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Abstract—Maneuvering-target tracking has always been an im-
portant and challenge work because the unknown and changeable
motion-models can easily lead to the failure of model-driven
target tracking. Recently, many neural network methods are
proposed to improve the tracking accuracy by constructing direct
mapping relationships from noisy observations to target states.
However, limited by the coverage of training data, those data-
driven methods suffer other problems, such as weak general-
ization abilities and unstable tracking effects. In this paper, a
digital twin system for maneuvering-target tracking is built, and
all kinds of simulated data are created with different motion-
models. Based on those data, the features of noisy observations
and their relationship to target states are found by two specially
designed neural networks: one eliminates the observation noises
and the other one predicts the target states according to the
noise-limited observations. Combining the above two networks,
the state prediction method is proposed to intelligently predict
targets by understanding the information of motion-model hidden
in noisy observations. Simulation results show that, in comparison
with the state-of-the-art model-driven and data-driven methods,
the proposed method can correctly and timely predict the motion-
models, increase the tracking generalization ability and reduce
the tracking root-mean-squared-error by over 50% in most of
maneuvering-target tracking scenes.
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I. INTRODUCTION

T
ARGET tracking refers to predict target states given

noisy and information-incomplete observations. Tradi-

tional tracking methods, such as Kalman filter (KF) [1],

extended KF (EKF) [2], unscented KF (UKF) [3] and particle

filter (PF) [4], for tracking are based on the Bayesian tracking

framework [5], which predicts the target state depending on a

predefined motion-model in each iteration. Obviously, without

correct motion-model, the tracking performance cannot be

guaranteed.

In most non-cooperative target tracking scenes, targets al-

ways move in maneuvering manner. The tricky issue of those

maneuvering-target tracking (MTT) is that the motion-models

are unpredictable and ever-changing. Hence, it is very difficult

to correctly predict the states with proper motion-models. As

a result, the tracking performance will severely degrade.

Currently, there are two types of methods to solve the

maneuvering-target tracking problems. The first type belongs

to the model-driven methods and the second belongs to the

data-driven methods. Model-driven methods approximate the

motion-model based on combining different known models

together. Therefore, the changing patterns of maneuvering-

target can be explored. Benefiting from the limitation of known

models, those model-driven methods always have good stabil-

ity for tracking. However, the pattern exploration consumes

a lot of time. Those model-driven methods easily fail in

high-maneuvering tracking scenes in which the motion-model

changes too frequently to be explored timely and correctly.

Different from model-driven method, data-driven methods

concentrate on exploiting the features of observations to obtain

a direct prediction of target states. Obviously, the data-driven

methods are more sensitive to the changes of observations.

They can more timely understand the motion-model and thus

more correctly estimate the target states. Yet, the data-driven

methods need to be trained by enough data which should

cover all cases of tracking. In fact, considering that the

parameters in the scenes of target tracking is continuous, it is

impossible to build such a dataset filled with “enough data”.

Hence, problems of generalization insufficiency in data-driven

methods are inevitable.

To solve both the problems of model estimation and general-

ization insufficiency in model-driven and data-driven methods,

this paper explores the features of noisy observations and

li2106
Text Box
IEEE Journal on Selected Areas in Communications, Available online 30 August 2023
DOI:10.1109/JSAC.2023.3310109


li2106
Text Box
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.




2

their relationship to target states based on a digital twin

system, which is built for maneuvering-target tracking. Then,

two independent networks are designed to construct a com-

plete model estimation for each tracking iteration. One is a

noise elimination network (NEN) and the other is a motion-

model estimation network (MMEN). The previous one is

implemented by a transformer [6] + long short-term memory

(LSTM) [7] structure which estimates the actual variation

of sequences under the noise interference. The latter one is

implemented by a variant of CADP-NN to directly estimate the

motion-model according to the observation information after

noise elimination. Finally, the estimated motion-model can be

use in normal UKF to complete a whole maneuvering-target

tracking. The simulation results verify that the proposed track-

ing method outperforms both the model-driven and data-driven

methods, from both the perspectives of tracking accuracy and

generalization ability. The main contributions of our work are

summarized as follows:

• A digital twin system is designed, and two features in

the trajectory created by this system are discussed: one

is that the interference cased by noise can be offset with

the growth of length of trajectory; the other is that with

the growth of length, the shape of trajectory gradually

depends on the state transition matrix rather than initial

states.

• To effectively eliminate the noise and estimate the actual

variation of sequences, a NEN is built by combining

the transformer and LSTM together. In NEN, all the

variations of noisy sequences and their filtering results

under different frequency bands are extracted by trans-

former structure and the sequential changing information

is caught by LSTM structure.

• The motion-model is estimated by a MMEN network

which utilizes a convolution neural network to calculate

global features of the trajectories and output an estimated

transition matrix for maneuvering-target tracking.

The organizations of remainders of this paper are struc-

tured as follows. In Related Work Section, two types of

maneuvering-target tracking methods are described. In the

Exploration of Data Features of Target-Maneuver Based on

Digital Twins Section, a digital twin system is established,

and two features in the trajectory created by this system

are discussed. In Intelligent State Prediction Method Section,

the NEN and MMEN are described in detail and a whole

tracking process is constructed. In Simulations Section, a

low-maneuvering and high-maneuvering scenes are built with

different observation noises. Then, our method is utilized

to track the target in the two scenes in comparison with

classic model-driven and data-driven methods. Finally, the

conclusion and future work of the proposed method are given

in Conclusion Section.

II. RELATED WORK

In the field of maneuvering-target tracking, the tracking

methods are divided into two types: model-driven and data-

driven methods. The earliest version of model-driven methods

are multiple-model (MM) methods [8], [9], which simply

combine different motion-models according to their likeli-

hoods in tracking. To improve the tracking performance, fixed

structure MM (FSMM) methods [10], [11] are proposed,

which use fixed structures to effectively combine different

motion-models. Further, the variable structure MM (VSMM)

methods [8], [12] and hybrid grid MM (HGMM) methods

[13] are proposed to improve the combination structures of

different models to make them more flexible for different

maneuvering-tracking scenes. Nowadays, an advance MM

method which fuses modified input estimator and best linear

unbiased estimation together (MIE-BLUE-IMM) [14] is pro-

posed to further improve the tracking performance. Those MM

methods improve the tracking accuracy by given the real-time

estimation of the motion-model with different combinations

of known models. However, restricted by the accuracy of

model presetting and time-delay of estimation calculation

[15], the tracking performance of those MM methods are

still unsatisfactory for practical applications, especially when

targets maneuver with high turn rates.

With the development of deep neural network, a series of

data-driven methods [15]–[18] are proposed. The essence of

data-driven methods is to construct a complicated end-to-end

network to directly predict target states based on the noisy

observation data. Under the condition that networks are well-

trained in certain datasets, those methods can indeed timely

and precisely predict target states with noisy observations.

But in fact, all of those observation-to-state networks face a

problem of insufficient generalization ability because the target

states and observation noises vary too widely to be represented

by limited datasets. Once the target states or observation noises

are out of the ranges of training data, performances of those

data-driven methods will severely degrade. To avoid training

the network to adapt to such data with widely varying range,

Liu [19] further proposed a cross-and-dot-product neural net-

work (CADP-NN) to learn the motion-models, which vary

relatively less. Thus, the prediction performance of CADP-

NN becomes more stable when inputs vary out of the training

sets. However, the inputs of CADP-NN are target states

which cannot be known before tracking. Hence, CADP-NN

needs common UKF with predefined motion-models to offer

predicted states. Although there is a double-channels method

in [19] to maximize the use of estimated motion-models

from CADP-NN to improve tracking performance, the actual

tracking accuracy is still limited by the UKF itself. Thus, the

tracking performance of CADP-NN is still not good enough.

III. THE EXPLORATION OF DATA FEATURES OF

TARGET-MANEUVER BASED ON DIGITAL TWINS

The key for tracking is to understand the target motion-

models, which can be discovered by the data of target states

and observations. However, the actual target states and the

corresponding observations are very scarce, which are far from

meeting the need of motion-model understanding. Although,

Liu proposed a LAST database [15] to increase the amount

of maneuvering-trajectory data based on the simulations of

target tracking of air traffic control (ATC) system [15]. Limited

by the simulated parameter settings, the LAST database is
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TABLE I
NOTATION LIST.

Notation Meaning of the notation

𝒇 ( ·) Nonlinear transition function.
𝒉 ( ·) Nonlinear observation function.
𝑘 Discrete time step for tracking, 𝑘 = 1, 2, 3, ..., 𝐾 .
𝒙𝑘 Target state vector at time step 𝑘.
𝒏𝑘 Transition noise at time step 𝑘.
𝒛𝑘 Observation vector at time step 𝑘.
𝒎𝑘 Observation noise at time step 𝑘.
𝑭 State transition matrix.
𝑝𝑥,𝑘 , 𝑝𝑦,𝑘 Positions in X and Y-coordinates at time step 𝑘.
𝑣𝑥,𝑘 , 𝑣𝑦,𝑘 Velocities in X and Y-coordinates at time step 𝑘.
𝛼 Turn rate of maneuvering target.
𝑠𝜏 Sampling interval.
𝑛𝑝 , 𝑛𝑣 Transition noises of position and velocity.
𝜎𝑝 , 𝜎𝑣 , 𝜎𝑎 ,
𝜎𝜃 , 𝜎𝑑

Standard deviations of position, velocity, accelera-
tion, azimuth and distance, respectively.

𝜃𝑘 , 𝑑𝑘 Azimuth and distance observed at time step 𝑘.
𝑚𝜃 , 𝑚𝑑 Observation noises of azimuth and distance.
𝐵𝑊 (𝒑𝒏, 𝑐) Butter-worth filter with one-dimension positions se-

quence 𝒑𝒏 and the ratio of cutoff frequency 𝑐.
𝒓𝑁𝐸𝑁,𝑘 The 𝑘th time slice of target matrix to train NEN.
𝒓̃𝑁𝐸𝑁,𝑘 The 𝑘th time slice of the output of NEN.
Δ𝑝𝑥,𝑘 , Δ𝑝𝑦,𝑘 Position bias data in X and Y-coordinates at time

step 𝑘.

𝑣𝑠𝑖𝑛
𝑘

, 𝑣𝑐𝑜𝑠
𝑘

Sine and cosine of intersection angel.

𝑇𝑆 Number of time steps.
𝑆𝑁 Dimension of State vector.
𝐶 Number of channels in feature extractor cell.
𝑪𝑹 Output of feature extractor cell.
𝒁 ,

∑
Center and bias of the Gaussion activation in feature
extractor cell.

only suitable for common maneuvering-target tracking scenes

which cover the distances of target from radar: 0.5∼20 nautical

miles; velocities of targets: 0∼340 m/s; maneuvering turn

rates: -10∼10 ◦/s [15]. Obviously, these data do not cover

all the cases of target-maneuvers, because targets can move

in all the spatial scopes with all kinds of velocities and

turn rates satisfying the physical constraints. Worse still,

the parameters in motion-models are continuous. Hence, a

complete database that covers all cases of target-maneuvers are

impossible. Inevitably, training on these incomplete databases,

the generalization performance of network will be greatly

affected.

A. Establishment of digital twin system

Hence, to exactly understand the target motion-model, this

paper built a digital twin system (DTS) for maneuvering-

target tracking simulation (MTTS). Based on this DTS, the

data features of target-maneuver are explored, and the motion-

model can be further solved. All the notations used in this

paper are listed in Table I.

Generally speaking, the relationship of target states and

observations is represented by the state space model (SSM)

as follows ,

Transition equation : 𝒙𝑘 = 𝒇 (𝒙𝑘−1, 𝒏𝑘), (1a)

Observation equation : 𝒛𝑘 = 𝒉(𝒙𝑘 ,𝒎𝑘), (1b)

where 𝒇 (·) and 𝒉(·) are the nonlinear transition function

and observation functions, respectively. In (1a), 𝒙𝑘−1 and 𝒏𝑘

are the inputs of transition equation, which denote the target

state at time step 𝑘 − 1 and transition noise at time step 𝑘 ,

respectively. The output of (1a) is the target state at time step

𝑘 . Hence, (1a) describes the movement of target along with

time changing, which is the motion-model and can be used

to build the target trajectories in our DTS. But in fact, these

trajectories cannot be directly obtained, whose information can

only be discovered by observing. (1b) describes this process.

That is, at time step 𝑘 , we only know the observation 𝒛𝑘 with

the observation function whose inputs are target state 𝒙𝑘 and

observation noise 𝒎𝑘 , respectively. Commonly, the transition

and observation noises are only random additive noise, which

have no relationship with times. Further, for most of the cases

in target tracking, the motion-model (1a) can be simulated as

a linear model [20]. Hence, (1) can be simplified as follows,

Transition equation : 𝒙𝑘 = 𝑭𝒙𝑘−1 + 𝒏, (2a)

Observation equation : 𝒛𝑘 = 𝒉(𝒙𝑘) + 𝒎, (2b)

where 𝑭 is the state transition matrix which determines the

motion-mode of targets. In this paper, we only consider the

tracking problem in X-Y plane coordinate. Thus, 𝒙𝑘 is defined

as [𝑝𝑥,𝑘 , 𝑝𝑦,𝑘 , 𝑣𝑥,𝑘 , 𝑣𝑦,𝑘]
T, where [𝑝𝑥,𝑘 , 𝑝𝑦,𝑘]

T is

the two-dimensional (2-D) position, and [𝑣𝑥,𝑘 , 𝑣𝑦,𝑘]
T is the

corresponding velocity.

Generally speaking, for most 2-D maneuver cases, the

motion-models are naturally constant turn (CT) models [20],

which can be defined as

𝑭 =



1 0
sin(𝛼𝑠𝜏 )

𝛼

cos(𝛼𝑠𝜏 )−1

𝛼

0 1
1−cos(𝛼𝑠𝜏 )

𝛼

sin(𝛼𝑠𝜏 )
𝛼

0 0 cos(𝛼𝑠𝜏) − sin(𝛼𝑠𝜏)

0 0 sin(𝛼𝑠𝜏) cos(𝛼𝑠𝜏)



. (3)

In (3), 𝑠𝜏 is the sampling interval of trajectories, 𝛼 is the

turn rate of maneuvering target. Obviously, when 𝛼 is 0, 𝑭

degenerates into the following form:

𝑭 =



1 0 𝑠𝜏 0

0 1 0 𝑠𝜏
0 0 1 0

0 0 0 1



, (4)

which is called constant velocity (CV) model. The transition

noise 𝒏 can be defined in the form of normal distribution as

𝒏 = [𝑛𝑝 , 𝑛𝑝 , 𝑛𝑣 , 𝑛𝑣]
T,

𝑛𝑝 ∼ N(𝑛𝑝; 0, 𝜎2
𝑝), 𝑛𝑣 ∼ N(𝑛𝑣; 0, 𝜎2

𝑣 ), (5)

where 𝜎𝑝 = 0.5𝜎𝑎𝑠
2
𝜏 and 𝜎𝑣 = 𝜎𝑎𝑠𝜏 are the standard devia-

tions of transition noise for distance and velocity, respectively;

𝜎𝑎 is the standard deviation of accelerated velocity noise.

Moreover, for common radar tracking system, the observation

equation is defined as:

[
𝜃𝑘

𝑑𝑘

]

︸︷︷︸
𝒛𝑘

=



arctan
𝑝𝑦,𝑘

𝑝𝑥,𝑘√︃
𝑝2
𝑥,𝑘

+ 𝑝2
𝑦,𝑘



+

[
𝑚𝜃

𝑚𝑑

]

︸︷︷︸
𝒎

. (6)

where 𝒎 = [𝑚𝜃 , 𝑚𝑑]
T is the noise of observation vector.

It contains the azimuth and distance parts, i.e., 𝑚𝜃 and 𝑚𝑑 ,
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Fig. 1. DTS for MTTS.

which are also defined in the form of normal distribution as,

𝑚𝜃 ∼ N(𝑚𝜃 ; 0, 𝜎2
𝜃 ), 𝑚𝑑 ∼ N(𝑚𝑑; 0, 𝜎2

𝑑), (7)

where 𝜎𝜃 and 𝜎𝑑 are the standard deviations of azimuth and

distance, respectively. Based on the equations from (2) to (7),

the DTS is built in Figure 1.

For each special tracking scene, given a predetermined

initial state 𝒙0 and sampling interval 𝑠𝜏 , a trajectory and

corresponding observations without noises are generated in the

red part. Each trajectory is combined by 𝑁 segments. In the

𝑛th segment, the motion-model and duration are determined by

turn rate 𝛼𝑛 and sampling times 𝐾𝑛. Further, the noises can be

added to the calculation process to simulate the real tracking

scene with parameters 𝜎𝑎, 𝜎𝜃 and 𝜎𝑑 . Then, the trajectory

and corresponding observations with noises are generated in

the black part.

Different from traditional dataset, our DTS can generate

all kinds of maneuvering trajectories, because the parameters

for trajectory generation with DTS are unlimited. Figure 2

shows two maneuvering trajectories and their observation data.

One contains 3 segments with turn rates: -3, 8, 0 ◦/𝑠 and

numbers of time steps in each segment: 300, 300, 300. The

other contains 5 segments with turn rates: 10, -5, 6, -2, 8
◦/𝑠 and numbers of time steps in each segment: 200, 200,

200, 200, 200. The observations of two trajectories also show

different features with different noise deviations. Obviously,

we can use all kinds of parameters to generate trajectories

and their observations to adapt to various application needs.

There are two advantages of our DTS:

1 Data with and without noise are generated in pairs, which

can help us to analyze the interference of noise on data.

2 Trajectories and observations are generated in pairs,

which can help us to explore the information of trajecto-

ries from observations.

B. Exploration of data features based on DTS

Based on the DTS, we investigate the interference of noise

for tracking, according to the comparison between data with

and without noise.

Observation 1: The interference cased by noise can be offset

by the growth of length of trajectory .

Analysis 1: We increase the deviations 𝜎𝜃 and 𝜎𝑑 to analyze

the interference of observation noises on trajectory recognition

in Figure 3. In each sub-figure, the black line is the original

trajectory, and the red line is the noisy one, which is calculated

by noisy observations as follows,

𝑝𝑥,𝑘 = 𝑑𝑘𝑐𝑜𝑠(𝜃𝑘), (8a)

𝑝𝑦,𝑘 = 𝑑𝑘𝑠𝑖𝑛(𝜃𝑘). (8b)

The captions of each sub-figure contain a set of parameters

which are used in DTS to generate the corresponding trajectory

and observations. In the sub-figure (a), the parameters are

set as: 𝐾 = 50, 𝜎𝜃 = 4 × 10−3𝑟𝑎𝑑 and 𝜎𝑑 = 10𝑚.

Keeping the tracking time steps 𝐾 unchanged, we increase

the noisy deviations to 3 and 9 times in sub-figure (b) and

(c), respectively. Obviously, the noisy trajectory becomes more

and more difficult to recognize along with the increasing

of noise deviation. But fortunately, the observation noise

is stationary. Based on DTS, we further extend the noisy

trajectory sequences to their 3, 9 and 27 time lengths, which

are shown in sub-figures (f), (e) and (d), respectively. Their

down-sampling ones, which are all down-sampling to time

steps 50, are shown in sub-figures (i), (h) and (g), respectively.

From those down-sampling sub-figures we can see that the

interference of noise declines when sequence length increases.

Specifically, comparing figures (a) and (g) we can see that the

interference of noise is similar. Hence, the increased effect

cased by increased noise deviation has been offset by increased

sequence length.

This completes the analysis of Observation 1.
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Fig. 2. Samples of two maneuvering trajectories data.

According to observation 1, the interference of noise is

relative. If the interference can be eliminated under certain

noise deviations, the ones with larger deviations can also be

eliminated with longer trajectories.

Moreover, according to the relationship between state and

observation shown in (6), we can find that there is in fact no

velocity information in observations. Hence, it is impossible to

deduce the target state from observation based on this actual

relationship. That is those end-to-end networks which predict

target states by observations are not in fact based on this actual

relationship. In other words, the trajectories are not deduced

based on actual relationship in (2). In most of the cases, those

networks are trained to memory the patterns of trajectories

according to observations. If the observations do not exist

in training, the network cannot find the correct trajectories.

Fortunately, based on DTS, the observation sequences can be

completely generated to further explore their features.

Observation 2: With the growth of length, the shape of

trajectory gradually depends on the state transition matrix

rather than initial states.

Analysis 2: Equation (2) tell us the fact that main in-

fluence factors in trajectory generation are the initial state

and state transition matrix 𝑭. We test the influence of two

factors when biases happen. Figure 4 shows the changes of

trajectories when biases of transition matrix 𝐹 and initial state

𝒙0 happen. In original trajectory, the initial state 𝒙0 is set

to be [2000, 2000, 200, 200]T, the turn rate in 𝐹 is set to

be 5◦ and the time step is set to be 200. We can find this

original trajectory with mark of blue circle in Figure 4. The

’𝐹-biased’ one, marked with red star, is the trajectory with

turn rate in 𝐹 changed to 7◦ and the ’𝒙0-biased’ one, marked

with black upper-triangle, is the trajectory with initial state 𝒙0

changed to be [2100, 2100, 210, 210]T. Obviously, ’𝐹-biased’

one deviates from the original trajectory more than the ’𝒙0-

biased’ one along with trajectory lengthening.

Moreover, we investigate the deviations of the two biased

trajectories from original trajectory in Figure 5. In this figure,

both deviation values increase along with the numbers in

positions sequence. Obviously, the deviation increment of ’𝐹-

biased’ is exponential but the one of ’𝒙0-biased’ is linear.

Hence, an incorrect transition matrix will lead to much larger

errors in trajectory generation than incorrect initial state along

with trajectory lengthening. In other words, the precision of

trajectory generation gradually depends on the state transition

matrix rather than initial states when the length of trajectory

increase.

This completes the analysis of Observation 2.

Observation 2 shows that, under a proper trajectory length,

we can exactly tell the transition matrix without the informa-

tion of initial state.

IV. INTELLIGENT STATE PREDICTION METHOD

Based on data features explored from DTS, we know that

the interference of noise on sequence is under control and

the transition matrix can be derived under proper trajectory

length. Hence, we can actually understand motion-model of

maneuvering target by minimizing the interference of noise

on observations. To this end, a noise elimination network

(NEN) is constructed to minimize the noise interference, and a

motion-model estimation network (MMEN) is also constructed
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Fig. 3. The effects of noise on trajectories.
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Fig. 4. Trajectories comparison when biases happen.

to correctly estimate the motion-model given noise-eliminated

observations. Then we combine the two networks together to

construct our intelligent state prediction method (ISPM).

A. Noise elimination network

Although we can reduce the effect of noise on trajectory by

extending the trajectory length, a noise eliminating method is

still needed to further eliminate the noise interference in case

of insufficient length.

1) Problems of noise interference: Considering the need for

real-time tracking, the lengths of trajectories used to predict

the motion-models can be limited to 29. In that case, we

set the parameters in DTS in Table II. Then we investigate

the interference of noise on trajectory recovered from noisy
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Fig. 5. Deviations comparison between two biased trajectories.

TABLE II
PARAMETER SETTING FOR NOISE ELIMINATION.

Names Notations Values

Deviation of accelerated velocity noise 𝜎𝑎 10𝑚/𝑠2

Deviation of azimuth noise 𝜎𝜃 8×10−3𝑟𝑎𝑑

Deviation of distance noise 𝜎𝑑 20𝑚
Number of time steps 𝐾 29

Sampling interval 𝑠𝜏 0.1s

observations with (8). Figure 6 shows the effects of noise

interference on position data in X and Y-coordinates in this

trajectory. In Figure 6, the initial state and turn rate are

set to be [2000, 2000, 200, 200]T and 30◦/𝑠. Under such a

common scene, the interference of noise on trajectory recovery

is serious, which will lead to a bad recognition of trajectory
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Fig. 6. Noise interference on position data in X and Y-coordinates.
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from observations.

2) Network structure for noise elimination: Considering the

fact that the main information of trajectory is in low frequen-

cies, a set of butter-worth filters are designed to eliminate

the noise. The filtering results of Y-position data are shown

in Figure 7. In this figure, the ratios of cutoff frequencies

from filters 1 to 5 are set to be 0.8, 0.6, 0.4, 0.2 and 0.05,

respectively. As seen in Figure 7, the filtering results become

smoother with the ratios going down. Among of those results,

the filter 4 is closest to the original Y-position. However,

all filtering results are biased including filter 4 in such a

short time range. To improve the performance of filtering,

this paper builds a NEN with transformer-LSTM structure as

shown in Figure 8. Transformer which contains encoder and

decoder parts can search the key information and effectively

understands the input itself according to the self-attention

network structure [6]. This paper utilizes the transformer to

explore the key information in both observations and filtering

results, and recovers the noiseless trajectory as accurate as

possible. Moreover, considering the fact that those filtering

results are only associated with the information of frequency,

we add the LSTM [7], [21], [22] structure to explore the

temporal relationships between states.

Specifically, the NEN is only designed to eliminate

the noises of one-dimensional sequence. Taking

positions sequence in Y-coordinate as an example,

we define this sequence as 𝒑𝒏. Then we compose

the input matrix with the filtering results of 𝒑𝒏 as

[ 𝒑𝒏, 𝐵𝑊 ( 𝒑𝒏, 0.8), 𝐵𝑊 ( 𝒑𝒏, 0.6), 𝐵𝑊 ( 𝒑𝒏, 0.4),

𝐵𝑊 ( 𝒑𝒏, 0.2), 𝐵𝑊 ( 𝒑𝒏𝑦 , 0.05)], where 𝐵𝑊 ( 𝒑𝒏, 𝑐) is the

butter-worth filer with the ratio of cutoff frequency 𝑐. Then,

the matrix is fed into a Transformer-Encoder to get a memory

matrix with shape 𝑇𝑆 × 𝑆𝑁 , where 𝑇𝑆 is the number of

time steps, and it equals 29 in our paper, 𝑆𝑁 is the state

number, and it equals 6. Then, the memory is fed into a

bidirectional LSTM layer, named LSTM_encoder_layer, to

obtain an information encoder sequence whose shape is

𝑇𝑆 × 2𝑆𝑁 . This sequence is fed into a Transformer-Decoder

combining with the target sequence which is calculated

by a Linear_encoder_layer. The output of Transformer-

Decoder will be further fed into another LSTM layer, named

LSTM_decoder_layer to calculate the decoder information of

noise elimination. Then, we add this decoder information to

the input to eliminate noise and feed it into another linear

layer to get the final output. The output is separated into

two parts: one is the noise-limited positions sequence in

Y-coordinate and the other is the original filtering results.

The essence of NEN is that we combine both information of

noisy sequence and its filtering data together to reconstruct

the noise-limited one, instead of directly mapping the noisy

data itself to noiseless one. Hence, our MEN learned a

more stable and simple data relationship than common direct

mapping, which guarantees the strong generalization ability

of our NEN.

3) The training of NEN: The loss is defined as the Mean

Square Error (MSE) loss:

L𝑁𝐸𝑁 =
1

𝐾

𝐾∑︁

𝑘=1

( 𝒓̃𝑁𝐸𝑁,𝑘 − 𝒓𝑁𝐸𝑁,𝑘)
2, (9)

where 𝒓̃𝑁𝐸𝑁,𝑘 is the 𝑘th time slice in Output, and 𝒓𝑁𝐸𝑁,𝑘

is the 𝑘th time slice in target matrix which is defined as

[ 𝒑𝑦 , 𝐵𝑊 ( 𝒑𝒏, 0.8), 𝐵𝑊 ( 𝒑𝒏, 0.6), 𝐵𝑊 ( 𝒑𝒏, 0.4),

𝐵𝑊 ( 𝒑𝒏, 0.2), 𝐵𝑊 ( 𝒑𝒏, 0.05)]. 𝒑𝑦 is the noiseless positions

sequence in Y-coordinate. We train the NEN on data derived

from DTS with parameters shown in Table II, and other param-

eters are set randomly from the range: 𝑑0 ∈ [1000, 10000𝑚];

𝑣0 ∈ [50, 350𝑚/𝑠]; 𝛼 ∈ [−90, 90◦], where 𝑑0 =

√︃
𝑝2
𝑥,0

+ 𝑝2
𝑦,0

,

𝑣0 =

√︃
𝑣2
𝑥,0

+ 𝑣2
𝑦,0

.

In training process, we found that the network converges

quickly in the first 1000 training rounds. After 1000 training

rounds, the downward trends of losses are no longer signifi-

cant. The details can be found in Figure 9. Even so, a long time

training can be helpful for noise elimination performance of

NEN based on existing experimental results. Moreover, there is

no need to strictly generate our training data based on Table II.

For example, we can generate the training data with parameter

𝛼 ∈ [0, 90◦]. Then, when our NEN converges, it can also be

suitable for those data with parameter 𝛼 ∈ [−90◦, 0].

After training, we can obtain the noise-limited sequence as

shown in Figure 10. The original positions sequence in Y-

coordinate is shown with blue line, the noisy one is shown with

upper triangle black line, the noise-limited one is shown with

star red line, and other sequences after different filtering can

be found in this figure. Obviously, the noise-limited sequence

is mainly reconstructed by the information of filtering results
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Fig. 8. NEN structure.
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Fig. 9. The convergence of NEN in training.

of filter 4. But at the same time, other information of filtering

results are considered to minimum this biased errors, which

can be further verified in Figure 11. In this figure we can

see that the errors of noise-limited results is most similar to

the ones of filter 4, but it is also affected by other filters to

become smoother. Hence, noise-limited result can well restore

the information of original sequence. Moreover, another NEN

can also be defined to eliminate the noise in X-position

data sequence. Then, those two noise-limited results can be

combined to form a noise-limited trajectory.

B. Motion-Model Estimation Network

According to the tracking process, the key to track the

maneuvering-target is to timely and correctly estimate the

motion-model. Based on the DTS, we know that the motion-

model can be represented by state transition matrix 𝑭. In other

words, we need to timely and correctly estimate the 𝑭 to

guarantee the accuracy of tracking. In (2), we know that 𝑭

is related to target states. This relationship has been deduced

in [19] by the CADP-NN. But in fact, target states contain

both position and velocity information, yet observation only

contains the information of position without velocity. Hence,

this paper proposes a MMEN to solve this problem.

1) Problems of motion-model estimation: Obviously, differ-

ent from CADP-NN, we have to estimate the motion-model

only by observations which contain no velocity information.

Fortunately, according to Observation 2, the shape of trajectory

mainly depends on 𝑭, not initial states. We can use the

information of the shape of trajectory, which is in fact the

positions sequence and bijective to observations, to estimate

𝑭.

To better utilize this information, this paper proposed a

hierarchical-difference matrix 𝑇ℎ𝑑 to explore the shape infor-

mation as follows,

𝑇ℎ𝑑
= [[𝑝𝑥,0, 𝑝𝑦,0]

T, [𝑝𝑥,1, 𝑝𝑦,1]
T, ...[𝑝𝑥,𝐾 , 𝑝𝑦,𝐾 ]

T] (10)

−[𝑝𝑥,0, 𝑝𝑦,0]
T,

where the subtrahend [𝑝𝑥,0, 𝑝𝑦,0]
T is broadcast to the shape of

minuend, i.e., the positions in X and Y-coordinates. Further, to

completely focus on the shape of trajectory, we only consider

the information of intersection angle between the vectors of

𝑇ℎ𝑑 . Hence, the values of sine and cosine of intersection angle

are calculated by cross and dot product (CADP) as shown in

following,

Sine : 𝑣𝑠𝑖𝑛𝑘 =
Δ𝑝𝑥,𝑘Δ𝑝𝑦,𝑘+1 − Δ𝑝𝑦,𝑘Δ𝑝𝑥,𝑘+1

|Δ 𝒑𝑘 | |Δ 𝒑𝑘+1 |
, (11a)

Cosine : 𝑣𝑐𝑜𝑠𝑘 =
Δ𝑝𝑥,𝑘Δ𝑝𝑥,𝑘+1 + Δ𝑝𝑦,𝑘Δ𝑝𝑦,𝑘+1

|Δ 𝒑𝑘 | |Δ 𝒑𝑘+1 |
, (11b)

where Δ𝑝𝑥,𝑘 = 𝑝𝑥,𝑘 − 𝑝𝑥,0, Δ𝑝𝑦,𝑘 = 𝑝𝑦,𝑘 − 𝑝𝑦,0 Δ 𝒑𝑘 =

[Δ𝑝𝑥,𝑘 ,Δ𝑝𝑦,𝑘]
T. For each 𝐾 time steps trajectory, we can get

𝐾−2 time steps 𝒗𝑠𝑖𝑛 and 𝒗𝑐𝑜𝑠 sequences, which are combined
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Fig. 10. Noise elimination results.
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to form the input of our MMEN.

2) Structure of MMEN: From the perspective of the shape

of positions sequence, we mainly consider the global features

in sequence, not the temporal relationship between states.

Hence, we utilize the convolutional neural network (CNN) [23]

structure to explore these global features. Then, a Gaussian

activation is designed to promote the dimension of features

for a better shape-features classification. To this end, a feature

extractor cell is designed and shown in Figure 12. Assuming

the shape of input is 𝑇𝑆 × 𝑆𝑁 , we need to expand it to

1×𝑇𝑆×𝑆𝑁 to meet the need for convolutional layer, in which

1 is the channel number. The convolutional layer contains

𝐶 kernels whose sizes are all 𝑆𝑁 × 𝑆𝑁 , and the stride and

padding are set to be 1 and 0 in this layer, respectively.

Hence, after through the convolutional layer, the shape of

output data, denoted as 𝑪𝑹, becomes 𝐶 × 𝑇𝑆′ × 1, where

𝑇𝑆′ = 𝑇𝑆−𝑆𝑁 +1. Then, the 𝑪𝑹 is reshaped to be 1×𝑇𝑆′×𝐶.

Fig. 12. Feature extractor cell.

Further, we calculate the higher dimensional data by Gaussian

activation with learnable parameters: center 𝒁 = {𝑧𝑘,𝑐}
𝑇𝑆′ ,𝐶

𝑘=1,𝑐=1

and bias 𝚺 = {𝜎𝑘,𝑐}
𝑇𝑆′ ,𝐶

𝑘=1,𝑐=1
. Then we also calculate the signs of

each element in CR by tanh activation. Finally, we multiply

the Gaussian activation results by tanh activation results as

follows,

𝑜𝑘,𝑐 = exp[−(
𝑐𝑟𝑘,𝑐 − 𝑧𝑘,𝑐

𝜎𝑘,𝑐

)2] · tanh(𝑐𝑟𝑘,𝑐), (12)

where 𝑐𝑟𝑘,𝑐 ∈ 𝑪𝑹 and 𝑜𝑘,𝑐 ∈ 𝑶. 𝑶 is the output matrix with

shape 1 × 𝑇𝑆′ × 𝐶.

Further, we use four feature extractor cells to construct our

MMEN as shown in Figure 13. Specifically, the positions
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Fig. 13. Motion-model estimation network.

sequences in X and Y-coordinates with time steps 29 are

used to estimate the real transition matrix 𝑭 in this paper. As

mentioned before, the CADP is utilized to calculate 𝒗𝑠𝑖𝑛 and

𝒗𝑐𝑜𝑠 sequences which form the input of MMEN with shape

27×2. Then the CADP result is added a dimension for channel

number with value 1. The result further goes through four

feature extractor cells with kernel numbers 4, 8, 16 and 8

respectively. The output with shape 1 × 1 × 8 is reshaped into

2 × 4, which is combined with vector [1,0,0,0] and [0,1,0,0]

to form the estimated transition matrix 𝑭̃.

3) The training of MMEN: The loss used to train MMEN

is also the MSE loss shown as follows,

L𝑀𝑀𝐸𝑁 =
1

8

4∑︁

𝑗=1

4∑︁

𝑖=3

(𝑭̃𝑖, 𝑗 − 𝑭𝑖, 𝑗 )
2. (13)

There are two steps for training the MMEN. First, we use

noiseless positions sequence in trajectory and the real transi-

tion matrix 𝑭 as the input-output pairs for training. The pa-

rameters used to generate the trajectory are randomly sampled

from the range: 𝑑0 ∈ [1000, 10000𝑚]; 𝑣0 ∈ [50, 350𝑚/𝑠];

𝛼 ∈ [−90, 90◦], which are the same as those set in The training

of NEN Subsection. After about 105 rounds for training, the

loss can decrease to 10−8, as shown in Figure 14. Then,
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Fig. 14. MMEN training with noiseless input data.

the trained NEN network is used to eliminate the noise for

real positions sequence which are calculated directly from

observations. Those noise-limited data are fed into MMEN and

train MMEN again. The training process is shown in Figure

15. Obviously, after about 104 rounds for training, the loss of
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Fig. 15. MMEN training with noise-eliminated input data.

MMEN tends to stabilize around the value of 10−6, which is

in fact good enough for practical tracking process.

C. Intelligent state prediction method for tracking

In this section, our ISPM is constructed by combining NEN

and MMEN to timely estimate the transition matrix according

to noisy observations1. Then, the estimated transition matrix

can be used in common UKF to predict target states. Specifi-

cally, as shown in Figure 16, the noisy observations are timely

accumulated. Once the sequence number reaches 29, they

will be exacted as a segment, and recovered to be positions

sequences in X and Y-coordinates by (8). Then, the two

positions sequences are separated and fed into different NEN

to eliminate the noise. Next, we combine the noise-limited

sequences together and calculate the corresponding 𝒗𝑠𝑖𝑛 and

𝒗𝑐𝑜𝑠 sequences by CADP. Further, those results are fed into

MMEN to timely predict 𝑭̃. Finally, the state of maneuvering

target can be correctly predicted by UKF given this predicted

𝑭̃. The tracking process is summarized in Algorithm 1.

V. SIMULATIONS

In this section, simulation results are presented to verify

the performance of our ISPM. To this end, two tracking

scenes are designed, which are the low-maneuvering and high-

maneuvering motion scenes, respectively. Then, in compari-

son with the state-of-the-art data-driven methods: DeepMTT

1Open resource codes: https://github.com/ljx43031/DTS_for_ISPM.
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Fig. 16. Intelligent state prediction method.

Algorithm 1: ISPM tracking process.

Input: Noisy observations 𝒛 with 𝐾 time steps.

Output: Trajectory 𝒙 with 𝐾 time steps.

Initialization: Trained NEN and MMEN; 5 low-pass

filters with ratios of cutoff frequencies: 0.8, 0.6, 0.4,

0.2 and 0.05, respectively; 𝒙0.

for 𝑘 in 𝐾 do

while k<=K-28 do
Segment extraction: 𝒛𝑘:𝑘+28.

Position recovery with equation (8), to get

noisy positions sequences: 𝒑𝑘:𝑘+28.

Noise elimination with 5 low-pass filters:

𝒑𝑥𝑛𝑒,𝑘:𝑘+28 = 𝑁𝐸𝑁 ( 𝒑𝑥,𝑘:𝑘+28, 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠)and

𝒑𝑦𝑛𝑒,𝑘:𝑘+28 = 𝑁𝐸𝑁 ( 𝒑𝑦,𝑘:𝑘+28, 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠)

Combination of noise-limited results:

𝒑𝑛𝑒 = [ 𝒑𝑥𝑛𝑒,𝑘:𝑘+28; 𝒑𝑦𝑛𝑒,𝑘:𝑘+28].

Transition matrix estimation:

𝑭̃ = 𝑀𝑀𝐸𝑁 ( 𝒑𝑛𝑒).
end

Prediction of UKF filter: 𝒙̃𝑘 = 𝑭̃𝒙𝑘−1.

Update of UKF filter: 𝒙̃𝑘
𝒛𝑘
−→ 𝒙𝑘 .

end

(DMTT) [15] and CADP-NN [19] and model-driven method:

MIE-BLUE-IMM [14], we discuss the tracking performance

of our ISPM based on the tracking RMSE defined as follows,

𝑹𝑴𝑺𝑬𝑛 =

√√√
1

𝑀

𝑀𝑛∑︁

𝑘=𝑀 (𝑛−1)+1

(𝒙𝑘 − 𝒙̂𝑘)2, (14)

where 𝒙̂𝑘 is the estimated target state, 𝑀 is the state number

in each segment of the whole trajectory. That means, we

separate the whole trajectory into 𝑁 segments. Each segment

contains 𝑀 states. For the 𝑛th segment, the 𝑹𝑴𝑺𝑬𝑛 is

calculated in equation (14). Finally, the 𝑹𝑴𝑺𝑬 in tracking

results of DMTT, CADP-NN and ISPM algorithms are shown

and discussed in the following subsection.

A. Simulation scenes

There are two scenes discussed in this paper: the low-

maneuvering and high-maneuvering motion scenes. The turn

rate in low-maneuvering scene, which contains normal maneu-

vering cases in ATC system, is usually within the range of -

10∼10 ◦/s. In high-maneuvering scene, the turn rate is set to be

out of the range of -10∼10 ◦/s. Moreover, as mentioned before,

we only consider the X-Y plane coordinate in this paper.

Hence, the parameters for trajectory generation in two scenes

are set in Table III. Specifically, we designed a trajectory with

3 maneuvering parts for low-maneuvering scene as seen in

Figure 17. The duration in each part is 30s, and the turn rates

𝛼 = are set to be −3◦/𝑠, 8◦/𝑠 and 0◦/𝑠, respectively. Moreover,

the trajectory for high-maneuvering scene is designed with 6

maneuvering parts as seen in Figure 18. In those parts, the

sencond, third, and fifth parts are the high-maneuvering part,

whose duration is 9s, and turn rates 𝛼 are −30◦/𝑠, 15◦/𝑠 and

60◦/𝑠, respectively.
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Fig. 17. Trajectory of low-maneuvering.
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Fig. 18. Trajectory of high-maneuvering.

B. Tracking for low-maneuvering scene

In this section, the tracking results of DMTT, CADP-NN,

MIE-BLUE-IMM and ISPM algorithms in low-maneuvering

scene are discussed. Obviously, the maneuvering trajectory

of this scene is in the range of ATC system. Hence, we
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TABLE III
PARAMETER SETTING IN LOW AND HIGH-MANEUVERING SCENES.

Trajectory Initial State Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Low-maneuvering
[-20000m,-5000m,

250m/s,180m/s]
30s, 𝛼 = −3◦/𝑠 30s, 𝛼 = 8◦/𝑠 30s, 𝛼 = 0◦/𝑠

High-maneuvering
[12000m,13000m,
250m/s,-300m/s]

21s, 𝛼 = 6◦/𝑠 9s, 𝛼 = −30◦/𝑠 9s, 𝛼 = 15◦/𝑠 21s, 𝛼 = 2◦/𝑠 9s, 𝛼 = 60◦/𝑠 21s, 𝛼 = −5◦/𝑠

TABLE IV
MEANS OF DISTANCE TRACKING RMSES IN THREE SEGMENTS OF THE TRAJECTORY OF LOW-MANEUVERING SCENE.

Noises Segments MIE-BLUE-

IMM (m)
DeepMTT (m) CADP-NN (m) ISPM (m)

(2 × 10−3𝑟𝑎𝑑, 4𝑚)

The first part 16.00 36.72 34.82 6.47
The second part 15.23 32.70 41.24 7.69
The third part 13.35 20.09 9.43 12.60

(5 × 10−3𝑟𝑎𝑑, 7𝑚)

The first part 56.39 13.69 99.49 13.55
The second part 36.46 32.16 97.43 16.87
The third part 41.96 10.90 19.91 21.08

(8 × 10−3𝑟𝑎𝑑, 10𝑚)

The first part 86.85 20.97 128.23 35.27
The second part 65.26 16.30 144.58 30.00
The third part 91.61 16.05 35.74 41.96

(11 × 10−3𝑟𝑎𝑑, 13𝑚)

The first part 135.35 87.48 193.12 68.19
The second part 87.71 167.48 196.99 42.37
The third part 107.32 99.23 57.10 74.23

can better analyze the effect of noise interference on dif-

ferent methods. Specifically, 4 kinds of observation noises

with different deviation pairs (𝜎𝜃 , 𝜎𝑑) are discussed: i.e.,

(2×10−3𝑟𝑎𝑑, 4𝑚), (5×10−3𝑟𝑎𝑑, 7𝑚), (8×10−3𝑟𝑎𝑑, 10𝑚) and

(11×10−3𝑟𝑎𝑑, 13𝑚), respectively. All the tracking results with

different observation noises are shown from Figure 19 to 22.

In each figure, sub-figure (a) shows the position of trajectory

tracking results, and sub-figures (b) and (c) show the RMSEs

of position and velocity tracking, respectively. Specifically, the

upper part of sub-figure (b) shows the RMSEs of position

tracking in X-coordinate, the bottom part shows the ones in

Y-coordinate. Similarly, the upper part of sub-figure (c) shows

the RMSEs of velocity tracking in X-coordinate, the bottom

part shows the ones in Y-coordinate. Considering that each

part lasts 30s, we set the M=30 for RMSE calculation in (14.)

In those figures of low-maneuvering scene, the blue line

with upper triangle denotes original trajectory, the black line

with dot denotes the tracking results of DMTT, the dark green

line with circle denotes the ones of CADP-NN, the pink line

with plus denotes the ones of MIE-BLUE-IMM and the red

line with star denotes the ones of ISPM. Moreover, the means

of distance and velocity tracking RMSEs can be obtained in

Tables IV and V. Generally speaking, the position tracking

RMSEs2 of ISPM are the smallest in comparison with other

methods in the cases of observation noise deviations set to be

(2×10−3𝑟𝑎𝑑, 4𝑚), (5×10−3𝑟𝑎𝑑, 7𝑚) and (11×10−3𝑟𝑎𝑑, 13𝑚),

respectively. When the observation noise deviation is set to be

(8×10−3𝑟𝑎𝑑, 10𝑚), DMTT performs better. For velocity track-

ing, DMTT performs better than ISPM except the observation

noise is set to be (2 × 10−3𝑟𝑎𝑑, 4𝑚).

1) Analysis on the ability of motion-model estimation:

The key for maneuvering tracking is to correctly and timely

estimate the motion-model, especially when it changes. As

we know in Table III, there are three motion-models in this

2Position tracking RMSE is in fact similar to distance tracking RMSE.

scene. The first model changes to the second one at time 30s,

and the second model changes to the third one at time 60s.

As we can see from Figure 19 to 22, the RMSEs of CADP-

NN algorithm always sharply become very large juts after

30s, which is the time when turn rate changes from −3◦/𝑠

to 8◦/𝑠. Obviously, the CADP-NN algorithm cannot offer a

good prediction on motion-model. From this point of view,

DMTT plays better. But this problem still happens when the

deviations of observation noise are (2 × 10−3𝑟𝑎𝑑, 4𝑚) and

(11 × 10−3𝑟𝑎𝑑, 13𝑚), as we can see in Figures 19 and 22.

There are obvious fluctuations in black line with dot after 30s.

On the contrary, the fluctuations in pink line with plus and red

line with star are small, especially at the time range 30-60s.

That means, the idea of model-driven can gain more stability

than data-driven. The basic idea of our ISPM is to estimate the

motion-model with observation data, which contains both the

accuracy of data-driven and stability of model-driven. Hence,

our ISPM performs best in comparison with both data-driven

and model-driven methods.

2) Analysis on noise interference: The anti-noise ability

is another key factor in actual application, which guarantees

the reliability and stability of the tracking algorithm. Under

normal condition, the tracking errors increase along with the

noises increase. Comparing ISPM with MIE-BLUE-IMM and

CADP-NN, we can see that the position tracking RMSEs of

ISPM increase from around 10m to 60m and the velocity

tracking RMSEs increase from around 10m/s to 50m/s, along

with the increment of noise deviation from (2×10−3𝑟𝑎𝑑, 4𝑚)

to (11 × 10−3𝑟𝑎𝑑, 13𝑚). That is, the increment of RMSEs

of position and velocity of ISPM tracking are 50m and

40m/s, respectively. But the increment of MIE-BLUE-IMM

and CADP-NN are around 100m, 500m/s and 150m, 45m/s,

respectively. Obviously, the RMSE increments of ISPM are in

general smaller than MIE-BLUE-IMM and CADP-NN which

verify that the anti-noise ability of our ISPM is stronger. The
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TABLE V
MEANS OF VELOCITY TRACKING RMSES IN THREE SEGMENTS OF THE TRAJECTORY OF LOW-MANEUVERING SCENE.

Noises Segments MIE-BLUE-

IMM (m/s)
DeepMTT

(m/s)
CADP-NN

(m/s)
ISPM (m/s)

(2 × 10−3𝑟𝑎𝑑, 4𝑚)

The first part 50.87 12.32 28.35 8.91
The second part 75.17 33.44 43.58 8.09
The third part 20.59 8.24 6.53 12.90

(5 × 10−3𝑟𝑎𝑑, 7𝑚)

The first part 291.57 12.48 47.80 25.72
The second part 200.04 16.03 69.99 13.56
The third part 214.77 7.23 13.41 25.55

(8 × 10−3𝑟𝑎𝑑, 10𝑚)

The first part 483.86 10.78 60.35 35.04
The second part 370.73 13.07 88.83 24.08
The third part 453.92 8.15 26.78 46.90

(11 × 10−3𝑟𝑎𝑑, 13𝑚)

The first part 768.66 19.05 71.54 52.34
The second part 520.72 37.76 103.67 34.64
The third part 599.18 24.93 34.83 70.62

RMSEs of DMTT are special. The RMSEs of DMTT are

smallest when the deviation of noise is (8 × 10−3𝑟𝑎𝑑, 10𝑚),

as seen in Figure 21. When the deviation of noise increases to

(11×10−3𝑟𝑎𝑑, 13𝑚), the RMSEs of DMTT seriously increase,

especially the RMSEs of position tracking increase to round

150m after 30s, as seen in Figure 22. Moreover, the RMSEs of

DMTT also increase when the deviation of noise decreases to

(2×10−3𝑟𝑎𝑑, 4𝑚). That means, the effectiveness of DMTT is

limited to a certain noise range. Considering that the DMTT is

an end-to-end network to estimate the trajectory by observation

information, those estimations of DMTT are in fact interfered

by noise patterns. Hence, the DMTT does not have enough

anti-noise ability.

C. Tracking for high-maneuvering scene

In this section, the tracking results of DMTT, CADP-NN,

MIE-BLUE-IMM and ISPM algorithms in high-maneuvering

scene are discussed. As we know in Figure 18, the trajectory

in this scene is also in the range of ATC system, but the turn

rates in segments 2, 3 and 5 is out of the range. To further

analyze the interference of noise, we simulate the tracking on

different deviations of observation noise: (2 × 10−3𝑟𝑎𝑑, 4𝑚),

(5×10−3𝑟𝑎𝑑, 7𝑚) and (8×10−3𝑟𝑎𝑑, 10𝑚). The tracking results

are shown from Figure 23 to 25. Comparing these figures with

Figure 18, we can see that the DMTT, which is denoted by

black line with dot, cannot correctly estimate the positions of

trajectory from the second segment. Hence, it loses its tracking

ability in such a high-maneuvering scene. The CADP-NN,

MIE-BLUE-IMM and ISPM algorithms can provide effective

tracking results even though the RMSEs of tracking become

large. Moreover, considering that some parts only last 9s, we

set the M=10 for RMSE calculation in (14) for this scene.

To accurately compare the performances in different methods,

the means of distance and velocity tracking RMSEs in each

segment can be obtained in Tables VI and VII, respectively.

1) Analysis on the ability of motion-model estimation:

In Table III, there are six motion-models in this scene. In

this trajectory, the first model changes to the second one at

time 21s, the second model changes to the third one at time

30s, the third model changes to the forth one at time 39s,

the forth model changes to the fifth one at time 60s and the

fifth model changes to the sixth one at time 69s, respectively.

Obviously, as seen from Figure 23 to 25, at the times that

models switch, the RMSEs of both CADP-NN and ISPM

algorithms increase. But ISPM decreases more quickly and

keeps a better tracking accuracy than CADP-NN. This can

be obviously found in sub-figures (b) and (c) in Figures 23,

24 and 25 in the range of 60-70s. The RMSEs of our ISPM

decreases from a high value to a small one by about 2s. Then

the RMSEs keep small in the next around 6s. We know that

this range of time belongs to segment 5 with turn rate 60◦/𝑠.

Hence our ISPM can correctly and timely identify this motion-

model and make a good tracking. On the contrary, the RMSEs

of CADP-NN keep high values. Hence, our ISPM outperforms

CADP-NN on motion-model estimation in high-maneuvering

scene. Notice that, MIE-BLUE-IMM is stablest for distance

tracking benefiting from the characteristics of model-driven.

But it fails in velocity tracking as seen in Table VII, i.e., it

in fact has no ability to estimate the motion-model. Hence, in

general, our ISPM has the best ability to estimate the motion-

model.

2) Analysis on noise interference: Based on Figures 23

to 25 and Tables VI and VII, we can see that the RMSEs

of all methods increase. Specifically, the RMSEs of model-

driven method: MIE-BLUE-IMM increases slowly, but the

ones of data-driven method: CADP-NN increases quickly.

The proposed method: ISPM, which estimates the motion-

model with observation data, has the moderate noise increment

rate. For example, as seen in Table VI, when the deviation

pairs of noise is (2 × 10−3𝑟𝑎𝑑, 4𝑚), the distance tracking

RMSEs of CADP-NN in each segment are 31.99, 276.59,

274.44, 60.98, 279.94 and 108.70𝑚, respectively. However,

when the noise increases to (8 × 10−3𝑟𝑎𝑑, 10𝑚), the smallest

RMSE has increased to 198.41𝑚, and two RMSEs of segments

exceed 500𝑚. In contrast, in the scene of low noise, the

distance tracking RMSEs of proposed ISPM are 13.78, 143.53,

180,82, 24.88, 141.82 and 48.87𝑚, respectively. When the

noise increases to (8×10−3𝑟𝑎𝑑, 10𝑚), there is only the RMSE

of segment 3 exceeds 500𝑚, and the others are smaller than

200𝑚. Hence, the ISPM can better resist the increment of

noise. Of course, MIE-BLUE-IMM performs better in distance

tracking, but it has no ability to track the velocity information,

as shown in Table VII. Hence, our ISPM has the best ability

to resist the noise interference.
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Fig. 19. Tracking results of low-maneuvering trajectory with 𝜎𝜃 = 2 × 10−3𝑟𝑎𝑑 and 𝜎𝑑 = 4𝑚.
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Fig. 20. Tracking results of low-maneuvering trajectory with 𝜎𝜃 = 5 × 10−3𝑟𝑎𝑑 and 𝜎𝑑 = 7𝑚.
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Fig. 21. Tracking results of low-maneuvering trajectory with 𝜎𝜃 = 8 × 10−3𝑟𝑎𝑑 and 𝜎𝑑 = 10𝑚.

D. Ablation experiments

To further discuss the role of NEN in our ISPM, we test

the tracking performance of ISPM without NEN in two low-

maneuvering scenes, i.e., the ones with observation noises:

(5 × 10−3𝑟𝑎𝑑, 7𝑚) and (11 × 10−3𝑟𝑎𝑑, 13𝑚), respectively. In

comparison with ISPM, we can easily evaluate the values

of NEN in the whole tracking process, as seen in Figure

26. The upper three subfigures describe the tracking per-

formance on low-maneuvering scene with observation noise

(5 × 10−3𝑟𝑎𝑑, 7𝑚). The bottom three subfigures describe

the other one with observation noise (11 × 10−3𝑟𝑎𝑑, 13𝑚).

Obviously, RMSEs of ISPM without NEN (black line with

circle) are larger than the ones with NEN (red line with star).

Moreover, we notice that the RMSEs in the bottom subfigures

are much larger than the ones in upper subfigures. That means,

when the observation noises increase, the RMSEs increase

more seriously. But when we add the NEN for tracking, we can

significantly slow down this growth trend. Hence, the NEN is

necessary in our ISPM to effectively reduce noisy interference.

E. Computational complexity

In this subsection, the computational complexity of our

ISPM method is discussed in comparison with DeepMTT,

CADP-NN and MIE-BLUE-IMM methods, by means of test-
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Fig. 22. Tracking results of low-maneuvering trajectory with 𝜎𝜃 = 11 × 10−3𝑟𝑎𝑑 and 𝜎𝑑 = 13𝑚.

TABLE VI
MEANS OF DISTANCE TRACKING RMSES IN THREE SEGMENTS OF THE TRAJECTORY OF HIGH-MANEUVERING SCENE.

Noises Segments MIE-BLUE-

IMM (m)
DeepMTT (m) CADP-NN (m) ISPM (m)

(2 × 10−3𝑟𝑎𝑑, 4𝑚)

The first part 22.37 103.40 31.99 13.78
The second part 35.94 614.00 276.59 143.53
The third part 30.89 204.05 274.44 180.82

The fourth part 21.20 371.62 60.98 24.88
The fifth part 46.52 689.93 279.94 141.82
The sixth part 27.47 626.64 108.70 48.87

(5 × 10−3𝑟𝑎𝑑, 7𝑚)

The first part 58.33 20.58 102.01 26.01
The second part 92.00 788.67 430.82 164.45
The third part 93.27 391.75 297.35 386.86

The fourth part 59.62 739.27 157.07 51.00
The fifth part 101.02 1.43e+3 502.78 123.78
The sixth part 79.10 4.95e+3 288.55 101.90

(8 × 10−3𝑟𝑎𝑑, 10𝑚)

The first part 93.78 224.40 198.41 36.17
The second part 156.84 808.03 501.67 156.44
The third part 118.62 995.72 241.79 545.16

The fourth part 132.43 3.26e+3 231.58 104.58
The fifth part 134.49 1.47e+3 521.08 179.24
The sixth part 137.08 6.53e+3 348.99 111.62

TABLE VII
MEANS OF VELOCITY TRACKING RMSES IN THREE SEGMENTS OF THE TRAJECTORY OF HIGH-MANEUVERING SCENE.

Noises Segments MIE-BLUE-

IMM (m/s)
DeepMTT

(m/s)
CADP-NN

(m/s)
ISPM (m/s)

(2 × 10−3𝑟𝑎𝑑, 4𝑚)

The first part 96.45 53.08 18.42 19.34
The second part 206.59 308.09 286.09 102.22
The third part 177.22 208.25 225.02 107.36

The fourth part 78.75 78.50 33.36 29.84
The fifth part 299.33 410.70 395.10 119.99
The sixth part 139.80 115.85 75.24 30.70

(5 × 10−3𝑟𝑎𝑑, 7𝑚)

The first part 299.87 14.55 41.89 29.62
The second part 532.82 302.82 300.63 118.53
The third part 527.14 163.77 234.44 159.75

The fourth part 301.69 84.01 66.68 39.39
The fifth part 615.45 518.77 431.30 138.09
The sixth part 401.10 255.52 105.78 58.11

(8 × 10−3𝑟𝑎𝑑, 10𝑚)

The first part 536.77 62.91 66.47 35.59
The second part 1.02e+3 339.92 302.36 130.42
The third part 682.61 182.16 221.39 196.76

The fourth part 677.79 151.73 72.26 70.39
The fifth part 831.47 589.19 430.26 180.02
The sixth part 805.40 511.30 152.04 56.87

ing the computational time in single iteration of tracking.

For fair comparison, we test all the methods with the same

Intel Core i7-3770 CPU at 3.4 GHz and 4 GB RAM. In

the tracking process, our ISPM method consumes 17.8 ms to

compute one iteration in tracking process. According to [15],

[19], DeepMTT, CADP-NN and MIE-BLUE-IMM methods

consume 16.4 ms, 2.0ms and 0.6 ms, respectively. Although

the computational time of our ISPM for one iteration of

tracking is the longest in comparison with other methods,

17.8ms per iteration is in fact short enough for practical
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Fig. 23. Tracking results of high-maneuvering trajectory with 𝜎𝜃 = 2 × 10−3𝑟𝑎𝑑 and 𝜎𝑑 = 4𝑚.
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Fig. 24. Tracking results of high-maneuvering trajectory with 𝜎𝜃 = 5 × 10−3𝑟𝑎𝑑 and 𝜎𝑑 = 7𝑚.
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Fig. 25. Tracking results of high-maneuvering trajectory with 𝜎𝜃 = 8 × 10−3𝑟𝑎𝑑 and 𝜎𝑑 = 10𝑚.

applications of maneuvering-target tracking.

VI. CONCLUSION

In this paper, a digital twin system has been built to

explore the data features of noisy observations and their

relationship to target states. Based on those features, two

neural networks have been constructed. One is the noise

eliminated network which can effectively eliminate the noise

and rebuild the noise-limited trajectory by a transformer +

LSTM structure. The other is the motion-model estimation

network which uses the CADP information and CNN structure

to estimate the transition matrix by observations. Then those

two networks are combined into our intelligent state prediction

method (ISPM) to track the maneuvering target. Simulation

results have conducted to verify the validity of our theoretical

analysis and network structure, in which one can see that the

proposed ISPM outperforms the state-of-the-art maneuvering-

target tracking methods in both low-maneuvering and high-

maneuvering scenes.

Although the tracking accuracy and generalization ability

have been greatly improved, there is still a lot of room

for improvement in tracking performance, especially in high-

maneuvering scenes. Another future work is that the three-

dimensional space for tracking needs to be considered, by
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Fig. 26. Ablation experiments.

which those intelligent maneuvering-target tracking methods

can be more suitable for practical application.
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