
       
  

University of Applied Sciences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
by 

Javier Alejandro Vargas Gómez 
 

 

 

 

 

 

 

Supervisors:  Prof. Dr.-Ing. Michael Hahn 
    Prof. Dr. Thomas Esch 

Master of Science Programme 
Photogrammetry and Geoinformatics 
Master Thesis 
Winter Term 2022/2023 
 

 Assessing the Vitality of Urban 
Trees using Remote Sensing and 

Deep Learning 



 Master Thesis 2023 
 Javier Vargas 

 Declaration 

– i – 

 
 Hochschule für Technik Stuttgart 
University of Applied Sciences 
M.Sc. Photogrammetry and Geoinformatics 

 

Assessing the Vitality of Urban Trees using Remote Sensing 

and Deep Learning 

by 

Javier Alejandro Vargas Gómez 

 

A dissertation presented in partial fulfillment of the requirements for the 

degree of Master of Science in the Department of Geomatics, Computer Sci-

ence and Mathematics, Stuttgart University of Applied Sciences 

 

Declaration 

The following Master thesis was prepared in my own words without any addi-

tional help. All used sources of literature are listed at the end of the thesis. 

 

I hereby grant to Stuttgart University of Applied Sciences permission to repro-

duce and to distribute publicly paper and electronic copies of this document in 

whole and in part. 

 

Stuttgart, 28.02.2023                             Javier Alejandro Vargas Gómez 

    

               Approved by: 

 

               Prof. Dr.-Ing. Michael Hahn 

 



 Master Thesis 2023 
 Javier Vargas 
 Acknowledgement 

— ii — 

Hochschule für Technik Stuttgart 
University of Applied Sciences 
M.Sc. Photogrammetry and Geoinformatics 

 

Acknowledgement 

I would like to acknowledge the Hochschule für Technik Stuttgart and DAAD for 

receiving me as student and providing me the opportunity to learn and improve 

my professional profile. The academic performance of the staff during the differ-

ent education scenarios has been outstanding but also the personal experience 

of receiving classes from different Professors and interacting with national and 

international students has been an important aspect that I will always keep with 

me. 

I would like to express my gratitude to my supervisors, Prof. Michael Hahn and 

Prof. Thomas Esch, for their support and critic observations during the research 

development. Their open attitude towards questions during the master courses 

and thesis work gave me the confidence to focus my study on relevant issues of 

the current times. I would also like to make a special acknowledgement to Dr. 

Fatemeh Alidoost for involving me and my colleagues in the Deep Learning topic 

and for her support during the development of the thesis project. Additionally, I 

would like to thank to Prof. Eberhard Gülch, Prof. Dietrich Schröder and Ms. Be-

ate Baur for their support and observations during the early stage of the project. 

The motivation and strength to never give up transmitted by my partner Alejandra 

was an important source for continuing everyday despite the obstacles found in 

the normal research process, and I want to give a very special acknowledgement 

to her. The rest of my family in Colombia and my father in the sky are also part of 

this acknowledgement and I dedicate this achievement to them, specially to my 

mother and father who made a big effort to educate me and shared to me the 

respect for the teaching profession and the love for the education. 

This project would not have been developed without the support of several peo-

ple. I would like to thank my PG colleagues for sharing different approaches, 

opinions and ease the discussion about academic topics and the life in Germany, 

specially to Diego Satian for his guidance and support through this work. To 

Leidy, Juan, Sourav, Sayantan, Shristi, Fithro, Lien, Abdalla, Johana, Andrea and 

Arturo, thank you so much. 



 Master Thesis 2023 
 Javier Vargas 
 Acknowledgement 

— iii — 

Hochschule für Technik Stuttgart 
University of Applied Sciences 
M.Sc. Photogrammetry and Geoinformatics 

 

The development of this thesis work would not be possible without the information 

provided by the Landeshauptstadt Hannover and its Department of Environment 

and Urban Greenspace, specially to Ms. Caroline Bank and Ms. Angelika Kreu-

zer. Additionally, the datasets provided by Mr. Dirk Prause from the LBEG were 

very important for the analysis of the information. The sources and help provided 

by Mr. Simon Freund and Mr. Mattias Schulz-Merkel from HFT staff were also 

very relevant and I also thank them for their support and good disposition. 

I would like to make an additional acknowledgement to Eng. Edgar Chacon for 

sharing to me his professionalism, experience, and enjoyment for the activities in 

the forestry sector. Here, I express a great gratitude to him and his company. 

Finally, I would like to thank my hometown University, Universidad del Valle, and 

its academic program of Agricultural Engineering, for preparing me to face the life 

in a personal and academic way, and for giving me the most valuable tools for 

facing the different challenges in the master course. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Master Thesis 2023 

 Javier Vargas 

 Abstract 

— 1 — 

Master Course Photogrammetry and Geoinformatics 

Assessing the Vitality of Urban Trees us-

ing Remote Sensing and Deep Learning 

 

Abstract 

The use of Convolutional Neural Networks (CNN) has been widely implemented 

in forestry-related tasks as species classification, crown detection and mortality 

identification. The usage of several sources as images, point clouds and eleva-

tion models have generated relevant results in different forested areas, but un-

fortunately these studies have not been focused on urban trees. Therefore, the 

objective of this study is to investigate the performance of CNN for classifying the 

vitality of urban trees, which are increasingly affected and stressed by the Urban 

Heat Island Effect. Aerial and Sentinel-2 images are sampled for feeding the CNN 

model. The prediction of the vitality classes shows a precision of 74,69%, espe-

cially for the most represented class (healthy trees). The achieved results allow 

to better understand the performance of a CNN network for determining the vital-

ity of trees in an urban context where diversity of vegetation patterns can repre-

sent a big challenge for classification tasks. 

 

Keywords: Aerial, Satellite, Imagery, CNN, Urban Trees, Vitality. 
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 1 Introduction 

1.1 Motivation 

Urban heat waves have been an issue augmented yearly by Climate Change and 

a problem that has arranged a series of fires events and extreme temperatures 

in cities and rural areas, especially in Europe (European Space Agency - ESA, 

2023b). Those situations have affected the welfare of human beings, mostly in 

recent years. Urban planning techniques have taken in count different measures 

to adapt the cities to the current challenges of global warming as green roofs, 

greening of tram tracks and buildings, shading the building facades with trees, 

and improving the public spaces towards cool spots (European Climate Adapta-

tion Platform Climate-ADAPT, 2022). However, one of the first lines of defense 

against weather variations, the urban trees, can been affected by the weather 

itself but also by the urban and natural environmental conditions that surround 

them. Drought events can generate defoliation (Češljar, et al., 2022; Gazol & 

Camarero, 2022) and warning levels of defoliation can be considered between 

10% and 25% according to the ICP Forests (n.d, cited by Eurostat, 2022). The 

grey surfaces keep the heat provided by the sun and generate adverse effects 

on trees affecting the transpiration processes and thus their cooling potential 

(Schwaab et al., 2021). Heat stress can affect the soil-water relation when the 

micropores that usually store the water are destroyed by compaction and then 

could limit the root growth (Jim, 2019). The negative effects on water balance can 

imply the occurrence of more and higher heat waves during the coming summer 

seasons (Umwelt Bundesamt, 2022). The role of specific trees in urban areas are 

related to the landscape approach for urban beautification by local administra-

tions, but also they play an important role for temperature regulation in a joint 

work with soils and lower vegetation, especially when cities are experiencing 

warmer summers. In the capital city of Hannover, it is expected to have a rising 

of the number of very hot days and tropical nights, especially in the districts with 

block and block-edge building (Hannover Division of Environmental Protection, 

2017). 
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 For facing the weather variation issues related to Heat Island Effects and tree 

hydric stress, the city of Hannover implemented the “Adaptation Strategy to Cli-

mate Change for the Capital City Hannover”, a program that consisted of different 

strategies for fighting the Global Warming during the period 2012-2016. Among 

this local initiative, the strategies Climate-adapted Vegetation and Preventive Soil 

and Groundwater Protection were focused on the implementation of several ac-

tivities as replanting, selection of tree species according to thermally burdened 

zones, site restoration of tree grates for root strengthening, and irrigation 

measures (Hannover Division of Environmental Protection, 2017). For comple-

menting these activities, the implementation of Deep Learning (DL) techniques 

can contribute to detect health issues of trees regarding heat stress and then 

provide a timely alert to supply the irrigation and land management for the af-

fected individuals. Neural Networks (NN) can imply a route of systematic identifi-

cation of the issues related to Heat Island Effect and a path for formulating miti-

gation actions against the Climate Variation impact on cities. The proposed work 

aims to set a prediction mechanism of tree vitality that could be affected by Heat 

Island Effect in the city of Hannover, implementing aerial, satellite imagery and 

environmental information that helps to analyse the performance of the model for 

predicting ground truth classes. Furthermore, the result of the study also aims to 

provide sources and recommendations to approach different studies related to 

urban trees as species classification and mortality detection. The proposed work 

is aligned to the Sustainable Development Goals, mainly the Goals 3 (Good 

Health and Well-Being), 11 (Sustainable Cities and Communities), 13 (Climate 

Action), and 15 (Life on Land). 

1.2 State of the art 

The use of satellite, airborne and UAV products as Orthomosaics and LiDAR to-

gether with DL techniques have been a recent approach for complex studies in 

urban and rural environments. A group of recent research papers was summa-

rized according to the focus of the current work, including some papers related to 

another ML techniques as well as visual methods related to the assessment of 

tree species, health status detection, and land surface temperature (Table 1). 
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 Table 1. Research papers and related investigations about tree classification and moni-
toring. 

Research 
Title 

Authors 
(Year) 

Methods Findings and Results 

Classification 
of urban tree 
species us-

ing multi-fea-
tures derived 

from four-
season 

RedEdge-
MX data 

Liu (2022) 

The research was aimed to inves-
tigate the effectiveness of 
RedEdge-MX products (spectral, 
texture and DSM) for identifying 
tree species during a growing 
phase, using Maximum Likelihood 
Classification model and Random 
Forest Models. 

In the investigation of the use 
of spectral, texture, and spec-
tral+texcture+DSM, the accu-
racy of recognizing trees dur-
ing flowering and leafing pe-
riod was 52,98%, 86,66% and 
86.90%, respectively. 

The Auto Ar-
borist Da-
taset: A 

Large-Scale 
Benchmark 
for Multiview 
Urban Forest 

Monitoring 
Under Do-
main Shift 

Beery et al. 
(2022) 

The paper introduces a large-scale 
dataset that contains 2,5 million 
(344 genera) of 512x12 pixel aerial 
images (5 cm) and street level im-
ages from 23 cities of North Amer-
ica. The dataset was used to train 
a ResNet-101 model for generali-
zation tasks, making different ex-
periments (regional, single city, 
and full dataset). 

The Average Recall improve-
ment of 21,3%, was achieved 
when training from single city 
approach to full dataset, and 
18,3% when training on a re-
gion compared to a single 
city. Also, they noted that big 
cities tend to generalize well 
on the average while most of 
small cities had a poor perfor-
mance. 

TreeSatAI 
Benchmark 
Archive: A 

multi-sensor, 
multi-label 
dataset for 

tree species 
classification 

in remote 
sensing 

Ahlswede et 
al. (2022) 

A dataset composed of images 
from three different sources (aer-
ial, Sentinel-1 and Sentinel-2) was 
used to generate 50.381 image 
patches for each source that con-
tained information of 20 European 
tree species derived from forest 
administration data of Lower Sax-
ony. The research aimed to test DL 
models (ResNet and Multi-Layer 
Perceptron-MLP) and one Ma-
chine Learning model (Light Gradi-
ent Boosting Machine-LightGBM) 
for classification tasks of forest 
species. 

ResNet-18 model showed 
precision scores up to 79% 
only using RGB bands of aer-
ial imagery. The use of Senti-
nel imagery slightly improved 
the weighted precision, 
mainly with the combination 
of ResNet and LightGBM. 
The implementation of Senti-
nel-2 and aerial images im-
prove the performance of the 
classification in most of the 
experiments compared to the 
use of Sentinel-1 and both 
Sentinel products. 

Automated 
remote sens-
ing forest in-
ventory using 
satellite im-

agery 

Shtanchaev et 
al. (2021) 

Using WorldView-2 satellite im-
agery, the training of classical Ma-
chine Learning algorithms was 
carried out with tree crowns em-
beddings generated by Autoen-
coders (Convolutional and Sparse) 
for forest inventory (tree species 
classification). They tried to com-
pare the traditional CNN end-to-
end classifiers (2D-CNN and VGG 
network). 

VGG Network showed a 
higher accuracy and F1 score 
compared to the 2D-CNN. 
Smaller image sizes lead to 
better classification results. 

The role of 
urban trees 
in reducing 
land surface 
temperatures 
in European 

cities 

Schwaab et al. 
(2021) 

Comparison of temperature differ-
ences between urban trees, tree-
less urban green spaces and ur-
ban fabric using topographic data, 
Land Surface Temperature (LST) 
and Land Use/Land Cover (LULC) 
high resolution data (Landsat and  

Urban trees were related to 2-
4 times higher reductions of 
surface temperature com-
pared to treeless urban green 
spaces. Furthermore, urban 
trees reduced the surface 
temperature more than rural 
forests in Central European 
regions. 
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 Research 
Title 

Authors 
(Year) 

Methods Findings and Results 

Aster imagery). The research was 
aimed to calibrate Generalized Ad-
ditive Models for prediction of tem-
perature differences in the men-
tioned covers. 

Explainable 
identification 
and mapping 
of trees us-

ing UAV 
RGB image 
and deep 
learning 

Onishi, M. & 
Ise, T. (2021) 

Using of a slope model and seg-
mented UAV imagery (into tree 
crown objects) as inputs of an ob-
ject-based CNN for classifying 
each crown image into tree types 
and tree species.  

Classification of tree types 
and specific species with 
more than 90% of accuracy. 
CNN classified trees accord-
ing to their shapes and leaf 
contrasts. 

Assessing a 
novel model-

ling ap-
proach with 
high-resolu-
tion UAV im-

agery for 
monitoring 

health status 
in priority ri-
parian for-

ests. 

Guerra et al. 
(2021) 

It was considered four categories 
of tree health status (asympto-
matic, dead, defoliation>50% and 
defoliation<50%). Multispectral 
UAV imagery was analysed using 
classical random forest and lo-
gistic regression. A set of vegeta-
tion indices (including NDVI) 
where considered as well. Struc-
tural data from DSM at crown level 
was derived from initial data.  

An overall accuracy of 67% 
was achieved for the four cat-
egories of health status con-
sidered. The accuracy im-
proved when were taken less 
categories like asymptomatic, 
defoliated, dead (72%), or just 
alive or dead (91%). The re-
sults suggested that the red 
band was more relevant for 
detecting defoliation caused 
by pathogens. 

Deep Neural 
Networks 

with Transfer 
Learning for 
Forest Varia-
ble Estima-
tion Using 
Sentinel-2 
Imagery in 
Boreal For-

est 

Astola et al. 
(2021) 

The research aimed to predict 
growing stock volume on a Boreal 
Forest of Finland using Deep Neu-
ral Networks. As sources, the re-
searchers used Sentinel-2 images, 
topography data and Canopy 
Height Model (CHM), as well as a 
forest inventory data for model 
training and evaluation. 

The researchers found that 
the solely use of RGB+NIR 
bands, imaging and sun an-
gles, and topography features 
showed the best plot level ac-
curacy (RMSE%=42,6%). 
The use of CHM and S2 im-
ages reduced the relative 
RMSE to 28,6%-30,7%. 

Mapping Ur-
ban Tree 

Cover 
Changes Us-

ing 
Object-

Based Con-
volution Neu-
ral Network 
(OB-CNN) 

Timilsina et al. 
(2020) 

An object-based CNN was used to 
map the urban tree cover changes 
between 2015 and 2016. Sources 
as Google Earth images and Li-
DAR products were introduced in 
the model. Samples from datasets 
were extracted using NDVI and 
CHM. The research also involved 
socioeconomic variables to model 
the tree cover changes with re-
gression analysis. 

The object-based CNN gen-
erated an overall accuracy of 
98% and kappa coefficient of 
0,93 for the year 2015/16. 
The results also demon-
strated positive correlation 
between household income 
and tree cover loss. 

UAV Laser 
Scans Allow 
Detection of 
Morphologi-
cal Changes 
in Tree Can-

opy 

Slavík et al. 
(2020) 

Usage of multitemporal series data 
from UAV laser scanning for de-
tecting the phenomenon of bend-
ing branches of dead trees during 
one year. The researchers imple-
mented automatic segmentation of 
individual trees to observe mor-
phological changes. 

Changes detected in angle in-
clination of branches that af-
fects the solar radiation inter-
ception. Branch shifting in 
dead trees could be related to 
mycorrhizal interconnections 
between live and dead trees. 
It was correctly identified an 
86% of trees that displayed 
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 Research 
Title 

Authors 
(Year) 

Methods Findings and Results 

branch movement, as rec-
orded by a human observer. 

Plant Dis-
ease Classi-

fication: A 
Comparative 
Evaluation of 

Convolu-
tional Neural 

Networks 
and Deep 

Learning Op-
timizers 

Saleem et al. 
(2020) 

A comparative evaluation for clas-
sification of plant disease was de-
veloped using several CNN archi-
tectures (AlexNet, OverFea, VGG-
16, ZFNet, ResNet-50, Inception 
ResNet-v2, Inception-v4, Mo-
bileNet, DenseNet-121, and Xcep-
tion). 26 different diseases belong-
ing to 14 plant species were used 
as input. 

The Xception architecture 
trained with the Adam opti-
mizer yielded the highest val-
idation accuracy (99,81%). 

Individual 
tree species 
identification 
using Dense 

Convolu-
tional Net-

work (Dense-
Net) on mul-

titemporal 
RGB images 

from UAV 

Natesan et al. 
(2020) 

Implementation of a deep CNN 
(DensNet) to classify forest tree 
species at the individual tree-level, 
using UAV products (RGB images 
and LiDAR) collected over three 
years in summer (leaf presence) 
and fall (no leaf presence) sea-
sons, and capturing the variations 
in seasonal conditions, foliage 
density and greenness. The net-
work was trained and cross-vali-
dated using the labelled dataset for 
learning from the tree crowns on 
images. 

Classification accuracy over 
84% for distinguishing five 
predominant species of conif-
erous trees. 

Tree Species 
Classification 
and Health 
Status As-

sessment for 
a Mixed 

Broadleaf‐
Conifer For-
est with UAS 
Multispectral 

Imaging 

Abdollahnejad 
& Panagiotidis 

(2020) 

DTM, DSM and orthophotos were 
derived from photogrammetric pro-
cessed datasets and used as input 
for canopy spectral analysis and 
textural analysis as well. The study 
was divided in two phases. Firstly, 
trees were classified into two 
groups (broadleaf or conifer). 
Then, trees were classified ac-
cording to type and health status 
creating subgroups to detail the 
classification. 

An overall accuracy of 
81,18% for the proposed 
method of classification and 
84,71% for health status as-
sessment. The combined use 
of vegetation indices and tex-
ture analysis increased the 
overall accuracy by 4,24%. 

Detection of 
Fir Trees 

(Abies 
sibirica) 

Damaged by 
the Bark 

Beetle in Un-
manned Aer-

ial Vehicle 
Images with 
Deep Learn-

ing 

Safonova et al. 
(2019) 

Aerial images from Central Siberia 
were used to detect damages on 
forest cover by Bark Beetle using a 
proposed CNN. Four tree damage 
categories were defined: (1) 
healthy, (2) colonized by beetles, 
(3) recently died, (4) deadwood. 
Fifty (50) image patches of single 
trees for each category were man-
ually sampled. A total number of 
200 image-patches were gener-
ated and an 80%-20% split was 
used for training and validation, re-
spectively. 

A test accuracy of 99.7% and 
a loss lower than 0.001 was 
achieved at the 23th training 
epoch. The proposed model 
achieved a high F1 score of 
92,75%, 89,86%, 89,66% and 
88,89% on damage classes 
1,2,3, and 4, respectively. 
They explained that these re-
sults can be explained by the 
skills of the model for distin-
guishing color, shape, and 
texture on those classes. 

Forest Dam-
age Assess-
ment Using 

Hamdi et al. 
(2019) 

A modified version of U-Net archi-
tecture was used for a pixelwise 
classification with RGB-NIR ortho-
photos (0,2 m) of Bavarian forests 

The model performance 
achieved an overall accuracy 
of 92% in the test dataset. 
They noted that some areas 
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 Research 
Title 

Authors 
(Year) 

Methods Findings and Results 

Deep Learn-
ing on High 
Resolution 

Remote 
Sensing 

Data 

as inputs. The research imple-
mented the CNN in an ArcGIS en-
vironment for automatic detection 
and mapping damaged areas by 
storms. 

with shadows were not de-
tected by the network. Addi-
tionally, small and damaged 
areas were not labeled. 

A Convolu-
tional Neural 

Network 
Classifier 
Identifies 

Tree Species 
in Mixed-Co-
nifer Forest 
from Hyper-
spectral Im-

agery 

Fricker et al. 
(2019) 

The researchers used seven dom-
inant tree species and dead stand-
ing trees in a mixed-conifer forest 
in California (US) identified in aer-
ial images, for feeding a CNN with 
the purpose of classifying and 
mapping tree species. Addition-
ally, they used LiDAR data to iden-
tify trees with more than 5m of 
height for applying the classifier to 
the tree crown. 

The model correctly classified 
713 individual trees. For all 
the species, average F-
scores was 0,87 for hyper-
spectral CNN model and 0,64 
for the RGB-fed model. 

GIS-based 
analysis of 

the tree 
health prob-
lems using 

UAV images 
and satellite 

data 

Asenova, M. 
(2018) 

UAV optical imagery was imple-
mented as main source for visual-
analytical methods. Affected areas 
and existing biotic, abiotic and an-
thropogenic factors were identi-
fied. On-site reviews were carried 
out for identifying pathological 
damages which included leaf sys-
tem, branches, and stems. The 
damage level was assessed and 
the actions for limiting the pest ef-
fects were formulated. 

Trees affected by pests and 
pathogens were recognized 
by the pronounced color, 
shape and density changes in 
crowns. Scot pine plantations 
affected by bark beetle (96%) 
and wind throw/wind fall (4%). 
Vectorization of damaged 
area and the required 
measures for protecting the 
forest were carried out. 

As seen in the Table 1, most of the research works related to the implementation 

of DL approaches have been focused on forests for different tasks as species 

classification (Fricker et al., 2019; Abdollahnejad & Panagiotidis, 2020; Natesan 

et al., 2020; Onishi, M. & Ise, T., 2021; Shtanchaev et al., 2021; Ahlswede et al., 

2022), variable estimation (Astola et al., 2021; Onishi, M. & Ise, T., 2021), detec-

tion of change in tree properties (Slavík et al., 2020), assessment of health status 

and damage detection (Hamdi et al., 2019, Safonova et al., 2019; Abdollahnejad 

& Panagiotidis, 2020; Guerra et al., 2021). However, the study of urban trees with 

DL and Remote Sensing techniques has been less represented in the research 

field, with tasks as detection and classification of tree species (Beery et al., 2022; 

Liu, 2022) and mapping of urban tree cover (Timilsina et al., 2020). It is specially 

missed the works that classiffy of health status of urban trees as done with forest 

trees, in order to develop faster monitorings in cities that contribute to a quicker 

detection of non-healthy trees and reduce the number of on-site campaigns. The 

classification of the tree vitality through multispectral image patches aimed in this 
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 study could provide more information about the implementation of DL techniques 

in urban contexts and contribute to assess the effects of the Climate Variability 

on trees that strenghten and speed up the response of local authorities. 

1.3 Objectives 

❖ To identify Deep Learning techniques for estimating the vitality of urban trees 

located in Urban Heat Islands through aerial and satellite imagery. 

 

❖ To define and adapt methods for sampling multispectral aerial images that 

include trees with different vitality characteristics. 

 

❖ To analyse the influence of spatial and spectral properties of urban trees on 

the model performance. 

1.4 Report structure 

The following work is structured as follows: 

Chapter 2: Provides an overview of the Theoretical Background of the work, in-

cluding the role of urban trees, the influence of heat stress in their vitality and the 

models used in the study. 

Chapter 3: Specifies the sources, tools and methods that are part of the Metho-

dology implementation. 

Chapter 4: Includes the Results and Discussion where is analysed the influence 

of input sources in the study and the performance of the model. 

Chapter 5: Presents the Conclusions of the study and the Recommandations 

provided for future works. 
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 2 Theoretical Background 

2.1 The Role of Urban Trees 

Forests play an important role for cooling the planet Earth and provide different 

benefits to the human beings, producing and regulating the world’s temperatures 

and fresh water flows through a combined effect of transpiration and shade (El-

lison et al., 2017). Regarding urban forests, trees provide different Ecosystem 

Services (ES) to the local communities. Some of these services and benefits are 

summarized by the Food and Agriculture Organization of the United Nations - 

FAO (Borelli, 2016) and the Hannover Division of Environmental Protection 

(2017) as follows: thermal regulation, filtering of pollutants and fine particles, ris-

ing of air moisture, CO2 absorption, water flow regulation and water quality im-

provement, wood and food supply for cooking and heating, improvement of men-

tal and physical health, increasing of urban biodiversity and property monetary 

value. Among these services, the cooling effect and the provision of shade are 

especially important to counteract the Heat Island Effect and thermal stress 

(Locatelli, 2016; Hannover Division of Environmental Protection, 2017). 

Trees have also a synergic and feedback relationship with soils. While trees offer 

continuously organic matter, stability, aggregation, and cover against water ero-

sion and direct sunlight, soils offer a place to settle, stores water, contains micro-

biota that retain and transform compounds into available nutrients for the trees, 

among others. Both sources conform a strong phase of many cycles as N, C, P, 

K, H2O. Soil temperature can influence the life functions and the contents of Soil 

Organic Carbon (SOC) that directly affects the water flow in the soil profile, and 

therefore in the tree hydration, nutrition, and cooling of surface (Sun & Pinker, 

2004; Liu & Pu, 2019; Cates, 2022). However, there are different limitations for 

trees in urban environments, mainly given by poor physical properties as a very 

high density (soil compaction) and enhanced by insufficient soil volume (Jim, 

2019) that together could address different problems as poor hydraulic conduc-

tivity, poor nutrients transportation and finally the mortality. 
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 2.2 Heat Stress and Vitality of Urban Trees 

❖ Heat Island Effect 

The Heat Island Effect or Urban Heat Island is defined as an urban climate feature 

that is characterized by maximum temperatures on night time due to the differ-

ences in air temperature between the urban core (warmer) and the city surround-

ings (cooler) (Intergovernmental Panel on Climate Change - IPCC, 2022; 

Deutscher Wetterdienst - DWD, 2023). These differences on temperatures are 

influenced mainly by the building geometries, material properties of the urban 

surfaces, human activities as traffic and artificial cooling, density and size of ur-

ban infrastructure, sealing level and vegetation cover (Hannover Division of En-

vironmental Protection, 2017; IPCC, 2022; DWD, 2023). The Figure 1 shows the 

dynamic of the Heat Island Effect and its relationship with the different climato-

logical properties as air temperature, wind speed and sunlight exposure: 

 

Figure 1. Heat Island Effect representation. Taken from DWD (2022). 

Among the greatest impacts of the Heat Island Effect are the increasing of deaths 

and disease rates for all populations, especially in elder and non-healthy commu-

nities (Tan & Siri, 2023; Hannover Division of Environmental Protection, 2017). 

Besides, the higher temperatures reached during the night could affect the inter-

nal process of vegetation species as the biomass generation. Jing et al. (2016) 

found that high night temperatures addressed a reduction on biomass allocation 
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 to reproduction organs, with an acceleration on ecophysiological processes and 

leaf growth stimulation in urban vegetation. 

Urban trees are surrounded of a different environment compared to forests. While 

urban trees usually share the surface with buildings and houses, streets, monu-

ments, water bodies, among others, forest trees are surrounded by communities 

from the same or different tree species, lakes and natural rivers (no channelized), 

just to mention a few. The built-up characteristics generate or modify the weather 

and environment dynamics, mainly about air temperature, sunlight exposure, 

wind speed, soil density and pollution. Those environmental conditions under the 

urban heat island can cause vitality loss and increase of mortality risk (Gillner et 

al. 2014). The existence of extreme or abnormal air temperatures at night affect 

the metabolism and vitality of trees (Roloff, 2019; Jing et al., 2016).   

To overcome the consequences of Climate Change, the city of Hannover imple-

mented the “Adaptation Strategy to Climate Change for the Capital City Hanno-

ver”, a program aimed to finance the different strategies for fighting the Global 

Warming during the period 2012-2016. Important strategies in this initiative were 

called Climate-adapted Vegetation and Preventive Soil and Groundwater Protec-

tion, that were focused on the implementation of several activities as replanting, 

selection of tree species according to thermally burdened zones, site restoration 

of tree grates for root strengthening, and irrigation measures (Hannover Division 

of Environmental Protection, 2017). As reference, the costs for site restora-

tion/preparation of tree roots and new planting can rise 1250 € and 3500 per tree 

respectively (Figure 2). In Lower Saxony, there are some species tolerant to heat 

stress, as B. Pendula, F. excelsior, Q. robur, and A. platanoides. But also other 

species could be very sensitive to drought stress as A. glutinosa, P. nigra and S. 

alba (Brune, 2016). 
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Figure 2. Site restoration of street tree in Hannover. Taken from Hannover Division of En-

vironmental Protection (2017). 

❖ Tree Vitality 

Tree vitality can be defined as the current health status of a tree species in line 

with the vigor and vital energy displayed, and, according to Callow et al. (2018), 

it is related to the plant response to physiological stress. Tree vitality is usually 

assessed by trained arborists who visually evaluate parameters as crown size 

and density, leaf color and vigor, while other methods involve biochemical and 

physical laboratory techniques (Fite, 2008; Martinez-Trinidad et al., 2010; Callow 

et al., 2018). Crown density is often the most common parameter taken in count 

to identify problems in tree vitality, and defoliation is a derived observation from 

tree monitoring in rural and urban forestry. 

The study of urban forests usually involves traditional methods of tree inventory 

and dendrology studies carried out by local institutions with the purpose of updat-

ing the database of trees of a city and also for developing activities of monitoring, 

maintenance or replacement. In the case of forest inventories, it should be taken 

in count the difference between Inventory and Census. A forest inventory takes 

in count a sample of the study area while a forest census takes in count 100% of 

the trees located in an entire study area, however the first one does not take in 

count the entire tree individuals and the second one is time demanding, even 

more if the areas are large or have strong slopes. Remote Sensing and DL ap-
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 proaches can mean a fast and adjustable way to develop forest studies and mon-

itoring activities that contribute to the timely detection of health issues or diseases 

that can imply a risk for the trees, and therefore for the community that benefit 

from the services provided by the trees. The Normalized Difference Vegetation 

Index (NDVI) can provide a good source to study urban trees according to their 

health state as shown in the Figure 3, Figure 4, and Figure 5.  

 

Figure 3. Spectral response of healthy and unhealthy trees. Taken from EOS (2023). 

 

Figure 4. NDVI of urban trees in the capital city of Hannover. 

Defoliated trees do not show an appropriate NDVI but the CIR combination (IR-

R-G) can provide a good approach for visualize the vegetation structures that 

remains on trees as trunk and main branches (Figure 5d). In specific seasons, 

trunk and branches can be covered by non-vascular epiphytes (e.g. green moss) 

and NIR spectrum could be reflected of the plant easing the identification of tree 

crowns. 
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Figure 5. Healthy tree (left) and non-healthy tree (right) with natural color band combina-

tion (a,b), CIR band combination (c,d), and NDVI (e,f). Source: Landesamt für Geoinfor-

mation und Landesvermessung Niedersachsen - LGLN (2022). 

 

a b 

c d 

e f 
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 2.3 Convolutional Neural Networks and Computer Vision 

models 

❖ Convolutional Neural Networks (CNN) 

CNNs or ConvNets are network architectures that learn directly from data and 

can contain tens or hundreds of layers that contribute to detect features of an 

image (Mathworks, 2023).  CNNs are composed by an input layer, several hidden 

layers and an output layer, as shown in the following image: 

 

Figure 6. CNN architecture representation. Taken from Mathworks (2022). 

Input, output and hidden layers are required to perform different operations that 

alter the data properties and learn specific features. One important part is the 

hidden layers that, according to Mathworks (2023), can be classified in three main 

types of layers: convolutional layer, rectified linear unit layer (ReLu), and pooling 

layer. Convolutional layers compose the core building block of the CNN and are 

the phase where most of the computations occur (i.e. convolutional filters) (IBM, 

2023a). ReLU layers allows a faster and effective training and contribute to the 

activation of features that will be introduced in the next layer (Mathworks, 2023). 

Pooling layers (or subsampling layers), develop dimensionality reductions using 

filters without any weights, and can be from two types: max pooling (a filter selects 

the pixel with the maximum value and send it to the output array) and average 
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 pooling (a filter calculates the average value and send it to the output array) (IBM, 

2023a). 

CNN are often used for classification and computer vision tasks and their ap-

proach from linear algebra (matrix multiplication) contributes to identify patterns 

within an image (IBM, 2023a). Forest applications as tree detection, forest clas-

sification, and forest damage detection are common tasks that have been devel-

oped through different investigations and the overall accuracies reached provide 

good perception of DL approaches for substituting manual feature extraction that 

is time consuming. Some of the most relevant processes involved in the model 

training are data augmentation and backpropagation: 

▪ Data Augmentation: Process used for increasing the data size through 

transformations as flip, rotation, and resizing (Awan, 2023) 

▪ Backpropagation: Algorithm based on chain rule to perform a backward 

pass while adjusting model parameters (Kostadinov, 2023). 

The neural networks implement loss functions for comparing the target and the 

predicted output values, providing an idea of the model performance during the 

data training (Yathish, 2023). Using an optimizer (algorithms that updates weights 

and learning rate), the losses can be reduced, and the models can improve the 

performance for the specified task (Doshi, 2023). 

CNN, as other NN and Machine Learning (ML) models, are initiated according to 

some Hyperparameters that set the performance frame for the training process 

(IBM, 2023b). Some of the most relevant Hyperparameters are the Learning Rate 

(LR), the batch size, and the number of epochs. Regarding the of CNN architec-

tures, Residual Network (ResNet) has been frequently used for forest damage 

and tree mortality tasks (Ahlswede et al., 2022; Beery et al., 2022; Saleem et al., 

2020). ResNet was introduced by He et al. (2015) and consist of shortcut con-

nections (residual connections) inserted in the structure of a plain network that 

work as bypass (Daly, 2023) (Figure 7). According to this research, it basically 

learns residual functions with reference to layer inputs and does not learn unref-

erenced functions, promoting an easier optimization. He et al. founded that 

deeper ResNet architectures performed better to achieve a lower training error, 
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 generalizing in the validation dataset, gaining accuracy from the increased depth 

and providing a faster convergence. The Figure 7 shows the different layer blocks 

and the shortcuts inserted in a plain 34-layer depth model: 

 

Figure 7. Network architecture of ResNet (with 34 parameter layers). Adapted from He et 

al. (2015). 

Pytorch developments on ResNet architectures have provided a series of model 

builders under the torchvision package that could be used to instantiate the Res-

Net model using different options of model depth and with or without the inclusion 

of pre-trained weights (Pytorch, 2023). 

❖ Vision Transformer 

Also known as ViT, is a model part of Computer Vision branch developed by 

Dosovitskiy et al. (2020) that can be used in conjunction with CNN for classifica-

tion tasks and requires fewer computational resources for pre-training compared 

to CNN (Boesch, 2023). The model uses split images (as fixed-size patches) that 

are embedded linearly with a specific position (sequence of vectors) together with 

an additional learnable embedding (classification token) to feed a standard 

Transformer encoder (Dosovitskiy et al., 2020). The Figure 8 illustrates the model 

characteristics: 

 

Figure 8. Architecture of ViT model. Taken from Dosovitskiy et al. (2020). 
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 The models that implement late fusion techniques for fuse the final extracted fea-

tures can be used to fuse Vision transformer and CNN models that are fed with 

images of different size (Ahlswede et al., 2022). 

❖ Benchmarking 

Benchmarking is a term used in ML to define the practice of comparing tools to 

identify the best-performing technologies in an industry, and is used to measure 

the performance of Artificial Intelligence (AI) systems using an specific indicator 

through metrics that helps to compare the used tools (Dickson, 2023; Lopez, 

2023). As Benchmarks examples can be named ImageNet, the NEON Tree Eval-

uation, and the TreeSatAI Archive. This last benchmark model will be discussed 

in the Methodology chapter. 
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 3 Methodology 

3.1 Study area 

The capital city of Lower Saxony, Hannover, is located in the north-west of Ger-

many at 52,3759°N – 9,3720°E (Figure 9). The city has a population of 534.094 

inhabitants, surface area of 204.298 Km2 with 11,36% of green spaces, and a 

total number of 91.047 trees, half of them (around 45.000 trees) make up the 

street lines of the city (Landeshauptstadt Hannover, 2022ab). The environmental 

office has developed studies about climate variability and mapped the air temper-

ature and Heat Island Effect in the urban area. The city has implemented different 

strategies for mitigating the effects of Climate Change as city overheating, 

change of precipitation patterns and summer drought periods, which involve ac-

tions as roof greening, climate-adapted vegetation, and preventive soil and 

ground water protection (Hannover Division of Environmental Protection, 2017). 

 

Figure 9. Location of the study area. Adapted from Geodatenzentrum (2023) & 

Geodatenportal Niedersachsen (2022). 

 



 Master Thesis 2023 
 Javier Vargas 
 Methodology 

— 26 — 

Hochschule für Technik Stuttgart 
University of Applied Sciences 
M.Sc. Photogrammetry and Geoinformatics 
 

 3.2 Data sources 

3.2.1 Tree inventory (Baumkataster) 

The tree inventory of Hannover was provided by the Department of Environment 

and Urban Green Space (Fachbereich Umwelt und Stadtgrün, 2022a) and con-

sisted of a database of 91.047 (382 species) with relevant information about dif-

ferent tree characteristics and measures as Baumhöhe (height), Gattung (genus), 

wissenschaftlicher Name (scientific name), gisid (unique GIS ID), Kronedurch-

messer (crown diameter), Pflanzjahr (year of plantation), Baumumfang (tree girth 

in a 1-meter-height) and Vitalität (vitality or health status). This last field contained 

the most relevant information of the tree health status and therefore it was used 

to configurate the ground truth together with the aerial images as a starting point 

for the sampling step. This field is classified in six classes as shown in the Table 

2: 

Table 2. Tree vitality classes. Taken from Hannover Department of Environment and Ur-
ban Green Space (2022a). 

Class Description 
Number of 

trees 

0 Health level not yet defined 179 

1 Healthy tree without damages or loss of vitality 49.078 

2 Not totally healthy tree with a shortened but still satisfying vitality 29.561 

3 Limited vitality, deadwood increasing, foliage dying up to 50% 8.748 

4 Degenerating / dying tree 865 

5 Dead tree 243 

Not Classified Unknown 2.373 

The low availability of trees in the classes 3 and 4 made it necessary to consider 

additional multispectral sources as Sentinel-2 images, in order to provide more 

information to the model described in the subsection 3.4.6. 

3.2.2 Multispectral images 

❖ Digital Orthophotos (DOP) 

A total number of 76 classic digital orthophoto tiles (2 Km x 2 Km) for the area of 

Hannover were downloaded from the LGLN Open Geo Data portal (see Figure 

10).  
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Figure 10. Open Geo Data portal for orthophotos acquisition. Adapted from LGLN (2022). 

The images contained multispectral information in RGB+NIR channels in a spatial 

resolution of 20 cm x 20 cm for the years 2019 and 2022, and had a size of 539 

MB each one. The DOP were produced from oriented aerial images which were 

projected into a DTM and set to the reference system ETRS89/UTM32 (LGLN, 

2021). 

❖ Sentinel-2 Images 

Satellite imagery from the mission Sentinel-2 were downloaded covering the area 

of Hannover. L2A products were obtained from the Copernicus Sci Hub portal 

(ESA, 2022). Two (2) images tiles (100 Km x 100 Km) for the years 2019 and 

2022 were obtained in closing dates of the aerial images to keep temporal con-

sistency. The orthoimages were projected in UTM/WGS84 system and had a 

cloud cover percentage less than 4% and a cloud shadow percentage of 0,03% 

(ESA, 2022; ESA, 2023a). Each image had an approximated size of 1 GB. 
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Figure 11. Copernicus Open Access Hub for satellite images acquisition. Adapted from 

ESA (2022). 

3.2.3 Environmental variables 

❖ Air Temperature (Lufttemperatur) 

The information of Air temperature at 2 meters-height was additionally provided 

by the Hannover Department of Environment and Urban Green Space (2022b). 

It consisted of a gird with spatial distribution of average air temperatures at 4 am. 

Most of the warmest areas were located in the city center and in some industry 

areas of the outer zones of the city as shown in the Figure 12. This information 

was used as source for mapping of Heat Island Effect detailed in the next para-

graph. 

❖ Heat Island Effect (Wärmeinseleffekt) 

The map of Urban Heat Island Effect was derived from the information of air tem-

perature described in the last paragraph (Figure 13). The temperatures were 

grouped in four classes (Nicht vorhanden, Scwach, Mäßig and Stark) according 

to the Environmental Planning and Management Unit of Hannover (Hannover 

Sachgebiet Umweltplanung und -management) & GEONET (2017), and consid-

ers the air temperature in a group of built-up structures (block) within a grid cell. 
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Figure 12. Air Temperature for the city of Hannover. Adapted from Hannover Department 

of Environment and Urban Green Space (2022b). 

 

Figure 13. Heat Island Effect for the city of Hannover. Adapted from Environmental Plan-

ning and Management Unit of Hannover & GEONET (2017). 
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 Most of the city surface corresponded to areas with no estimation of Heat Island 

Effect (73,92%). Among the estimated areas, Heat Island Effect with low impact 

(Scwach) presented the highest area (15,52%), followed by areas with moder-

ated (Mäßig) and strong (Stark) impact that represented 10,34% and 0,22%, re-

spectively. The area of the city center and some industries in the surroundings of 

the city were characterized for having moderated and strong Heat Island Effect. 

Those areas contained the lower density of trees (374 tree/km2 and 52 tree/ km2, 

respectively) while the highest tree density was located in areas with low Heat 

Island Effect (668 tree/km2). From the 91.047 trees, 90.804 were located in the 

four areas defined by the Environmental Planning and Management Unit of Han-

nover & GEONET (2017). The Table 3 summarizes the number of trees per class 

of Heat Island Effect: 

Table 3. Number of trees per vitality class and Heat Island Effect zones. Adapted from En-
vironmental Planning and Management Unit of Hannover & GEONET (2017) and Depart-
ment of Environment and Urban Green Space (2022b). 

Tree Vitality 
Class 

Heat Island Effect (Wärmeinseleffekt) 

Strong 
(Stark) 

Moderated 
(Mäßig) 

Low 
(Schwach) 

Not available 
(Nicht vorhanden) 

0 0 11 29 139 

1 14 3.793 9.149 35.966 

2 6 3.019 8.651 17.807 

3 2 904 2.642 5.192 

4 0 63 320 482 

5 0 8 41 194 

Not Classified 2 108 334 1.928 

 

❖ Soil Moisture (Bodenkundliche Feuchtestufe) 

Information of soil moisture was searched on the Soil Information Systems Portal 

for the Geodata of Lower-Saxony (NIBIS) and provided by the Landesamt für 

Bergbau, Energie und Geologie (LBEG, 2022). Most of the trees recorded in the 

Baumkataster were located in areas with soil moisture less than 3%. Trees with 

Vitalität 3 and 4 (limited and deteriorated vitality) were located mainly in areas 

with soil humidity between 3% and 5% (Figure 14). 



 Master Thesis 2023 
 Javier Vargas 
 Methodology 

— 31 — 

Hochschule für Technik Stuttgart 
University of Applied Sciences 
M.Sc. Photogrammetry and Geoinformatics 
 

 

 

Figure 14. Soil moisture for the city of Hannover. Adapted from LBEG (2022). 

3.2.4 TreeSatAI Benchmark Archive 

The TreeSatAI Benchmark is a data archive developed for benchmarking related 

to forestry studies and consist of a dataset developed by Schulz et al. (2022) and 

python codes developed by Ahlswede et al. (2022). The dataset contains multi-

spectral information from aerial sensors and Sentinel 1 and 2 missions for the 

area of Lower Saxony, multi labels for 15 tree genus and single labels for 20 

species classes. The code involves pre-trained models (Resnet18, Multi-Layer 

perceptron-MLP, and Vision Transformer-ViT) with access to different configura-

tions that can contain multiple or single datasets (e.g. Aerial and Sentinel-2) with 

options for training the model from scratch or using pre-trained weights. The re-

search developed by Ahlswede et al. (2022) revealed important results regarding 

the tree classification performance of the models used as a Weighted Precision, 

F1 and mAP scores of 80,27% 71,54% and 79,50%, respectively.  

As source for this research, the codes developed by Ahlswede et al. (2022) were 

adapted to the current study context, applying the sampling process to the area 
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 of Hannover, preparing the labels of the vitality of urban trees selected from the 

Tree Inventory and the splitting specifications for training, validation, and testing. 

3.3 Materials and Tools 

3.3.1 Virtual Machine (VM) 

A powerful virtual machine was used for running the model scripts. The VM con-

sisted mainly of two processors Intel Xeon Gold 6226R, an installed RAM of 128 

GB and a NVIDIA card GRID RTX8000-12Q with 12288 MB GDDR6 dedicated 

video memory and CUDA version 11.6.134. 

3.3.2 Vector and Raster datasets 

The processing of vector and raster data was done in both ArcGIS and QGIS. 

QGIS was mainly used for managing vector data, generating the mosaic of im-

ages downloaded from the LGLN Open Geo Data portal, and vectorizing raster 

inputs. ArcGIS was used for other geoprocesses as clipping/ extracting by mask, 

spatial joins and generating image files with the label name using the model 

builder. Additionally, ERDAS IMAGINE 2022 was used to generate the NDVI for 

the area of Hannover which guaranteed the original pixel size compared to the 

other software used. All (.tif) raster files were generated in order to keep the same 

spatial resolution of the original input images as the TreeSatAI dataset. 

3.3.3 Codes and Scripts 

Notepad++ and Visual Code were used for the writing of labels, calculating patch-

image statistics, plotting loss curves, and adapting the different models devel-

oped by Ahlswede et al. (2022). Citrix Workspace was used as interface for con-

necting to the Virtual Machine that would run the configurations set in the models 

through the Prompt. Anaconda was used to managing different sources and li-

braries in a specific virtual environment, as Torch and Numpy. 
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 3.4 Processings and Analyses 

The Figure A 1 (Appendices) summarizes the workflow for the methodology im-

plementation, consisting of data processing, filtering of tree inventory, data label-

ing, image sampling, input data preparation, training, validation, and testing. 

3.4.1 Data processing 

The 76 aerial orthophotos were merged in a single file (orthomosaic) which was 

extracted for the extent of the city, obtaining a 160 GB orthomosaic file. For vis-

ualization and mapping purposes, the city orthomosaic was also generated in a 

lighter ECW format (Figure 15). Satellite imagery bands (all S2 bands except 

B10) were stacked and clipped also for the study area keeping a spatial resolution 

of 10 m. The band order was sorted as NIR-R-G-B for aerial and B02-B03-B04-

B08-B05-B06-B07-B08A-B11-B12-B01-B09 for Sentinel-2 (Ahlswede et al., 

2022). Vector data was organized and clipped to the extent of the city boundary. 

 

Figure 15. Aerial orthomosaics (left) and S2 images (right) of the city of Hannover for the 

year 2019 in true color band combination. Source: LGLN (2022); ESA (2022). 
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Figure 16. Aerial orthomosaics (left) and S2 images (right) of the city of Hannover for the 

year 2022 in true color band combination. Source: LGLN (2022); ESA (2022). 

❖ Normalized Difference Vegetation Index (NDVI) 

The aerial orthomosaics created in the previous step was processed to obtain a 

spatial distribution of the NDVI in order to distinguish healthy from unhealthy veg-

etation, and also for filtering processes due to the fact that not all the healthy trees 

presented foliage due to the beginning of the spring (this could confuse the net-

work making it interpret a healthy and naturally defoliated tree with a non-healthy 

tree). The Figure 17 shows the NDVI for each year. 
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Figure 17. NDVI of 2019 (left) and 2022 (right) for the city of Hannover. Adapted from 

LGLN (2022). 

3.4.2 Filtering of tree inventory 

Initially, the trees located in areas with Heat Island Effect (low, moderate and 

strong) were extracted. The trees with Vitalität values 1, 2, 3 and 4 were sub-

selected because they represented the healthy and non-healthy species that are 

part of the scope of the study (Figure 18). Trees with Vitalität 0 (health status not 

defined) and 5 (dead) were not considered in the process. Therefore, the field 

“Health Status” was created in the attribute table for classifying the trees in three 

categories: Healthy (Vitalität class 1 and 2), Limited Vitality (Vitalität class 3) and 

Deteriorated Vitality (Vitalität class 4). 
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Figure 18. Selection of trees of classes 1,2 3 and 4 in areas of Heat Island Effect. Source: 

Department of Environment and Urban Green Space (2022ab). 

Despite the very extended information of the Tree Inventory, there were still some 

gaps regarding the completeness of the database, therefore the tree inventory 

was filtered to keep even more solid and consistent information about the health 

status of the tree and the variables that could be related to its development (e.g. 

year of plantation). The crown diameter usually can help to relate the area occu-

pied of the tree in the image patch. However, the information was only available 

for a reduced number of species and then it was not completely considered in the 

study. 

For avoiding oversampling of the Vitalität classes 1 and 2 (Healthy) that repre-

sented the highest number of trees in the Baumkataster, the image patches were 

filtered primarily for keeping most of the trees of classes 3 and 4 (Limited and 

Deteriorated Vitality) without overlapping from other image patches of healthy 

class. Additionally, the overlap between image patches of all classes was sup-

pressed based on the selection of trees that best represented the classes (e.g. 

Deteriorated Vitality trees had usually no leaves, Limited Vitality trees had just a 

few leave coverage and Healthy trees mainly had a canopy full of leaves and a 

high NDVI). For this reason, visual checkups of the tree canopy were developed 

using the CIR band combination of the aerial orthomosaics and maximum values 

of NDVI of the Healthy trees. Moreover, for including more trees of the less rep-

resented class (Deteriorated Vitality), trees with no specification of plantation year 

were taken in count.  
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 Since the aerial images corresponded to different stages of spring (April 2019 

and May 2022), there were more trees selected from 2019 were DV and LV trees 

still did not grow leaves and then they could best represent the defoliated trees. 

This contributed to include more partially or fully defoliated trees in the mentioned 

classes. Finally, 708 trees were selected from the original database: 264 Healthy 

trees (37,29%), 232 trees with Limited Vitality (32,77%), and 212 trees with De-

teriorated Vitality (29,94%). There were not trees selected from the Stronger 

(Stark) Heat Island Effect zone, either for being located on shaded areas or be-

cause of the sampling process prioritized the less represented class (DV). The 

Table 4 summarizes the number of trees selected for the study and their location 

in the heat island zones: 

Table 4. Selected trees and corresponding location in the Urban Heat Islands. 

Tree Vitality 
(Vitalität) 

Label Class 

Heat Island Effect (Wärmeinseleffekt) 

Strong 
(Stark) 

Moderated 
(Mäßig) 

Low 
(Schwach) 

1 
H 0 81 (44%) 104 (56%) 

2 

3 LV 0 86 (37%) 146 (63%) 

4 DV 0 42 (20%) 170 (80%) 

The Figure 19 shows some examples of representative trees of each class. It is 

possible to see the difference in the defoliation state of the LV and DV, and the 

canopy vigorousness of class H. 

   

Figure 19. Examples of selected trees for each class: H (left), LV (middle) and DV (right). 

 

H DV LV 
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 3.4.3 Data labeling 

A new field was created in the attribute table of the tree inventory to label the 

features following the structure health status acronym__Vitalität 

class__gisid__Y(Flight Mission Year) addressing a file name as 

DV__1__567__Y2019.tif. A square buffer was created for each of the selected 

trees (point features) as shown in the image below. These polygons were used 

to extract the image patches required to feed the CNN and ViT models, using a 

model builder in ArcGIS Pro (subsection 3.4.4). The inclusion of the year in the 

filename was done according to the date of the aerial flight (2019 and 2022). A 

similar process was developed for the satellite images, providing the same file 

name in a different directory as suggested by Schulz et al. (2022). 

 

Figure 20. Square buffers generated for each selected tree. Source: LGLN (2022); Hanno-

ver Department of Environment and Urban Green Space (2022a). 

The area of each tree crown was digitized in ArcGIS Pro using both natural color 

and CIR combinations (Figure 21). 
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Figure 21. Crown polygon digitized for each selected tree. Source: LGLN (2022). 

For creating the source file that the model would use in the training process, a 

label file (.json) was created through a python script taking in count the label base 

name, the health status class, and the area percentage occupied by the tree in 

the image patch, as shown in the Figure 22. 

 

Figure 22. Label file (.json) generation. 

3.4.4 Image patches sampling 

A total number of 708 image patches (60 m x 60 m) were generated from the 

aerial orthomosaics using an ArcGIS model builder as shown in the Figure 23. 

Sentinel-2 images from the same temporality were also sampled to increase the 

size of the dataset due to the low number of trees selected among both years. 
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Figure 23. Patch generation process modeled in ArcGIS Pro (Model Builder). 

The resulting patches of each source were like the ones showed in the Figure 24. 

Aerial and Sentinel-2 image patches consisted of 300x300 pixels and 6x6 pixels, 

respectively: 

 

Figure 24. Image patches generated for aerial (left) and Sentinel 2 (right) sources (File 

name: H__1_98616__Y2019.tif). 

3.4.5 Input data preparation 

The preparation of the input dataset and scripts was done following the dataset 

structure suggested by Schulz et al. (2022). It consisted of organizing the folder 

for each image source, the folder that included the JSON file (labels), and the 

dataset split (training, validation, and testing) as .lst files. The data split was de-

fined in a proportion of 90% for training, 5% for validation and 5% for testing (Ta-

ble 5). 
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 Table 5. Dataset split. 

Label 
Class 

Training split Validation split Testing split 

DV 191 11 10 

LV 209 12 11 

H 238 12 14 

Additionally, band means and standard deviations were calculated for each patch 

from each source and were used for the normalizations in the dataloaders. As 

the classes were imbalanced due to the characteristics of the tree inventory (just 

0,95% of the inventory were trees with vitality class 4), a calculation of the Inverse 

Number of Samples (INS) for weights calculation suggested by Shrivastava 

(2022) was done in order to introduce some contributions to the class with the 

lowest number of samples in the training dataset (DV): 

## Determine the weights using the Inverse of Number of Samples (INS) 

no_of_classes=3 

samples_per_cls=(191, 209, 238)##DV-LV-H 

 

def get_weights_inverse_num_ofsamples(no_of_classes, samples_per_cls, power = 1): 

    weights_for_samples = 1.0/np.array(np.power(samples_per_cls, power)) 

    weights_for_samples = weights_for_samples/np.sum(weights_for_samples)*no_of_classes 

    return weights_for_samples 

 

x = get_weights_inverse_num_ofsamples(no_of_classes, samples_per_cls) 

 

3.4.6 Training, internal validation and testing 

❖ Model training and validation 

The training step aimed to compare two configurations based on the input data, 

as made by Ahlswede et al. (2022). Firstly, ResNet-18 model was trained using 

only a dataset of aerial images. Secondly, for increasing the information per tree 

in the model and overcome the issue of the low number of samples, the ViT model 

was fed with Sentinel-2 image patches, using late fusion with the final features 

from the ResNet-18 model fed with aerial images. 

The training and validation process was started using the command prompt, 

specifying the number of CUDA used by the Virtual Machine, the model that will 

be used from the dataloders, the name of the weights file that will be stored for 

the testing step, the log file for storing the metric results of training and validation, 
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 and the label file path that will be used across the different stages of the model 

(Ahlswede et al., 2022). The training script would call different sub-scripts as fol-

lows: 

▪ Augmentations: It defined the flippings and rotations of input images. 

▪ Dataloaders: It defined the builder functions for loading the datasets of 

both sources and specifies the transformations in data (i.e. normalization 

of aerial data for introducing it as input of the ResNet model). Each one of 

the S2 image bands were organized as a grid for being used as input in 

the ViT model and then each band would be a token for the model (please 

see Figure 8). 

▪ Loss Function: It set the BCE With Logits Loss function that would use 

the weights calculated for reducing the influence of class imbalance. 

▪ Optimizer: It set the Adam optimizer that would update the weights and 

LR, and reduce the loss. 

▪ Hyperparameters: It specified or called the hyperparameters of the net-

work as base and maximum LR, scheduler, batch size and number of 

epochs. 

▪ Model Trainer: Class called in the training script for using the functions 

that would retrieve the input data from dataloaders and use it to calculate 

the predictions, losses, and model metrics. It also set the backpropagation 

line for update the errors with the optimizer. 

 

❖ Model testing 

Analogically as the training step, the evaluation process was started using the 

command prompt, specifying the number of CUDA used by the Virtual Machine, 

the model that will be used from the dataloders, the file path of the weights file 

saved during the training, and the label file path. The testing step consisted of 

processing a batch of 35 images to obtain the predictions which would be intro-

duced in a sigmoid function in order to set the predictions in an interval from 0 to 

1. The script developed by Ahlswede et al. (2022) was adapted to print the pre-

dicted labels and analyse the performance of the model. 
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 4 Results and Discussion 

4.1 Influence of Input Data 

4.1.1 Urban trees and environmental conditions 

When analysing the trees selected in the study (Table A 1 in Appendices), the 

species A. platanoides, Q. robur, and T. intermedia were the most frequent with 

150, 113, and 48 individuals, respectively. The class H was was mainly repre-

sented by the species A. platanoides and T. intermedia, while classes LV and DV 

were represented mostly by Q. robur and A. platanoides (Figure 25). 

 

Figure 25. Number of trees of classes H (Healthy), LV (Limited Vitality), and DV (Deterio-

rated Vitality). 

Regarding the location of the selected trees in the urban heat islands, it is possi-

ble to see that most of the species were located in the Low zone (464). The spe-

cies A. platanoides was the most frequent in both Moderated (53) and Low zones 

(97), followed by P. x acerifolia (21) and Q. robur (93), respectively, as shown in 

the selection of the most frequent species in the Figure 26. The presence of A. 

platanoides can be due to its characteristics as tolerance to high evapotranspira-

tion or prolonged drought phenomena as well as for different services provided 

as shade and biomass (Caudullo & de Rigo, 2016). According to Pretzsch et al. 
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 (2018), the species P. x acerifolia is characterized for increasing their crown pro-

jection area and increasing the cooling capacity proportionally to the age com-

pared to other species as T. cordata, R. pseudoacacia, and A. hippocastanum, 

which is important for urban planning and then can be relevant for providing 

shade and cooling the urban surface of cities. Regarding Q. robur, it is also im-

portant and valuable as park and roadside trees due to its provision of shade 

(Eaton et al., 2016). 

 

Figure 26. Number of trees of classes H, LV and DV per Urban Heat Island zone. 

The Table A 2 (Appendices) present the species, vitality class, Heat Island Effect 

zone and soil moisture level during spring time. It shows that, in general, most of 

the trees with the highest soil moisture were located in areas with Low Heat Island 

Effect, with species as A. platanoides (6,64%) in classes LV and H, and S. inter-

media (6,33%) in class DV (Figure 27). On the other hand, there were more trees 

located in areas of moderated Heat Island Effect over dried soils or with very low 

moisture content, that is the case of S. latifolia in classes LV and H, and G. tria-

canthos inermis in class DV (Figure 28).  
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Figure 27. Maximum Soil Moisture per tree in areas with Low Heat Island Effect. 

 

Figure 28. Minimum Soil Moisture per tree in areas with Moderated Heat Island Effect. 

According to Brune (2016), the species A. platanoides is moderately tolerant to 

drought stress in the area of Lower Saxony, as well as other species of the se-

lected dataset of trees as F. excelsior and Q. robur. In a similar way, Selig (2020) 

classified Q. robur and T. cordata as species with high tolerance to drought. This 

could mean that some of the most common species in the study present tolerance 

to low soil moisture levels and canopies with provision of shade while they were 

located in areas with moderated Heat Island Effect. On the other hand, Brune 

(2016) also found that other species that were taken in count in the current study 

can be very sensitive (P. nigra), moderately sensitive (A. pseudoplatanus and A. 
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 hippocastanum), and very tolerant (B. pendula). The Table 6 illustrates the overall 

assessment of drought tolerance of some of the tree species of the current study 

according to Brune (2016): 

Table 6. Drought tolerance of some of the tree species from Lower Saxony taken in count 
in the current study. Adapted from Brune (2016). 

Tree Species Overall Assessment Number of Species 

A. platanoides Moderately tolerant 150 

A. pseudoplatanus Moderately sensitive 11 

A. hippocastanum Moderately sensitive 24 

B. pendula Very tolerant 4 

F. excelsior Moderately tolerant 20 

P. nigra Very sensitive 1 

Q. robur Moderately tolerant 113 

The tolerance to drought phenomena is strongly related to the heat stress that 

trees can show because the soil plays an important role for water and nutrient 

storage, and this availability of water and nutrients during dry periods can repre-

sent a difference between life and death. For this reason, it is recommended to 

introduce very and moderately tolerant tree species in areas where Heat Island 

Effect is strong or moderate, mainly in the surroundings of the Hauptbahnhof. 

These actions should be developed together with urban landscape approaches 

as façade greening and improvement of the soil volume for roots as suggested in 

the Action Fields 3, 4 and 5 of the “Adaptation Strategy to Climate Change for the 

Capital City Hannover” (Hannover Division of Environmental Protection, 2017). 

4.1.2 Aerial and S2 imagery 

The aerial sources clipped for the area of Hannover were visually analysed for 

understanding the dynamics of vegetation between epochs. The beginning of the 

spring showed in the Figure 15 indicated that most of the vegetation probably had 

not leaves and flowers, or they were starting to grow as part of their biological 

cycle. In contrast, the Figure 16 (right) shows more vegetation and a different 

growing state that can be easily noticed in the municipal forest Eilenriede located 

in the middle of the city and known for being the largest urban forest in Europe 

(Tourismus Marketing Niedersachsen, 2023). It is possible to see the land cover 

dynamics in the surrounding area of both images where industries (white/gray 
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 roofs) and agricultural fields exist. The CIR combination for infrared response of 

vegetation let to understand much more about the distribution of this cover as 

well as water bodies presence. The Figure 29 (left) and Figure 30 (left) shows the 

vegetation cover that absorbed the light in a less rate than the vegetation showed 

in the images of the right, probably due to the physiological state of vegetation 

that is more vigorous in 2022 (end of spring). It is also possible to see the water 

bodies as the Maschsee, the Leine river, and the Stichkanal Hannover-Linden, 

as well as a concentration of artificial lakes in the south of the city. The natural 

water bodies could be providing moisture to the air and strengthening the fresh 

air flux to the city center. 

 

Figure 29. Aerial orthomosaics of the years 2019 (left) and 2022 (right) in CIR band com-

bination. 
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Figure 30. S2 images of the years 2019 (left) and 2022 (right) in CIR band combination. 

The histograms of each aerial source for each year (Figure 31 and Figure 32) 

were analysed for identifying the distribution and behavior of the RGB+NIR band 

values for 8-Bit Images, mainly about the changes of vegetation response across 

the two epochs.  

 

Figure 31. Histogram of RGB (left) and NIR (right) bands for the 2019 aerial orthomosaic. 

For the year 2019 (Figure 31) existed a higher response of blue band compared 

to red and green ones. Blue light can be reflected by the water bodies but also 

by human made covers as roads. It can be also related to the lower amount of 

green pixels that correspond mainly to both conifer species or from deciduous 
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 species that start to grow leaves in an early stage of the spring, and then the 

pavement light is partially reflected. The red band behavior represents the 

amount of light that was partially absorbed by defoliated vegetation (plant struc-

tures as trunk and branches) that reflects approximately an 8% of healthy vege-

tation and the 30% on non-heathy vegetation (please see Figure 3), as well as 

reflected by bare soil fields, house roofs, vehicles, and some mineral and syn-

thetic materials like brick dust in tennis fields and rubber of athletics running 

tracks, respectively. Regarding the NIR band (Figure 31, right), it is possible to 

see a higher amount of pixels recorded from healthy or vigorous vegetation 

(which reflects 50% of light) and non-healthy vegetation (which reflects 40% of 

light) (EOS, 2023). Additionally, tree structures as trunk and branches could show 

higher pixel values (please see Figure 33 in subsection 4.1.3) which allowed to 

differentiate much better the tree crown for manual digitizing even in the begin-

ning of the spring and on defoliated trees. The presence of darker tones in the 

RGB and NIR histograms can be explained either by the shadows reflected by 

buildings and houses or by the presence of water bodies. 

The histograms of the 2022 orthomosaic (Figure 32) shows a different behavior, 

specially set by the increase of vegetation biomass (either of urban vegetation or 

crops with increased leaf area and new plant structures) as well as the energy 

reflected during a season of higher sun exposure (end of spring). The green re-

sponse shown in the histogram of the Figure 32 (left) is higher compared to 2019 

histogram and is mainly due to leaves and flowers growing, thus there were more 

green pixels. This behavior is also shown in the histogram of the infrared band 

(Figure 32, right) where the total number of pixels is higher and considering more 

darker tones. The different pixel values are also due to the different flight mission 

days of the images in the north of the city. 
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Figure 32. Histogram of RGB (left) and NIR (right) bands for the 2022 aerial orthomosaic. 

4.1.3 Aerial image patches 

The aerial patches that contained information about the trees of different health 

status presented a particular behavior due to their defoliation state or because of 

the physiological condition of their leaves. Therefore, in order to understand the 

spectral behavior of these trees, a plot of the spectral profile from the patches of 

each class were analysed using the Multispectral tools from ERDAS IMAGINE. 

The Figure 33, show the image patches (as CIR band combination) and the spec-

tral profile of selected trees from the classes DV, LV, and H.  

 

 

  
Figure 33. Image patch of DV, LV and H trees (left) and spectral profile (right). 

The Figure 33 indicates that each band behaved in a similar way than the others, 

with the infrared spectrum showing the highest response from leaves and tree 

structures (trunk and branches) even from class DV. The more the tree has a 

DV 

LV 

H 
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 vigorous state, the higher is the value of the pixel in the NIR channel (EOS, 2023). 

Due to the absorption of red spectrum by the vegetation, the three classes 

showed the lowest values in the red band. Additionally, there was a greater dif-

ference between NIR values and red values of the class H compared to the un-

healthy classes. The green band showed the highest difference of values among 

healthy and unhealthy trees because the green is highly reflected from leaves 

(NASA, 2023). Regarding the blue band, it is probable that the visibility of pave-

ment or urban structures trough the canopy of defoliated trees generated such 

response. 

4.2 Performance of Classification Model 

4.2.1 Training and Validation 

The model for each experiment (aerial and aerial/S2) was trained using different 

combinations of hyperparameter values and network parameters that allowed to 

initiate the classification. Invariable parameters as LR Scheduler (Cyclic), Opti-

mizer (Adam) and Loss Function (BCE With Logits Loss) were kept as set by 

Ahlswede et al. (2022). The Table 7 shows a summary of the hyperparameters 

selected. 

Table 7. Hyperparameters selected for the training and validation steps. 

LR Batch Size Epochs Base LR 

0,005 32 200 0,001 

The selection of the learning rate and epochs was done due to the low number 

of samples and the characteristics of the image patches (urban context with at 

least two covers as urban built areas and vegetation), and also after several tries 

it was decided to reduce the cycle size of the learning (Base LR from 0,0005 to 

0,001) due to the behavior of the validation curve after half of epochs (please see 

Figure 35). It contributed to keep the validation losses in lower values and avoid-

ing drastic rises from the training trend. The cyclic scheduler supported a continue 

increasing learning from the beginning until the first half of the cycle and, accord-

ing to Smith (2017), it allowed to eliminate the search of the best global LR value 

and schedule. The Adam optimizer have been used in several experiments for 
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 classification, patch-based and semantic segmentation applied to forest damage 

and tree mortality topics (Hamedianfar et al., 2023). Due to the size of the dataset, 

the optimization of weights during the backpropagation was probably useful to 

reduce the propagated errors. The Table 8 and Table 9 summarize the metrics 

that result from the training and validation processes for each experiment. 

Table 8. Performance of the ResNet-18 model for predicting the different health status of 
the training dataset (only Aerial). 

Training 
Loss 

Validation 
Loss 

Health 
Status 
Class 

Per class Weighted 

Precision Recall F1 Precision Recall F1 

0,0167 0,3519 

DV 0,5102 0,5555 0,5319 

0,6389 0,6500 0,6430 LV 0,5208 0,4545 0,4854 

H 0,8437 0,9000 0,8709 

Table 9. Performance of ResNet-18 and ViT models for predicting the different health sta-
tus of the training dataset (Aerial+S2). 

Training 
Loss 

Validation 
Loss 

Health 
Status 
Class 

Per class Weighted 

Precision Recall F1 Precision Recall F1 

0,0528 0,2214 

DV 0,5454 0,5454 0,5454 

0,6673 0,6562 0,6607 LV 0,5454 0,6000 0,5714 

H 0,9000 0,8181 0,8571 

The weighted precision for the prediction of the tree classes was about 63,89% 

(only aerial) and 66,73% (aerial+S2), showing an overall low performance during 

the training and a higher precision of the fused model that could be related to the 

higher number of spectral features provided by the S2 images. As part of the 

expected results, the class with the highest number of samples obtained the best 

precision, while the other less represented classes obtained a lower precision. 

This result can be explained either for the higher number of samples of the 

Heathy class or the spatial and spectral characteristics of these trees. Spatially, 

there were more H trees with larger crowns that occupied more space in the im-

age patch (Figure 34), and the infrared, red and green values were higher for this 

class as shown before in Figure 33. In addition, it is possible that the normaliza-

tion done in the dataloaders step could benefit more the prediction of labels from 

class H and the amount of false positives were kept in a lower proportion. 
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Figure 34. Number of trees per crown area in image patches of training dataset. 

The weighted recall, that considered the support for each class or the number of 

actual occurrences (frequency) of the class in the training dataset (Leung, 2023), 

probably indicates that most of the half of the predictions corresponded to the 

correct class in both experiment trainings. When analysing the closeness be-

tween precision and recall values, it is possible to affirm that the model classifi-

cation was not highly accurate in both experiments, but it correctly classified a 

considerable proportion of the dataset with an F1 score very close to both preci-

sion and recall. The first experiment showed recall values higher than precisions 

in the classes DV and H, which could mean that the model is generating more 

false negatives than false positives. On the other hand, in the experiment with 

combined sources, the recall values of class H could imply that the model cor-

rectly predicted much more class H patches (true positives) and just a part of the 

dataset was incorrectly classified as non-healthy or non-H class (false negatives), 

showing that Healthy class was well distinguished by the model and its spatial 

and spectral properties were kind of unique for the learning. In contrast, the recall 

values for classes LV and DV (Table 9) could mean that the model identified a 

similar proportion of true positives and false negatives, but the recall of class LV 

probably mean that the model identified more features in these image patches 

compared to the class DV despite that the dataset contained more samples of 

DV trees with slightly bigger crowns. This could mean that a significant difference 
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 in crown size could force the model to learn more features of a specific class and 

predict it correctly. 

Additionally, the closeness between DV and LV spectral profiles could cause that 

the network did not learn the specific features of each class as done with the 

class H. In most of the dataset, there were less trees in classes LV and DV with 

tree crown area occupying less than 6% of the whole patch, and just two trees in 

the DV class had an area higher than 6% of the input image. Therefore, most of 

the trees from unhealthy classes had a reduced area and the learning process of 

the model could be biased due to the DV and LV features. Most of the DV trees 

were completely or almost completely defoliated and urban built-up pixels were 

partially visible, and this specific characteristic could confuse the network. How-

ever, as the complete training dataset had trees with crown that occupied less 

than 7% of the whole image patch, it could be possible that the spatial features 

were not as relevant as the spectral information of the image bands, contrary to 

the results of Ahlswede et al. (2022) where the spatial content of sources was 

more relevant that the spectral content for the task of species classification. An 

advantage of the TreeSatAI dataset was that the image patches were sampled 

from forest plots data of forest administration, it means a continue cover of trees 

up to three species that occupied the whole image patch (multi-class), and then 

there were continue and larger patterns of spatial and spectral features that can 

be learned by the network in order to classify a tree. Here, image patches of the 

same size (60 x 60 m) mainly consisted of urban cover with a partial and minor 

percentage of area covered by urban trees up to 7,4% of the whole patch. There-

fore, the number of features of the image patches were probably less. However, 

they provided a higher variability of values, mainly about the spectral side (urban 

vegetation, built-up structures, cars, etc.). Forest canopy is very dense and di-

verse (Safonova et al., 2019) and this reality is partially transferred also to the 

urban context where exist isolated trees and community of trees that, despite the 

maintenance activities developed by local administrations (e.g. pruning and ferti-

lization), still preserves much diversity in the crown shape and the spectral char-

acteristics of leaves. 
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 The results of the model performance were comparable with the results achieved 

by Guerra et al. (2021) with the use of UAV images, considering dead trees as 

one of the classes, and suggesting that the red band was the most relevant for 

detecting defoliation. However, the NIR band could be more relevant in this study, 

especially for the predictions of the Healthy class, due to the characteristics seen 

during the sampling process and also in relation to the results achieved by 

Ahlswede et al. (2022) where the NIR band influenced positively the training per-

formance from scratch. Furthermore, the use of images from two epochs of the 

spring could be useful because it provided a larger set of spatial and spectral 

features that the network could identify than if only used images from one epoch, 

which coincide with the research developed by Natesan et al. (2020). Urban trees 

vitality can vary from time to time due to resistance patterns of specific species 

(Brune, 2016) as well as different treatments made by the local environment de-

partments for improving their vitality. Therefore, the sample of temporal images 

for vitality classification tasks is strongly dependent of well updated tree invento-

ries that, as possible, contains information of the observations made in previous 

years about tree vitality with its respective timeframe, and the characteristics of 

the health status observed (e.g. status of bark, leaves and roots). In the current 

study, several image patches were dismissed due to the lack of a timeframe for 

vitality observations, and regarding Neural Networks, the more the amount of in-

puts too feed the model, the better will be the performance because it provides 

more opportunities to the algorithms for understanding and learning the input fea-

tures (Brownlee, 2022). 

The presence of shadows could be a factor that affected the model performance. 

While most of the trees under shadows were removed from the dataset, either 

because they fell completely behind a house or big tree shadow, it could not be 

completely tackled because it would reduce substantially the inputs of the model. 

As mentioned by Hamdi et al. (2019), the model prediction can miss areas of the 

patch covered by shadows, and the normalization of data carried on during the 

dataloaders step could dismiss some pixel values of tree canopy. In this order of 

ideas, the textural properties could be a good integration to the model input for 

dismissing the shadow influence on images and, according to Abdollahnejad & 

Panagiotidis (2020), it can be of great importance for classifying non-defoliated 
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 tree species due to the textural characteristics of healthy tree crowns. However, 

for the current study, the class H already got an acceptable precision on class 

prediction and, according to these authors, the distinguishment of species in tree 

classification tasks could not be achieved on dead trees, what could imply that 

texture sources could not be useful for distinguishing DV and LV trees. In con-

trast, Safonova et al. (2019) founded a very low loss value (<0.001) for health 

status classification in forest affected by Bark Beetle, explaining that their results 

could be due to the model characteristics for distinguishing texture, color and 

shape of the four assessed classes. Regarding the current study, the availability 

of textural information was limited to the spatial resolution in the case of Sentinel-

1 sources and also due to the previous and not so favorable results in a similar 

study location (Ahlswede et al., 2022), but probably TerraSAR-X or UAV textural 

images could provide much more information about canopy and bark structure in 

different vitality states and during different times of the day, especially during the 

heat waves at night that characterizes the Heat Island Effect.  

In addition to the texture source, the CHM could also provide an additional con-

tribution to the model performance. According to Timilsina et al. (2020), the use 

of CHM, Google Earth images and LiDAR sources could generate very good re-

sults of overall accuracies for mapping tree cover in urban contexts. Contrary to 

this, Astola et al. (2021) found that the use of CHM together with S2 images re-

duced the model accuracy. However, the use of these models along aerial 

sources could be a starting point to estimate the performance of CNN models 

together with sources of high spatial resolution that are available for use in Ger-

many. 

The learning process monitored through the curves represented in the Figure 35 

shows a specific behavior for both steps of Training and Validation. The training 

loss curve showed that the model learnt different features from the input images, 

reaching values of 0,01 and 0,05 for the models with only aerial inputs and aerial 

with S2, respectively. The number of samples taken in count could be related to 

the stability of the training and the reduction of misclassification during the pre-

diction. Additionally, the consecutive breaks in the training loss curves could be 

related to the LR scheduler that increases the learning rate during the first half of 



 Master Thesis 2023 
 Javier Vargas 
 Results and Discussion 

— 57 — 

Hochschule für Technik Stuttgart 
University of Applied Sciences 
M.Sc. Photogrammetry and Geoinformatics 
 

 the training cycle, then the model could learn most of the spatial and spectral 

features during the first half of the cycle, followed by the second half with less 

consecutive breaks. It also could be related to the backpropagation that reduced 

the propagated errors and less features to learn in the second cycle of the training 

process. On the other hand, the validation loss curve mainly showed the influence 

of the low number of samples used in both models, with notorious trend drops 

and high divergence from the training loss in the case of the ResNet model 

trained only with aerial sources, and showing more stability in the case of the 

fused-source model. However, it was noticed that after the first half cycle of the 

training, the validation curve does not follow the same trend than the training 

curve, especially shown in the Figure 35 (left), which could mean either the vali-

dation samples were not enough for validating the model or the samples did not 

represent good enough features compared to the training dataset. 

  

Figure 35. Training and Validation loss curves for the experiments with only aerial im-

ages (left) and aerial with S2 images (right). 

Due to the variability of tree physical characteristics (e.g. crown, distribution of 

branches, and shape of leaves) and their distribution in the city as isolated trees 

or as part of a community of trees, it is probable that the validation dataset could 

not contain many features compared to the training dataset, and this aspect was 

a challenging topic to cope during the sampling process. The combination of aer-

ial and S2 sources could provide more spectral information to the fused model, 

especially providing data in the red-edge, NIR and SWIR channels. However, it 

could not be enough to keep the validation curve close to the trend of the training 

loss. 
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 According to Saxena (2023), the BCE loss function penalizes the probabilities 

based on the distance from the expected value, comparing each of the predicted 

probabilities of the actual class output for being 1 or 0 (e.g. DV or not DV). There-

fore, the training process was also influenced by the loss function set in the model 

(BCEWithLogitsLoss) because it received the weight classes that had been pre-

viously balanced (argument). Then, it is probable that the function penalizes 

much more the probabilities for getting a patch that represented the class H than 

classes LV or DV, because the number of spatial features (bigger crowns) and 

spectral properties (higher values of green and NIR) learned by batch could affect 

positively the way that the model generate the probabilities to predict the healthy 

class, while the lack of high spectral values in the infrared and green channels, 

the crown characteristics of non-healthy trees and the less number of representa-

tive features from classes DV and LV could make the model to calculate lower 

predicted probabilities per epoch and the model could not penalize these values 

as well as with the class H, even with the optimization. 

The behavior of the curve in the Figure 35 (right) was compared to the results 

achieved by Saleem et al. (2020), where the validation loss curve of a ResNet-

50 model generated a similar distancing from the training curve and achieved 

similar training and validation losses at the end of the learning. Another similar 

behavior of the validation loss curves of the current study, specially from the ex-

periment with only aerial inputs (Figure 35, left), was achieved by Hamdi et al. 

(2019), Natesan et al. (2020) and Shtanchaev et al. (2021), where the loss curves 

were getting farer from the training curve after an overfitting phase and was ex-

plained by a failure in the generalization of the model. This explanation could be 

also applicable to the current results due to the size of the dataset and the attempt 

of the model to make predictions on noisy data (Goyal, 2023) as the shadows 

projected from the trees that can alter the pixel values of some crowns. In con-

trast, Safonova et al. (2019) obtained a validation loss curve that followed the 

trend of the training curve and avoided to fail in the generalization, despite it pre-

sented an increase in the difference between both curves at epoch 23, and pre-

sented a similar difference at the end of the training. 
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 4.2.2 Testing 

The models trained previously were tested using a reduced number of samples 

(only 35 images per source). The final weights resulted from training processes 

were used for the classification during the testing. The following tables summa-

rize the results of the testing step for both experiments: 

Table 10. Performance of model with only aerial inputs for predicting the different health 
status of trees on the testing dataset. 

Vitality 
Class 

Per class Weighted 

Precision Recall F1 Precision Recall F1 

DV 0,4166 0,5000 0,4545 

0,6250 0,6176 0,6024 LV 0,6666 0,3636 0,4706 

H 0,7500 0,9231 0,8276 

Table 11. Performance of model with aerial and S2 inputs for predicting the different 
health status of trees on the testing dataset. 

Vitality 
Class 

Per class Weighted 

Precision Recall F1 Precision Recall F1 

DV 0,7143 0,5000 0,5882 

0,7469 0,6857 0,7109 LV 0,5454 0, 5454 0, 5454 

H 0,9286 0,9286 0,9286 

The weighted precision of the first experiment shown in the Table 10 was lower 

than the precision shown for the experiment of combined sources in the Table 

11. This weighted precision achieved by the model with late fusion (74,69%) was 

satisfactory despite the number of samples used for feeding the model, with a 

recall and F1 score a bit lower that describes the background of the availability of 

samples (mainly for the classes DV and LV) and a higher number of false posi-

tives than false negatives for unhealthy classes. This result could be linked to the 

use of S2 patches that contributed to predict much better the studied classes, 

and also to specific spatial and spectral features of the aerial dataset. The per 

class precisions followed the trend of the training, with precisions proportional to 

the vitality class. However, the experiment with only aerial inputs yielded recall 

values higher than the precisions for classes DV and H, which could mean that 

the model was generating more false negatives than false positives in these clas-

ses. 
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 Regarding the number of samples used during the testing in the experiment with 

both image sources, it was expected a similar output from the model compared 

to the training, especially in the class H where the precision reached more than 

90%. However, the precision in the prediction of class DV was higher than in the 

class LV, which could be explained for the spectral characteristics of the patches 

used in this step and probably for the spatial distribution of the tree structures in 

the path. Even with this result, the recall and F1 score for the class DV (Table 11) 

kept much lower indicating that approximately the half of the DV testing data was 

incorrectly predicted (false negative) and also that the network could not distin-

guish properly the DV samples from LV patches. 

The resulting classified outputs of the experiment that showed the highest 

weighted precision (aerial+S2) were analysed in order to understand the possible 

reasons of such results. Initially, it is possible that the presence of communities 

of healthy trees in the H patches could provide more information to learn regard-

ing higher pixel values and more extended tree cover (Figure 36, left). Addition-

ally, the presence of green areas as grass gardens and city parks with high infra-

red/green reflection could address the model to a better performance for predict-

ing this class. On the other hand, the size of the crowns seems to influence the 

model performance probably for the number of pixel and mean values that rep-

resent the class (Figure 36, right). 

 

Figure 36. H label correctly predicted as class H (left) and incorrectly predicted as class 

LV (right). 

 



 Master Thesis 2023 
 Javier Vargas 
 Results and Discussion 

— 61 — 

Hochschule für Technik Stuttgart 
University of Applied Sciences 
M.Sc. Photogrammetry and Geoinformatics 
 

 Regarding the class LV, the model did not perform as well as the class H (preci-

sion 54,54%) probably due to the diversity of trees and green spaces located in 

the patch. The model performed properly on patches with isolated or partially 

isolated trees which pixel values and crown shape represented properly the class 

LV (Figure 37, left), but some patches were incorrectly predicted (false negatives) 

probably due to the presence of other green surfaces (i.e. grass garden areas, 

living fences, and green roofs) with higher or lower response to NIR and green 

spectrum, which could make the model to classify the patch as another class 

(Figure 37, right). 

 

Figure 37. LV label correctly predicted as class LV (left) and incorrectly predicted as 

class DV (right). 

On the other hand, the model predicted the class DV with a precision of 71,43% 

which was unexpected due to the number of samples of the dataset. An explana-

tion for this result could came from the spatial properties of the image patch be-

cause the correctly classified patch presented a canopy over a built up surface 

despite the presence of other minor green areas (Figure 38, left), contrary to the 

wrongly classified patch that contained more diversity of tree canopy shapes and 

trees in community with higher spectral responses (Figure 38, right). It is probable 

that the normalized values of the patch showed in the Figure 38 (right) were 

higher than the patch showed in the Figure 38 (left), and could be more related 

to a class LV. However, it was expected that the size of the tree crown and the 

presence of visible branches in the figure of the right could be enough information 

for the network to learn these characteristics. This observation was one of the 
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 most challenging aspects to tackle in the current study, because the urban trees 

are usually surrounded by other trees as part of a living community for providing 

continue shadow and cooling the environment. Additionally, the S2 images could 

provide more information of the spectral behavior of the vegetation in a wider 

range of the infrared spectrum under a lower spatial resolution. In contrast, the 

response of the urban surface could be providing some noise to the learning 

phase. 

 

Figure 38. DV label correctly predicted as class DV (left) and incorrectly predicted as 

class LV (right). 

The results achieved for the classes studied are related to the results of the re-

search made by Ahlswede et al. (2022), where the most frequently-occurring 

classes were correctly predicted and the other less represented classes were not 

well predicted at all, with some exceptions for a specific class of tree that probably 

had easily identifiable features that the model learned and differentiated from the 

other classes. Regarding this last suggestion made by these authors, the current 

study showed that even the less represented class could present some features 

in the testing dataset that the model distinguished properly to set it apart from the 

classes H and LV. 
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 5 Conclusions and Recommendations 

The study of the application of Deep Learning techniques on aerial and Sentinel-

2 image datasets showed a better performance for the classification task com-

pared to the use of only aerial images. This work could contribute to extend the 

frame of the DL studies on forest and urban tree tasks and speed-up the moni-

toring of tree species by local administrations. However, some differences related 

to the urban context and the focus of the study should be taken in count, espe-

cially due to the extent of vegetation cover in image patches and the diversity of 

features in the built-up surface. 

The training step yielded a weighted precision of 63,89% for the experiment of 

only aerial and 66,73% for the experiment of combined sources, indicating an 

overall low performance of the learning process, strongly affected by the number 

of samples introduced in the model. However, the training curves achieved low 

loss values which meant a good learning process through the epochs but with 

differences with the validation curves which could be a symptom of less penali-

zation on the probabilities of classes LV and DV, and also of the size and the 

noise of the validation dataset that could cause an issue in the generalization.  

The prediction of the H class achieved the highest precision for both experiments, 

especially due to the number of samples, spatial features as larger crowns, loca-

tion within tree communities, and spectral characteristics as higher values on 

green and infrared channels. The low precision in the classification of classes LV 

and DV could be strongly related to the spatial properties of these trees as smaller 

crowns, lower pixel values in the green and infrared channels, and characteristic 

pixels of built-up areas within the canopy. However, it is probable that significant 

differences in the crown size could affect the model performance.  

The testing step showed a weighted precision of 74,69% for the experiment with 

aerial and S2 inputs that was satisfactory for the process and the conditions of 

the samples collected. The prediction of classification for the classes H, DV, and 

LV was 92,86%, 71,43% and 54,54% respectively. The results achieved during 

the testing process of this experiment were a reflex of the spatial and spectral 

information in the image patches of class H, but also of the similarity of features 



 Master Thesis 2023 
 Javier Vargas 
 Conclusions and Recommendations 

— 64 — 

Hochschule für Technik Stuttgart 
University of Applied Sciences 
M.Sc. Photogrammetry and Geoinformatics 
 

 in both unhealthy classes that made it difficult for the model to differentiate the 

image patches, generating incorrect predictions. Additionally, the presence of 

communities of trees and green surfaces below or surrounding the canopy could 

generate noise in the model. 

The use of aerial and Sentinel-2 sources from two different epochs introduced a 

higher variability in the dataset of the model. The variation between epochs of 

canopy density and diversity provided by the aerial image patches could contrib-

ute to introduce a wider range of features that the model could identify. The sat-

ellite image patches could provide more information in the red-edge, NIR and 

SWIR bands for distinguishing types of vegetation affected by heat stress. 

Finally, it is necessary to take some considerations before the sampling process 

for the task of tree vitality classification through DL models. These considerations 

are related to the use of GIS and remote sensing techniques that will determine 

the quality of the samples used to feed a model. In the current study, the prepa-

ration of data was a crucial step to feed the model with the best representative 

samples of the studied classes. For obtaining patches that correctly represented 

the vitality of each tree, it was necessary to have at least a tree inventory that 

contained information of health status and that could constitute a first approxima-

tion for sampling the images. Additionally, it would be highly recommended to 

consider more information from the tree inventory database, as the epoch of the 

vitality assessment, the year of plantation, height, and crown area, in order to 

keep a temporal record of observations in situ that can be related to temporal 

datasets of images. It could strengthen the sampling process and increase con-

siderably the number of good quality samples. Abdollahnejad & Panagiotidis 

(2020) considered that the use of thermal sensors could improve the classifica-

tion of different health status, in addition to the use of UAV paired with multispec-

tral sensors that can reduce the operational costs during the monitoring of for-

ested areas on small to medium scales. Moreover, when a proper database fil-

tering has been done to obtain the tree IDs for including in the study, the UAV 

flight missions during different epochs or in several days of lately spring, summer, 

or early fall could conduct to a consistent and numerous dataset. 



 Master Thesis 2023 
 Javier Vargas 
 Conclusions and Recommendations 

— 65 — 

Hochschule für Technik Stuttgart 
University of Applied Sciences 
M.Sc. Photogrammetry and Geoinformatics 
 

 Another important source that has been used in different investigations is the 

texture information from SAR instruments (Safonova et al., 2019; Abdollahnejad 

& Panagiotidis, 2020; Ahlswede et al., 2022; Liu, 2022). Despite the positive or 

not so positive results of the studies that involve texture as input data for the 

models, it always provides relevant information that is strongly related to the de-

foliation patterns of vegetation that also are linked to the health status of trees. 

Furthermore, there would be no limitations related to the day light or shadow 

noise for recording images due to the properties of SAR instruments. This could 

be complemented with in situ observations of the state of the tree trunk and roots, 

or even complementing the dataset with close range images as starting point to 

train the model, because even trees with a good and healthy canopies can pre-

sent problems in other structures as shown in the Figure 39.  

 

Figure 39. Status of tree trunk (Favoritepark, Ludwigsburg). 

The use of NDVI and CHM (Timilsina et al., 2020) along aerial images could add 

valuable information about the data stored in the sources because it could con-

tribute to set a threshold for the dataset features. In this way, the model could 

learn properly what it needs to learn and dismiss features that are not required to 

learn for further prediction as, for example, built-up surfaces and garden grasses. 

Additionally, the use of software for feature extraction could optimize the crown 

area calculation of the image patches in very large datasets, at least for non-

defoliated trees. 
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 The use of techniques for data augmentation as SMOTE (Synthetic Minority 

Over-sampling Technique) could be very helpful to increase the size of the da-

taset regarding less represented classes. It could contribute to have a wider va-

riety of features for the learning process. Hence, an increase in the size of the 

dataset could allow the implementation of deeper models that can bring a better 

performance for image classification as shown by He et al. (2015). 

The considerations about the specific field of application are also very relevant to 

keep the consistency of the study. In this research, the focus and knowledge of 

urban trees were important to understand the datasets used, the dynamics of 

urban trees and the possible explanations of the results obtained. The difference 

between urban trees and forests should be also kept in mind due to specific prop-

erties of each type of tree and its surrounding environment, but also there are 

some characteristics as canopy density and diversity that are partially shared with 

urban trees and that could influence the way that the network learns the features. 

In this aspect, another suggestion could be to work with tree communities that 

share similar characteristics about health status. Despite not all urban trees are 

grouped in communities, it is very common to find this kind of distribution in cities 

and then the area occupied by a community of trees from the same class on an 

image patch could augment the size and amount of the features that the network 

is aimed to learn. 
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Appendices 

Table A 1. Number of tree species per vitality class and Urban Heat Island zone. 

Tree Species  
(Scientific name) 

Number of Trees 

Heat Island Effect (Wärmeinseleffekt) 

Moderated (Mäßig) Low (Schwach) 

H LV DV H LV DV 

Acer campestre 3 1 0 1 0 3 

Acer monspessulanum 5 0 1 1 0 0 

Acer neglectum 1 0 0 0 0 0 

Acer negundo 0 0 0 0 1 0 

Acer platanoides 31 17 5 36 30 31 

Acer pseudoplatanus 0 0 2 2 2 5 

Acer rubrum 1 3 0 0 0 1 

Acer saccharinum 0 0 0 0 1 3 

Aesculus hippocastanum 8 0 0 10 2 4 

Aesculus x carnea 4 0 0 10 0 3 

Alnus cordata 0 1 0 0 0 2 

Alnus incana 0 0 0 1 0 0 

Alnus x spaethii 1 0 0 0 0 0 

Betula pendula 0 0 1 1 0 2 

Carpinus betulus 11 3 1 15 0 2 

Corylus colurna 1 1 1 2 0 2 

Crataegus laevigata 2 0 0 0 0 1 

Crataegus lavallei 0 0 1 0 0 5 

Crataegus monogyna 0 0 0 0 2 0 

Fraxinus angustifolia 0 0 0 0 0 1 

Fraxinus excelsior 1 2 1 0 11 5 

Ginkgo biloba 1 0 0 1 0 0 

Gleditsia triacanthos 1 1 0 0 1 3 

Gleditsia triacanthos inermis 0 0 2 0 0 2 

Koelreuteria paniculata 0 0 2 0 0 0 

Liquidambar styraciflua 0 0 0 0 0 3 

Magnolia kobus 0 0 1 0 0 0 

Malus hybrida 0 0 0 0 0 1 

Malus sylvestris 0 0 0 0 1 0 

Pinus nigra 0 0 0 2 0 0 

Platanus x acerifolia 2 18 1 0 4 1 

Populus canadensis 0 0 0 0 1 0 

Populus nigra 1 0 0 0 0 0 

Populus simonii 2 0 0 1 0 0 

Prunus x yedoensis 0 0 0 1 0 0 

Prunus avium 4 1 0 2 2 3 

Prunus padus 0 0 0 2 0 0 

Pyrus calleryana 1 0 0 0 0 0 

Quercus cerris 0 0 0 0 1 0 

Quercus petraea 1 0 0 0 2 0 

Quercus robur 3 8 9 12 47 34 

Quercus rubra 2 0 0 0 0 3 

Robinia pseudoacacia 2 14 6 0 6 7 

Sophora japonica 1 0 0 0 0 0 

Sorbus aria 0 1 1 0 3 1 

Sorbus aucuparia 0 1 0 0 1 0 

Sorbus intermedia 7 5 3 0 7 18 

Sorbus latifolia 1 2 0 1 2 4 
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 Tree Species  
(Scientific name) 

Number of Trees 

Heat Island Effect (Wärmeinseleffekt) 

Moderated (Mäßig) Low (Schwach) 

H LV DV H LV DV 

Tilia cordata 1 3 0 8 3 3 

Tilia europaea 3 0 1 17 6 2 

Tilia flavescens 1 0 0 0 0 0 

Tilia intermedia 12 4 2 17 8 5 

Tilia platyphyllos 0 0 0 0 0 3 

Tilia spec. 0 0 0 0 1 0 

Tilia tomentosa 0 0 1 3 1 4 

Ulmus hollandica 0 0 0 1 0 3 

Ulmus-Hybride 1 0 0 1 0 0 

 

Table A 2. Soil moisture percentage per tree species, vitality class and Urban Heat Island 
zone. 

Tree Species  
(Scientific name) 

Soil Moisture (%) 

Heat Island Effect (Wärmeinseleffekt) 

Moderated (Mäßig) Low (Schwach) 

H LV DV H LV DV 

Acer campestre 2,83-3,24 0   2,83   0-0,31 

Acer monspessulanum 0-2,82   2,82 2,82     

Acer neglectum 5,69           

Acer negundo 0-5,69       3,11   

Acer platanoides   0-4,34 0-3,24 0-6,33 0-6,64 0-6 

Acer pseudoplatanus     0-3,24 2,82-2,83 3,32-4,34 1,39-6 

Acer rubrum 2,82 0       1,48 

Acer saccharinum         0 2,82-6 

Aesculus hippocastanum 0-6     0-4,29 1,35-2,82 2,83 

Aesculus x carnea 0-2,82     2,63-3,48   1,47-4,34 

Alnus cordata   1,67       0-1,67 

Alnus incana       6     

Alnus x spaethii 2,82           

Betula pendula     0 2,83   1,48-6 

Carpinus betulus 0-2,82 0-5,97 0 1,47-6   1,42-1,62 

Corylus colurna 2,82 0 0 3,11-6   6-6,31 

Crataegus laevigata 2,82         6 

Crataegus lavallei     6     0-6 

Crataegus monogyna         1,39-1,48   

Fraxinus angustifolia           1,48 

Fraxinus excelsior 0 0-2,82 2,82   1,35-6 0-6 

Ginkgo biloba 0     2,66     

Gleditsia triacanthos 0 1,67     1,67 0 

Gleditsia triacanthos inermis     0     0 

Koelreuteria paniculata     0       

Liquidambar styraciflua           2,66-6 

Magnolia kobus     0       

Malus hybrida           1,48 

Malus sylvestris         6   

Pinus nigra       3,24-5,97     

Platanus x acerifolia 0 0-5,69 5,69   0-6 2,82 

Populus canadensis         1,41   

Populus nigra 5,71           
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 Tree Species  
(Scientific name) 

Soil Moisture (%) 

Heat Island Effect (Wärmeinseleffekt) 

Moderated (Mäßig) Low (Schwach) 

H LV DV H LV DV 

Populus simonii 2,82     2,82     

Prunus x yedoensis       3,93     

Prunus avium 3,24-3,81 3,24   2,63-3,73 2,83-6 1,48-3,81 

Prunus padus       5,65     

Pyrus calleryana 2,82           

Quercus cerris         2,8   

Quercus petraea 0       1,96-3,17   

Quercus robur 2,82-3,1 0-6 0-6 0-5,69 0-6 0-6 

Quercus rubra 0-2,82         2,63-3,76 

Robinia pseudoacacia 0 0-6 0-6   0-6 0-6 

Sophora japonica 2,82           

Sorbus aria 0-2,82 6 5,97   6 2,31 

Sorbus aucuparia   5,64     1,48   

Sorbus intermedia 0-2,82 0-2,82 0-2,82   1,48-6 0-6,33 

Sorbus latifolia 0 0   6,31 1,39-6 4,34-6 

Tilia cordata 6 0   0-5,97 1,42-6 1,42-6 

Tilia europaea 0-2,63   0 0-6,31 1,48-6,31 2,82-6 

Tilia flavescens 5,97           

Tilia intermedia 0-6 0-6 0-2,82 0-6 0-4,36 2,82-4,36 

Tilia platyphyllos           2,82-6,31 

Tilia spec.         6   

Tilia tomentosa     5,96 0 5,97 2,82-6 

Ulmus hollandica       2,83   1,38-4,34 

Ulmus-Hybride 0     3,31     
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Figure A 1. Workflow of Methodology Implementation. 

 


