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Abstract

After an introductory chapter on the quantum supersymmetric string, in which particular
attention will be devoted to the techniques via which phenomenologically viable models
can be obtained from the ultraviolet microscopic degrees of freedom, and a brief review
of the swampland program, the technical tools required to deal with geometric flows will
be outlined. The evolution of a broad family of scalar and metric bubble solutions under
Perelman’s combined flow will be then discussed, together with their asymptotic behaviour.
Thereafter, the geometric flow equations associated to a generalised version of Perelman’s
entropy function will be derived and employed in defining the action-induced flow associ-
ated to a given theory for a scalar field and a dynamical metric. The problem of preserving
Einstein field equations along the corresponding moduli space trajectories will be cured
by allowing a supplementary energy-momentum tensor term to appear along the flow. In
a particular example, such contribution will be shown to precisely reproduce the infinite
tower of states with exponentially dropping masses postulated by the distance conjecture.
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Zusammenfassung

Nach einer Einführung in den Superstring, in der besonders auf die Methoden eingegan-
gen wird, mit welchen man aus mikroskopischen Freiheitsgraden im ultravioletten Bereich
phänomenologisch brauchbare Modelle erhalten kann und einem kurzen Überblick über
das Swampland-Programm werden die mathematischen Methoden vorgestellt, die für die
Beschreibung von geometrischem Fluss notwendig sind. Danach wird die Entwicklung
einer breitgefächerten Familie von skalaren und metrischen Blasenlösungen unter Perel-
mans kombiniertem Fluss, zusammen mit deren asymptotischen Verhalten diskutiert. An-
schließend werden die geometrischen Flussgleichungen, die im Zusammenhang mit einer
verallgemeinerten Version der Perelman-Entropiefunktion stehen, hergeleitet und zur Def-
inition des von der Wirkung induzierten Flusses verwendet. Dieser kann mit einer bes-
timmten Theorie für ein skalares Feld und eine dynamische Metrik in Verbindung gebracht
werden. Es wird ein zusätzlicher Energie-Impuls-Tensor eingeführt, so dass während des
geometrischen Flusses die Einstein’schen Feldgleichungen entlang der entsprechenden Tra-
jektorie im Modulraum unverändert bleiben. In einem speziellen Beispiel wird gezeigt, dass
ein solcher Beitrag einen Turm aus unendlich vielen Zuständen mit exponentiell abfallenden
Massen, wie er von der Abstandsvermutung postuliert wird, exakt reproduziert.
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of Einstein-Maxwell theory and Reissner-Nordström black holes,”
JHEP 03 (2023) 074, arXiv:2210.14705 [hep-th].

• David Mart́ın Velázquez, D. De Biasio, and Dieter Lüst, “Cobordism, singularities
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If the current flow is taking you where you
want to go, don’t argue.

— Isaac Asimov, Fantastic Voyage II

A process cannot be understood by stopping
it. Understanding must move with the flow
of the process, must join it and flow with it.

— Frank Herbert, Dune

The monkey replies only to past or present
things, which is as far as the devil’s
knowledge can go; future things cannot be
known except through conjecture.

— Miguel de Cervantes, Don Quijote
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Introduction

Had we a chance to explore our universe from scratch, without having formerly been ex-
posed to the intricate apparatus of natural sciences, we would surely deem it to be arranged
as a layered hierarchy of scales. If we happened to do so, moreover, at the specific spatio-
temporal location at which this introduction is being written, we would rapidly conjecture
said scales to be associated with levels of increasing complexity. The world would unveil
itself as a nested architecture of structures within structures, themselves encysted inside
wider, composite structures and so forth. It would be evident how the entities character-
ising a layer interact and combine, forming those pertaining to the subsequent one. At
the same time, a careful enquiry would allow to disassemble them into their microscopic
components, displaying a higher degree of simplicity. Regardless of how tortuous the en-
deavour might be, we would eventually figure out a collection of conceptual frameworks,
each pertaining to a particular level and suitably describing its distinctive phenomena, and
craft them appropriate names, such as particle physics, chemistry, biology, anthropology,
economics and cosmology. Up to various extents, with an amount of rigour inversely re-
lated to the intrinsic complexity of a given layer, we could also manage to phrase them
in terms of precisely defined, quantitative and unambiguous mathematical objects, sug-
gested by observations and put together in a sequence of experimentally supported scien-
tific theories. At that point, we could not avoid being struck by a sudden, unexpected and
almost miraculous realisation: the levels in which the universe is organised are substan-
tially -while not completely- independent from one another. This recognition would, in
retrospect, shed light on the reason for which the previously mentioned disciplines could
be studied separately, without evoking entities belonging to more fundamental descrip-
tions of reality. Albeit rising from an enormous number of transactions between economic
agents, themselves ultimately made of aggregated excitations of relativistic quantum fields,
stock markets do not require to be understood with reference to path integrals, gluons and
topologically protected superselection sectors. On the contrary, they are more naturally
modelled in terms of stochastic price variables, drift rates and macroeconomic factors.
Analogously, the spread of misinformation in enclosed communities of connected individu-
als, which can be successfully represented by epistemic networks, draws little benefit from
a detailed account of the state of each and every neuron in their brains, let alone those of
the elementary particles from which they are assembled. It appears to be a general feature
of Nature that most of the subtleties of physical laws at a certain scale decrease in rele-
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vance when progressively longer distances are considered. Rather than a useful theoretical
assumption, this is as much an empirical fact as the asymptotic value of the fine-structure
constant, the almost complete inertness of noble gases or the equivalence between iner-
tial and gravitational mass. Both when our gaze is pushed towards astrophysical events
and all the way down to the micrometric resolutions of modern particle accelerators, the
dynamical details of theories referring to separate scales seem to be, to a great extent,
decoupled from one another. Furthermore, populous clusters of interacting objects often
display, when analysed from the point of view of a large scale observer, novel and emer-
gent behaviours, which could have hardly been predicted from a naive extrapolation of
the properties of their components. The reductionist hypothesis, which assumes such a
decomposition into more fundamental entities to fully exhaust the qualities of compound
ones, has been a remarkably successful driving force for the scientific enterprise. Even so, it
does not directly imply what Philip Anderson would have referred to as the constructionist
hypothesis [1], claiming that all empirical data could be reconstructed from fundamental
laws by following some sort of Leibnitzian principle of sufficient reason [2]. In order to
grasp the complexity of the universe, environmental, contingent and history-dependent
factors, as the initial configuration from which a many-body system evolved, the outcome
of a collection of quantum measurements or the choice of a specific symmetry-breaking
pattern in particle physics, cannot be neglected. There is a plethora of distinct possible
phenomenologies, equally compatible with our most profound physical theories. We might
as well say, exploiting Anderson’s renowned formula, that more is different. The debate
between emergentists [3–5] and reductionists [6–8] around the nature of macroscopic prop-
erties, together with its contemporary developments [9–14], is a long-standing and elusive
one, whose intricacy could not be exhausted by the current discussion. As far as the above-
mentioned issues are concerned, it is nonetheless paramount to emphasise how profitably
they can be captured and dealt with by exploiting effective field theories [15–17]. Such
techniques grant us, first and foremost, with an appropriate mathematical framework for
describing large scale limits of fundamental theories, along with the technical tools to assess
how distinct scales decouple in a huge variety of settings. This striking aspect of natural
phenomena is, therefore, perfectly reflected in the formulas. In essence, taking a given
quantum field theory as describing short-range physics, its effective dynamics below an
energy cut-off ΛEFT can be obtained by integrating out from the path integral all such de-
grees of freedom which require an energy E ≫ ΛEFT to be excited. This procedure, which
can be made systematic by employing renormalization group techniques, allows to absorb
the microscopic details of the Lagrangian describing the dynamics of a theory in a family
of Wilson coefficients cn and higher-order operators On. Let’s consider, for instance, the
high-energy Lagrangian L (φ̄, ᾱ) for a family of fields (φ̄, ᾱ) ≡ (φ1, . . . , φN , α1, . . . , αM),
where the ᾱ are significantly heavier and can be integrated out above an energy threshold
ΛEFT. Hence, the effective Lagrangian for the light fields φ̄ can be generally written as the
sum of a renormalizable part and an infinite family of higher-order operators, constrained
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by an appropriate set of symmetries:

LEFT (φ̄) = Lren (φ̄) +
∑
n

cn
On (φ̄)
ΛnEFT

.

Decoupling is precisely achieved due to the fact that said operators are suppressed by
powers of the cut-off scale ΛEFT. In its contemporary understanding, the standard model
of particle physics itself, which is one of the most accurate and predictive theories in
the history of science, is often interpreted as the low energy effective limit of some more
fundamental description [18–20]. This has proven itself to be an enormously successful
approach in countless situations, from condensed matter systems [21–23] to cosmological
models of the early universe [24–26], from the analysis of quantum chromodynamics via
chiral perturbation theory [27–30] to that of the infrared dynamics of non-dissipative fluids
[31]. The idea of obtaining effective low energy descriptions of microscopic theories by
integrating out all degrees of freedom lying above a suitably chosen cut-off, practically
decoupling from one another most of the dynamical features of distinct length scales,
has gained a central role in theoretical research, as it offers both the technical tools to
construct functioning theories and the philosophical perspective within which they can
be interpreted. It is part of the dominant paradigm of contemporary physics [32]. Before
moving on, it might be beneficial to appreciate how Albert Michelson, who would have later
been awarded with the 1907 Nobel Prize in Physics [33], described the state of fundamental
research at his time [34]:

The more important fundamental laws and facts of physical science have all been
discovered, and these are now so firmly established that the possibility of their ever being

supplanted in consequence of new discoveries is exceedingly remote.

A more comprehensive exposition of Michelson’s argument was put forward in 1894, at
the Ryerson Laboratory dedication, and subsequently quoted in the University of Chicago
1896 Annual Register [35]:

While it is never safe to affirm that the future of Physical Science has no marvels in store
even more astonishing than those of the past, it seems probable that most of the grand
underlying principles have been firmly established and that further advances are to be

sought chiefly in the rigorous application of these principles to all the phenomena which
come under our notice. It is here that the science of measurement shows its importance
— where quantitative work is more to be desired than qualitative work. An eminent
physicist remarked that the future truths of physical science are to be looked for in the

sixth place of decimals.

Even though the identity of such eminent scientist was never revealed, his or her alleged
statement properly summarised the widespread perception of physics at the dawn of the
twentieth century. The quest for the ultimate structure of Nature was deemed to have
fulfilled its purpose. Hence, the only meaningful venture left was that of performing the
most accurate possible measurements, allowing for equations to be refined. Remarkably,
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it was an experiment Michelson performed, in conjunction with Edward Morley [36], that
provided the empirical backbone for the special theory of relativity, proposed by Albert
Einstein in one of his four renowned annus mirabilis papers [37]. The advent of such a
disruptively novel perspective, together with its subsequent extension to the general theory
of relativity [38–41] and the formulation of quantum mechanics [42–48], incontrovertibly
established that the age of great theoretical discoveries was anything but over. The inten-
tion of this introductory section is by no means that of depicting modern day physicists
as inherently less prone to absolute judgements with respect to their predecessors. On
the contrary, our privileged hindsight point of view should serve as a sobering reminder
that no theoretical framework, no matter how solid it may appear, is immune from be-
ing overthrown. Like any other paradigm that preceded it, even that of effective field
theories might eventually be either partially or completely subverted. The swampland
program, within which this doctoral thesis finds its place, proposes one such subversion.
The reason for doing so traces back to an almost obvious fact: our universe has gravity.
Gravity, moreover, can be best described as a deformation of the space-time geometry,
whose metric gets promoted -up to mathematical redundancies- to a collection of physical,
field-theoretic degrees of freedom. Being more specific, low energy phenomenology can be
pictured as taking place over a four-dimensional manifold M with a dynamical, general
relativistic, Lorentzian metric tensor g, whose behaviour is controlled by the well-known
Einstein equations [49]:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν .

In the above formula, c is the speed of light in vacuum, G is Newton’s constant in four
dimensions, Rµν is the Ricci curvature tensor associated to the space-time metric, R is its
corresponding Ricci scalar, Tµν is the overall energy-momentum contribution of all other
matter fields and Λ is a cosmological constant. Given the current experimental bounds,
the value of Λ characterising our universe appears to be roughly Λ ∼ 10−52 m−2, with a
positive sign. Even at this stage, it is clear that those length scales we were arbitrarily
tuning while working with standard effective models, as if they were perfectly controllable
external parameters, are now deeply intertwined with the space-time degrees of freedom.
Indeed, the very notion of distance is defined from the metric, which is now part of the field
content of the theory. From the above equations, it is moreover clear that gravity couples
to any sort of energy density. It is, in one word, universal. Therefore, whatever the matter
fields under scrutiny might be, non negligible contributions to the space-time curvature
are bound to appear when probing extremely high energies. Distance measurements are
not independent from the physical degrees of freedom, which are conversely expected to
get highly excited when short length scales are being explored. Those are among the most
groundbreaking teachings provided by general relativity. When pushed to its consequences,
Einstein’s theory forces us to question the foundations of our previous accounts of Nature,
where space-time was taken to be a fixed Minkowski background structure. How can effec-
tive field theories, so greatly reliant on the traditionally innocuous idea of studying physics
at certain length scales and below given energies, be affected by Einstein’s revolution? It
has been assessed that, fortunately, general relativistic gravity can be harmlessly merged
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with the effective field theory framework in a low energy regime [50]. Furthermore, in the
last few decades, many insightful discoveries have been made by pursuing the investigation
of quantum field theories in curved fixed backgrounds [51–54]. Nonetheless, the questions
around what Nature’s behaviour in the deep ultraviolet regime might be and how this may
affect our low energy phenomenology, beyond the standard intuition outlined by effective
field theories, are deeply unsettling, as well as yet to be exhausted. They represent the
core focus of the swampland program. In order to address them, there is still a further,
pivotal matter that requires to be brought up: the space-time metric should be quantised.
The arguments in favour of such a view, spanning from consistency requirements to para-
doxes that call for a solution, are overwhelming [55–62] and will not be discussed here.
However, it must be pointed out that almost one century after Werner Heisenberg and
Wolfgang Pauli [63–65] proposed a first approach towards a quantum theory of gravity,
the scientific debate around the fundamental, microscopic, quantum essence of space-time
is still heated. Here, we will consider an approach to the quantisation of the gravitational
field which can be arguably regarded as the most understood and well-developed one:
superstring theory. Taken at face value, superstring theory is the quantum theory of a su-
persymmetric, relativistic one-dimensional string, whose various excited states correspond
to distinct space-time fields. Postponing a detailed account of the subject to chapter 2,
it should now be remarked that among them, whatever supplementary assumptions might
be taken, there must always be a graviton, associated to local perturbations of the grav-
itational field. Moreover, imposing the quantised theory not to be anomalous, such field
can be shown to satisfy Einstein’s equations. Gravity, in the low energy limit of super-
string theory, is unavoidable. We are therefore left with a framework able not only to
construct phenomenologically interesting quantum field theories, but also to consistently
merge them with general relativity. It goes without saying that the implications of such
a discovery for effective field theories, both in refining their conceptual apparatus and in
providing surprising results, is tremendous. More specifically, there is now a significant
body of evidence, systematised in the context of the swampland program, suggesting that
the quantum properties of the gravitational field should pose strict and previously unex-
pected constraints on the features of superstring low energy effective field theories. From a
practical perspective, this translates into the general expectation that just a small subset of
the family of apparently consistent low energy effective field theories coupled to a dynam-
ical space-time, which is typically referred to as the landscape, can be completed towards
superstring theory in the ultraviolet regime. The swampland, on the other hand, is defined
as the collection of those theories that, albeit being seemingly consistent below a certain
cut-off, do not admit said completion. It is hence necessary to provide formal criteria of
demarcation between the landscape and the swampland, usually stated in the form of the
so-called swampland conjectures. Among them, we will mostly focus our attention on the
distance conjecture. In its standard formulation, it corresponds to the claim that large
displacements in the moduli space of an effective field theory should be accompanied by
infinite towers of asymptotically massless fields, displaying an exponential mass drop with
respect to a geodesic notion of moduli space distance. Some notable attempts at extending
it to displacements of the space-time geometry itself will then be outlined, arguing that
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geometric flow equations offer the most natural mathematical structures to achieve such a
goal. Strikingly, it will be shown how Perelman’s combined metric-scalar flow, introduced
as a direct generalisation of the well-known Ricci flow, can be regarded as a volume-
preserving gradient flow for a particular entropy functional, which can in turn be employed
in defining a proper distance along Perelman’s combined flow trajectories. Having hence
stated the dilaton-metric flow conjecture, the evolution of a large class of scalar and metric
bubble solutions under the previously discussed flow equations will be studied and proven
to produce interesting paths in an extended moduli space. In the subsequent discussion, a
new set of geometric flow equations will be derived from a more general entropy functional,
which will reduce to Perelman’s for a specific choice of some free parameters. By starting
from the action for a scalar and a dynamical geometry and properly rescaling the fields, in
order to match its expression to that of an entropy functional, a natural way of associating
a set of geometric flow equations to a particular theory will be presented. In conclusion,
the issue of preserving Einstein field equations along such action-induced flow trajectories
will be dealt with by allowing an extra energy-momentum term to appear along the flow,
so that any deformation of the metric will be reinterpreted in terms of the appearance of
suitable additional matter contributions. This physical realisation of action-induced flow
equations will be then applied to a particularly simple example, in which the supplemen-
tary energy-momentum tensor will be shown to be consistent with the gradual emergence
of an infinite tower of fields with exponentially dropping masses, as those postulated by the
distance conjecture. This will hence allow us to perform a non-trivial consistency check.



Part I

Preliminaries





Superstring Theory

In the following chapter, we will outline the main features of type II superstring theory.
This will be achieved by introducing the classical supersymmetric string action, discussing
its main properties and performing its quantisation. It is evident that the vastness of
the subject prevents us from treating it in depth. In particular, we will not mention
heterotic, type I or type 0 string theories, nor will we consider path integral quantisation.
The interested reader is strongly encouraged to consult the standard references [66–73],
on which most of our discussion is grounded. It must be furthermore stressed that a
wide variety of foundational topics in theoretical physics will be taken for granted. In
that regard, we suggest to refer to [74–80] for quantum field theory and supersymmetry,
to [49, 81–84] for general relativity and supergravity and to [85, 86] for graduate level
introductions to bosonic string theory.

2.1 The classical superstring

In its conventional conceptualisation, bosonic string theory is formulated by means of the
Polyakov action:

SPol ≡ −
1

4πα′

∫
Σ2

dσdτ
√
−hhαβηµν∂αXµ∂βX

ν . (2.1.1)

The integration domain Σ2, referred to as the string world-sheet, is the 2-dimensional
Lorentzian submanifold spanned by a string propagating in a D-dimensional space-time
manifold. For a detailed analysis of the specificities of open strings, together with a descrip-
tion of the associated action boundary terms, we once more recommend to refer to [85,86].
The world-sheet is charted by a time-like coordinate τ and a space-like coordinate σ ∈ [0, l],
parametrising the length of the string from 0 to its total value l, and endowed with the
metric tensor hαβ. On top of that, it is the domain of definition of the scalar fields Xµ.
Taken at face value, (2.1.1) describes a theory of D free massless scalars in 2 dimensions,
with kinetic terms given by the diagonal matrix ηµν = diag (−1,+1, . . . ,+1). From a
complementary perspective, however, it defines a σ-model whose target space is the D-
dimensional Minkowski space-time in which a string propagates, with coordinates Xµ.
The specific value of D is remarkably fixed by consistency conditions. In the case of the
covariant quantisation of bosonic strings, it must be set to 26 in order for the resulting



10 2. Superstring Theory

quantum theory not to break unitarity. Constructing the 26-dimensional low energy effec-
tive quantum field theory in curved space-time coming from (2.1.1) goes beyond the scope
of the current chapter, let alone the innumerable 4-dimensional theories one could obtain
by dimensionally reducing it. Nevertheless, it is noteworthy that such a path encounters
two major shortcomings. First of all, it does not allow for the existence of space-time
fermions. This places it in a rough contradiction with one of the most elementary features
of the real world, in which fermions are abundant and play a crucial phenomenological role.
Furthermore, its spectrum unavoidably contains a tachyon, which is a transparent signal
of vacuum instability. Both these flaws are tackled and solved by extending the Polyakov
action (2.1.1) to that of supersymmetric string theory. Before delving into the relevant
mathematical details, it must be emphasised that we will express the superstring action
in the Ramond-Neveu-Schwarz formulation, in which supersymmetry is manifest on the
world-sheet but not necessarily in space-time. The opposite is true for the Green-Schwarz
formulation, widely addressed in the above-mentioned references. Alternative approaches
are the ones provided by pure-spinors [87, 88] and string fields [89, 90]. Picking up the
threads of our discussion, the Ramond-Neveu-Schwarz formulation of type II superstring
theory is defined as an extension of bosonic string theory, in which the action (2.1.1)
is supplemented with a fermionic sector. This allows to achieve supersymmetry on the
world-sheet. For the sake of clarity, it is important to stress that this feature does not
straightforwardly imply space-time supersymmetry, which will require us to introduce fur-
ther structures. In order to explicitly write down the N = 1 supersymmetric extension of
(2.1.1), it is convenient to introduce a zwei-bein eaα associated to the world-sheet metric
hαβ, transforming local Lorentz into Einstein indices and with determinant e =

√
−h. It

is thus natural to construct the on-shell supergravity multiplet by defining a gravitino χα
as a world-sheet vector of Majorana spinors. Furthermore, it is necessary to introduce a
family of D Majorana world-sheet fermions ψµ. A discussion of the off-shell degrees of
freedom goes beyond the scope of the current review chapter and can be found in [66].
The overall expression for the action is

SRNS ≡ −
1

8π

∫
Σ2

dσdτe

[
2

α′h
αβ∂αX

µ∂βXµ + 2iψ̄µρα∂αψµ

− iχ̄αρβραψµ
(√

2

α′∂βXµ −
i

4
χ̄βψµ

)]
,

(2.1.2)

where the ρα are the world-sheet Dirac matrices associated to hαβ, for which{
ρα, ρβ

}
= 2hαβ . (2.1.3)

2.1.1 Symmetries and gauge choice

Before simplifying the expression (2.1.2) by moving to superconformal gauge, which is
nothing more than the superstring analogue of the conformal gauge introduced in the
bosonic case [86], we are required to briefly comment on the local world-sheet symmetries
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of the superstring action. In doing so, we will mostly follow the analysis performed in [66]
and list the various transformations that leave the theory unchanged separately. In all of
them, it will be critical not to confuse the world-sheet perspective with the one associated
to the D-dimensional space-time manifold.

Lorentz transformations First of all, we have 2-dimensional world-sheet Lorentz trans-
formations, which act on world-sheet indices and induce the infinitesimal field variations:

δlψ
µ = −1

2
lρ̄ψµ , δlX

µ = 0 ,

δle
a
α = lϵabe

b
α , δlχα = −1

2
lρ̄χα .

(2.1.4)

Reparametrisations Secondly, we must consider world-sheet reparametrisations in-
duced by a vector ξα, acting on the (τ, σ) coordinates and associated to the infinitesimal
field variations:

δξψ
µ = −ξα∂αψµ ,

δξX
µ = −ξα∂αXµ ,

δξe
a
α = −ξβ∂βe a

α − e a
β ∂αξ

β ,

δξχα = −ξβ∂βχα − χβ∂αξβ .

(2.1.5)

Weyl transformations As for the case of the bosonic string, the superstring action
(2.1.2) is invariant under Weyl rescalings. Infinitesimally, such transformations reduce to:

δΛψ
µ = −1

2
Λψµ , δΛX

µ = 0 ,

δΛe
a
α = Λe a

α , δΛχα =
1

2
Λχα .

(2.1.6)

Super-Weyl transformations On top of Weyl rescalings, we also have super-Weyl
transformations. They act trivially on every field except for the gravitino, for which we
have the infinitesimal variation

δηχα = ραη , (2.1.7)

where η is a world-sheet Majorana spinor.

Supersymmetry Finally, we have that supersymmetry we constructed the action (2.1.2)
to accommodate for in the first place. Introducing

ωα ≡ −
1

e
eαaϵ

βγ∂βe
a
γ +

i

4
χ̄αρ̄ρ

βχβ , (2.1.8)

we can define the covariant derivative of a Majorana spinor λ in the presence of torsion

Dαλ ≡ ∂αλ−
1

2
ωαρ̄λ (2.1.9)
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and write the action of supersymmetry, for an infinitesimal Majorana spinor parameter ϵ,
as follows:

δϵψ
µ =

1

2
ρα

(√
2

α′∂αX
µ − i

2
χ̄αψ

µ

)
,

δϵX
µ =

√
α′

2
iϵ̄ψµ , δϵe

a
α =

i

2
ϵ̄ρaχα ,

δϵχα = 2Dαϵ .

(2.1.10)

The superconformal gauge

Exploiting world-sheet Lorentz transformations, reparametrisations and local supersym-
metry, we can remove two degrees of freedom from the gravitino and as many from the
zwei-bein. Without performing explicit computations, which can be found in the suggested
superstring theory references, we state the superconformal gauge to correspond to:

e a
α = eϕδ a

α , χα = ραλ . (2.1.11)

At a classical level, we can set ϕ = λ = 0 with Weyl and super-Weyl rescalings. Such
symmetries will require particular care at the quantum level, since they will be anomalous
unless the number of space-time dimensions D will be taken to have a specific value.
Nonetheless, the action, containing now only degrees of freedom related to Xµ and ψµ,
takes the simple form:

SSC = − 1

8π

∫
Σ2

dσdτ

(
2

α′∂αX
µ∂αXµ + 2iψ̄µρα∂αψ

µ

)
. (2.1.12)

The remaining local supersymmetry acts via the infinitesimal field displacements:

δϵX
µ =

√
α′

2
iϵ̄ψµ , δϵψ

µ =
1√
2α′

ρα∂αX
µϵ . (2.1.13)

Furthermore, we have the gauge-preserving combinations of diffeomorphisms, Weyl rescal-
ings and Lorentz transformations:

δξX
µ = ξα∂αX

µ ,

δξψ
µ = ξα∂αψ

µ +
1

4
ψµ∂αξ

α − 1

4
ρ̄ψµϵαβ∂αξβ .

(2.1.14)

The equations of motion associated to (2.1.12) are simply:

∂α∂αX
µ = 0 , ρα∂αψ

µ = 0 . (2.1.15)

The energy-momentum tensor and its associated supercurrent, which are defined as the
variations

Tαβ ≡
2π

e

δSSC

δeβa
eαa , TFα ≡

2π

ie

δSSC
δχ̄α

, (2.1.16)
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take the explicit superconformal gauge forms:

Tαβ =
1

2α′ (ηαβ∂γX
µ∂γXµ − 2∂αX

µ∂βXµ)

− i

4

(
ψ̄µρβ∂αψµ + ψ̄µρα∂βψµ

)
,

TFα = − 1√
8α′

ρβραψ
µ∂βXµ .

(2.1.17)

Such expressions vanish when Xµ and ψµ are imposed to satisfy the on-shell conditions
(2.1.15). Namely, as a direct generalisation of the bosonic case, we have constraints

Tαβ = 0 , TFα = 0 (2.1.18)

that will require to be taken care of when quantising the theory. Moreover, by means of
the conservation laws

∂αTαβ = 0 , ∂αTFα = 0 , (2.1.19)

an infinite number of conserved charges is generated. The tracelessness conditions

Tαα = 0 , ραTFα = 0 (2.1.20)

notably come from Weyl and super-Weyl invariance, respectively. Hence, they hold regard-
less of the equations of motion (2.1.15).

Boundary conditions

While performing variations of the superconformal gauge action (2.1.12), in order to derive
the equations of motion (2.1.15), one has to impose appropriate σ-boundary conditions to
both the bosonic and the fermionic sector. Focusing on closed strings, we can straightfor-
wardly observe that imposing σ-periodicity for the sake of consistency uniquely fixes the
boundary behaviour of the Xµ fields. The fermions ψµ, instead, simply have to satisfy the
expression ∫

dτ
[
ψ+ · δψ+ − ψ− · δψ−

]σ=l
σ=0

= 0 , (2.1.21)

where ψ+ and ψ− are the Weyl components of the world-sheet Majorana spinors, with:

ψµ ≡
(
ψµ+
ψµ−

)
. (2.1.22)

The condition (2.1.21), for the closed string, translate into ψ+ · δψ+ − ψ− · δψ− being σ-
periodic with period l. This can be achieved by the ψµ+ and ψµ− being either periodic or
anti-periodic in σ. In particular:

• We refer to periodic boundary conditions as Ramond (R) boundary conditions for
closed strings.
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• We refer to anti-periodic boundary conditions as Neveu-Schwarz (NS) boundary
conditions for closed strings.

Since such boundary conditions can be chosen independently for ψ+ and ψ−, we have that
each of the D world-sheet Majorana spinors ψµ can be taken to belong to four distinct
sectors: (NS,NS), (NS,R), (R,NS) and (R,R). As for the open string fermionic sector, one
obtains Dirichlet (D) and Neumann (N) boundary conditions similar to those which appear
in the bosonic one [86]. When imposing N boundary conditions to fermions at both ends
of an open string, we can either impose periodicity or anti-periodicity. It turns out that
the only relevant quantity is the relative sign between the two choices. Namely, when we
have

ψµ+ (0) = αψµ− (0) , ψµ+ (l) = βψµ− (l) (2.1.23)

with α, β ∈ {−1,+1}, it only matters whether η ≡ α · β is equal to +1 or −1. For what
concerns the terminology:

• We refer to the relative sign choice η = +1 as Ramond (R) boundary conditions for
open strings.

• We refer to the relative sign choice η = −1 as Neveu-Schwarz (NS) boundary condi-
tions for open strings.

2.1.2 Oscillator expansions

In order to solve the equations of motion (2.1.15), both the bosonic and the fermionic
degrees of freedom require to be expanded in modes, taken to satisfy specific algebras. In
the following discussion, the main results of such procedure are outlined. A distinction is
made between closed and open strings, following what was done in the main reference [66].
It is strongly suggested to refer to such book for a more thorough discussion.

Closed strings

A parameter φ is introduced to distinguish between R (φ = 0) and NS (φ = 1/2) boundary
conditions for the fermionic degrees of freedom. Their modes expansion, together with the
one related to the bosons, can be compactly expressed as follows

ψµ+ (σ, τ) =

√
2π

l

∑
k∈Z+φ

b̄µr e
−2πik(τ+σ)/l ,

ψµ− (σ, τ) =

√
2π

l

∑
k∈Z+φ

bµr e
−2πik(τ−σ)/l ,

Xµ (σ, τ) = xµ +
2πα′

l
pµτ + i

√
α′

2

∑
n ̸=0

1

n
αµne

−2πin(τ−σ)/l

+ i

√
α′

2

∑
n̸=0

1

n
ᾱµne

−2πin(τ+σ)/l ,

(2.1.24)
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where the modes satisfy the reality and Majorana conditions:

αµ−n = (αµn)
∗ , ᾱµ−n = (ᾱµn)

∗ ,

bµ−k = (bµk)
∗ , b̄µ−k =

(
b̄µk
)∗

.
(2.1.25)

For what concerns the Poisson and Dirac brackets of the modes, which will then be pro-
moted to commutators and anti-commutators, respectively, in the canonical quantum the-
ory, we have:

{αµm, ανm}PB = {ᾱµm, ᾱνm}PB = inδm+nη
µν ,

{bµk , b
ν
s}DB =

{
b̄µk , b̄

ν
s

}
DB

= −iδk+sηµν ,
{αµm, ᾱνm}PB =

{
bµk , b̄

ν
s

}
DB

= 0 , {xµ, pν}PB = ηµν .

(2.1.26)

By moving to light-cone coordinates σ± ≡ τ ± σ and decomposing the left-moving compo-
nents of the energy-momentum tensor in modes Ln and those of the supercurrent in modes
Gr, we observe that the Ln can be decomposed as

Ln = L(α)
n + L(b)

n (2.1.27)

in a contribution coming from the bosonic degrees of freedom and one coming from the
fermionic ones. We obtain:

L(α)
n =

1

2

∑
p∈Z

ηµνα
µ
−pα

ν
p+n ,

L(b)
n =

1

2

∑
r∈Z+φ

(
r +

n

2

)
ηµνb

µ
−rb

ν
r+n ,

Gr =
∑
n∈Z

ηµνα
µ
−nb

ν
r+n .

(2.1.28)

The above expressions fulfil the reality conditions

L∗
n = L−n , G∗

r = G−r (2.1.29)

and satisfy the centerless super-Virasoro algebra:

{Lm, Ln}DB = i (n−m)Lm+n ,

{Lm, Gr}DB = i
(
r − m

2

)
Gm+r ,

{Gr, Gs}DB = −2iLr+s .

(2.1.30)

Since we are considering the case of a closed string, an analogous set of generators, re-
specting the same algebra, can be constructed for right-movers.
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Open strings

When it comes to open strings, things get slightly more complicated, as crucial distinctions
must be made on the various choices of the boundary conditions. Once more, we introduce
a parameter φ to distinguish between R (φ = 0) and NS (φ = 1/2) boundary conditions
for the fermionic degrees of freedom. Furthermore, the difference between (NN), (DN),
(ND) and (DD) boundary conditions has to be taken into account for both bosons and
fermions. Starting with the bosons, we have:

(NN) Xµ (σ, τ) = xµ +
2πα′

l
pµτ

+ i
√
2α′
∑
n̸=0

1

n
αµne

−iπnτ/l cos
(nπσ

l

)
,

(DD) Xµ (σ, τ) = xµ0 +
xµ1 − x

µ
0

l
σ

+
√
2α′
∑
n̸=0

1

n
αµne

−iπnτ/l sin
(nπσ

l

)
,

(DN) Xµ (σ, τ) = xµ +
√
2α′

∑
k∈Z+ 1

2

1

k
αµke

−iπkτ/l sin

(
kπσ

l

)
,

(ND) Xµ (σ, τ) = xµ + i
√
2α′

∑
k∈Z+ 1

2

1

k
αµke

−iπkτ/l cos

(
kπσ

l

)
.

(2.1.31)

The mode expansions of the Majorana spinors, instead, are:

(NN) ψµ± (σ, τ) =

√
π

l

∑
k∈Z+φ

bµke
−iπk(τ±σ)/l ,

(DD) ψµ± (σ, τ) = ±
√
π

l

∑
k∈Z+φ

bµke
−iπk(τ±σ)/l ,

(DN) ψµ± (σ, τ) =

√
π

l

∑
k∈Z+φ+ 1

2

bµke
−iπk(τ±σ)/l ,

(ND) ψµ± (σ, τ) = ±
√
π

l

∑
k∈Z+φ+ 1

2

bµke
−iπk(τ±σ)/l .

(2.1.32)

The expressions for the modes of the energy-momentum tensor and the supercurrent can
be obtained in terms of the αµn and the bµr modes. Distinguishing once more between the
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contributions L
(α)
n and L

(b)
n to the modes of the energy-momentum tensor, we are left with:

L(α)
n =

1

2

∑
p∈Z

ηµνα
µ
−pα

ν
p+n ,

L(b)
n =

1

2

∑
r∈Z+φ

(
r +

n

2

)
ηµνb

µ
−rb

ν
r+n ,

Gr =
∑
n∈Z

ηµνα
µ
−nb

ν
r+n .

(2.1.33)

Once more, such expressions satisfy the centerless super-Virasoro algebra:

{Lm, Ln}DB = i (n−m)Lm+n ,

{Lm, Gr}DB = i
(
r − m

2

)
Gm+r ,

{Gr, Gs}DB = −2iLr+s .

(2.1.34)

This result concludes our compendium on the classical features of the supersymmetric
string action (2.1.2). Therefore, we can now progress towards the analysis of the canonical
quantisation of the theory.

2.2 The quantum superstring

It is once more important to stress that, along the lines of their bosonic counterparts,
superstrings are described by a constrained system. This peculiarity directly translates in
a series of technical difficulties that have to be adequately dealt with, when attempting at
quantising the theory. The following discussion does not aim at being complete nor self-
sufficient. Therefore, we suggest to refer to [91–93] for all the mathematical details. For
what concerns our concise abridgement of the subject matter, it must be emphasised that
constraints cannot be neglected when promoting the degrees of freedom of the theory to
operators and constructing to corresponding Hilbert space. In fact, for the specific case of
superstring theory, one might choose to adopt one of the following canonical quantisation
approaches:

• Old covariant quantisation The quantisation procedure is applied to the uncon-
strained system, producing a vast Hilbert space. Constraints are enforced by means
of conditions that physical states have to satisfy, thus projecting out the unphysi-
cal sector of the Hilbert space. This method has the advantage of being explicitly
covariant from the start. At the same time, it fails at being manifestly unitary and
becomes so only at a critical value of the space-time dimension D.

• Light-cone quantisation The constraints are enforced already at a classical level.
Then, quantisation procedures are naturally applied to a constrained subset of the
original family of oscillators, corresponding to D − 2 space-time directions, and a
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physical Hilbert space is obtained. Unlike the previous strategy, here unitary is
secured without further effort. On the other hand, covariance in achieved only at a
critical value of the space-time dimension D, which turns out to be consistent with
the one obtained by imposing unitarity to the theory quantised in the old covariant
manner.

Our review will not discuss path integral quantisation of superstring theory, which is an
interesting, fundamental and highly rewarding topic in itself. A comprehensive discussion
is contained in the two-volume monograph [67, 68], together with an analysis of its major
applications to superstring scattering amplitudes.

2.2.1 Old covariant quantisation

As was briefly summarised in the previous discussion, quantising superstring theory in
the old covariant approach corresponds to enforcing the constraints (2.1.18) after having
applied the standard quantisation prescription. This is the way we will follow in this
analysis. Therefore, we can promote classical fields to quantum field operators straight
away. On top of that, Poisson brackets are sent into commutators

{ , }P.B. −→
1

i
[ , ] , (2.2.1)

while Dirac brackets are sent in anti-commutators:

{ , }D.B. −→
1

i
{ , } . (2.2.2)

Given the oscillator expansions presented in 2.1.2, positive and negative expansion modes
are naturally identified with annihilation and creation operators, respectively. The non-
trivial part of their algebra is:

[αµm, α
ν
n] = ηµνmδm+n ,

{bµr , bνs} = ηµνδr+s .
(2.2.3)

When focusing on closed strings the set of commutators has to be doubled, to account for
both left and right-moving excitations. The number operator N can be defined as the sum

N = N (α) +N (b) (2.2.4)

of a component N (α), given by excitations corresponding to world-sheet bosons, and a
component N (b), coming from world-sheet fermions. Their explicit expressions are

N (α) ≡
∞∑
n=1

ηµνα
µ
−nα

ν
n , N (b) =

∑
k∈Z+φ>0

kηµνb
µ
−kb

ν
k , (2.2.5)

where, as usual, φ = 0 for R boundary conditions and φ = 1/2 for NS ones. Focusing
on Virasoro generators, extracted as coefficients of the mode expansion of the energy-
momentum tensor and the supercurrent, we note that they are defined through sums that
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might be ambiguous at the quantum level, unless we impose them to be normally ordered.
In fact, this has a significant effect solely for the zeroth order energy-momentum tensor
generator L0. Together, they satisfy the quantum super-Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
D

8
m
(
m2 − 2φ

)
δm+n ,

[Lm, Gr] =
(m
2
− r
)
Gm+r ,

{Gr, Gs} = 2Lr+s +
D

2

(
r2 − φ

2

)
δr+s .

(2.2.6)

Hilbert space vacuum construction

We can now focus on constructing the superstring theory Hilbert space. First, we observe
that the distinction between R and NS boundary conditions for world-sheet fermions di-
rectly produces a distinction between two sectors of the theory. The following discussion
can be directly applied to closed strings by replicating it for left-movers. For open strings,
it is instead only valid for NN and DD boundary conditions. When studying open strings
with DN and ND boundary conditions, one has to take into account that the structure of
the fermionic expansion modes indices is swapped between the usual NS and R sectors.
Hence, the following considerations have to be swapped too. That said, we introduce an
NS sector vacuum |0⟩NS satisfying the conditions

αµn |0⟩NS = 0 , for n = 1, 2, 3 . . .

bµr |0⟩NS = 0 , for r =
1

2
,
3

2
,
5

2
. . .

(2.2.7)

and an R sector vacuum |a⟩R for which it holds that:

αµn |a⟩R = 0 , for n = 1, 2, 3 . . .

bµm |a⟩R = 0 , for m = 1, 2, 3 . . .
(2.2.8)

In the above, the ground state dependence on the centre of mass momentum pµ was made
implicit. It can be noted that the NS sector ground state |0⟩NS is unique. Thus, it is a spin
zero state. In the R sector, instead, we have a family of degenerate ground states, labelled
by an index a and constructed from one another by acting with the fermionic zero modes
bµ0 . Since it holds that

{bµ0 , bν0} = ηµν , (2.2.9)

the ground states |a⟩R form a representation of Clifford algebra and a is an SO (D − 1, 1)
spinorial index. Therefore, states in NS sector of the theory are space-time bosons, while
those belonging to the R sector are space-time fermions, which are a true novelty of super-
string theory with respect to the previous bosonic formulation. Once more, we stress that
the contrary is true for DN and ND open strings.
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Imposing the constraints

As should be clear by now, the Hilbert space H obtained by naively acting with the
appropriate creation operators on the vacuum states |0⟩NS and |a⟩NS does not take the
constraints (2.1.18) into account. Therefore, we now introduce them as a set of conditions
physical states have to fulfil, in order to reduce ourselves to the physical Hilbert space
Hphys. We impose

Gr |phys⟩NS = 0 for r > 0 ,

Lm |phys⟩NS = 0 for m > 0 ,

(L0 − a0) |phys⟩NS = 0 for m > 0

(2.2.10)

in the NS sector, where a normal ordering offset was extracted from L0. For the R sector,
instead, we do not need to do the same, since the normal ordering contributions from
bosons and fermions cancel. Hence, we have:

Gr |phys⟩R = 0 for r ≥ 0 ,

Lm |phys⟩R = 0 for m > 0 ,

L0 |phys⟩R = 0 for m > 0 .

(2.2.11)

When working with closed strings, a level matching condition between left and right-movers
must be added in both sectors: (

L0 − L̄0

)
|phys⟩ = 0 . (2.2.12)

In conclusion, let’s consider the super-Virasoro generator L0 in itself. Its expansion, with-
out the a0 normal ordering constant we have previously extracted, is:

L0 =
1

2

∑
p∈Z

:α−p · αp : +
1

2

∑
r∈Z+φ

(
r +

n

2

)
:b−r · br :

=
1

2
α0 · α0 +

1

2

∑
p̸=0

:α−p · αp : +
1

2

∑
r∈Z+φ

(
r +

n

2

)
:b−r · br : .

(2.2.13)

Since we have:

αµ0 =
π
√
2α′

l
pµ , (2.2.14)

the first term for closed strings (l = 2π) is nothing more than

α0 · α0 =
α′

2
p · p , (2.2.15)

while for open strings (l = π) it is:

α0 · α0 = 2α′p · p . (2.2.16)
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If we consider on-shell states, with p · p = −m2, which are physical, so that they are
annihilated by L0 + a0, we are left with the mass formula for open strings

α′m2
open = N +

(∆X)2

4π2α′ + a0 , (2.2.17)

where a term dependent on the energy stored in the string being stretched appears, and
that for closed ones, in which the level matching condition was employed:

α′m2
closed = 2

(
N + N̄ + a0

)
. (2.2.18)

If we want the theory to be well-defined and ghost free, we must impose the number of
space-time dimensions D to be equal to 10. Namely, the construction ensures manifest
unitarity only in D = 10. Reproducing the derivation of such result goes beyond the
scope of our review. For a detailed discussion, we suggest to refer to [72, 73]. We limit
ourselves at pointing out that, despite the expectation one might have had coming from
standard quantum field theory model building, the number of space-time dimensions is not
a parameter one can tune from the outside. Conversely, it is fixed by internal consistency.
This is the first and most striking way in which superstrings defy our naive approach to
phenomenology, imposing stronger and novel constraints on the kind of space-time models
we are allowed to build. This aspect of the theory will be explored in chapter 3.

2.2.2 Spectrum and GSO Projection

In the following discussion, we will describe the first excited level in the superstring spec-
trum in the R and NS sectors. We will not construct it explicitly, as is done in the many
references cited at the beginning of the chapter. Instead, we will simply outline the pro-
cedure and list the major results of interest for the derivation of low energy superstring
effective field theories.

Construction of the spectrum

Starting from the NS sector vacuum |0⟩NS and the R sector vacuum |a⟩R, which is further
split in two chiralities |a⟩R and |ȧ⟩R, we can produce excited states by acting with the
appropriate creation operators, coming from the mode expansions of world-sheet bosons
and fermions. The mass level of each state can be computed after having obtained the
specific value of the normal ordering offset a0. This is much easier when quantisation
is performed in the light-cone scheme, as constraints are imposed at a classical level by
effectively reducing the excitable directions to a subset of D − 2 transverse ones. It must
be clear that this procedure only accounts for one set of modes and can be directly applied
to the sole open string. For what concerns closed ones, we are required to take a tensor
product with a second, identical set of inversely moving modes. By doing so, our spectrum
seems to be affected by two major problems:

• The (NS,NS) ground state appears to be tachyonic.
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• There is an over-abundance of space-time fermionic degrees of freedom, which do not
allow to achieve supersymmetry.

Fortunately, both such issues are nothing more than artefacts. In fact, the requirement of
modular invariance of the one-loop superstring partition function forces us to implement
a truncation, which takes the name of GSO projection. In order to perform it, we must
introduce the fermion number operator (−1)F , assign the eigenvalue −1 to |0⟩NS and
require all states in the NS sector to be eigenstates with eigenvalue +1. This way, the theory
is made tachyon-free. The GSO projection imposes to introduce an analogous operator for
the R sector and choose physical states to have eigenvalue +1 or −1. When deriving the
closed string spectrum, there are thus two inequivalent possibilities: either the same choice
has been made in left and right-moving R sectors or not. We label the former case as
type IIB superstring theory, while the latter is referred to as type IIA. Both theories are
tachyon-free and can be space-time supersymmetric, since the truncation exactly matches
the 128 space-time bosonic degrees of freedom to an equal number of fermionic ones. A
thorough discussion of the subject matter, together with analyses of type I and heterotic
superstring theory, can be found in [66]. As far as our brief summary is concerned, it is
enough to list the space-time fields corresponding to the various states belonging to type
IIA and the IIB low energy spectra, that come directly from the ways in which such states
fit into SO (8) little group representations. This leaves us us with type IIA and type IIB
supergravity, respectively characterised by N = (1, 1) and N = (2, 0) supersymmetry.
Hence, type IIB supergravity is a chiral theory, while type IIA is not. It is now time to
list the two sets of massless excitations explicitly, along with the SO (8) representation in
which they transform.
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Type IIA

• A scalar Φ, in the 1 representation.

• Two spin 1/2 dilatinos λα, in the 8c ⊕ 8s representation.

• A spin 2 graviton gµν , in the 35v representation.

• Two spin 3/2 gravitinos Ψµ
α, in the 56c ⊕ 56s representation.

• An anti-symmetric 2-form Bµν , in the 28 representation.

• A vector Cµ, in the 8v representation.

• An anti-symmetric 3-tensor C
(3)
µνσ, in the 56v representation.

Type IIB

• Two scalars Φ and C, in the 1 representation.

• Two spin 1/2 dilatinos λα, in the 8c ⊕ 8c representation.

• A spin 2 graviton gµν , in the 35v representation.

• Two spin 3/2 gravitinos Ψµ
α, in the 56c ⊕ 56c representation.

• Two anti-symmetric 2-forms Bµν and C
(2)
µν , in the 28⊕ 28 representation.

• An anti-symmetric 4-tensor C
(4)
µνσρ, in the 35s representation.

After having constructed the type IIA and type IIB low energy space-time spectra, we
can now move to a more in depth analysis of the ten-dimensional dynamics induced by
superstring theories. This will allow us to detach from the world-sheet framework and
focus on space-time phenomenology. We once more stress that a complete treatment of
the subject matter should have also included type I and heterotic string theories, which
are presented in the above-mentioned references.

2.3 Low energy effective theories

In the previous discussion, the ten-dimensional space-time fields emerging as massless states
from type IIA and type IIB superstring theory were listed. Still, no amount of information
was given regarding their dynamics. Namely, the spectral analysis did not provide us with
the space-time actions associated to the two supergravity theories. In order to derive them,
two distinct approaches can be followed.
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Scattering amplitudes Scattering amplitudes among massless string states can be com-
puted from a world-sheet perspective, employing the powerful techniques offered by path
integral quantisation and 2-dimensional conformal field theories [67, 68]. After having
identified the various string scattering states with the corresponding space-time degrees
of freedom, one is therefore left, at least at tree level, with a complete set of scattering
amplitudes among the various space-time effective theory fields. At that point, the ten-
dimensional supergravity actions can simply be reverse engineered from such expressions.

Absence of Weyl anomaly This alternative approach stems from the idea of con-
sidering the world-sheet action of a superstring propagating in a background, in which
space-time fields coming from massless string excitations are present. Therefore, a non-
linear σ-model is constructed and space-time degrees of freedom enter it as non-trivial
couplings for the bosonic and fermionic world-sheet fields. Thereafter, a set of β-functions,
associated to string scattering amplitudes, are derived, in which the running couplings are
precisely the space-time fields coming from a specific superstring theory. In order for the
world-sheet Weyl invariance not to be anomalous at a quantum level, all such β-functions
must be set equal to zero. This directly produces a collection of equations of motion for
the space-time fields. Once more, the ten-dimensional supergravity actions can then be
reverse engineered.

2.3.1 Type IIA supergravity

Obtaining the explicit space-time form of type IIA and type IIB supergravities goes beyond
the scope of the current review. Therefore, we will choose to discuss the low energy
effective theory associated to type IIA superstrings, not to encounter the technical problems
associated to the presence of a self-dual form field, and state the relevant results without
derivations. On top of that, we will only focus on the bosonic part of the spectrum. It
goes without saying that all the details can be found in the references [66–68,72,73]. The
massless bosonic states in the type IIA spectrum are the graviton gµν , the dilaton Φ, a
vector Aµ, a 2-form Bµν and a 3-form Cµνσ. In a more implicit and geometric notation, we
refer to the forms as A1, B2 and C3. The fermionic degrees of freedom, comprised of two
dilatinos λα and two gravitinos Ψµ

α, will be neglected for the time being. Nevertheless, it
can be observed that they would enter the space-time action in way which properly realises
N = (1, 1) supersymmetry. Going back to bosons, we define the field strengths:

F2 ≡ dA1 , H3 ≡ dB2 , F4 ≡ dC3 . (2.3.1)

Moreover, we introduce a further 4-form:

G4 ≡ F4 − A1 ∧ F3 . (2.3.2)

In the so-called string frame, in which the integral volume element is provided with an
e−2Φ term, the action is

SIIA ≡ SNS + SR + SCS , (2.3.3)
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where we have identified the (NS,NS) sector, the (R,R) sector and a Chern-Simons term.
After having defined the 10-dimensional gravitational coupling

2κ210 ≡ (2π)7 α′4 , (2.3.4)

the corresponding expressions for the action terms, on a space-time manifoldM, are given
by:

SNS =
1

2κ210

∫
M

d10x
√
−ge−2Φ

(
R + 4∇µΦ∇µΦ− 1

2
|H3|2

)
,

SR = − 1

4κ210

∫
M

d10x
√
−ge−2Φ

(
|F2|2 + |G4|2

)
,

SCS = − 1

4κ210

∫
M
B2 ∧ F4 ∧ F4 .

(2.3.5)

For the sake of clarity, the Chern-Simons term has been written in a compact geometric
notation, so that the volume element became implicit.

2.4 Compactification

After having introduced superstring theory from the classical world-sheet perspective, hav-
ing quantised the theory following the old covariant prescription and having constructed
the massless spectra for type IIA and type IIB superstrings via the implementation of a
GSO projection, the low energy space-time effective theory action associated to the former
was stated without an explicit derivation. It is clear that an action of the form (2.3.3) is
far from being connected to particle physics and general relativity. It should not be for-
gotten, indeed, that superstring theory seems to be consistently defined in 10 space-time
dimensions, while the world we live in appears to be 4-dimensional. How can such a drastic
difference be dealt with and accounted for, when constructing viable models from super-
strings? This is arguably one the most critical questions in string theory phenomenology.
As far as the following discussion is concerned, we will do nothing more than exploring
the simplest possible example of the technique which is most commonly employed towards
such goal: compactification. With this term, we refer to the idea that the 10-dimensional
space-time appearing in superstring theory might factorised as the product of a four dimen-
sional Lorentzian manifold and a, perhaps non-trivially fibered, six dimensional compact
geometric object, too small to be accessible at our current energy scales. This way, the six
extra dimensions would effectively disappear from any low energy theory, producing a four-
dimensional universe similar to the one we perceive. Compactification has been explored
for decades in all its technical and mathematical details, as a powerful model-building
tool. Some rather complete references on such topic can be found in [70,94–101]. The idea
first appeared in the works [102, 103]. Here we want to investigate compactification in a
controlled setting. Thus, we will take the low energy effective theory coming from type
IIA superstring theory, switch off all its field content except for the metric and the dilaton
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and impose one of the dimensions to be a small compact circle. We will therefore be left
with a 9-dimensional effective model.

2.4.1 Circle compactification

As briefly outlined above, we start from the bosonic part of the low energy effective su-
pergravity theory coming from type IIA superstrings and switch off all form fields, leaving
only the metric gµν and the dilaton Φ. Hence, we are left with:

S =
1

2κ210

∫
M

d10x
√
−ge−2Φ

(
Rg + 4∇µΦ∇µΦ

)
. (2.4.1)

Before performing the circle compactification along one spatial direction, we move from
the so called string frame, defined in our discussion of space-time actions, to the Einstein
frame, in which the exp{−2Φ} term is absorbed into a rescaling of the metric. In order to
do so, we introduce Gµν , ω, ϕ and a constant ϕ0, such that:

gµν = e2ωGµν , Φ ≡ ϕ+ ϕ0 . (2.4.2)

Analysing the expressions appearing in the action one by one, we get:

√
−g = e10ω

√
−G , ∇µΦ = ∇µϕ , e−2Φ = e−2(ϕ+ϕ0) ,

Rg = e−2ωRG − 18e−2ω∇2ω − 72e−2ω∇µω∇µω

gµν∇µϕ∇νϕ = e−2ωGµν∇µϕ∇νϕ .

(2.4.3)

Therefore, the action becomes:

S =
1

2κ210

∫
M

d10x
√
−Ge8ω−2(ϕ+ϕ0)

(
RG − 18∇2ω

− 72∇µω∇µω + 4∇µϕ∇µϕ
)
.

(2.4.4)

By imposing the rescaling parameter ω to be

ω ≡ ϕ+ ϕ0

4
, (2.4.5)

we are left with:

S =
1

2κ̄210

∫
M

d10x
√
−G

(
RG −

9

2
∇2ϕ− 1

2
∇µϕ∇µϕ

)
. (2.4.6)

In the above expression, we have defined:

κ̄10 ≡ eϕ0κ10 . (2.4.7)
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By removing the irrelevant boundary term produced by the Laplacian of ϕ, we simply get:

S =
1

2κ̄210

∫
M

d10x
√
−G

(
RG −

1

2
∇µϕ∇µϕ

)
. (2.4.8)

This way, we have obtained the Einstein frame version of our type IIA supergravity action,
reduced to the metric-dilaton sector. In order to proceed with the circle compactification,
we take the space-time manifold to be (at least locally) factorised as

M≡ P × S1 , (2.4.9)

where P is a 9-dimensional Lorentzian manifold and S1 is a circle, whose radius might
depend on the coordinates on P . In order not to create confusion, we use:

• The symbol y to refer to the circular coordinate, with y ∈ [0, 2πρ).

• The symbol xM to refer to the coordinates (x0, . . . , x8) on P .

Concerning the 10-dimensional metric Gµν , we assume it to give rise to the specific line-
element

ds210 ≡ hMN (x) dxMdxN + e2φ(x)dy2 , (2.4.10)

where hM and φ are the metric tensor on P and a scalar, respectively. For the sake of
simplicity and partially sacrificing the generality of our discussion, which has nonetheless a
purely illustrative aim, we have assumed all matrix entries of the form GyM to vanish. As
can be easily observed, both hMN and φ are assumed to only depend on the non-compact
coordinates. The non-triviality of φ, which we will refer to as the radion field, allows the
effective radius of the compact dimension S1 to vary on P . We can directly compute:

√
−G = eφ

√
−h . (2.4.11)

Furthermore, we have:

RG = GµνRα
µαν = hMNRα

MαN + e−2φRα
yαy

= hMNRP
MPN + hMNRy

MyN + e−2φRP
yPy .

(2.4.12)

The only non-zero Christoffel symbols are those of the form:

ΓMNP =
1

2
gMQ (∂NgQP + ∂PgNQ − ∂QgNP ) ,

ΓyyP = ∂Pφ , ΓMyy = −e2φ∂Mφ .
(2.4.13)

Thus, we have the simple expression:

RG = Rh − 2∇2φ− 2∇Mφ∇Mφ . (2.4.14)
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Concerning the scalar, we Fourier-expand it as:

ϕ (x, y) =
∑
n∈Z

ϕn (x) e
iny/ρ . (2.4.15)

The kinetic term in (2.4.8) becomes:

∇µϕ∇µϕ = hMN∇Mϕ∇Nϕ+ e−2φ∇yϕ∇yϕ (2.4.16)

After having integrated out the y coordinate and having defined the 9-dimensional gravi-
tational coupling

κ̄29 ≡
κ̄210
2πρ

, (2.4.17)

the action takes the dimensionally-reduced form:

S =
1

2κ̄29

∫
P
d9x
√
−heφ

{
Rh − 2∇2φ− 2 (∇φ)2

− 1

2

∑
n∈Z

[
(∇ϕn)2 + e−2φn

2

ρ2
ϕ2
n

]}
.

(2.4.18)

In order to move to Einstein frame, we impose the conformal transformation

hMN ≡ e2γφkMN , (2.4.19)

rescale the radion as φ = βη and obtain the following expression:

S =
1

2κ̄29

∫
P
d9x
√
−ke(1+7γ)βη

{
Rk − (16γ + 2) β∇2η −

(
56γ2 + 2

)
β2 (∇η)2

− 1

2

∑
n∈Z

[
(∇ϕn)2 + e2(γ−1)βηn

2

ρ2
ϕ2
n

]}
.

(2.4.20)

By imposing 7γ = −1, the above expression simplifies as:

S =
1

2κ̄29

∫
P
d9x
√
−k

{
Rk − β222

7
(∇η)2 − 1

2

∑
n∈Z

[
(∇ϕn)2 + e−16βη/7n

2

ρ2
ϕ2
n

]}
. (2.4.21)

Since the Laplacian terms account for nothing more than a boundary term, they were
safely removed. We can hence select β so that

22

7
β2 =

1

2
=⇒ β =

√
7

44
(2.4.22)

and obtain the properly rescale Einstein frame action:

S =
1

2κ̄29

∫
P
d9x
√
−k

{
Rk −

1

2
(∇η)2 − 1

2

∑
n∈Z

[
(∇ϕn)2 +

n2

ρ2
ϕ2
ne

−8η/
√
77

]}
. (2.4.23)
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Expanding the exponential coupling to η as a power series, we get:

e−8η/
√
77n

2

ρ2
ϕ2
n =

n2

ρ2
ϕ2
n

(
1− η 8√

77
+

64

77
η2 − . . .

)
. (2.4.24)

Therefore, the dynamics of each one of the Kaluza-Klein modes ϕn is controlled by a
collection of masses

mn ≡
n

ρ
(2.4.25)

and a family of infinitely many higher-order interactions, containing ϕ2
n, with the radion

field η. By introducing an order O(1) constant α, writing the radius parameter ρ as

ρ ≡ exp{α∆} , (2.4.26)

referring to ∆ with the term distance, from the value ρ0 = 1, and promising such nomen-
clature to become much clearer in chapter 3, we have that our low energy effective theory
in 9-dimensions features an infinite tower of species ϕn that get exponentially lighter in the
large-distance regime. In particular, they become massless when ∆ 7→ ∞. This behaviour
appears to be a universal feature of string compactifications and will broadly generalised
when discussing the swampland distance conjecture. The instability of η in (2.4.23) is
not to worry about: indeed, most of the matter content has been neglected and we have
performed a trivial and phenomenologically uninteresting compactification. It must be
stressed that the approach we have followed in our derivation, while working perfectly well
when considering a space-time quantum field theory as fundamental and studying its com-
pactified dynamics, does not fully capture the richness of string theory compactification.
Simply taking the usual effective field theory coupled to gravity emerging from type-IIA
superstings, as derived 2.3.1, and compactifying it on a circle is not enough. The reason
is that the topological features of space-time already influence the theory before quantisa-
tion, when the string equations of motion are solved in a chosen background. The presence
of a compact dimension in the target space-time influences the boundary conditions on
the world-sheet degrees of freedom. Therefore, in order not to neglect relevant parts of
the spectrum, we are demanded to start from the world-sheet formulation of superstring
theory, impose space-time to have the desired topology and then obtain the appropriate
string states. For the case at hand, this will be rapidly analysed in the following discussion.

World-sheet perspective

For the time being, the radon field η, whose dynamics locally controls the value of the
compact dimension radius, will be imposed to be everywhere zero and removed from the
effective theory. This will largely simplify our discussion, preserving its core conceptual
content intact while, at the same time, making the formulas way more readable. The
extension to a non-zero, fluctuating and unfrozen η can be straightforwardly obtained by
following analogous steps, while keeping track of the extra contribution from the radion.
The interested reader might want to refer to [86, 99, 104] for a more thorough discussion.
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That said, let’s focus on the quantum mechanical properties of a closed string propagating
in the compactified space-time manifold under scrutiny. The position-space representa-
tion of its state can, in general, be written as a Fourier decomposition over momentum
eingenstates

ψ (x, y) =

∫
d9p dq ψ̃ (p, q) eip̄·x̄+iqy , (2.4.27)

where all constants have been absorbed into ψ̃ (p, q), the momentum variables pM are
conjugate to the non-compact spatial coordinates xM and q, instead, corresponds to the
coordinate along the circle. In order for the wave-function to be single valued, it must be
periodic with period 2πρ along the y compact direction. Thus, we have:

ψ (x, y) = ψ (x, y + 2πρ) . (2.4.28)

Imposing the above condition to (2.4.27), one directly obtains:

eiqy = eiq(y+2πρ) . (2.4.29)

Therefore, purely quantum mechanical arguments force to impose the momentum q along
the compact direction to be quantised as:

q =
n

ρ
, n ∈ Z . (2.4.30)

When solving the equations of motion for the string bosonic space-like coordinates in
Minkowski, or in any other space-time manifold with no compact directions, a strict peri-
odicity condition had to be imposed on all of them. Now, such constraint can be partially
relaxed along the circle. Indeed, we have:

XM(τ, σ + 2π) = XM(τ, σ) , i = 1, . . . , 8,

Y (τ, σ + 2π) = Y (τ, σ) + 2πωρ , ω ∈ Z .
(2.4.31)

The capital letters have been employed for the notation to be consistent, when regarding
the space-time coordinates as world-sheet bosons. The integer ω is referred to as the
closed string winding number and quantifies how many times a string wraps around the
compact S1 before achieving periodicity. The winding number is integer, instead of natural,
since its sign allows to distinguish between clock-wise and counter-clockwise wrappings. In
figure 2.1, a pictorial representation of the phenomenon at hand is presented. The nine
spatio-temporal non-compact dimensions charting P have been collapsed to a single, one-
dimensional direction, which takes the role of the height of the cylinder. This naturally
prevents from appreciating the Lorentzian nature of the space-time metric. Nevertheless, it
offers a chance to clearly represent various strings wrapping around the compact direction.
The blue one has winding number ω1 = ±1, while the red one has winding number ω1 = ±2.
The sign, as previously discussed, purely depends on the orientation of the strings. By
identifying the left-moving are right-moving contributions to Y (τ, σ) as

Y (τ, σ) = YL(σ
+) + YR(σ

−) , (2.4.32)
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P

S1

Figure 2.1: Schematic depiction of a circle compactification, in which the non compact di-
mensions charting the reduced space-time manifold P are represented by a one-dimensional,
vertical direction. The blue and red closed strings, included for the sake of clarity, have
winding numbers ω1 = ±1 and ω2 = ±2, respectively.

where σ± ≡ τ ± σ, the equations of motion can be solved in the usual way:
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(2.4.33)

In the above, we can identify the left-moving and right-moving components of the string
momentum along the circular dimension to be:

qL ≡
n

ρ
+
ωρ

α′ , qR ≡
n

ρ
− ωρ

α′ . (2.4.34)

It goes without saying that the total y-momentum q is given by

q =
qL + qR

2
, (2.4.35)

consistently with the result obtained in (2.4.30). The level-matching condition, in presence
of a dimension compactified to a circle, loosens up as

N − N̄ = ω · n , (2.4.36)
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where N and N̄ are the number operators associated to the two families of movers. The
effective, 9-dimensional squared mass operator on which an observer perceiving the non-
compact space-time manifold P can perform measurements can be shown to be equal to:

M2
P =

n2

ρ2
+
ω2ρ2

α′2
+

2

α′

(
N + Ñ − 2

)
. (2.4.37)

The standard reference [86] offers a clear and pedagogical derivation of the above result.
Hence, string states acquire, from the perspective of the dimensionally reduced effective
theory, two novel mass contributions. The first one solely depends on the quantum me-
chanical wave-function being well-defined and comes from the energy stored in the number
of momentum quanta along the compact direction. Being it completely independent from
string theory, as it would be present if the fundamental degree of freedom was taken to be
a point particle, it coherently does not include α′. It must be stressed that this is perfectly
consistent with what was obtained from explicitly compactifying the space-time effective
theory, from which this term was read off in (2.4.25). The second contribution, instead,
emerges from the string winding modes, introducing an energy off-set associated to the
stretching string tension. This is a genuine string-theoretic effect, with no direct quantum
field theory analogue. The third one corresponds, as in the non-compact theory, to the
energy coming from right-moving and left-moving string excitations.

T-duality and towers of states

Exploring the full circle-compactified string spectrum clearly goes beyond the scope our
current analysis, if only because it would force us to decompose all those fields that we
have neglected. Here, instead, we want to focus on a particular property that proves itself
to be much more general, in the context of string theory model building: T-duality. In
order not to let other non-central aspects of the issue at hand to get in the way of our
discussion, we will only consider string states for which:

N + Ñ = 2 . (2.4.38)

Hence, the squared mass-formula derived in (2.4.37) for Kaluza-Klein states straightfor-
wardly reduces to the expression

M2 (n, ω) =
n2

ρ2
+
ω2ρ2

α′2
, (2.4.39)

which only depends on the number n of momentum quanta along the compact direction
and on the winding mode ω, once the circle radius ρ is fixed. Since both quantities only
appear squared, the effective mass does not allow to tell the orientations of the string’s
winding and momentum. First and foremost, we should observe that:

• When taking the ρ 7→ ∞ limit, the mass-contribution of the winding number strongly
dominates that coming from the momentum quanta.
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• When taking the ρ 7→ 0 limit, the mass-contribution of the momentum quanta
strongly dominates that coming from the winding number.

It is particularly important, for reasons that will be soon made clear, to focus on two
specific families of states in the 9-dimensional effective theory. Namely, those for which
either ω = 0 or n = 0. In the first case, we have

M2
n =

n2

ρ2
, (2.4.40)

while the second provides us with:

M2
ω =

ω2ρ2

α′2
. (2.4.41)

We refer to such towers of states, where the term comes from the tower-like distribution of
the states’ masses, as those corresponding to momentum and winding states, respectively.
Interestingly enough, they show opposite mass-behaviours with respect to the radius ρ of
the compact dimension. In figure 2.2 this was shown using log ρ as a variable, consistently
with the notion of distance introduced in (2.4.26). Therefore, both the ρ 7→ ∞ and the

Figure 2.2: In this figure, the dependence of the three lighter winding and momentum
states on the logarithm of the compact dimension radius was depicted. As ρ is sent to
∞, the winding modes (orange) become infinitely massive, while the momentum modes
(orange) become massless. When it is, instead, sent to 0, the opposite behaviours are
achieved.

ρ 7→ 0 limit are accompanied by the appearance of infinitely many massless fields, from
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the perspective of the 9-dimensional theory. Regarding the circle radius ρ as a modulus of
the theory, belonging to a 1-dimensional moduli space

ρ ∈ M ∼ R+ ≡ [0,∞) (2.4.42)

and endowing such manifold with the distance

∆ (ρ2, ρ1) ∼ log
ρ2
ρ1

, (2.4.43)

we have that, starting from any finite value of the radius, all infinite distance limits in
the moduli space are characterised by an infinite tower of massless fields. Hence, they
are inconsistent. This feature will be further discussed in 3.2.1, in the context of the
swampland distance conjecture. Going back to the more general formula (2.4.39), we can
observe that it is left unchanged by the following substitutions:

ρ −→ α′

ρ
, m←→ n . (2.4.44)

This striking property, geometrically represented in figure 2.3, is typically referred to as
T-duality. In practice it implies that, for a 9-dimensional observer, a universe compactified
on a circle with radius ρ is indistinguishable from one compactified on a circle with radius
α′/ρ, as long as winding and momentum states are swapped. Hence, the answer to a simple
question such as

What’s the radius of the extra compact spatial dimension?

has two possible answers in the dimensionally-reduced effective theory, unless a specific
duality frame is chosen. Once more, we must stress that this was made possible due
to the presence of strings with non-zero length, as standard quantum field theory would
have not produced the winding number contribution to the masses of Kaluza-Klein modes.
Superstring theory exhibits many of such dualities, connecting apparently distinct phe-
nomenologies. Compactified type-IIA and type-IIB superstring theories themselves are, in
fact, T-dual to each other. The standard references [67, 68, 99], among others, cover the
topic in great detail. For now, it is only significant to stress that, via T-duality, strings
somehow realise a form of IR/UV mixing, in which large and short distances -and hence
small and large energy regimes- stop being decoupled and independent from each other.
As will be broadly commented on in section 3, this is expected to be a general property of
quantum gravity and defies standard effective field theory reasoning.
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T-duality

α′/R R

Figure 2.3: In this figure, the action of T-duality on the radius of the compact dimension
is pictorially represented. From the perspective of a 9-dimensional observer, only able to
probe the dimensionally-reduced theory, the two configurations are indistinguishable, as
long as winding and momentum modes are swapped. The number n of momentum quanta
is represented by the number of arrows along the compact direction, while ω is naturally
depicted by the actual windings. Hence, the blue string has (n1, ω1) = (2, 1). The red one
has, subsequently, (n2, ω2) = (1, 2).
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The Swampland Program

After having outlined the main features of superstring theory and having described the
non-trivial techniques via which space-time dynamics is obtained from the world-sheet ac-
tion, the notions of compactification and dimensional reduction were introduced as ways
to extract real world phenomenology from 10-dimensional supergravity. It is now the
appropriate time to discuss the most striking implications of such a framework on the
shared properties of superstring low energy effective theories. The attempt at construct-
ing viable, 4-dimensional and predictive extensions of the standard model, coupled to a
dynamical background space-time, in the context of superstring theory is by no means
a new research line. It has been, on the contrary, an active and fertile field of enquiry
for decades [101, 105–114]. In fact, string theory was originally conceived as a model in-
tended to explain the Regge slopes appearing in hadron experiments [115–118], and only
then showed its potential as a unified theory of quantum gravity and matter. The interest
in phenomenology was thus rooted in superstring theory from its birth. Nonetheless, it
was with the initiation of the so-called swampland program [119], which allowed to sys-
tematise a huge body of results in the light of a new set of organisational principles, that
our understanding of the subject made its most significant leap forward. This will be the
topic of the following chapter. Our discussion will be largely inspired by the standard
references [104, 120–124], but it will only cover a small portion of the available research.
Namely, after a general introduction to the distinction between the string theory landscape
and its complementary swampland, we will solely direct our attention to the distance con-
jecture and generalisations thereof. If interested in exploring the philosophical foundations
of superstring phenomenology, in which the problem of non-empirical theory assessment
gets central and unignorable, the reader might want to refer to [125–130].

3.1 Constraints on effective theories

The Planck-Einstein equation [131] notoriously relates the energy E of a photon to its
wavelength λ, with:

E =
2πℏc
λ

. (3.1.1)
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In the above expression, the reduced Planck constant ℏ and the speed of light in vacuum c
have been restored for the sake of clarity, instead of being set to one as is done in natural
units. Given the approximate values

ℏ ≈ 1.055× 10−34 J · s , c = 2.998× 10−8m · s−1 (3.1.2)

in SI units, one can roughly estimate, from purely quantum mechanical reasoning, the
length scale λexp which can be resolved by a photon with energy Eexp. When considering
massive particles, as the ones usually scattered in collider experiments, the formula (3.1.1)
serves as a good approximation in the relativistic limit, where the rest mass m is negligible.
In general, we have

λexp =
ℏ

2πpexp
=

ℏc
2π

√
1

E2
exp −m2c4

, (3.1.3)

where pexp is the particle’s momentum. It is clear that (3.1.3) reduces to (3.1.1) for massless
particles. When computed in the centre-of-mass reference frame associated to particles
colliding in high-energy accelerators, formula (3.1.3) provides us with an indicator of the
minimal ideal length which can be investigated by such experiments. Our chance to gather
data on short-range dynamics is, in a nutshell, naturally capped by the maximum energy
scale ΛEFT within the reach of our colliders. In the relativistic limit, their product is
approximately constant. This is the reason, together with the issue of renormalisability, for
which effective field theories [132–134] gained a central importance in modern fundamental
physics. They offer a powerful theoretical framework, together with valuable computational
tools, to construct and study models of the relevant degrees of freedom which can be excited
below a given energy. The precise features of the heavy modes lying above such scale are,
in this sense, irrelevant, as their ultraviolet dynamics ends up being integrated out and
absorbed into a family of operators and coupling constants governing the interactions of
low energy species. From this contemporary point of view, the standard model of particle
physics is thus best understood as the description of an effective dynamics, emerging as
the low energy approximation of some ultraviolet theory. Superstring theory is arguably
the most promising candidate to fulfil that role. But before allowing the constructions
developed in chapter 2 to take the stage, we might devote a few more sentences to the
perspective put forward by the effective field theory paradigm. Given the above discussion,
the history of fundamental particle physics could be told as that of a gradual high-energy
completion of our low-energy effective theories [135]. It should be clear, at this point, that
the development of our comprehension of fundamental physics is strongly challenged by a
lack of empirical evidence, when the energy scale under consideration is pushed towards
the ultraviolet regime. Nonetheless, there is an enormous body of evidence [104] suggesting
that, at the same time, constraints coming from the requirement of our effective theories
to be consistent with quantum gravity get tighter and tighter. In a way which resembles
a seesaw, it appears that as the amount of information coming from empirical evince
shrinks, that originated from mathematical self-consistency expands. Such an interplay
was pictorially represented in figures 3.1 and 3.2.
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Figure 3.1: In the low energy limit, constraints imposed by self-consistency loosen up,
while experimental data becomes easier to gather. Therefore, empirical evidence weights
more than consistency conditions.

Figure 3.2: In the high energy limit, experimental data becomes harder to gather, while con-
straints imposed by self-consistency tighten up. Therefore, consistency conditions weight
more than empirical evidence.
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This not only fuels our hope of being able to grasp the quantum properties of space-
time without building a collider the size of the Milky Way, but also outlines a set of
novel, general principles low energy effective theories should abide by in order to allow for
an ultraviolet completion to quantum gravity. The search for such principles constitutes
the bedrock of the swampland program, devoted at identifying the various ways in which
gravity defies the naive effective filed theory intuition and empowers further constraints on
low energy quantum field theories coupled to a dynamical space-time. Before discussing
it in detail, we will outline a remarkable though experiment which, albeit being extremely
simple, makes such a feature of space-time dynamics particularly evident. In order to so,
we should follow a diluted version of an argument originally proposed by Matvei Petrovich
Bronstein [136–140]. We will neglect all technicalities, which can be found in the references,
and stick to a purely heuristic derivation. Let’s consider, moreover, the simplest, possible
example we can work with. Namely, that of a spinless particle, as the one associated to a
real scalar. The formula (3.1.3) allows to once more estimate the wavelength associated to
such a particle when its momentum modulus is set to a value p as:

λ (p) =
ℏ

2πp
. (3.1.4)

On top of that, we have that the particle energy is given by:

E (p) =
√
p2c2 +m2c4 . (3.1.5)

What the effective field theory approach suggests is that, by increasing the value of p,
we would in principle be able to probe any length scale l, setting λ (p) ≤ l. Neverthe-
less, we must remember that general relativistic gravity universally couples to the energy-
momentum tensor. It is thus sourced by any kind of energy. The Schwarzschild radius
associated to (3.1.5) is

rs (p) =
2G

c4
E (p) , (3.1.6)

where GD is Newton’s constant. In the relativistic limit, we get:

rs (p) ≈
2Gp

c3
. (3.1.7)

It can be clearly observed that, for a high enough momentum

p ≥ p0 ≡
√

c3ℏ
4πG

, (3.1.8)

the particle’s wavelength becomes smaller than its Schwarzschild radius. Hence, we should
expect the system to collapse into a black hole. Such a momentum is associated to a
wavelength

λ (p) ≤ λ (p0) =

√
ℏG
πc3
≡ lP√

π
, (3.1.9)



3.1 Constraints on effective theories 41

in which lP is referred to as Planck’s length. On top of the fact that general relativity
seems to suggest that the ultraviolet regime should be dominated by gravitational bound
states, it is well know that the length scale associated to a black hole’s radius grows when
the system’s energy is increased. Therefore, the typical correspondence between higher
momenta and smaller resolved scales gets completely swapped. If gravitational degrees of
freedom are included in our low energy models, as should be done in order to properly
address the phenomenology of our universe, the relation (3.1.4) suggested by standard
effective field theory reasoning cannot be trusted when the momentum values characterising
a system approach p0. Including the corrections due to the presence of a non-zero mass,
we would get:

p ≥ p0 ≡
1√
2

√
−m2c2 +

√
m4c4 +

ℏ2c6
4G2π2

. (3.1.10)

This would do nothing more than lowering the momentum threshold at which the black
hole should appear, due to the presence of a non-zero rest mass energy contribution. This
can be seen, for small mass values, in figure 3.3. Since the m-derivative of the expression
for p0 is always negative, no deviation is introduced for larger mass values.

Figure 3.3: In this plot, the mass dependence of the threshold momentum value p0 at which
the system is expected to collapse into a black hole is shown. The momentum values are
expressed in standard SI units, while the mass m is re-scaled by a factor 10−7.

In summary, after having reached p0 and having had a chance to investigate lengths
comparable to λ (p0), we estimate that a black hole with radius λ (p0) would be produced.
From that moment on, any increase in energy would enlarge the black hole size, pushing
us back towards the infrared. Our results are nicely summarised in figure 3.4, in which
the two plots represent the momentum-dependence of the wavelength (3.1.4) and of the
Schwarzschild radius (5.1.50), respectively. It goes without saying that this should not
be taken as a full-fledged prediction, which could only be achieved by performing the
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adequate computation in a quantum gravitational framework as that offered by string
theory. Nonetheless, it shows in a simple and direct way that general relativity itself, even
when taken in its classical formulation, spoils our attempts at applying standard effective
field theory techniques to physical systems coupled to a dynamical space-time. Further
implications of this kind of phenomenon have been investigated in [141–145].

Figure 3.4: In this figure, the blue plot represents the wavelength associated to a par-
ticle’s momentum by formula (3.1.4), while the orange one depicts the linear growth of
the Schwarzschild radius (5.1.50). The vertical dashed line corresponds to the threshold
momentum value at which the latter exceeds the former, breaking the standard effective
field theory reasoning.

3.2 Swampland conjectures

Superstrings provide us with a quantum theory of gravity. Strictly speaking, this does not
rule out the fact that the actual microscopic dynamics general relativity emerges from in
the real world might be different from the one described by superstring theory, nor it im-
plies that every question concerning the nature, behaviour and non-perturbative features
of space-time in such a framework has received a satisfying answer [146–153]. In contem-
porary research, the attempts at addressing some of the issues related to the fundamental
properties of quantum gravity from the perspective of strings has produced numerous
groundbreaking results, as those related to the cobordism conjecture [154–162]. With that
being said, superstring theory, in the regimes over which we have control, can be safely
assumed to be a well-behaved theory of quantum gravity. Therefore, even if it eventually
turned out not to describe the specific ultraviolet dynamics realised in our world, it can
serve as a theoretical laboratory in which general expectations on quantum gravity can be
tested and investigated. Either it correctly describes the universe, or it offers us a useful
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guiding model to refine our intuition. Both options, even if they correspond to radically
different scenarios, motivate the great interest in superstrings as tools to probe physics
at the quantum gravity scale. For instance, when it comes to characterising black hole
microstates. The inquisitive reader is encouraged to refer to [53, 163–170] for a broad dis-
cussion of the subject matter. In addition, the theory possesses the promising attribute
of being almost uniquely fixed by self-consistency. As broadly discussed in chapter 2, the
number of space-time dimensions itself is imposed by requiring the covariantly quantised
theory to be unitary. Equivalently, the same result can be achieved by asking for covariance
in light-cone quantisation or absence of conformal anomaly when employing path integral
methods. This fact is peculiar, unexpected and should not be underestimated. It was
moreover shown, in section 2.3, how 10-dimensional space-time dynamics is determined by
forcing world-sheet scale invariance not to be broken at a quantum level, which translates
into setting the σ-model β-functions to vanish. Once more, everything descended from the
high degree of symmetry characterising the fundamental theory. Taken at face value, the
world-sheet perturbative action (2.1.2) has only one free parameter: the string length. In
terms of the usual constant α′, it can be expressed as:

ls =
√
α′ . (3.2.1)

These aspects precisely imply, as was previously stated, that the physics described by
superstring theory is strongly constrained by consistency conditions. At least, when the
energies involved in a process are high enough to resolve the full 10-dimensional space-time
theory, with both quantum corrections, parametrised by ℏ, and string-geometric ones, con-
trolled by ls. However, the same does not hold at any length scale. When moving towards
the infrared, consistency conditions loosen up, allowing for various effective quantum field
theories, coupled to a dynamical space-time metric, to be derived from the same ultraviolet
degrees of freedom. Each one of them clearly comes with a cut-off ΛEFT above which it
fails at providing a trustworthy approximate description of physical processes, since the
states that were integrated out while moving towards low energies get too relevant not to
be included in the action. This phenomenon, indeed, boils down to the existence of dis-
tinct low-energy vacua. Such a generic statement, which is expected to hold in one form or
another regardless of the quantum gravity theory one might consider, becomes particularly
problematic when focusing on the specific attributes of superstring theory [104]. In that
context, the number of alternative consistent vacua has been long established to be huge,
both by investigating general mechanisms via which they can be obtained and by gathering
theoretical evidence from those which have been constructed explicitly. The reasons for
this are multiple. Nonetheless, the major source of such degeneracy can be traced to the
necessity of employing compactification techniques. The issue was addressed in 2.4, where
a simple circular dimensional reduction example was worked out, and can be summarised
as follows: six of the ten space-time dimensions predicted by superstrings must be curled
up into a compact manifold, in order to connect the theory to our observed phenomenology.
Even if such a proposal might at first sound too imaginative, it naturally allows matter
fields to emerge from the geometric properties of space-time and constitutes a legitimate
scientific statement, which can be inquired via experimental means. Independently of the
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specific model under scrutiny, it is a well-established fact that general relativistic gravity
cannot be localised on a space-time submanifold with non-zero codimension [171]. There-
fore, from the perspective of an observer probing the 4-dimensional effective theory, it
would leak out in the extra dimensions, introducing short-scale deviations from Newton’s
potential. Generally speaking, one can model them [172,173] by introducing a Yukawa-like
term in Newton’s gravitational potential

V (r) = −G4M

r

(
1 + αe−βr

)
, (3.2.2)

which is exponentially suppressed as the typical length scale of an interaction grows. The
constants α and β depend on the specific shape and size compact dimensions are assumed
to be characterised by. Direct measurements can hence bound them, setting experimental
constraints on models with extra dimensions. Recent results can be found in [174]. After
having assessed the concrete and empirical nature of our discussion, we can focus once
more on superstring theory compactification. Starting from a higher-dimensional space-
time action derived from it and trying to develop a particular 4-dimensional, low-energy
phenomenology, numerous decisions must be meticulously evaluated and executed. These
correspond not only the choice of a precise compact geometry for the extra dimensions,
but also involve the stabilisation of moduli, the analysis of background fluxes and a careful
evaluation of the role played by non-perturbative extended objects, as branes and defects.
Even accounting for the web of dualities under which apparently diverse theories end up in-
ducing the same dynamics, this leads to a dramatic proliferation of admissible vacua. Let’s
consider, for instance, the example of 12-dimensional F-theory. Such model, introduced
in [175] as a tool to obtain realistic low energy effective theories by means of compactifica-
tion on elliptically fibered Calabi-Yau four-folds [176, 177], can be dimensionally-reduced
on a 2-torus T2 and mapped to a version of type-IIB superstring, in which the SL (2,Z)-
duality is made manifest. An extremely conservative estimate of a lower bound to the
overall number of consistent flux compactifications of 4-dimensional F-theory was set to
10272000 in [178]. In [179], a family of O (1015) vacua with the exact chiral spectrum of the
standard model of particle physics and directly realising gauge coupling unification was
presented. As a final example, type-IIA orbifold compactifications on T6/Z2 × Z2 were
considered in [180], supposing the existence of O (100) standard models in the studied en-
semble. A lot of effort was put into trying to grasp the size and features of the set of string
low energy effective theories in 4 dimensions [181–190]. Recently, machine learning tech-
niques have also been directed towards that same goal [191–194]. Given all the evidence
for the existence of a humongous family of viable vacua, one question naturally arises: can
any conceivable quantum field theory coupled to a relativistic dynamical space-time back-
ground be achieved as a superstring effective field theory? If the answer was affirmative,
the whole project of string theory phenomenology would be jeopardised, since no predic-
tion on low energy observables could be formulated. And as there is no guarantee that
humans will be able to probe arbitrarily small scales within the gap between those reached
by current accelerators and Planck’s length lP , string theory’s ultraviolet features might be
practically untestable. This might simply make the theory pointless. Fortunately, things
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revealed themselves to be much more favourable with respect to such a gloomy scenario.
Despite being relaxed, self-consistency constraints, while flowing from quantum gravity
towards lower energy scales, do not disappear completely. In fact, ultraviolet degrees of
freedom seem to leave a marked imprint on the general, shared features of low energy
vacua. In short, not all apparently consistent quantum field theories coupled to general
relativity can emerge as low energy limits of superstring theory. The qualifier apparently
is not accidental. Instead, it precisely refers to the fact that our usage of the word consis-
tent was the one suggested by traditional effective field theory reasoning, not necessarily
allowing for an ultraviolet completion towards quantum gravity. Remarkably, superstring
theory suggests that we should narrow our notion of consistency, when analysing seemingly
well-behaved vacua. New principles are required. In order to make our discussion more
precise, two important concept should be introduced:

• We define the string theory landscape as the family of quantum field theories coupled
to a dynamical space-time metric that can be obtained as superstring theory vacua,
apparently consistent below a given energy cut-off Λ.

• We define the string theory swampland as the family of quantum field theories coupled
to a dynamical space-time metric that cannot be obtained as superstring theory
vacua, apparently consistent below a given energy cut-off Λ.

Figure 3.5: Pictorial representation of the space of apparently consistent quantum field
theories coupled to gravity at a given energy scale, from the perspective of standard effective
field theory reasoning. In the ultraviolet regime, consistency constraints are expected to -
almost- uniquely fix quantum gravity, while they appear to loosen up while flowing towards
the infrared. The conditions which need to be satisfied in order to be part of the landscape
relax accordingly. This well-known figure was taken from [104].
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It goes without saying that, given the above definitions, the landscape and the swampland
can be understood as complementary subsets of the encompassing family of effective field
theories coupled to gravity appearing to be consistent below an energy threshold Λ. The
existence of a string theory swampland was first discussed in [119] and quickly became a
relevant topic in superstring phenomenology [195–199]. Nonetheless, it was only in the last
ten years that it gained the enormous traction that still characterises it. For a -largely
incomplete- selection of recent, influential works on the subject matter, one might refer
to [200–261]. As already stated at the beginning of this chapter, more general introductions
can be found in [104, 120–124]. Figure 3.5 nicely summarises the distinction between the
swampland and the landscape. The central purpose of the swampland program is to find
accurate criteria of demarcation between the landscape and the swampland, formalising
those consistency conditions that, while not being captured by standard effective field
theory reasoning, arise from the necessity for an ultraviolet completion to quantum gravity.
This is roughly summarised in figure 3.6. Naturally, in order to be useful and bear meaning,
such statements should only concern to explicit features of the low energy effective theories,
without referring to the microscopic dynamics from which they are expected to emerge.
Providing a solid proof of statements of that sort without having complete control on

Effective theory Swampland criteria

Swampland

Landscape

Figure 3.6: Schematic representation of how swampland criteria are expected to work.
Starting from an effective field theory, they should allow to place it either in the swampland
or in the landscape only referring to its low energy features.

the fundamental, microscopic theory under scrutiny is a dramatically challenging task.
Nonetheless, the body of theoretical evidence supporting what the community refers to
as swampland conjectures has experienced a notable growth. In particular, many of such
proposed criteria, suggested by evidence gathered in widely different contexts, have been
shown to be linked to each other, if not absolutely equivalent. One striking example is
the one offered by the refinement of the no global symmetries conjecture [262, 263] via
cobordism classes, first outlined in [154]. The emergence proposal [104, 264–268], on the
other hand, is a direct attempt at deriving multiple swampland conjecture from the same
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microscopic principles. What was previously grouped under the generic label of theoretical
evidence comes, in practice, from three main sources:

• Known string vacua First and foremost, one can observe the ever-growing set of
understood string vacua and hypothesise that their shared properties are, indeed,
common to all effective field theories belonging to the landscape. This approach is
particularly solid when the vacua are explicitly derived from superstrings, possess a
full-fledged world-sheet formulation and are therefore certain to allow for an ultravio-
let completion to quantum gravity. Unfortunately, this is not always the case. Many
investigated models, albeit being inspired by the kind of features and objects one
typically finds in string theory, are established after having made numerous assump-
tions. Due to their nature, such examples provide evidence that should be taken with
a grain of salt. The more a vacuum is string-inspired, rather than string-derived, the
less reliable it is when trying to assessing a swampland conjecture.

• Quantum gravity arguments While establishing the shared features of low energy
effective field theories than can be successfully completed to quantum gravity, it is
clear that our general expectations on the properties of such ultraviolet limit can play
a crucial role. Evidence from black holes thermodynamics, holography and quantum
field theory in curved space-time can substantiates our conjectural constraints on
infrared dynamics by unveiling contradictions and violations of fundamental princi-
ples. Namely, by shedding light on those processes in which the effective description
would break down and require either to be regarded as irredeemably inconsistent, or
to be rescued by the some non-trivial quantum gravitational effects. A noteworthy
example is that of the Hawking radiation emitted by black holes [269–273], which is
expected to break unitarity if the behaviour predicted by standard methods can be
extrapolated for long evaporation times. These arguments possess the strength of
being broad and almost independent from our assumptions on the specific quantum
gravity dynamics realised in the ultraviolet, but lack the sharpness and precision of
those assessed by analysing explicit string vacua. Moreover, they require to make a
series of strong assumptions on the validity range of our effective models.

• Microscopic principles Starting from a specific and -at least partially- well un-
derstood ultraviolet theory, or from a set of microscopic principles quantum gravity
is expected to satisfy, it might in principle be possible to straightforwardly derive
a family of constraints consistent low energy effective field theories would have to
satisfy. Such propositions would be derived in a purely top-down fashion. Hence,
the associated body of evidence would be much more solid, from both a conceptual
and a formal perspective, than that gathered via exploiting general quantum gravity
arguments or shared properties of known string vacua. Nonetheless, it would also be
heavily dependent on our comprehension of the microscopic behaviour of the space-
time metric. The search for microscopic arguments should always be guided and
supported by bottom-up data.
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Evidence from explicit
superstring vacua

General quantum
gravity arguments

Derivations from
microscopic principles

Swampland conjectures

Figure 3.7: Schematic representation of the distinct forms of evidence backing up swamp-
land conjectures. Usually, they tend to agree and point towards the same direction. Obvi-
ously, the amount of data supporting the various conjectures is extremely heterogeneous:
some of them are at the verge of being proven, while others are still highly speculative.

Given a specific swampland conjecture, the evidence backing it up is usually found to
be comprised of contributions from all the three sources briefly described above. This is
summarised in figure 3.7. A strong argument in favour of the swampland program comes,
as discussed in [104], from the fact that general quantum gravity arguments, inductive
inferences from known string vacua and, whenever possible, derivations from microscopic
principle have, in many distinct contexts, proven themselves to be extremely coherent
with each other. Furthermore, it oftentimes happens that seemingly distinct conjectures,
referring to different features of low energy theories and posing separate constraints, end up
being unified into a common, broader perspective, highlighting novel connections between
apparently independent aspects of quantum field theories coupled to gravity. As was
broadly discussed at the beginning of this chapter, standard effective field theories come
equipped with an energy cut-off ΛEFT, above which the low energy description is expected
to break down. Swampland conjecture typically pose the existence of a further scale
ΛSwamp, appearing when space-time dynamics is taken into account, the Planck’s mass
MP is assumed to be finite and quantum fields are, subsequently, coupled to gravity.
The swampland scale ΛSwamp must be interpreted at the energy value at which physical
processes start to be heavily influenced by quantum gravity, allowing for an ultraviolet
completion towards superstring theory. If the parameters of the infrared theory are such
that ΛEFT > ΛSwamp, the presence of ΛSwamp concretely translates into the fact that, when
flowing towards smaller length scales, non-trivial quantum gravity effects break the effective
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description down before it would have been predicted by standard techniques. When the
gravity decoupling limit MP →∞ is taken, we have that ΛSwamp →∞, gravity decouples
and the traditional conceptual framework of quantum field theory in a fixed space-time
background is restored.

Completeness
Hypothesis

No Global
Symmetries

Cobordism
Conjecture

Weak Gravity
Conjecture

Distance
Conjecture

Ricci Flow
Conjecture

de Sitter
Conjecture

Anti-de Sitter
Conjecture

Figure 3.8: The diagram contains a limited number of swampland conjectures and high-
lights the most significant conceptual connections among them. This is by no means
intended to be a complete assessment of the state of current debates, nor it is aimed at
containing all pertinent information. Rather, it should be seen as a pictorial representation
of the intricate web of interrelated swampland criteria, from which a deeper and general
perspective is slowly emerging.

3.2.1 The Swampland distance conjecture

In section 2.4, a rudimentary mass spectrum analysis of circle-compactified type-IIA su-
perstring theory highlighted the presence of two infinite towers of states, associated to
winding and momentum excitations. Their masses can be simply expressed as

Mn =
n

ρ
, Mω =

ωρ

α′ , (3.2.3)

where ρ is the circle radius in a given set of units and the integers n and ω respectively
count the momentum quanta and the closed string windings along the compact direction.
Remarkably, as was nicely depicted in figure 2.2, they display opposite behaviours with
respect to fluctuations of the compact dimension size. Furthermore, it was argued that
such length scale, up to all the details related to stability conditions, could provide a
non-ambiguous way to distinguish between different circle-compactifications of superstring
theory. Namely, it could be understood as a modulus parametrising the space of the
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resulting dimensionally-reduced effective field theories. Nonetheless, instead of regarding
the value of ρ itself as a modulus, it would be natural to connect such a notion to the
vacuum expectation value of some scalar field. This is indeed possible and quite direct.
Considering the string-frame expression (2.3.3) for the 10-dimensional action emerging
from type-IIA superstring theory and integrating out the compactified circle direction, one
can absorb the resulting factor into the dilaton volume term exp{−2Φ}. This way, the
9-dimensional dilaton Φ9 is defined by

e−2Φ9 ≡ 2πρMse
−2Φ , (3.2.4)

where the string scale Ms is nothing more than:

Ms ≡
1

2π
√
α′

. (3.2.5)

This directly translates into the relation:

Φ9 = Φ− 1

2
log (2πρMs) . (3.2.6)

Imposing the 9-dimensional Planck’s mass, which acquired a non-trivial dependence on the
compact dimension radius, to be equal to one, we must pick units so that:

Ms ∼ (2πρ)1/7 . (3.2.7)

This was extensively discussed in [104] and provided, in Planck units, the following expres-
sions:

M (E)
n =

n

ρ

(
1

2πρ

)1/7

, M (E)
ω =

ωρ

α′ (2πρ)
1/7 . (3.2.8)

At this point, we can juxtapose low-energy effective theories characterised by different
vacuum expectation values ⟨Ω|Φ|Ω⟩ of the dilaton. In order for such a comparison to be
meaningful from the perspective of a low-energy observer, we want to perform it while
keeping the 9-dimensional dilaton vacuum expectation value ⟨Ω|Φ9|Ω⟩ fixed. Hence, any
displacement

⟨Ω|Φ|Ω⟩ −→ ⟨Ω|Φ|Ω⟩+ δ ⟨Ω|Φ|Ω⟩ (3.2.9)

should be compensated by a radius displacement:

ρ −→ ρ+ δρ . (3.2.10)

In particular, we have that:

δ ⟨Ω|Φ9|Ω⟩ = 0 =⇒ δ ⟨Ω|Φ|Ω⟩ = 1

2

δρ

ρ
. (3.2.11)

Therefore, using
φ ≡ ⟨Ω|Φ|Ω⟩ ∈ Mϕ ∼ R (3.2.12)
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as a modulus of the theory and introducing the natural distance

∆ (φ2, φ1) ≡ |φ2 − φ1| , (3.2.13)

the mass scalings in (3.2.3) get can be expressed, in Einstein-frame units, as:

Mn ∼ eαφ , Mω ∼ e−αφ . (3.2.14)

Given the above the discussion, the arbitrary notion of moduli space distance introduced
in (2.4.26) has thus been properly and solidly justified. The constant α can be computed
to be equal to

α =
8√
77
∼ O (1) (3.2.15)

as it depends on the specific factors (3.2.8) appearing in the reduced mass operator.
Rephrasing the analysis performed in 2.4 in these new and more precise terms, we have
that any infinite distance limit in the 1-dimensional moduli spaceMΦ ∼ R is accompanied
by an infinite tower of states getting exponentially lighter. Namely, starting from any finite
value φ1 ∈ MΦ, considering a distinct theory characterised by φ2 ∈ MΦ and computing
the distance between the two as in (3.2.13), the infinite distance limits φ2 7→ ±∞ are
characterised by infinitely many massless species appearing in the spectrum. They are
hence inconsistent. In other words, the microscopic features of superstring theory, from
which our models emerge as low-energy effective limits, force infinite distance limits in the
moduli spaceMΦ to be in the swampland. This is a first and straightforward example of a
general behaviour of string compactifications, formally described by the so-called swamp-
land distance conjecture [274–276]. In the following discussion, the explicit dependence
on Planck’s mass will be restored for the sake of clarity. The original statement of the
swampland distance conjecture, in the absence of a potential, can be expressed as follows.

Swampland Distance Conjecture. Let Φ ≡
(
ϕ1, . . . , ϕN

)
be the fields whose dynamics

is described by a low energy effective field theory coupled to a dynamical D-dimensional
space-time M, with |Ω⟩ being a corresponding vacuum state. Furthermore, let the N-
dimensional manifold MΦ represent its moduli space, charted by the vacuum expectation
values:

φi ≡
〈
Ω|ϕi|Ω

〉
, i = 1, . . . , N . (3.2.16)

If two points φ̄A and φ̄B in MΦ are considered, their geodesic distance can be defined
and is referred to as ∆AB = ∆(φ̄A, φ̄B). Therefore, there must exist an infinite tower of
additional fields ψj, characterised by a moduli-dependent mass threshold

m : MΦ −→ R (3.2.17)

displaying an exponential drop in the geodesic distance, when approaching an infinite dis-
tance limit in the moduli space. Namely, every infinite distance limit in MΦ should be
accompanied by an infinite tower scaling as

m (φ̄B) ∼ m (φ̄A) exp

−α ∆AB√
MD−2

P

 (3.2.18)
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when ∆AB ≳MP, with α ∼ O (1) and positive.

While stating the above conjecture, many assumptions have been made and multiple
concepts have been taken for granted. Before relaxing the former and commenting on some
notable generalisations of our current discussion, the latter will be made more explicit. In
particular, the notion of a moduli space geodesic distance will be properly introduced.
Acting on the presumption that MΦ can be accurately modelled as a topological manifold,
which is straightforward in the case at hand, we are allowed to endow it with a moduli
space metric hij (φ̄). For the specific and instructive example of a family of scalar fields φ̄,
the tensor can be directly read off from the low-energy effective theory space-time action

S [g,Φ] =
1

2κ2D

∫
M

dDx
√
−g
[
Rg − hij (Φ) ∂µϕi∂µϕj

]
, (3.2.19)

where the xµ are a family of space-time coordinates, the signature of the space-time metric
gµν is taken to be the mostly positive one (−,+, . . . ,+) and the moduli space metric
appears in the scalar fields kinetic terms. Naturally, in order to be interpreted as such,
hij has to be evaluated on the set φ̄ of vacuum expectation values, which play the role of
coordinates on MΦ. A redefinition of the chosen basis ϕi of the fields space, which induces
an analogous transformation of the vacuum expectation values φi in the quantum theory,
consistently translates into changes in the kinetic terms and, consequently, in the moduli
space metric. Moreover, the matrix hij must be positive definite, in order for the equations
of motion for the fields to be well defined from an analytic perspective. The differentiable
manifoldMΦ is, hence, Riemannian, with signature (+, . . . ,+). The Levi-Civita conditions

∇khij = 0 (3.2.20)

uniquely fix a connection on the moduli space, with Christoffel symbols given by:

Γijk =
hil

2

(
∂hlj
∂φk

+
∂hlk
∂φj

− ∂hjk
∂φl

)
. (3.2.21)

If φ̄A and φ̄B are taken to be two points in MΦ, there is always one curve

γ̄ : [0, 1] −→MΦ (3.2.22)

connecting them, with γ̄ (0) = φ̄A and γ̄ (1) = φ̄B, that satisfies the geodesic equation:

d2γi

ds2
+ Γijk (γ̄)

dγj

ds

dγk

ds
= 0 . (3.2.23)

Hence, the geodesic distance ∆AB between the two points can be obtained as the length
of the minimal geodesic that connects them:

∆AB ≡
∫ 1

0

ds

√
hij (γ̄)

dγi

ds

dγj

ds
. (3.2.24)
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MΦ

A

B

Figure 3.9: Portrayal of the moduli space MΦ, whose points unambiguously correspond
to sets of vacuum expectation values for the scalar fields appearing in (3.2.19). Generally
speaking, the moduli space can be characterised by complicated metric and topological
properties. Nonetheless, infinite geodesic distances are always expected to be accompanied
by infinite towers of massless states. The representation of one of such pathological limits,
where theories become inconsistent, was included in the figure.

The adjective minimal was included for the sake of clarity, as there are instances in which
two moduli space points can be connected by more than one geodesic. Then, the shortest
one has to be chosen. With our distance definition, trivial large curve-lengths produced
by non-geodesic paths are excluded from discussions related to the swampland distance
conjecture. The distance between two moduli space points is defined as nothing more than
the length of the shortest curve connecting them. Furthermore, when such a length is sent
to infinity an infinite tower of massless states is expected to appear in the spectrum. This
behaviour is schematically depicted in figure 3.9.

Interpreting infinite distances

In the example presented in 2.4.1 and further developed in the above discussion, in which
a circle compactification of a 10-dimensional space-time action was analysed, infinite dis-
tances in the moduli space either corresponded to the radius ρ ∈ R+ of the compact
dimension going to infinity or to zero. From the perspective of an observer able to probe
the 9-dimensional effective field theory, defined on the non-compact directions, up to an
energy scale ΛEFT, the large-ρ regime corresponds to a decompactification limit. Namely,
as ρ grows, the energy required to resolve the size of the hidden dimension decreases. An
estimate of the size at which such energy gets smaller than the effective field theory cut-off
ΛEFT can be obtained from (3.1.3). For a massless probe, ignoring all the phenomenological
and technical details of a realistic experimental setting, we have:

ρ ∼ ρc ≡
ℏc

ΛEFT

. (3.2.25)
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When the circle radius ρ is comparable to the critical radius ρc, the extra spatial dimen-
sion becomes accessible to the low energy observer and cannot be ignored. Therefore, the
description offered by the dimensionally-reduced theory breaks down and becomes incon-
sistent. For ρ > ρc, the cut-off above which the effective theory has to be modified is
lowered by the necessity of preventing the hidden dimension to be revealed. The other
limit, in which the compact dimension size shrinks to zero, can be straightforwardly in-
terpreted as being conceptually equivalent to the first one by means of T-duality 2.4.1.
Otherwise, it can be seen as corresponding to a regime in which the compact dimension
size is commensurate to the string length. Roughly, this translates into:

ρ ∼ ls ≡
√
α′ . (3.2.26)

In such a setting, the effective field theory description in terms of local, interacting quan-
tum fields and point-like excitations is doomed to fail. This is due to the fact that the
extended nature of the fundamental degrees of freedom propagating along the circular di-
mension cannot be neglected anymore. Along the same line of reasoning, the practice of
modelling space-time as a smooth, Lorentzian, and differentiable manifold might be jeop-
ardised by string-theoretic corrections to the geometry. Whereas decompactification limits
are already present at the level of dimensionally-reduced quantum field theories, without
any peculiar feature of superstring theory being necessary for them to be realised, the
low-energy effective field theory breakdown when the internal dimension radius gets small
is deeply rooted into the properties of our particular quantum gravity framework. This is
reflected into the former being characterised by an infinite tower of Kaluza-Klein modes
getting exponentially lighter, while the latter is compromised by the appearance of light
winding modes. As has been commented on in 2.4.1, only the second ones are tied to
the specificities of superstrings, since they emerge from closed strings winding around the
extra dimension and do not figure when compactifying traditional quantum field theories.
The swampland distance conjecture has been widely explored and extended [224,277–284],
fruitfully applied in the context of cosmology [285–288] and related to either the restora-
tion of global symmetries, which should be absent from any consistent theory of quantum
gravity [262, 263, 289–296], or the emergence of a critical string [297–299]. In a series of
works [159, 202, 203, 217, 242, 249, 300–303], some of which will constitute the backbone of
part II, multiple generalisations of the conjecture to the space-time metric itself were put
forward. Before considering the details of the results derived in [300] and [302], we will
now provide a concise introduction to the motivations, guiding principles and typical tools
employed when trying to construct a distance conjecture for space-time geometries.



Geometric Flows

The swampland distance conjecture, stated in [274] and comprehensively discussed in sec-
tion 3.2.1, relates infinite distance limits in the moduli space of effective theories coupled to
gravity to the appearance of infinite towers of asymptotically massless states. Given that
a similar behaviour is observed when sending the negative cosmological constant charac-
terising AdS space-time to zero, an appropriate extension of the conjecture was proposed
in [247]. This, together with the fact that many of the scalars appearing in dimensionally-
reduced superstring low energy limits emerge from the 10-dimensional metric degrees of
freedom, motivated the search for a distance conjecture for the geometry, specifically re-
ferring to metric displacements. A candidate statement was presented in [242], where the
mathematics of geometric flows allowed to frame the AdS flat limit in a more encompass-
ing context. Further refinements [202, 203, 217, 303], generalisations [300, 302] and appli-
cations [159, 249, 301] thereof were subsequently explored. Geometric flow equations were
originally applied in the context of string theory and condensed matter physics by Daniel
Friedan, while analysing an extension of Aleksandr Markovič Poljakov’s discussion [304] of
the O (N)-invariant nonlinear σ-model renormalisation in 2 + ϵ dimensions [305]. Due to
its analytic properties and striking connection to the σ-model graviton β-function derived
from superstring theory, the most notable example of a geometric flow can be found in
Richard Hamilton’s Ricci flow [306,307], defined as:

dgµν
ds

= −2Rµν . (4.0.1)

In the above expression, Rµν is nothing more than the Ricci curvature tensor associated to
the metric gµν and s is a real flow parameter on which all such quantities depend. Therefore,
a one-parameter family of metric tensors gµν (s) is said to evolve according to Ricci flow,
up to a flow-dependent diffeomorphism, if the equation (4.0.1) is satisfied for every value
of s. In order for the differential problem to be solved, one naturally has to supply it
with an initial condition ḡµν . The mathematically oriented reader might want to refer to
the monographs [308–310] for a deeper and formal discussion of the techniques employed
in this chapter. Before concluding our brief introduction, it must be emphasised that
geometric flows of Lorentzian manifolds are both more problematic and less understood
than their Euclidean analogues. The Geometrisation conjecture, for instance, has so far
not been extended nor adapted to Lorentzian manifolds. Grigori Perelman’s proof [311–
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313] of its Riemannian counterpart, which served as an establishment of the Poincaré
conjecture, specifically relied on Ricci flow, together with the tools offered by entropy
functionals and surgery procedures. In the following discussion, we will start from the
considerations contained in [247] and gradually connect the swampland distance conjecture
to such techniques, constructing a framework in which distances between nonequivalent
metrics can be meaningfully defined and computed.

4.1 AdS distance conjecture

The cosmological constant Λ, which provides the general relativistic field equations

Rµν −
1

2
Rgµν + Λgµν = κDTµν (4.1.1)

with a term proportional to the metric tensor, was first proposed by Albert Einstein in 1917
[314–316]. At the time, it served the purpose of counter-weighting the attractive nature
of gravity, so that static space-time geometries could be constructed. Regardless of its
philosophical appeal, the conjectural staticity of space-time was soon disproved by Edwin
Hubble’s experiments, suggesting that the universe was indeed expanding. Therefore, the
motives for which a non-zero Λ was considered in the first place ceased to exist [317]. The
necessity for a positive cosmological constant resurged only at the end of the last century,
after a thorough analysis of the light emitted by a set of type Ia supernovae [318–320]
suggested that the universal expansion rate was not diminishing, as expected, nor remaining
constant. Instead, it was increasing. Postulating a small, positive cosmological constant
can be arguably regarded as the most natural way to account for such evidence. Assuming
Tµν = 0 and Λ > 0, the simplest vacuum solution to (4.1.1) is that of de Sitter space-time,
here written in static coordinates (t, r, ϑ1, . . . , ϑD−2):

ds2 = −
(
1− r2

α2

)
dt2 +

(
1− r2

α2

)−1

dr2 + r2dΩ2
D−2 . (4.1.2)

The de Sitter horizon radius α is defined as:

α ≡
√

(D − 1) (D − 2)

2Λ
. (4.1.3)

Any candidate theory of quantum gravity would, thus, be naively expected to motivate
the ad hoc introduction of a cosmological constant from first principles, or at least not
to prohibit it. While the endeavour to construct an explicit quantum de Sitter vacuum
is a worthwhile one, which has also been undertaken in the context of superstring theory
[321–323], there is a growing body of evidence suggesting that this might be unfeasible.
It has been notably argued, without explicitly evoking any particular quantum gravity
framework, that de Sitter space-time might only be realised as a temporary excited coherent
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state of gravitons [232,324,325], with a typical quantum break-time equal to:

tQ =
1

H3

(
MP√
Nsp

)2

. (4.1.4)

The right-hand side of the formula (4.1.4) contains the Hubble parameter H characterising
a de Sitter patch, the number Nsp of species contained in a low energy effective theory and
the Planck mass MP. The last two are, moreover, combined into the species scale

Λsp ≡
MP√
Nsp

, (4.1.5)

at which the ultraviolet quantum gravity degrees of freedom are supposed to become rele-
vant [326]. Starting from the excited quantum state corresponding to de Sitter space-time
and allowing it to evolve for a duration comparable to tQ, non-perturbative effects are
expected to make it depart from any semi-classical approximation. In a nutshell, a posi-
tive cosmological constant vacuum might not be admissible in quantum gravity. In order
to replicate the large-scale properties of the universe, one would thus have to obtain the
measured value of Λ by temporarily exciting an appropriate space-time ground state. As-
suming the argument to hold, no theory of quantum gravity should allow for eternal de
Sitter states. These considerations, while not conclusive, seem to suggest that the apparent
obstruction to the existence of de Sitter vacua encountered in superstring phenomenology
is one of the model’s strengths, rather than a shortcoming. The standard formulation of
the swampland de Sitter conjecture [255, 257], along with its various refinements, nicely
synthesises this putative feature of the theory.

Swampland de Sitter Conjecture. Let Φ ≡
(
ϕ1, . . . , ϕN

)
be a family of scalar fields

whose dynamics is controlled by a potential V (Φ) and described by a low energy effective
field theory coupled to a dynamical D-dimensional space-timeM. We have that V (Φ) has
to satisfy at least one of the following conditions:

|∇iV | ≥
c1
MP

· V , (4.1.6)

min (∇i∇jV ) ≤ − c2
M2

P

· V . (4.1.7)

In the inequalities, the positive constants c1 and c2 are taken to be O (1) and the usual fields
space metric is assumed. Furthermore, the scalar potential Hessian ∇i∇jV is computed in
an orthonormal frame.

As derived in the above references, this conjecture prevents the construction of stable
de Sitter vacua. This can be clearly deduced by observing that (4.1.6) forbids any potential
minimum to produce a positive vacuum energy, whereas (4.1.7) implies the existence of an
instability. When the gravity decoupling limit MP → ∞ is taken, the bounds (4.1.6) and
(4.1.7) are trivially satisfied. This is perfectly consistent with the fact that swampland
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conjectures are allegedly enforced by non-trivial gravitational effects. Regardless of how
fascinating it might be, further exploring the issue at hand would go beyond the scope of
this chapter. The reader is once more encouraged to refer to [149] for an up-to-date and
comprehensive review of the subject matter. As far as the following discussion is concerned,
it is instead crucial to emphasise how the difficulties arising when trying to obtain de Sitter
metric via string compactifications do not affect Λ = 0 nor Λ ≤ 0 solutions. The latter,
in particular, are ubiquitous and offer a way to study space-time manifolds with non-zero
cosmological constant in a controlled, superstring setting. We will hence focus, for the
remainder of our work, on Anti-de Sitter space-time, which can be expressed in global
coordinates (t, r, ϑ1, . . . , ϑD−2) as:

ds2 = −
(
1 +

r2

β2

)
dt2 +

(
1 +

r2

β2

)−1

dr2 + r2dΩ2
D−2 . (4.1.8)

The Anti-de Sitter radius β is defined by the equation:

β ≡
√

(1−D) (D − 2)

2Λ
. (4.1.9)

Albeit being less directly connected to real world phenomenology than solutions with a
positive cosmological constant, Anti-de Sitter space-time proved itself to be a fertile and
useful theoretical laboratory in which to test our general expectations on quantum gravity.
First and foremost, as it offered an explicit realisation of the holographic principle by
means of the AdS/CFT correspondence [327–334]. Inspired by the references [335–339],
which offer a far more elaborate analysis, we will now describe an explicit supergravity
solution that allows to embed 5-dimensional Anti-de Sitter space-time in a supergravity
background.

4.1.1 Conjecture statement

It is a well-understood fact that a D-dimensional Anti-de Sitter space-time AdSD, charac-
terised by a radius β, can be isometrically embedded into a flat (D + 1)-dimensional man-
ifold MD+1, with signature (−,−,+, . . . ,+) and coordinates (t1, t2, η1, . . . , ηD−1). More
specifically, it corresponds to the submanifold defined by the constraint equation:

β2 = t22 + t21 −
D−1∑
i=1

x2i . (4.1.10)

This directly allows Anti-de Sitter space-time to inherit the SO (2, D − 1) isometry group
of MD+1, as its action leaves (4.1.10) unchanged. Such a group generally admits super-
symmetric enhancements. A classification of extended supersymmetries in AdSD, with
D = 4, 5, 6, 7, was provided in [340]. Here, we are interested in the landmark example of
5-dimensional Anti de Sitter space-time, for which we have the gauged supergravities:

SO (2, 2|N /2) , N = 2, 4, 6, 8 . (4.1.11)
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The N = 8 theory, with global symmetry E6 and gauge group SU (4), can be straightfor-
wardly derived in the context of 10-dimensional type IIB supergravity. In particular, the
construction involves considering an S5 compactification and assuming the Freund-Rubin
ansatz, in which the self-dual field strength

F ≡ dC4 , (4.1.12)

associated to the 4-form C4, is set to be proportional to the volume element of the compact
dimensions. Namely, it is assumed to take the form

F µ1...µ5 =
ϵµ1...µ5
√
gS

f , (4.1.13)

where the µ1, . . . , µ5 indices refer to the compact directions, gS is the sphere metric de-
terminant and f is a constant. The (4.1.13) ansatz can be shown to satisfy the equations
of motion for C4. Furthermore, it corresponds to the appearance of a non-trivial energy-
momentum tensor in Einstein field equations (4.1.1). By setting the cosmological constant
Λ to zero, such equations can be solved by the 10-dimensional Cartesian product of an
AdS5 and an S5 manifold, both having radius:

ϱ =
2
√
2

f
. (4.1.14)

From the perspective of an observer probing the non-compact AdS5 manifold, the presence
of F sources an effective cosmological constant:

Λeff = −3

4
f 2 . (4.1.15)

Regarding Λeff as a coordinate on the 1-dimensional moduli space of distinct 5-dimensional
effective theories, we have that the radius of the unobservable compact dimensions can be
written as a moduli space function:

ϱ =
√
6 |Λeff|−

1
2 . (4.1.16)

It can be easily shown that, as for the circle compactification discussed in 2.4.1, the mass
threshold of the Kaluza-Klein tower realised by wrappings around S5 scales as:

MKK ∼
1

ϱ
∼ |Λeff|

1
2 . (4.1.17)

Therefore, we have that the flat space-time limit Λeff → 0, which corresponds to a decom-
pactification limit of the internal dimensions, must be accompanied by an infinite tower of
asymptotically massless states. This phenomenon, while concerning the displacement of
a parameter entering the space-time metric, precisely resembles the distance conjecture.
Hence, it led to the formulation of the AdS distance conjecture [247].
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AdS Distance Conjecture. Let’s consider a one-parameter family of D-dimensional
Anti-de Sitter space-time metrics gµν (Λ), obtained as quantum gravity low-energy effective
theories and labelled by the value of the cosmological constant Λ which sets their curvature
radius. Let MΛ ∼ R− be the corresponding moduli space, distinguishing between different
values of Λ. Therefore, there must exist an infinite tower of fields ψj, characterised by a
moduli-dependent mass threshold

m : MΛ −→ R (4.1.18)

displaying a power-law drop

m ∼ |Λ|α (4.1.19)

in the cosmological constant, when approaching the flat space-time Λ → 0 limit in the
moduli space. In the above equation, expressed in Planck units, the number α is taken to
be ∼ O (1) and positive.

A further refinement is offered by the so-called Strong AdS distance conjecture, which
requires α = 1/2 for supersymmetric AdS vacua. It was subsequently shown [219] that the
above discussion can be generalised to an arbitrary number of space-time dimensions.

4.2 The moduli space of metrics

In the previous derivation, it was shown how dimensionally-reduced superstring AdS5 low
energy effective theories can give rise to the appearance of infinite towers of asymptotically
massless states. More precisely, it was argued that such states are expected to become light
in the flat space-time limit Λ → 0. This sticking analogy with the analysis presented in
3.2.1 motivated the formulation of the Anti-de Sitter distance conjecture, together with its
refinement. Cosmological constant displacements, which translate into displacements of the
space-time metric, seem to obey a particular form of the swampland distance conjecture,
traditionally applied to vacuum expectation values of scalar fields. Alongside the observa-
tion that many of the scalars populating superstring low energy effective theories emerge,
via compactification, from degrees of freedom originally pertaining to the 10-dimensional
metric tensor, the interplay between cosmological constant limits and towers of light states
strongly hints at the need for a more general theoretical framework. Namely, it appears to
suggest that any space-time metric displacement should be accompanied by the emergence
of an infinite tower of asymptotically massless states. Another argument in favour of this
perspective might come from the very origin of geometric and matter degrees of freedom
in the context of superstring theory, which are unified as excitations of the same funda-
mental objects. Our discussion of metric displacements, so far, lacks the precision of the
standard distance conjecture, mainly due to need for a generalised notion of moduli space
able to account for distinct geometries, which should itself be endowed with a suitable
metric structure. The aim of the following discussion is to make such an intuition precise.
Hence, distances between different solutions for the space-time metric will be defined in a
meaningful and formal way. Along the lines of [247], this endeavour requires us to start by
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recalling that, when dealing with scalar fields, the moduli space metric hij (Φ) was obtained
from the Lagrangian kinetic term

Lkin (Φ) ∼ −hij (Φ) ∂µϕi∂µϕj (4.2.1)

appearing in the action (3.2.19). From that, the length of a one-parameter curve

γ̄ : [s0, s1] ⊂ R −→MΦ (4.2.2)

in the moduli space MΦ, with γ̄ ≡
(
γ1, . . . , γN

)
, can be computed as:

L [γ̄] =

∫ s1

s0

ds

∣∣∣∣hij (γ̄) dγids

dγj

ds

∣∣∣∣ 12 . (4.2.3)

More broadly, the Lagrangian kinetic term for a space-time field ψ with components ψµ̂,
with µ̂ ≡ µ1 . . . µn being a family of indices, is supposed to take the form

Lkin (ψ) ∼ −K µ̂ν̂ (ψ)Dψµ̂ · Dψν̂ , (4.2.4)

where D is a suitable derivative operator. The field ψ is generally expected, unlike typical
moduli or the cosmological constant, to have a space-time dependence. Any consideration
on the moduli space distance between two distinct low energy solution should, nonetheless,
be independent from the choice of a space-time point. Hence, the space-time average

⟨F ⟩ ≡ 1

VM

∫
M

dDx
√
|g|F (x) (4.2.5)

of a function F :M → CF over the D-dimensional space-time manifold M, with metric
tensor gµν , must be introduced. In the above expression, the symbol VM serves as a
normalisation and refers to the space-time volume:

VM ≡
∫
M

dDx
√
|g| . (4.2.6)

It must be stressed that VM, as defined in (4.2.6), might not be finite. In that case, both
the integral with which VM is computed and that appearing explicitly in formula (4.2.5)
must be properly regularised. For the sake of simplicity and unless faced with an explicit
computation, we will from now on keep such regularisations implicit. For a space-time
constant function F0, we obviously have:

⟨F0⟩ = F0 . (4.2.7)

If the D-dimensional space-time manifold is assumed to be the trivially-fibered Cartesian
productM = N ×C of two manifolds with dimensions d and D−d, charted by coordinates
z ≡

(
z1, . . . , zd

)
and y ≡

(
y1, . . . , yD−d), the space-time volume factorises as

VM = VN · VC (4.2.8)
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and the average of a product function F (z, y) ≡ F1 (z)F2 (y) is simply given by:

⟨F ⟩M = ⟨F1⟩N · ⟨F2⟩C (4.2.9)

In the above, the specific manifold on which an average is taken was made explicit for
clarity. In the case in which C models a set of internal compact dimension and in which
we are working with the degrees of freedom A (z) of the dimensionally-reduced low energy
effective theory, that can only depend on the non-compact directions, we simply have:

⟨A⟩M = ⟨A⟩N . (4.2.10)

Hence, the average can be equivalently taken on the full D-dimensional space-time or on
its non-compact d-dimensional factor. That being said, let’s now consider a generalised
moduli space Mψ, in which every point corresponds to a space-time configuration of ψ
solving the appropriate field equations. Moreover, let

σ : [s0, s1] −→Mψ (4.2.11)

be a curve in such moduli space with components σµ̂, corresponding to a one-parameter
family of field configurations. The most natural way of extending (4.2.3) to the case at
hand and defining a measure of the length of σ is:

L [σ] ≡
∫ s1

s0

ds

∣∣∣∣〈K µ̂ν̂ (σ)
dσµ̂
ds

dσν̂
ds

〉∣∣∣∣ 12 (4.2.12)

Further expanding the discussion to variations of multiple fields Ψ ≡
(
ψ1, . . . , ψN

)
, labelled

by i = 1, . . . , N and with components ψiµ̂(i) ≡ ψiµ1...µn(i)
, the distance along a curve Σ in

the moduli space MΨ is generalised as follows:

L [Σ] ≡
∫ s1

s0

ds

∣∣∣∣∣
〈
K
µ̂(i)ν̂(j)
ij (Σ)

dΣi
µ̂(i)

ds

dΣj
ν̂(j)

ds

〉∣∣∣∣∣
1
2

. (4.2.13)

As before, the moduli space metric should be read off from the Lagrangian kinetic term:

Lkin (Ψ) ∼ −K µ̂(i)ν̂(j)
ij (Ψ)DΨi

µ̂(i) · DΨ
j
ν̂(j) . (4.2.14)

When either imposing Σ to be space-time constant or to have no µ̄ indices, the previously
analysed cases can be consistently recovered from (4.2.13).

Smooth metric variations

Now that the extended formula (4.2.13) for the length of a curve in the generalised moduli
space of all space-time fields has been defined, we can focus on the particular case of
geometry displacements

gµν −→ gµν + aµν , (4.2.15)
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where aµν is a symmetric and traceless tensor field, so that the Levi-Civita condition is
preserved. Introducing a smooth one-parameter dependence in aµν (s), with s ∈ [s0, s1],
and imposing the initial variation aµν (s0) to vanish, a curve

Gµν (s) ≡ gµν + aµν (s) (4.2.16)

in the generalised moduli space of space-time metrics is defined, with:

Gµν (s0) = gµν . (4.2.17)

From the D-dimensional Einstein-Hilbert action

SEH =
1

2κ2D

∫
M

dDx
√
−hRh (4.2.18)

for the generic Lorentzian metric hµν , the kinetic terms matrix can be read off as:

Kµναβ =
1

2

(
hµαhνβ + hµβhνα − 2hµνhαβ

)
. (4.2.19)

The above expression, up to a
√
−g factor which we have chosen to move to the definition

(4.2.5) of the space-time average, is referred to as the DeWitt metric [55, 341–343]. Such
an object is usually derived and discussed in the context of canonical general relativity,
analysing the Hamiltonian structure of the theory. Furthermore, a parameter τ is typically
introduced as follows

Kµναβ
τ =

1

2

(
hµαhνβ + hµβhνα − 2τhµνhαβ

)
, (4.2.20)

producing a whole τ -dependent family of DeWitt metrics. Therefore, assuming to work in
this more general setting, the curve length of Gµν (s) in the space of metric deformations
can be computed as:

Lτ [G] =

∫ s1

s0

ds

∣∣∣∣〈Kµναβ
τ

dGµα

ds

dGνβ

ds

〉∣∣∣∣ 12
=

∫ s1

s0

ds

∣∣∣∣ 1

VM

∫
M

dDx
√
−G

(
GµνGαβ − τGµαGνβ

) dGµα

ds

dGνβ

ds

∣∣∣∣ 12 .

(4.2.21)

Therefore, the above formula seems to provide us with a general notion of path length in
the generalised moduli space of space-time metrics, which requires to be further specified.
Before doing so, we will briefly discuss the geodesics associated to (4.2.21) and consider a
simple example of geometry displacements.

Geodesic equation The functional (4.2.21) assigns a length to any specific path in the
generalised moduli space of space-time metrics. Still, selecting two moduli space points,
corresponding to distinct geometries g

(0)
µν and g

(1)
µν , and measuring the length of a curve
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connecting them is not enough to properly quantify the distance between them. The
reason is that the choice of a moduli space path, without further restriction, is ambiguous.
In order for such ambiguity to be removed, we impose the distance between two points
to be equal to the length of the minimal geodesic curve connecting them. This choice
perfectly analogous to the one taken in the context of the swampland distance conjecture.
Focusing on the τ = 0 case, which will anyway be the most relevant one in the following
sections, we can derive the associated geodesic equation. Infinitesimally, we have:

L0 [G+ δG] ∼ L0 [G] + δL0 [G] . (4.2.22)

In the above expression, the length variation can be implicitly expressed as:

δL0 [G] =
1

2

∫ s1

s0

ds

{
δ

(
1

VM

∫
M

vol (G) · Tr

[(
G−1dG

ds

)2
])

·

∣∣∣∣∣ 1

VM

∫
M

vol (G) · Tr

[(
G−1dG

ds

)2
]∣∣∣∣∣

− 1
2
}
.

(4.2.23)

We refer to the infinitesimal variation appearing in the integral as:

δA ≡ δ

(
1

VM

∫
M

vol (G) · Tr

[(
G−1dG

ds

)2
])

. (4.2.24)

Therefore, we have:

δA =
1

VM

∫
M

vol (G)
1

2

{
Tr

[(
G−1dG

ds

)2
]
−

〈
Tr

[(
G−1dG

ds

)2
]〉}

G−1δG

+
1

VM

∫
M

vol (G) · δTr

[(
G−1dG

ds

)2
] (4.2.25)

The last term, which we label as δA0, can be computed as:

δA0 =
2

VM

∫
M

vol (G) · dG
ds
G−1dG

ds
δG−1 +

2

VM

∫
M

vol (G) ·G−1dG

ds
G−1δ

dG

ds

=
2

VM

∫
M

vol (G) · dG
ds
G−1dG

ds
δG−1 − 4

VM

∫
M

vol (G) · dG
−1

ds

dG

ds
G−1δG

+
1

VM

∫
M

vol (G)

{〈
Tr

[
G−1dG

ds

]〉
− Tr

[
G−1dG

ds

]}
G−1dG

ds
G−1δG

− 2

VM

∫
M

vol (G) ·G−1d
2G

ds2
G−1δG .

(4.2.26)
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Putting everything together and expressing each term with respect to the variation δG of
the metric, we obtain:

δA =
1

VM

∫
M

vol (G)
1

2

{
Tr

[(
G−1dG

ds

)2
]
−

〈
Tr

[(
G−1dG

ds

)2
]〉}

G−1δG

− 2

VM

∫
M

vol (G) · dG
−1

ds
G
dG−1

ds
δG− 4

VM

∫
M

vol (G) · dG
−1

ds

dG

ds
G−1δG

+
1

VM

∫
M

vol (G)

{〈
Tr

[
G−1dG

ds

]〉
− Tr

[
G−1dG

ds

]}
G−1dG

ds
G−1δG

− 2

VM

∫
M

vol (G) ·G−1d
2G

ds2
G−1δG .

(4.2.27)

Imposing the overall variation to vanish, so that G (s) is a geodesic trajectory, one has:

d2G

ds2
=

dG

ds
G−1dG

ds
+

1

2

{〈
Tr

[
G−1dG

ds

]〉
− Tr

[
G−1dG

ds

]}
dG

ds

+
1

4

{
Tr

[(
G−1dG

ds

)2
]
−

〈
Tr

[(
G−1dG

ds

)2
]〉}

G .

(4.2.28)

Hence, the geodesic equation [217] associated to the moduli space metric induced by
(4.2.21) takes the following form:

G̈µν = GαβĠµαĠνβ +
1

4
GαβGγδĠαγĠβδGµν −

1

2
GαβĠαβĠµν

− 1

4

〈
GαβGγδĠαγĠβδ

〉
Gµν +

1

2

〈
GαβĠαβ

〉
Ġµν .

(4.2.29)

In the above, the derivative indicated with the dot notation Ȧ is taken with respect to the
proper time t, infinitesimally defined by:

dt ≡ ds

∣∣∣∣ 1

VM

∫
M

dDx
√
−GGµνGαβ dGµα

ds

dGνβ

ds

∣∣∣∣ 12 . (4.2.30)

In order to simplify the above expression, a new variable

Hµ
ν ≡ GµαĠαν (4.2.31)

can be introduced. By doing so, the geodesic equation (4.2.29) takes the following form:

Ḣµ
ν =

1

4
Hα

βH
β
αδ

µ
ν −

1

2
Hα

αH
µ
ν −

1

4

〈
Hα

βH
β
α

〉
δµν +

1

2
⟨Hα

α⟩Hµ
ν . (4.2.32)
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Anti-de Sitter space-time Now, we will apply such result to the interesting example
of Anti-de Sitter space-time. In Poincaré coordinates [344], the metric of D-dimensional
AdS space-time (4.1.8) can be simply written as

ds2 =
(1−D) (D − 2)

2Λ

(
du2

u2
+ u2ηµνdx

µdxν
)
≡ Λ−1dσ2 , (4.2.33)

where ηµν is the (D − 1)-dimensional Minkowski metric and dσ is the differential unit length
in Anti-de Sitter space-time when Λ = 1. Assuming to work with a metric deformation
which can be completely moved to the cosmological constant, leaving dσ untouched, we
can promote Λ to an s-dependent function and compute:

Hµ
ν = −

Λ̇

Λ
δµν . (4.2.34)

Hence, the geodesic equation (4.2.32) becomes:

Λ̈Λ− Λ̇2 = 0 . (4.2.35)

The above equation can be solved, after having introduced two constants C0 and C1, by
the family of smooth solutions:

Λ (t) = C0e
C1t . (4.2.36)

Therefore, by choosing an initial and a final moduli space point, respectively characterised
by Λ0 and Λ1, and imposing t0 = 0 and t1 = 1, the geodesic connecting the two can be
obtained by fixing C0 and C1 as:

Λ (t) = Λ0

(
Λ1

Λ0

)t
, (4.2.37)

where Λ (0) = Λ0 and Λ (1) = Λ1.

Weyl deformations In this example, we consider Weyl metric variations

Wµν (s) = gµν + wµν (s) , (4.2.38)

where we have imposed s ∈ [s0, s1], ω (s0) = 0 and:

wµν (s) =
[
eω(s) − 1

]
gµν . (4.2.39)

The metric variation (4.2.38) clearly induces the inverse metric variation

W µν (s) = gµν − vµν (s) , (4.2.40)

where we have introduced:
vµν (s) =

[
e−ω(s) − 1

]
gµν . (4.2.41)
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Thus, we have preserved the condition:

Wµν (s)W
µν (s) = 1 . (4.2.42)

Under such assumptions, the curve length formula (4.2.21) simplifies to:

Lτ [W ] = |D (1− τD)ω (s1)| . (4.2.43)

Interestingly, the path length for Weyl rescalings only depends on the path end points: it
could have been either computed on a geodesic or non-geodesic moduli space curve, leading
to the same result. Hence, it directly provides us with a measure of the geodesic distance,
without the need of explicitly solving any kind of geodesic equation. Focusing on the case
of Anti-de Sitter space-time and once more exploiting Poincaré coordinates (4.2.33), it is
clear that any deformation of the cosmological constant from an the value Λ0 to a final
value Λ1 can be encoded in a Weyl rescaling of the form presented in (4.2.38), with:

ω (s1) = log
Λ0

Λ1

. (4.2.44)

It must be stressed that, as long as (4.2.44) is satisfied, the specific dependence of the
rescaling on s does not matter. This reflects the fact that Λ can be tuned, towards a final
value Λ1, in many different ways, without affecting the overall path length. As discussed
above, the length formula

∆ (Λ1,Λ0) ≡ Lτ [W ] =

∣∣∣∣D (1− τD) log
Λ0

Λ1

∣∣∣∣ . (4.2.45)

correctly measures the moduli space geodesic distance between Λ0 and Λ1. From this we
can see that, for τ ̸= D−1, the flat space-time limit Λ1 → 0 discussed in the Anti-de Sitter
distance conjecture sits at an infinite distance in the cosmological constant moduli space:

lim
Λ1→0

∆(Λ1,Λ0) =∞ . (4.2.46)

Moreover, the cosmological constant dependence in the formula (4.1.19) for the infinite
tower mass scale gets rephrased as:

m ∼ |Λ|α ∼ e−α∆ . (4.2.47)

The mass threshold of the infinite tower of light states precisely drops with an exponential
dependence on the moduli space geodesic distance. Thus, the deep connection between the
Anti-de Sitter distance conjecture and the standard swampland distance conjecture, within
the framework offered by our generalised notion of moduli space path length (4.2.13), is
finally established in its full strength.
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The Riemannian manifold of Riemannian metrics

As previously mentioned, we will now introduce a more precise notion generalised moduli
space for space-time geometries. In order to do so, we will follow the analysis developed
in [345], using [346] as a more general reference, and direct our attention to Riemannian
manifolds. Namely, we will temporarily disregard Lorentzian metrics in favour of Euclidean
ones, for which the mathematical aspects of the problems at hand are better understood
and explored. The discussion of the specific difficulties introduced by Lorentzian signature,
together with a series of measures which should be enforced in order to avoid them, will be
postponed to 4.3. That being said, letM be a smooth and finite dimensional differentiable
manifold. Let’s furthermore consider the set GM of all Riemannian metrics with whichM
can be endowed. Such set can, as widely discussed in the above mentioned reference [345],
be itself provided with a topological and differential structure. Starting from M, one
can naturally construct the vector bundle S2T ∗M of symmetric (0, 2)-tensor fields onM.
Among those, the subset S2

+T
∗M of all the positive-definite ones can be extracted. The

manifold GM of all Riemannian metrics onM is, hence, nothing more that the space of
smooth sections Σ∞

(
S2
+T

∗M
)
. Each element

g ∈ GM ≡ Σ∞
(
S2
+T

∗M
)

(4.2.48)

corresponds to a smooth assignment of a positive-definite symmetric (0, 2)-tensor to every
point p ∈ M. Generally speaking, GM can be expected to be an infinite dimensional
smooth manifold. Its tangent bundle can be obtained as

TGM = Σ∞
(
S2
+T

∗M
)
×D

(
S2T ∗M

)
, (4.2.49)

where D (S2T ∗M) is the space of sections of the vector bundle S2T ∗M with compact
support on M. Given a point g ∈ GM, which corresponds to a Riemannian metric on
M, and two elements (g, a) and (g, b) in TGM, which can be analogously though of as
vectors a and b in the tangent space TgGM at g, the canonical Riemannian metric on GM
is typically defined as:

Gg(a, b) ≡
∫
M
vol (g) tr

(
g−1ag−1b

)
. (4.2.50)

ChartingM with an appropriate set of coordinates xµ, (4.2.50) can be written as:

Gg(a, b) =

∫
M

dDx
√
ggµνgαβaµαbνβ . (4.2.51)

Considering a one parameter path

G : [s0, s1] ⊂ R −→ GM , (4.2.52)

choosing a specific value s̄ ∈ [s0, s1] and regarding the first derivatives of the components
of G at s̄ as elements of TG(s)GM, the canonical metric (4.2.51) assigns to G the following
path length:

L̃ [G] =

∫ s1

s0

ds

∣∣∣∣∫
M

dDx
√
GGµνGαβ dGµα

ds

dGνβ

ds

∣∣∣∣ 12 . (4.2.53)



4.2 The moduli space of metrics 69

Except from the fact that we are working with a Riemannian metric a for the absence
of a volume normalisation, which is useful in many applications, this is equivalent to
the result that can be obtained from the formula Lτ [G] presented in (4.2.21) by setting
τ = 0. Hence, we have now obtained, with GM and up to the discussed caveats, a
proper formalisation of the intuitive notion of a generalised moduli space for space-time
geometries. Before proceeding, it is crucial to stress that physical metrics are distinguished
up to diffeomorphisms:

φ :M−→M , φ ∈ Diff (M) . (4.2.54)

The generalised moduli space of physically distinguishable geometries on a given space-time
manifoldM should, therefore, be obtained as the quotient:

PM ≡ GM
/
Diff (M) . (4.2.55)

This redundancy under diffeomorphisms will not affect the remainder of our analysis in
any particular manner. Nonetheless, it will be reflected, in the context of geometric flows,
in the addition of a flow-dependent diffeomorphism term.

Metric-scalar systems

Before introducing the particular class of moduli space trajectories defined by geometric
flows, which will be the main focus of the next sections, we will now generalise the previous
discussion to a setting in which both a scalar field and a dynamical space-time geometry are
present. In particular, we will derive the geodesic equation in the corresponding extended
moduli space. Therefore, let GM be the generalised moduli space of Riemannian metrics
over a D-dimensional Riemannian manifoldM. Moreover, let

ϕ :M−→ Cϕ (4.2.56)

be a field defined on M, with values in Cϕ. The extended moduli space, accounting for
both the space-time configuration of the geometry degrees of freedom described by g and
that of the field ϕ, is obtained as:

ΓM ≡ GM ×ΦM . (4.2.57)

In the above expression, the generalised moduli space ΦM of all space-time configurations
of ϕ should not be confused with the moduli space MΦ of its vacuum expectation values.
Any one-parameter curve in ΓM can be defined as

Γ (s) ≡
[
G (s) ,Φ (s)

]
, ∀s ∈ [s0, s1] , (4.2.58)

where G and Φ are one-parameter curves in in GM and ΦM, respectively. We assume the
theory onM to be controlled by an action of the form:

S [g, ϕ] =
1

2κ2D

∫
M

dDx
√
−g
(
Rg −

1

2
∇µϕ∇µϕ

)
. (4.2.59)
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Consistently with (4.2.21), the path length of Γ can be thus computed employing the
natural notion of path length on ΓM:

Lτ [Γ] =

∫ s1

s0

ds

∣∣∣∣∣
〈(
GµνGαβ − τGµαGνβ

) dGµα

ds

dGνβ

ds
+

1

2

(
dΦ

ds

)2
〉∣∣∣∣∣

1
2

. (4.2.60)

Fixing two points γ1 ≡ (g1, ϕ1) and γ2 ≡ (g2, ϕ2) in ΓM and extremising the length Lτ of
the path connecting them, one can obtain a geodesic equation, solve it and properly define
the geodesic distance between γ1 and γ2. We will derive the geodesic equation associated
with (4.2.60) for a general value of τ and a scalar moduli space path satisfying

dΦ

ds
=
√
2λGµν dGµν

ds
, (4.2.61)

with λ ∈ R. The reason for such an ansatz will become evident in the following sections,
when discussing Perelman’s combined flow. Therefore, (4.2.60) reduces to

Lϑ [Γ] =

∫ s1

s0

ds

∣∣∣∣〈(GµνGαβ + ϑGµαGνβ
) dGµα

ds

dGνβ

ds

〉∣∣∣∣ 12 , (4.2.62)

in which ϑ ≡ λ2 − τ . In a more implicit and clear notation, we have:

Lϑ [Γ] =

∫ s1

s0

ds

∣∣∣∣∣
〈
Tr

[(
G−1dG

ds

)2
]〉

+ ϑ

〈
Tr

[
G−1dG

ds

]2〉∣∣∣∣∣
1
2

. (4.2.63)

Now, we will generalise the computation performed in 4.2 and derive the geodesic equation
associated to (4.2.63). Namely, we variate a path Γ ≡ (G,Φ) and impose the induced first
order variation of the curve length to vanish. We obtain

δLϑ [Γ] =
1

2

∫ s1

s0

ds

∣∣∣∣∣
〈
Tr

[(
G−1dG

ds

)2
]〉

+ ϑ

〈
Tr

[
G−1dG

ds

]2〉∣∣∣∣∣
− 1

2

δA , (4.2.64)

where we have defined the local variation

δA = δA1 + ϑ · δA2 , (4.2.65)

expressed as the sum of two terms:

δA1 ≡ δ

〈
Tr

[(
G−1dG

ds

)2
]〉

, δA2 ≡

〈
Tr

[
G−1dG

ds

]2〉
. (4.2.66)

From the result expressed in (4.2.27), we have that

δA1 =
1

VM

∫
M

vol (G)B1 · δG , (4.2.67)
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where we have defined:

B1 ≡ G−1

{
1

2

(
Tr

[(
G−1dG

ds

)2
]
−

〈
Tr

[(
G−1dG

ds

)2
]〉)

G+ 2
dG

ds
G−1dG

ds

− 2
d2G

ds2
+

(〈
Tr

[
G−1dG

ds

]〉
− Tr

[
G−1dG

ds

])
dG

ds

}
G−1 .

(4.2.68)

The second term, instead, requires us to perform an explicit computation. We obtain

δA2 =
1

VM

∫
M

vol (G)B2 · δG , (4.2.69)

in which we have defined:

B2 ≡
1

2

(
Tr

[
G−1dG

ds

]2
−

〈
Tr

[
G−1dG

ds

]2〉)
G−1 + 2Tr

[
G−1dG

ds

]
dG−1

ds

+

(〈
Tr

[
G−1dG

ds

]〉
− Tr

[
G−1dG

ds

])
Tr

[
G−1dG

ds

]
G−1

− 2

(
Tr

[
dG−1

ds

dG

ds

]
G−1 + Tr

[
G−1d

2G

ds2

]
G−1 + Tr

[
G−1dG

ds

]
dG−1

ds

)
.
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Therefore, imposing the overall variation

δA =
1

VM

∫
M

vol (G) (B1 + ϑ · B2) δG , (4.2.71)

to vanish, we are left with the geodesic equation:

d2G

ds2
=

1

4

(
Tr

[(
G−1dG

ds

)2
]
−

〈
Tr

[(
G−1dG

ds

)2
]〉)

G+
dG

ds
G−1dG

ds

+
1

2

(〈
Tr

[
G−1dG

ds

]〉
− Tr

[
G−1dG

ds

])
dG

ds

+
ϑ

4

(
Tr

[
G−1dG

ds

]2
−

〈
Tr

[
G−1dG

ds

]2〉)
G

+
ϑ

2

(〈
Tr

[
G−1dG

ds

]〉
− Tr

[
G−1dG

ds

])
Tr

[
G−1dG

ds

]
G

− ϑ

(
Tr

[
dG−1

ds

dG

ds

]
G+ Tr

[
G−1d

2G

ds2

]
G

)
.
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Once more introducing Hµ
ν as in (4.2.31), the above expression simplifies to:

dH

ds
+ ϑTr

[
dH

ds

]
1 =

1

4

(
Tr
[
H2
]
−
〈
Tr
[
H2
]〉)

1 +
1

2

(
⟨Tr [H]⟩ − Tr [H]

)
H

− ϑ

4

(
Tr [H]2 − 2Tr [H] ⟨Tr [H]⟩+

〈
Tr [H]2

〉)
1 .

(4.2.73)
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Non-normalised distance Focusing once more on the generalised moduli space ΓM,
whose points correspond to distinct configurations of a dynamical space-time metric and
a scalar field, an alternative approach can be studied. Namely, the volume normalisation
appearing in the path length formulas (4.2.60) and (4.2.62) can be removed, in order to
stick to the convention typically employed in mathematical literature. Assuming to work
with a manifold that allows such non-normalised distances to be properly behaved and
once more enforcing the ansatz (4.2.61), we are left with the alternative definition:

L̃ϑ [Γ] =

∫ s1

s0

ds

∣∣∣∣∣
∫
M

vol (G)

{
Tr

[(
G−1dG

ds

)2
]
+ ϑTr

[
G−1dG

ds

]2}∣∣∣∣∣
1
2

. (4.2.74)

Imposing the path length variation associated to a displacement

Γ (s) −→ Γ (s) + δΓ (s) (4.2.75)

to vanish, we obtain the following geodesic equation:

d2G

ds2
=

1

4
Tr

[(
G−1dG

ds

)2
]
G+

dG

ds
G−1dG

ds

− 1

2
Tr

[
G−1dG

ds

]
dG

ds
+
ϑ

4
Tr

[
G−1dG

ds

]2
G

− ϑ

2
Tr

[
G−1dG

ds

]
Tr

[
G−1dG

ds

]
G

− ϑ

(
Tr

[
dG−1

ds

dG

ds

]
G+ Tr

[
G−1d

2G

ds2

]
G

)
.
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Introducing, once again, Hµ
ν as in (4.2.31), the above equation takes the form:

dH

ds
+ ϑ · Tr

[
dH

ds

]
1 =

[
Tr
[
H2
]
+ ϑ

(
2Tr [H]− Tr [H]2

)]1
4
− Tr [H]

H

2
. (4.2.77)

For ϑ = 0, we find ourselves working with the extremely simple formula:

dH

ds
= Tr

[
H2
] 1
4
− Tr [H]

H

2
. (4.2.78)

4.3 Ricci flow conjecture

While outlining the properties of the generalised moduli spaceGM of space-time geometries
whichM can be endowed with, particular attention was devoted to constructing an explicit
procedure to measure the length of any moduli space path g (s), corresponding to a one-
parameter family of metric tensors onM. Nonetheless, the only meaningful example of a
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moduli space path appearing in the previous discussion was that represented by geodesic
curves (4.2.32). Albeit being of great help when computing distances, the geodesic equation
seems to bear little direct physical significance and is often extremely hard to solve, at
least without making strong assumptions on system’s symmetries and general features.
Therefore, we now intend to explore an alternative class of moduli space paths, employing
the tools offered by geometric flows. Taking Ricci flow as an obvious and natural starting
point, both due to its useful mathematical properties and to its direct connection to the
superstring theory graviton β-function [67, 68], we will then generalise it and integrate
it within the context of the swampland distance conjecture. Most of our discussion will
follow the research line initiated in [242]. Still, we will approach the subject without the
degree of rigour any proper, formal treatment would require. The interested reader is again
suggested to refer to [306–310,347] for more detailed expositions.

4.3.1 Ricci flow

Let’s consider a Lorentzian manifold M with signature (−,+, . . . ,+) and the space GM
of all possible metrics onM, itself endowed with a manifold structure. Even if we are now
working with a non-Riemannian manifold, the construction of GM is analogous to the one
outlined in 4.2. Let’s furthermore define

g : [s0, s1] ⊂ R −→ GM (4.3.1)

as a one-parameter smooth path in GM, with initial point g (s0) = ḡ. The evolution of
g (s) in s is said to be dictated by Ricci flow if it satisfies:

dg

ds
= −2Ric (g) , ∀s ∈ (s0, s1) . (4.3.2)

In the above equation, Ric (g) is nothing more than the Ricci tensor associated to g (s) at
a specific value of s, which is usually referred to as the flow parameter. ChartingM with
an appropriate set of coordinates, the explicit version of (4.3.2) can be written down as:

dgµν
ds

= −2Rµν . (4.3.3)

It can be easily observed that the above equations implies the scalar curvature flow:

dR

ds
= ∇2R + 2RµνR

µν . (4.3.4)

From (4.3.3), it is clear that any flat geometry for which

Rµν = 0 (4.3.5)

is a Ricci flow fixed point. As commented on at the end of 4.2, distinguishable physical
metrics are uniquely defined up to diffeomorphisms. Taking such an aspect into account,
Ricci flow can be generalised to the so-called Hamilton-DeTurk-Ricci flow

dgµν
ds

= −2Rµν + Lξgµν , (4.3.6)
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in which a flow-dependent diffeomorphism, induced by a one-parameter family of vector
fields ξ (s) onM, was included. Therefore, a path g (s) in GM satisfies Hamilton-DeTurk-
Ricci flow equations if there exists a one-parameter family of vector fields ξ (s) such that
(4.3.6) is fulfilled for every value of the flow parameter. From now on, we will always
assume to work with (4.3.6) and simply name it Ricci flow, in order for our discussion
to be consistent with the existing literature. Thanks to the introduction of the addition
of the diffeomorphism term, a new class of significant solutions to our flow equations can
be defined: that of Ricci solitons. A one-parameter family of geometries g (s) is said to
describe a Ricci soliton if there is a family of vector fields ξ (s) such that:

2Rµν = Lξgµν , ∀s ∈ (s0, s1) . (4.3.7)

Hence, Ricci solitons are characterised by the fact that the evolution induced by the Ricci
curvature tensor term can be undone by a flow-dependent diffeomorphism. Ricci flow fixed
points, for which Rµν vanishes, represent the most trivial subset of solitons. In order to
make (4.3.7) more explicit, the Lie derivative of the metric components with respect to ξ
can be expressed as:

Lξgµν = ∇µξν +∇νξµ . (4.3.8)

A simple 2-dimensional Ricci soliton example will be derived in the following. Subsequently,
the main properties and most natural generalisations of Ricci flow will be discussed.

Ricci soliton example

Let the space-time Lorentzian manifold M be 2-dimensional and charted by coordinates
x̄ ≡ (t, x). Moreover, let the diagonal tensor

ḡµν ≡
[
A (r) 0
0 B (r)

]
(4.3.9)

be a metric on M, which will serve as the Ricci flow initial point. The Ricci curvature
scalar associated to (4.3.9) is

R =
B
(
A

′)2 − 2AA
′′
B + AA

′
B

′

2A2B2
, (4.3.10)

where the F
′
notation refers to r-derivatives. Since every 2-dimensional manifold is an

Einstein manifold, we have:

Rµν =
R

2
gµν . (4.3.11)

Promoting A and B to flow-dependent quantities, the corresponding flow equations can be
written down, at every value of the flow parameter, as:

dA

ds
= −R · A+ LξA ,

dB

ds
= −R ·B + LξB . (4.3.12)
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Assuming ξ to be t-independent and computing its covariant derivatives, we get:

∇tξt =
A

′

2B
ξr , ∇rξr = −

B
′

2B
ξr ,

∇tξr = −
A

′

2A
ξt , ∇rξt = ∂rξt −

A
′

2A
ξt .

(4.3.13)

First of all, we assume ξt = 0 in order for the diffeomorphism not to affect the off-diagonal
zero metric components. Imposing the equations (4.3.12) to identically vanish along the
flow, we have:

R · A ·B = A
′
ξr , R ·B2 = −B′

ξr . (4.3.14)

For the above equation to admit solutions, we restrict the initial metric ansatz and impose

A
′

A
= −B

′

B
=⇒ B (r) = − C0

A (r)
, (4.3.15)

with C0 ∈ R+ being an arbitrary positive constant, which allows to preserve the correct
signature. Under such assumption, the Ricci tensor simplifies to

R =
A

′′

C0

(4.3.16)

and the Ricci soliton conditions (4.3.14) leave us with a single equation:

ξr = −
A

′′

A′ . (4.3.17)

Raising the index, the vector field components are:

ξt = 0 , ξr =
A · A′′

C0 · A′ . (4.3.18)

Since the diffeomorphism defined by ξµ is able to undo the evolution imposed by the flow
equations (4.3.12), we have successfully constructed a 2-dimensional Ricci soliton for any
choice of A (r) and C0.

Well-posedness of the flow

In order to investigate whether a differential equation of the form (4.3.6) is well-posed or
not, at least in the simplest non-trivial setting, we will consider small perturbations

gµν (s) ∼ δµν + εhµν (s) (4.3.19)

around flat space, where |ε| ≪ 1 and hµν ∼ O (1) component by component. For the
time being, we will assume to work with a Euclidean metric and postpone the discussion
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of the specificities of Lorentzian geometries. It must be noted that, in (4.3.19), the flow
dependence was completely moved to the metric perturbations. Defining

hµν ≡ δµαδνβhαβ , hµν ≡ δµαhαν , h ≡ hµµ , ∇2hµν ≡ δαβ∂α∂βhµν , (4.3.20)

the leading-order ε-expansion of the Ricci curvature tensor can be written as:

Rµν ∼
ε

2
(∂σ∂µh

σ
ν + ∂σ∂νh

σ
µ − ∂µ∂νh−∇2hµν) . (4.3.21)

By plugging both (4.3.19) and (4.3.21) into (4.3.6), one is left with the leading-order
linearized Ricci flow equation

dhµν
ds

= ∇2hµν + ∂µ∂νh− ∂σ∂µhσν − ∂σ∂νhσµ + ∂µξν + ∂νξµ , (4.3.22)

in which the flow-dependent diffeomorphism has been written down explicitly. By intro-
ducing a flow-dependent vector field

ωµ ≡ ∂µh

2
− ∂σhσµ , (4.3.23)

whose index can be lowered with the flat space metric, the flow equation gets to be:

dhµν
ds

= ∇2hµν + ∂µ (ων + ξν) + ∂ν (ωµ + ξµ) . (4.3.24)

By exploiting our flow-dependent diffeomorphism and setting ξµ = −ωµ, we are left with
a heat equation for each of the metric components:

dhµν
ds

= ∇2hµν . (4.3.25)

Therefore, the well-posedness of (4.3.25), at least in Euclidean signature, is inherited from
that of the heat equation. A more thorough discussion, also concerning perturbations of
non-trivial Ricci flat fixed points of the flow, can be found in [348].

Lorentzian signature

We have so far assumed to apply Ricci flow together with the additional diffeomorphism
term, to Euclidean metrics. This framework allowed us to temporarily simplify our dis-
cussion and investigate some significant properties of such system of differential equations.
Nonetheless, it is evidently inadequate for the phenomenological applications we will even-
tually try to address. Euclidean gravity, albeit often representing a useful intermediate step
towards the understanding of standard Lorentzian problems, does not offer an appropriate
model to make contact with observations [349]. Nature, as far as our current experimental
evidence is concerned, appears to be Lorentzian. After having commented on the well-
posedness of the flow equation (4.3.6) when applied to Euclidean metrics, it is therefore



4.3 Ricci flow conjecture 77

necessary to discuss the supplementary pathologies that might arise if, instead, Lorentzian
geometries are taken into account. Hence, we will now focus on geometries characterised
by a (−,+, . . . ,+) signature. The main problem one might encounter when applying Ricci
flow equations, and generalisations thereof, to such geometries is that modes with timelike
momentum can introduce infinitely many instabilities [348]. Let’s focus, for instance, on
the specific example of a perturbation

gµν (s) ∼ ηµν + εaµν (s) (4.3.26)

around flat Minkowski space-time, where |ε| ≪ 1 and aµν ∼ O (1) component by compo-
nent. Consistently with what was done in Euclidean space, the whole flow dependence was
moved to the perturbation. An appropriate flow-dependence diffeomorphism can simplify
the linearized flow equations as

daµν
ds

= ∇2aµν , (4.3.27)

with the flat space-time Laplacian being defined as ∇2 ≡ ηµν∂µ∂ν . For the sake of simplic-
ity, we will furthermore restrict ourselves to the case in which the space-time manifold is
2-dimensional. Thus, by employing coordinates (t, x), the flow equations (4.3.27) become:

daµν
ds

=
∂2aµν
∂x2

− ∂2aµν
∂t2

. (4.3.28)

Such an equation, when applied to a generic initial metric perturbation depending on both
t and x, might reveal itself to be extremely problematic. The problem lies in the fact
that, due to the Lorentzian space-time signature, the two differential operators on the
right-hand side of (4.3.28) appear with an opposite sign. More specifically, the minus sign
in front of the second derivative in time corresponds to a negative diffusion constant. It
hence induces a reversed heat flow along the temporal direction. Differential equations
displaying such a feature are troublesome, either due to their solutions being unbounded
in finite flow parameter intervals or not existing at all. It is crucial to highlight that the
issue analogously appears in any dimension and would have not been solved by choosing
the opposite signature convention (+,−, . . . ,−). Similarly, it cannot be worked out by
reversing the sign of the flow parameter. The obstacle really lies in the mixed nature of
the metric signature. The most natural way of avoiding such difficulty would be to only
consider static, t-independent initial configurations, reducing (4.3.28) to a family of well-
behaved diffusion problems. For a more detailed analysis of the subject, together with a
more detailed analysis of the features Lorentzian manifolds must have in order to admit a
well-defined Ricci flow, the reader is encouraged to explore the references [350–352]. From
now on, we will assume to work with initial data such that the problems coming from
working in Lorentzian signature can be kept under control.

Natural generalisations

The flow equations presented in (4.3.6) allow for some natural generalisations. In order
to motivate them, we first have to observe that the volume VM ofM, as defined in 4.2.6,
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displays the following Ricci flow evolution

dVM
ds

= −
∫
M

dDx
√
|g|R = −VM · ⟨R⟩ , (4.3.29)

in which the diffeomorphism term has been neglected for simplicity. The volume of a
manifold is hence not invariant under Ricci flow. This can compromise many of the most
interesting mathematical applications of Ricci flow, in which it is used to smoothen out
the geometry of a manifold with the aim of better understanding its general properties. In
the normalised Ricci flow

dgµν
ds

= −2Rµν +
2 ⟨R⟩
D

gµν + Lξgµν , (4.3.30)

a term proportional to the scalar curvature space-time average ⟨R⟩ was introduced as a
way to overcome the issue at hand. In particular, it can be easily observed that, once more
neglecting the diffeomorphism, we have:

dVM
ds

= 0 . (4.3.31)

While having the nice feature of preserving the volume along the flow, (4.3.30) has the
drawback of being highly non-local. By restricting ourselves to local geometric flows, it is
natural to consider Ricci-Bourguignon flow

dgµν
ds

= −2Rµν + ϑRgµν + Lξgµν , (4.3.32)

in which a real parameter ϑ was introduced. Assuming to work in Euclidean signature and
linearizing (4.3.32) around flat space, as was previously done for (4.3.6), we have:

dhµν
ds

= ∇2hµν + ∂µ∂νh− ∂σ∂µhσν − ∂σ∂νhσµ

+ ϑ
(
∂α∂βh

αβ −∇2h
)
δµν + ∂µξν + ∂νξµ .

(4.3.33)

By once more performing the appropriate diffeomorphism, we are left with:

dhµν
ds

= ∇2hµν + ϑ
(
∂α∂βh

αβ −∇2h
)
δµν . (4.3.34)

Thus, we decompose the perturbation hµν as

hµν ≡ pδµν + qµν , (4.3.35)

where we have taken the second term to satisfy:

∇2qµνδµν = ∂µ∂νq
µν . (4.3.36)
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The trace-less part is characterised by δµνkµν = 0. The two components respectively flow,
under (4.3.34), as:

dp

ds
= [1− ϑ (D − 1)]∇2p ,

dqµν
ds

= ∇2qµν . (4.3.37)

Therefore, in order for the evolution to be well-posed, we must impose:

ϑ ≤ 1

D − 1
. (4.3.38)

It is interesting to notice that, as we move towards D →∞, the ϑ parameter gets confined
to being less or equal to zero. The behaviour of Swampland conjectures at a large number
of space-time dimensions was recently explored in [219]. For a more general examination
of (4.3.32), the interested reader is encouraged to refer to [348,353]. It must be noted that
Ricci-Bourguignon flow reduces to Ricci flow if ϑ is set equal to zero. Furthermore, it can
be easily observed that (4.3.32) induces the following volume evolution:

dVM
ds

=

(
Dϑ

2
− 1

)
VM · ⟨R⟩ . (4.3.39)

Similarly, it forces the scalar curvature R to flow according to:

dR

ds
= 2RµνR

µν − ϑR2 + [1− (D − 1)ϑ]∇2R . (4.3.40)

The Ricci-Bourguignon flow equation (4.3.32) can be further generalised to

dgµν
ds

= −2Rµν + ϑRgµν + φgµν + Lξgµν , (4.3.41)

in which φ is nothing more than a constant. While not affecting the local well-posedness
of the linearized flow, the presence of φ produces the following volume evolution

dVM
ds

= 2
[
(Dϑ− 2) ⟨R⟩+Dφ

]
VM . (4.3.42)

and allows for fixed points with non-vanishing curvature. This can be clearly seen by taking
an Einstein manifold, for which

Rµν =
R

D
gµν , (4.3.43)

and imposing the standard condition for fixed points:

−2Rµν + ϑRgµν + φgµν = 0 =⇒ R =
Dφ

2−Dϑ
. (4.3.44)

Hence, for a fixed point to be a solution with cosmological constant Λ, we must take:

φ =
2 (2−Dϑ)
D − 2

Λ . (4.3.45)

After having discussed the properties and most direct generalisations of Ricci flow, it is
time to apply it to a physical setting and connect it to the swampland distance conjecture.
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4.3.2 Conjecture statement

We will now once more focus on the example of D-dimensional Anti-de Sitter space-time
(4.1.8) and compute its Ricci flow. Stressing the facts that we are dealing with an Einstein
manifold, for which

R =
2D

D − 2
Λ , (4.3.46)

and moving the whole flow dependence to the cosmological constant Λ, it is enough to
solve the induced flow equation (4.3.4) for the scalar curvature. Rephrasing it in terms of
the cosmological constant, we get:

dΛ

ds
=

2Λ2

D − 2
. (4.3.47)

Therefore, by choosing the initial value Λ0, the flow behaviour is given by:

Λ (s) = Λ0

(
1− 2Λ0

D − 2
s

)−1

. (4.3.48)

In figure 4.1, the flow behaviour of Λ in three, four and five spatial dimensions was plotted,
starting from an initial value Λ0 = −1. Whatever the initial, negative value of the Anti
de-Sitter cosmological constant might be, we always have:

lim
s→∞

Λ (s) = 0 . (4.3.49)

Therefore, Ricci flow (4.3.6) forces Anti-de Sitter space-time to approach, in the s → ∞
limit, flat Minkowski space-time, which is a flow fixed point characterised by a vanishing
cosmological constant. As widely discussed in section 4.1, this limit, when quantum gravity
effects are appropriately considered, is expected to be accompanied by an infinite tower
of asymptotically massless states. The above observation led to a further refinement of
the swampland distance conjecture, when generalised in order to account for moduli space
displacements in the space-time geometry: the Ricci flow conjecture. First proposed in
[242], the Ricci flow conjecture can be stated as follows.

Ricci Flow Conjecture. Let’s consider a D-dimensional space-time manifoldM and the
generalised moduli space GM of metric tensors it can be endowed with. Moreover, let g be
a one-parameter curve

g : [s0, s1) −→ GM , (4.3.50)

in GM, with s1 either finite infinite, such that:

• The initial point g0 ≡ g (s0) is the geometry corresponding to a consistent quantum
gravity low energy effective theory.

• The s-dependence of g is dictated by Ricci flow

dg

ds
= −2Ric (g) + Lξg , (4.3.51)

up to a diffeomorphism induced by the one-parameter family of vector fields ξ.
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• The final point
g1 ≡ lim

s→s1
g (s) (4.3.52)

is a Ricci flow fixed point.

• The geodesic distance between the initial and the final point of the curve is infinite:

lim
s→s1

∆(s, s0) =∞ . (4.3.53)

Therefore, there must be an infinite tower of additional fields ψj, characterised by a flow-
dependent mass threshold

m : [s0, s1) −→ R (4.3.54)

displaying an exponential drop in the geodesic distance, when following the flow towards g1.
Namely, any Ricci flow fixed point at infinite distance should be accompanied by an infinite
tower scaling as:

m (s) ∼ m (s0) exp

−α∆(s, s0)√
MD−2

P

 . (4.3.55)

In the above equation, the number α is taken to be ∼ O (1) and positive, while ∆(s, s0) is
the geodesic distance between ḡ and g (s).

Figure 4.1: Ricci flow behaviour of the Anti-de Sitter cosmological constant, in different
numbers of space-time dimensions. The initial value was set Λ0 = −1, while the three
coloured curves, as reported in the legend, correspond to D = 3, 4, 5.

Up to this point, geometric flow equations have been postulated and taken as given, with-
out being derived from more general principles. In the subsequent discussion, that will
constitute the conclusion of the current chapter, we will address such topic by introducing
moduli space entropy functionals. In doing so, we will adhere to [311–313,354] and [242].



82 4. Geometric Flows

4.4 Perelman’s combined flow

The geometric evolution induced by Ricci flow, as defined in (4.3.6), poses a particularly
well-behaved differential problem, admits careful extensions to Lorentzian metric tensors
and correctly reproduces the expected behaviour for Anti-de Sitter space-time. It therefore
provides us with a theoretical framework suited for generalising the swampland distance
conjecture to displacements in the space-time geometry. Nevertheless, except for pointing
out a direct connection to the superstring theory graviton β-function, we have so far
not provided any derivation of Ricci flow from a more fundamental object. We will now
precisely do so, introducing the notion of an entropy functional and postponing the problem
of grounding it in physics to the next chapters.

4.4.1 The entropy functional

LetM be a D-dimensional Riemannian manifold, with GM being the generalised moduli
space of Lorentzian metrics onM, and

ϕ :M−→ Cϕ (4.4.1)

be a field defined onM, with values in Cϕ. We can construct the generalised moduli space
ΦM of all space-time configurations of ϕ, which should not be confused with the moduli
space MΦ of its vacuum expectation values, previously introduced in the context of fields
not being subject to a non-trivial potential. We assume Cϕ ⊂ R for the sake of simplicity
and take the theory onM to be controlled by a general action of the form:

S [g, ϕ] =
1

2κ2D

∫
M

dDx
√
−g
(
Rg −

1

2
∇µϕ∇µϕ

)
. (4.4.2)

The extended moduli space, which accounts for both the space-time configuration of the
metric g and that of the field ϕ, is simply obtained as:

ΓM ≡ GM ×ΦM . (4.4.3)

Starting from any couple of one-parameter curves

G : [s0, s1] ⊂ R −→ GM , Φ : [s0, s1] ⊂ R −→ ΦM , (4.4.4)

respectively in GM and ΦM, a one-parameter curve in ΓM can be constructed as:

Γ (s) ≡
[
G (s) ,Φ (s)

]
, ∀s ∈ [s0, s1] . (4.4.5)

Once more following the steps that led to (4.2.21), the length of Γ can be naturally com-
puted employing an extended notion of path length on ΓM:

Lτ [Γ] =

∫ s1

s0

ds

∣∣∣∣∣
〈(
GµνGαβ − τGµαGνβ

) dGµα

ds

dGνβ

ds
+

1

2

(
dΦ

ds

)2
〉∣∣∣∣∣

1
2

. (4.4.6)
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Extremising the length Lτ of the path connecting two points γ1 ≡ (g1, ϕ1) and γ2 ≡
(g2, ϕ2) in ΓM, a geodesic equation can be obtained and solved. Therefore, the distance
between γ1 and γ2 can be consistently defined as the length of such geodesic. While this
is perfectly coherent with the discussion developed in 4.2 for GM, we will now define an
alternative notion of distance, more directly connected to geometric flows. Eventually, we
will accordingly restate the Ricci flow conjecture. In order to so, we must introduce a
Lorentzian version of Perelman’s F -entropy functional on ΓM:

F [g, ϕ] ≡
∫
M

dDx
√
−ge−ϕ

(
Rg +∇µϕ∇µϕ

)
. (4.4.7)

It must be first of all stressed that, up to some minor differences [242], (4.4.7) resembles the
string frame action for the metric and a rescaled dilaton. This identification has remarkable
physical implications in the context of string theory. In fact, it allows us to connect ϕ with
the string coupling gs via the simple equation:

g2s = eϕ . (4.4.8)

Therefore, a geometric flow in ϕ could in principle be translated into a non-trivial evolution
of the string coupling. For reasons that will be soon made clear, we introduce the string
frame volume functional:

ṼM ≡
∫
M

dDx
√
−ge−ϕ . (4.4.9)

We now want to obtain Ricci flow, as long as a similar flow equation for ϕ, as a volume-
preserving gradient flow of (4.4.7). Namely, we perform field variations

gµν → gµν + vµν , ϕ→ ϕ+ h (4.4.10)

such that the variation of the string-frame volume functional is set to vanish:

δṼM = 0 . (4.4.11)

The variation of the metric forces the inverse metric to variate as:

gµν → gµν − vµν . (4.4.12)

Moreover, a straightforward computation shows that (4.4.11) implies:

2h = gµνvµν . (4.4.13)

By computing the induced variation of (4.4.7) and always neglecting terms defined on the
boundary, where variations are set to vanish, we get:

δF = −
∫
M

dDx
√
−ge−ϕ (Rµν +∇µ∇νϕ) v

µν . (4.4.14)
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By once more introducing a curve γ (s) ≡ [g (s) , ϕ (s)] in ΓM, imposing the s-evolution of
g and ϕ to be fixed by the volume-preserving variation of the F -entropy functional and
fixing the flow of ϕ from that of g thanks to (6.1.4), we get:

dgµν
ds

= −2 (Rµν +∇µ∇νϕ) + Lξgµν ,

dϕ

ds
= −R−∇2ϕ+ Lξϕ .

(4.4.15)

In the above equations, a factor of two was introduced for normalisation purposes and the
standard diffeomorphism dependent term was included, due to the corresponding redun-
dancy of physical solutions. After having performed a diffeomorphism set by

ξ̄µ ≡ ∇µϕ , (4.4.16)

we finally obtain the following system of flow equations:

dgµν
ds

= −2Rµν + Lξgµν ,

dϕ

ds
= −R−∇2ϕ+ (∇ϕ)2 + Lξϕ .

(4.4.17)

Hence, the volume preserving gradient flow of (4.4.7) forces the metric to evolve according
to Ricci flow, while the scalar transforms in such a way that the variation of the string
frame volume vanishes. This combined system of geometric flow equations is typically
referred to as Perelman’s combined flow [311]. It can be easily shown [354] that the F -
entropy functional is monotonic along the flow (4.4.17). It therefore provides us with a
natural and alternative way to define distances along flow trajectories. By considering a
curve γ (s) ≡ [g (s) , ϕ (s)] in ΓM, with s ∈ [s0, s1) and s1 either finite or infinite, whose
s-evolution is a solution to (4.4.17) and a specific value s of the flow parameter, the F -
distance between γ (s0) and γ (s) is defined as

∆F (s, s0) ≡ log
F (s0)

F (s)
, (4.4.18)

where F (s0) ≡ F [γ (s0)] and F (s) ≡ F [γ (s)]. In general, the F -distance between two
flow trajectory points should not be expected to be equivalent to their geodesic distance.
Given the above definitions, the Ricci flow conjecture can be refined and slightly altered
as follows.

Dilaton-Metric Flow Conjecture. Let’s consider a D-dimensional space-time manifold
M, the generalised moduli space GM of metric tensors it can be endowed with and the
moduli space ΦM of space-time configurations of a scalar field ϕ defined onM. Moreover,
let γ ≡ (g, ϕ) be a one-parameter curve

γ : [s0, s1) −→ ΓM ≡ GM ×ΦM , (4.4.19)

in ΓM, with s1 either finite infinite, such that:
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• The initial point γ0 ≡ γ (s0) is the combination of geometry and a scalar field config-
uration corresponding to a consistent quantum gravity low energy effective theory.

• The s-dependence of γ is dictated by Perelman’s combined flow

dgµν
ds

= −2Rµν + Lξgµν ,

dϕ

ds
= −R−∇2ϕ+ (∇ϕ)2 + Lξϕ ,

(4.4.20)

up to a diffeomorphism induced by the one-parameter family of vector fields ξ.

• The final point
γ1 ≡ lim

s→s1
γ (s) (4.4.21)

is a Perelman’s combined flow fixed point.

• The F-distance between the initial and the final point of the curve is infinite:

lim
s→s1

∆F (s, s0) =∞ . (4.4.22)

Therefore, there must be an infinite tower of additional fields ψj, characterised by a flow-
dependent mass threshold

m : [s0, s1) −→ R (4.4.23)

displaying an exponential drop in the F-distance, when following the flow towards γ1.
Namely, any Perelman’s combined flow fixed point at infinite distance should be accom-
panied by an infinite tower scaling as:

m (s) ∼ m (s0) exp

−α∆F (s, s0)√
MD−2

P

 . (4.4.24)

In the above equation, the number α is taken to be ∼ O (1) and positive, while ∆F (s, s0)
is the F-distance

∆F (s, s0) ≡ ∆0 log
F (s0)

F (s)
, (4.4.25)

defined from the F-entropy functional

F [g, ϕ] ≡
∫
M

dDx
√
−ge−ϕ

(
Rg +∇µϕ∇µϕ

)
(4.4.26)

and from the dimensionful model-dependent constant Λ0.
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Part II

Applications





Geometric flow of bubbles

Throughout the following chapter, largely based on [300], we will once more assume to
work with a smooth D-dimensional manifold M, endowed with a dynamical Lorentzian
metric g and a real scalar field ϕ. The generalised moduli space of space-time configurations
γ ≡ (g, ϕ) of such fields will be ΓM, as introduced in (4.2.57). Moreover, for the sake of
phenomenological interest, the number of space-time dimensions will be set to D = 4. In
the context of such a conceptual framework, a class of moduli space paths produced by
specific geometric flow equations will be carefully analysed. In particular, we will direct
our attention towards scalar bubble solutions, embedded in Minkowski, de Sitter, Anti-
de Sitter and Schwarzschild space-time backgrounds, and negative cosmological constant
bubble solutions, coupled to a space-time constant scalar field. While the former will be
imposed to evolve according to Perelman’s combined flow equations (4.4.17), which will
translate to flows in the background geometry and in the bubble radius within the thin-
wall approximate regime, the latter will be studied under a novel family of geometric flow
equations, specifically designed in order for the cosmological to be fixed far from the bubble
and derived from a suitable entropy functional.

5.1 Geometric flow of scalar bubbles

This section is aimed at studying the evolution of scalar bubble configurations of ϕ under
Perelman’s combined flow (4.4.17). We will therefore construct a family of simplified
toy models, designed to capture the main features of scalar bubbles coupled to general
relativistic background geometries. Such an objective will be achieved by relaxing the
equations of motion in the non-trivial portions of the bubbles, where they interpolate among
different vacua. Thus, we will allow our scalar profiles and metrics not to solve them in those
limited space-time shells and derive simpler mathematical descriptions. Deviations from
proper on-shell solutions will be kept under control by imposing to work in the thin-wall
approximation. Hence, we will take such settings as initial conditions for our geometric
flow equations and investigate their induced moduli space trajectories and asymptotic
behaviour in the flow parameter. Having developed an intuitive picture of the properties
of bubbles under geometric flows, less trivial constructions will be thereafter discussed.
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5.1.1 Bubble construction

Before considering specific background geometries and scalar field configurations, we will
describe the class of bubble toy models of our interest in a general fashion. The detailed
form of the metric will now be discussed, followed by a quick investigation of the scalar
profile. Thus, all subsequent analyses will be performed after having fixed the values of
some solution parameters. Spherical symmetry will always be assumed, together with
staticity. We will hence find ourselves with a set of purely radial functions of one variable.

Background Metric

For what concerns the space-time geometry, we will consider a family of spherically sym-
metric, static and uncharged black holes with no angular momentum, embedded in a
4-dimensional cosmological constant background:

ds2 =− F (r,M,Λ) dt2 +
dr2

F (r,M,Λ)
+ r2

(
dθ2 + sin2 θdφ2

)
. (5.1.1)

In the above formula, expressed in standard spherical coordinates (t, r, θ, φ), the radial
function F (r,M,Λ) was defined in terms of the black hole mass M and the cosmological
constant Λ as:

F (r,M,Λ) ≡ 1− 2M

r
− Λr2

3
. (5.1.2)

It goes without saying that, for the remainder of our analysis, we will work in units such
that both the 4-dimensional Newton constant GN and the speed of light in vacuum c are
chosen to be dimensionless and set to one. From the explicit expression (5.1.2), it is clear
that the family of geometries we are working with is a subset A of the generalised moduli
space GM of metrics onM, charted by two parameters:

(M,Λ) ∈ R+ × R . (5.1.3)

At this stage, it is not clear whether, starting for a specific initial condition (M0,Λ0) ∈ A,
Perelman’s combined flow (4.4.17) trajectories would be constrained to such subset of
GM. This issue will be briefly addressed in the following. For a more detailed assessment
of the case in which Λ < 0, the reader is encouraged to refer to [355]. The Λ > 0 one
was, instead, widely analysed in [249]. Since the metric described by (5.1.1) is that of an
Einstein manifold, we have that the Ricci scalar and tensor are related by the formula

Rµν =
R

4
gµν , (5.1.4)

with the scalar curvature being equal to:

R = 4Λ . (5.1.5)

When considering a geometric flow equation for the metric, as previously commented on,
there is no guarantee that an initial point in A will produce a flow trajectory completely
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contained in A, rather than any other general path in GM. It is, nevertheless, straightfor-
ward to show [355] that any generalised Ricci-Bourguignon flow (4.3.41) defined by

dgµν
ds

= −2Rµν + ϑRgµν + λgµν + Lξgµν , (5.1.6)

with ϑ, λ ∈ R, does, indeed, satisfy such requirement. Hence, the identities (5.1.4) and
(5.1.5) can be taken to hold along their induced geometric evolutions. Thus, it is much
easier to focus, after having neglected the diffeomorphism term, on the flow defined by
(5.1.6) for the curvature scalar:

dR

ds
= 2RµνRµν − (ϑR + λ)R + [1− (D − 1)ϑ]∇2R (5.1.7)

Imposing both (5.1.4) and (5.1.5), the above formula can be expressed in the form of a
flow equation for the cosmological constant:

dΛ

ds
= 2 (1− 2ϑ) Λ2 − λΛ . (5.1.8)

For λ ̸= 0 and Λ (0) = Λ0, the equation can be solved by:

Λ (s) = λΛ0

{
2 (1− 2ϑ) Λ0 + eλ·s [λ− 2 (1− 2ϑ) Λ0]

}−1
. (5.1.9)

For λ = 0, the differential equation for the cosmological constant flow is solved by the
λ→ 0 limit of the above expression:

Λ (s) =
Λ0

1− 2Λ0 (1− 2ϑ) s
. (5.1.10)

Further reducing ourselves to Ricci flow, which is the metric flow equation appearing in
(4.4.17) and the one we will consider in our analysis, we simply have:

Λ (s) =
Λ0

1− 2Λ0s
. (5.1.11)

Therefore, we observe two distinct behaviours:

• For a negative initial cosmological constant Λ0, corresponding to a black hole em-
bedded in an Anti-de Sitter background, the cosmological constant flows to zero as
the parameter s is sent to infinity.

• For a positive initial cosmological constant Λ0, corresponding to a black hole em-
bedded in a de Sitter background, the cosmological constant blows to infinity at the
finite flow parameter critical value:

s1 ≡
1

2Λ0

. (5.1.12)
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• If the initial value of the cosmological constant is taken to be zero, the space-time
geometry does not change with the parameter s.

Particular care is required when dealing with either flat space-time limits or flow singu-
larities, as the ones described above. The reason is that whether or not they lie at finite
or infinite distance is not related to them corresponding a finite or infinite, respectively,
value of the flow parameter. Instead, it must once more be stressed that moduli space
distances should be either computed by employing the path length formula (4.4.6) along
a geodesic or by comparing the values of Perelman’s entropy functional (4.4.7) at the two
moduli space points that are taken into account, as done in (4.4.25). In our case, such two
points are the initial condition and either the flat space-time limit, for the Λ0 < 0 case, or
the flow singularity, when Λ0 > 0. Regardless of the choice of one of the two notions of
distance, it is clear that no definitive answer can be provided before analysing the scalar
field flow behaviour. This will be done, for a variety of distinct scenarios, in the following
discussion. Plugging the cosmological constant flow dependence described in (5.1.11) into
the Ricci metric part of Perelman’s combined flow, one can derive the flow behaviour of
the black hole mass M . Once more, explicit and detailed analyses of such general prob-
lems are included in [249, 355]. As far as our current discussion is concerned, it is simply
important to stress that, when the initial value of the cosmological constant is set to zero,
the space-time geometry reduces to that of a flat Schawrzschild black hole. Therefore, it
corresponds to a flow fixed point. Having described the family of geometrical backgrounds
we are interested in, having studied their Ricci flow behaviour and having assessed that
the corresponding moduli space trajectories are constrained to A ⊂ GM, we can move our
focus to the scalar field radial profile.

Scalar Profile

In order to construct the scalar profile, we start by assuming it to be static and spherically
symmetric. Namely, we take ϕ = ϕ (r) in spherical coordinates (t, r, θ, φ). Thereafter, we
introduce the bubble radius ϱ and consider a spherical shell

Bε (ϱ) ≡ {(t, r, θ, φ) ∈M | t = τ, r ∈ (ϱ− ε, ϱ+ ε)} (5.1.13)

around the origin, with thickness 2ε. The τ -dependence in Bε (ϱ) was purposely dropped.
The reason is that, being both the metric and the scalar time-independent, τ can always
be rescaled by performing an isometry in the time direction. Thus, we will from now on
set it to one without loss of generality. Concerning the scalar field, we assume it to take
two constant values ϕ1 and ϕ2, respectively inside and outside the spherical shell. Inside
Bε (ϱ), which corresponds to the wall of the scalar bubble, we instead assume ϕ to smoothly
interpolate between ϕ1 and ϕ2. In order for such a goal to be achieved, we take

ϕ (r) ≡


ϕ1 for r ≤ ϱ− ε

I (r) for ϱ− ε ≤ r ≤ ϱ+ ε

ϕ2 for r ≥ ϱ+ ε

, (5.1.14)
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where the interpolating radial function I (r) was defined as:

I (r) ≡ ϕ2 + ϕ1

2
+
ϕ2 − ϕ1

2
tanh

r − ϱ
(ϱ+ ε− r) (r − ϱ+ ε)

. (5.1.15)

In the following examples, the radial profile described by (5.1.14) and depicted in figure
5.1 will represent, for a specific choice of the parameters ϕ2, ϕ1, ϱ and ε, the Perelman’s
combined flow initial condition for the scalar field. While the presence of non trivial field
gradients in the region described by the spherical shell Bε (ϱ) would, strictly speaking,
induce a back-reaction on the space-time geometry (5.1.1), the thin-wall approximation
ϱ ≫ ε > 0 will allow us to neglect it without introducing strong deviations from the
full-fledged on-shell solution.

Figure 5.1: Radial profile of the scalar field ϕ, when the constant values are set to ϕ1 = −10
and ϕ2 = 10, while the spherical shell is defined by ϱ = 10 and ε = 1. The vertical dashed
lines correspond to spherical shell boundaries.

5.1.2 Minkowski background

The first example we focus on is, arguably, the simplest possible. Namely, we take both
M = 0 and Λ = 0, so that the background metric (5.1.1) reduces to that of Minkowski
space-time. First of all, we observe that such a space-time geometry is characterised by a
vanishing Ricci curvature tensor:

Rµν = 0 . (5.1.16)

Therefore, the metric part of the system is constant along Perelman’s combined flow
(4.4.17). This directly translates in M and Λ having no evolution in the flow parame-
ter s. Since (5.1.16) implies the curvature scalar to vanish too, the flow equation for the
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scalar field ϕ reduces to:
dϕ

ds
= (∇ϕ)2 −∇2ϕ+ Lξϕ . (5.1.17)

Working in Minkowksi space-time, we simply have:

dϕ

ds
= (∂ϕ)2 − ∂2ϕ+ Lξϕ . (5.1.18)

From this point on, we will neglect the diffeomorphism term. It can be straightforwardly
observed that the scalar field derivative vanishes for:

r /∈ (ϱ− ε, ϱ+ ε) =⇒ ∂µϕ = 0 . (5.1.19)

The right-hand side of (5.1.18) is hence zero outside the spherical shell (5.1.13), implying
that both ϕ1 and ϕ2 are constant along the flow. Since both sides of (5.1.18) solely depend
on the radial coordinate, it can be safely deduced that Perelman’s flow does not spoil the
spherical symmetry of ϕ. Starting from the previous observation and from the constancy
of ϕ1 and ϕ2, we now introduce an appropriate flow ansatz, assuming that the functional
form (5.1.14) properly describes ϕ at any value of the flow parameter s. The flow is
therefore regarded as a deformation of the wall-like interface between the two regions in
which the scalar field is taken as constant. Moreover, we take ε to be constant along the
flow. This last hypothesis is backed-up by the so-called thin-wall approximation, which
we will assume to well describe our solution for the remainder of the following discussion.
Namely, we impose

ϱ≫ ε > 0 (5.1.20)

and assume it to hold along the flow, so that any variation of ε is negligible with respect
to the overall evolution. Hence, we can fully model the geometric flow as an evolution in
the wall position ϱ. If bubbles will be found to shrink along the flow, the approximation
of constant thickness can be expected to break down roughly after a critical flow time sc.
Some extra care will thus be required. That said, we now choose to work within a regime
in which ϱ≫ ε, define

ϕ(r) ≡ φ (r − ϱ) (5.1.21)

and move the whole flow dependence to ϱ, with r − ϱ ≡ x ∈ (−ϱ,+∞). Concerning the
flow equation (5.1.18) for the scalar profile in terms of ϱ and φ, we have:

d2φ

dx2
=

(
dϱ

ds
− 2

x+ ϱ

)
dφ

dx
+

(
dφ

dx

)2

. (5.1.22)

By multiplying both sides by the x-derivative of φ, we obtain:

1

2

d

dx

(
dφ

dx

)2

=

(
dϱ

ds
− 2

x+ ϱ

)(
dφ

dx

)2

+

(
dφ

dx

)3

. (5.1.23)
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In particular, we have

dφ

dx
=


0 for − ϱ ≤ x ≤ −ε
K(x) for − ε ≤ x ≤ ε

0 for x ≥ ε

, (5.1.24)

in which we have defined the function K (x) as:

K(x) =
ϕ2 − ϕ1

2

(x2 + ε2)

(x− ε)2(x+ ε)2
cosh−2 x

ε2 − x2
≡ ϕ2 − ϕ1

2
G(x) . (5.1.25)

At this point, we perform an integration of (5.1.23) in the variable x, taken to go from 0
to +∞, and read-off dϱ/ds from the resulting expression. By doing so, we are left with
the following equation:

dϱ

ds

∫ ε

−ε
G(x)2dx = 2

∫ ε

−ε

G(x)2

x+ ϱ
dx+

ϕ1 − ϕ2

2

∫ ε

−ε
G(x)3dx . (5.1.26)

Evidently, (5.1.26) is way too complicated to be solved analytically. Anyway, we can easily
observe that G(x) is always positive in (−ε, ε). Hence, the flow behaviour of the bubble
radius ϱ is characterised by three positive functions:

A (ε) ≡
∫ ε

−ε
G(x)2dx , B (ε, ϱ) ≡

∫ ε

−ε

G(x)2

x+ ϱ
dx , C (ε) ≡

∫ ε

−ε
G(x)3dx . (5.1.27)

Therefore, the flow equation for ϱ can be written in the compact form:

dϱ

ds
= 2

B (ε, ϱ)

A (ε)
+
ϕ1 − ϕ2

2

C (ε)

A (ε)
. (5.1.28)

Since we work in the ε≪ ϱ regime, we have:

B (ε, ϱ) ∼
∫ ε

−ε

G(x)2

ϱ
dx =

A (ε)

ϱ
. (5.1.29)

Given the above approximate relation, the geometric flow equation (5.1.28) reduces to

dϱ

ds
=

2

ϱ
+
ϕ1 − ϕ2

2
Q (ε) , (5.1.30)

where the function Q (ε) of the halved spherical shell thickness ε is defined as the ratio:

Q (ε) ≡ C (ε)

A (ε)
. (5.1.31)

As displayed in figure 5.2, the function Q (ε) is strictly restricted to positive values, at
least for thin enough interfaces. Therefore, whether the second contribution appearing on
the right-hand side of (5.1.30) will tend to inflate or deflate the bubble, within which the
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scalar takes the value ϕ1, will depend on the magnitudes of the constants ϕ1 and ϕ2. We
hence consider the cases ϕ2 > ϕ1 and ϕ2 < ϕ1 separately. Before doing so, it is important
to stress that the first term in the right-hand side (5.1.30) will always contribute to the
scalar field bubble getting inflated. Nonetheless, the significance of such effect will linearly
decrease with the size of the aforesaid bubble.

Figure 5.2: Plot of Q (ε) with respect to the spherical shell halved thickness. At least within
the thin-wall approximation, which is the regime we are interested in, such a function is
clearly restricted to positive values.

Bubble with a smaller scalar value

As an initial condition, we assume ϕ2 > ϕ1 and take the spherical shell radius to have a big
enough value ϱ0, when compared to its thickness. This way the thin-wall approximation
can be safely employed. Furthermore, we define the function

χ (ε) ≡ ϕ1 − ϕ2

2
Q (ε) , (5.1.32)

depending both on the constant ϕ2 and ϕ1 and on the previously introduced function Q (ε)
of the halved shell thickness. By doing so, the flow equation (5.1.30) for the radius of the
bubble can be solved by

ϱ (s) = − 2

χ (ε)

{
1 +W

[
− exp

{
−1− 2χ2 (ε) s− ϱ0

2
χ (ε)

}(
1 +

ϱ0
2
χ (ε)

)]}
, (5.1.33)

whereW refers to the positive branch of Lambert’s function, which only admits arguments
in (−e−1,+∞). In order for such an object to be well-defined, we hence take:

ϱ0 ≥
1

ϕ2 − ϕ1

4

Q (ε)
. (5.1.34)



5.1 Geometric flow of scalar bubbles 97

The regime in which the value of the dilaton inside the bubble is smaller than the one
outside, namely when ϕ2 > ϕ1, produces shrinking bubbles. In particular, starting from an
initial value ϱ0 satisfying (5.1.34), the bubbles shrink approaching the asymptotic value

ϱ∞ ≡
1

ϕ2 − ϕ1

4

Q (ε)
, (5.1.35)

for which dϱ/ds = 0 and the above bound gets saturated. In figure 5.3, the flow behaviour
of ϱ, for different values of χ and starting from an initial condition ϱ0 = 1, is depicted.

Figure 5.3: Flow behaviour of ϱ for different values of χ, with ϱ0 = 1 and assuming to be
considering a setting in which ϕ2 > ϕ1.

Bubble with a larger scalar value

We now assume the bubble to be characterise by a larger scalar field value, which translates
into a choice of parameters ϕ2 < ϕ1, and take a big enough value of ϱ0 as the flow initial
condition, so that the thin-wall approximation can be safely employed. Defining χ (ε) as
in (5.1.32), it can be directly noticed that the solution for ϱ presented in (5.1.33) does
not apply to the current scenario, since it would imply dealing with negative arguments in
Lambert’s function. Nevertheless, we can observe that right-hand side of (5.1.30) is always
positive. Hence, ϱ is forced to grow, asymptotically approaching a linear behaviour

ϱ̃ (s) ≈ ϱ0 + χ (ε) · s , (5.1.36)

for which the 2/ϱ in (5.1.30) can be neglected. Therefore, when the scalar field value
inside the bubble is larger than the one outside, the bubble grows indefinitely. For large
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enough values of the flow parameter s, moreover, the simple expression (5.1.36) properly
approximates the flow behaviour of the bubble radius.

5.1.3 Cosmological constant background

After having discussed the Minkowski background case in detail, we will now move to a
slightly more complicated example. More specifically, we will still assume M = 0, while
the initial value Λ0 of the cosmological constant will be taken not to vanish. The distinct
scenarios associated to de Sitter and Anti-de Sitter space-time will therefore be analysed
separately. As far as the metric flow is concerned, the evolution of the cosmological constant
in both such instances was described in 5.1.1 as:

Λ (s) =
Λ0

1− 2Λ0 · s
. (5.1.37)

Anti-de Sitter background

As observed in 5.1.1, if the initial metric configuration is taken to be that of Anti-de Sitter
space-time, we have that the flow asymptotically approaches Minkowski as s→∞. That
being said, we now study how such an evolution of the geometry affects the flow of the
scalar bubble. As far as large values of the flow parameter are concerned, we can expect
the evolution to asymptotically approach the one studied in section 5.1.2 as Λ (s) goes to
zero. Regarding the flow behaviour of the constants ϕ2 and ϕ1, respectively characterising
the scalar field ϕ inside and outside the bubble, we get:

dϕ2

ds
=

dϕ1

ds
=

Λ0

1− 2Λ0 · s
. (5.1.38)

Therefore, such constants are not preserved along the flow in λ, as they were in section
5.1.2. In particular, we have:

ϕ2 (s) = ϕ2 (0) + 2 log (1− 2Λ0 · s) ,
ϕ1 (s) = ϕ1 (0) + 2 log (1− 2Λ0 · s) .

(5.1.39)

The logarithmic behaviour is precisely produced by the fact that we asymptotically ap-
proach Minkowski space-time, for which the source term on the right-hand side of (5.1.38)
progressively weakens. It can be observed that both ϕ1 and ϕ2 grow towards infinity. Fortu-
nately, as we will see below, the flow equation for the bubble size will only depend on their
difference, so the s-dependent part will be factored out. Plugging (5.1.21), together with
the metric, into the geometric flow equation (4.4.17) for ϕ and moving the s-dependence
to the bubble radius ϱ, we get:

d2φ

dx2
= −4Λ +

(
dϱ

ds
− 2

x+ ϱ

)
dφ

dx
+

[
1− Λ

3
(x+ ϱ)2

](
dφ

dx

)2

. (5.1.40)
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By multiplying both sides by the x-derivative of φ, we obtain:

1

2

d

dx

(
dφ

dx

)2

=− 4Λ
dφ

dx
+

(
dϱ

ds
− 2

x+ ϱ

)(
dφ

dx

)2

+

+

[
1− Λ

3
(x+ ϱ)2

](
dφ

dx

)3

.

(5.1.41)

The x-derivative of φ takes the form illustrated in (5.1.24). By integrating the above
equation and getting rid of boundary terms, we get:

dϱ

ds

∫ ε

−ε
G(x)2dx =2

∫ ε

−ε

G(x)2

x+ ϱ
dx+

ϕ1 − ϕ2

2

∫ ε

−ε
G(x)3dx+

− Λ

3

ϕ1 − ϕ2

2

∫ ε

−ε
G(x)3 (x+ ϱ)2 dx .

(5.1.42)

The flow in characterised by the three positive functions defined in (5.1.27), together with
a further positive function:

D (ε, ϱ) ≡
∫ ε

−ε
G(x)3 (x+ ϱ)2 dx . (5.1.43)

Hence, we can write the flow equation for the bubble radius as:

dϱ

ds
= 2

B (ε, ϱ)

A (ε)
+
ϕ1 − ϕ2

2

C (ε)

A (ε)
− Λ

3

ϕ1 − ϕ2

2

D (ε, ϱ)

A (ε)
. (5.1.44)

Given the thin-wall approximation, we get the approximate relation

D (ε, ϱ) ≈
∫ ε

−ε
G(x)3ϱ2dx = C (ε) ϱ2 (5.1.45)

and write the above evolution in the following, simple, form

dϱ

ds
=

2

ϱ
+
ϕ1 − ϕ2

2

(
1− Λϱ2

3

)
Q (ε) , (5.1.46)

in which the function Q (ε) is defined in (5.1.31). Introducing, as was done in (5.1.32), the
function χ (ε), we finally obtain:

dϱ

ds
=

2

ϱ
+

(
1− Λϱ2

3

)
χ (ε) . (5.1.47)

We observe that, for Anti de Sitter space-time, Λ does nothing more than enhancing the
contribution of χ to the source term on the right-hand side of (5.1.47), particularly for
early flow times and large values of ϱ. Therefore, there is no qualitative difference with the
analysis developed in section (5.1.2). Since Λ→ 0, even the asymptotic radius of shrinking
bubbles in the χ (ε) < 0 regime is unchanged from the discussion developed in the case of
a Minkowski background.
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de Sitter background

Since its formal derivation coincides with the one developed for Anti de Sitter space-time,
we find ourselves with the same thin-wall regime flow equation:

dϱ

ds
=

2

ϱ
+

(
1− Λϱ2

3

)
χ (ε) . (5.1.48)

As previously discussed, the evolution in the flow parameter s reaches a singularity at

s1 =
1

2Λ0

, (5.1.49)

where Λ → ∞ and ϕi → −∞, for i = 1, 2. The function χ (ε) is still constant along
the flow. Nevertheless, it can be easily observed that this setting is way richer and more
subtle that the ones studied before. Therefore, different regions in the space of parameters
(ϱ0, ε,Λ0) produce a wide variety of flow behaviours and must be analysed separately.
Depending on the values of the parameters, the bubbles can steadily grow, shrink or follow
non-monotonic behaviours.

Figure 5.4: Flow behaviour ϱ (s) of the scalar bubble radius, with respect to the flow
parameter s and for different values of the function χ (ε), depending on the bubble halved
thickness. The initial condition is chosen to be ϱ0 = 1.

In figure 5.4, the flow behaviour ϱ (s) of the scalar bubble radius, with respect to the
flow parameter s and for different values of the function χ (ε), is depicted. There, the
initial condition was chosen to be ϱ0 = 1. Different choices would have led to qualitatively
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analogous, albeit quantitatively different, evolutions. The figure clearly highlight how
different flow behaviours can be produced by appropriately choosing the initial values of
the solution parameters. In particular, there are regions of the parameters space for which
the bubble radius exceeds that of de Sitter space-time along the evolution. This clearly
generates an inconsistency, as the bubble would pass through the cosmological horizon.
This feature might signal the fact that the only allowed choices for the initial parameters
are the ones that do not lead us into such a pathological situation.

5.1.4 Schwarzschild Background

Having got to this point, it is almost natural to focus on the case in which the initial value
of the black hole mass M0 is taken to be strictly positive, while setting the cosmological
constant to zero. Analysing the much more complicated case in which the metric (5.1.1)
is considered in its full generality goes beyond the scope of our current work. Hence, we
simply consider the standard coordinates expression of the Schwarzschild metric:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin θ2dϕ2 . (5.1.50)

Since (5.1.50) describes a flat geometry, the metric remains constant along the flow defined
by (4.4.17). Studying the region outside the black hole event horizon, we only consider
bubbles larger than the horizon radius rh = 2M . For what concerns the scalar profile,
we stick to the form presented in (5.1.14) and take the ansatz (5.1.21). Furthermore, we
assume the thin wall approximation ϱ≫ ε. Being it radial, its Laplacian is:

∆ϕ =
1√
−g

∂µ
(√
−ggµν∂νϕ

)
=

(
1− 2M

r

)
d2ϕ

dr2
+ 2

r −M
r2

dϕ

dr
. (5.1.51)

Hence, the flow equation in (4.4.17) for ϕ takes the form:

dϕ

ds
= −

(
1− 2M

r

)
d2ϕ

dr2
− 2

r −M
r2

dϕ

dr
+

(
1− 2M

r

)(
dϕ

dr

)2

. (5.1.52)

By plugging (5.1.21) in (5.1.52), we have:

d2φ

dx2
=

(
1− 2M

x+ ϱ

)−1 [
dϱ

ds
− 2

x+ ϱ−M
(x+ ϱ)2

]
dφ

dx
+

(
dφ

dx

)2

. (5.1.53)

Since x ∈ (−ε, ε), we have x + ϱ ≈ ϱ. Moreover, we work with ϱ > 2M . Hence, the flow
equation can be approximated as:

d2φ

dx2
=

ϱ

ϱ− 2M

(
dϱ

ds
+ 2

M − ϱ
ϱ2

)
dφ

dx
+

(
dφ

dx

)2

. (5.1.54)
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By multiplying both sides by dφ/dx and integrating as was done in section 5.1.2, we have:

dϱ

ds

∫ ε

−ε

(
dφ

dx

)2

dx = 2
ϱ−M
ϱ2

∫ ε

−ε

(
dφ

dx

)2

dx− ϱ− 2M

ϱ

∫ ε

−ε

(
dφ

dx

)3

dx . (5.1.55)

Therefore, we obtain the flow equation for the scalar bubble radius as:

dϱ

ds
= 2

ϱ−M
ϱ2

+ χ (ε)
ϱ− 2M

ϱ
. (5.1.56)

It can be observed that, whenM = 0, the above reduces to (5.1.30). Moreover, by studying
the near-horizon behaviour of the flow, it can be shown that the ϱ > 2M assumption is
conserved along the flow. Namely, by taking ϱ = 2M + µ, with µ≪ 2M , we have:

dϱ

ds
∼ 1

2M
> 0 . (5.1.57)

Hence, starting from ϱ0 > 2M we are forced to stay in the ϱ > 2M regime. Namely, if
taken to be outside the black hole, the bubble wall cannot cross the horizon along the
geometric evolution in s. Concerning fixed points of the flow, we observe:

dϱ

ds
= 0 =⇒ 2

ϱ−M
ϱ2

+
ϱ− 2M

ϱ
χ (ε) = 0 (5.1.58)

Thus, it seems like we have fixed points ϱ̄± of the flow solving

ϱ̄2 + 2
1−M · χ (ε)

χ (ε)
ϱ̄− 2M

χ (ε)
= 0 , (5.1.59)

but we still have to discuss whether any of the two lies outside the black hole event horizon,
which is the region we are interested in. We have:

ϱ̄± =M − 1

χ (ε)
±
√
M2 +

1

χ (ε)2
. (5.1.60)

We observe that, for M > 0, only ϱ̄+ can be bigger than 2M . Moreover, we can only
achieve this with χ (ε) < 0. Therefore:

• χ (ε) > 0: There is no fixed point of the flow.

• χ (ε) < 0: The bubble radius ϱ̄+ is a fixed point of the flow.

We now study the χ (ε) < 0 case in detail. As discussed above, we have a fixed point at:

ϱ̄+ =M − 1

χ (ε)
−

√
M2χ (ε)2 + 1

χ (ε)
. (5.1.61)
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In figure 5.5, ϱ̄+ is plotted against negative values of the function χ (ε). It can be easily
observed that dϱ/ds > 0 for 2M < ϱ < ϱ̄+ and dϱ/ds < 0 for ϱ̄+ < ϱ. Namely, we always
tend towards the fixed point at ϱ̄+. For χ (ε) > 0, instead, we simply have that dϱ/ds > 0
for every value of ϱ. Therefore, the bubble is forced to grow indefinitely.

Figure 5.5: Plot of ϱ̄+ (blue line), for M = 1, against negative values of χ (ε). As can be
clearly observed, it is bigger than the horizon radius (orange line).

5.2 Geometric flow of space-time bubbles

In 5.1.1, a spherically symmetric scalar field bubble was embedded in a variety of dis-
tinct space-time metrics. After having properly described such configuration and having
assumed the thin-wall approximation, the evolution induced by Perelman’s combined flow
was assessed and discussed. In this section, instead of doing so for the scalar field, we will
consider 4-dimensional bubble configurations of the space-time geometry itself. In partic-
ular, we will construct space-time kinematical states with negative cosmological constant
bubbles, connecting distinct Anti-de Sitter solutions. This will imply taking two negative
values Λ1 and Λ2 for the cosmological constant, respectively characterising the inside and
the outside of the bubble, and interpolating between them in a narrow spherical shell.
Thereafter, we will study the systems evolution under a particular set of geometric flow
equations, specifically designed to keep Λ1 and Λ2 fixed along the flow. Obtaining them
will constitute the first step of the following derivation.
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5.2.1 Geometric flow equations

Before constructing the space-time bubble interpolating between distinct Anti-de Sitter
vacua, we will derive a new set of geometric flow equations, allowing us to easily force
the cosmological constant values far from the bubble wall not to change along the flow.
In order to do so, let’s consider a D-dimensional space-time manifold M, on which a
Lorentzian metric gµν and a scalar field ϕ are defined. Let’s moreover consider a slightly
altered version of Perelman’s entropy F -functional, defined by

F [g, ϕ] =

∫
dDx
√
−ge−ϕR · ϕ (5.2.1)

and on which we perform volume-preserving variations of the fields, such that:

δ
(√
−ge−ϕ

)
= 0 . (5.2.2)

Namely, starting from the usual variations

gµν −→ gµν + vµν , ϕ −→ ϕ+ h , (5.2.3)

we impose the identity:
2h = gµνvµν . (5.2.4)

The overall variation of the entropy functional can be computed as:

δF =

∫
dDx
√
−ge−ϕ

[
R

2
gµν − ϕRµν + eϕ∇µ∇ν

(
e−ϕϕ

)
− gµνeϕ∇2

(
e−ϕϕ

)]
vµν . (5.2.5)

Therefore, the flow equations can be written, in an extremely compact form and introducing
a suitable normalisation of the flow parameter, as:

dgµν
ds

= −ϕ
2
Rµν +

R

4
gµν +

1

2

[
∇µ∇ν

(
e−ϕϕ

)
− gµν∇2

(
e−ϕϕ

)]
eϕ ,

dϕ

ds
=
R

4

(
D

2
− ϕ
)
+

1−D
4
∇2
(
e−ϕϕ

)
eϕ .

(5.2.6)

In D = 4, which is the case we will consider, the above equations become:

dgµν
ds

= −ϕ
2
Rµν +

R

4
gµν +

1

2

[
∇µ∇ν

(
e−ϕϕ

)
− gµν∇2

(
e−ϕϕ

)]
eϕ ,

dϕ

ds
=
R

4
(2− ϕ)− 3

4
∇2
(
e−ϕϕ

)
eϕ .

(5.2.7)

In [300], an alternative set of flow equations was derived and applied to cosmological
constant bubble example. Nonetheless, being the entropy functional employed in such
work not invariant under diffeomorphism, which is a feature (5.2.1) instead possesses, we
choose to stick to the flow equations (5.2.7) for the remainder of the section. Even though
they are not generally equivalent to the geometric flows presented in [300], they reduce to
the same expressions when considering the particular geometric configuration at hand and
for a specific scalar field profile.
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5.2.2 Bubble construction

Let the 4-dimensional space-time manifoldM, endowed with a scalar field ϕ and with the
Lorentzian metric tensor gµν , be charted by coordinates (t, r, xi). Hence, we once again
consider a spherical shell (5.1.13) around the origin, with thickness 2ε and radius ϱ, and
work with a metric tensor of the form

ds2 =
r2

α2 (r)
dt2 +

α2 (r)

r2
dr2 +

r2

α2 (r)
dx̄2 , (5.2.8)

where the radial function α(r) is defined as

α(r) ≡


α0 for r ≤ ϱ− ε

G(r) for ϱ− ε ≤ r ≤ ϱ+ ε

α2 for r1 ≥ ϱ+ ε

, (5.2.9)

and the interpolating function is:

G(r) ≡ α2 + α1

2
+
α2 − α1

2
tanh

r − ϱ
(ε+ ϱ− r) (r − ϱ+ ε)

. (5.2.10)

In the above expressions, the constants α2 and α1 correspond to:

α1 ≡
√
−Λ1

3
, α2 ≡

√
−Λ2

3
. (5.2.11)

By forcing the scalar field to be constant and equal to

ϕ0 ≡ 2 , (5.2.12)

the geometric flow equations reduce to:

dgµν
ds

= −Rµν +
R

4
gµν ,

dϕ

ds
= 0 . (5.2.13)

Moving the full flow dependence to the function α(r), we can translate (5.2.13) into a single
equation for the scalar curvature and simplify the problem. Indeed, we get:

∂R

∂λ
= RµνRµν −

∇2R

4
− R2

4
. (5.2.14)

Considering the flow away from ϱ, we see that α1 and α2 are fixed in s. Hence, the
full flow dependence can be moved to ε and ϱ. At this point, we move to the thin-wall
approximation, assume that the whole flow dependence can be pushed to ϱ, introduce a
new radial variable x ≡ r − ϱ and take:

α (r) ≡ ψ (r − ϱ) = ψ (x) . (5.2.15)



106 5. Geometric flow of bubbles

Referring with ḟ to s-derivatives and with f ′ to x-derivatives, we have:

∂α

∂r
= ψ′ , α̇ = −dϱ

ds
· ψ′ . (5.2.16)

From the above expression for the metric, we get:

R =
6

ψ4

{
ψ (x+ ϱ) [6ψ′ + (x+ ϱ)ψ′′]− 2ψ2 − 4 (x+ ϱ)2 ψ′2} . (5.2.17)

By taking the λ-derivative, we obtain:

Ṙ =
dϱ

ds

6

ψ4

{
4ψ′ (x+ ϱ) 6ψ′ + 4ψ′ (x+ ϱ)2 ψ′′ − 8ψ′ψ − 16 (x+ ϱ)2

ψ′3

ψ
+

− ψ′2 (x+ ϱ) 6− ψ′ (x+ ϱ)2 ψ′′ + ψ6ψ′ + ψ (x+ ϱ)ψ′′+

− 6ψ′′ψ (x+ ϱ)− ψ (x+ ϱ)2 ψ′′′ + ψ′′ψ (x+ ϱ) + 4ψψ′+

− 8 (x+ ϱ)ψ′2 + 8 (x+ ϱ)2 ψ′ψ′′
}

=

=
dϱ

ds

6

ψ4

{
10ψ′ (x+ ϱ)ψ′ + 2ψψ′ − 4ψ′′ψ (x+ ϱ)− ψ (x+ ϱ)2 ψ′′′+

+ 11 (x+ ϱ)2 ψ′ψ′′ − 16 (x+ ϱ)2
ψ′3

ψ

}
=

=
dϱ

ds

[
C2 (x) (x+ ϱ)2 + C1 (x) (x+ ϱ) + C0 (x)

]
.

(5.2.18)

In the above, we have introduced:

C2 (x) ≡
6

ψ5

[
11ψψ′ψ′′ − ψ2ψ′′′ − 16ψ′3] ,

C1 (x) ≡
12

ψ4

[
5ψ′2 − 2ψψ′′] ,

C0 (x) ≡
12

ψ3
ψ′ .

(5.2.19)

By collecting ϱ terms in Ṙ, we are left with

Ṙ =
dϱ

ds

[
D2 (x) ϱ

2 +D1 (x) ϱ+D0 (x)
]
, (5.2.20)

where:

D2 (x) ≡ C2 (x) ,

D1 (x) ≡ 2xC2 (x) + C1 (x) ,

D0 (x) ≡ x2C2 (x) + xC1 (x) + C0 (x) .

(5.2.21)
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Now, we want to write in a similar fashion the right-hand side

K ≡ RµνRµν −
∆R

4
− R2

4
(5.2.22)

of the scalar curvature flow equation. We get:

K = −3 (x+ ϱ)

2ψ8

{
16 (x+ ϱ)2 ψ′2ψ [20ψ′ + 9 (x+ ϱ)ψ′′]−

+ (x+ ϱ)ψ2
[
13 (x+ ϱ)2 ψ′′2 + 2 (x+ ϱ)ψ′(91ψ′′+

+ 9 (x+ ϱ)ψ′′′)+ 208ψ′2]+ ψ3
[
(x+ ϱ)

(
(x+ ϱ)2 ψ′′′′+

+ 50ψ′′ + 14 (x+ ϱ)ψ′′′)+ 40ψ′]− 152 (x+ ϱ)3 ψ′4
}

=

=
4∑

k=1

Gk (x) (x+ ϱ)k .

(5.2.23)

In the above expression, we’ve introduced:

G4 (x) ≡ −
3

2ψ8

{
144ψ′2ψψ′′ − ψ213ψ′′2 + ψ218ψ′ψ′′′ − 152ψ′4 + ψ3ψ′′′′} ,

G3 (x) ≡ −
3

2ψ8

{
ψ314ψ′′′ + 320ψ′3ψ + 182ψ2ψ′ψ′′} ,

G2 (x) ≡ −
3

2ψ8

{
ψ2208ψ′2 + ψ350ψ′′} ,

G1 (x) ≡ −
60

ψ8
ψ3ψ′ .

(5.2.24)

At this point, we collect powers of ϱ and get

K ≡ N4 (x) ϱ
4 +N3 (x) ϱ

3 +N2 (x) ϱ
2 +N1 (x) ϱ+N0 (x) , (5.2.25)

where we have defined the functions:

N4 (x) ≡ G4 (x) ,

N3 (x) ≡ 4xG4 (x) +G3 (x) ,

N2 (x) ≡ 6x2G4 (x) + 3xG3 (x) +G2 (x) ,

N1 (x) ≡ 4x3G4 (x) + 3x2G3 (x) + 2xG2 (x) +G1 (x) ,

N0 (x) ≡ x4G4 (x) + x3G3 (x) + x2G2 (x) + xG1 (x) .

(5.2.26)

Observing that all Di (x) and Ni (x) are zero for x ̸∈ [−ε,+ε], we can introduce the
integrated constants:

Di ≡
∫ +ε

−ε
Di (x) dx , Ni ≡

∫ +ε

−ε
Ni (x) dx . (5.2.27)



108 5. Geometric flow of bubbles

Therefore, the flow equation can simply be written as:

dϱ

ds

2∑
i=0

Diϱi =
4∑
j=0

Njϱj . (5.2.28)

By defining

S ≡ N0

D0

, L ≡ N4

D2

, (5.2.29)

we have that the large ϱ behaviour is controlled by sign of L, while the small ϱ behaviour
is controlled by sign of S. In order to investigate the general flow behaviour, we fix α2 ≡ 1
without loss of generality, as it only corresponds to setting a scale, and study the sign
of ϱ̇ as a function of ϱ and α1. It can be straightforwardly observed that the value of ϱ
doesn’t really affect the sign of ϱ̇. Therefore, given the values of α1 and α2, the bubble
follows either a monotonic growing or monotonic shrinking behaviour, regardless of the
initial value ϱ0 of its radius. Thus, the full qualitative dynamics can be captured by a plot
of the sign of ϱ̇ against α1.

Figure 5.6: Plot of the sign of ϱ̇ against the value of α1, when setting α2 ≡ 1. Regardless
of the initial radius ϱ0, the bubble will either grow or shrink monotonically.

Distances along the Flow

Concerning the evaluation of distances along the flow, at D = 4, we can compute them
with the formula

∆ (ϱ, ϱ0) = log
F (ϱ)

F (ϱ0)
, (5.2.30)
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where F (ϱ) is the entropy functional computed for the metric characterised by radius
ϱ. Introducing an upper radial cut-off Ω and extracting as F0 the non-radial part of the
entropy functional, which will anyway simplify in ∆, we get:

FΩ = F0

∫ Ω

0

dr
6r

α5

[
αr (6α′ + rα′′)− 2α2 − 4r2α′2] ≡ F0 · IΩ . (5.2.31)

The above integral can be split as:

IΩ =

∫ ϱ+ε

ϱ−ε
dr

6r

α5

[
αr (6α′ + rα′′)− 2α2 − 4r2α′2]+

−
∫ ϱ−ε

0

dr
12r

α3
2

−
∫ Ω

ϱ+ε

dr
12r

α3
2

=

=

∫ ϱ+ε

ϱ−ε
dr

6r

α5

[
αr (6α′ + rα′′)− 2α2 − 4r2α′2]+

− 6

α3
2

(ϱ− ε)2 − 6

α3
2

[
Ω2 − (ϱ+ ε)2

]
.

(5.2.32)

By working in the thin-wall approximation, we have ϱ+ ε ∼ ϱ− ε ∼ ϱ. Hence, we get:

IΩ (ϱ) ∼ − 6

α3
2

ϱ2 − 6

α3
2

[
Ω2 − ϱ2

]
. (5.2.33)

We can therefore give a rough estimate of ∆Ω, where Ω must be sent to ∞ after having
studied the limits in ϱf , as:

∆Ω ∼ log
IΩ (ϱ)

IΩ (ϱ0)
. (5.2.34)

We only focus on the ϱf 7→ ∞ limit, since the shrinking behaviour leads to a breakdown
of the thin-wall approximation. Indeed, the infinite radius bubble limit sits at infinite
distance even before sending Ω to infinity, with:

∆Ω ∝ log ϱ . (5.2.35)

By keeping the dependence on the radial cut-off Ω, we are trying to discuss the intensive
distance in the same spirit as the one motivating the quantum field theoretic version of the
information metric presented in [356].
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On-Shell flow

In the following chapter, a collection of results contained in [300] and [302] will be presented,
broadened and organised in a coherent fashion. First of all, we will extend the results
obtained in 4.4 for the F -entropy functional. In order to do so, we will generalise it, by
introducing a family of supplementary terms, and derive the induced geometric flows for a
system comprised of a metric tensor and a scalar field. The resulting differential equations
will reduce to (4.4.17) for a specific choice of the constants up to which the functional will
be defined. After having done so, we will start from an Einstein frame space-time action,
move to string frame and use the resulting expression as an entropy functional, from which
geometric flow equations will be deduced. We will therefore describe a natural path in the
moduli space, straightforwardly fixed by the dynamics without introducing any additional,
unphysical object. We will thereafter address an issue that has been postponed up to this
point. Namely, we will consider the fact that, once a set of flow equations for both the
metric and the scalar field is imposed, together with an on-shell initial configuration for
the flow, there is no guarantee that the s-evolution will produce on-shell configurations,
even for very small values of the flow parameter. In general, instead, a deviation from
the equations of motion of the theory can be observed as soon as the flow is initiated.
Hence, we will try to construct on-shell flows, preserving at least part of the equations
of motion of the theories under consideration. Even if this will only be achieved for the
metric, relaxing the on-shell condition on the scalar field, it will nevertheless be fruitful to
project the path produced by the flow in ΓM to the generalised moduli space directions
related to the geometry. By doing so, a partially on-shell flow will be obtained, probing
that portion of GM consistent with Einstein field equations.

6.1 General flow equations

In the following discussion, we will once more consider a D-dimensional Lorentzian space-
time manifoldM, a scalar field ϕ and the generalised moduli space ΓM of geometries and
scalar field configurationsM can be provided with. The entropy functional (4.4.7) on ΓM
can be generalised, via the introduction of a Laplacian term and an infinite family of self
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interactions, as:

F(α,β,γ) [g, ϕ] =

∫
M

dDx
√
−ge−ϕ

[
Rg + α (∇ϕ)2 + γ∇2ϕ+

∞∑
n=0

βnϕ
n

]
. (6.1.1)

We can avoid introducing an overall constant in front of F(α,β,γ) [g, ϕ] without loss of gen-
erality, as it could anyway be reabsorbed into the flow parameter and therefore generate
the same geometric flow equations. Hence, we set it to one. From this point on, we define:

µ̄ ≡ (α, γ, β0 . . . ) . (6.1.2)

It must be noted that the α parameter measures the significance of domain walls for ϕ,
as the term usually included in the Ginzburg-Landau theory free energy functional. The
standard F -entropy functional (4.4.7) can be obtained, from (6.1.1), by setting:

µ̄ = (1, 0, 0 . . . ) . (6.1.3)

In order to derive the flow equations associated to (6.1.1), we follow the procedure outlined
in 4.4 and perform variations in ϕ and gµν so that:

δ

∫
M

dDx
√
−ge−ϕ = 0 . (6.1.4)

Namely, we impose the string frame volume functional ṼM, defined in (4.4.9), not to change
along the flow. By taking the first order variations

gµν → gµν + vµν , ϕ→ ϕ+ h , (6.1.5)

we have the inverse metric variation:

gµν → gµν − vµν . (6.1.6)

The requirement (6.1.4) imposes, as in 4.4, that:

2h = gµνvµν . (6.1.7)

In order to render the following computations more manageable, we start by listing the in-
duced variations of the different terms appearing in the entropy functional (6.1.1). Indeed,
after having define v ≡ gµνvµν , we have:

δ (∇ϕ)2 = −vµν∇µϕ∇νϕ+∇µϕ∇µv , δϕn =
n

2
ϕn−1v ,

δ∇2ϕ = −vµν∇µ∇νϕ−
(
∇µv

µν − 1

2
∇νv

)
∇νϕ+

1

2
∇2v ,

δR = ∇µ∇νv
µν −∇2v −Rµνv

µν .

(6.1.8)
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At this point, we can start analysing all the functional terms separately, with the aim of
singling the field variations out. We will always neglect terms which are purely defined on
the boundary, as there variations are taken to vanish. Starting from the polynomial term,
it can be easily seen that:

δ

∫
M

dDx
√
−ge−ϕ

∞∑
n=0

βnϕ
n =

∫
M

dDx
√
−ge−ϕ

∞∑
n=1

nβn
2
ϕn−1v . (6.1.9)

Studying the kinetic term for the scalar and getting rid of boundary terms, we obtain:

δ

∫
M

dDx
√
−ge−ϕ (∇ϕ)2 =

∫
M

dDx
√
−ge−ϕ

{[
(∇ϕ)2 −∇2ϕ

]
gµν−∇µϕ∇νϕ

}
vµν . (6.1.10)

Moving to the scalar curvature term, we get:

δ

∫
M

dDx
√
−ge−ϕR =

∫
M

dDx
√
−ge−ϕ

{
∇µϕ∇νϕ−∇µ∇νϕ

+
[
∇2ϕ− (∇ϕ)2

]
gµν −Rµν

}
vµν .

(6.1.11)

At this point, we analyse the two derivatives term:

δ

∫
M

dDx
√
−ge−ϕ∇2ϕ =

∫
M

dDx
√
−ge−ϕ

{[
(∇ϕ)2 −∇2ϕ

]
gµν −∇µϕ∇νϕ

}
vµν . (6.1.12)

Combining all the above contribution into the overall variation of the entropy functional
(6.1.1), we are left with the following expression:

δF(α,β,γ) =

∫
M

dDx
√
−ge−ϕ

{
(1− α− γ)∇µϕ∇νϕ−∇µ∇νϕ+ gµν

∞∑
n=1

nβn
2
ϕn−1

+ (1− α− γ)
[
∇2ϕ− (∇ϕ)2

]
gµν −Rµν

}
vµν .

(6.1.13)

Introducing the usual factor of two for normalisation purposes, including a diffeomorphism
term, deriving the induced flow equation for the metric from (6.1.13) and the one for the
scalar from (6.1.7), we get the following system of differential equations:

dgµν
ds

= −2Rµν + 2 (1− α− γ)∇µϕ∇νϕ− 2∇µ∇νϕ+
∞∑
n=1

nβnϕ
n−1gµν

− 2 (1− α− γ)
[
(∇ϕ)2 −∇2ϕ

]
gµν + Lξgµν ,

dϕ

ds
= −R + (1−D) (1− α− γ) (∇ϕ)2 + D

2

∞∑
n=1

nβnϕ
n−1

+ [D (1− α− γ)− 1]∇2ϕ+ Lξϕ .

(6.1.14)
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By performing the same diffeomorphism that deformed (4.4.15) into (4.4.17) for the sake
of consistency, we are finally left with:

dgµν
ds

= −2Rµν + 2 (1− α− γ)∇µϕ∇νϕ+
∞∑
n=1

nβnϕ
n−1gµν

− 2 (1− α− γ)
[
(∇ϕ)2 −∇2ϕ

]
gµν + Lξgµν ,

dϕ

ds
= −R + [(1−D) (1− α− γ) + 1] (∇ϕ)2 + D

2

∞∑
n=1

nβnϕ
n−1

+ [D (1− α− γ)− 1]∇2ϕ+ Lξϕ .

(6.1.15)

It can be clearly observed that, by imposing µ̄ = (1, 0, 0 . . . ), the standard form of Perel-
man’s combined flow (4.4.17) can be achieved. The coefficients of the various terms appear-
ing in the above equations depend both on the parameters µ̄ introduced in the functional
(6.1.1) and on the dimension D of the manifold on which the fields are defined. By choosing
a specific value of D and suitably adjusting the parameters, some terms can be set to zero
and removed. However, one might be interested in grounding the choice of the parameters
in a more fundamental physical principle, instead of simply imposing them by hand. In
(6.1.1), a proposal to address such a necessity is discussed in detail.

6.1.1 Flow equations from an action

The introduction of an entropy functional, at first in the standard form considered in (4.4.7)
and then with the more general expression (6.1.1), allowed us to derive a set geometric
flow equations for a system comprised of a dynamical metric tensor and a scalar field,
instead of simply postulating them. While representing a significant achievement, this new
conceptual framework might arguably not be regarded as satisfying from the perspective
of physics. At a close inspection, part of the arbitrariness which was previously exerted
in the specification of a geometric flow was simply pushed to the choice of an entropy
functional. Therefore, we now want to start from a particular space-time theory for a
D-dimensional metric and a scalar, provided with an appropriate dynamics, and use it to
completely determine a set of geometric flow equations. By doing so, we will get rid of the
above mentioned arbitrariness and exploit the one functional that physics already grants
us with: the action. In practice, this will translate into taking the Einstein frame action
for a theory, moving to string frame and treating the resulting expression for the action as
an entropy functional, from which a set of geometric flow equations will be obtained. We
hence start from the Lorentzian dynamics governed by:

S̃ [g, ϕ] =
1

2κ2D

∫
M

dDx
√
−g

[
Rg −

1

2
(∇ϕ)2 −

∞∑
n=0

gn
n!
ϕn

]
. (6.1.16)

It can be clearly observed that the equations of motion associated to above action are

Rµν −
1

2
Rgµν = κ2DTµν , ∇2ϕ =

∞∑
n=0

gn+1

n!
ϕn , (6.1.17)
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where the energy momentum tensor is defined as:

κ2DTµν ≡
1

2
∇µϕ∇νϕ−

[
1

4
(∇ϕ)2 +

∞∑
n=0

gn
n!
· ϕ

n

2

]
gµν . (6.1.18)

We now rescale both the metric g and the scalar ϕ, in order to obtain the string frame
expression for (6.1.16). We thus introduce the fields g and ϕ, associated to the previous
ones by:

gµν → e2φgµν , ϕ→ σϕ . (6.1.19)

Under such redefinition of the dynamical degrees of freedom, the action (6.1.16) becomes:

S [g, ϕ] ≡ 1

2κ2D

∫
M

dDx
√
−ge(D−2)φ

[
Rg − (D − 2) (D − 1) (∇φ)2

− 2 (D − 1)∇2φ− σ2

2
(∇ϕ)2 − e2φ

∞∑
n=0

σngn
n!

ϕn
]
.

(6.1.20)

For the volume element to take the appropriate string frame form, we take:

φ ≡ 1

2−D
ϕ . (6.1.21)

Therefore, we obtain:

S [g, ϕ] ≡ 1

2κ2D

∫
M

dDx
√
−ge−ϕ

[
Rg −

(
σ2

2
+
D − 1

D − 2

)
(∇ϕ)2

+ 2
D − 1

D − 2
∇2ϕ− exp

{
2ϕ

2−D

} ∞∑
n=0

σngn
n!

ϕn
]
.

(6.1.22)

The constant σ can be fixed by imposing, without loss of generality, that:

σ2

2
+
D − 1

D − 2
= 2 =⇒ σ =

√
2D − 6

D − 2
. (6.1.23)

We are therefore left with:

S [g, ϕ] ≡ 1

2κ2D

∫
M

dDx
√
−ge−ϕ

[
Rg − 2 (∇ϕ)2 + 2

D − 1

D − 2
∇2ϕ

− exp

{
2ϕ

2−D

} ∞∑
n=0

gn
n!
ϕn
(
2D − 6

D − 2

)n
2

]
.

(6.1.24)

The above expression can be made simpler by defining the constants

p ≡ 2

2−D
, qn ≡

gn
n!

(
2D − 6

D − 2

)n/2
(6.1.25)
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and observing that:

epϕ
∞∑
n=0

qnϕ
n =

∞∑
n=0

ϕn
n∑
k=0

gk
(n− k)!k!

(
2D − 6

D − 2

) k
2
(

2

2−D

)n−k
. (6.1.26)

Therefore, by defining

s(D)
n ≡

n∑
k=0

gk
(n− k)!k!

(
2D − 6

D − 2

) k
2
(

2

2−D

)n−k
(6.1.27)

for n ≥ 0, the string frame action takes the following form:

S [g, ϕ] =
1

2κ2D

∫
M

dDx
√
−ge−ϕ

[
Rg − 2 (∇ϕ)2 + 2

D − 1

D − 2
∇2ϕ−

∞∑
n=0

s(D)
n ϕ

n

]
. (6.1.28)

Hence, starting from the space-time action (6.1.16) and moving to string frame, we have
obtained a functional over the moduli space ΓM that falls into the general class described
by (6.1.1). More specifically, it corresponds to the choices:

α = −2, γ = 2
D − 1

D − 2
, βn = −s(D)

n . (6.1.29)

The set of geometric flow equations induced by (6.1.28) for g and ϕ, which can be obtained
by plugging the above constant into the general formulas (6.1.15), are:

dgµν
ds

= −2Rµν + 2
D − 4

D − 2
∇µϕ∇νϕ−

∞∑
n=1

ns(D)
n ϕ

n−1gµν

− 2
D − 4

D − 2

[
(∇ϕ)2 −∇2ϕ

]
gµν + Lξgµν ,

dϕ

ds
= −R− D2 − 6D + 6

D − 2
(∇ϕ)2 − D

2

∞∑
n=1

ns(D)
n ϕ

n−1

+
D2 − 5D + 2

D − 2
∇2ϕ+ Lξϕ .

(6.1.30)

Starting from the D-dimensional Lorentzian action for a system comprised of dynamical
metric and a scalar field, in which the latter is subject to arbitrary polynomial self in-
teractions, and treating its string frame expression as an entropy functional of the form
presented in (6.1.1), we have derived a set of geometric flow equations without the necessity
of postulating any additional, arbitrary structure. It is remarkable that, in D = 4, the
equations take the simple form:

dgµν
ds

= −2Rµν −
∞∑
n=1

ns(4)n ϕ
n−1gµν + Lξgµν ,

dϕ

ds
= −R + (∇ϕ)2 −∇2ϕ− 2

∞∑
n=1

ns(4)n ϕ
n−1 + Lξϕ ,

(6.1.31)
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where the constants appearing the polynomial terms are just:

s(4)n =
n∑
k=0

gk (−1)n−k

(n− k)!k!
=

1

n!

n∑
k=0

(
n

k

)
(−1)n−k gk . (6.1.32)

Since, except for the standard Ricci flow contribution, there is no other term on the right
hand side of the metric flow equation containing its derivatives, we are sure that the
well-posedness of the differential problem is not affected by our generalisation. The only
necessary requirement obviously concerns the number of space-time dimensions, which
must be set to be bigger than two.

Circle-compactified theory

In the present discussion, we will follow a procedure analogous to the one outlined in 2.4.1,
start from a free general relativistic gravity theory in (D + 1)-dimensions and compactify it
on a circle. Under a simple ansatz, in which the vector degrees of freedom of the geometry
will be set to zero, the dimensionally-reduced theory will be that of a dynamical metric
and a scalar radion field. A set of geometric flow equations will be then naturally obtained
according to the results presented in 6.1.1. Starting, thus, from the Einstein-Hilbert action

SEH [G] ≡ 1

2κ2D+1

∫
M

dD+1x
√
−GRG (6.1.33)

for a (D + 1)-dimensional metric tensor GMN over a Lorentzian manifold M, we can
decompose the degrees of freedom of the geometry in a D-dimensional metric tensor hµν ,
a D-dimensional vector field Aµ and a scalar field σ. In particular, we impose:

GMN ≡
(
hµν + e2φAµAν e2φAµ

e2φAν e2φ

)
. (6.1.34)

From the perspective of the (D + 1)-dimensional line element, we obtain

ds2D+1 = hµνdx
µdxν + e2φ

(
Aµdx

µ + dxD
)2
. (6.1.35)

with the greek indices run from 0 to D − 1. At this point, for the sake of simplicity and
focusing on a particular example, we assume φ and hµν not to depend on xD and the vector
field Aµ to vanish:

Aµ = 0 . (6.1.36)

Furthermore, we take the space-time manifold to be expressed as a Cartesian product

M≡ N × S1 , (6.1.37)

where N is a D-dimensional space-time manifold, with coordinates xµ and metric tensor
hµν , and S1 is a 1-dimensional compact circle parametrised by xD ∈ [0, 2πρ). It goes
without saying that, taken at face value, the radion field φ fixes the variation of the
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compact dimension radius along the non-compact manifold directions. The constant ρ
hence corresponds to the size of the compact dimension where φ = 0. Similarly to what
was done in (2.4.14), we can derive:

RG = Rh − 2∇2φ− 2∇µφ∇µφ . (6.1.38)

By plugging such result in (6.1.33) and integrating the compact direction out, the action
governing the D-dimensional dynamics on N can be obtained as

S0 [h, φ] ≡
1

κ2D

∫
N
dDx
√
−heφ

(
Rh − 2∇2φ− 2∇µφ∇µφ

)
, (6.1.39)

in which we have defined:

κ2D ≡
κ2D+1

2πρ
. (6.1.40)

In order to make contact with the action presented in (6.1.16), where Einstein-frame was
employed, we introduce the following rescalings:

hµν = e2ωgµν , φ ≡ αϕ . (6.1.41)

Analysing the expressions appearing in the action one by one, we get:
√
−h = eDω

√
−g , ∇µφ = α∇µϕ , eφ = eαϕ ,

Rh = e−2ωRg − 2(D − 1)e−2ωgµν∇µ∇νω − (D − 2)(D − 1)e−2ωgµν∇µω∇νω ,

hµν∇µφ∇νφ = α2e−2ωgµν∇µϕ∇νϕ ,

hµν∇µ∇νφ = αe−2ω [gµν∇µ∇νϕ+ (D − 2) gµν∇µϕ∇νω] .

(6.1.42)

Therefore, the D-dimensional action for g and ϕ becomes:

S1 [g, ϕ] ≡
1

κ2D

∫
N
dDx
√
−geαϕ+(D−2)ω

{
Rg − 2(D − 1)∇2ω − 2α2∇µϕ∇µϕ

− (D − 2)(D − 1)∇µω∇µω

− 2α
[
∇2ϕ+ (D − 2)∇µϕ∇µω

]}
.

(6.1.43)

In order to properly fix the metric rescaling, we impose

ω =
α

2−D
ϕ (6.1.44)

and reduce the action, from which we remove the Laplacian boundary terms, to:

S1 [g, ϕ] ≡
1

κ2D

∫
N
dDx
√
−g
{
Rg − α2D − 1

D − 2
∇µϕ∇µϕ

}
. (6.1.45)

Requiring the free rescaling parameter α to satisfy

α ≡
√
D − 2

D − 1
, (6.1.46)
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we have nothing more than the Einstein frame action

S [g, ϕ] ≡ 1

κ2D

∫
N
dDx
√
−g
(
Rg −

1

2
∇µϕ∇µϕ

)
. (6.1.47)

for a free real scalar field in a dynamical Lorentzian background space-time. Exploiting
the string-frame action as an entropy functional as described in the previous discussion,
the flow equations induced by our circle-compactified gravitational theory can be read-off
from (6.1.30), by imposing all the gk self-coupling constants in (6.1.16) to vanish, as:

dgµν
ds

= −2Rµν + 2
D − 4

D − 2
∇µϕ∇νϕ− 2

D − 4

D − 2

[
(∇ϕ)2 −∇2ϕ

]
gµν + Lξgµν ,

dϕ

ds
= −R− D2 − 6D + 6

D − 2
(∇ϕ)2 + D2 − 5D + 2

D − 2
∇2ϕ+ Lξϕ .

(6.1.48)

Taking the effective theory to be in 4 dimensions, the flow remarkably reduces to:

dgµν
ds

= −2Rµν + Lξgµν ,

dϕ

ds
= −R + (∇ϕ)2 −∇2ϕ+ Lξϕ .

(6.1.49)

We once more find ourselves with Perelman’s combined flow. Hence, such flow equations
can be physically interpreted, in the sense specified in 6.1.1 and setting the vector part of
the geometry to vanish, as being induced by the 4-dimensional circle compactification of a
5-dimensional purely gravitational theory.

6.1.2 Scalar field with a sextic potential

In the following discussion, we assume to work with a single scalar field ϕ, subject to a
potential of the form

V (ϕ) =
V0
α0

ϕ2
(
ϕ4 − 9ϕ2 + 21

)
, (6.1.50)

with α0 = 9−4
√
2, so that the values of the potential minima of our interest are normalised

to V0, which is taken to be a positive parameter. The potential is shown in figure 6.1.
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Figure 6.1: Plot of the behaviour of V (ϕ) around ϕ = 0, when V0 = 1.

Before considering a specific solution, we derive the action-induced flow equations
(6.1.30) associated to a potential of the form described in (6.1.50). In particular, we
observe that:

g2 = 42
V0
α0

, g4 = −9 · 4!
V0
α0

, g6 = 6!
V0
α0

. (6.1.51)

From the above expressions, we can directly compute the s
(D)
n constants (6.1.27) appearing

in the action-induced flow equations. By doing so, we get:

s
(D)
0 = 0 , s

(D)
1 = 0 , s

(D)
2 = 21

V0
α0

· 2D − 6

D − 2
,

s
(D)
3 = −84V0

α0

· D − 3

(D − 2)2
, s

(D)
4 =

V0
α0

[
84

D − 3

(D − 2)3
− 9

(
2D − 6

D − 2

)2
]
,

s
(D)
5 = 8

V0
α0

[
9 (D − 3)− 7

D − 2

]
D − 3

(D − 2)3
,

s
(D)
n≥6 = 8

V0
α0

[
84

(n− 2)!

(
1

2−D

)4

− 18

(n− 4)!

(
D − 3

D − 2

)(
1

2−D

)2

+
1

(n− 6)!

(
D − 3

D − 2

)2
]
D − 3

D − 2

(
2

2−D

)n−6

.

(6.1.52)
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Imposing to work in D = 4, the above formulas simplify to:

s
(4)
0 = 0 , s

(4)
1 = 0 , s

(4)
2 = 21

V0
α0

, s
(4)
3 = −21V0

α0

, s
(4)
4 =

3

2
· V0
α0

,

s
(4)
5 =

11

2
· V0
α0

, s
(4)
n≥6 = (−1)n−6 V0

α0

[
21

(n− 2)!
− 9

(n− 4)!
+

1

(n− 6)!

]
.

(6.1.53)

Focusing once more on the potential (6.1.50), it can be observed that it possesses three
minima, at the field values

ϕ1 ≡ −
√

3 +
√
2 , ϕ2 ≡ 0 , ϕ3 ≡

√
3 +
√
2 , (6.1.54)

corresponding to the potential values:

V1 ≡ V (ϕ1) = V (ϕ3) = V0 , V2 ≡ V (ϕ2) = 0 . (6.1.55)

Therefore, assuming to work with a geometry characterised by a constant scalar curvature,
we have three, distinct on-shell configurations that can be used as initial conditions for the
flow. We have two solutions with de Sitter background metric and constant scalar, with

(ϕ1, R1) =

(
−
√
3 +
√
2, 2V0

)
, (ϕ3, R3) =

(√
3 +
√
2, 2V0

)
, (6.1.56)

and a Minkowski background solution with everywhere vanishing scalar:

(ϕ2, R2) = (0, 0) . (6.1.57)

Whatever of those we choose as an initial condition, it can be easily assessed [302] that
both R and ϕ remain constant along the flow. The action-induced flow equations, thus,
reduce to the simple form

dR

ds
=
R

2
[R +G4 (ϕ)] ,

dϕ

ds
= − [R +G4 (ϕ)] , (6.1.58)

where we have introduced the function:

G4 (ϕ) ≡ 2
∞∑
n=1

ns(4)n ϕ
n−1 . (6.1.59)

The form of G4 (ϕ) is represented, for V0 = 1, in figure 6.2 and can be made more explicit
as follows:

G4 (ϕ) = −
2V0
α0

(
ϕ6 − 6ϕ5 − 9ϕ4 + 36ϕ3 + 21ϕ2 − 42ϕ

)
e−ϕ . (6.1.60)

It can be straightforwardly observed, by substituting in the right-hand side of the flow
equations the initial values for the scalar field and the curvature, that the (ϕ2, R2) solution
is a fixed point of the flow. For the other two, of which we will only consider the second



122 6. On-Shell flow

one as an example, the flow equations must be solved numerically. From now on, we will
set V0 = 1 for the sake of simplicity. Considering the (ϕ3, R3) configuration, in which the
scalar field starts from a positive value, we obtain the flow behaviour depicted in figure
(6.3). As can be clearly observed, both ϕ and R approach some asymptotic values.

Figure 6.2: Plot of G4 (ϕ) with respect to the scalar field value ϕ, in the case in which the
value of the potential at the non-trivial minima is V0 = 1.

Figure 6.3: Plot of ϕ and R with respect to the flow parameter s, when starting from the
initial on-shell configuration (ϕ3, R3).
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6.1.3 Scalar field with quartic potential

In the following discussion, we will apply the action-induced flow equations to a particular
example. In order to do so, we will assume the scalar field ϕ to be subject to a potential

V (ϕ) = ϕ4 − αϕ2 , (6.1.61)

with α being a positive constant to be fixed by the desired space-time curvature initial value,
which will be a function of α in our specific initial point configuration. The potential, for
different values of α, is shown in figure 6.4. At the minima corresponding to the scalar
field values

ϕ± = ±
√
α

2
, (6.1.62)

the potential takes the α-dependent value:

V (ϕ±) = −
α2

4
. (6.1.63)

Figure 6.4: Plot of the behaviour of V (ϕ) around ϕ = 0, for three different values of α.

Assuming the scalar field to either take the constant value ϕ+ or the constant value
ϕ− at the beginning of the flow, the potential produces an effective cosmological constant
term

Λeff = −α
2

8
. (6.1.64)

Therefore, the field equations allow our initial metric to be that of D-dimensional Anti-de
Sitter spacetime with scalar curvature:

R0 = −
α2D

4 (D − 2)
. (6.1.65)
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Without loss of generality, we assume to work with the initial flow condition:

R0 = −
α2D

4 (D − 2)
, ϕ+ =

√
α

2
. (6.1.66)

Being both the space-time curvature and the scalar field constancy preserved along the
flow [302], the action-induced flow equations (6.1.30) greatly simplify and assume the
following form

dgµν
ds

= − 2

D
Rgµν −

∞∑
n=1

ns(D)
n ϕ

n−1gµν + Lξgµν ,

dϕ

ds
= −R− D

2

∞∑
n=1

ns(D)
n ϕ

n−1 + Lξϕ ,
(6.1.67)

where the constants s
(D)
n are defined by the usual equation:

s(D)
n ≡

n∑
k=0

gk
(n− k)!k!

(
2D − 6

D − 2

) k
2
(

2

2−D

)n−k
. (6.1.68)

Rephrasing the metric flow equation in (6.1.67) in terms of the scalar curvature and ne-
glecting the diffeomorphism term, we are left with the simple system:

dR

ds
=

2R

D

[
R +

D

2

∞∑
n=1

ns(D)
n ϕ

n−1

]
,

dϕ

ds
= −

[
R +

D

2

∞∑
n=1

ns(D)
n ϕ

n−1

]
. (6.1.69)

By defining the function

FD (ϕ) ≡ D

2

∞∑
n=1

ns(D)
n ϕ

n−1 , (6.1.70)

the above formulas are reduced to:

dR

ds
=

2

D
R ·
[
R + FD (ϕ)

]
,

dϕ

ds
= −

[
R + FD (ϕ)

]
. (6.1.71)

In order to solve the flow equations explicitly, on top of specifying the number of space-time
dimensions, we have to compute the values of the non vanishing s

(D)
n constants and plug

them into the definition of FD (ϕ). We start by reading off the non-zero couplings

g4 = 4! , g2 = −2α . (6.1.72)
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from the potential formula (6.1.61). Therefore, we have:

s
(D)
1 = 0 , s

(D)
2 = −α

(
2D − 6

D − 2

)
,

s
(D)
3 = −α

(
2D − 6

D − 2

)(
2

2−D

)
,

s
(D)
n≥4 = −

α

(n− 2)!

(
2D − 6

D − 2

)(
2

2−D

)n−2

+
1

(n− 4)!

(
2D − 6

D − 2

)2(
2

2−D

)n−4

.

(6.1.73)

For the remainder of our discussion, we will assume to work with D = 4. Hence, the above
expressions reduce to:

s
(4)
1 = 0 , s

(4)
2 = −α , s

(4)
3 = α ,

s
(4)
n≥4 =

(−1)n

(n− 2)!

[
(n− 2) (n− 3)− α

]
.

(6.1.74)

By further taking α = 2, the initial condition becomes

R0 = −2 , ϕ = 1 , (6.1.75)

while the constants get to be nothing more than:

s
(4)
1 = 0 , s

(4)
2 = −2 , s

(4)
3 = 2 ,

s
(4)
n≥4 = (−1)n (n− 1) (n− 4)

(n− 2)!
.

(6.1.76)

Therefore, we also obtain the expression

F4 (ϕ) = −8ϕ+ 12ϕ2 + 2
∞∑
n≥4

(−1)n n (n− 1) (n− 4)

(n− 2)!
ϕn−1

= −16ϕ− 2ϕ
(
ϕ3 + 4ϕ2 + 2ϕ− 4

)
e−ϕ ,

(6.1.77)

which is plotted in figure 6.5.
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Figure 6.5: Plot of F4 (ϕ) with respect to the scalar field value ϕ.

The flow equations for R and ϕ, since we are working in D = 4, take the form:

dR

ds
=
R

2
[R + F4 (ϕ)] ,

dϕ

ds
= − [R + F4 (ϕ)] . (6.1.78)

Starting from the initial condition (6.1.75), the evolution can therefore be solved numer-
ically and plotted, as was done in figures 6.6 and 6.7. There, it can be clearly observed
that the flow forces the system towards a region of the moduli space in which R, albeit
negative, gets really small, while ϕ evolves to large positive values. In such a context, we
have

F4 (ϕ) ∼ −16ϕ , (6.1.79)

with the flow equations being nicely approximated by:

dR

ds
∼ −8R · ϕ , dϕ

ds
∼ 16ϕ . (6.1.80)

Therefore, for large enough values of the flow parameter s, we can approximate the evolu-
tion of the curvature and the scalar field space-time constant value by

R (s) ∼ −C0 · exp
{
−C1

2
e16s
}
, ϕ (s) ∼ C1 · e16s , (6.1.81)

where C0 and C1 are positive constants.
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Figure 6.6: Plot of R (s) with respect to the flow parameter s, which clearly displays how
the curvature tends to vanish.

Figure 6.7: Plot of ϕ (s) with respect to the flow parameter s, which clearly displays how
the scalar field value tends to blow up.

From the expressions (6.1.81), which properly provides us with the flow behaviour of
R and ϕ for large values of the flow parameter, we get:

lim
s→∞

R (s) = 0 , lim
s→∞

ϕ (s) =∞ . (6.1.82)
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Therefore, the action-induced flow equations push our initial condition towards a Minkowski
space-time limit, in which the scalar field value blows up. Distances along the flow can, as
usual, be computed by exploiting the formula

∆ (s, s0) ∼ log
F (s0)

F (s)
, (6.1.83)

in which F (s) is nothing more than the entropy functional from which our flow equations
descend, here represented by the string frame action associated to (6.1.61), computed at
the flow parameter values s. More specifically, we have:

F (s) =
1

2κ2D

∫
M

dDx
√
−g (s)e−ϕ(s)

{
R (s)− 2

[
∇ϕ (s)

]2
+ 3∇2ϕ (s)−

∞∑
n=0

s(4)n ϕ
n (s)

}
.

(6.1.84)

Plugging the explicit expression for the constants s
(4)
n into the above formula, exploiting

the fact that both the scalar field and space-time curvature are constant and noticing that,
in standard coordinates, the determinant g of Anti-de Sitter metric is does not depend on
the cosmological constant and is hence fixed in s, we obtain:

F (s) =
1

2κ2D
VM · K (s) . (6.1.85)

In the above expression, we have introduced

K (s) ≡ e−ϕ(s)

[
R (s) + 2ϕ2 (s)− 2ϕ3 (s)−

∞∑
n=4

(−1)n (n− 1) (n− 4)

(n− 2)!
ϕn (s)

]
(6.1.86)

and defined the volume via the usual formula:

VM ≡
∫
M

dDx
√
−g . (6.1.87)

In the case of Anti-de Sitter space-time, such a quantity is not finite. This is not problem-
atic for the case at hand, since in appears in both F (s0) and F (s), factoring out from the
distance formula (6.1.83). Strictly speaking, this can be rendered precise by introducing
a volume regulator and removing it after having computed the distance. By doing so, we
get

∆ (s, s0) ∼ log
K (s0)

K (s)
, (6.1.88)

in which the flow-dependent quantity K (s) can be shown to be equal to:

K (s) = e−ϕ(s)
{
R (s) + e−ϕ(s)

[
2− ϕ2 (s)

]
ϕ2 (s)

}
. (6.1.89)
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For large values of the flow parameter s, the above expression can be approximated by:

K (s) ∼ − exp

{
−3C1

2
e16s
}
·
{
C0 + exp

{
−C1

2
e16s
}[

C2
1 · e32s − 2

]
C2

1 · e32s
}
. (6.1.90)

Further removing sub-leading terms, we obtain:

K (s) ∼ −C0 exp

{
−3C1

2
e16s
}
. (6.1.91)

Therefore, the corresponding behaviour of the distance is given by:

∆ (s, s0) ∼
3C1

2

(
e16s − e16s0

)
. (6.1.92)

It can be clearly seen that the limit in which R→ 0 and ϕ→∞ lies at infinite distance:

lim
s→∞

∆(s, s0) =∞ . (6.1.93)

Hence, the swampland distance conjecture would suggest it to be accompanied by an
infinite tower of asymptotically massless supplementary states.

6.2 On-shell conditions

Starting from a D-dimensional theory of the form presented in 6.1.1, with a dynamical
metric tensor and a self-interacting scalar field, a set of action-induced geometric flow
equations (6.1.30) can be straightforwardly derived. If the flow initial condition, comprised
of a geometry and a space-time configuration of the scalar field, is taken to satisfy the
equations of motion (6.1.17) associated to (6.1.16), there is nonetheless no reason to believe
that such conditions would be preserved along the flow trajectory in ΓM. We now want
to develop a set of theoretical tools allowing us to reconcile the geometric flow equations
(6.1.30) with the equations of motion (6.1.17). This would allow to probe the actual
generalised moduli space of physical solutions, defined as the subset DM ⊂ ΓM of on-
shell space-time configurations of the fields. In order to do so, we will draw inspiration
from the Swampland distance conjecture, introduced and discussed in 3.2.1 and further
refined in 4.3.2 and 4.4.1, and from its towers of supplementary light states, which are
expected to appear along the flow. At this point, it must be stressed that the idea of
providing flow equations that both keep the scalar and the metric on shell might be too
ambitious. The most natural choice will thus be to relax the on-shell conditions to the
metric tensor alone. Temporarily focusing on a simpler setting, we will therefore consider
a generic flow equation for the space-time geometry and compute an induced evolution for
the energy-momentum tensor, fixed by requiring the metric equations of motion not to be
violated. In this first approach the energy-momentum tensor will be considered as a generic
tensor on its own, without explicitly constructing it in terms of the scalar field. We will
thereafter make contact with the theory illustrated in 6.1.1, reintroducing the scalar field
explicitly and considering the action-induced flow equations. The metric field equations
will be preserved by allowing new energy-momentum contributions to appear along the
flow, resembling the towers postulated by the distance conjecture.
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6.2.1 Generic flow equations

Let’s consider a D-dimensional theory with a dynamical spacetime metric, a cosmological
constant and a set of matter fields, satisfying appropriate equations of motion. Moreover,
let’s introduce a real flow parameter s ∈ [0, s1), where s1 is positive and can either be
finite or infinite, depending on whether the flow ends up hitting a singularity. At this
point, we introduce a one-parameter family of metric tensors g (s), a one-parameter family
of cosmological constants Λ (s) and a one-parameter family of energy-momentum tensors
Tµν (s), so that the initial conditions gµν (0), Λ (0) and Tµν (0) satisfy the equations of
motion and the s-evolutions of the families are induced by the flow equations:

dgµν
ds

= Aµν ,
dΛ

ds
= C ,

dTµν
ds

=
1

κ2D
Bµν . (6.2.1)

In the last formula of (6.2.1), the κ−2
D factor is introduced for the sake of simplicity. More-

over, the flow-sources Aµν and Bµν are taken to be symmetric, s-dependent tensors. Having
defined such general flow equations, we can now move to constraining Bµν in terms of Aµν
and C in a way that preserves the equations of motion

Rµν −
1

2
Rgµν + Λgµν = κ2DTµν (6.2.2)

for gµν at any value of the flow parameter s.

6.2.2 On-shell geometric flow

In order for the metric equations of motion to be conserved along the flow, together with
taking an on-shell initial condition, we must impose

d

ds
(Gµν + gµνΛ) = κ2D

dTµν
ds

(6.2.3)

for any value of the flow parameter s. To make the discussion more concrete, we will now
compute the s-evolution of the Einstein tensor Gµν induced by (6.2.1). First of all, we
observe that we must have

dgµν

ds
= −Aµν , (6.2.4)

so that the condition gµνgνα = δµα is preserved along the flow. Furthermore, one can
straightforwardly derive the flow equation for the Ricci tensor to be

2
dRµν

ds
= ∇σ∇νAµσ +∇µ∇σAσν −∇µ∇νA

−∇2Aµν +Rµ
σAσν −Rµ

σ
ν
θAσθ ,

(6.2.5)

where we have defined A ≡ gµνAµν . From (6.2.5), one can obtain the following:

dR

ds
= ∇σ∇θAσθ −∇2A− AσθRσθ . (6.2.6)
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By combining (6.2.5), (6.2.6) and the flow equation for the metric, we can derive the flow
equation for the Einstein tensor:

2
dGµν

ds
= ∇σ∇νAµσ +∇µ∇σAσν −∇µ∇νA−∇2Aµν

− gµν∇σ∇θAσθ + gµν∇2A+ gµνA
σθRσθ

+Rµ
σAσν −Rµ

σ
ν
θAσθ − AµνR .

(6.2.7)

With the expression derived in (6.2.7), together with the flow equations for the cosmological
constant and the energy-momentum tensor, we finally obtain the on-shell condition:

2Bµν = ∇σ∇νAµσ +∇µ∇σAσν −∇µ∇νA−Rµ
σ
ν
θAσθ

+ 2Cgµν −∇2Aµν +Rµ
σAσν − AµνR + 2ΛAµν

− gµν∇σ∇θAσθ + gµν∇2A+ gµνA
σθRσθ .

(6.2.8)

If Aµν and C are chosen freely, the overall flow can be guaranteed to conserve the equations
of motion (6.2.2) for the metric tensor by imposing Bµν to take the form illustrated in
(6.2.8). Since we are generically treating the energy-momentum tensor as an appropriate
source for space-time curvature, this has nothing to do with the matter content of a specific
theory. If we study, for instance, the case in which the flow source Aµν for the metric is

Aµν = −2Rµν + 2ωRgµν , (6.2.9)

with ω being defined as half the constant ϑ appearing in (4.3.32) for the sake of the following
derivations, we can get the formula A = 2 (Dω − 1)R and the relation:

Bµν = −∇σ∇νRµσ +

[
(2−D)ω +

1

2

]
∇µ∇νR +Rµ

σ
ν
θRσθ +∇2Rµν −Rµ

σRσν

+ (R− 2Λ)Rµν −
{
C +

[
(2−D)ω +

1

2

]
∇2R + 2ωΛR−RσθRσθ

}
gµν .

(6.2.10)

This way, we have explicitly derived a relation between Bµν and C, in terms of ω, for the
case in which the metric follows Ricci-Bourguignon flow.

Einstein manifolds

In the following discussion, we consider the particular case in which the geometry cor-
responds to that of a D-dimensional Einstein manifold. Indeed, we assume the initial
conditions for the energy-momentum tensor and the cosmological constant to be

Tµν (0) ≡ K0 · gµν (0) , Λ (0) ≡ Λ0 , (6.2.11)

where K0 is nothing more than a constant. Hence, the field equations (6.2.2) allow the
initial condition to satisfy:

Rµν (0) =
R0

D
gµν (0) , R0 = (K0 − Λ0)

2D

2−D
. (6.2.12)
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It can be easily shown [355] that a flow of the form presented in (6.2.9) preserves the
Einstein manifold condition. In particular, the flow equation for R is:

dR

ds
=

2 (1− ω)
D

R2 . (6.2.13)

The above can be simply solved as:

R (s) =
DR0

D − 2 (1− ω)R0s
. (6.2.14)

Furthermore, given the flow equation (6.2.1) for Λ, we can explicitly write its behaviour:

Λ (s) = Λ0 +

∫ s

0

C (τ) dτ . (6.2.15)

Concerning the right-hand side of the energy-momentum tensor flow equation, we have:

2Bµν =

[
(2−D)ω +

D − 2

2D

]
∇µ∇νR− gµν

[
(2−D)ω +

D − 2

2D

]
∇2R

+ 2Λ
Dω − 1

D
Rgµν + Cgµν .

(6.2.16)

The assumption of constant curvature directly implies:

Bµν =

(
2Λ
Dω − 1

D
R + C

)
gµν . (6.2.17)

Anyway, we can once more read-off the flow behaviour of the energy momentum tensor
directly from (6.2.12), which gives us:

K (s) =
R0 (2−D)

2D − 4 (1− ω)R0s
+ Λ0 +

∫ s

0

C (τ) dτ . (6.2.18)

Therefore, starting with an on-shell Einstein manifold, imposing the metric to evolve ac-
cording to (6.2.9) and freely choosing the flow behaviour of the cosmological constant,
we are left with the explicit flow behaviour for the constant K appearing in the energy-
momentum tensor.

6.3 On-shell conditions and the action-induced flow

After having treated the energy-momentum tensor as a generic symmetric tensorial source
for Einstein field equations, will now move back to the theory defined in 6.1.1 and char-
acterise Tµν in terms of the scalar field ϕ appearing in (6.1.16). Practically, we choose to
work with an energy-momentum tensor defined by the formula (6.1.18), to incorporate the
cosmological constant term in the sum appearing in the action and not to make it flow, so
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that the only evolving objects are dynamical fields. Furthermore, we impose the geometry
and scalar field to evolve according to the action-induced flow equations (6.1.30), from
which, neglecting the diffeomorphism term, we obtain:

Aµν = −2Rµν + 2
D − 4

D − 2
∇µϕ∇νϕ−

∞∑
n=1

ns(D)
n ϕ

n−1gµν

− 2
D − 4

D − 2

[
(∇ϕ)2 −∇2ϕ

]
gµν .

(6.3.1)

Therefore, the energy-momentum flow source required to preserve the on-shell condition
on the geometry along the generalised moduli space path can be directly written as:

2Bµν = ∇σ∇νAµσ +∇µ∇σAσν −∇µ∇νA−Rµ
σ
ν
θAσθ − gµν∇σ∇θAσθ

−∇2Aµν +Rµ
σAσν − AµνR + gµν∇2A+ gµνA

σθRσθ .
(6.3.2)

Nevertheless, by combining the action-induced flow equation

dϕ

ds
= −R− D2 − 6D + 6

D − 2
(∇ϕ)2 − D

2

∞∑
n=1

ns(D)
n ϕ

n−1 +
D2 − 5D + 2

D − 2
∇2ϕ (6.3.3)

for the scalar field and the expression (6.1.18) for the energy-momentum tensor in terms
of ϕ, we would find an action-induced energy-momentum tensor flow equation

dTµν
ds

= Eµν (6.3.4)

for the components of Tµν , where we have introduced the tensor Eµν by combining the
action-induced flow equations for the geometry and the scalar as:

Eµν ≡
1

κ2D

(
δTµν
δgµν

dgµν
ds

+
δTµν
δϕ

dϕ

ds

)
. (6.3.5)

Here, we find ourselves addressing a crucial issue. In fact, one has no reason to believe the
above two flow-sources for the energy-momentum tensor match. In general, we have:

Sµν ≡ Eµν −Bµν ̸= 0 . (6.3.6)

Therefore, since we both want the metric tensor to be on-shell and the flow to be realised as
the action-induced geometric flow associated to (6.1.16), we assume the difference between
Bµν and Eµν to be accounted for by the appearance of further matter fields, which might be
even read off directly from the explicit expression of their energy-momentum contribution.
This intuition is obviously motivated by the swampland distance conjecture, that claims we
should expect towers of light states to emerge for large fields displacements in the moduli
space. In order to follow the outlined procedure, one must introduce the symmetric tensor
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Sµν and derive its explicit form. Once Sµν is derived, one can write the energy momentum
tensor as

Tµν (s) ≡ T̄µν (s) + T̂µν (s) , (6.3.7)

with T̂µν (0) = 0 and:

dT̄µν
ds

= Eµν ,
dT̂µν
ds

= Sµν . (6.3.8)

This way, we have an energy-momentum tensor component T̄µν produced by the scalar
ϕ and evolving according to the appropriate action-induced geometric flow equations, to-
gether with an extra T̂µν term appearing along the flow accounting for the emergence of
new matter fields, which can flow themselves, so that the metric remains on-shell.

6.4 Scalar field example

Assuming to work with the most general form of the action (6.1.16) in D dimensions,
with arbitrarily high powers appearing in the self-interaction potential for the scalar field,
would produce extremely complicated flow sources Eµν and Sµν for the energy-momentum
component associated to ϕ and the one introduced along the flow, respectively. Therefore,
we will now focus on a particular example, characterised by specific set of polynomial
self-interactions. We will construct an on-shell configuration, evolve it according to the
relevant action-induced flow equations and derive the flow dependence of the additional
energy-momentum term, required for the metric on-shell conditions not to be broken.

6.4.1 Parabolic potential

In the following discussion, we assume to work with a single scalar field ϕ, subject to a
potential of the form

V (ϕ) =
g2
2
ϕ2 − g1ϕ− g0 , (6.4.1)

where g2, g1 and g0 are three parameters, with g2 strictly positive. As can be clearly
inferred, such a potential possess one global minimum at:

ϕ0 =
g1
g2

=⇒ V (ϕ0) = −
(
g0 +

g21
2g2

)
. (6.4.2)

Before focusing on a specific solution, which will be characterised by space-time constant
values of scalar field and the curvature, we derive the action-induced flow equations (6.1.30)
associated to the potential described in (6.4.1). From its expression, we can directly com-
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pute the s
(D)
n constants (6.1.27) appearing in the flow equations. By doing so, we get:

s
(D)
0 = g0 , s

(D)
1 =

2g0
2−D

+ g1

√
2D − 6

D − 2
,

s
(D)
n≥2 =

g0
n!

(
2

2−D

)n
+

g1
(n− 1)!

√
2D − 6

D − 2

(
2

2−D

)n−1

+
g2

(n− 2)!2!

2D − 6

D − 2

(
2

2−D

)n−2

.

(6.4.3)

To simplify the following computations, we start by defining the function

FD (ϕ) ≡
∞∑
n=0

s(D)
n ϕ

n (6.4.4)

and express it, in an explicit way, as follows:

FD (ϕ) = exp

{
2ϕ

2−D

}
·

(
g0 + g1ϕ

√
2D − 6

D − 2
+ g2ϕ

2D − 3

D − 2

)
. (6.4.5)

Furthermore, we introduce another function

GD (ϕ) ≡ D

2

d

dϕ
FD (ϕ) (6.4.6)

and compute it, from the above formula, as:

GD (ϕ) =
D

2
exp

{
2ϕ

2−D

}{
1

D − 2

[
g1 (D − 2)

√
2D − 6

D − 2
− 2g0

]

− 2

D − 2

[
g1

√
2D − 6

D − 2
− (D − 3) g2

]
ϕ− g2

2 (D − 3)

(D − 2)2
ϕ2

}
.

(6.4.7)

In D = 4, the formulas for FD (ϕ) and GD (ϕ) reduce to:

F4 (ϕ) = e−ϕ
(
g0 + g1ϕ+

g2
2
ϕ2
)

G4 (ϕ) = 2e−ϕ
[
g1 − g0 + (g2 − g1)ϕ−

g2
2
ϕ2
]
.

(6.4.8)

Focusing, once more, on a generic number D of dimensions, we assume the scalar field to
take the space-time constant value ϕ0, as introduced in (6.4.2). By doing so, the energy-
momentum tensor associated to ϕ takes the value:

κ2DTµν = −
1

2
V (ϕ0) gµν . (6.4.9)
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Hence, it produced an effective cosmological constant term, with:

Λeff = −1

2

(
g0 +

g21
2g2

)
. (6.4.10)

From the perspective of the field equations for the geometry, we are allowed to consider a
metric with constant scalar curvature:

R0 =
2D

D − 2
Λeff = − D

D − 2

(
g0 +

g21
2g2

)
. (6.4.11)

The pair (ϕ0, R0) will subsequently serve as an initial condition for our geometric flow
equations. As in the previous examples, it can be shown that the constancy of R and ϕ
is preserved along the action-induced flow equations. Writing them down explicitly and
neglecting the diffeomorphism terms, we get

dR

ds
=

2

D
R [R +GD (ϕ)] ,

dϕ

ds
= − [R +GD (ϕ)] , (6.4.12)

where GD (ϕ) was defined in (6.4.6). In the following discussion, we will focus on a specific
choice for the number of space-time dimensions.

Four-dimensional example

By imposing to work in four space-time dimensions, the flow equations reduce to

dR

ds
=
R

2
[R +G4 (ϕ)] ,

dϕ

ds
= − [R +G4 (ϕ)] , (6.4.13)

where the function G4 (ϕ) is equal to:

G4 (ϕ) = 2e−ϕ
[
g1 − g0 + (g2 − g1)ϕ−

g2
2
ϕ2
]
. (6.4.14)

As far as the initial condition is concerned, we have:

ϕ0 =
g1
g2

, R0 = −2
(
g0 +

g21
2g2

)
. (6.4.15)

In order to solve the flow equations explicitly, we must make some assumptions on the
potential parameters g0, g1 and g2. As we want to focus on the simplest possible example,
without considering a trivial one, we choose:

g0 = g1 = g2 = 1 . (6.4.16)

Therefore, the initial value of the scalar is positive, while that of the curvature, which is
associated with an Anti-de Sitter space-time geometry, is negative. In particular, we have:

ϕ0 = 1 , R0 = −3 . (6.4.17)
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The function G4 (ϕ), instead, reduces to:

G4 (ϕ) = −ϕ2e−ϕ . (6.4.18)

The action-induced flow equations, under the above assumptions, can be solved by em-
ploying numerical methods. The subsequent evolution is represented in figure 6.8.

Figure 6.8: Plot of ϕ and R with respect to the flow parameter s, when starting from the
initial on-shell configuration (ϕ0, R0) and having taken g0 = g1 = g2 = 1.

Even if writing down an analytic solution might be too complicated, we can still greatly
understand the general properties of the flow by observing at the right-hand side of the
equations (6.4.13). In particular, as long as ϕ is positive and R is negative, we have
that both their derivatives in the flow parameter s must themselves be strictly positive.
Furthermore, since flat space-time corresponds to metric flow fixed point, starting from an
Anti-de Sitter solution forces us never to reach de Sitter ones along the flow. Therefore,
starting from an initial condition in which ϕ is positive and R0 ensures not only that they
both grow indefinitely with the flow parameter s, but that their signs are conserved along
the action-induced geometric evolution. Numerically, we can observe that, as we proceed
along the flow, the absolute value of the scalar curvature dominates over that of the other
contribution, containing a negative exponential of the scalar field. The flow behaviour of
their ratio is shown in figure 6.9.
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Figure 6.9: Plot of the ratio between ϕ2e−ϕ and −R with respect to s, when starting from
the initial on-shell configuration (ϕ0, R0) and having taken g0 = g1 = g2 = 1.

Hence, for large flow times we have:

dR

ds
∼ R2

2
,

dϕ

ds
∼ −R . (6.4.19)

The first equation can be easily solved by:

R (s) ∼ R1

[
1− R1

2
(s− s1)

]−1

. (6.4.20)

By plugging such a solution into the flow equation for the scalar and solving it, we get:

ϕ (s) ∼ ϕ1 + 2 log

[
1− R1

2
(s− s1)

]
. (6.4.21)

In the above, (ϕ1, R1) are computed at a large enough value s1 of the flow parameter. We
can once more compute the distance behaviour for large flow times as was done in (6.1.92),
by removing the volume term after a proper regularisation and obtaining

∆ (s, s0) ∼ log
K (s0)

K (s)
, (6.4.22)
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in which the flow-dependent quantity K (s) is equal to:

K (s) = e−ϕ(s) [R (s)− F4 (ϕ)]

= e−ϕ(s)
[
R (s)− e−ϕ(s)

(
1 + ϕ (s) +

ϕ2 (s)

2

)]
.

(6.4.23)

By plugging the approximate solutions into the above expression, we get that:

lim
s→∞
K (s) = 0 . (6.4.24)

Therefore, the corresponding behaviour of the distance is given by:

lim
s→∞

∆(s, s0) =∞ . (6.4.25)

Thus, the swampland distance conjecture would suggest it to be accompanied by an infinite
tower of asymptotically massless supplementary states.

Three-dimensional example

By imposing to work in three space-time dimensions, the flow equations reduce to

dR

ds
=
R

2
[R +G3 (ϕ)] ,

dϕ

ds
= − [R +G3 (ϕ)] , (6.4.26)

where the function G3 (ϕ) is equal to:

G3 (ϕ) = −3g0e−2ϕ . (6.4.27)

As far as the initial condition is concerned, we have:

ϕ0 =
g1
g2

, R0 = −2
(
g0 +

g21
2g2

)
. (6.4.28)

In order to solve the flow equations explicitly, we must make some assumptions on the
potential parameters g0, g1 and g2. As we want to focus on the simplest possible example,
without considering a trivial one, we choose:

g2 = −g0 = 1 , g1 =
1

2
. (6.4.29)

Therefore, the initial value of the scalar is positive, while that of the curvature, which is
associated with a de Sitter space-time geometry, is negative. In particular, we have:

ϕ0 =
1

2
, R0 =

7

4
. (6.4.30)

The function G3 (ϕ), instead, reduces to:

G3 (ϕ) = 3e−2ϕ . (6.4.31)
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The action-induced flow equations, under the above assumptions, can be solved by em-
ploying numerical methods. The first section of the subsequent evolution is represented
in figure 6.10. From the numerical analysis, it can be shown that the flow encounters a
singularity at a finite value ss of the flow parameter, in which the curvature blows to plus
infinity, while the scalar blows to minus infinity.

Figure 6.10: Plot of ϕ and R with respect to the flow parameter s, when starting from the
initial on-shell configuration (ϕ0, R0).

As far as the distance along the flow is concerned, we again have

∆ (s, s0) ∼ log
K (s0)

K (s)
, (6.4.32)

in which the flow-dependent quantity K (s) is equal to:

K (s) = e−ϕ(s) [R (s)− F3 (ϕ)] = e−ϕ(s)
[
R (s) + e−2ϕ

]
. (6.4.33)

Therefore, it can be easily observed that K (s) blows up at the point s → ss at which
R→∞ and ϕ→ −∞. Hence, such singularity sits at infinite distance

lim
s→ss

∆(s, s0) =∞ (6.4.34)

and is hence expected to be accompanied by an infinite tower of asymptotically massless
states. As both the absolute value of R and that of ϕ grow, the absolute value of the
derivative of R with respect to the flow parameter, which contains an extra factor of R,
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grows quicker than that of the absolute value of the derivative of ϕ. Hence, moving towards
the infinite distance singularity, the flow equations can be approximated as

dR

ds
∼ R2

2
,

dϕ

ds
∼ −R . (6.4.35)

and, as was done in the previous example, easily solved by

R (t) ∼ R1

(
1− R1

2
t

)−1

, ϕ (t) ∼ ϕ1 + 2 log

(
1− R1

2
t

)
, (6.4.36)

where the values (ϕ1, R1) have been computed numerically at s1 = 0.252006, with

ϕ1 ∼ −6.69502 , R1 ∼ 63.8877 , (6.4.37)

and the new flow parameter t has been defined as t ≡ s− s1, with domain t ∈ (0, ts). For
what concerns the distance close to the singularity, we have the approximation

∆ (s1 + t, s0) = ∆0 + 3 log

(
1− R1

2
t

)
(6.4.38)

in which ∆0 is nothing more than a finite onset, in which all the constants have been
absorbed for the sake of simplicity.

Keeping the flow on-shell

In order to address the issue of preserving the on-shell conditions for the metric along
the flow in a general setting, we would have to compute the tensors Bµν and Eµν whose
properties were discussed in (6.3). In this case, nonetheless, the flow has already been solved
numerically. Even more interestingly, it has been provided with an analytic approximation
in the large s regime. We can hence directly study the flow behaviour of the energy-
momentum tensor T̄µν from those of the scalar field and the geometry, impose Einstein
field equations not to be broken by the flow and read off the form of the additional energy-
momentum contribution T̂µν . As far as T̄µν is concerned, we obtain:

κ24T̄µν (s) = −
1

2
V [ϕ (s)] gµν (s) . (6.4.39)

Focusing on its trace, which will be enough for the present analysis, we are left with:

κ24T̄ (s) = −2V [ϕ (s)] . (6.4.40)

On the other hand, we have that the scalar curvature R flows as previously described. It
is obvious that, for the geometry to be on-shell along the flow, the trace of the additional
energy-momentum contribution must satisfy

R (s) = −κ24
[
T̄ (s) + T̂ (s)

]
. (6.4.41)
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for every value of the flow parameter s. Therefore, moving to the flow parameter t for
which the near-singularity approximations fr R and ϕ take simple forms, we have:

κ24T̂ (t) = 2V [ϕ (t)]−R (t) = 2 + ϕ2 (t)− ϕ (t)−R (t)

∼ 4 log2
(
1− R1

2
t

)
−R1

(
1− R1

2
t

)−1

∼ −R1

(
1− R1

2
t

)−1

.
(6.4.42)

Therefore, for large enough values of t, we have that the following approximation holds:

κ24T̂ (t) ∼ −R (t) . (6.4.43)

The additional energy-momentum tensor term, included for the flow to keep the geometry
on-shell, displays a blow-up for large enough values of the flow parameter, close to the
singularity. Let’s now assume that the theory we are dealing with is defined below a
certain energy cut-off ΛEFT, above which its effective description breaks down. If the
supplementary energy-momentum contribution is really to be interpreted as coming from
an infinite tower of new states, getting exponentially lighter along the flow, then those must
lie above ΛEFT at the beginning of the flow. This is consistent with T̂ = 0. Moreover, the s
dependence in (6.4.43) should be accounted for by the progressive appearance of states in
the effective descriptions, as their masses decrease and cross the energy cut-off. Labelling
such fields as ϕn, the swampland distance conjecture suggests that their masses should be
controlled by

Mn (s) ∼ M̄ne
−β·∆(s) , (6.4.44)

where ∆ (s) ≡ ∆(s, 0) is the usual distance and β is an order one positive constant.
Nonetheless, it must not be neglected that the behaviour described above should be char-
acteristic of superstring low energy effective field theories, as widely discussed in 3.2.1.
There are, indeed, strong arguments [357] hinting at the fact that the typical exponential
drop (6.4.44) should solely be encountered in such scenarios, while towers emerging in ap-
parently consistent theories not coming from superstrings should display power law decays
in the distance. There is hence no reason to believe that a generic solution, as the one
constructed in the current section, should be characterised by a tower of asymptotically
massless states precisely fulfilling (6.4.44). It would, instead, be the case if and only if our
original construction, with a quadratic potential (6.4.1), belonged to the string theory land-
scape. At the same time, imposing the geometry to always be on-shell already provided us
with an explicit formula for the flow behaviour of the additional energy-momentum tensor
term, precisely associated to the tower of states. This, subsequently, poses a strong con-
straint on the flow behaviour of their masses. An incompatibility between such a constraint
and an exponential drop of the form outlined in (6.4.44) could, hence, be interpreted as
a signal of our original 3-dimensional theory not belonging to the landscape in the first
place. We will therefore consider the results produced by an ansatz (6.4.44) for the mass
drop with the distance, assessing whether it correctly delivers the energy-momentum con-
tribution described by (6.4.43). In order to do so, we will assume the fields in the tower
to be space-time constant, equal to each other, free and not to change along the flow, so
that the only relevant flowing quantities will be their masses.
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Exponential decay ansatz First of all, as previously anticipated, we focus on an ex-
ponential ansatz as the one presented in (6.4.44). For large flow times, the approximate
formula (6.4.38) can be employed and such a scaling translates to:

Mn (t) ∼ M̄n

(
1− R1

2
t

)3β

. (6.4.45)

Hence, the state with initial massMn (0) = M̄n, in which all constants have been absorbed,
enters the low energy theory, thus contributing to T̂ , when we have:

Mn (s) ≤ ΛEFT . (6.4.46)

This is approximately achieved at the flow time tn, with:

tn =
2

R1

[
1−

(
ΛEFT

M̄n

)−3β
]
. (6.4.47)

Assuming, for the sake of the argument, the masses to be distributed according to a relation

M̄n ∼ ΛEFT
n

γ
(6.4.48)

inspired by Kaluza-Klein compactification 2.4.1 and with γ ∈ (0, 1], in which the energy
scale was singled out and γ was introduced to be a constant, we obtain:

tn =
2

R1

[
1−

(
n

γ

)3β
]
. (6.4.49)

We can therefore infer that the number of supplementary states which are expected to
have entered the theory after a large flow time t, thus contributing to T̂ , is given by:

N (t) = γ

(
1− R1

2
t

)−3β

. (6.4.50)

For the masses of such supplementary states to represent the main contribution to the
extra energy-momentum tensor, we must have:

κ24T̂ (t) ∼ −
N(t)∑
n=1

M2
n (t) · ϕ2

n (t) = −
N(t)∑
n=1

M̄2
n

(
1− R1

2
t

)6β

· ϕ2
n (t)

= −
(
ΛEFT

γ

)2(
1− R1

2
t

)6β N(t)∑
n=1

n2 · ϕ2
n (t) .

(6.4.51)

The simple possible ansatz, now, is to take all fields to converge to the same long term
value. This can be naturally achieved by requiring

ϕn (s) ∼ ϕ̂ (6.4.52)
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for large values of the flow parameter s. With such an assumption, the above expression
simply turns to:

κ24T̂ (t) ∼ −
(
ΛEFT

γ
ϕ̂

)2(
1− R1

2
t

)6β N(t)∑
n=1

n2

= −1

6

(
ΛEFT

γ
ϕ̂

)2(
1− R1

2
t

)6β

·
[
2N3 (t) + 3N2 (t) +N (t)

]
.

(6.4.53)

Neglecting sub-leading terms, we have:

κ24T̂ (t) ∼ −1

3

(
ΛEFT

γ
ϕ̂

)2(
1− R1

2
t

)6β

N3 (t)

= −γ
3

(
ΛEFT · ϕ̂

)2(
1− R1

2
t

)−3β

.

(6.4.54)

Such a behaviour can be matched to (6.4.43), by imposing:(
1− R1

2
t

)−1

∝
(
1− R1

2
t

)−3β

. (6.4.55)

Namely, a tower of states displaying a mass exponential drop as the one suggested in
(6.4.44), consistent with the swampland distance conjecture, would require the constant
controlling the exponential to be equal to:

β =
1

3
. (6.4.56)

Therefore, the theory for a dynamical geometry and a scalar field outlined in 6.4.1, when
selecting the initial point (ϕ0, R0) and imposing such values to evolve according to the
action-induced geometric flow equations, approaches a singularity. Such point, albeit cor-
responding to a finite value of the flow parameter, actually sits an infinite distance in the
generalised moduli space. By, moreover, imposing the equations of motion for the geometry
to be kept on-shell along the flow, an extra energy-momentum tensor must be introduced.
In the previous discussion we have shown that an infinite tower of states, progressively en-
tering the theory and displaying an exponential mass drop with the moduli space distance,
can precisely fulfil that role. At least, as long as the constant controlling the exponential
is set to be equal to one third. We have hence found a behaviour consistent with the
exponential drop predicted by the swampland distance conjecture.



Part III

Conclusions





Conclusive summary

After a brief introduction, chapter 2 straightforwardly presented the reader with a discus-
sion of superstring theory. Albeit being far from complete, such analysis allowed to outline
the broad conceptual framework in which the phenomenological inquiries developed within
the swampland program are rooted. In particular, starting from the classical world-sheet
action for a supersymmetric relativistic string, the corresponding quantum theory was de-
rived by employing the standard old covariant methods. Remarkably, the condition of
unitarity not to be broken at a quantum level forced us to impose the number of space-
time dimension to be equal to ten. By scrutinising the spectrum of excited string states
and decomposing those pertaining to its massless level into irreducible representations of
the Poincaré group, it was therefore possible the identify the corresponding space-time
fields. The equations of motion for the resulting theory were subsequently obtained by
requiring the absence of conformal anomalies. From a technical perspective, this trans-
lated into forcing the world-sheet non-linear σ-model β-functions to vanish. The action
for 10-dimensional type IIA supergravity was thereafter stated and compactified, after
having taken a specific and extremely simplified ansatz, on a circle, obtaining an effective
9-dimensional theory for a dynamical metric, a radion field and an infinite tower of Kaluza-
Klein states, associated to Fourier modes of the 10-dimensional dilaton with respect to
the compact dimension. Discussing such reduced description from the point of view of the
world-sheet formulation, T-duality was introduced as a first counter-intuitive feature space-
time displays in a superstring theory setting. Chapter 3 began by presenting the standard
effective field theory approach to ultraviolet phenomenology and arguing why gravitational
effects are expected to jeopardise it. Hence, the swampland program was introduced as
a systematic attempt to formulate the supplementary constraints enforced on low energy
effective field theories by the quantum gravitational dynamics captured by superstring the-
ory. Particular attention was devoted to the swampland distance conjecture, as it could
be connected to the previously presented compactification example. In chapter 4, a swift
overview of the Anti-de Sitter distance conjecture served as a suitable gateway towards
extending the distance conjecture intuition to the space-time geometry. This objective was
pursued by formally addressing the problem of defining a generalised moduli space for the
metric tensors a given space-time manifold can be endowed with, that was itself provided
with appropriate notion of geodesic distance. Geometric flows were thus established as
natural mathematical tools with which specific moduli space paths could be singled out.
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The Ricci flow conjecture was therefore stated, shown to properly reproduce the large dis-
tance behaviour expected for Anti de-Sitter space-time and further generalised by means
of Perelman’s combined flow, which was obtained as the volume-preserving gradient flow of
an entropy functional. The notion of distance induced by Perelman’s entropy F -functional
on the moduli space of space-time geometries, which does not generally coincide with the
one associated to geodesic paths, was moreover formulated and discussed in the context
of the swampland program. While the above-mentioned chapters contained some original
results, together with generalisations and formalisations of previously understood ones, it
was not until part II, comprised of chapters 5 and 6, that the actual, novel outcomes of
this thesis were properly derived and assessed. In the former, the behaviour of a scalar
bubble solution embedded in various space-time backgrounds under Perelman’s combined
flow was analysed in detail. Afterwards, the more complicated example of a cosmological
constant bubble, for which new and more apt geometric flow equations were derived from
an altered entropy functional, was studied and revealed to evolve towards infinitely distant
configurations. Chapter 6 opened, at last, with the derivation of a broad class of geometric
flow equations from a generalised version of Perelman’s F -entropy functional, in which
both a Laplacian and a potential term for the scalar field were included. The latter, in
particular, was expressed as a polynomial. Considering a space-time Lorentzian theory for
a general relativistic space-time metric and a scalar field and rephrasing it in its string-
frame version, an entropy functional of such kind was hence obtained. Therefore, a way
of associating a set of geometric flow equations to given space-time theory without postu-
lating any unphysical functional was outlined. This framework was thereupon applied to
a circle-compactified model, recovering Perelman’s combined flow in the case in which the
full theory is taken to be five-dimensional, to the example of a sextic potential and to that
of a quartic one. In such cases, solutions characterised by constant space-time curvature
and scalar field were studied. Then, the issue of preserving the metric field equations along
a geometric flow trajectory was faced and solved. In fact, drawing inspiration from the
infinite towers expected to enter the low energy spectrum due to the swampland distance
conjecture, the appearance of an additional energy-momentum contribution along the cor-
responding generalised moduli space path was postulated. The simple example of a scalar
field in a parabolic potential was thus considered, construing space-time constant solutions
to its associated equations of motion and making them evolve under the correct action-
induced flow. Finally, it was shown how the the extra energy-momentum term required for
Einstein’s equations not to be violated by the flow, in a 3-dimensional case, was the one
associated to an infinite tower of space-time constant states, whose masses displayed the
correct string-theoretic exponential drop.

7.1 Outlook

As long as probing the microscopic behaviour of space-time will remain beyond our tech-
nological reach, any proposed theory of quantum gravity will have to be judged through
its indirect phenomenological implications. Indeed, whether or not a framework provides
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us with clear-cut predictions regarding high-energy observables, such as the cross-sections
of putative ultraviolet excitations, it might still be regarded as ambiguous or vain if no
conceivable experiment can question its validity. This pragmatic perspective lies at the
core of the scientific enterprise and represents its main methodological peculiarity. It is
therefore not surprising that the discovery of a huge landscape of equally consistent su-
perstring vacua was greeted with considerable concern, as it posed a serious threat to the
theory’s predictive power. If superstrings could give rise to all thinkable quantum field the-
ories coupled to a dynamical space-time geometry, without discerning among them, there
would have been no low energy experiment able to evaluate its usefulness. Fortunately, this
appears not to be the case. As was broadly discussed in the previous chapters, the central
tenet of the swampland program is precisely the fact that the features of low energy, four-
dimensional effective theories coming from superstring theory are strongly constrained.
While a general and top-down analysis of their shared properties is yet to be achieved,
some of its aspects seem to be captured by various swampland conjectures. In this thesis,
it was suggested that the action-induced flow equations should be employed when exam-
ining if a model belongs to the superstring theory landscape. Such a procedure allows to
study a class of moduli space paths without the necessity of introducing any unphysical
functional. In some sense, it tries to embody the principle, typically attributed to William
of Ockham [358], according to which entities must not be multiplied beyond necessity, since
it only makes use of those mathematical structures already offered by the low energy ef-
fective theory. Along the same line of thought, it was suggested that, at least as far as the
space-time metric is considered, the equations of motion should be preserved by the evolu-
tion associated to the action-induced flow equations. It was hence shown how this can be
realised by allowing for the gradual appearance of a new energy-momentum contribution,
which could be traced back to an infinite tower of states displaying an exponential mass
drop in a specific example. The most direct and natural prosecution of this thesis would
be, first of all, to assess whether such interpretation can be generalised to a large class of
low energy effective theories. It would moreover be important to search for reasons not to
consider any alternative realisation of the extra energy-momentum tensor, together with a
more solid first principles argument supporting the usage of action-induced flow equations.
No particular obstacle should hinder the inclusion of supplementary fields, like the vector
bosons appearing in gauge theories. For what concerns fermionic matter, geometric flow
equations might be instead derived after having expressed the metric in the tetrad formal-
ism. The consequences of preserving the on-shell conditions on the matter content of the
theory are furthermore left to be investigated, as well as any physical implication, within
the context of the on-shell flow, of the flow singularities analysed in [159].



150 7. Conclusive summary



Bibliography

[1] P. W. Anderson, “More is different.” Science 177 4047 (1972) 393–6.

[2] Y. Y. Melamed and M. Lin, “Principle of Sufficient Reason,” in The Stanford
Encyclopedia of Philosophy, E. N. Zalta, ed. Metaphysics Research Lab, Stanford
University, Summer 2021 ed., 2021.

[3] J. S. Mill, A System of Logic. Longman, 1874.

[4] C. D. Broad, “Mechanism and its alternatives,” Philosophy of Mind (2002) .

[5] B. P. McLaughlin, “The rise and fall of british emergentism,” in Emergence or
Reduction?: Prospects for Nonreductive Physicalism, A. Beckermann, H. Flohr, and
J. Kim, eds. De Gruyter, 1992.

[6] E. Nagel, “The structure of science: Problems in the logic of scientific explanation,”
Mind 72 no. 287, (1961) 429–441.

[7] P. Oppenheim and H. Putnam, “Unity of science as a working hypothesis,”
Minnesota Studies in the Philosophy of Science 2 (1958) 3–36.

[8] W. C. Wimsatt, “Reductive explanation: A functional account,” PSA: Proceedings
of the Biennial Meeting of the Philosophy of Science Association 1974 (1972)
671–710.

[9] R. Brown and J. Ladyman, “Physicalism, supervenience and the fundamental
level,” The Philosophical Quarterly 59 no. 234, (2009) 20–38.

[10] J. Butterfield, “Less is different: Emergence and reduction reconciled,” Foundations
of Physics 41 no. 6, (2011) 1065–1135.

[11] J. Kim, “Making sense of emergence,” Philosophical Studies: An International
Journal for Philosophy in the Analytic Tradition 95 no. 1/2, (1999) 3–36.

[12] J. Kim, “The layered model: Metaphysical considerations,” Philosophical
Explorations 5 no. 1, (2002) 2–20.

http://dx.doi.org/10.1007/s10701-010-9516-1
http://dx.doi.org/10.1007/s10701-010-9516-1


152 BIBLIOGRAPHY

[13] A. Rueger, “Functional reduction and emergence in the physical sciences,” Synthese
151 no. 3, (2006) 335–346.

[14] W. C. Wimsatt, “The ontology of complex systems: Levels of organization,
perspectives, and causal thickets1,” Canadian Journal of Philosophy Supplementary
Volume 20 (1994) 207–274.

[15] H. Georgi, “Effective field theory,” Ann. Rev. Nucl. Part. Sci. 43 (1993) 209–252.

[16] C. P. Burgess, “Introduction to effective field theory,” Annual Review of Nuclear
and Particle Science 57 (2007) 329–362.

[17] R. Penco, “An introduction to effective field theories,” arXiv: High Energy Physics
- Theory (2020) .

[18] I. Brivio and M. Trott, “The Standard Model as an Effective Field Theory,” Phys.
Rept. 793 (2019) 1–98, arXiv:1706.08945 [hep-ph].

[19] S. Weinberg, “On the Development of Effective Field Theory,” Eur. Phys. J. H 46
no. 1, (2021) 6, arXiv:2101.04241 [hep-th].

[20] G. Isidori, F. Wilsch, and D. Wyler, “The Standard Model effective field theory at
work,” arXiv:2303.16922 [hep-ph].

[21] T. Brauner, S. A. Hartnoll, P. Kovtun, H. Liu, M. Mezei, A. Nicolis, R. Penco,
S.-H. Shao, and D. T. Son, “Snowmass White Paper: Effective Field Theories for
Condensed Matter Systems,” in Snowmass 2021. 3, 2022. arXiv:2203.10110
[hep-th].

[22] T. Kaneyoshi and J. A. Mielnicki, “Comparison of effective-field and mean-field
theories for the spin-one ising model with a random crystal field,” Journal of
Physics: Condensed Matter 2 (1990) 8773–8777.

[23] R. Shankar, “Effective field theory in condensed matter physics,” Conceptual
foundations of quantum field theory (1999) 47–55.

[24] G. Cabass, M. M. Ivanov, M. Lewandowski, M. Mirbabayi, and M. Simonović,
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formation and classicalization in ultra-Planckian 2→N scattering,” Nucl. Phys. B
893 (2015) 187–235, arXiv:1409.7405 [hep-th].

[144] G. Dvali, “Unitarity Entropy Bound: Solitons and Instantons,” Fortsch. Phys. 69
no. 1, (2021) 2000091, arXiv:1907.07332 [hep-th].

[145] G. Dvali, “Entropy Bound and Unitarity of Scattering Amplitudes,” JHEP 03
(2021) 126, arXiv:2003.05546 [hep-th].

[146] C. Kiefer, “Quantum gravity: general introduction and recent developments,”
Annalen der Physik 15 no. 1-2, (2006) 129–148.

[147] M. Blau and S. Theisen, “String theory as a theory of quantum gravity: a status
report,” General relativity and gravitation 41 no. 4, (2009) 743–755.

[148] D. Harlow et al., “TF1 Snowmass Report: Quantum gravity, string theory, and
black holes,” arXiv:2210.01737 [hep-th].

[149] M. Cicoli, J. P. Conlon, A. Maharana, S. Parameswaran, F. Quevedo, and
I. Zavala, “String cosmology: from the early universe to today,” 2023.
https://arxiv.org/abs/2303.04819.

[150] G. T. Horowitz, “Spacetime in string theory,” New J. Phys. 7 (2005) 201,
arXiv:gr-qc/0410049.

[151] K. Matsubara and L.-G. Johansson, “Spacetime in string theory: A conceptual
clarification,” Journal for General Philosophy of Science 49 no. 3, (2018) 333–353.

[152] T. Vistarini, The emergence of spacetime in string theory. Routledge, 2019.
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[233] A. Font, A. Herráez, and L. E. Ibáñez, “The Swampland Distance Conjecture and
Towers of Tensionless Branes,” JHEP 08 (2019) 044, arXiv:1904.05379 [hep-th].

[234] S. K. Garg and C. Krishnan, “Bounds on Slow Roll and the de Sitter Swampland,”
JHEP 11 (2019) 075, arXiv:1807.05193 [hep-th].

[235] N. Gendler and I. Valenzuela, “Merging the weak gravity and distance conjectures
using BPS extremal black holes,” JHEP 01 (2021) 176, arXiv:2004.10768
[hep-th].
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