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Abstract—In safety-critical applications, it is crucial to verify
and certify the decisions made by AI-driven Autonomous Systems
(ASs). However, the black-box nature of neural networks used
in these systems often makes it challenging to achieve this. The
explainability of these systems can help with the verification and
certification process, which will speed up their deployment in
safety-critical applications. This study investigates the explain-
ability of AI-driven air combat agents via semantically grouped
reward decomposition. The paper presents two use cases to
demonstrate how this approach can help AI and non-AI experts
to evaluate and debug the behavior of RL agents.

Index Terms—explainable, reinforcement learning, reward de-
composition, air combat

I. INTRODUCTION

Using AI-driven Autonomous Systems (ASs) with highly
complex and novel behavior in the real world requires the
explainability of the model to increase users, developers, and
policymakers’ trust [1]. Explainability is also envisioned to
play an important role in the verification, certification, and
adaptability of AI-driven ASs in safety-critical applications
[2]. The role of explainability is to present the users with the
rationale behind AI actions to enable them to build higher-
quality mental models.

Explainable AI methods have been applied to other fields
such as the medical domain, Judicial System, and bank-
ing/financial domain [3]. However, no study applies explain-
ability methods to AI-driven air combat agents. Air combat is
a highly dynamic and challenging problem in which the pilot
has to make split-second sequential decisions. This problem
can be tackled with an AI method called Deep Reinforcement
Learning (DRL) as shown during DARPA’s AlphaDogFight
Trial [4].

This paper introduces explainability to the air combat RL
agent via reward decomposition. The RL agent is trained
on a 3DoF air combat simulator. A User-friendly interface
is developed to help with visualization. Two example use
cases tailored for both AI and non-AI experts are shown. This
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paper’s main contributions include exploring the explainability
of an AI-driven air combat agent through reward decomposi-
tion, utilizing the resulting explanations to debug issues in the
RL training process, and demonstrating the application of the
decomposed rewards to provide a warning when the agent’s
behavior deviates from the user’s expectations.

II. METHODOLOGY

In traditional RL, the reward signal is fed as a scalar
value. In reward decomposition, different Deep Q-Networks
(DQNs) are trained for each reward type. The formulation and
derivation of reward decomposition are given in the existing
literature [5].

The air combat environment is represented by reduced order
3DOF aircraft dynamic as follows,

V̇c = ∆Vc

χ̇c = ∆χc

V̇ = KV (Vc − V )

χ̇ = Kχ (χc − χ)

ẋ = V cosχ

ẏ = V sinχ

where ∆Vc is ∆χc is the commanded delta velocity and
heading angle. Kv and Kχ are the velocity and heading angle
gains. V and χ are the velocity and heading angle states,
respectively. Eight discrete actions are formed by combining
maximum and minimum speed and heading angle commands,
with the addition of a ”do nothing” action to create a total of
nine actions. Observation space consists of ATA, AA, relative
heading, and LOS vector information. Following observation
vector used during training.

st =
[
LOSx, LOSy, ∥LOS∥, χred − χblue, ATA,AA

]T
To group the rewards into semantically meaningful types,

the reward components are chosen as Antenna Train Angle
(ATA), Aspect Angle (AA), and Line-Of-Sight (LOS) as
shown in Fig. 1.
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Fig. 1. ATA, AA, and LOS geometric representation.

ATA, AA, and LOS rewards are calculated using an expo-
nential formula to provide a continuous reward signal which
helps with gradient descent during training.

rATA = e−|ATA|, rAA = e−|AA|

rLOS = min(1, e−LOS/1000−1)

Finally, reward components are multiplied by a constant de-
pending on their importance to create a reward vector.

r⃗ = [r1, r2, r3]
T
= [0.4, 0.4, 0.2]

T ⊙ [rATA, rAA, rLOS ]
T

III. EXPERIMENT

In this section, we investigated how to apply explainability
to evaluate why an agent took a certain action for AI experts
and non-AI experts.

In the first use case, AI experts use semantically meaningful
reward components to evaluate and debug RL agent behavior,
identifying areas of underperformance or unexpected behavior.
RL agents trained with different hyperparameters and different
initial randomization ranges can have very similar episodic
returns, but completely different behavior during evaluation.
However, a comparison of decomposed mean Q-values for
each reward type shows that the mean Q-value of LOS reward
is lower than the other components as shown in Fig. 2. This
could be due to the agent only seeing the target far away at
the beginning of the episode, since the goal is to get close,
which results in low data distribution for far-away scenarios.
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Fig. 2. Left: Episodic return of multiple training. Right: Comparison of
component Q-values of multiple training.

In the second use case, decomposed rewards are utilized as a
warning mechanism when the agent’s behavior does not align
with the user’s expectations. For example, in Fig. 3 despite the
bandit aircraft being far away and pointing right, the RL agent
to chose a speed-up turn left action. The expected behavior
would be to choose to speed up and turn right action and
have a higher LOS Q-value to justify it. The misalignment

Fig. 3. Trained RL agent tracking performance. The upper left plot is a bird’s
eye view. The upper right figure is perspective from the blue agent body frame
and each green circle has a 1,000 m radius. The lower figure is decomposed
reward bar chart, the black x sign represents the chosen action while the other
x signs represent the action associated with the maximum expected reward of
each DQN for their respective reward type.

both in the selected action and the reasons for that action can
be used to stop using this RL agent. By presenting the rewards
in a semantically meaningful way, users can better evaluate the
RL agent action and make informed decisions about how to
interact with it. This increased transparency can help to build
trust between the user and the agent, as well as provide a
mechanism for users to intervene or adjust the behavior of the
agent when necessary.

IV. CONCLUSION

In this paper, the explainability of AI-driven air combat
agent is studied. Two different use cases are demonstrated
for both AI and non-AI experts. The first use case identifies
and debugs training process shortcomings by using seman-
tically decomposed reward types. The second use case uses
decomposed rewards as a warning mechanism when there
is a misalignment between non-AI expert and RL agent
expectations. Future work will combine hierarchical methods
with behavioral reward types instead of geometrical ones and
conduct a user study to measure changes in people’s trust in
RL agents in the air combat tactic generation problem.
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