Sea. When we restricted
the analysis to the one year for which we had sampled the Barents Sea and northern Norway, small
sample sizes however meant that our analysis lacked statistical power to conclude this with certainty.
We could not confirm that pregnant females remained the longest in northern Norway. However, the
statistical power to detect temporal trends in our data was low. One explanation for the lower
pregnancy rates at the end of the season (January/February) may be that not all humpback whales
complete migrations every year. Juvenile individuals and resting females for whom the cost and risks
outweigh the benefits of migration may therefore dominate the sample towards the end of the season.
This might contribute to lower pregnancy rates among females sampled, as well as an increase in the
proportion of males in February.

Monitoring pregnancy rates over time can indicate population health andgrowth rates, provided that the
sample sizes are sufficient [40,41]. Our estimate of the variation in pregnancy rate between years is probably
not sufficiently robust to infer trends in reproductive rates, owing to the low number of samples in some
years. Overall, the pregnancy rate in summer and winter was lower than those reported on other foraging
grounds. On other humpback whale feeding grounds, pregnancy rates were reported to be higher, for
example, 57% in the Southern Ocean [42], 58% (36–86%) in the western Antarctic Peninsula [41], 19–48%
in the north Pacific [52] and 25–63% in the northwest Atlantic [40]. Previous pregnancy rate assessments
in north Atlantic humpback whales did not detect an increase in blubber progesterone concentrations
between females sampled early and late in the season ([24,40]), so this is probably not the sole driver of
the increase. The variability between years reported here was similarly high in those other studies.
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Pregnancy rate estimates present a minimum of true rates, as they usually include immature females.
Pregnancy rates sampled at different times of the gestation period may vary, e.g. be inflated by
subsequently aborted/reabsorbed pregnancies when sampled early [41,42]. However, the large effect size
of the difference in pregnancy rates during summer versus winter in our results was indicative of a true
difference. Recent work shows that pregnancy rates are tightly linked to fluctuations in prey availability
in the Antarctic, north Pacific and north Atlantic [5,40,53,54]. Further studies should assess whether low
pregnancy rates here may indicate slowing population growth following recovery from exploitation [28]
and resulting population density effects in a recovering population of northeast Atlantic humpback
whales foraging in the Barents Sea, or poor nutritional status owing to changing environmental
conditions and prey availability as is the case for humpback whales in other areas [5,53,54].

Rapid and fundamental ecosystem changes in the Barents Sea associatedwith warming, sea ice loss and
increased inflow of Atlantic waters have impacted a core foraging habitat of humpback whales [29,55].
Further south in the Norwegian Sea, sightings of humpback whales have been less common during
summers in 2009–2012 in contrast to the years 2006–2007, indicating a northward shift of foraging activity
or changing migration timing on their northward journeys [48]. In general, humpback whale populations
have shown remarkable recovery after historical exploitation [41,54,56,57]. Yet, their reproductive success
is tightly coupled to prey availability [5], and humpback whale populations in the northwest Atlantic and
north Pacific have been experiencing declining calving rates, probably owing to ecosystem shifts
mediated by climate change [40,54].

In the case of northeast Atlantic humpback whales, herring superabundance events inside fjord
systems provided a feeding opportunity outside of the presumed core feeding season, but along
whales’ distributional range or migratory paths. The recent shift of herring distribution may have
made this resource more accessible to whales since it now occurs closer to migratory routes [25] and
might be more densely aggregated in fjord systems, in contrast to wintering areas herring occupied
during the last decades [22,27]. Northern Norway could be considered a spatial continuation of the
foraging area in the Barents Sea, potentially extending the duration of the foraging season, or a
stopover after the commencement of southward migration from the Barents Sea. As northeast Atlantic
humpback whales recover to historical abundance [28], density-dependent resource competition in the
Barents Sea might play a role in changed distribution patterns. Increased whale abundances,
potentially in conjunction with ecosystem changes, might lead to increased resource competition and
more exploratory foraging movements outside of the main foraging areas.

As generalist predators, humpback whales are thought to be adaptable to changes in their prey
distribution and abundance, relative to other baleen whale species. However, they certainly will not
be able to respond to all kinds of changes in the structure of prey fields, as has been documented in
other areas [5,40,53]. It is further unclear how late-season foraging, as documented in this study,
affects the annual cycle of northeast Atlantic humpback whales. Since migratory species rely on
habitats that are spread over vast distances and multiple jurisdictions, managing these habitats
becomes an international responsibility. Dynamic management of ocean and coastal ecosystems that
can account for changes in spatio-temporal distributions is a challenging but necessary task for the
future that requires concerted efforts from multiple actors and potential protection during migration
in areas beyond national jurisdiction [7]. Climate change is projected to severely impact population
vital rates and alter distributions of top predators on longer time scales [3,58–60]. Therefore,
continued monitoring of the pregnancy or calving rate in this population is warranted as the
ecosystems of the Barents and Norwegian seas shifts to a new ecological state [29,55]. Knowledge of
year-round distributions and critical habitat, especially during potentially vulnerable periods such as
pregnancy, are essential for mitigating adverse effects of human activities on top predators [7].
5. Conclusion
Our results suggest that winter foraging on fjord-based herring is a strategy that is preferentially used by
female humpback whales in northern Norway. Our findings suggest that this strategy has become an
important annual event for humpback whales, contingent on herring overwintering in these fjords. The
population of humpback whales in the northeast Atlantic is recovering from historical exploitation, while
the ecosystem in which they forage is undergoing rapid changes. The establishment of this foraging site is
evidence of humpback whales’ ability to respond flexibly to prey resources along their migratory
pathways, with potential effects on their migration timing that need further investigation. Monitoring the
potential anthropogenic impacts on migratory species as their distributions respond to changing
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environmental conditions, with special attention to core foraging areas, will be important to ensure adverse
impacts can be recognized and addressed. In particular, if many of the whales visiting northern Norway
during winter are either pregnant or are part of the endangered population segment that migrates to the
Cape Verde breeding ground, potential impacts of the shipping and fishing industries should be
priorities for ecosystem management. Future work should also aim to understand how this additional
foraging opportunity impacts the overall reproductive performance and annual schedules of individual
whales, and how this ultimately may affect population dynamics.
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