
Flexible Regression for Functional Object
Data: Curves, Shapes and Densities

Jan Almond Stöcker

München 2022





Flexible Regression for Functional Object
Data: Curves, Shapes and Densities

Dissertation
at the Faculty of Mathematics, Informatics and Statistics

of the Ludwig-Maximilians-Universität München

handed in by
Jan Almond Stöcker

Munich, July 27th 2022



First Referée: Prof. Dr. Sonja Greven
Second Referée: Prof. Dr. Helmut Küchenhoff
Third Referée: Prof. Anuj Srivastava, PhD

Defense of thesis on September 16th 2022



Flexible Regression für funktionale
Objektdaten: Kurven, Formen und Dichten

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

eingereicht von
Jan Almond Stöcker

München, den 27. Juli 2022



Erstgutachterin: Prof. Dr. Sonja Greven
Zweitgutachter: Prof. Dr. Helmut Küchenhoff
Drittgutachter: Prof. Anuj Srivastava, PhD

Disputation am 16. September 2022



Acknowledgments

Acknowledgments
Cooperation is a lot about trust, trust that I was able to place in the people around
me and trust that other people placed in me and my opinion, for which I am deeply
grateful. The respectful together I enjoyed over the past years has constantly fueled
my enthusiasm for statistics, while having plenty of fun at the same time.
In this sense, I first want to thank Sonja Greven for her guidance, for always being

able to rely on her, for her confidence in my ideas, and for all that I could learn from
her in all we have been working on together in the last years, from years-long projects
to last-minute abstracts.
Similarly, I want to thank my colleagues and friends Alexander Volkmann, Lisa

Steyer, Eva-Maria Maier, Sarah Brockhaus and especially also David Rügamer, with
all of whom I enjoyed closely working together and share many awesome experiences,
as well as Amanda Fernández-Fontelo, Fabian Scheipl, Meike Köhler, Jona Cederbaum,
Matthias Eckardt, Elena Ivanova, Clara Happ, Sigbert Klinke and Karen Fuchs from
my working group, with whom I had a great time, always enjoying a nice atmosphere.
Many thanks also to all my other collaborators. Here, I would like to especially

mention Honey Alas, Christoph Berninger and also Manuel Pfeuffer, with whom I had
the pleasure of working very intensively together, as well as Nikolaus Umlauf, Nadja
Pöllath, Sebastian Düsing and, lately but also with great fun, Alessandra Menafoglio.
Warm thanks to Thomas Augustin and a long list of members of the department in

Munich who made it such a friendly place to work and study at. Thank you Benjamin
Sischka, Christoph Jansen, Henry Port, Shuai Shao, Elke Höfner, Brigitte Maxa, my
former office mates Moritz Berger and Moritz Herrmann, and many more!
Thank you also Leslie Udvarhelyi, it was a pleasure, and Lucas Kock, Paul Bach and

the other members of Nadja Klein’s group in Berlin!
Thanks to Manuel Kroiss, Can Gürer, Ludwig Bothmann, Minh-Anh Le and Xudong

Sun for inspiring me with their commitment.
I want to thank my friends, several of whom I know since childhood, Fritz Francisco,

Merit Enghofer, Paula Giesler, Timon Enghofer, Marius Heiß, Max Pöhlmann, Tore
Erdmann, Henning Bumann and recently Simon Bittmann, with whom I had great fun
discussing data problems in their fields, and all my other friends who support me.
I am immensely grateful to my family, the basis of my confidence, and the dear family

of Sophia. Besides for being also a great collaborator and friend, I want to thank Sophia
Schaffer, who is always by my side, for her advice and support in so many regards, for
the beautiful time working remotely together at home, her patience when finishing
urgent work never seemed to end, and much more.
Moreover, I would like to sincerely thank Helmut Küchenhoff and Anuj Srivastava for

reviewing my dissertation. It is a particular honor and pleasure, as they represent the
two sides of the thesis so excellently: it was in Helmut Küchenhoff’s descriptive statistics
lecture where I had my first contact with regression models, and Anuj Srivastava’s work
on functional shape analysis plays such a vital role for the data objects we address.

v



vi



Summary

Summary
The interplay of geometric and probabilistic approaches in statistics is already evident
in the example of linear regression. However, it becomes particularly explicit when it
comes to extending statistical methods to object data with a non-Euclidean structure.
Functional data represent such a data type, where a sample of functions, such as growth
curves or motion trajectories, is considered and analyzed as such.
The starting point of this work are models for functional data with flexible tensor

product spline effects based on (generalized) additive regression. In this context, we dis-
cuss different scenarios with functional target variables, which require modeling beyond
usual point-wise mean curves: I. distributional regression models, where, for example,
also the variance function is modeled in dependence on covariates; II. models for prob-
ability densities as a functional response; and III. models for multidimensional curves
and their shapes. Methodological extensions with respect to these three aspects are
proposed in a total of seven subprojects, each presented in a contribution chapter, and
applied to various, mostly biometric but also econometric problems:

I. Already the example of growth curves, an archetype of functional data, shows
that the (implicit) assumption of a point-wise normally distributed response vari-
able can prove to be problematic (purely positive, often skewed distribution) and
exclusive modeling a mean curve in dependence on covariates sometimes proves
to be restrictive (e.g. when modifications of the medium of bacterial cultures in-
fluence their growth process). To address such challenges, we extend functional
additive models (FAMs) to distributional regression (GAMLSS). For model esti-
mation based on gradient boosting, we illustrate how suitable regularization helps
to handle high autocorrelation of functional responses (penalization at each step
and early stopping of the algorithm based on curve-wise cross-validation). The
flexible approach allows us to address experimental specifics when modeling an
interaction scenario of two bacterial strains and to identify different phases of
bacterial competition.

II. In contrast to the extension of (point-wise) distribution models to functional re-
sponses in I., distributions themselves can be considered as objects of functional
data analysis. Accordingly, we extend FAMs to probability densities as response
variables. Due to their specific properties, densities are modeled in a Bayes Hilbert
space. Again, we use a boosting algorithm for estimation, with the goal of mini-
mizing expected quadratic distances in the Bayes space. In an analysis of gender-
based income inequality based on the Socio-Economic Panel (SOEP), we model
the distribution of income shares of the woman in the total income of couples
as a continuous density with point masses at 0 and 1 in dependence on various
influencing variables.

III. Modeling multidimensional curves primarily corresponds to a multivariate ex-

vii



Summary

tension of real-valued functional data (Contribution a)), but also poses further
challenges: if, for example, the outline curve of an object, e.g. a bone, is consid-
ered, the spatial orientation (b), d), e)) or parameterization of the curve (c), d),
e)) often do not play a role, which should be taken into account in the model.
Although the contributions are partly strongly based on each other, they always
set individual accents:

a) In the first contribution, we propose a multivariate functional mixed model
in which the covariance structure of the response functions is estimated in
addition to the expected value structure. The multidimensional covariance
surface is estimated by covariance smoothing, which makes the model par-
ticularly suitable for irregularly/sparsely observed functions. The use of
(nested/crossed/curve-specific) functional random intercepts allows for mod-
eling longitudinal/hierarchical study designs, such as in our analysis of move-
ment trajectories of billiard players who execute a given shot several times
and on several days. For this purpose, the joint covariance is decomposed
into its independent variation components. Using multivariate functional
principal component analysis, the covariance structure can be taken into ac-
count in the model fit (including cross-correlations between the dimensions)
and the individual modes of variation can be interpreted.

b) In many data scenarios, the coordinate system in which each multidimen-
sional curve is recorded is arbitrary and not of interest. Thus, the actual
object of analysis is the shape of a curve, i.e. its equivalence class under
translation, rotation and scaling. We extend FAMs to shapes of plane curves
as response object taking the Riemannian manifold structure of the shape
space into account: the mean shape is modeled by a geodetic response func-
tion, and residuals and distances are determined by the shape geometry. For
model estimation, we propose a Riemannian L2-Boosting algorithm and es-
tablish a new visualization for FAMs based on suitable tensor product model
factorization, which allows to systematically interpret estimated model ef-
fects graphically even in the multidimensional-functional case.

c) Complementary to b), curves with fixed orientation and size are consid-
ered in this contribution – but as equivalence classes with respect to re-
parameterization (“warping”). Based on the Square-Root-Velocity (SRV)
framework, we develop methods to model corresponding Fréchet means of
irregularly/sparsely observed curves using splines and show identifiability
statements for individual spline representations. Underlying “elastic” dis-
tances involve optimal parameterization alignment of one curve to another
(“registration”). Furthermore, we illustrate the use of elastic distances for
classification and clustering on datasets of irregularly observed curves.

d) Starting from c), we propose elastic full Procrustes analysis of shapes of
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curves. The distance between curves underlying the notion of mean shape
here is obtained by optimal rotation and scaling alignment in addition to
parameterization alignment as in c). While c) deals with m ≥ 2 dimensional
curves in general, we restrict ourselves here as in b) to plane curves which
can be understood as (equivalence classes of) complex-valued functions. Be-
sides relying on c), this allows us to base analysis of irregularly/sparsely
observed curves on Hermitian covariance smoothing, which we propose as a
generalization of symmetric covariance smoothing (e.g. as in a)).

e) In the dissertation, we also present a model extension of the FAMs from b),
in which curves are considered as invariant under re-parameterization on the
basis of c) in addition to the previous shape invariances. In contrast to d),
curve shapes are modeled here in dependence on covariates, and not based
on the full Procrustes distance but based on the Riemannian distance in the
shape space.

The aim of this work is to make the variety of possibilities offered by statistical modeling
for scalar data also available for the analysis of object data. It is characteristic for
object data analysis that generalizations to functions, densities, forms or other data
types always also promote mathematical abstraction, show methodical similarities and
give rise to new developments beyond the concrete data structure.
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Zusammenfassung

Zusammenfassung
Das Zusammenspiel geometrischer und probabilistischer Anschauungsweisen in der Sta-
tistik wird schon am Beispiel linearer Regression deutlich. Besonders explizit wird es
aber, wenn es darum geht, statistische Methoden auf Objektdaten mit nicht-euklidischer
Struktur zu erweitern. Funktionale Daten stellen einen solchen Datentyp dar, bei dem
eine Stichprobe von Funktionen, wie bspw. Wachstumskurven oder Bewegungstrajek-
torien, als solche aufgefasst und analysiert wird.
Ausgangspunkt dieser Arbeit bilden auf Basis (generalisierter) additive Regression

etablierte Modelle für funktionale Daten mit flexiblen Tensorprodukt-Spline-Effekten.
In diesem Zusammenhang gehen wir auf verschiedene Szenarien mit funktionalen Ziel-
größen ein, die eine Modellierung jenseits üblicher punktweiser Erwartungswertskur-
ven erforderlich machen: I. Verteilungs-regressionsmodelle, bei denen bspw. auch
die Varianzfunktion in Abhängigkeit von Kovariablen modelliert wird; II. Modelle für
Wahrscheinlichkeitsdichten als funktionale Zielgröße; und III. Modelle für mehrdimen-
sionale Kurven oder deren Formen. Methodische Erweiterungen in Bezug auf diese drei
Aspekte werden in insgesamt sieben Teilprojekten vorgeschlagen und auf verschiedene
meist biometrische aber auch ökonometrische Fragestellungen angewandt:

I. Schon am Beispiel von Wachstumskurven, einem Archetypen funktionaler Daten,
wird klar, dass sich die (implizite) Annahme einer punktweise normalverteilten
Zielgröße als problematisch erweisen kann (rein positive, oft schiefe Verteilung)
und sich die ausschließliche Modellierung der Erwartungswertkurve in Abhängig-
keit von Kovariablen mitunter als restriktiv darstellt (bspw. wenn Modifikatio-
nen am Medium von Bakterienkulturen deren Wachstumsprozess beeinflussen).
Um solchen Herausforderungen zu begegnen, erweitern wir funktionale additive
Modelle (FAM) auf Verteilungsregression (GAMLSS). Für die Modellschätzung
auf Basis von Gradient-Boosting illustrieren wir dabei, welchen entscheidenden
Beitrag geeignete Regularisierung im Umgang mit Autokorrelation funktionaler
Zielgrößen leistet (Penalisierung in jedem Schritt und frühzeitiges Stoppen des Al-
gorithmus auf Basis kurvenweiser Kreuzvalidierung). Durch den flexiblen Ansatz
können wir bei der Modellierung eines Interaktionsszenario zweier Bakterien-
stämme auf experimentelle Spezifika eingehen und verschiedene Phasen des bak-
teriellen Wettstreits herauszustellen.

II. Im Gegensatz zur Erweiterung von (punktweisen) Verteilungsmodellen auf funk-
tionale Zielgrößen in I. lassen sich umgekehrt auch Verteilungen selbst als Ob-
jekt funktionaler Datenanalyse auffassen. Entsprechend erweitern wir FAM auf
Wahrscheinlichkeitsdichten als Zielgrößen. Aufgrund ihrer spezifischen Eigen-
schaften werden Dichten dabei in einem Bayes-Hilbert-Raum modelliert. Auch
hier verwenden wir einen Boosting-Algorithmus zu Schätzung, mit dem Ziel er-
wartete quadratische Abstände im Bayes-Raum zu minimieren. In einer Anal-
yse Gender-basierter Einkommensunterschiede auf Basis des Sozio-Ökonomischen
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Zusammenfassung

Panels (SOEP) modellieren wir damit die Verteilung der Einkommensanteile der
Frau am Gesamteinkommen von Paaren als stetige Dichte mit Punktmassen bei
0 und 1 in Abhängigkeit verschiedener Einflussgrößen.

III. Die Modellierung mehrdimensionaler Kurven entspricht zunächst einer multivari-
aten Erweiterung reellwertiger funktionaler Daten (Teilprojekt a)), birgt aber
auch weitere Herausforderungen: betrachtet man z.B. die Umrisskurve eines Ob-
jekts, bspw. eines Knochens, so spielen oftmals die räumliche Ausrichtung (b),
d), e)) oder Parameterisierung der Kurve (c), d), e)) keine Rolle, was in der
Modellierung berücksichtigt werden sollte. Obwohl die Teilprojekte teils stark
aufeinander aufbauen, setzen sie stets auch individuelle Akzente:

a) Im ersten Teilprojekt schlagen wir ein multivariates funktionales gemischtes
Modell vor, in dem neben der Erwartungswertstruktur auch die Kovari-
anzstruktur der Zielfunktionen geschätzt wird. Die multidimensionale Ko-
varianzoberfläche wird dabei über Kovarianzglättung geschätzt, wodurch sich
das Modell insbesondere auch für irregulär/spärlich beobachtete Funktio-
nen eignet. Der Einsatz (genesteter/ gekreuzter/ kurvenspezifischer) funk-
tionaler zufälliger Intercepts erlaubt die Modellierung longitudinaler/ hier-
archischer Studiendesigns, wie bspw. in unserer Analyse von Bewegungstra-
jektorien von Billardspielern, die einen vorgegebenen Stoß mehrmals und an
mehreren Tagen ausführen. Dazu wird die gemeinsame Kovarianz bei der
Schätzung in deren unabhängige Variationskomponenten zerlegt. Mithilfe
multivariater funktionaler Hauptkomponentenanalyse lässt sich die Kovari-
anzstruktur so in der Modellanpassung berücksichtigen (inklusive Kreuzko-
rrelationen zwischen den Dimensionen) und die einzelnen Variationskompo-
nenten anschaulich interpretieren.

b) In vielen Datenszenarien ist das Koordinatensystem, in dem jede einzelne
mehrdimensionale Kurven aufgezeichnet wird, arbiträr und nicht von Inter-
esse. Das eigentliche Objekt der Analyse bildet damit die Form einer Kurve,
d.h. deren Äquivalenzklasse unter Translation, Rotation und Skalierung. Wir
erweitern FAM auf Formen planarer Kurven als Zielgröße. Dabei wird die
Riemannsche Mannigfaltigkeitsstruktur des Formraumes berücksichtigt: die
erwartete Form wird über eine geodätische Response-Funktion modelliert
und Residuen und Abstände werden entsprechend der Geometrie definiert.
Zur Modellschätzung schlagen wir einen Riemannschen L2-Boosting-Algorith-
mus vor und etablieren eine neue Visualisierung für FAM auf Basis geeigneter
Tensorprodukt-Modell-Faktorisierung, die es auch im multidimensional-funk-
tionalen Fall erlaubt, geschätzte Modelleffekte systematisch graphisch zu in-
terpretieren.

c) Komplementär zu b) werden in diesem Teilprojekt Kurven mit fester Aus-
richtung und Größe – aber als Äquivalenzklassen bezüglich Umparameter-
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isierung (“Warping”) betrachtet. Auf Basis des Square-Root-Velocity (SRV)
Framework entwickeln wir Methoden, um entsprechende Fréchet-Mittel ir-
regulär/spärlich beobachteter Kurven mithilfe von Splines zu modellieren
und zeigen Identifizierbarkeitsaussagen für einzelne Spline-Repräsentationen.
Zugrundeliegende “elastische” Distanzen beinhalten die optimale Anpassung
der Parameterisierung einer Kurve an eine andere (“Registrierung”). Da-
rüberhinaus illustrieren wir auch den Einsatz elastischer Distanzen für Klas-
sifikation und Clustering auf Datensätzen irregulär beobachteter Kurven.

d) Ausgehend von c) schlagen wir eine elastische Voll-Prokrustes-Analyse der
Formen von Kurven vor. Die Distanz zwischen Kurven, auf deren Basis dabei
eine mittlere Form bestimmt wird, ergibt sich neben Anpassung hinsichtlich
Umparameteridierung wie in c) nun auch durch bestmögliche Rotation und
Umskalierung. Während c) allgemein m ≥ 2 dimensionale Kurven behan-
delt, beschränken wir uns hier wie in b) auf planare Kurven, die als (Äquiv-
alenzklassen von) komplexwertigen Funktionen aufgefasst werden können.
Das ermöglicht uns für die Analyse spärlich/irregulär beobachteter Kurven
neben c) auch auf hermitesche Kovarianzglättung zurückzugreifen, die wir
als Verallgemeinerung symmetrischer Kovarianzglättung (wie bspw. in a))
vorschlagen.

e) Im Rahmen der Dissertation stellen wir auch eine Modellerweiterung des
FAM aus b) vor, in der auf Basis von c) Kurven neben den bisherigen Form-
Invarianzen auch als invariant unter Umparameterisierung betrachtet wer-
den. Im Unterschied zu d) werden die Kurvenformen hier in Abhängigkeit
von Kovariablen modelliert, und nicht auf Basis der Voll-Prokrustes-Distanz
sondern der Riemannschen Distanz im Formraum.

Ziel der Arbeit ist es, die Fülle an Möglichkeiten, die statistische Modellierung für
skalare Daten bietet, ein weiteres Stück mehr auch für die Analyse von Objektdaten
bereitzustellen. Dabei ist bezeichnend für Objektdatenanalyse, dass die Erweiterung
auf Funktionen, Dichten, Formen oder andere hier nicht behandelte Datentypen, immer
auch die mathematische Abstraktion befördert, methodische Gemeinsamkeiten aufzeigt
und über die konkrete Datenstruktur hinaus Anstoß zu neuen Entwicklungen gibt.
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1. Introduction

1.1. Overview
Classical functional response regression models mean functions µi : T → R underlying
a sample of response functions yi : T → R, i = 1, . . . , n, given respective covariates xi,
in such a way that they can be interpreted as point-wise conditional means

E(Y (t) | xi) = µi(t) = h(xi)(t) (t ∈ T )

of an underlying process Y in dependence on a functional predictor h(xi) [compare,
e.g., 133]. This thesis addresses data problems that require going beyond such point-
wise functional mean regression in different ways, while at the same time aiming at
the modeling flexibility we are used to from semi-parametric modeling. The thesis
cumulatively comprises seven self-standing contributions that can be subdivided into
two parts:
In Part I, the contribution in Chapter 2 discusses distributional regression for functional
responses, where besides µi also, say, variance functions σ2

i : T → R can be modeled
in dependence on covariates, allowing also for point-wise response distributions beyond
the Gaussian case or exponential families. The contribution of Chapter 3, by contrast,
considers functional response regression, where each response function yi presents a
density function describing a probability distribution.
In Part II, multidimensional curves yi and their shape are considered. This comprises
mixed models for multivariate functional data in nested and crossed sampling designs
(Contribution Chapter 4), functional response models for shape and form manifolds
of plane curves under invariance with respect to translation, rotation, and potentially
scaling (Contribution Chapter 5), elastic splines models for mean curve estimation under
re-parameterization (“warping”) invariance (Contribution Chapter 6), as well as elastic
full Procrustes mean estimation (Contribution Chapter 7) and elastic additive regression
(Contribution Chapter 8) for shapes of plane curves under both aforementioned types
of invariances.
All contributions are the result of joint work with other authors. The personal role of
the author of this thesis within the respective project is declared at the beginning of
each Chapter. Here, also information concerning the original publication of respective
articles is provided.
In the remainder of the introductory Chapter 1, relevant context is provided in prepa-

ration of the contributions. This includes brief literature overviews and discussion of
basic concepts in object data analysis (Section 1.2), concerning functional data in gen-
eral (in 1.2.1), density and compositional data (in 1.2.2), time-warping of functional
data (in 1.2.3), and shape data (in 1.2.4), as well as bibliographic references to main
semi-parametric regression frameworks for scalar data in Section 1.3, illustrating some
of their modeling flexibility by an example.
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1. Introduction

1.2. Modeling object data: from L2 functions to
probability densities to shapes of curves

Analysis of data in a non-Euclidean space Y , beyond categorical variables or metric
variables commonly addressed in scalar or multivariate statistical analysis, has been
summarized as “object oriented data analysis” [207, 123] in a similar spirit as “geo-
metric deep learning” [22, 29] in the context of neural networks and the earlier notion
of “abstract inference” [70]. The terminology highlights similar perspectives adopted
in different branches of statistics analyzing samples y1, . . . , yn ∈ Y of such object data,
including analysis of functional data [154], directional and spherical data [121], compo-
sitional data [143] and, more generally, probability distributions as data objects [148],
shape data [49] or object deformations [58, 193, 132], data on manifolds of symmet-
ric positive-definite (SPD) matrices [9, 115] and of graph Laplacian matrices [171] as
well as Grassmannian manifolds [79], or tree spaces [78, 207, 12] and graph spaces [28]
which carry no manifold structure. While more and more established in various fields,
many developments in the analysis of object data have been accompanied by biomed-
ical research [175, 127] aiming to describe complex “real world patterns” [71], such as
functional data analysis of growth curves [133], anatomical shape analysis and morpho-
metrics [105, 159], or statistical analysis of SPD matrices in diffusion-tensor-imaging
[59] and in functional connectivity studies [219]. We may identify two main directions of
generalization from the Euclidean case of finite-dimensional vector spaces Rk: functional
generalizations developed in functional data analysis consider object data as elements
of infinite-dimensional Hilbert (or Banach) spaces [86] and arise when observations are
naturally understood as a sample of functions (although practically recorded at discrete
evaluations); geometric generalizations analyze object data in non-linear spaces, which
are often endowed with a Riemannian manifold geometry [145] but also include other
metric spaces that may still admit some local vector space approximation such as tree
spaces [19] and Wasserstein spaces [32] facilitating geometric understanding and trans-
fer of statistical tools from Euclidean spaces. Geometric approaches are often required
due to non-linear constraints to the data objects, such as in probability density func-
tions or SPD matrices, or because they present elements of a quotient space, such as
in Kendall’s shape spaces [98] or graph spaces. Conversely, object space geometries are
often motivated from representations in Euclidean spaces. Different scenarios demand
for combining functional and geometric object data analysis [178, 114, 200, 148, 32, 58],
as is the case in most data scenarios discussed as part of this thesis.
Once the mathematical structure of the object data space Y is given, instruments

of data analysis can be established: most fundamentally, this includes notions of
a mean object µ̂ ∈ Y of a sample of objects y1, . . . , yn and tools for quantifying
and visualizing the variation structure in the data. Here, Fréchet means [61, 226],
generalizing the method of least-squares to a (semi-)metric space (Y , d) by setting
µ̂ ∈ arg minµ∈Y

∑n
i=1 d

2(µ, yi) (which can, however, not always be expected to be

2



1.2. Modeling object data: from L2 functions to probability densities to shapes of curves

unique), play a prominent role. Generalizations of principal component analysis (PCA)
[172, 60, 207, 32, 194] present a key tool to determine modes of variation in often
high-dimensional object data. Distance and mean computation as well as employing
Euclidean data representations obtained from PCA for object data analysis already
facilitate transfer of various methods of data analysis from multivariate analysis [77].
For instance, the author also participated in projects on classification of movement tra-
jectories as functional data [112] and time-series modeling of yield curves [17] aside of
the presented contributions, while this thesis focuses on regression for functional object
data as response. While related to the scope of object data analysis described above,
manifold learning [120] and metric learning [211, 106, 100] approach the data from the
opposite direction. They do not explicitly define the geometry of the space of the object
but estimate it from the data instead.
The following sections provide an overview over the object data types relevant for

this thesis from a modeling perspective, pointing out their various interconnections.

1.2.1. Functional data analysis between point-wise and
object-oriented perspectives

After pioneer works by Karhunen [96], Loève [117], Grenander [69], and Rao [156] in the
middle of the 20th century and establishing as statistical discipline in the 80s and early
90s [70, 152, 153] at the latest with the first edition of Ramsay and Silverman [154]
in 1997, functional data analysis (FDA) has become a very active field of statistical
research relying on a rich body of theoretical and applied literature, as outlined in
different FDA reviews [41, 208, 8]. Textbooks providing introductions [154, 104] and
discussing theoretical foundations [86] and inference [80] in FDA document parts of its
developments. References to other textbooks and surveys as well as overviews over the
different directions of FDA can be found in the review papers given above. Here, some
very basic ideas are described to prepare what follows.
A basic motive in the analysis of a sample of functions, say yi : [0, 1] → R for

i = 1, . . . , n, is the ambivalence between point-wise and object-oriented perspectives:
point-wisely, yi is determined by evaluations yi(t) and typically observed as a vec-
tor yi = (yi1, . . . , yiki

)> = (yi(ti1), . . . , yiki
(tiki

))> ∈ Rki of evaluations at points ti =
(ti1, . . . , tiki

)> ∈ [0, 1]ki which are often referred to as “time-points” as in the classic
FDA example of growth curves. For simplicity, yı and yi for ı 6= i can always be
assumed independent throughout the introduction. In particular regarding regularly
sampled functional data, with time-grids t1 = · · · = tn equal for all observations,
authors outside of FDA take this perspective when analyzing datasets that could be
considered functional data by referring solely to vectors y1, . . . ,yn of multivariate data.
In irregularly and sparsely sampled functional data, with time-grids ti varying over i
and potentially small numbers ki of sampling points per curve, the demand for ex-
plicitly considering variation over t ∈ [0, 1] is especially evident. Still focusing on a
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point-wise perspective in such data, longitudinal data analysis [46] is highly related
and interwoven with FDA. Mathematical consideration of yi, i = 1, . . . , n as realized
paths of a stochastic process Y over the domain [0, 1] yields the transition of a point-
wise perspective, understanding it as a family of random variables {Yt}t∈[0,1], to an
object-oriented perspective, considering random paths t 7→ Yt as data objects, which
are often denoted by Y (t) = Yt in FDA for simplicity. Finally and in contrast to other
approaches to stochastic processes [170], the object-oriented perspective is solidified by
assuming a specific structure on the space Y of its paths. Here, a classic assumption is
that y is square-integrable with respect to the Lebesque measure ν plus some further
regularity assumtions to make Y a random element in the Hilbert space L2([0, 1]) with
inner product 〈y1, y2〉 =

∫
y1 y2 dν (for details see [86, Chapter 7]). Conversely, a purely

object-oriented perspective typically starts from viewing Y as a random element of a
separable Hilbert space Y . For various reasons, different authors focus more on an
object-oriented or a point-wise approach. Perhaps it is, however, fair to say that bridg-
ing the two perspectives is an essential part of the identity of FDA. In the following,
the interplay of the different perspectives is illustrated in more detail considering the
mean and variance structure of Y . For theoretical aspects, we follow excerpts of Hsing
and Eubank [86, Chapter 7] to which we refer for details.

The mean and variance structure of Y can be described via their point-wise mean
function µ(t) = E(Y (t)) and covariance function C(s, t) = E((Y (s)−µ(s))(Y (t)−µ(t)))
for s, t ∈ [0, 1] – or, assuming Y a random element in the Hilbert space L2([0, 1]), via
the mean element m ∈ L2([0, 1]) and covariance operator Σ : L2([0, 1]) → L2([0, 1])
in an object-oriented approach. m and Σ are defined to fulfill 〈m, y〉 = E(〈m,Y 〉)
and 〈Σ(y1), y2〉 = E(〈Y −m, y1〉〈y2, Y −m〉) for all y, y1, y2 ∈ L2([0, 1]) assuming that
E(‖Y ‖2) <∞. Now, if µ and C are both continuous functions, µ coincides with m and
Σ(y)(t) =

∫
C(s, t)y(s) dν(s) coincides with the integral operator associated with C [86,

Theorem 7.4.3] which we assume in the following. This also holds, for instance, when Y
is restricted to a finite-dimensional subspace. Hence, the point-wise and object-oriented
perspectives align.
When it comes to practical data analysis, point-wise data representation as evaluation
vectors yi is complemented by basis representations. To get from observed evaluation
vectors yi to functional representations ŷi : [0, 1] → R that approximate underlying
functions yi for evaluation at arbitrary t ∈ [0, 1], a basis representation approach nicely
fits the geometry of a separable Hilbert space Y , since in this case Y admits complete
orthonormal systems {fl}∞l=1 ⊂ L2([0, 1]) to represent each yi = ∑∞

l=1〈fl, yi〉fl. Given
finite data and resources, we can, however, only rely on a finite basis f = (fl, . . . , fL)>
in practice, which has to be capable of reflecting the essential variation in Y . Typically
employed bases include smoothing splines, B-splines and other function bases used
for smoothing [154, 212] as well as wavelets [134] especially for spiky functional data.
These bases are not necessarily orthonormal, which we assume, however, without loss
of generality in the following to simplify expressions.
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Estimating functional means in practice: Representing each functional observa-
tion by ŷi(t) = ∑L

l=1 y̌ilfl(t) = y̌>i f(t) expanded in the basis f with coefficients y̌i =
(y̌i1, . . . , y̌iL)> ∈ RL obtained by fitting evaluations yi point-wisely with respect to (pe-
nalized) least squares [154], the mean µ can be estimated simply as m̂ = m̌>f with the
mean coefficient vector m̌ = 1

n

∑n
i=1 y̌i. This is suitable when the data curves yi are

sampled densely enough to achieve good approximations ŷi ≈ yi. Alternatively, the µ
might be estimated as µ̂(t) = µ̌>f(t) on a point-wise basis by jointly minimizing a (pe-
nalized and weighted) least squares criterion µ̌ = arg minθ(y−Fθ)>W(y−Fθ)+pen(θ)
with y = (y>1 , . . . ,y>n )>, a design matrix F = (f>(t11), . . . , f>(t1L), . . . , f>(tnL))> and,
potentially, a suitable weight matrix W and penalty term pen(θ), reducing it to a
scalar semi-parametric regression problem fitted on all evaluations. While both ap-
proaches are obviously highly related and m̂ ≈ µ̂ should be close to identical in many
cases, they still show some differences: if L < ki, i.e. the basis dimension can be cho-
sen smaller than the number of sampling points per curve, m̂ can be expected to be
computationally more efficient, especially if pen(θ) involves hyper-parameter tuning.
In sparse scenarios with L > ki by contrast, estimation of individual basis expansions
ŷi can become unstable/biased and µ̂ can be expected to be more statistically efficient
when irregular time grids ti jointly achieve a better coverage of the domain. Note that
non-parametric smoothing [55] can also be employed for point-wise mean estimation.
However, in particular smoothing spline and kernel estimators are known to be highly
related with semi-parametric approaches in this basic scenario [164, 111, 38, 97, 54, 213].
Hence, we focus on semi-parametric approaches which underly all contributions of the
thesis, assuming a fixed basis – which is yet in practice selected with respect to the
data problem at hand.

Estimating the covariance function: Analogously to the mean, estimation of the
covariance function can be approached via the coefficients, employing the estimated
covariance matrix Σ̌ = 1

n−1(∑n
i=1 y̌iy̌

>
i )− m̌m̌> of their centered coefficients as coeffi-

cient matrix of an estimator Ĉcf(s, t) = f>(s) Σ̌cf f>(t) of C(s, t) (where “cf” indicates
estimation on coefficient level). Alternatively, C(s, t) can be estimated point-wisely
interpreting E((Ỹ (s) − µ(s))(Ỹ (t) − µ(s))) = C(s, t) as nonlinear regression problem
with responses given by all products of evaluations (yi(s)− µ̂(s))(yi(t)− µ̂(t)), s, t ∈ ti,
within all observations i = 1, . . . , n and with s, t as covariates. In FDA, this covari-
ance smoothing approach was proposed by Yao et al. [216] as part of their “princi-
pal component analysis through conditional expectation (PACE)” algorithm and be-
came a key tool for irregular/sparse functional data. Covariance smoothing has widely
been approached via least-squares estimation employing various smoothing techniques
[216, 33, 110, 158, 167]. A semi-parametric approach using the tensor-product basis
f(s)⊗ f(t) as in [33] leads to an estimator Ĉpw(s, t) = f>(s) Σ̌pw f>(t) for C(s, t) of the
same form as Ĉcf(s, t) above, only that Σ̌pw arises as estimated L× L basis coefficient
matrix in point-wise (penalized) least squares (here “pw” indicates point-wise estima-
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tion). Arguments in favor of each estimator are the same as for mean estimation, only
much more drastic: For densely sampled functions, Ĉpw can take a substantial amount
of time and memory due to quadratic increase of design matrix dimensions in L and ki.
For irregularly/sparsely sampled functions, we experienced serious issues in Ĉcf (even
when regularizing with additional penalties) when Ĉpw still yields convincing results.
In the contributions of Chapters 4 and 7, different generalizations of the point-wise es-
timator Ĉpw will facilitate functional principal component analysis also in multivariate
and sparsely sampled data scenarios.

Functional principal component analysis: Point-wise inspection of C(s, t) yields
limited intuitive understanding of the variation structure. However, the importance of
eigen decomposition of its associated covariance operator Σ based on Mercer’s Theorem
/ the Karhunen-Loève Theorem (for details, please again refer to [86]) for FDA is hard
to overestimate: A complete orthonormal system {el}∞l=1 of L2([0, 1]) (or another Hilbert
space) such that λlel = Σ(el) is called eigenbasis of Σ with eigenvalues λl ≥ λ2 ≥ · · · ≥ 0
and always exists if E(‖Y ‖2) <∞. It allows to write

C(s, t) =
∞∑
l=1

λlel(s)el(t)

with the sum converging absolutely and uniformly [86, Theorem 7.2.6/p. 187]. More-
over, the eigenbasis also reflects the variation structure of Y as

Y =
∞∑
l=1
〈el, Y 〉 el

with probability one, where the Zl = 〈el, Y 〉 are uncorrelated random variables with
mean E(Zl) = 〈el, µ〉 and variance λl [86, Theorem 7.2.7]. The eigenbasis would also
yield optimal finite-dimensional representation of residuals ε = Y − µ in the sense that
E(‖ε−∑L

l=1〈fl, ε〉fl‖2) ≤ E(‖ε−∑L
l=1〈el, ε〉el‖2) for all L and bases f1, . . . , fL [86, The-

orem 7.2.8]. However, the eigenbasis is unknown in practice. Given the orthonormal
basis f assumed above, an estimate of its first components can be obtained from co-
variance estimators of the form Ĉ(s, t) = f>(s) Σ̌ f>(s) directly as êl(t) = ě>l f(t) with
eigenvalues λ̂l, l = 1, . . . ,max{L, n}, from eigen decomposition Σ̌ = ĚΛ̂Ě> of the coef-
ficient matrix with ěl the lth column of the orthonormal matrix Ě and λ̂l the lth entry
of the diagonal matrix Λ̂.
Estimated eigenfunctions êl can then, inter alia, be used for further dimension reduction
or as a visualization tool for illustrating and interpreting principal modes of variation
in the data by plotting µ(t) ± δ el(t) for some δ > 0 [154]. Moreover, eigen decom-
position is used as second building block in PACE-type algorithms to predict scores
〈el, yi〉 of sparsely sampled curves yi based on a working normality assumption with the
estimated covariance structure of the data [216]. Allowing also improved predictions ŷi
of the latent curves yi, similar ideas were also applied to obtain smooth reconstructions
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of partially observed functional data [45, 103]. A survey on developments in functional
principal component analysis until 2014 is provided by Shang [172].
These basic building blocks and the interplay between point-wise and object-oriented

perspectives will re-appear throughout the presented work.

1.2.2. Geometry of probability distributions and compositional data

From early on, statisticians have addressed the question of the geometry of the space
of probability distributions. In his 1945 seminal paper introducing what would later be
known as Cramer-Rao lower bound and laying ground for Rao-Blackwellization [155],
Rao also proposes the Fisher-Rao metric as Riemannian metric on “the population
space”. Here, he refers back to Bhattacharrya [18] who already “defines the distance
between population as the angular distance between two points representing the popu-
lation on a unit sphere” by square-root transformation and points out the direct corre-
spondence to the Fisher-Rao metric. Hotelling and Fisher arrived at similar geometrical
ideas in the context of a paper on “Spaces of statistical parameters” of Hotelling, of
which only an abstract and a summary are still existing while the manuscript was lost
[183]. Besides its role in information geometry [6, 7], this yields a possible geometry for
modeling probability distributions as object data [176].
In the following, we consider functional observations yi, i = 1, . . . , n, as probability den-
sity functions of random variables Ti taking values in [0, 1] (again with respect to the
Lebesque measure ν for simplicity) for a comparative introduction to the Fisher-Rao
metric and Bayes Hilbert spaces [200] in the light of object data analysis. Providing
an overview of object data analysis of probability distributions, Petersen et al. [148]
discuss the aforementioned approaches, Wasserstein space / quantile function based
approaches [140, 32, 220, 27, 35, 63, 10, 221, 173, 51], other alternative transformations
to Hilbert spaces [147] (in particular log-hazard and log-quantile density transforms)
and approaches directly considering densities in L2([0, 1]) [141, 15, 44]. Another Hilbert
space geometry of probability distributions of finite entropy was proposed by Newton
[138].

The Fisher-Rao metric: Based on Bhattacharrya’s representation, an analysis of yi,
i = 1, . . . , n, in the Fisher-Rao metric corresponds to interpreting the square-root den-
sities qi : t →

√
yi(t) as points in the Hilbert sphere S = {q ∈ L2([0, 1]) : ‖q‖ = 1}

borrowing its manifold geometry. This implements the integral-one constraint of a
probability density as

∫
yi dν = ‖qi‖2 = 1 and yields distances

dFR(y1, y2) = cos−1(〈q1, q2〉) = cos−1(
∫ √

y1
√
y2 dν)

of densities measuring arc-lengths on the unit sphere.
One remarkable property of dFR is that, for densities ỹi of random variables T̃i = γ(Ti)
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jointly transformed with a diffeomorphism γ : [0, 1]→ [0, 1], distances

dFR(ỹ1, ỹ2) = cos−1(
∫ √√√√y1(γ−1(t))

|γ̇(t)|

√√√√y2(γ−1(t))
|γ̇(t)| dν(t)) = dFR(y1, y2)

are preserved. Hence, the geometry is, for instance, compatible with switching between
a strictly positive random variable T and log(T ), as often done in statistical modeling.
Moreover, this property plays a key role in re-parameterization invariant “elastic” anal-
ysis of functional data and shapes [178], which will be outlined in more detail later.
The Fisher-Rao metric has been used by different authors for object data analysis of
probability densities [176, 64, 187, 166, 42]. Without pointing out the connection, a
square-root representation was employed for compositional data [181, 182, 210, 168],
which is directly related as outlined in the following.

Compositional data analysis considers data problems where one observation vector
yi = (yi1, . . . , yik)> reflects the composition of a whole by its shares yir ≥ 0, r = 1, . . . , k,
(or strictly yir > 0) whereby proportional compositions yi ≈ λyi, with λ > 0, are con-
sidered equivalent or of a fixed “size” by design, say S1(yi) = ∑k

r=1 yir = 1. While
geosciences present a classical field of application [157, 25], analyzing for instance the
composition of soil samples (e.g. in sand, clay, silt shares [57]), other applications also
include analysis of time-use data [182], chemometric [203] or morphometric data [161]
or, more recently, microbiome data [39], as well as other data types [142]. Usually nor-
malized to S1(yi) = 1 without loss of generality, a compositional data sample yi math-
ematically corresponds to a vector of discrete probabilities of events t = (t1, . . . , tk)>.
In contrast to the spherical geometry for probability distributions above, today’s com-
positional data analysis literature, however, typically considers yi in the flat Aitchi-
son geometry [4] on the open simplex ∆k = {y = (y1, . . . , yk)> : y1 > 0, . . . , yk >
0,∑k

r=1 yr = 1} of strictly positive probabilities, as outlined in different textbooks on
the topic [57, 143, 201, 142]. This corresponds to considering centered-log-ratio trans-
forms clr(y1), . . . , clr(yn) of the original data, given by

clr(yi) =
(

log(yi1)− 1
k

k∑
r=1

log(yir), . . . , log(yik)−
1
k

k∑
r=1

log(yir)
)>

(1.1)

in an Euclidean space, mapping ∆k to Rk
0 = {y ∈ Rk : y>1k = 0} orthogonal to the

constant 1k = (1, . . . , 1)> ∈ Rk vector. Instead of borrowing the geometry of a sphere
after square-root velocity transformation above, an analysis in the Aitchison geometry
can be effectively carried out on the linear subspace Rk

0 ⊂ Rk with common tools
of multivariate analysis. An overview over different subspace coordinates facilitating
different interpretations can be found in [57, Chapter 3.3].
The Aitchison geometry reflects relative differences in the composition proportions with
distances given by

dA(y1,y2) =
√√√√ 1

2k
∑
r=1

∑
l=1

log
(y1r/y1l

y2r/y2l

)2
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depending on “odds ratios” between the components of y1 and y2. Moreover, an anal-
ysis of compositional data based on the Aitchison geometry is in accordance with the
principle of subcompositional coherence, claiming that results of analyses of a subset
of the compositions y′i = (yir1 , . . . , yirk′ )> with {r1, . . . , rk′} ⊂ {1, . . . , k} should not
contradict conclusions from the entire set yi of compositions (e.g. [68] or [57, Chapter
1.3]). This is desirable in two opposite directions: firstly, it allows to reduce large sets
of components to smaller subsets for interpretation; and secondly, in many cases, the
set of measured components is not fully exhaustive or can be viewed as part of a larger
whole. Conversely, the restriction to components yir > 0 is sometimes considered a
limitation of analysis in the Aitchison geometry and has motivated work on handling
zeros in this framework [125, 124, 202, 204]. Following Mosimann’s 1970 work [135]
comparing size-independent statistical analysis with different size variables including
S1(yi), S2(yi) =

√∑k
r=1 y

2
ir and Sgeom(yi) = (∏k

r=1 yir)1/k, a “log-shape-ratio (LSR)”
approach has found independent application in the morphometrics literature [149] ef-
fectively working with clr-transforms.

Bayes Hilbert spaces , first proposed by Egozcue et al. [53], generalize the ideas of
the Aitchison geometry for discrete yi to probability measures with density functions
yi [199, 200]. In analogy, the Bayes Hilbert space geometry may be implemented by
representing densities y1, . . . , yn as their centered-log-ratio transforms

clr(yi)(t) = log(yi(t))−
1

ν([0, 1])

∫
log(yi(t)) dν(t) (1.2)

borrowing the subspace geometry of L2
0([0, 1]) = {q ∈ L2([0, 1]) :

∫
q dν = 0},. To this

end, it is assumed that yi(t) > 0 for (ν-almost) all t ∈ [0, 1] and
∫

log(yi(t))2 dν(t) <∞.
Thus, implementations for FDA in Bayes Hilbert spaces can heavily rely on methods
developed for functional data in L2([0, 1]). Although ν([0, 1]) = 1 in our case, we keep
the factor in (1.2) to illustrate the general expression. For instance, the discrete clr
defined in (1.1) above is included as special case with ν the counting measure.
Interpreting the “subcomposition” yi

∣∣∣
U

: U → R as kernel of a conditional probabil-
ity density on U ⊂ [0, 1], which is equivalent to the conditional density in the Bayes
Hilbert space geometry, suggests restating the principle of subcompositional coherence
in terms of conditional probabilities: the results of an analysis of the distributions of
random variables T1, . . . , Tn conditional on Ti ∈ U , for some measurable set U and all
i = 1, . . . , n, should not contradict conclusions on their unconditional distributions.
Although the formulation of the principle itself and density analysis in this context cer-
tainly require further investigation, it can be assumed that, due to their relative nature,
Bayes Hilbert spaces inherit a probabilistic notion of subcompositional coherence from
the finite-dimensional case of the Aitchison geometry. In the contribution presented
in Chapter 3, which addresses Bayes Hilbert space responses in regression, we present
corresponding results that also facilitate different means of interpretation.
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Literature on object data analysis in Bayes Hilbert spaces include work on princi-
pal component analysis [85] potentially employing alternative reference measures ν for
weighting [190], regression with densities as covariates [188, 52] and responses [218, 189],
as well as geostatistics [130, 131] and considerations of bivariate densities [84].

Just like different distribution assumptions in different data scenarios, different ge-
ometries for probability densities may be preferable in different scenarios and data
problems as a modeling decision depending on their characteristic properties. Subcom-
positional coherence might motivate an analysis of densities in a Bayes Hilbert space.
To make the notion more precise, subcompositional dominance [57, Chapter 3.3] is com-
monly considered as necessary condition for subcompositional coherence and can be
formulated as follows for densities: Let y′i : U → R, t 7→ yi(t)/

∫
U yi dν denote a density

conditional on a subset U ⊂ [0, 1] of measure ν(U) > 0. Then, d′(y′1, y′2) ≤ d(y1, y2), i.e.
the corresponding distance of the conditional densities does not exceed the distance of
the entire distributions. While this holds for Bayes Hilbert spaces, it does not hold for
the Fisher-Rao metric: a counter example with dFR(y1, y2) < d′FR(y′1, y′2) can be easily
constructed by choosing y1(t) = y2(t) large enough for t ∈ [0, 1] \ U to achieve∫ √

y1
√
y2 dν =

√∫
U
y1 dν

∫
U
y2 dν

∫
U

√
y′

1

√
y′

2
dν+

∫
[0,1]\U

√
y1
√
y2 dν >

∫ √
y′

1

√
y′

2
dν ′

with ν ′ the measure ν restricted to U , such that, since cos−1 is strictly decreasing,
subcompositional dominance is violated. Vice versa, the Bayes Hilbert space geometry
is not invariant under variable transformation T̃i = γ(Ti) discussed above for the Fisher-
Rao metric. Instead,

‖ clr(ỹ1)− clr(ỹ2)‖ = ‖ clr(y1) ◦ γ−1 − clr(y2) ◦ γ−1‖ = ‖(clr(y1)− clr(y2)) |γ̇|‖

which is similar to a change to reference measure dν̃ = |γ̇|dν on the original densities (yet
not identical, since

∫
clri(yi) dν̃ 6= 0 in general). Hence, if compatibility with variable

transformation is of primary interest, the Fisher-Rao metric presents a suitable choice
for density data modeling. Moreover, the transformation T̃i = γ(Ti) translates to time-
warping F̃i(t) = Fi(γ(t)) of the respective cumulative distribution function Fi of yi.
This will be of great importance later and is discussed for general functional data in
the next section.

1.2.3. Time-warping and registration of functional data
A Hilbert space perspective on functional data suggests an additive model of varia-
tion in the random variables Y (tir) underlying recorded functional data evaluations
yi(tir) = yir, r = 1, . . . , ki, i = 1, . . . , n. This holds especially when working with a
finite, truncated basis in practice. Besides this variability “in y-direction”, various data
problems, however, suggest also considering variability in t, such that temporal regis-
tration is required for point-wise comparison of two curves y1 and y2. An introduction
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to the registration problem in FDA is given by Ramsay and Silverman [154, Chapter
7] and different approaches are systematically compared in Marron et al. [122].
Approaching from a point-wise perspective, variability in the time-points tir assigned
to each curve evaluation yir might arise for different reasons: the tir might be subject
to measurement error, for instance because of rounding or reporting issues, or present
only a surrogate for true underlying original time-points t̃ir ∈ [0, 1]. In this sense, tem-
poral variability is related to measurement errors in the covariate of a scalar nonlinear
model [31, Chapter 13]. From a functional perspective, the problem can be rephrased,
assuming that functions ỹi of interest are randomly “warped” before observing

yi(t) = ỹi(γi(t)) (i = 1, . . . , n) (1.3)

with latent warping functions γi : [0, 1] → [0, 1]. While different classes of warping
functions are considered in literature (affine [205], piecewise-linear and parametric [154],
semi-parametric [214] also for incompletely observed functions [13], or non-parametric
including all diffeomorphisms [179]), they are usually assumed monotonously increasing,
such that the order of the time-points is preserved. From a temporal measurement error
perspective, registration of functional data is predicting γ̂i for γi, i = 1, . . . , n, to impute
t̂ir = γ̂i(tir) for true unknown time-points t̃i1, . . . , t̃iki

of yi1, . . . , yiki
. Beyond that,

model (1.3) also implies a decomposition yi 7→ (ỹi, γi) into two functional features, which
is practically implemented by registration, i.e. by predicting tuples (ŷi, γ̂i) ≈ (ỹi, γi).
Variability in ỹi is then often referred to as “amplitude variability”, whereas variability
in γi is referred to as “phase variability” [154] and may be of independent interest.
This gives rise to considering warping functions γ1, . . . , γn as additional objects of data
analysis.
While, in general, registration does not impose constraints on ỹi, common constraints

on warping functions open up a connection to data analysis of probability distributions:
as monotonically increasing functions with γi(0) = 0 and γi(1) = 1, the γi have the same
mathematical properties as a cumulative distribution function and their derivatives γ̇i
may be interpreted as density functions. Accordingly, they have been modeled based
on the 2-Wasserstein metric [139, 30] and based on the Fisher-Rao metric [194] which
Happ et al. [74] also compared to a Bayes Hilbert space approach and approaches of
density analysis.
To allow full separation of amplitude and phase variability, Srivastava et al. [179, 177]

propose a geometric approach using a warping-invariant, elastic metric such that dis-
tances d(y1 ◦ γ, y2 ◦ γ) = d(y1, y2) are preserved when two curves are warped with the
same γ. They discover the Fisher-Rao metric for this purpose and generalize Battachar-
rya’s square-root transformation to potentially negative- and vector-valued curves. This
yields the square-root-velocity (SRV) transform

qi(t) = ẏi(t)√
|ẏi(t)|

if well-defined and qi(t) = 0 otherwise
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where in the vector-valued case | · | generalizes to the length of a vector. In this
representation, the L2 inner product 〈q̃1, q̃2〉 = 〈q1, q2〉 is preserved when considering
SRV-transforms q̃i = qi◦γ

√
γ̇ of jointly warped curves ỹi = yi◦γ. The invariance allows

to define a semi-metric on the space of curves modulo warping, i.e. on the equivalence
classes [yi]w = {yi ◦γ : γ ∈ Γ} with Γ the set of warping functions, by optimal warping-
alignment as

de([y1]w, [y2]w) = inf
γ∈Γ
‖q1 − q2 ◦ γ

√
γ̇‖ (1.4)

with SRV-transforms qi representing curves [yi]w up to a constant. Here, Γ is essentially
the set of diffeomorphisms [0, 1] → [0, 1] (for details see [23]). Estimation of a Fréchet
mean with respect to de implicitly also yields curve registration: to obtain a mean esti-
mator [µ̂]w, registered curves ỹ1, . . . , ỹn to a mean curve representative µ̂ are computed,
as well as corresponding optimal warping functions γ̂1, . . . , γ̂n (approximation based on
finite sampling grids and by numerical optimization, e.g., via dynamic programming
[178, 16, 108, 75, 209]). While the variation of ỹ1, . . . , ỹn around µ̂ reflects amplitude
variability, Tucker et al. [195] use γ̂1, . . . , γ̂n to investigate also phase variability based
on the Fisher-Rao metric, yielding in particular their empirical Fréchet mean γ̄. Using
elastic metrics for amplitude and phase, the geometry is fully compatible with joint
warping γ of the representatives µ̂ ◦ γ, ỹi ◦ γ and γ̂i ◦ γ, γ̄ ◦ γ. For visualization and
principal component analysis, one may choose γ = γ̄−1 such that the new Fréchet mean
of the warping functions is the identity.
Different authors propose Bayesian approaches in the SRV framework [36, 107, 118],
also for noisy and fragmented curves [126]. Recently, also an approach for curve do-
mains without fixed boundaries was proposed [24]. Xie et al. [215] propose functional
data visualization based on amplitude and phase decomposition in the SRV framework.
The SRV framework is used for elastic analysis of shapes of curves introduced below,
and takes a fundamental role in Contributions 6, 7, and 8. An alternative approach to
warping-invariant analysis of functional data was recently proposed by Pegoraro and
Secchi [144] defining distances on tree representations.

1.2.4. Statistical shape analysis
In the spirit of D’Arcy Thompson’s “On Growth and Form” [192], a milestone of mathe-
matical biology with its first edition dating back to 1917 [89], the field of morphometrics
quantitatively investigates variation in shape of biological organisms with statistical
methods [159, 2]. While this endeavor addresses a multitude of statistical disciplines,
such as for instance also compositional data analysis [161, 159], modern geometric mor-
phometrics make extensive use of statistical shape analysis [1, 2] and morphometric
applications are ubiquitous in shape analysis [49], which renders the two fields closely
intertwined. To give a short introduction to basic concepts of statistical shape analysis
[49, 178], we consider a constitutive example of a dataset of k landmarks yi1, . . . , yik
identifying points on i = 1, . . . , n objects of interest. These may, for instance, be
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marked on images showing a particular perspective of an animal bone over different
individuals in two dimensions [198, 149] or tracking sensors for human motion recog-
nition in three dimensions [62, 81]. Here, we focus on the two dimensional, planar
case allowing to consider yir ∈ C ∼= R2, r = 1, . . . , k, which will simplify expressions
and is focused on later. Hence, the shape of the ith object is represented by a vector
yi = (yi1, . . . , yik)> ∈ Ck reflecting the landmark configuration. Since they are typi-
cally recorded in individual coordinate systems, analysis of the yi should not depend
on rotation and translation. Moreover, the shape of an object may be considered in-
dependent of its size for different reasons: when comparing the shape of body parts
across patients/animals, body size might present a nuisance variable; effects of size and
shape might be of seperate interest; or association of the shape of an object with its
size is explicitly of interest in an “allometric” study [135] comparing, for instance, again
individuals of different body size or age. Along the lines of Kendall [98], Ziezold [226]
and Bookstein [20], statistical shape analysis investigates the shape of yi as its equiva-
lence class [yi]s = {λ exp(

√
−1ω)yi + z 1k : λ > 0, ω ∈ (−π, π], z ∈ C} invariant under

translation by z, rotation by ω and scaling by λ. We refer to the quotient space of all
such shapes as Y∗/Trl×Rot× Scl. Full Procrustes analysis [65, 99] of planar shapes and
Kendall’s shape space geometry are briefly outlined in the following as cornerstones of
statistical shape analysis, referring to Dryden and Mardia [49] for further details and
shapes in more than two dimensions. This will prepare shape analysis of outline curves
(as in the contribution in Chapter 5) and, finally, combine with the SRV framework to
elastic shape analysis (underlying Chapter 7 and 8).

Full Procrustes analysis: Statistical shape analysis motivates the geometry on the
quotient space of shapes [yi]s from the Euclidean geometry on their representatives yi,
which are centered and normalized to “pre-shapes” with centroid ∑k

r=1 yir = 0 and size
S2(yi) = ‖yi‖ =

√∑k
r=1 |yir|2 = 1 to eliminate translation and scale (excluding the 0

vector as degenerate special case). For notational simplicity, we assume the yi already
present such pre-shapes in the following. The full Procrustes distance on the shape
space Y∗/Trl×Rot×Scl, is defined by superimposition of two shape representatives y1 and
y2 as

dF ([y1]s, [y2]s) = min
λ>0,ω∈(−π,π],z∈C

‖y1 − λ(exp(
√
−1ω)y2 + z1k)‖
‖y1‖

optimizing over all shape invariances. Here, normalization of y1 is important to obtain
a proper metric. With y1 and y2 pre-shapes, this reduces to

d2
F ([y1]s, [y2]s) = 1− |y†1y2|2

where y† denotes the conjugate transpose of a complex vector y (compare, e.g., [49,
Chapter 8]). Minimizing parameters are given by λ∗ = |y†1y2|, by exp(

√
−1ω∗) =

y†2y1/|y†2y1|, and by z = 0 yielding the “full Procrustes fit”. An explicit solution for the
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full Procrustes mean shape [µ̂F ]s, the Fréchet mean with respect to dF , is given by

µ̂F = arg min
µ:‖µ‖=1

n−
n∑
i=1
|µ†yi|2 = arg max

µ:‖µ‖=1

n∑
i=1
µ†yiy†iµ† = ê1

with ê1 the leading eigenvector of the complex covariance matrix Σ̂ = 1
n

∑k
i=1 yiy†i if

its eigenvalue λ̂1 is of multiplicity 1 (otherwise all eigenvectors of λ̂1 define means).
In more than two dimensions no explicit solution is available for [µ̂F ]s. Assuming a
complex Bingham distibution [99] with density

f(y) ∝ exp(y†A y)

on the pre-shapes with A a Hermitian k × k matrix, µ̂F yields a maximum likelihood
estimate of the mode of the distribution [49, Chapter 10]. The complex Bingham distri-
bution arises from a complex normal distribution [66] with zero mean by conditioning
on norm one and presents a classic shape distribution [49].
Planar full Procrustes analysis will present the starting point for the contribution pre-
sented in Chapter 7, presenting an alternative to previous work considering intrinsic
shape means in this context (and modeled also in Chapter 8).

Kendall’s shape space and intrinsic shape means: A different notion of shape
mean can be motivated from the Riemannian manifold geometry of the shape space
Y∗/Trl×Rot× Scl. Similar to previously discussed object data types, the shape geometry
can be approached by referring to manifolds already known from other contexts. Due
to normalization, pre-shapes yi may be equipped with a spherical geometry. Including
also rotation invariance, the shapes then correspond to points [yi]s ∈ CP k in the projec-
tive space of complex “lines” in Ck, i.e. the abstract manifold of all {z y : z ∈ C} with
y ∈ Ck \{0}, which is a standard example in differential geometry textbooks [102, 109].
A convenient property of CP k is that, effectively, it allows to compute required geo-
metric maps (such as geodesics and parallel transports) via suitable analogues on the
complex sphere CSk = {y ∈ Ck : ‖y‖ = 1}, which offer well-known closed form expres-
sions (compare, e.g., the supplement of [87]). Accordingly, also the intrinsic distance
on the shape manifold (also referred to as “geodesic distance” or simply as “Procrustes
distance” for shapes) is given by

d2
R([y1]s, [y2]s) = cos−1(|y†1y2|) (1.5)

reflecting the arc length between the pre-shape y1 and the pre-shape ỹ2 = y†
2y1

|y†
2y1|

y2

rotation aligned to y1. As Fréchet mean with respect to the intrinsic distance, the
corresponding shape mean [µ̂R]s is referred to as intrinsic mean or “Riemannian center
of mass” [95, 3]. In the shape context it is also simply called “Procrustes mean”.
However, no explicit form is available also in the two dimensional case.
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Dryden et al. [48] and Huckemann [88] compare full Procrustes means, intrinsic
means, and other related notions of shape mean with respect to their estimation proper-
ties. In some data problems, it might be also desirable to preserve the size and analyze
the form or “size-and-shape” [yi]f = {exp(

√
−1ω)yi + z 1k : ω ∈ (−π, π], z ∈ C} of

yi, i = 1, . . . , n, only modulo translation and rotation instead [226, 227]; or also the
reflected landmark configuration (y†i )> might be considered equivalent to yi, motivating
an analysis of reflection-shapes [49] or -forms [11, 150].

Shape analysis of outline curves: In various data problems, the ith shape of interest
is not represented by landmarks, but recorded at ki sampling points yi = (yi1, . . . , yiki

)>
describing the outline of a two-dimensional section of an object, with ki often vary-
ing over i = 1, . . . , n. Considering the outlines as images of parameterized curves
yi : [0, 1] → C and yi1 = yi(tir) at tir, r = 1, . . . , ki, the “time” t indicates point cor-
respondences between points y1(s) and y2(t) with s = t of two different curves. This
opens up a direct connection to FDA. Suitable indices ti = (ti1, . . . , tiki

)> might be
directly obtained if the sampling design allows it or can be reasonably “imputed”, say,
by constant-speed parameterization. Uncertainty in t refers to the registration problem
in FDA and will be revisited below in elastic shape analysis.
In analogy to FDA, shape analysis of (parameterized) outline curves can be subdi-
vided into approaches on a point-wise basis and approaches expanding curves in bases
yi(t) ≈ ŷi(t) = y̌>i f(t) with f(t) = (f1(t), . . . , fL(t))> as described in Section 1.2.1. Al-
though in practice f is often composed of L basis functions for each dimension with 2L
real coefficients, here we equivalently assume f : [0, 1] → R with complex coefficients
y̌i ∈ CL for illustration: as translation, rotation and scaling present affine transforma-
tions, the shape of a curve [ŷi]s = {λ exp(

√
−1ω)yi+z 1k : λ > 0, ω ∈ (−π, π], z ∈ C} =

{y̌>f(t) : y̌ ∈ [y̌i]} corresponds to the shape [y̌i] of its coefficients. Hereby, we either
assume that the constant function is spanned by f or consider [y̌i] only modulo rota-
tion and scale but not modulo translation. For an orthonormal basis f , y̌†1y̌2 = 〈ŷ1, ŷ2〉
reflects the L2 inner product and shape analysis of the outlines effectively reduces to
shape analysis of their coefficients as “landmarks”. Typical basis choices in the mor-
phometrics literature are Fourier transforms for closed curves [162] and discrete cosine
transforms [47] for open curves, but other bases used in FDA may equally be employed.
Alternatively, regularly observed sampling vectors yi, with ki = k for all i = 1, . . . , n,
may directly be treated like landmarks [21]. While such an approach might seemingly
dispense with parameterization, it implicitly assumes that tir = tr, r = 1, . . . , k, are
equal for all i. As this assumption is often problematic, semi-landmark analysis [2]
allows sampling points to slide tangentially along the outline curves to increase their
comparability. However, it remains difficult to formalize the missing point correspon-
dence when treating sampling points along the outline as landmarks without considering
underlying parameterized curves yi(t).
In general, parameterization plays an ambiguous role in the shape analysis of curves:
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on the one hand side, it implements a notion of point correspondence across curves
allowing to base statistical analysis on local structures of the shapes (irrespective of
whether they are parameterized explicitly or implicitly by defining matching point
pairs); on the other side, the parameterization is often arbitrary and we often consider
a curve as an object independent of the particular parameterization, which demands
for basing analysis on a re-parameterization invariant geometry. Elastic shape analy-
sis in the SRV framework [178] resolves this conflict, offering a rigorous platform for
statistical analysis of parameterized curves under translation, rotation, re-scaling and
re-parameterization invariance and providing the basis for Chapter 7 and 8.

Elastic shape analysis After initial work in the direction [94], Srivastava et al. [177]
propose using the SRV framework (introduced in Section 1.2.3) for statistical analysis
of shapes of curves. Statistical shape analysis and elastic analysis of curves are directly
compatible since scaling and rotation λ exp(

√
−1ω) yi of a parameterized curve yi by

some λ > 0 and ω ∈ [−π, π) correspond to scaling and rotation
√
λ exp(

√
−1ω) qi of its

SRV-transform qi = ẏ/
√
|ẏ| and translation simply vanishes in qi. Now, a pre-shape is

given by a normed SRV-transform qi with ‖qi‖ = 1. This corresponds to normalizing
the underlying parameterized curve L(yi) =

∫
|yi(t)| dν = ‖qi‖2 = 1 with respect to its

length, a natural size measure for curves invariant under re-parameterization. Combin-
ing the ideas behind the intrinsic shape distance dR in (1.5) and the elastic distance de
in (1.4) yields the elastic shape distance

deR([y1], [y2]) = inf
γ∈Γ,ω∈R

cos−1(〈 q1, exp(
√
−1ω) q2◦γ

√
γ̇ 〉) plane= inf

γ∈Γ
cos−1(|〈 q1, q2◦γ

√
γ̇ 〉|)

between two curve shapes [yi] = {λ exp(
√
−1ω) yi ◦ γ + z : λ > 0, ω ∈ [−π, π), z ∈

C, γ ∈ Γ} modulo all involved invariances, i = 1, 2, represented by SRV-transforms
qi. Based on the distance, Fréchet mean computation and other statistical analysis
can be performed, as outlined by Srivastava and Klassen [178] in their introductory
book on elastic shape analysis (including references to various applications and exten-
sions). Assuming curves to be closed, i.e. yi(0) = yi(1), presents a non-linear constraint∫
qi(t)|qi(t)| dν(t) = 0 on SRV level, which Srivastava et al. [177] and following au-

thors typically approach by basing deR on the intrinsic metric of the submanifold of
pre-shapes of closed curves instead of dR, for which however no closed-form solution
is available. [14, 184] consider elastic shape analysis for landmark constrained curves.
Building on ideas of the SRV framework, different generalizations to more complex geo-
metrical structures have been introduced: for analysis of surfaces – in particular in the
square-root-normal (SRN) approach – we refer to Jermyn et al. [93] on this topic; SRV
approaches have been discussed for curves taking values on S2 [222] or more generally
in a homogeneous space [186]; other recent developments include elastic analysis of tree
structures [50, 206] and brain arterial networks as elastic graphs [73] composed of curve
shapes.
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1.3. It’s all in the GAMe: a universe of semi-parametric
regression built on the linear model

This thesis addresses generalization of semi-parametric modeling to object data. While
the previous section introduced the different types of object data that will be considered,
we now focus on the other side of the coin and illustrate the flexibility provided by semi-
parametric regression in scalar data. For discussion of existing regression approaches
for object data, including generalizations of additive models to functional data [72, 134]
and generalized linear model (GLM) type regression on manifolds [40, 224, 174], we
refer to the literature overviews provided in the single contributing articles.
Since semi-parametric generalized linear models [67] and generalized additive models

(GAM) [76] have been proposed, a multitude of different model extensions have followed
modeling response observations y1, . . . , yn with the generic GAM model structure

g(ϑi) = h(xj) =
J∑
j=1

hj(xi) (i = 1, . . . , n) (1.6)

through a characteristic ϑi of the conditional distribution of the response variable Y
given the ith vector of covariates xi via a link function g or, vice versa, via a response
function g−1, and with an additive predictor h composed of covariate effects hj. While
especially semi-parametric approaches have also been summarized as “structured ad-
ditive regression” (STAR) models [56] highlighting the variety of extensions subsumed
in the term, model extensions as well as semi- and non-parametric approaches are also
commonly referred to as GAM [212]. Here, the broad notion of GAM is adopted while
focusing on semi-parametric modeling, which will play a prominent role in all contri-
butions of this thesis. The semi-parametric approach reduces estimation of general
non-linear covariate effects effectively to (penalized) estimation of multiple linear ef-
fects, which has allowed to embed them into a variety of different model extensions of
(generalized) linear models, providing a “tool-box” for applied data analysis. Differ-
ent extensions, from various non-linear effect types over mixed models to generalized
distribution assumptions, are often modularly combinable, and implemented based on
different estimation and inference paradigms. Parts of these general developments are
summarized in different text books [56, 212, 180]. They are often linked to different
GAM frameworks with software implementations based on penalized maximum likeli-
hood [212, 160, 217], Bayesian approaches [196, 197], or approaches based on gradient
boosting [191, 82] or neural network architectures [165]. Each of the frameworks has
successively grown involving series of publications. Software implementations or front-
ends for their implementations are provided in R [151] for all examples listed above
and often use similar syntax, which facilitates switching between different frameworks
for practical modeling purposes. Moreover, there exist also connections to conditional
transformation models [83] or tree-based boosting [34]. To give an idea of how this
“universe” of semi-parametric modeling approaches allows adapting to various exper-
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imental conditions in a data problem, we briefly discuss some of the available tools
by the example of an analysis of pollutant particle concentrations in urban areas in
the following. The author of this thesis participated in the project aside of the thesis
contributions.

Alas et al. [5] analyze effects of different urban environmental factors on black carbon
concentration in the cities of Rome and Leipzig based on mobile measurement data.
The data was recorded by repeatedly walking fixed routes carrying mobile measurement
devices in a backpack over several weeks. They model the black carbon concentration Y
in dependence on different covariates (such as street type, wind, daytime, traffic) while
accounting for various challenges implied by the spatio-temporal experimental setup.

The response distribution: As typical for inherently positive variables, recorded con-
centrations y1, . . . , yn show a distinctly right-skewed distribution, which suggests a cor-
responding conditional distribution assumption for Y . Assuming Y conditionally nor-
mal distributed as in a linear model instead would be problematic, as can be observed
in heavily skewed residuals in this case. Generalized linear models (GLMs) [137] offer
distribution families (such as, e.g., gamma distributions) for modeling skewed positive
response distributions. They assume a distribution family that, when fixing a nuisance
parameter, presents an exponential family in the parameter of interest. The original
semi-parametric models / GAMs referred to above, generalize GLMs to non-linear pre-
dictors. In our example, a log-normal distribution is chosen for Y , which corresponds
to modeling Z = log(Y ) as conditionally normal distributed. However, Y is subject
to additive instrumental noise common for the employed black carbon measurement
devises such that, in fact, only Ỹ = Y + ε = exp(Z) + ε is observed, where ε might
be reasonably assumed to present an independent and zero mean Gaussian error (as
indicated by lab experiments). In the data, this becomes eminent by encountering a
non-negligible share of negative particle concentration measurements despite their the-
oretically positive range. To avoid serious bias, ε is explicitly included into the model,
assuming now a log-normal-normal convolution (logNNC) as a non-standard distribu-
tion for Ỹ underlying y1, . . . , yn. A generalized additive model for location, scale and
shape (GAMLSS) framework for more general response distributions beyond GLMs
was proposed by Rigby and Stasinopoulos [160]. Subsequently, different such distribu-
tional regression approaches where offered by other GAM frameworks. After a pilot
implementation based on gradient boosting, we implemented the logNNC approach in
the Bayesian framework of Umlauf et al. [197] extending the range of available dis-
tributions. Figure 1.1 illustrates estimated conditional distributions of Y in front of
empirical distributions at an example segment of the Leipzig route in winter and sum-
mer. The depicted posterior distributions reflect mixtures over other covariates in the
model predictor.

18



1.3. It’s all in the GAMe: a universe of semi-parametric regression

Example area:
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Figure 1.1.: Illustration of the logNNC model results on a distributional level: for an exemplary segment of
the Leipzig route, seasonal differences in the empirical eBC distribution are depicted (shaded histograms).
Corresponding densities resulting from the model are deconvoluted into eBC distribution (black solid lines)
and measurement error distribution (gray dashed line). Colored fading shades around model eBC densities
reflect estimation uncertainties (presenting 500 posterior samples). Figure and caption are borrowed from
Alas et al. [5] which is published under a Creative Commons Attribution 4.0 International License.

Simultaneous modeling of multiple distribution parameters: In contrast to GLMs
modeling only one response parameter ϑi (typically the conditional mean), multiple
parameters are simultaneously modeled in GAMLSS / distribution regression including,
for instance, also the response variance. For each of the parameters, a separate GAM
model formula as in (1.6) is specified. In the given particle concentration example, the
logNNC model assumed for Ỹ involves three distribution parameters: the mean µi and
standard deviation σi of the original concentration Y on log-scale, i.e. Z ∼ N(µi, σ2

i )
given covariates xi, and the standard deviation τi of the error process ε ∼ N(0, τ 2

i )
which was found to sightly depend on environmental conditions in test experiments.
As typical choices, µi = hµ(xi) is modeled with an identity link, i.e. g(h) = h, and
standard deviations with log-links as log(σi) = hσ(xi) and log(τi) = hτ (xi). Here,
hµ, hσ, hτ denote individual additive predictors as in (1.6) for the different parameters
that might, in general, depend on the same or different sets of covariates. While hµ and
hσ are chosen to depend on the same set of covariates of interest, hτ includes only an
intercept and a temporally varying effect (substituting unknown micro-effects), since
other covariates are assumed not to influence the instrument noise.

Semi-parametric modeling of non-linear covariate effects: Having the model tar-
gets specified, we may consider the composition of the predictor(s) h(xi) in more detail.
In a GLM, the predictor is the one of a linear model comprising linear effects of metric
covariates, such as in our example the current wind speed, and categorical covariate
effects, e.g., of street-type (primary, secondary, tertiary, residential, park), as well as
potential interactions thereof. GAMs extend this to an additive predictor including also
non-linear covariate effects in addition to specified linear model effects. In our example,

19



1. Introduction

a non-linear effect is specified for the time of day when the measurement was conducted,
with the effect on black carbon concentration periodically and “smoothly” varying over
the day. In the semi-parametric approach, effect functions hj(x) = ∑Lj

l=1 bj1(x)θjl are
expanded in a function basis bj1, . . . , bjLj

with basis coefficients θj1, . . . , θjLj
∈ R, such

that model equation (1.6), comprising both linear and non-linear effects, can be rewrit-
ten in the parametric form of a GLM as

g(ϑi) =
J∑
j=1

Lj∑
l=1

bjl(xi)θjl = b>i θ

where the bjl(xi) are fixed, known quantities. Evaluations bi = (b11(xi), . . . , bJLJ
(xi))>

over all basis functions l = 1, . . . , Lj for all covariate effects j = 1, . . . , J become pseudo-
covariates for estimation of a linear coefficient vector θ = (θ11, . . . , θJLJ

)> with all basis
coefficients in the additive model predictor. While also linear effects are covered as
simple special cases by this basis approach, different polynomial spline bases, such as
B-splines, are often used for implementing non-linear effects. Another popular choice
are thin-plate splines [212]. With potentially a considerable number Lj of coefficients for
the jth covariate effect, penalized estimation strategies – also used for high-dimensional
data in general – are typically employed in semi-parametric modeling. Their penalties
are mostly chosen in such a way that estimation of covariate effects hj is regularized
towards smoothness.

Mixed models and spatio-temporal modeling: In many data scenarios, the depen-
dency structure behind response observations y1, . . . , yn cannot be fully explained by
available covariates. Instead, associations can be expected within grouped measure-
ments, between subsequent measurements in time, or between measurements recorded
close to each other in space. While there are also approaches directly modeling cor-
relations between response observations in a GLM [225], mixed models [185] approach
this problem by incorporating latent random effects into the model predictor h(xi). In
our example, measurements are recorded within single “runs” where a person walks the
given route equipped with instruments. These runs are conducted once or twice a day
over several weeks, in Leipzig also with some runs during summer and some during
winter time. Adding a run identifier runIDi to the set of covariates, for i = 1, . . . , n, a
run-specific random intercept hj(xi) = ξrunIDi

can explain common deviations between
runs. For each run, the ξrunIDi

are assumed independent zero-mean Gaussian random
variables. Due to this randomness assumption which regularizes ξrunIDi

towards zero,
the run-specific random effect is not designed to explain all of the variation between
runs that could be explained by the effect, but only parts that cannot be attributed to
other effects. By this means, a random effect should account for unexplained homo-
geneity within groups without covering effects of other covariates.
However, the ith particle concentration measurement is not only part of a run but
recorded at a particular time ti and at a particular location si on the map. This sug-
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gests a geoadditive extension of the model with the predictor

h(xi) = · · ·+ ξtime(ti) + ξspace(si)

containing special temporal and spatial (random) components. To implement the as-
sumption that measurements close in time are dependent, a latent zero-mean Gaus-
sian process ξtime(ti) is added to the predictor. Instead of assuming ξtime(tı) and
ξtime(ti) independent for different tı 6= ti as for the random intercepts described above,
their correlation is now typically specified via a correlation function %(|tı − ti|) =
Corr(ξtime(tı), ξtime(ti)). Proceeding similarly with locations on the map would yield a
generalized Kriging analogue approach. However, in our example mobile measurement
routes go along roads where buildings on the sides likely influence spatial distribution
of particles and spatial correlation is expected to be stronger along the roads than
across building blocks. To account for this more complex spatial structure, routes are
discretized into small segments in this case to utilize a Gauss Markov random field
ξspace(si) with si an identifier for the route segment. This allows borrowing the neigh-
borhood structure of the discrete segments si.

The mobile measurement example indicates the variety of tools readily available in
semi-parametric GAMs to flexibly model challenging data scenarios, when integrating
novel extensions such as in our case the logNNC model. Although model assumptions
do not always fit perfectly or cannot always be conclusively validated, this provides the
basis for multi-faceted and understandable analysis of real-life data problems. In our ex-
ample, for instance, effect estimates match expert knowledge and model diagnostics are
improved by far comparing them to simpler models, more evidence on the dependence
of black carbon concentration on local, temporary sources can be provided (in contrast
to general ultra-fine particle measurements), and even estimates of the instrumental
noise variance are in line with results from lab experiments.

1.4. Discussion and outlook
Facing complex object data on the one hand, we cannot expect experimental designs
to be less demanding than for scalar data on the other hand. Or, to put it more
concretely, in regression for object data responses, we cannot expect required covariate
and dependency structures to be simpler than in scalar modeling scenarios. The purpose
of this work is to carry on recent developments in functional regression [72] to extend
the range of the semi-parametric GAM “tool box” to models for further, geometric
object data. Building on well-established regression frameworks allows developments
to modularly draw on available tools and facilitates practical use in real-world data
problems. Consequently, even though some approaches to modeling nonlinear effects
of multiple covariates beyond point-wise functional mean regression have recently been
proposed with additive models for Hilbert space responses [91, 92, 90] and Lie groups
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[116], and Fréchet regression [146] for very general response objects, I am not aware
of any other regression framework to date that offers a comparable infrastructure for
flexible and detailed modeling of corresponding object data problems as we are able to
provide ready to use in the contributions of this thesis.

Beyond prediction of response objects, which is often of secondary interest in research
problems, model interpretation and visualization are crucial for an insightful analysis,
but become challenging when modeling already multidimensional object data with non-
linear covariate effects. An analytic and systematic investigation requires decomposing
potentially complex predictors into simpler, understandable parts. Throughout the dif-
ferent contributions, thorough analysis, thus, involves careful decomposition of model
predictors into meaningful orthogonal parts (Chapter 3 and 5), decomposition of multi-
variate effects into marginal parts and interactions (Chapter 2 and 5), decomposition of
the functional covariance structure into different independent components (Chapter 4),
decomposition of smooth effects into linear and non-linear parts (Chapters 2, 5, 8), and
decomposition of non-linear effects into main effect directions by tensor product fac-
torization proposed in Chapter 5 and used also in Chapter 8, which allow for graphical
visualization and produce tangible model results.

While contributions in Chapter 6 and Chapter 7 consider unconditional mean esti-
mation providing fundamentals for analysis of (shapes of) irregularly/sparsely observed
curves and the multivariate functional mixed model in Chapter 4 is fitted based on
penalized maximum likelihood, regression models in several of the contributions are
fitted based on the model-based boosting framework of Hothorn et al. [82] (Chapters
2, 3, 5 and 8) which comes with some important advantages but also with limitations:
the component-wise fitting strategy involves double regularization, including quadratic
penalties in each fitting iteration and a global regularization by stopping the algo-
rithm early based on cross-validation, which not only offers automated model selection
but also allows to fit models with high dimensional predictors and responses despite
typically high autocorrelation in functional data. Moreover, it is very flexible also in
the sense that it reduces fitting arbitrary loss functions to re-fitting of pseudo-residuals.
Therefore, boosting proves suitable for the challenging model scenarios discussed in this
thesis, where we build on the GAMLSS extension of Thomas et al. [191] in Chapter 2
and generalize L2-Boosting [26] to Bayes Hilbert spaces in Chapter 3, to Riemannian
manifolds in 5 and to elastic Riemannian L2-Boosting in Chapter 8. However, despite
model-based boosting being well-established [128, 129] and especially tree-based gradi-
ent boosting being known for its good performance [34], limited theoretical results are
available concerning asymptotic properties [e.g. 119] such that, employing generalized
boosting approaches, we rely on simulation studies for model evaluation. Also infer-
ence, in particular after model selection, is only available for special cases, yet [163].
Bootstrapping can be considered in this context, but is problematic due to shrinkage
bias induced by the regularization. Still, automated model selection and boosting-based
variable importance measures give alternative indication of meaningful covariate effects.
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More generally, besides e.g. results in manifold regression by Cornea et al. [40], infer-
ence in complex object data structures, such as shapes of curves in the SRV-framework,
presents a challenging task leaving many open questions for future research. Moreover,
the contributions of this thesis focus on semi-parametric modeling of functional data,
densities, curves and shapes – mostly in dependence on scalar covariates. Although in-
frastructure is available for specify also functional covariates in the model (see Chapter
2), more work will be required for including covariate effects of such object data as co-
variates into the framework. Similarly, more work will be needed for incorporating tools
for modeling longitudinal/hierarchical experimental designs with geometric functional
responses, which has been considered by several authors [169, 101, 136, 223, 43, 113, 37]
in different related contexts. Finally, further extending flexible regression models to
other, potentially more complexly composed object data structures (some of which re-
ferred to in Section 1.2) will present a rich and exciting field of future research, facing
the challenges of real-world data problems – both in terms of the objects of analysis
and the experimental demands and questions.
In a world composed of complex structures, we are experiencing an era of rapid

developments in the analysis of object data and, at the same time, rich discoveries
of new object data structures for analysis. We are, thus, able to rely on a multitude
of preceding developments, but not less importantly, a multitude of data problems
lies ahead in what Wang et al. [208] call “next generation” functional data analysis,
demanding statisticians to bridge between advanced geometric object data structures,
statistical models and communication with applied researchers.
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2. Boosting Functional Response Models for
Location, Scale and Shape with an
Application to Bacterial Competition

Already the example of growth curves, an archetype of functional data, illustrates that
it can be problematic to (implicitly) assume target curves to be point-wise normally
distributed as often done (as opposed to strictly positive, often skewed distribution)
and exclusive modeling of the mean in dependence on covariates is restrictive (e.g., if
external factors influence the whole growth process). Facing such challenges in an ex-
perimental setup of bacterial competition, we extend functional additive models (FAM)
to generalized models for location, scale and shape (GAMLSS) in this contribution.
Fitting models via gradient boosting, we illustrate the important role of the implied
regularization on performance in this setting. The flexibility both in terms of response
distribution and covariate effects lets us account for experimental details in the bacte-
rial data scenario and identify different phases of bacterial interaction.

Contributing article:
Stöcker, A., Brockhaus, S., Schaffer, S., von Bronk ,B., Opitz, M., and Greven, S.
(2021). Boosting Functional Response Models for Location, Scale and Shape with
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censed under CC BY 4.0. Copyright © 2021 The Authors.
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1 Introduction

In functional data analysis (Ramsay and Silverman, 2005), functional response
regression aims at estimating covariate effects on response curves (Morris,
2015; Greven and Scheipl, 2017). The response curves might, for instance, be
given by annual temperature curves, growth curves or spectroscopy data. We
propose a flexible approach to regression with functional response allowing for
simultaneously modelling multiple distributional characteristics of response curves
following potentially non-Gaussian distribution families. It therefore generalizes
usual functional mean regression models.

The problem of non-Gaussian functional response appears in many applications
and is, accordingly, addressed in several publications. Following early works on
non-Gaussian functional data by Hall et al. (2008) and van der Linde (2009),
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authors such as Goldsmith et al. (2015), Wang and Shi (2014) and Scheipl et al.
(2016) proposed generalized linear mixed model (GLMM)-type regression models,
which are suitable for, for example, positive, discrete or integer-valued response
functions. The linear predictor for the mean function is typically composed of
a covariate effect term and a latent random Gaussian error process accounting
for auto-correlation, and combined with a link function. Li et al. (2014) jointly
model continuous and binary-valued functional responses in a similar fashion, but
without considering covariates. Other ideas to account for the auto-correlation of
functional response curves include robust covariance estimation for valid inference
after estimation under a working independence assumption (Gertheiss et al., 2015)
and an overall regularization by early stopping a gradient boosting fitting procedure
guided by curve-wise re-sampling methods as applied by Brockhaus et al. (2015,
2017) besides using curve-specific smooth errors. Moreover, this latter approach
also offers quantile regression for functional data. The above approaches present
important steps in generalizing functional regression models. In particular, our
approach is a direct generalization of the framework of Brockhaus et al. (2015).
However, the previous methods are restricted to one predictor such that none
of them allows for simultaneously modelling also the response variance or other
distributional parameters in a similar fashion as the mean. Staicu et al. (2012)
propose a method for estimating mean, variance and other shape parameter
functions nonparametrically and also for non-Gaussian point-wise distributions,
while modelling auto-correlation via copulas. However, they do not allow for
including covariate effects. Only the framework of Scheipl et al. (2016) now allows
to perform simultaneous mean and variance regression in the Gaussian case (Greven
and Scheipl, 2017) and is also the only one currently offering a comparable range of
smooth/linear effects of scalar and functional covariates, which are implemented
in the R package refund (Goldsmith et al., 2018). Thus, we will compare to
their model in a simulation. However, they are so far restricted to the Gaussian
special case and do not offer the flexibility to specify multiple predictors for other
distributions and no more than two predictors, as we need, in particular, in the data
scenario presented in this article. We overcome these limitations by introducing
generalized additive models for location, scale and shape (GAMLSS) for functional
responses. For the case of scalar response regression, GAMLSS were introduced
by Rigby and Stasinopoulos (2005) extending usual generalized additive models
(GAMs; Hastie and Tibshirani, 1990) to multiple distributional parameters. Each
parameter of the assumed response distribution is modelled with a separate predictor
depending on covariates, allowing, for example, for covariate effects on mean
and variance. Hence, doubtful assumptions of homoscedasticity can be overcome.
In addition to this extension, the range of applicable distributions of GAMs is
also extended to non-exponential family distributions in the GAMLSS framework.
Brockhaus et al. (2018a) discussed GAMLSS scalar-on-function regression based on
the flexible gradient boosting regression framework introduced by Bühlmann and
Hothorn (2007) combining a scalar GAMLSS framework developed by Mayr et al.
(2012) and Thomas et al. (2018) and the flexible functional regression framework
of Brockhaus et al. (2017). We further extend this to functional GAMLSS for
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function-on-scalar and function-on-function regression, such that our framework
now offers the full flexibility of scalar GAMLSS also for functional responses
and covariates.

We apply this framework to analyse bacterial interaction: as bacterial resistances
increase, producing effective antibiotics gets harder and harder. Understanding
bacterial interactions might help finding alternatives. In particular, we analyse growth
curves of two competing Escherichia coli bacteria strains (von Bronk et al., 2017)—a
toxin producing ‘C-strain’ and a toxin sensitive ‘S-strain’—to obtain insights into
the underlying growth affecting bacterial interaction. Our aim is to model the
S-strain growth behaviour in dependence on the toxin emitting C-strain and under
different experimental conditions, and allow this dependence to affect both mean and
variability of growth as well as the extinction probability. This requires a functional
response regression model for several parameters of the non-Gaussian response
distribution with linear and smooth effects of functional and scalar covariates.

There are various approaches applied to modelling bacterial growth curves in
the literature. Gompertz and Baranyi-Roberts models are two common parametric
approaches to modelling growth curves (see, e.g., López et al., 2004; Perni et al.,
2005). Weber et al. (2014) implement a model particularly for analysing bacterial
interaction. The models are usually fitted using least squares methods, which
corresponds to assuming a Gaussian distribution of bacterial propagation. This is
problematic as response values are naturally positive and very small in the beginning,
starting from single cell level. Thus, also assuming a constant variance over the whole
time span seems not appropriate. Moreover, they do not offer the opportunity to
include covariate effects for modelling, for example, the impact of external factors.
Thus, these models are not applicable here. In addition, they are often highly
non-linear, which may introduce problems in parameter estimation. Gasser et al.
(1984) discuss this point and some further advantages of nonparametric growth
curve regression over parametric models. They propose a kernel method for this
purpose, which does, however, not include covariates and lacks the flexibility needed
for our purposes. Still, non- or semi-parametric functional regression models present
a natural choice from a statistical perspective, also because they can approximate
the above parametric growth models very well when these are appropriate (Online
Appendix E.2).

Besides providing the flexibility to meet all the challenges arising from the present
analysis of bacterial interaction, we can show in extensive simulation studies that
the presented approach is indeed well suited for complex scenarios with highly
auto-correlated response curves despite working independence assumption: early
stopping the gradient boosting algorithm based on curve-wise re-sampling techniques
plays a key role in avoiding over-fitting and leads to highly improved estimation
quality when comparing to the approach of Greven and Scheipl (2017).

The approach is implemented in the R (R Core Team, 2018) add-on package
FDboost (Brockhaus and Ruegamer, 2018). Brockhaus et al. (2018b) provide
a tutorial article to the package. Even though the discussion and illustration of
GAMLSS focuses on the scalar-on-function and not the functional response case, we
recommend it as a general software introduction.

Statistical Modelling 2021; 21(5): 385–404

2. Boosting Functional GAMLSS

42



388 Almond Stöcker et al.

The remainder of the article is structured as follows: In Section 2, we formulate
the general model and describe the fitting algorithm. In Section 3, we apply the
proposed model to analysing E. coli bacteria growth. Section 4 provides the results
of two simulation studies for Gaussian response curves as well as for the growth
model. Section 5 concludes with a discussion. Further details concerning the model,
application and simulation studies are provided as Online Supplement, as well as the
code for the simulations and fitting of the model with the R-package FDboost.

2 Model formulation

Consider a data scenario with N observations of a functional response Y and
respective covariates X. Y is a stochastic process, such that its realized trajectories
yi : T → R, t 7→ yi(t) for i = 1, ...,N represent the response curves over an index
set T . For notational simplicity, we assume that response curves are observed on a
common grid T0 ⊂ T , where T = [0, tmax] is a real interval starting at zero and T0
a finite discrete set of evaluation points. However, the curves could be measured on
different grids as well. As this is the case in many applications, the variable t is referred
to as time variable. Scalar response is contained as special case where T is a one point
set. Let xi = (xi,1, ...,xi,p)> denote the i-th observed covariate vector, that is, realization
of X, which can contain scalar and functional covariates. A functional covariate
may have a different domain S from the response and is denoted as xi,j : S → R,
s 7→ xi,j(s). We suppress potential dependence of S on j in our notation.

We assume that for all t ∈ T the point-wise response distribution FY(t)|X is known
up to the distribution parameters ϑ(t) =

(
ϑ(1)(t), ..., ϑ(Q)(t)

)>
. For instance, for a

Gaussian process, the parameters might represent the conditional mean and variance
over time, that is, ϑ(1)(t) = E(Y(t)|X = x) and ϑ(2)(t) = Var(Y(t)|X = x), suppressing
the dependence on x in the notation. For each parameter an additive regression
model is assumed. The model is specified by

g(q)(ϑ(q)) = h(q)(x) =
J(q)∑
j=1

h(q)
j (x) , q = 1, ...,Q,

where g(q) is a monotonic link function for the qth distribution parameter. This
model structure corresponds to the GAMLSS introduced by Rigby and Stasinopoulos
(2005). However, covariates and response may now be functions. Correspondingly,
ϑ(q) := ϑ(q)(.) and the predictor h(q)(x) := h(q)(x, .) are now functions over the domain
T of the response, for q = 1, ...,Q. For Q = 1 parameter corresponding to the mean,
the model reduces to the functional additive regression model of Scheipl et al. (2015,
2016) and Brockhaus et al. (2015).

Both covariate and time dependency are modelled within the additive predictor
via the effect functions h(q)

j (x, t). The predictor is typically composed of a functional
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Table 1 Overview of possible effect types (adapted from Brockhaus et al., 2015)

Covariate(s) Type of Effect h(q)
j

(none) Smooth intercept β0(t)

Scalar covariate z Linear effect z β(t)
Smooth effect f (z, t)

Two scalars z1, z2 Linear interaction z1 z2 β(t)
Functional varying coefficient z1 f (z2, t)
Smooth interaction f (z1, z2, t)

Grouping variable g Group-specific intercept βg(t)

Group. variable g, scalar z Group-specific linear effect z βg(t)
Group-specific smooth effect fg(z, t)

Group. variables g1,g2 Group-interaction βg1,g2 (t)
Functional covariate x(s) Functional linear effect

∫
x(s)β(s, t) ds

Functional cov. x(s), scalar z Linear interaction z
∫

x(s)β(s, t) ds
Smooth interaction

∫
x(s)β(z, s, t) ds

Functional cov. x(s) over T Concurrent effect x(t)β(t)
Historical effect

∫ t
0 x(s)β(s, t) ds

Effect with t-specific
integration limits

∫ u(t)
l(t) x(s)β(s, t) ds

intercept h(q)
1 (x, t) = β0(t) and linear or smooth covariate effects h(q)

j (x, t), of which
each depends on one or more covariates. The construction of the effects follows
a modular principle, which allows for flexible specification of effect types and is
outlined in the next subsection. Table 1 gives an overview of different effect types
available and Section 2.2 will discuss inherent selection of effects within the fitting
approach.

Apart from the Gaussian, a variety of other distributions can be specified for the
response. In principle, FY(t)|X can be any distribution for which both the likelihood
and its derivatives are computable. The derivatives with respect to the parameters
are required for the model estimation via gradient boosting. For functional response,
usually only continuous distributions are under consideration. However, this does
not necessarily have to be the case (see, e.g., Scheipl et al., 2016). As we built on
the approach of Mayr et al. (2012) for scalar GAMLSS, all of the distributions
implemented in their R package gamboosLSS (Hofner et al., 2017) are directly
available for the present boosting approach. Moreover, they also provide an
interface to use the comprehensive list of distributions available in the R package
gamlss.dist (Stasinopoulos and Rigby, 2019) and custom distributions can be
specified.
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2.1 Construction of effect functions h
(q)
j

As both covariate and time dependency of the functional response are specified by the
effect functions h(q)

j , they play a key role in the framework. We briefly illustrate their
modular structure and refer to Brockhaus et al. (2018b) and Greven and Scheipl
(2017) for further examples and details, as their construction is not new to the
functional GAMLSS. The novelty is, however, that we may now use them in multiple
predictors for multiple parameter functions.

For each effect type, h(q)
j is represented by a linear combination of specified

basis functions, such that the predictor is linear in its coefficients. Multivariate
basis functions are constructed as tensor products of univariate bases providing
flexible modular means of specification (cf. Scheipl et al., 2015), giving the basis
representation

h(q)
j (x, t) =

(
b(q)

Xj (x, t)⊗ b(q)
Yj (t)

)>
θ

(q)
j , t ∈ T . (2.1)

A vector b(q)
Yj of K(q)

Yj basis functions for the time variable is combined with a vector

b(q)
Xj of K(q)

Xj basis functions for the covariate effects. The basis b(q)
Xj (x, t) might be

time dependent, for example, for a functional historical effect. However, for many
effect types, it only depends on covariates, such that we can write b(q)

Xj (x). Applying
the Kronecker product ⊗, a new basis is obtained. Its elements correspond to the
pairwise products of elements in b(q)

Yj and b(q)
Xj . For details, see Online Supplement A.1.

The coefficient vector θ(q)
j ∈ RK(q)

Yj K(q)
Xj specifies the concrete form of the effect. Fitting

the model corresponds to estimating θ(q)
j for all effect functions.

A typical choice for b(q)
Yj (t) is a spline basis. Then, in case of time-independent

covariate basis functions b(q)
Xj , h(q)

j (x0, t) describes a spline curve for a fixed value
x = x0 of the covariate. Usually, quadratic penalty terms are employed in order to
control smoothness of the effect functions (see Section 2.2). A typical effect function
h(q)

j (x, t) depends on a single covariate. For example, for a linear effect zβ(t) of a scalar

covariate z, this yields b(q)
Xj (x, t) = b(q)

Xj (z) = z. In order to obtain a smooth covariate

effect f (z, t), a spline basis can be chosen for b(q)
Xj (z) just like for the time curve, yielding

a tensor product spline basis in (2.1). For a functional covariate x : T 7→ R a historical
effect of the form

∫ t
0 x(s)β(s, t) ds can be constructed using a basis of time-dependent

linear functionals b(q)
j,k (x, t) =

∫ t
0 x(s)ϕk(s) ds, where ϕk(s), k = 1, ...,K(q)

Xj , is a spline
basis and the integral is numerically approximated over the observation grid of x in
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T . Using also a spline basis for b(q)
Yj (t), this corresponds to specifying a tensor product

spline basis for β(s, t).

2.2 Model fit

Component-wise gradient boosting is a gradient descend method for model fitting,
where the model is iteratively updated. In each iteration, the algorithm aims at
minimizing a loss function following the direction of its steepest descent. Instead of
updating the full additive predictor at once, the individual effect functions h(q)

j are
separately fit to the negative gradient in a component-wise approach. These individual
effect models are called base-learners, as they present simple base models that jointly
form the model predictor. In each iteration, only the effect function with the best fit
is updated with a step length ν in the direction of its fit. The component-wise and
stepwise procedure yields automated model selection and allows for fitting models
with more parameters than observations.

Let f
(
y(t)

∣∣ϑ(t)
)

= fh
(
y (t)

∣∣h (x, t)
)

with h = (h(1), . . . ,h(Q))> denote the
conditional probability density function (PDF) of the response at t ∈ T for a
given parameter setting. We define the point-wise loss function to be the negative
log-likelihood

% (y (t) ,h (x, t)) = − log fh
(
y (t)

∣∣h (x, t)
)
.

The functional GAMLSS loss function is then obtained as

`(y,h(x)) =
∫
T
% (y( t ),h( x, t )) dt ,

the integral over the point-wise loss functions over T . Therefore, we assume that fh
and h are chosen such that the integral exists, which is no restriction in practice.
The aim of gradient boosting is to find the predictor

hoptimal = argmin
h

E [ `(Y,h(X)) ] = argmin
h

∫
T
E [ % (Y( t ),h( X, t )) ] dt (2.2)

minimizing the expected loss.
Based on data (yi,xi)i=1,...,N, this is estimated by optimizing the empirical mean

loss. Hence, the estimated predictor vector ĥ = (ĥ(1), ..., ĥ(Q))> is given by

ĥ ≈ argmin
h

1
N

N∑
i=1

ˆ̀ (yi,h(xi)) , (2.3)

where ˆ̀ (yi,h(xi)) =
∑

t∈T0
% (yi( t ),h( xi, t )) is an approximation of the loss. However,

to avoid over-fitting, the optimization is generally not run until convergence. Instead,
a re-sampling strategy is employed to find an optimal stopping iteration.
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The minimization in (2.2) can be seen to minimize the Kullback–Leibler divergence
(KLD) of the model density fh to the true underlying density. Hastie and Tibshirani
(1990) formulate a similar regression aim for GAMs. However, in the functional
case, we consider the point-wise KLD integrated over the domain T .

The base-learners fitted in each boosting iteration correspond to the effects
h(q)

j (x, t) with j = 1, ..., J(q) and q = 1, ...,Q. For any given loss function, they represent
single regression models, which are fitted to the gradient of the loss function via
penalized least squares. The coefficients θ(q)

j of the respective h(q)
j , as defined in

equation (2.1), are subject to a quadratic penalty of the form (θ(q)
j )>P(q)

j θ
(q)
j , where

P(q)
j is a penalty matrix. As described for bivariate smooth terms, for example,

in Wood (2006) or Brockhaus et al. (2015), the penalty matrix is constructed
as P(q)

j = λ(q)
Xj

(
P(q)

Xj ⊗ IK(q)
Yj

)
+ λ(q)

Yj

(
IK(q)

Xj
⊗ P(q)

Yj

)
with smoothing parameters λ(q)

Yj , λ
(q)
Xj ≥ 0

and penalty matrices P(q)
Yj ∈ RK(q)

Yj ×K(q)
Yj and P(q)

Xj ∈ RK(q)
Xj ×K(q)

Xj for the time basis b(q)
Yj (t) and

covariate basis b(q)
Xj (x, t), respectively. For instance, a common choice for B-spline

bases is a first, or second-order difference penalty matrix yielding P-Splines (compare
Eilers and Marx, 2010). Base-learners for group effects might be regularized with a
ridge penalty. If no penalization should be applied for either the response or the
covariates, this can also be obtained by setting λ

(q)
Yj = 0 or λ(q)

Xj = 0, respectively.
Thomas et al. (2018) compare different gradient boosting methods for GAMLSS,
which can all be analogously generalized to functional response. While the ‘cyclic’
method and a ‘non-cyclic’ method are available in the R package gamboostLSS,
only the algorithm of the ‘non-cyclic’ method is described here in detail. Comparing
it to the ‘cyclic’ method, it performed better in simulations (Online Appendix Table
3), is faster (Online Appendix Figure 11) and provides the advantage of unified model
selection across parameters ϑ(q), q = 1, . . . ,Q.

Algorithm: gradient boosting for functional GAMLSS

1.To set up the model specify

(a) a functional loss function ` with point-wise loss % corresponding to the assumed response distribution with
Q distribution parameters

(b) the base-learners by choosing the desired bases for the effects h(q)
j (x, t) = (b(q)

Xj (x, t)⊗ b(q)
Yj (t))>θ(q)

j , penalty

matrices P(q)
j for all j = 1, ..., J(q) and q = 1, ...,Q and their respective smoothing parameters.

(c) gradient boosting hyper-parameters: the step-lengths ν(q)
∈ ]0,1] for q = 1, ...,Q and the maximum number

of iterations mstop.

Initialize the coefficients θ(q)[0]
j for the initial predictor h[0](xi, t), for example, to 0, and set m = 0.

2.For m = 0, ...,mstop − 1 iterate:

i)Find best update for each distribution parameter.
For q = 1, ...,Q do:
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(a) Evaluate negative partial gradients for i = 1, ...,N at the current predictor h[m]

u(q)
i (t) := −

∂%

∂h(q)

(
yi(t),h

) ∣∣∣∣∣
h=h[m](xi,t)

(b) Fit base-learners to the gradients, that is, for j = 1, ..., J(q) find θ̃
(q)
j with

θ̃
(q)
j := argmin

θ
(q)
j

{ N∑
i=1

∑
t∈T0

(
u(q)

i (t) −

(
b(q)

Xj (xi, t)⊗ b(q)
Yj (t)

)>
θ

(q)
j

)2

+ (θ(q)
j )>P(q)

j θ
(q)
j

}
•Determine the best-fitting base-learner with index ̃ following the least squares criterion

̃ := argmin
j

N∑
i=1

∑
t∈T0

(
u(q)

i (t) − (b(q)
Xj (xi, t)⊗ b(q)

Yj (t))> θ̃
(q)
j

)2

•Determine updated predictor candidate, that is, determine q
?h where only the coefficients of the

best-fitting base-learner are updated, such that the coefficients are given by

q
?θ

(p)
k =

 θ
(p)[m]
k + ν(p) θ̃

(p)
k for p = q,k = ̃,

θ
(p)[m]
k else

end for.
ii)Select best update across the distributional parameters and update the linear predictor accordingly

h[m+1] = argmin
q
?h

N∑
i=1

ˆ̀ (yi, q
?h(xi)

)
end for.

The smoothing parameters for the penalty matrices P(q)
jY can be chosen indirectly

specifying the base-learner degrees of freedom, as described by Hofner et al. (2011).
They are typically specified such that equal degrees of freedom for all base-learners are
attained to ensure a fair base-learner selection. Note that these degrees of freedom
only specify the flexibility of each base-learner for one iteration, while the final
effective degrees of freedom can be higher due to repeated selection of the same
base-learner. ν = 0.1 is a popular choice for the step-length (Bühlmann and Hothorn,
2007). It should be chosen small enough to prevent overshooting. Yet, too small
values greatly increase computation time. The optimal stopping iteration mstop, with
respect to equation (2.2), is the main tuning parameter. It can be estimated using,
for example, curve-wise cross-validation or bootstrapping. As determining h[mstop]

involves computation of all earlier predictors, this can be done very efficiently (and
in parallel over cross-validation folds). Early stopping induces regularization of effect
functions and provides automated model selection: effect functions h(q)

j which were
never selected drop out of the model. As each base-learner is fitted separately, models
with more covariates than observations can be fit and computational effort scales
linearly in the number of covariate effects. By appropriately decomposing terms
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into, for example, a linear and a non-linear base-learner, we cannot only select
covariates, but also distinguish linear effects from smooth effects depending on the
same covariate (compare Kneib et al., 2009) and covariate interactions from additive
marginal effects (see Online Appendix A.2).

3 Analysis of bacterial interaction in E. coli

The coexistence of various bacterial species is a key factor in environmental
systems. Equilibria in this biodiversity stand or fall with the species’ interaction.
Certain bacteria strains produce toxins and use them to assert themselves in
bacterial competition. von Bronk et al. (2017) establish an experimental set-up with
two cohabiting Escherichia coli bacteria strains: a ‘C-strain’ producing the toxin
ColicinE2 and a colicin sensitive ‘S-strain’ pipetted together on an agar surface.
Single bacteria of the C-strain population sacrifice themselves in order to liberate
colicin. The emitted colicin diffuses through the agar and kills numerous S-strain
bacteria on contact. On the other hand, the S-strain might outgrow the C-strain
and starts in a favoured position of an initial ratio S:C of about 100:1. The arising
population dynamics are influenced by external stress induced with the antibiotic
agent Mitomycin C (MitC). MitC slightly damages the DNA of the bacteria. While
it has little effect on the S-strain, it triggers colicin production in the C-strain as
an SOS-response. A higher dose of MitC increases the fraction of colicin producing
C-bacteria and, thus, colicin emission (von Bronk et al., 2017).

At a total of N = 334 observation sites, bacteria under consideration are exposed
to one of four different MitC concentrations. Bacterial growth curves Si(t) of the
S-strain and Ci(s) of the C-strain, i = 1, ...,N, are observed over 48 hours. Their values
correspond to the propagation areas of the bacterial strains, which are obtained
from the automated image segmentation procedure implemented by von Bronk et al.
(2017). S- and C-strain areas can be distinguished as the bacteria are marked with red
and green fluorescence, respectively. The resulting area growth curves are measured
on a fixed time grid with G = 105 measurements per curve. The experiments are
conducted in batches of about 40 bacterial spots and with two batches for each
MitC concentration. In order to keep track of bacterial growth, the zoom level of
the microscope was adjusted after 121/4h, 181/2h and 331/2h. As the performance of
the automatic bacterial area segmentation may depend on the zoom level, it has to
be incorporated into the analysis.

3.1 Model for S-strain growth

In order to obtain insights into bacterial interaction dynamics, we model the
i-th propagation area curve of the S-strain Si(t) in dependence on the C-strain
growth and other covariates. While usually Si(t) > 0, it might equal zero, if the
S-strain is completely extinct or masked by the fluorescence of the C-strain.
Therefore, we assume a conditional zero adjusted gamma (ZAGA) distribution
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for Si(t), which is a mixed continuous and discrete distribution with its PDF
given by fZAGA

(
si
∣∣µi, σi/µi,pi

)
= pi δsi + fGA(si

∣∣µi, σi/µi)(1− δsi) with δsi = 1 if si = 0
and 0 otherwise and fGA the density of a gamma distribution parametrized by
its mean µi(t) and the coefficient of variation σi(t)/µi(t) with σi(t) the standard
deviation (Stasinopoulos and Rigby, 2019). This corresponds to some extent to
the zero adjustment in a zero-inflated Poisson model. However, unlike the Poisson
distribution, the gamma distribution is continuous and does not have a point mass
at zero by itself. For Si(t) > 0, it offers the flexibility to model both a location and a
scale parameter conditional on the survival of the S-strain at time t, while in addition,
we model the probability of extinction of the S-strain, pi(t) = P (Si(t) = 0) over time.

Each component of the resulting parameter vector ϑi(t) =
(
ϑ

(µ)
i (t), ϑ(σ/µ)

i (t), ϑ(p)
i (t)

)>
=(

µi(t),
σi(t)
µi(t)

,pi(t)
)>

is modelled as

g(q)
(
ϑ

(q)
i (t)

)
= β(q)

0 (t) + β(q)
MitCi

(t) + β(q)
Batchi

(t) + h(q)
1 (Ci , t) + h(q)

2 (C′i, t)

for q ∈ {µ, σ/µ,p}, with link-functions g(µ) = g(σ/µ) = log and g(p) = logit, and with
historical effects h(q)

j (Ci, t) =
∫ t

0 Ci(s)β
(q)
j (s, t) ds (compare Brockhaus et al., 2017).

For each distribution parameter, the model includes a functional intercept β(q)
0 (t).

As there are only four MitC concentrations employed, they are considered as
categorical grouping variable and represented by group-specific intercepts β(q)

MitCi
(t)

per MitC level centred around the functional intercept. As a functional random
intercept, we include an additional group-specific intercept β(q)

Batchi
(t) to compensate

for batch effects, which are centred around β(q)
MitCi

(t) in order to preserve identifiability
of the functional intercept. The impact of the C-strain on S-strain growth is modelled
using historical effects with coefficient functions β(q)

j (s, t). Historical effects are
included both for the current C-strain propagation Ci(s) and for its derivative C′i(s)
reflecting the current C-strain growth. The covariate curves are centred around
their empirical point-wise mean curve, such that 1

N

∑N
i=1 Ci(s) = 0 for each s, and

scaled with the corresponding standard deviation, such that sd(C(s)) = 1. For C′i(s)
correspondingly. Doing so, the coefficient functions can be uniformly interpreted over
the whole time span. By integrating, the historical effect includes information about
the curves from time point t = 0 to the current time point t. For p, we include an
additional step-function base-learner to capture the different zoom levels applied
during the experiment at fixed known time points, which can lead to different
visibility of small S populations. Corresponding effects are not expected to be
necessary for µ and σ/µ and are thus not included, as they might even lead to spurious
boundary effects in this experimental set-up. Apart from the step function, all effect
functions are modelled with cubic P-splines and second-order difference penalties,
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such that for the functional intercepts we penalize deviations from exponential
growth when employing a log-link for the mean and the scale parameter. For the MitC
and batch effects, a ridge-type penalty over factor levels is utilized to achieve the same
number of effective degrees of freedom for all base-learners. A common step-length
of ν = 0.1 is used for µ, σ/µ and p. We fit the model with both implemented GAMLSS
boosting methods and decide for the ‘non-cyclic’ method, described in Section 2.2,
which performed better in ten fold curve-wise bootstrapping and is computationally
more efficient. With a maximum of 3 000 boosting iterations, the model fit took less
than 16 min on a 64-bit Windows laptop followed by 156 min of bootstrapping
without parallelization. The latter can be easily accelerated by running it on several
cores in parallel.

3.2 Results

3.2.1 MitC effect and effect of experimental batches
An overview of the effects of the toxin MitC can be found in Figure 1. We observe
that mean S-strain growth is slightly increasing for low MitC levels compared to no
MitC, but is particularly higher for MitCi = 0.1 µg/ml. This indicates that, if Si(t) ≥ 0,
the S-strain even grows better under this condition.

For the standard deviation, we observe a gradual but distinct rise with the MitC
level. Due to the log-link we may not only interpret effects on the shape parameter σ/µ
but also on σ: effect functions h(σ)

j for σ are obtained as h(σ)
j = h(µ)

j + h(σ/µ)
j . In this plot,

we choose to depict σ instead of σ/µ, as it is more straightforward to interpret on the
response level. We observe that positive skewness increases with MitC concentration.

It is important to note, that control experiments indicate no considerable effect
of MitC on S-strain growth (von Bronk et al., 2017). Thus, present covariate effects
of MitC reflect effects of C-cells which cannot be explained by the observed C-strain
growth curves. Showing distinct shifts at the zoom points, pi(t) = P (Si(t) = 0) seems
to depend highly on the zoom level of the microscope. This suggests, that besides full
extinction of the S-strain, Si(t) = 0 is also linked to limitations in area recognition.
Additionally, the probability for Si(t) = 0 is higher for positive MitC concentrations.
Overall, the conditional mean for positive Si(t) but also the variability and probability
for zero increase with the MitC concentration.

The smooth functional effects for each of the eight experimental batches are
relatively small in size. For the conditional mean µ, they cause an average deviation
of about 3% of the intercept growth curve (geometric mean over observed time points
and batches); for the scale parameter σ/µ, the average deviation is about 9%; and for
p about 6%. While point-wise 95% bootstrap confidence interval, type uncertainty
bounds (Online Appendix Section E.4) show less accuracy for the batch effects (in
particular, those on p(t)), they indicate a high estimation precision for the MitC
effects and functional intercepts. This corresponds to our findings in the simulation
study in Section 4.
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Figure 1 Estimated point-wise mean (top) and standard deviation (centre) of the S-strain growth curves
Si (t) conditional on Si (t) > 0 and the extinction probabilities (bottom) of S-strain growth curves for each
MitC concentration. Long-dashed curves correspond to the functional intercept, dashed vertical lines to the
zoom level change-points. Thick solid lines indicate the estimates, transparent ribbons reflect the
point-wise inner 25%, 50% and 90% probability mass intervals of the estimated gamma distributions
conditional on Si (t) > 0 (top)

3.2.2 C-strain effect
The base-learner for the C-strain area propagation Ci(s) effect on µi(t) is never
selected throughout the boosting procedure and the effect on σi(t)/µi(t) is small (Online
Appendix Figure 16). Thus, we only discuss the effect of the area increment C′i(s)
here (Figure 2). Looking at the C′-µ-effect (effect of C′(s) on mean S area), we can
distinguish two main impact phases.

In the earlier growth phase with s ≤ 10 h, we observe a positive C′-µ-effect
concerning almost the whole time curve of the S-strain. That means that
C-strain growth above [below] the average indicates increased [decreased] S-strain
propagation. Both colicin production and colicin secretion are costly to the
population and slow down C-propagation. A low value of C′i(s) indicates early colicin
secretion. We conclude that this first phase delineates a time window, where colicin
emission is able to severely harm the S-strain population.
In the second phase for s > 10 h, we observe a negative C′-µ-effect, which is maximal
at short time lags and slowly fading. This likely reflects spatial competition of the S-
and the C-strain (compare Online Appendix Figure 14). At this time, bacteria have
grown together to coherent formations and strains obstruct expansion of each other.
Even though the C′-µ-effect offers this clear interpretation, it is rather small compared
to, for example, the MitC effect on µ(t). Moreover, while in simulation studies we
observe a rather high estimation precision for most of the historical effects (Online
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µ

0 10 20 30 40 50

0

10

20

30

40

50

s in [h]

t 
in

 [
h

]

−0.01

0.00

0.01

0.02

0.03

βj
µ(s, t)

Effects of C'(s)

σ µ

0 10 20 30 40 50

s in [h]

−0.025

0.000

0.025

0.050

0.075

βj
σ µ(s, t)

sgn(βj
(q)(s, t))

1

−1

Effects of C'(s)

Figure 2 Left: Coefficient function β(µ)(s, t) for the historical effects of C ′i (s) on the mean of S-strain growth
curves. Right: the corresponding plot for the effect of C ′i (s) on the scale parameter σi (t)/µi (t). The y-axis
represents the time line for the response curve, the x-axis represents the one for the C-strain growth curve.
The change-points in zoom level are marked with dashed lines. For a fixed s = s0, β(µ)(s0, t) and β(σ/µ)(s0, t)
describe the effect of the normalized covariate at time s0 on the S-strain growth curve over the whole
remaining time interval.

Appendix Figure 12), 95% bootstrap confidence interval-type uncertainty bounds
indicate distinctly less precision than for the MitC-effects (Online Appendix E.4).
However, the historical C′-σ/µ-effect also corroborates the distinction into two phases
of interaction: While in the first phase there is a negative effect of C-strain growth,
the effect turns positive in the second phase. Thus, relative variability is increased
for slow C-strain growth early in the experiment (colicin production) and for fast
C-strain growth later in the experiment (areal competition).

For the probability pi(t) = P(Si(t) = 0) both the effects of Ci(s) and C′i(s) were
selected. Corresponding plots can be found in the Online Appendix Figure 16.
However, as already indicated by the marked cuts between the different zoom levels
(Figure 1), vanishing of the S-strain is particularly sensitive to the precision of the
area recognition. Hence, we are careful with interpreting the effects further in terms
of the bacterial dynamics.

4 Simulation studies

4.1 Simulation set-up

Model-based gradient boosting approaches to non-functional or one-parameter
special cases of the present model are well tested with respect to their fitting
performance and variable selection quality (e.g., see Brockhaus et al., 2018a;
Brockhaus et al., 2015; Thomas et al., 2018; Mayr et al., 2012) showing a typically
slow over-fitting behaviour. However, modelling functional response variables with
GAMLSS presents an important additional challenge: high auto-correlation in
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response functions may lead to severe over-fitting when estimating typically complex
base-learners. While this is already the case for non-GAMLSS functional response
models, it gets particularly acute for GAMLSS models with multiple predictors—if
it is not properly controlled for by early stopping based on curve-wise re-sampling
methods. We focus on this issue in an extensive simulation study investigating the
fitting performance for different levels of in-curve dependency while also comparing
different sample sizes, choices of hyper parameters, the non-cyclic and cyclic fitting
method, and different (curve-wise) re-sampling methods. Moreover, we consider three
different models in the simulation study: one model is directly based on the bacterial
interaction scenario in Chapter 3 taking the model estimated on the original data as
true underlying model; and two models with a Gaussian response distribution and
categorical effects or more complex smooth (interaction) effects of metric covariates,
respectively. There, we randomly generate different sets of true underlying effects
in order to obtain as general results as possible. In the Gaussian case, where this
is possible, we also compare to the penalized likelihood approach of (Greven and
Scheipl, 2017) which is implemented in the R package refund (Goldsmith et al.,
2018). For details concerning the simulation set-up, the data generation and a more
thorough discussion of the results, please refer to the corresponding sections in the
Online Supplement.

4.2 Simulation results

Considering the mean KLD of the estimated to the true underlying model, we observe
that for conditionally independent measurements within response curves, the optimal
stopping iteration mstop is typically far higher than for dependent or highly dependent
measurements (Figure 3 (left)), that is, in the independent case a model can be fit
distinctly longer without resulting in over-fitting. At the same time, we find that
mstop selected by curve-wise bootstrapping (performing slightly better than other
curve-wise re-sampling methods) reflects these differences very well, which shows
that it is desirably sensitive to in-curve dependency and prevents over-fitting. The
resulting regularization improves the estimation accuracy strongly in particular for
complex base-learners. The effect becomes especially visible when comparing it to the
penalized likelihood (refund) approach (Figure 3 (right)), which currently lacks a
corresponding regularization mechanism for GAMLSS models: When only modelling
the response mean, there are typically curve-specific functional random intercepts
included in order to account for in-curve dependency; however, they would interfere
with modelling the marginal standard deviation in a separate predictor and are,
thus, not included into the GAMLSS-type model. Measuring the fitting error in Root
Mean Squared Error (RMSE), the refund approach shows a better performance in
the independent case. However, it exceeds the RMSE of our FDboost approach by
far in realistic scenarios with high in-curve dependency.

In the application motivated simulation scenario, we observe that most of the
RMSEs for the estimated covariate effects are lower than 10% of the effect range
even in the highly dependent setting (Online Appendix Figure 12). Exceptions are
the functional intercept in the predictor for the extinction probability p(t) being
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0

100

200

300

400

indep. dependent high

in−curve dependency

m
s
to

p

selected by
 bootstrap

optimal

independent dependent highly dep.

N
 =

 1
0

0
N

 =
 3

3
4

  
  
  
  
 f

µ
(t
)

  
  
f µ
(x

2
, 
t)

f µ
(x

1
, 
x

2
, 
t)

  
  
f µ
(x

1
, 
t)

  
  
f σ
(x

1
, 
t)

  
  
  
  
 f

σ
( t
)

  
  
  
  
 f

µ
(t
)

  
  
f µ
(x

2
, 
t)

f µ
(x

1
,  
x

2
,  
t )

  
  
f µ
(x

1
, 
t )

  
  
f σ
(x

1
, 
t)

  
  
  
  
 f

σ
( t
)

  
  
  
  
 f

µ
(t
)

  
  
f µ
(x

2
, 
t)

f µ
(x

1
, 
x

2
, 
t)

  
  
f µ
(x

1
, 
t)

  
  
f σ
(x

1
, 
t)

  
  
  
  
 f

σ
( t
)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Covariate effects on µ and σ

M
e

a
n

 R
o

o
t 
M

S
E

FDboost refund

Figure 3 Plots referring to a Gaussian model scenario including smooth covariate effects fϑ(xj , t) for
ϑ ∈ {µ, σ}, the mean and standard deviation over time t ∈ [0,1], and for two metric covariates j ∈ {1,2}, and
a smooth interaction fµ(x1,x2, t) effect for µ (200 model fits per combination of sample size N and in-curve
dependency level). Left: Violin-plots reflecting the empirical density of the stopping iterations mstop

selected via 10-fold bootstrap (left) and for the KLD-optimal mstop (right) for N = 334 sampled curves.
Right: Bar-plots indicating the mean RMSE of the different effects for our approach based on gradient
boosting (FDboost, dark) and the approach based on penalized likelihood (refund, light). The highly
dependent setting is the most realistic in many functional data scenarios and is—as far as the analogy can
be drawn—the closest to the correlation structure in our application.

composed of a smooth functional intercept and a step function, and the σ/µ-effect of
C(t), which has a comparably large relative RMSE, due to its small effect size, while
having a quite small absolute RMSE. Although we do not focus on variable selection
in this article, the C-µ-effect and the smooth (non-step) functional intercept for p(t),
which were not selected in the original model fit in Chapter 3, serve as nuisance effects
in the application motivated simulation. While the sensitivity is quite high for most
of the non-zero effects (mostly 100%, minimum 70%), the nuisance C-µ-effect is still
selected in rather many simulation runs (44% independent, 49% dependent, 33%
highly dependent scenario), see Online Supplement Figure 13. To improve on this,
stability selection as applied, for example, by Brockhaus et al. (2017) and Thomas
et al. (2018) might be used. However, the mean RMSE of the effect is still extremely
low indicating that even if the effect is selected it is very small in size. Overall, we
observe the effects to be estimated quite well despite in-curve dependency and the
high complexity of the model in both the Gaussian and the application motivated
simulation studies.
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5 Discussion and outlook

The functional GAMLSS regression framework we present in this article allows
for very flexible modelling of functional responses. We may simultaneously model
multiple parameters of functional response distributions in dependence of time and
covariates, specifying a separate additive predictor for each parameter function. In
addition, point-wise distributions for the response curves beyond exponential family
distributions can be specified. Doing so a vast variety of new data scenarios can
be modelled. These new possibilities have shown to be crucial, when applying the
framework to analyse growth curves in the present bacterial interaction scenario.

The results we obtain confirm and extend previous work: Focusing on the outcome
after 48 hour and on the number of C-clusters at the edge of the S-colony after 12
hour, von Bronk et al. (2017) already identify a phase of ’stochastic toxin dynamics’
followed by a phase of ’deterministic dynamics’ similar to the two phases of bacterial
interaction we find in the historical functional effects of the C-strain growth. The
functional regression model not only provides new evidence for this distinction from
a completely new perspective, but now also allows to quantitatively discuss the effect
of the C-strain on the S-strain over the whole time range: We now observe C-growth
to have a positive effect on S-growth in the early phase and a negative effect in the
later phase. The separation of these two phases appears even more distinct in the
effect on the relative standard deviation, which we would not be able to recognize
without GAMLSS.

Regarding the fraction of S- and C-strain area after 48 hour von Bronk et al. (2017)
categorized three different states of the bacterial interaction: for no MitC, there is
either dominance of the S-strain or coexistence; for a moderate MitC concentration,
there occurs a splitting into two extremes—either dominance of the S-strain or
extinction; and for the highest MitC concentration, the toxin strategy of the C-strain
fails and the S-strain either dominates or both strains go extinct. Now, referring to the
complete growth curves, our results also reflect this categorization: If MitC is added,
and conditional on a positive area, the mean S-strain growth increases, whereas also
the probability for zero area and the variance increase. However, these differences
would not be captured by non-GAMLSS regression models for the mean only, as the
mean growth curves not conditioning on the response being positive are very similar
for no and moderate MitC concentration (see Online Appendix Figure 17). Apart
from that, the framework provides the flexibility to account for special challenges
in the experimental set-up, such as dependencies between observations in the same
experimental batch and differences between zoom levels of the microscope.

In simulation studies, we confirm that by fitting our models via component-wise
gradient boosting we are capable of estimating even complex covariate effects on
multiple distributional parameter functions. As it prevents over-fitting, early stopping
of the boosting algorithm based on curve-wise re-sampling plays a key role: It enables
us to face settings with highly auto-correlated response curves without explicitly
modelling the correlation structure.
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Supplementary material

Supplementary material including an Online Appendix with further details and
illustrations, as well as R code and data used for the analysis of bacterial interaction
and simulations is available from http://www.statmod.org/smij/archive.
html
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3. Additive Density-on-Scalar Regression in
Bayes Hilbert Spaces with an Application
to Gender Economics

In contrast to the extension of (point-wise) distributional assumptions in Chapter 2,
distributions themselves can also be object of functional data analysis. Distribution
densities naturally occur as data objects, for instance, when data privacy only allows
sharing summarized data, when efficiency suggests summarizing massive data in den-
sities, or when densities are of primary interest, say, because they are expected to be
multi-modal. Here, we generalize FAMs and gradient boosting to model probability
densities as response variables in Bayes Hilbert spaces. We use the approach to analyze
gender-based income inequality using the German socioeconomic panel (SOEP) data.
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Abstract

Motivated by research on gender identity norms and the distribution of the
woman’s share in a couple’s total labor income, we consider functional ad-
ditive regression models for probability density functions as responses with
scalar covariates. To preserve nonnegativity and integration to one under
summation and scalar multiplication, we formulate the model for densities in
a Bayes Hilbert space with respect to an arbitrary finite measure. This enables
us to not only consider continuous densities, but also, e.g., discrete or mixed
densities. Mixed densities occur in our application, as the woman’s income
share is a continuous variable having discrete point masses at zero and one
for single-earner couples. We discuss interpretation of effect functions in our
model via odds-ratios. Estimation is based on a gradient boosting algorithm,
allowing for potentially numerous flexible covariate effects. We show how to
handle the challenging estimation for mixed densities within our framework
using an orthogonal decomposition. Applying this approach to data from the
German Socio-Economic Panel Study (SOEP) shows a more symmetric distri-
bution in East German than in West German couples after reunification and
a smaller child penalty comparing couples with and without minor children.
These West-East differences become smaller, but are persistent over time.

Keywords: Density Regression; Functional Additive Model; Gradient Boost-
ing; Mixed Densities.

1 Introduction

Analyzing the distribution of the female income share for couples in the U.S.,
Bertrand et al. (2015) show that the fraction of couples with a share below 0.5
is much higher than the fraction of those with a share above 0.5 and that there is
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a discontinuous drop in the density at 0.5. This drop is attributed to gender iden-
tity norms with men being averse to a situation with their female partners making
more money than themselves. Subsequent studies, however, showed mixed results
(e.g., Sprengholz et al., 2020; Kuehnle et al., 2021). Most of the literature does not
consider how the share distribution changes depending on covariates, but this in
itself is of great interest. Social norms change over time towards higher employment
of females, with part-time employment becoming more prevalent, especially in the
presence of children. And the employment and earnings of female partners show a
strong childhood penalty (Kleven et al., 2019; Fitzenberger et al., 2013).
From a methodological perspective, the focus on a univariate analysis of the share
distribution reflects the lack of an interpretable multivariate analysis of its determi-
nants. Filling this gap, we introduce a regression approach for outcomes that are
probability density functions with scalar covariates and we use this new approach
to analyze how the female income share distribution in Germany varies by place
of residence (e.g., between West and East Germany), the presence of children, and
over time.
For the continuous density case, our approach could be viewed as a special case of
functional regression, which is part of the vast field of functional data analysis (e.g.,
Ramsay and Silverman, 2005). One usually distinguishes three types of functional
regression models (e.g., Brockhaus et al., 2015): scalar-on-function, where the re-
sponse is scalar while the covariates are functions, function-on-scalar with functional
response and scalar covariates and function-on-function, where both, response and
covariates, are functions. Analogously, we refer to our regression setting as density-
on-scalar. Existing function-on-scalar methods are not applicable in this case, as
multiplying a density with a negative scalar or adding two densities in the classi-
cal sense immediately violates the nonnegativity and integrate-to-one constraints of
densities. An appropriate alternative normed vector space structure for densities is
provided by Bayes Hilbert spaces, motivated by Aitchison’s work about composi-
tional data (Aitchison, 1986). Egozcue et al. (2006) first introduced Bayes Hilbert
spaces for densities with respect to the Lebesgue measure on a finite interval. This
was extended by Boogaart et al. (2014) to Bayes Hilbert spaces on finite measure
spaces. Talská et al. (2018) use Bayes Hilbert spaces for linear density-on-scalar
regression, considering only densities defined on a finite interval and Lebesgue in-
tegrals. For estimation, the model is mapped into a subspace of the L2 of square
integrable functions applying the centered log-ratio (clr) transformation. We ex-
tend their framework to additive density-on-scalar regression models for densities
on arbitrary finite measure spaces. This enables us to handle not only densities
with respect to the Lebesgue measure on a finite interval (continuous case) or to the
weighted sum of Dirac measures on a finite set (discrete case) but also mixtures of
both (mixed case) in a unified framework. We introduce a gradient boosting algo-
rithm based on the approach of Hothorn et al. (2014), enabling estimation directly
in the Bayes Hilbert space. Furthermore, we develop a method to interpret the esti-
mated effects analogously to odds ratios. In our motivating application, we analyze
the distribution of the woman’s share in a couple’s total labor income in Germany
– an example of the mixed case: The corresponding densities defined on [0, 1] have
positive point mass at the boundary values 0 and 1, corresponding to single-earner
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couples. This leads to a mixed (Dirac/Lebesgue) reference measure.
Apart from the Bayes Hilbert space approach, different ideas for density regression
have been proposed. Park and Qian (2012) discuss density-on-density regression
without any positivity constraints, performing linear regression directly on the devi-
ations from the mean density. Petersen and Müller (2019) present linear regression
for densities based on the Wasserstein metric, which constitutes a popular approach
to statistical analysis of distributional data (Ollivier et al., 2014). However, with this
approach the densities are considered in a nonlinear space, which makes modeling
and interpretation more difficult. Han et al. (2020) introduce additive functional re-
gression models for the density-on-scalar case as well. They transform the densities
to the L2, in particular proposing the log hazard and the log quantile density trans-
formations. Happ et al. (2019) show that for both, numerical instabilities may occur
and finally prefer the clr transformation to both. In contrast to Han et al. (2020),
which only considers the transformed densities for modeling, our Bayes Hilbert space
approach provides an entire conceptual framework that allows to embed the densi-
ties and specify the model in a vector space structure. The clr transformation, an
isometric isomorphism, allows an equivalent formulation in the L2, which enables
appealing odds-ratio-type interpretations on the original density-level.
Density regression is related to several other areas of research. For the discrete case,
also known as compositional data (i.e., a multivariate vector of non-negative frac-
tions summing to one, e.g., Pawlowsky-Glahn et al., 2015), regression has also been
studied, with Boogaart et al. (2015) for instance considering Bayesian regression
with compositional response. In general, there are also approaches not modeling
densities but equivalent functions. E.g., Yang et al. (2018) present a Bayesian ap-
proach to model quantile functions as response in a functional linear regression by
introducing their quantlet basis representation. In contrast, modeling the density
function has the distinct advantage that shifts of probability masses and special char-
acteristics of the distribution such as bimodality can be identified straightforwardly.
All methods mentioned so far share the assumption that a sample of densities (or,
e.g., quantile functions) has been observed (or estimated). In contrast, there are
also individual-level approaches, which model the conditional density or equivalent
functions given covariates based on a sample of individual scalar data. Paramet-
ric approaches such as generalized additive models for location, scale and shape
(GAMLSS, also known as distributional regression; e.g., Rigby and Stasinopoulos,
2005) require a known distribution family and only enable interpretation on the
level of their parameters, not the distribution, which can be restrictive. In quantile
regression (e.g., Koenker, 2005) no specific distribution family is assumed, but for
each quantile of interest one model has to be estimated, which is potentially compu-
tationally demanding. Furthermore, the estimated quantiles may cross, which can
be avoided, e.g., by monotonization or rearrangement (e.g., Chernozhukov et al.,
2010). Conditional transformation models (CTMs, e.g., Hothorn et al., 2014) model
a monotone transformation function, which transforms the conditional distribution
function (cdf) of the response to an a priori specified reference distribution function,
in terms of covariates. In distribution regression (e.g., Chernozhukov et al., 2013),
the cdf is estimated pointwise, similarly as in quantile regression. It requires the
choice of a link function between the conditional distribution and the parametric
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covariate effects. Moreover, there are Bayesian (e.g., MacEachern, 1999), kernel es-
timation (e.g., Takeuchi et al., 2006), and machine learning approaches (e.g., Li et
al., 2021) for modeling conditional response densities, suffering from two limitations:
They work with a relatively large number of hyper-parameter(-distribution)s which
influence the outcome; related to this is their lack of interpretability, in particular
in terms of the covariate effects.
We aim to bridge this gap in the literature by directly modeling the response den-
sity on the one hand, while borrowing interpretable yet flexible additive models from
functional data analysis on the other hand. To the best of the authors’ knowledge,
our approach is the first to cover continuous, discrete and mixed cases in a unified
framework.
In the following, Section 2 summarizes the construction of Bayes Hilbert spaces.
Section 3 introduces our density-on-scalar regression approach, where models are
formulated in Bayes Hilbert spaces and estimated using a boosting algorithm. In
the mixed case, we derive an orthogonal decomposition of the Bayes Hilbert space to
facilitate (separate continuous/discrete) estimation. We develop an interpretation
method of the estimated effects using odds-ratios. Section 4 involves a comprehen-
sive application for the mixed case in analyzing the distribution of the woman’s share
in a couple’s total labor income in Germany. Section 5 provides a small simulation
study based on our application setting to validate our approach. We conclude with
a discussion and an outlook in Section 6.

2 The Bayes Hilbert space

We briefly introduce Bayes spaces and summarize their basic vector space properties
for a σ-finite reference measure as described in Boogaart et al. (2010). Refining these
to Bayes Hilbert spaces (Boogaart et al., 2014), we have to restrict ourselves to finite
reference measures. We provide proofs for all theorems in appendix A.1 since we take
a slightly different point of view compared to Boogaart et al. (2010) and Boogaart
et al. (2014).
Let (T ,A) be a measurable space and µ a σ-finite measure on it, the so-called
reference measure. Consider the setM(T ,A, µ), or shortM(µ), of σ-finite measures
with the same null sets as µ. Such measures are mutually absolutely continuous
to each other, i.e., by Radon-Nikodyms’ theorem, the µ-density of ν or Radon-
Nikodym derivative of ν with respect to µ, fν := dν/dµ : T → R, exists for every
ν ∈ M(µ). It is µ-almost everywhere (µ-a.e.) positive and unique. We write
fν ∼= ν for a measure ν ∈ M(µ) and its corresponding µ-density fν . For measures
ν1, ν2 ∈ M(µ), let the equivalence relation =B be given by ν1 =B ν2, iff there
is a c > 0 such that ν1(A) = c ν2(A) for every A ∈ A, where c (+∞) = +∞.
Respectively, we define fν1 =B fν2 , iff fν1 = c fν2 for some c > 0. Here and in
the following, pointwise identities have to be understood µ-a.e. Both definitions
of =B are compatible with the Radon-Nikodym identification fν ∼= ν. The set
of (=B)-equivalence classes is called the Bayes space (with reference measure µ),
denoted by B(µ) = B(T ,A, µ). For equivalence classes containing finite measures,
we choose the respective probability measure as representative in practice. Then,
the corresponding µ-density is a probability density. However, mathematically it is
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more convenient to use a non-normalized representative. For better readability, we
omit the index B in =B and the square brackets denoting equivalence classes in the
following. For fν1

∼= ν1, fν2
∼= ν2 ∈ B(µ), the addition or perturbation is given by

the equivalent definitions

(ν1 ⊕ ν2)(A) :=

∫

A

dν1
dµ

dν2
dµ

dµ, fν1 ⊕ fν2 := fν1 fν2 .

For fν ∼= ν ∈ B(µ) and α ∈ R, the scalar multiplication or powering is defined by

(α� ν)(A) :=

∫

A

(
dν

dµ

)α
dµ, α� fν := (fν)

α.

Theorem 2.1 (Boogaart et al., 2010). The Bayes space B(µ) with perturbation
⊕ and powering � is a real vector space with additive neutral element 0 := µ ∼= 1,
additive inverse element 	ν :=

∫
A

dµ/dν dµ ∼= 1/fν for ν ∈ B(µ), and multiplicative
neutral element 1 ∈ R.

For subtraction, we write ν1 	 ν2 := ν1 ⊕ (	ν2) and fν1 	 fν2 := fν1 ⊕ (	fν2).
From now on, we restrict the reference measure µ to be finite, progressing to Bayes
Hilbert spaces. This is similar to Boogaart et al. (2014) with some details different.
In the style of the well-known Lp spaces, Bp spaces for 1 ≤ p <∞ are defined as

Bp(µ) = Bp(T ,A, µ) :=

{
ν ∈ B(µ)

∣∣∣∣
∫

T

∣∣∣log
dν

dµ

∣∣∣
p

dµ <∞
}
.

We also say fν ∈ Bp(µ) for fν ∼= ν ∈ Bp(µ). This is equivalent to log fν ∈ Lp(µ),
which gives us Bq(µ) ⊂ Bp(µ) for p, q ∈ R with 1 ≤ p < q. Note that for every
p ∈ R with 1 ≤ p <∞, the space Bp(µ) is a vector subspace of B(µ), see Boogaart
et al. (2014). For fν ∼= ν ∈ Bp(µ), the centered log-ratio (clr) transformation of ν is
given by

clrBp(T ,A,µ)[ν] = clrBp(T ,A,µ)[fν ] := log fν − SBp(T ,A,µ)(fν), (2.1)

with SBp(T ,A,µ)(fν) := 1/µ(T )
∫
T log fν dµ the mean logarithmic integral. We omit

the indices Bp(T ,A, µ) or shorten them to µ or T , if the underlying space is clear
from context.

Proposition 2.2 (For p = 1 shown in Boogaart et al., 2014). For 1 ≤ p < ∞,
the clr transformation clr : Bp(µ) → Lp0(µ) := {f̃ ∈ Lp(µ) |

∫
T f̃ dµ = 0} is an

isomorphism with inverse transformation clr−1[f̃ ] = exp f̃ .

Note that Lp0(µ) is a closed subspace of Lp(µ). The space B2(µ) is called the Bayes
Hilbert space (with reference measure µ). For fν1

∼= ν1, fν2
∼= ν2 ∈ B2(µ), consider

〈ν1, ν2〉B2(µ) := 〈fν1 , fν2〉B2(µ) :=

∫

T
clr[fν1 ] clr[fν2 ] dµ,

which is an inner product on B2(µ), see Proposition A.1 in appendix A.1. It induces
a norm on B2(µ) by ‖ν‖B2(µ) := ‖fν‖B2(µ) :=

√
〈fν , fν〉B2(µ) for fν ∼= ν ∈ B2(µ). By

definition, we have 〈fν1 , fν2〉B2(µ) = 〈clr[fν1 ], clr[fν2 ]〉L2(µ), which immediately implies
that clr : B2(µ)→ L2

0(µ) is isometric. We now formulate the main statement of this
section:
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Theorem 2.3 (Boogaart et al., 2014). The Bayes Hilbert space B2(µ) is a Hilbert
space.

Note that in Proposition A.2 in appendix A.1, we introduce a notion of canonical
embedding, which enables us to identify the Bayes Hilbert space B2(T0,A ∩ T0, µ)
with a closed subspace of B2(T ,A, µ) for any T0 ∈ A. Furthermore, we explic-
itly compute the orthogonal projection onto B2(T0,A ∩ T0, µ). This construction
is new to the best of the authors’ knowledge. An important consequence of the
properties of the orthogonal projection is that we may restrict linear problems (like
regression models) onto subsets of T consistently with the geometry of the Bayes
Hilbert spaces. For compositional data, the correspondence of subcompositions in
T0 ⊂ T to subspaces of the Bayes Hilbert space is referred to as subcompositional
coherence (Pawlowsky-Glahn et al., 2015).

3 Density-on-scalar regression

We consider regression models with a density as response and scalar covariates.
More precisely, the response has to be an element of a Bayes Hilbert space B2(µ) =
B2(T ,A, µ). This requires µ to be finite on (T ,A), excluding, e.g., densities on the
whole real line using the Lebesgue measure as reference or densities which are ex-
actly zero in parts of T . To consider T = R with the Borel σ-algebra BR, a possible
reference is the probability measure corresponding to the standard normal distribu-
tion (Boogaart et al., 2014). If a density is not directly observed but estimated from
an observed sample, density values of zero can be avoided by choosing a density
estimation method that yields a positive density. For discrete sets T , one option is
to replace observed density values of zero with small values (e.g., Pawlowsky-Glahn
et al., 2015). The framework allows for a variety of different applications. Usually,
we consider T ⊂ R with three common cases: In the continuous case, we consider a
nontrivial interval T = I with A = B the Borel σ-algebra restricted to I and µ = λ
the Lebesgue measure. The discrete case refers to a discrete set T = {t1, . . . , tD}
with A = P(T ) the power set of T and µ =

∑D
d=1wd δtd a weighted sum of Dirac

measures, where wd > 0. The mixed case is a mixture of both: As in the continuous
case, we have T = I and A = B, but some points D = {t1, . . . , tD} ⊂ I have posi-
tive probability mass. The corresponding reference measure is a mixture of weighted
Dirac measures and the Lebesgue measure, i.e., µ =

∑D
d=1wd δtd + λ. Note that the

special case D = ∅ yields the continuous case. Our application in Section 4 gives an
example for the mixed case.

3.1 Regression model

Density-on-scalar regression is motivated by function-on-scalar regression. Both
regression types are closely related (at least in the continuous case), as density-
on-scalar models can be transformed to function-on-scalar models in L2

0(µ) via the
clr transformation. We formulate our model analogously to structured additive
function-on-scalar regression models (Brockhaus et al., 2015), considering densities
in a Bayes Hilbert space B2(µ) instead of functions in L2(I,B, λ) and using the
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corresponding operations. For data pairs (yi,xi) ∈ B2(µ) × RK , K ∈ N, i =
1, . . . , N, N ∈ N, this yields the structured additive density-on-scalar regression
model

yi = h(xi)⊕ εi =
J⊕

j=1

hj(xi)⊕ εi, (3.1)

where εi ∈ B2(µ) are functional error terms with E(εi) = 0 ∈ B2(µ) and hj(xi) ∈
B2(µ) are partial effects, J ∈ N. The expectations of the B2(µ)-valued random
elements εi are defined using the Bochner integral (e.g., Hsing and Eubank, 2015).
Each partial effect hj(xi) ∈ B2(µ) in (3.1) models an effect of none, one or more
covariates in xi.

Covariate(s) Type of effect hj(x)
None Intercept β0
One scalar covariate x Linear effect x� β

Flexible effect g(x)
Two scalar covariates x1, x2 Linear interaction x1 � (x2 � β)

Functional varying coefficient x1 � g(x2)
Flexible interaction g(x1, x2)

Grouping variable k Group-specific intercepts βk
Grouping variable k and scalar x Group-specific linear effects x� βk

Group-specific flexible effects gk(x)

Table 3.1: Partial effects for density-on-scalar regression.

Table 3.1 gives an overview of possible partial effects, inspired by Table 1 in Brock-
haus et al. (2015). The upper part shows effects for up to two different scalar
covariates. In the lower part, group-specific effects for categorical variables are pre-
sented. Interactions of the given effects are possible as well. Scalar covariates are
denoted by x, densities in B2(µ) by β and g( ). Note that constraints are necessary
to obtain identifiable models. For a model with an intercept β0, this is obtained by
centering the partial effects:

1

N
�

N⊕

i=1

hj(xi) = 0. (3.2)

More details about how to include this constraint in a functional linear array model
for function-on-scalar regression can be found in appendix A of Brockhaus et al.
(2015). A similar procedure can be used to obtain a centering of interaction effects
around the main effects, see appendix A of Stöcker et al. (2021). Both approaches
are based on Wood (2017, Section 1.8.1) and can be transferred straightforwardly
to density-on-scalar regression.

7

3. Additive Density-on-Scalar Regression in Bayes Hilbert Spaces

68



3.2 Estimation by Gradient Boosting

To estimate the function h(xi) ∈ B2(µ) in Equation (3.1), the sum of squared errors

SSE(h) :=
N∑

i=1

‖εi‖2B2(µ) =
N∑

i=1

‖yi 	 h(xi)‖2B2(µ) =
N∑

i=1

ρyi
(
h(xi)

)
(3.3)

is minimized. Here, ρyi : B2(µ) → R, fν 7→ ‖yi 	 fν‖2B2(µ) is the quadratic loss
functional. To simplify the minimization problem and to determine the type of an
effect, compare Table 3.1, we consider a basis representation for each partial effect:

hj(xi) =
(
bj(xi)

> i⊗ b>Y

)
θj =

Kj⊕

n=1

KY⊕

m=1

bj,n(xi)� bY,m � θj,n,m, (3.4)

where bj = (bj,1, . . . , bj,Kj) : RK → RKj is a vector of basis functions in direction of
the covariates and bY = (bY,1, . . . , bY,KY ) ∈ B2(µ)KY is a vector of basis functions
over T . With i⊗ , we denote the Kronecker product of a real-valued with a B2(µ)-
valued matrix. It is defined like the Kronecker product of two real-valued matrices,
using � instead of the usual multiplication. Similarly, matrix multiplication of a
real-valued with a B2(µ)-valued matrix is defined by replacing sums with ⊕ and
products with � in the usual matrix multiplication. Our goal is to estimate the
coefficient vector θj = (θj,1,1, . . . , θj,Kj ,KY ) ∈ RKj KY . To allow sufficient flexibility
for hj, the product KjKY can be chosen to be large. The necessary regularization
can then be accomplished with a Ridge-type penalty term θ>j Pj,Y θj. For a basis
representation as in equation (3.4), an anisotropic penalty matrix Pj,Y = λj(Pj ⊗
IKY ) + λY (IKj ⊗ PY ) can be used. Here, Pj ∈ RKj×Kj and PY ∈ RKY ×KY are
suitable penalty matrices for bj and bY , respectively, and λj, λY ≥ 0 are smoothing
parameters in the respective directions. Alternatively, a simplified isotropic penalty
matrix Pj,Y = λj((Pj ⊗ IKY ) + (IKj ⊗ PY )) with only one smoothing parameter is
possible (Brockhaus et al., 2020). The basis representation framework might seem
restrictive at first, but it indeed allows for very flexible modeling of the effects, as
discussed below.
We fit model (3.1) using a component-wise gradient boosting algorithm, where the
expected loss is minimized step-wise along the steepest gradient descent. It is an
adaption of the algorithm presented in Brockhaus et al. (2015), which was modified
from Hothorn et al. (2014). Advantages of this approach are that it can deal with
a large number of covariates, it performs variable selection, and includes regulariza-
tion. Bühlmann and Yu (2003) discuss theoretical properties of gradient boosting
w.r.t. sum of squares errors, which is typically referred to as L2-Boosting, for scalar
responses. They show – simplifying to a single learner – that bias decays exponen-
tially fast while estimator variance increases in exponentially small steps over the
boosting iterations, which supports the general practice of stopping the algorithm
early before it eventually reaches the standard (penalized) least squares estimate.
Lutz and Bühlmann (2006) show consistency of component-wise L2-Boosting for
linear regression with both high-dimensional multivariate response and predictors.
Similar to these predecessors, our L2-Boosting algorithm for Bayes Hilbert spaces
simplifies to repeated re-fitting of residuals – which, however, present densities in
our case.
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Algorithm: Bayes space L2-Boosting for density-on-scalar models

1. Select vectors of basis functions bY ,bj, the starting coefficient vector θ
[0]
j ∈

RKj KY , and penalty matrices Pj,Y , j = 1, . . . , J . Choose the step-length κ ∈
(0, 1) and the stopping iteration mstop and set the iteration number m to zero.
We comment on a suitable selection of these quantities below.

2. Calculate the negative gradient of the empirical risk with respect to the Fréchet
differential (see appendix A.2 for the proof of this equation)

Ui := 	∇ρyi(fν)
∣∣∣
fν=ĥ[m](xi)

= 2�
(
yi 	 ĥ[m](xi)

)
, (3.5)

where ĥ[m](xi) =
⊕J

j=1

(
bj(xi)

> i⊗ b>Y

)
θ
[m]
j . Fit the base-learners

γ̂j = argmin
γ∈RKj KY

N∑

i=1

∥∥∥Ui 	
(
bj(xi)

> i⊗ b>Y

)
γ
∥∥∥
2

B2(µ)
+ γ>PjY γ (3.6)

for j = 1, . . . , J and select the best base-learner

j∗ = argmin
j=1,...,J

N∑

i=1

∥∥∥Ui 	
(
bj(xi)

> i⊗ b>Y

)
γ̂j

∥∥∥
2

B2(µ)
. (3.7)

3. The coefficient vector corresponding to the best base-learner is updated, the
others stay the same: θ

[m+1]
j∗ := θ

[m]
j∗ + κ γ̂j∗ , θ

[m+1]
j := θ

[m]
j for j 6= j∗.

4. While m < mstop, increase m by one and go back to step 2. Stop otherwise.

The resulting estimator of model (3.1) is ŷi = Ê(yi | X = xi) =
⊕J

j=1 ĥ
[mstop]
j (xi),

with ĥ
[mstop]
j (xi) = (bj(xi)

> i⊗ b>Y )θ
[mstop]
j . In the following, we discuss the selection

of parameters in step 1, see also Brockhaus et al. (2015) and Brockhaus et al. (2020).
The choice of vectors of basis functions bY and bj and their corresponding penalty
matrices Pj and PY depends on the desired partial effect hj(x). Regarding the basis
functions bj in direction of the covariates, suitable selections for flexible effects are
B-splines with a difference penalty. For a linear effect of one covariate, the vector
of basis functions is chosen as bj = (1, id) : R → R2, x 7→ (1, x), resulting in the
design matrix of a simple linear model. Here, a reasonable penalty matrix is Pj = I2
corresponding to the Ridge penalty. A basis bY ∈ B2(µ)KY can be obtained from a
suitable basis b̄Y ∈ L2(µ)KY +1 as follows. Transforming b̄Y to L2

0(µ)KY yields a basis
b̃Y ∈ L2

0(µ)KY . The respective transformation matrix is constructed in appendix B.
Applying the inverse clr transformation on each component of b̃Y gives the desired
basis bY . For the continuous case, a reasonable choice for b̄Y ∈ L2(λ)KY +1 is a B-
spline basis with a difference penalty, allowing for flexible modeling of the response
densities. For the discrete case, a suitable selection is b̄Y = (1{t1}, . . . ,1{tD}) ∈
L2(
∑D

d=1wd δtd)
D, where 1A denotes the indicator function of A ∈ A. Again, a

difference penalty can be used to control the volatility of the estimates. The mixed
case is not as straightforward. We show in Section 3.3 that it can be decomposed
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into a continuous and a discrete component. Thus, it is not necessary to explicitly
select basis functions bY ∈ B2(µ)KY for the mixed case. However, they can be
obtained by concatenating the basis functions of the continuous and the discrete
components.
Selecting the smoothing parameters is also important for regularization. They are
specified such that the degrees of freedom are equal for all base-learners, to ensure a
fair base-learner selection in each iteration of the algorithm. Otherwise, selection of
more flexible base-learners is more likely than that of less flexible ones, see Hofner
et al. (2011). However, the effective degrees of freedom of an effect after mstop itera-
tions will in general differ from those preselected for the base learners in each single
iteration. They are successively adapted to the data. The starting coefficient vectors
θ
[0]
j are usually all set to zero, enabling variable selection as an effect that is never

selected stays at zero. Like in functional regression, a suitable offset can be used
for the intercept to improve the convergence rate of the algorithm, e.g., the mean
density of the responses in B2(µ). Note that a scalar offset, which is another com-
mon choice in functional regression, equals zero in the Bayes Hilbert space and thus
corresponds to no offset. The optimal number of boosting iterations mstop can be
found with cross-validation, sub-sampling or bootstrapping, with samples generated
on the level of elements of B2(µ). The early-stopping avoids overfitting. Finally, the
value κ = 0.1 for the step-length is suitable in most applications for a quadratic loss
function (Brockhaus et al., 2020). A smaller step-length usually requires a larger
value for mstop.
Note that the estimation problem can also be solved in L2

0(µ) based on the clr
transformed model, with the estimates in B2(µ) obtained applying the inverse clr
transformation, as proposed by Talská et al. (2018) for functional linear models on
closed intervals. For our functional additive models, gradient boosting can be per-
formed in L2

0(µ) analogously to the algorithm described above. The results of both
algorithms are equivalent via the clr transformation, which we show in appendix C.
In the continuous case, this yields the functional boosting algorithm of Brockhaus
et al. (2015) with the modification that the basis functions bY are constrained to
be elements of L2

0(λ) instead of L2(λ).

3.3 Estimation in the mixed case

Recall the mixed case, i.e., B2(µ) = B2 (I,B, µ) with µ = δ + λ, where δ =∑D
d=1wd δtd for {t1, . . . , tD} = D ⊂ I and wd > 0. Due to the mixed reference

measure, the specification of suitable basis functions bY ∈ B2(µ)KY is not straight-
forward. We simplify this by tracing the estimation problem back to two separate
estimation problems – one continuous and one discrete. For the continuous one,
consider the Bayes Hilbert space B2(λ) = B2 (C,B ∩ C, λ), where C := I \ D ∈ B.
Remarkably, its orthogonal complement in B2(µ) is not the Bayes Hilbert space
B2 (D,B ∩ D, δ). Instead, an additional arbitrary discrete value tD+1 ∈ R \ D is
required, which can be considered the discrete equivalent of C. Thus, an intuitive
choice is tD+1 ∈ C. Then, the orthogonal complement of B2(λ) in B2(µ) is the
Bayes Hilbert space B2(δ•) = B2

(
D•,P (D•) , δ•

)
, where D• := D ∪ {tD+1} and

δ• :=
∑D+1

d=1 wd δtd with wD+1 := λ(I). The embeddings to consider B2(λ) and
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B2(δ•) as subspaces of B2(µ) are ιc : B2(λ) ↪→ B2(µ) and ιd : B2(δ•) ↪→ B2(µ),
which are defined as ιc(fc) = fc and ιd(fd) = fd (tD+1) on C, respectively, and
ιc(fc) = expSλ(fc) and ιd(fd) = fd on D. Here, Sλ(fc) is the mean logarithmic
integral as defined in (2.1). Note that expSλ(fc) corresponds to the geometric mean
of fc using the natural generalization of the usual definition of the geometric mean
of a discrete set {g(s1), . . . , g(sL)}, since (

∏L
l=1 g(sl))

1/L = expSB2(T ,P(T ),∑L
l=1 δsl )

(g)

for T = {s1, . . . , sL}. For f ∈ B2(µ), the unique functions fc ∈ B2(λ), fd ∈ B2(δ•)
such that f = ιc(fc)⊕ ιd(fd) are given by

fc : C → R, t 7→ f(t), fd : D• → R, t 7→
{

1, t = tD+1
f(t)

expSλ(f) , t ∈ D. (3.8)

See Proposition A.3 in appendix A.2 for the proof that the orthogonal complement
of B2(λ) in B2(µ) is B2(δ•), including (3.8). Then, we obtain ‖f‖2B2(µ) = ‖fc‖2B2(λ)+

‖fd‖2B2(δ•) implying that minimizing the sum of squared errors (3.3) is equivalent to
minimizing its discrete and continuous components separately and then combining
the solutions f̂c and f̂d in the overall solution f̂ = ιc(f̂c)⊕ ιd(f̂d).
Equivalently, we can decompose the Hilbert space L2

0 (I,B, µ) such that embeddings
and clr transformations commute. See Proposition A.4 in appendix A.2 for details
and proof.

3.4 Interpretation

The interpretation of the estimated effects ĥj := ĥ
[mstop]
j (xi) ∈ B2(µ), j = 1, . . . , J ,

has to respect the special structure of Bayes Hilbert spaces. In particular, it should
be independent of the selected representative of an equivalence class in B2(µ). Nat-
urally, interpretation in a Bayes Hilbert space is relative. Accordingly, the shape
of clr transformed effects can be interpreted using differences, resulting in an inter-
pretation analogous to the well-known odds ratios. For two effects ĥj and ĥk for
j 6= k ∈ {1, . . . , J} and s, t ∈ T , we have

exp

(
clr[ĥj](t)− clr[ĥj](s)−

(
clr[ĥk](t)− clr[ĥk](s)

))
=
ĥj(t) / ĥj(s)

ĥk(t) / ĥk(s)
. (3.9)

The compound fraction on the right is called odds ratio of ĥj and ĥk for t compared

to s, its numerator is called odds of ĥj for t compared to s. Thus, the log odds
ratio corresponds to the difference of the differences of the clr transformed effects
evaluated at t and s. In a reference coding setting, this reduces to a simple difference
as the clr transformed effect for the reference category is 0. Considering additional
effects ĥJ =

⊕
l∈J ĥl with J ⊂ {1, . . . , J} \ {j, k}, the odds ratio of ĥJ ⊕ ĥj and

ĥJ ⊕ ĥk for t compared to s is equal to the odds ratio of ĥj and ĥk for t compared
to s, enabling a ceteris paribus interpretation.
The odds ratio (3.9) is a ratio of density values, which depending on the case (dis-
crete, continuous, mixed) is identical to or approximates a usual ratio of proba-
bilities: Let Pj ∼= ĥj and Pk ∼= ĥk be the corresponding probability measures in
B2(µ) of the estimated effects. In the discrete case, i.e., T = {t1, . . . , tD} and
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µ =
∑D

d=1wd δtd , we have Pj({td})/µ({td}) = [wd ĥj(td)]/wd = ĥj(td) for every

td ∈ T . Then, the odds ratio of ĥj and ĥk for td1 ∈ T compared to td2 ∈ T
equals [Pj({td1})/Pj({td2})] / [Pk({td1})/Pk({td2})], i.e., the odds ratio of Pj and Pk
for {td1} compared to {td2}. In the continuous and mixed cases, i.e., T = I ⊂ R
and µ =

∑D
d=1wd δtd + λ for D = {t1, . . . , tD} ⊂ I (continuous case: D = ∅), the

relation holds approximately: For s, t ∈ I, let An, Bn ⊆ I be two nested sequences
of intervals centered at s and t for all n ∈ N, whose intersection is {s} and {t},
respectively. Then,

ĥj(t)

ĥj(s)
= lim

n→∞
Pj(Bn) / µ(Bn)

Pj(An) / µ(An)
and thus

ĥj(t) / ĥj(s)

ĥk(t) / ĥk(s)
= lim

n→∞
Pj(Bn) /Pj(An)

Pk(Bn) /Pk(An)
,

(3.10)

i.e., the odds ratio of density values approximates the odds ratio of probabilities for
small neighborhoods of s and t. We prove (3.10) in appendix A.2, where we also show
that if there exist It, Is ⊂ I with ĥj(t)/ĥj(s) < ĥk(t)/ĥk(s) for all t ∈ It, s ∈ Is, then,
Pj(It)/Pj(Is) < Pk(It)/Pk(Is). Further ideas of interpreting effects are developed in
appendix D.

4 Application

With our modeling approach, we analyze the distribution of the female share in a
couple’s total labor income in Germany. Note that for simplicity we use the terms
East/West Germany also after reunification. Although we refer to Bertrand et al.
(2015), we do not focus on the question of whether there is actually a decline in
density at 0.5.

4.1 Background and hypotheses

There is a larger share fraction in Germany below 0.5 (as in Bertrand et al., 2015)
reflecting the gender pay gap, but there is no consensus in the literature regarding
a discontinuous drop at 0.5 (Sprengholz et al., 2020; Kuehnle et al., 2021). The em-
ployment and earnings of female partners show a strong childhood penalty (Kleven
et al., 2019; Fitzenberger et al., 2013). The social norm in West Germany used to
be that mothers should stay at home with their children. Institutionalized child
care was scarce and there are strong financial incentives for part-time work for the
second earner. Together, this results in part-time employment increasing strongly
for women after having their first child. Thus, we expect that the income share of
the woman is lower in the presence of children reflecting a childhood penalty.
Due to changing social norms, the female employment increases strongly over time.
However, occupational segregation by gender is persistent (Cortes and Pan, 2018)
with men being more likely to work in better paying occupations. Still, occupations
with a higher share of women seem to benefit from technological change (Black and
Spitz-Oener, 2010). Thus, the income share of female partners without children is
predicted to grow over time.
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Ex ante reasoning suggests an ambiguous effect on the childhood penalty. On the
one hand, the incentives for part-time work especially for female partners with young
children may prevent an increase in the income share. Thus, the childhood penalty
in the income share may even grow over time. On the other hand, growing female
employment may actually increase the female income share, especially among female
partners with older children.
Turning to the comparison between East and West Germany, the literature empha-
sizes that social norms are likely to differ between the two parts of the country (Beblo
and Görges, 2018). Before reunification, it was basically mandatory for women to
work in East Germany and comprehensive institutionalized child care was available.
This suggests that the female income share in East Germany is higher than in West
Germany.
After reunification, social norms have been converging between the East and the
West. In East Germany, female employment may have fallen more strongly than for
males due to the strong economic transformation and the lower mobility of female
partners after job loss. Part-time employment is likely to become more prevalent
in East Germany, and over time mothers more often drop out of the labor force.
While we expect the childhood penalty to be lower in East Germany than in West
Germany, it is ex ante ambiguous whether the East-West gap in the childhood
penalty decreases over time, a question of interest.

4.2 Data and descriptive evidence on response densities

Our data set derived from the German Socio-Economic Panel (see appendix E for
details) contains 154, 924 observations of couples of opposite sex living together in
a household, where at least one partner reports positive labor income. We include
cohabitating couples in addition to married ones as there is a strong tax incentive to
get married in case of unequal incomes, leading to a bias. The women’s share in the
couple’s total gross labor income together with the household’s sample weight yields
the response densities. Four variables serve as covariates. First, the binary covariate
West East specifies whether the couple lives in West Germany or in East Germany
(including Berlin). A second finer disaggregation distinguishes six regions (two in
East and four in West Germany, see appendix E.1). The third covariate c age is
a categorical variable for the age range (in years) of the couple’s youngest child
living in the household: 0-6, 7-18, and other (i.e., couples without minor children).
Finally, year ranges from 1984 (West Germany)/1991 (East Germany) to 2016.
A response density fregion, c age, year : [0, 1]→ R+, s 7→ fregion, c age, year(s) is estimated
for each combination of covariate values (note that region determines West East),
with s denoting the woman’s income share. In total, this yields 552 response densi-
ties. Often, we just write f and omit the indices. Before elaborating on the estima-
tion, we determine a suitable underlying Bayes Hilbert space B2(µ) = B2(T ,A, µ).
Since s denotes a share, we consider T = [0, 1] with A = B. The Lebesgue mea-
sure is no appropriate reference, as the boundary values 0 and 1 correspond to
single-earner households and thus have positive probability mass (see appendix E.2
for exemplary barplots). A suitable reference measure respecting this structure is
µ := δ0 + λ+ δ1, i.e., the mixed case with D = 2, t1 = 0, t2 = 1, and w1 = 1 = w2,
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Figure 4.1: Response densities for regions west and east [rows] for all three values
of c age [columns].

see Section 3. The values f(0) and f(1) are the (weighted) relative frequencies for
shares of 0 and 1, denoted by p0 and p1, respectively. To estimate f on (0, 1), we
compute continuous densities based on dual-earner households, and multiply them
by p(0,1) = 1 − p0 − p1. For this purpose, weighted kernel density estimation with
beta-kernels (Chen, 1999) is used to preserve the support (0, 1), see appendix E.3
for details.
The response densities are very similar in the different regions within West and East
Germany, respectively. Thus, we restrict visualization in Figure 4.1 to the exemplary
regions west (North Rhine-Westphalia) for West Germany and east (Saxony-Anhalt,
Thuringia, Saxony) for East Germany. See Figure E.7 in appendix E.4 for the cor-
responding figure for all six regions, with additional illustration of the respective
relative frequencies p0, p(0,1), p1 over time. Figure 4.1 depicts the response densities
for all years by the c age groups, for the regions west and east, with a color gradient
and different line types distinguishing the year. The density values f(0) and f(1) are
represented as dashes, shifted slightly outwards for better visibility. Consider the
continuous parts (s ∈ (0, 1)): In west (first row), the densities differ between couples
with (0-6 and 7-18 ) and without minor children (other), with the latter lying more
to the right reflecting lower female shares in the presence of children. In east, the
shapes are more egalitarian and vary much less with the age of the youngest child. In
all cases, the fraction of couples with a share less than 0.5 exceeds the fraction with
a share larger than 0.5. Over time, the probability mass for a small share increases
and the share of non-working women declines, reflecting the increase in female part-
time employment. These findings show the importance of considering the mixed
densities. The shares of dual-earner households and non-working women evolve in
opposite direction over time, while the share of single-earner women remains small.
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4.3 Model specification

Based on the empirical response densities fregion, c age, year , we estimate the model

fregion, c age, year = β0 ⊕ βWest East ⊕ βregion ⊕ βc age ⊕ βc age, West East

⊕ g(year)⊕ gWest East(year)⊕ gc age(year)
⊕ gc age, West East(year)⊕ εregion, c age, year . (4.1)

All summands are densities of the share s ∈ [0, 1] and elements of the Bayes Hilbert
space B2(µ). The model is reference coded with reference categories West East =
West, c age = other, and year = 1991. The corresponding effect for the refer-
ence is given by the intercept β0. The effect for the six regions βregion is cen-
tered around the respective βWest East . The smooth year effect g(year) describes
the deviation for each year from the reference 1991 (for West Germany and c age
other). Finally, several interaction terms are included with a group-specific intercept
βc age, West East as well as group-specific flexible terms gWest East(year), gc age(year),
and gc age, West East(year). They are constrained to be orthogonal to the respective
main effects using a similar constraint as (3.2) to ensure identifiability. Due to
reference coding, all partial effects for the reference categories are zero.
As described in Section 3.3, we decompose the Bayes Hilbert space B2(µ) into two or-
thogonal subspaces B2(λ) = B2((0, 1),B∩(0, 1), λ) and B2(δ•) = B2(D•,P(D•), δ•),
where D• = {t1, t2, t3} and δ• =

∑3
d=1 δtd . We choose t3 = 1/2 to represent the con-

tinuous component in between the boundary values t1 = 0 and t2 = 1. For every
f we generate the unique functions fc ∈ B2(λ) and fd ∈ B2(δ•) as in (3.8). As
proposed in Section 3.2, we choose transformed cubic B-splines as basis functions
bY for the continuous component and a transformed basis of indicator functions
for the discrete component. The remaining specification is identical in both mod-
els. We use an anisotropic penalty without penalizing in direction of the share, i.e.,
λY = 0, to ensure the necessary flexibility towards the boundaries. For the flexible
nonlinear effects, the selected basis functions are cubic B-splines with penalization
of second order differences. We set the degrees of freedom to 2 for all effects but
β0 and βWest East , as these only allow for a maximum value of 1. Regarding base-
learner selection, βWest East thus is at a slight disadvantage compared to other main
effects. However, in a sensitivity check imposing equal degrees of freedom for all
base-learners by adjusting λY to 1 for all effects, we do not observe large deviations
in the selection frequencies while the fit to the data is better with unequal degrees of
freedom, see appendix E.4. Note that the intercept as well as the interaction effects
are separated from the main effects due to the orthogonalizing constraints, ensuring
a fair selection for the remaining base-learners. The starting coefficients are set to
zero in every component and we set the step-length κ to 0.1. We obtain a stopping
iteration value of 262 for the continuous model and 731 for the discrete model based
on 25 bootstrap samples, respectively.

4.4 Regression Results

All effects in our regression model (4.1) are selected by the algorithm (see ap-
pendix E.5). The predictions in Figure E.8 in appendix E.4 mostly show a good fit.
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In the following, we discuss the key findings.
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Figure 4.2: Expected densities for couples living in West Germany in 1991 for all
three values of c age [left] and clr transformed estimated effects of c age [right].

The left part of Figure 4.2 shows the perturbation of the intercept by the c age
effect, i.e., the expected densities for couples without minor children (c age other),
for couples with children aged 0-6, and for couples with children aged 7-18 living in
West Germany in 1991. The circles at 0.5 represent the expected relative frequency
of dual-earner households. Our main finding is that the expected density on (0, 1)
for c age other is unimodal with a maximum above 0.4, while the densities for c age
0-6 and 7-18 are bimodal with both maxima to the left of 0.4. The latter show
a similar shape, but are scaled differently. The relative frequencies of dual-earner
households (circles at 0.5) and the two types of single-earner households (dashes at
0, 1) are similar for couples with children aged 7-18 years and couples without minor
children, respectively. In contrast, the relative frequency of non-working women is
much higher and the relative frequency of dual-earner households is much lower for
couples with children aged 0-6. The right part of the figure shows the clr transformed
effect for interpretation via (log) odds ratios, see Section 3.4. As c age=other is the
reference category, we have clr[β̂other] = 0. The clr transformed effects of c age 0-6
and 7-18 again show similar shapes on (0, 1), but shifted vertically. As the log odds
ratio of β̂k and β̂other for s compared to t corresponds to vertical differences within
clr[β̂k], k ∈ {0-6, 7-18}, the log odds ratio of β̂0-6 and β̂other is similar to the one of
β̂7-18 and β̂other. This implies they have similar impact on the shape of a density.
Both log odds ratios are always negative for s < t ∈ (0, 1), i.e., the odds for a larger
versus a smaller income share are always smaller for couples with minor children
than for couples without minor children, reflecting the strong childhood penalty in
West Germany in 1991. See Appendix E.5 for quantitative examples of concrete
odds ratios.
Figure 4.3 shows the expected densities for four selected years, separately for couples
with and without minor children (see Figure E.16 in appendix E.5 for all years).
For other, the frequency of non-working women (s = 0) falls continuously over time
and the density becomes more dispersed with a lower maximum around 0.4 in 2016
than in 1993 and 2003 (however, it was even lower in 1984). In fact, by 2016 the
expected density tends to have a second maximum further left and a heavier tail
on the right, most likely due to the strong growth of part-time employment even
among women without minor children. Furthermore, the frequency of single-earner
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Figure 4.3: Expected densities in the years 1984, 1991, 2003, and 2016 for West
Germany for all three values of c age: other [left], 0-6 [middle], 7-18 [right].

women (s = 1) increases to a level similar to the frequency of non-working women.
For 0-6 and 7-18, we also observe a fall in the frequency of non-working women and
a stronger concentration around the larger mode until 1991. However, up to 2016
the distributions show more probability mass for small shares, reflecting the even
larger growth of part-time employment among women with minor children.
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Figure 4.4: Expected densities in the years 1991, 2003, and 2016 for East Germany
for all three values of c age: other [left], 0-6 [middle], 7-18 [right].

Figure 4.4 shows the expected densities in East Germany for selected years (see
Figure E.16 in appendix E.5 for all years). In all three cases, the share distribution
has a unique mode at or above 0.4. The distribution becomes more dispersed over
time, with more probability mass moving to the left and a growing right tail. The
frequency of non-working women is falling over time. While showing a similar trend
as in West Germany, there remain persistent differences. In East Germany, the
frequency of non-working women for couples with minor children remains much
lower and the shape of the distribution shows no trend towards a second maximum
at a low share. Hence, there remains a considerable West-East gap in the childhood
penalty.
To address this issue explicitly, the West-East gap in the childhood penalty is cal-
culated by the difference-in-differences (DiD) effect for year ∈ {1991, 2016} and
c age ∈ {0-6 , 7-18}:
DiDc age, year = (f̂c age, West, year 	 f̂other, West, year)	 (f̂c age, East, year 	 f̂other, East, year).
Figure 4.5 shows the log odds

LOc age, year(t, s) := log
(
[DiDc age, year ](t)/[DiDc age, year ](s)

)
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of DiDc age, year for t compared to s for pairs (t, s) ∈ [0, 1]2, see Section 3.4, as
heat maps. We omit the index c age, year in the following. The inner quadrant
shows the respective heat map for t, s ∈ (0, 1). The log odds involving the two mass
points 0 and 1 are given by the band around the inner quadrants. The top-left
corner concerns the log odds for t = 0 (non-working woman) compared to s = 1
(single-earner woman). The inner bands around the inner quadrant correspond to
the log odds between a mass point 0, 1 and a share in (0, 1). The outer bands show
the constant log odds between one of the mass points and the event dual-earner
household (0 < s, t < 1). A positive (negative) value implies that the log odds for
shares t versus s are higher (lower) in the West than in the East. Thus, LO(t, s) > 0
for t < s implies that the child penalty (lower share t is more likely relative to s
in the presence of children) is more pronounced (stronger) in the West than in the
East. For 1991, the vertical band for t = 0 to the left of the heatmap is quite
red (LO(0, s) > 0), implying that it is much more likely that women in the West
compared to the East stop working in the presence of a child, relative to all other
shares. This holds both for c age 0-6 (top panel) and c age 7-18 (bottom panel).
However, the entire heatmap shows positive (negative) values above (below) the 45-
degree-line implying that the shift to lower shares compared to higher shares in the
presence of children is stronger in the West than in the East, with the West-East
gap in the child penalty being even larger for c age 7-18.
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Figure 4.5: Log Odds LOc age, year(t, s) of the West-East gap in the childhood penalty
(DiD effects) for c age 0-6 [top] and 7-18 [bottom] for the years 1991 [left] and 2016
[right].

The comparison between the two years is informative about the change in the West-
East gap in the childhood penalty over time. In 2016, the childhood penalty remains
larger in the West compared to the East over almost the entire share distribution –
only for c age 7-18 is there a reversal for very large shares compared to medium share
levels. However, since the absolute log odds have become much smaller, especially
for non-working women, the West-East gap in the childhood penalty has decreased
considerably over time.
Summarizing our main findings, the frequency of non-working women and women
with a lower income share is higher in West Germany than in East Germany and
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these differences are larger for couples with children. Over time, the share of non-
working women decreased. Among dual-earner households the dispersion of the
share distribution increased over time with both a growing lower and higher tail.
Despite persistent East-West differences in the share distributions and the child
penalty until the end of the observation period, the West-East gap in the childhood
penalty fell considerably over time.

5 Simulation study

The gradient boosting approach has already been tested extensively in several sim-
ulation studies for scalar and functional data (e.g., Brockhaus et al. (2015) and
references therein). For completeness and to validate our modified approach for
density-on-scalar models, we present a small simulation study for this case. It
is based on the results of our analysis in Section 4. The predictions obtained
there serve as true mean response densities for the simulation and are denoted
by Fi ∈ B2(µ), i = 1, . . . , 552, where each i corresponds to one combination of
values for the covariates region, c age, and year and B2(µ) is the Bayes Hilbert
space from Section 4. To simulate data, we perform a functional principal com-
ponent (PC) analysis (e.g. Ramsay and Silverman, 2005) on the clr transformed
functional residuals clr[ε̂i] = clr[fi 	 Fi] = clr[fi] − clr[Fi], with fi ∈ B2(µ) the
response densities from the application. Let ψm denote the PC functions corre-
sponding to the descending ordered eigenvalues ξm and let ρim denote the PC scores
for i = 1, . . . , 552 and m ∈ N. Then, the truncated Karhunen-Loève expansion for
M ∈ N yields an approximation of the functional residuals: clr[ε̂i] ≈

∑M
m=1 ρimψm.

The PC scores can be viewed as realizations of uncorrelated random variables ρm
with zero-mean and covariance Cov(ρm, ρn) = ξmδmn, where δmn denotes the Kro-
necker delta and m,n = 1, . . . ,M . We simulate residuals ε̃i by drawing uncorre-
lated random ρ̃im from mean zero normal distributions with variance ξm and ap-
plying the inverse clr transformation to the truncated Karhunen-Loève expansion,
ε̃i = clr−1[

∑M
m=1 ρ̃imψm ] =

⊕M
m=1 ρ̃im � clr−1 [ψm] . Adding these to the mean re-

sponse densities yields the simulated data: f̃i = Fi ⊕ ε̃i, i = 1, . . . , 552. Using
these as observed response densities, we then estimate model (4.1) and denote the
resulting predictions with f̂i ∈ B2(µ), i = 1, . . . , 552. We replicate this approach
200 times with M = 102, which is the maximal possible value due to the number of
available grid points per density.

relMSE(ê)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ĝ(year)
β̂c_age

β̂region

β̂West_East

β̂0

f̂

ê

Figure 5.1: RelMSE for predictions [top] and main effects [bottom].
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To evaluate the goodness of the estimation results, we use the relative mean squared
error (relMSE; defined in appendix F.1) motivated by Brockhaus et al. (2015), stan-
dardizing the mean squared error with respect to the global variability of the true
density. Figure 5.1 shows the boxplots of the relMSEs (200 each) of the predictions
and the main effects. All effects are illustrated in appendix F.2. The distribution of
relMSE(f̂) over the 200 simulation runs shows good estimation quality, with a me-
dian of 1.55%. Regarding the main effects, the relMSEs are the smallest for β̂0 and
β̂c age with medians of 0.48% and 1.1%, respectively. For β̂West East and ĝ(year), the
values tend to be slightly larger (medians: 5.96% and 5.12%) while they are clearly
larger for β̂region (median: 18.28%). However, the larger relative values, especially

for β̂region, arise from the variability of the true effects being small, not from the
mean squared errors being large. This is also the case for the interaction effects, see
appendix F.2. Regarding model selection, the main effects are all selected in each
simulation run, while the smaller interaction effects are not, see appendix F.3 for
details. Overall, the estimates capture the true means Fi and all effects that are
pronounced very well. Small effects in the model are estimated well in absolute, but
badly in relative terms.

6 Conclusion

We presented a flexible framework for density-on-scalar regression models by formu-
lating them in a Bayes Hilbert space B2(µ), which respects the nature of probability
densities and allows for a unified treatment of arbitrary finite measure spaces. This
covers in particular the common discrete, continuous, and mixed cases. To estimate
the covariate effects in B2(µ), we introduced a gradient boosting algorithm. We
used our approach to analyze the distribution of the woman’s share in a couple’s
total labor income, an example of the challenging mixed case, for which we devel-
oped a decomposition into a continuous and a discrete estimation problem. We
observe strong differences between West and East Germany and between couples
with and without children. Among dual-earner households the dispersion of the
share distribution increased over time. Despite persistent East-West differences in
the share distributions and the child penalty until the end of the observation period,
the West-East gap in the childhood penalty fell considerably over time. Finally, we
performed a small simulation study justifying our approach in a setting motivated
by our application.
Density regression has particular advantages in terms of interpretation compared
to approaches considering equivalent functions like quantile functions (e.g., Yang
et al., 2018; Koenker, 2005) or distribution functions (CTMs, e.g., Hothorn et al.,
2014; distribution regression, e.g., Chernozhukov et al., 2013), as shifts in probability
masses or bimodality are easily visible in densities. Odds-ratio-type interpretations
of effect functions further add to the interpretability of our model. A crucial part
in our approach is played by the clr transformation, which simplifies among other
things estimation, as gradient boosting can be performed equivalently on the clr
transformed densities in L2

0(µ). This allows taking advantage of and extending
existing implementations for function-on-scalar regression like the R add-on package
FDboost (Brockhaus and Rügamer, 2018), see the github repository FDboost for
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our enhanced version of the package and in particular our vignette “density-on-
scalar birth”. The idea to transform the densities to (a subspace of) the well-
known L2 space with its metric is also used by other approaches. Besides the clr
transformation, the square root velocity transformation (Srivastava et al., 2007) as
well as the log hazard and log quantile density transformations (e.g., Han et al., 2020)
are popular choices. The approach of Petersen and Müller (2019) does not use a
transformation, but also computes the applied Wasserstein metric via the L2 metric.
What is special about the clr transformation based Bayes Hilbert space approach,
is the embedding of the untransformed densities in a Hilbert space structure. It is
the extension of the well-established Aitchison geometry (Aitchison, 1986), which
provides a reasonable framework for compositional data – the discrete equivalent of
densities – fulfilling appealing properties like subcompositional coherence. The clr
transformation helps to conveniently interpret covariate effects via ratios of density
values (odds-ratios), which approximate or are equal to ratios of probabilities in three
common cases (discrete, continuous, mixed). Modeling those three cases in a unified
framework is a novelty to the best of the authors’ knowledge, and a contribution of
our approach to the literature on density regression.
Due to the gradient boosting algorithm used for estimation, our method includes
variable selection and regularization, while it can deal with numerous covariates.
However, like all gradient boosting approaches, it is limited by not naturally yield-
ing inference – unlike some existing approaches (e.g., Petersen and Müller, 2019).
This might be developed using a bootstrap-based approach or selective inference
(Rügamer and Greven, 2020) in the future. Alternatively, other estimation methods
allowing for formal inference could be derived.
The (current) definition of Bayes Hilbert spaces, which only allows finite reference
measures, does not cover the interesting case of the measurable space (R,BR) with
Lebesgue measure λ. Though (R,BR) can still be considered using, e.g., the proba-
bility measure corresponding to the standard normal distribution (Boogaart et al.,
2014) as reference, it would be desirable to extend Bayes Hilbert spaces to σ-finite
reference measures, allowing for B2(R,BR, λ). Moreover, Bayes Hilbert spaces in-
clude only (µ-a.e.) positive densities. While in the continuous case, values of zero
can in many cases be avoided using a suitable density estimation method, they are
often replaced with small values in the discrete case (see Pawlowsky-Glahn et al.,
2015). In contrast, the square root velocity transformation (Srivastava et al., 2007)
allows density values of zero and may be an alternative in such cases, at the price
of loosing the Hilbert space structure for the untransformed densities.
Finally, while in practice densities are sometimes directly reported, one often does
not observe the response densities directly, but has to first estimate them from in-
dividual data to enable the use of density-on-scalar regression. This causes two
problems. First, when treating estimated densities as observed, like also in other
approaches such as Petersen and Müller (2019) and Han et al. (2020), estimation
uncertainty is not accounted for in the analysis. Second, the number of individual
observations for each covariate value combination which is available for density esti-
mation can limit the number of covariates that can be included in the model. In the
future, we thus aim to extend our approach to also model conditional densities for
individual observations, still allowing flexibility in the covariate effects, but with-
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out restrictive assumptions such as a particular distribution family as in GAMLSS
(Rigby and Stasinopoulos, 2005).
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4. Multivariate Functional Additive Mixed
Models

In this chapter, we propose a multivariate functional mixed model for irregularly/sparsely
sampled functional data and for nested/crossed experimental designs. This is required
in two data problems we consider: phonetic data of acoustic measurements and EPG
measurements during speech production and human motion trajectories in billiards.
The multidimensional covariance surface is hereby estimated via symmetric covariance
smoothing and allows for interpretation of the correlation within and across curves via
multivariate functional principal component analysis, in addition to interpretation of
covariate effects.
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Abstract: Multivariate functional data can be intrinsically multivariate like movement trajectories
in 2D or complementary such as precipitation, temperature and wind speeds over time at a given
weather station. We propose a multivariate functional additive mixed model (multiFAMM) and show
its application to both data situations using examples from sports science (movement trajectories
of snooker players) and phonetic science (acoustic signals and articulation of consonants). The
approach includes linear and nonlinear covariate effects and models the dependency structure
between the dimensions of the responses using multivariate functional principal component analysis.
Multivariate functional random intercepts capture both the auto-correlation within a given function
and cross-correlations between the multivariate functional dimensions. They also allow us to model
between-function correlations as induced by, for example, repeated measurements or crossed study
designs. Modelling the dependency structure between the dimensions can generate additional insight
into the properties of the multivariate functional process, improves the estimation of random effects,
and yields corrected confidence bands for covariate effects. Extensive simulation studies indicate that
a multivariate modelling approach is more parsimonious than fitting independent univariate models
to the data while maintaining or improving model fit.
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1 Introduction

With the technological advances seen in recent years, functional datasets are
increasingly multivariate. They can be multivariate with respect to the domain of
a function, its codomain, or both. Here, we focus on multivariate functions with
a one-dimensional domain f = (f (1), ..., f (D)) : I ⊂ R→ RD with square-integrable
components f (d)

∈ L2(I),d = 1, ...,D. For this type of data, we can distinguish two
subclasses: One has interpretable separate dimensions and can be seen as several
complementary modes of a common phenomenon (‘multimodal’ data, cf. Uludağ
and Roebroeck, 2014) as in the analysis of acoustic signals and articulation
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processes in speech production in one of our data examples. The codomain then
simply is the Cartesian product S = S (1)

× ...× S (D) of interpretable univariate
codomains S (d)

⊂ R. The other subclass is more ‘intrinsically’ multivariate insofar
as univariate analyses would not yield meaningful results. Consider for example
two-dimensional movement trajectories as in one of our motivating applications,
where the function measures Cartesian coordinates over time: for fixed trajectories,
rotation or translation of the essentially arbitrary coordinate system would change
the results of univariate analyses. For intrinsically multivariate functional data
a multivariate approach is the natural and preferred mode of analysis, yielding
interpretable results on the observation level. Even for multimodal functional data,
a joint analysis may generate additional insight by incorporating the covariance
structure between the dimensions. This motivates the development of statistical
methods for multivariate functional data. We here propose multivariate functional
additive mixed models to model potentially sparsely observed functions with flexible
covariate effects and crossed or nested study designs.

Multivariate functional data have been the interest in different statistical fields
such as clustering (Jacques and Preda, 2014; Park and Ahn, 2017), functional
principal component analysis (FPCAs) (Chiou et al., 2014; Happ and Greven, 2018;
Backenroth et al., 2018; Li et al., 2020), and registration (Carroll et al., 2021;
Steyer et al., 2021). There is also ample literature on multivariate functional data
regression such as graphical models (Zhu et al., 2016), reduced rank regression (Liu
et al., 2020), or varying coefficient models (Zhu et al., 2012; Li et al., 2017). Yet,
so far, there are only few approaches that can handle multilevel regression when
the functional response is multivariate. In particular, Goldsmith and Kitago (2016)
propose a hierarchical Bayesian multivariate functional regression model that can
include subject level and residual random effect functions to account for correlation
between and within functions. They work with bivariate functional data observed
on a regular and dense grid and assume a priori independence between the different
dimensions of the subject-specific random effects. Thus, they model the correlation
between the dimensions only in the residual function. As our approach explicitly
models the dependencies between dimensions for multiple functional random effects
and also handles data observed on sparse and irregular grids on more than two
dimensions, the model proposed by Goldsmith and Kitago (2016) can be seen as a
special case of our more general model class.

Alternatively, Zhu et al. (2017) use a two-stage transformation with basis
functions for the multivariate functional mixed model. This allows the estimation
of scalar regression models for the resulting basis coefficients that are argued
to be approximately independent. The proposed model is part of the so-called
functional mixed model (FMM) framework (Morris, 2017). While FMMs use basis
transformations of functional responses (observed on equal grids) at the start of
the analysis, we propose a multivariate model in the functional additive mixed
model (FAMM) framework, which uses basis representations of all (effect) functions
in the model (Scheipl et al., 2015). The differences between these two functional
regression frameworks have been extensively discussed before (Greven and Scheipl,
2017; Morris, 2017).
Statistical Modelling xxxx; xx(x): 1–24
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The main advantages of our multivariate regression model, also compared to
Goldsmith and Kitago (2016) and Zhu et al. (2017), are that it is readily available
for sparse and irregular functional data and that it allows to include multiple nested
or crossed random processes, both of which are required in our data examples.
Another important contribution is that our approach directly models the multivariate
covariance structure of all random effects included in the model using multivariate
functional principal components (FPCs) and thus implicitly models the covariances
between the dimensions. This makes the model representation more parsimonious,
avoids assumptions difficult to verify, and allows further interpretation of the random
effect processes, such as their relative importance and their dominating modes. As
part of the FAMM framework, our model provides a vast toolkit of modelling options
for covariate and random effects, of estimation and inference (Wood, 2017). The
proposed multivariate functional additive mixed model (multiFAMM) extends the
FAMM framework combining ideas from multilevel modelling (Cederbaum et al.,
2016) and multivariate functional data (Happ and Greven, 2018) to account for
sparse and irregular functional data and different study designs.

We illustrate the multiFAMM on two motivating examples. The first (intrinsically
multivariate) data stem from a study on the effect of a training programme for
snooker players with a nested study design (shots within sessions within players)
(Enghofer, 2014). The movement trajectories of a player’s elbow, hand, and shoulder
during a snooker shot are recorded on camera, yielding six-dimensional multivariate
functional data (see Figure 1). In the second data example, we analyse multimodal
data from a speech production study with a crossed study design (speakers crossed
with words) (Pouplier and Hoole, 2016) on so-called ‘assimilation’ of consonants.
The two measured modes (acoustic and articulatory, see Figure 3) are expected to be
closely related but joint analyses have not yet incorporated the functional nature of
the data.

These two examples motivate the development of a regression model for sparse
and irregularly sampled multivariate functional data that can incorporate crossed or
nested functional random effects as required by the study design in addition to flexible
covariate effects. The proposed approach is implemented in R (R Core Team, 2020) in
package multifamm (Volkmann, 2021). The article is structured as follows: Section
2 specifies the multiFAMM and Section 3 its estimation process. Section 4 presents
the application of the multiFAMM to the data examples and Section 5 shows the
estimation performance of our proposed approach in simulations. Section 6 closes
with a discussion and outlook.

2 Multivariate functional additive mixed model

2.1 General model

Let y∗i (t) = (y∗(1)
i (t), ..., y∗(D)

i (t))> be the multivariate functional response of unit
i = 1, ...,N over t ∈ I, consisting of dimensions d = 1, ...,D. Without loss of
generality, we assume a common one-dimensional interval domain I = [0,1] for all
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dimensions, and square-integrable y∗(d)
i ∈ L2(I). Define L2

D(I) := L2(I)× ...× L2(I)
so that y∗i ∈ L2

D(I). The underlying smooth function y∗i , however, is only evaluated
at (potentially sparse or dimension specific) points y∗it = (y∗(1)

it , ..., y∗(D)
it )> and the

evaluation is subject to white noise, that is, yit = y∗it + εit. The residual term εit reflects
additional uncorrelated white noise measurement error, following a D-dimensional
multivariate normal distributionND with zero-mean and diagonal covariance matrix
6̃ = diag(σ2

1, ..., σ
2
D) with dimension-specific variances σ2

d. We construct a multivariate
functional mixed model as

yit = y∗i (t) + εit = µ(xi, t) + U(t)zi + εit

= µ(xi, t) +
q∑

j=1

Uj(t)zij + Ei(t) + εit, t ∈ I, (2.1)

where

U j(t) = (U j1(t), ...,U jVUj
(t)); j = 1, ...,q,

U jv(t)
ind.c.
∼ MGP

(
0,KUj

)
; v = 1, ...,VUj ;∀j = 1, ...,q,

Ei(t)
ind.c.
∼ MGP (0,KE) ; i = 1, ...,N, and

εit
i.i.d.
∼ ND

(
0, 6̃ = diag(σ2

1, ..., σ
2
D)
)

; i = 1, ...,N; t ∈ I.

We assume an additive predictorµ(xi, ·) =
∑p

l=1 f l(xi, ·) of fixed effects, which consists
of partial predictors f l(xi, ·) = (f (1)

l (xi, ·), ..., f
(D)
l (xi, ·))> ∈ L2

D(I), l = 1, ...,p, that are
multivariate functions depending on a subset of the vector of scalar covariates xi.
This allows to include linear or smooth covariate effects as well as interaction effects
between multiple covariates as in the univariate FAMM (Scheipl et al., 2015). Partial
predictors may also depend on dimension-specific subsets of covariates.

For random effects U, we focus on model scenarios with q independent
multivariate functional random intercepts for crossed and/or nested designs. For
group level v = 1, . . . ,VUj within grouping layer j = 1, . . . ,q, these take the value
U jv ∈ L2

D(I). For each layer, the U j1, ...,U jVUj
present independent copies of a

multivariate smooth zero-mean Gaussian random process. Analogously to scalar
linear mixed models, the U jv model correlations between different response functions
y∗i within the same group as well as variation across groups. By arranging them
in a (D× VUj) matrix U j(t) per t, the jth random intercept can be expressed in
the common mixed model notation in (2.1) using appropriate group indicators
zij = (zij1, . . . , zijVUj

)> for the respective design.
Although technically a curve-specific functional random intercept, we distinguish

the smooth residuals Ei ∈ L2
D(I) in the notation, as they model correlation within
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rather than between response functions. We write Ev ∈ L2
D(I), v = 1, ...,VE with

VE = N. The Ei capture smooth deviations from the group-specific mean µ(xi, ·) +∑q
j=1 U j(·)zij.
For a more compact representation, we can arrange all U j(t) and Ei(t) together in

a (D× (
∑q

j=1 VUj + N)) matrix U(t) per t, and the group indicators for all layers in a
corresponding vector zi = (z>i1, . . . , z

>

iq, e
>

i )> with ei the i-th unit vector. The resulting
model term U(t)zi then comprises all smooth random functions, accounting for all
correlation between/within response functions y∗i given the covariates xi as required
by the respective experimental design.

Ei and U jv are independent copies (ind. c.) of random processes having multivariate
D×D covariance kernels KE,KUj , with univariate covariance surfaces K(d,e)

E (t, t′) =

Cov
[
E(d)

i (t),E(e)
i (t′)

]
and K(d,e)

Uj
(t, t′) = Cov

[
U(d)

jv (t),U(e)
jv (t′)

]
reflecting the covariance

between the process dimensions d and e at t and t′. We call these auto-covariances
for d = e and cross-covariance otherwise. The multivariate Gaussian processes are
uniquely defined by their multivariate mean function, here the null function 0, and the
multivariate covariance kernels Kg and we write MGP

(
0,Kg

)
, g ∈ {U1, . . . ,Uq,E}.

Note that vectorizing the matrix U(t) allows to formulate the joint distribution
assumption vec(U(t)) ∼MGP (0,KU) with KU(t, t′) having a block-diagonal structure
repeating each KUj(t, t

′) for VUj times and KE(t, t′) for N times.
We assume that the different sources of variation U j(t), j = 1, ...,q,Ei(t), and εit

are mutually uncorrelated random processes to assure model identification. Assuming
smoothness of the covariance kernel KE further guarantees that the residual process
Ei(t) can be separated from the white noise εit, removing the error variance from the
diagonal of the smooth covariance kernel (e.g., Yao et al., 2005).

2.2 FPC representation of the random effects

Model (2.1) specifies a univariate functional linear mixed model (FLMM) as given
in Cederbaum et al. (2016) for each dimension d. The main difference lies in the
multivariate random processes that introduce dependencies between the dimensions.
In order to avoid restrictive assumptions about the structure of these multivariate
covariance operators, which would typically be very difficult to elicit a priori or verify
ex post, we estimate them directly from the data. The main difficulty then becomes
computationally efficient estimation, which is already costly in the univariate case.
Especially for higher dimensional multivariate functional data, accounting for the
cross-covariances can become a complex task, which we tackle with multivariate
functional principal component analysis (MFPCA).

Given the covariance operators (see Section 3), we represent the multivariate
random effects in Model (2.1) using truncated multivariate Karhunen-Loève (KL)
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expansions

U jv(t) ≈

MUj∑
m=1

ρUjvmψUjm(t), j = 1, ...,q; v = 1, ...,VUj,

Ev(t) ≈
ME∑
m=1

ρEvmψEm(t), v = 1, ...,N,

(2.2)

where the orthonormal multivariate eigenfunctions ψgm = (ψ(1)
gm, ..., ψ

(D)
gm )> ∈ L2

D(I),
m = 1, ...,Mg, g ∈ {U1, ...,Uq,E} of the corresponding covariance operators with
truncation order Mg are used as basis functions and the random scores ρgvm ∼

N(0, νgm) are independent and identically distributed (i.i.d.) with ordered eigenvalues
νgm of the corresponding covariance operator. Note that the assumption of
Gaussianity for the random processes can be relaxed. For non-Gaussian random
processes, the KL expansion still gives uncorrelated (but non-normal) scores and
estimation based on a penalized least squares (PLS) criterion (see Section 3.2) remains
reasonable.

Using KL expansions gives a parsimonious representation of the multivariate
random processes that is an optimal approximation with respect to the integrated
squared error (cf. Ramsay and Silverman, 2005), as well as interpretable basis
functions capturing the most prominent modes of variation of the respective process.
The distinct feature of this approach is that the multivariate FPCs directly account
for the dependency structure of each random process across the dimensions. If, by
contrast, for example, splines were used in the basis representation of the random
effects, it would be necessary to explicitly model the cross-covariances of each random
process in the model (cf. Li et al., 2020). Multivariate eigenfunctions, however, are
designed to incorporate the dependency structure between dimensions and allow the
assumption of independent (univariate) basis coefficients ρgvm via the KL theorem
(see, e.g., Happ and Greven, 2018). This leads to a parsimonious multivariate basis
for the random effects, where a typically small vector of scalar scores ρgvm common
to all dimensions represents nearly the entire information about these D-dimensional
processes.

3 Estimation

We use a two-step approach to estimate the multiFAMM and the respective
multivariate covariance operators. In a first step (Section 3.1), the D-dimensional
eigenfunctions ψgm(t) with their corresponding eigenvalues νgm are estimated from
their univariate counterparts following Cederbaum et al. (2018) and Happ and
Greven (2018). These estimates are then plugged into (2.2) and we represent the
multiFAMM as part of the general FAMM framework (Section 3.2) by suitable
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re-arrangement. We can view the estimated ψgm(t) simply as an empirically derived
basis that parsimoniously represents the patterns in the observed data. While their
estimation adds uncertainty, we are not interested in inferential statements for the
variance modes and our simulations (see Section 5) suggest that the estimated
eigenfunctions are reasonable approximations that work well as a basis.

3.1 Step 1: Estimation of the eigenfunction basis

3.1.1 Step 1 (i): Univariate mean estimation
In a first step, we obtain preliminary estimates of the dimension-specific means
µ(d)(xi, t) =

∑p
l=1 f (d)

l (xil, t) using univariate FAMMs. We model

y(d)
it = µ(d)(xi, t) + ε(d)

it ; d = 1, . . . ,D (3.1)

independently for all d with i.i.d. Gaussian random variables ε(d)
it . The estimation

of µ(d)(xi, t) proceeds analogously to the estimation of the multiFAMM described in
Section 3.2. It is based on the evaluation points of the y∗(d)

i (t), whose locations
on the interval I can vary across dimensions. Model (3.1) thus accommodates
sparse and irregular multivariate functional data and implies a working independence
assumption across scalar observations within and across functions.

3.1.2 Step 1 (ii): Univariate covariance estimation

This preliminary mean function is used to centre the data ỹ(d)
it = y(d)

it − µ̂
(d)(xi, t)

in order to obtain noisy evaluations of the detrended functions ỹ∗(d)
i (t) = y∗(d)

i (t)−
µ(d)(xi, t) for covariance estimation. Cederbaum et al. (2016) already find that for this
purpose, the working independence assumption within functions across evaluation
points in (3.1) gives reasonable results. The expectation of the crossproducts of
the centred functions then coincides with the auto-covariance, that is, E

(
ỹ(d)

it ỹ(d)
i′t′

)
≈

Cov
[
y(d)

it , y
(d)
i′t′

]
. For the independent random components specified in Model (2.1),

this overall covariance decomposes additively into contributions from each random
process as

E
(
ỹ(d)

it ỹ(d)
i′t′

)
≈

q∑
j=1

K(d,d)
Uj

(t, t′)δvjv′j +
(
K(d,d)

E (t, t′) + σ2
dδtt′

)
δii′, (3.2)

using indicators δxx′ that equal one for x = x′ and zero otherwise. The indicator δvjv′j
thus identifies if the curves in the crossproduct belong to the same group vj of the jth
layer. Using t, t′, and the indicators δvjv′j, δtt′, δii′ as covariates and the crossproducts of

the centred data as responses, we can estimate the auto-covariances K(d,d)
U1

, ...,K(d,d)
Uq

,
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and K(d,d)
E of the random processes using symmetric additive covariance smoothing

(Cederbaum et al., 2018). This extends the univariate approach proposed by
Cederbaum et al. (2016). In particular, we also allow a nested random effects structure
as required for the snooker training application in Section 4.1 by specifying the
indicator of the nested effect as the product of subject-and-session indicators. Note
that estimating (3.2) also yields estimates of the dimension-specific error variances
σ2

d as a byproduct.

3.1.3 Step 1 (iii): Univariate eigenfunction estimation
Based on the covariance kernel estimates, we apply separate univariate FPCAs
for each random process by conducting an eigendecomposition of the respective
linear integral operator. Practically, each estimated process- and dimension-specific
auto-covariance is re-evaluated on a dense grid so that a univariate functional
principal component analysis (FPCA) can be conducted. Alternatively, Reiss and
Xu (2020) provide an explicit spline representation of the estimated eigenfunctions.
Eigenfunctions with non-positive eigenvalues are removed to ensure positive
definiteness, and further regularization by truncation based on the proportion of
variance explained is possible (see, e.g., Di et al., 2009; Peng and Paul, 2009;
Cederbaum et al., 2016). However, we suggest to keep all univariate FPCs with
positive eigenvalues for the computation of the MFPCA in order to preserve all
important modes of variation and cross-correlation in the data.

3.1.4 Step 1 (iv): Multivariate eigenfunction estimation
The estimated univariate eigenfunctions and scores are then used to conduct an
MFPCA for each of the g multivariate random processes separately. The MFPCA
exploits correlations between univariate FPC scores across dimensions to reduce the
number of basis functions needed to sufficiently represent the random processes. We
base the MFPCA on the following definition of a (weighted) scalar product

〈〈f , g〉〉 :=
D∑

d=1

wd

∫
I

f (d)(t)g(d)(t)dt, f , g ∈ L2
D(I), (3.3)

for the response space with positive weights wd,d = 1, ...,D and the induced norm
denoted by ||| · |||. The corresponding covariance operators 0g : L2

D(I)→ L2
D(I)

of the multivariate random processes U jv and Ev are then given by (0gf )(t) =
〈〈f ,Kg(t, ·)〉〉, g ∈ {U1, ...,Uq,E}. The standard choice of weights in our applications
is w1 = ... = wD = 1 (unweighted scalar product) but other choices are possible.
Consider for example a scenario where dimensions are observed with different
amounts of measurement error. If variation in dimensions with a large proportion
of measurement error is to be downweighted, we propose to use wd = 1

σ̂2
d

with the

dimension-specific measurement error variance estimates σ̂2
d obtained from (3.2).
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Happ and Greven (2018) show that estimates of the multivariate eigenvalues νgm

of 0g can be obtained from an eigenanalysis of a covariance matrix of the univariate
random scores. The corresponding multivariate eigenfunctions ψgm can be obtained
as linear combinations of the univariate eigenfunctions with the weights given by the
resulting eigenvectors. The estimates ψ̂gm are then substituted for the basis functions
of the truncated multivariate KL expansions of the random effects U jv and Ev in
(2.2). Note that for each random process g, the maximum number of FPCs is given
by the total number of univariate eigenfunctions included in the estimation process of
the MFPCA of g. To achieve further regularization and analogously to Cederbaum
et al. (2016), we propose to choose truncation orders Mg for each KL expansion
of the multivariate random processes using a prespecified proportion of explained
variation.

3.1.5 Step 1 (v): Multivariate truncation order
We offer two different approaches for the choice of truncation orders Mg based on
different variance decompositions (derivation in Supplementary Material A):

E
(
|||yi − µ(xi)|||2

)
=

D∑
d=1

wd

∫
I

Var
(
y(d)

i (t)
)
dt =

∑
g

∞∑
m=1

νgm +
D∑

d=1

wdσ
2
d|I|, (3.4)

and
∫
I

Var
(
y(d)

i (t)
)
dt =

∑
g

∞∑
m=1

νgm||ψ
(d)
gm||

2 + σ2
d|I| (3.5)

with |I| the length of the interval I (here equal to one) and || · || the L2 norm.
Multivariate variance decomposition (3.4) uses the (weighted) sum of total variation
in the data across dimensions. We select the FPCs with highest associated eigenvalues
νgm over all random processes g until their sum reaches a prespecified proportion
(e.g., 0.95) of the total variation, thus approximating the infinite sums in (3.4)
with Mg summands. For the approach based on the univariate variance (3.5), we
require Mg to be the smallest truncation order for which at least a prespecified
proportion of variance is explained on every dimension d. This second choice of
Mg might be preferable in situations where the variation is considerably different
(in amount or structure) across dimensions, whereas the first approach gives a more
parsimonious representation of the random effects. Note that both approaches can
lead to a simplification of the multiFAMM if Mg = 0 is chosen for some g. The
simulation results of Section 5 suggest that increasing the number of FPCs improves
model accuracy which is why sensitivity analyses with regard to the truncation order
are recommended.
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3.2 Step 2: Estimation of the multiFAMM

In the following, we discuss estimating the multiFAMM given the estimated
multivariate FPCs. We base the proposed model on the general FAMM framework of
Scheipl et al. (2015), which models functional responses using basis representations.
To make the extension of the FAMM framework to multivariate functional data more
apparent, the multivariate response vectors and the respective model matrices are
stacked over dimensions, so that every block has the structure of a univariate FAMM
over all observations i. This gives concatenated basis functions with discontinuities
between the dimensions. The fixed effects are modelled analogously to the univariate
case by interacting all covariate effects with a dimension indicator. The random
effects are based on the parsimonious, concatenated multivariate FPC basis.

3.2.1 Matrix representation
For notational simplicity we assume that the functions are evaluated on a fixed
grid of time points t = (t(1)>, ..., t(D)>)> with t(d)> = (t(d)

1 , ..., t
(d)>
N ) and identical t(d)

i ≡

(t1, ..., tT)> over all N individuals and D dimensions. However, our framework allows
for sparse functional data using different grids per dimension and per observed
function as in the two applications (Section 4). Correspondingly, y = (y(1)>, ..., y(D)>)>

is the DNT-vector of stacked evaluation points with y(d) = (y(d)>
1 , ..., y(d)>

N )> and y(d)
i =

(y(d)
i1 , ..., y

(d)
iT )>. Model (2.1) on this grid can be written as

y = 8θ +9ρ + ε (3.6)

with 8,9 the model matrices for the fixed and random effects, respectively,
θ, ρ the vectors of coefficients and random effect scores to be estimated, and
ε = (ε(1)>, ..., ε(D)>)>, ε(d) = (ε(d)

11 , ..., ε
(d)
1T, ..., ε

(d)
NT)> the vector of residuals. We have

ε ∼ N(0,6) with 6 = diag(σ2
1, ..., σ

2
D)⊗ INT, the Kronecker product denoted by ⊗,

and the (NT ×NT) identity matrix INT.
We estimate θ and ρ by minimizing the PLS criterion

(y−8θ−9ρ)6−1(y−8θ−9ρ)> +
p∑

l=1

θ>l Pl(λxl,λtl)θl +
∑

g

λgρ
>

g Pgρg (3.7)

using appropriate penalty matrices Pl(λxl,λtl) and Pg for the fixed effects and

random effects, respectively, and smoothing parameters λxl =
(
λ

(1)
xl , ..., λ

(D)
xl

)
,λtl =(

λ
(1)
tl , ..., λ

(D)
tl

)
, and λg. The model and penalty matrices as well as the parameter

vectors of (3.6) and (3.7) are discussed in detail below.
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3.2.2 Modelling of fixed effects
The block-diagonal matrix8 = diag

(
8(1), ...,8(D)

)
models the fixed effects separately

on each dimension as in a FAMM (Scheipl et al., 2015). The (DNT × b) matrix 8
consists of the design matrices 8(d) = (8(d)

1 | ... |8
(d)
p ) that are constructed for the

partial predictors f (d)
l (x, t(d)), l = 1, ...,p, which correspond to the NT-vectors of

evaluations of the effect functions f (d)
l . The vectors of scalar covariates xi are repeated

T times to form the matrix of covariate information x = (x1, ...,x1, ...,xN)>. We use
the basis representations

f (d)
l (x, t(d)) ≈ 8(d)

l θ
(d)
l = (8(d)

xl �8
(d)
tl )θ(d)

l ,

where A� B denotes the row tensor product (A⊗ 1>b ) · (1>a ⊗ B) of the (h× a) matrix
A and the (h× b) matrix B with element-wise multiplication · and 1c the c-vector of
ones. This modelling approach combines the (NT × b(d)

xl ) basis matrix 8(d)
xl with the

(NT × b(d)
tl ) basis matrix 8

(d)
tl . These matrices contain the evaluations of suitable

marginal bases in x and t(d), respectively. For a linear effect, for example, the
basis matrix 8

(d)
xl is specified as the familiar linear model design matrix x for the

linear effect f (d)
l (x, t(d)) = xβ(d)

l (t(d)) with coefficient function β(d)
l (t(d)). For a nonlinear

effect f (d)
l (x, t(d)) = g(d)

l (x, t(d)), the basis matrix 8(d)
xl contains an (e.g., B-spline) basis

representation analogously to a scalar additive model. For the functional intercept,
8

(d)
xl is a vector of ones, and we generally use a spline basis for 8(d)

tl . For a complete
list of possible effect specifications with examples, we refer to Scheipl et al. (2015).
The tensor product basis is weighted by the b(d)

xl b(d)
tl unknown basis coefficients in

θ
(d)
l . Stacking the vectors θ(d)

l gives θ(d) = (θ(d)>
1 , ..., θ

(d)>
p )> and finally the b-vector

θ = (θ(1)>, ..., θ(D)>)> with b =
∑

d

∑
l b(d)

xl b(d)
tl .

Choosing the number of basis functions is a well known challenge in the estimation
of nonlinear or functional effects. We introduce regularization by a corresponding
quadratic penalty term in (3.7). Let θl contain the coefficients corresponding to
the partial predictor l and order it by dimensions. The penalty Pl(λxl,λtl) is then
constructed from the penalty on the marginal basis for the covariate effect, P(d)

xl ,

and the penalty on the marginal basis over the functional index, P(d)
tl . Specifically,

Pl(λxl,λtl) is a block-diagonal matrix with blocks for each d corresponding to
the Kronecker sums of the marginal penalty matrices λ(d)

xl P(d)
xl ⊗ Ib(d)

tl
+ λ(d)

tl Ib(d)
xl
⊗ P(d)

tl

(Wood, 2017). A standard choice for these marginal penalty matrices given a B-splines
basis representation are second or third order difference penalties, thus approximately
penalizing squared second or third derivatives of the respective functions (Eilers and
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Marx, 1996). For unpenalized effects such as a linear effect of a scalar covariate, the
corresponding P(d)

xl is simply a matrix of zeroes.

3.2.3 Modelling of random effects
We represent the DNT-vectors U j(t) = (U j(t(1))>, ...,U j(t(D))>)>, E(t) = (E(t(1))>, ...,
E(t(D))>)> with U j(t(d)), E(t(d)) containing the evaluations of the univariate random
effects for the corresponding groups and time points using the basis approximations

U j(t) ≈ 9UjρUj = (δUj � 9̃Uj)ρUj, E(t) ≈ 9EρE = (δE � 9̃E)ρE.

The vth column in the (DNT × Vg), g ∈ {U1, ...,Uq,E} indicator matrix δg indicates
whether a given row is from the vth group of the corresponding grouping layer.
Thus, the rows of the indicator matrix δg contain repetitions of the group indicators
z>ij and e>i in model (2.1). For the smooth residual, δE simplifies to 1D ⊗ (IN ⊗ 1T).

The (DNT ×Mg) matrix 9̃g = (9̃
(1)>
g |...|9̃

(D)>
g )> comprises the evaluations of the

Mg multivariate eigenfunctions ψ(d)
gm(t) on dimensions d = 1, ...,D for the NT time

points contained in the (NT ×Mg) matrix 9̃
(d)
g . The MgVg vector ρg = (ρ>g1, ..., ρ

>

gVg
)>

with ρgv = (ρgv1, ..., ρgvMg)
> stacks all the unknown random scores for the functional

random effect g. The (DNT ×
∑

g MgVg) model matrix 9 = (9U1 |...|9Uq |9E) then
combines all random effect design matrices. Stacking the vectors of random scores
in a

∑
g MgVg vector ρ = (ρ>U1

, ..., ρ>Uq
, ρ>E )> lets us represent all functional random

intercepts in the model via 9ρ.
For a given functional random effect, the penalty takes the form ρ>g Pgρg =

ρ>g (IVg ⊗ P̃g)ρg, where IVg corresponds to the assumed independence between the
Vg different groups. The diagonal matrix P̃g = diag(νg1, ..., νgMg)

−1 contains the
(estimated) eigenvalues νgm of the associated multivariate FPCs. This quadratic
penalty is mathematically equivalent to a normal distribution assumption on the
scores ρgv with mean zero and covariance matrix P̃

−1
g , as implied by the KL theorem

for Gaussian random processes. Note that the smoothing parameter λg allows for
additional scaling of the covariance of the corresponding random process.

3.2.4 Estimation
We estimate the unknown smoothing parameters in λxl,λtl, and λg using fast restricted
maximum likelihood (REML)-estimation (Wood, 2017). The standard identifiability
constraints of FAMMs are used (Scheipl et al., 2015). In particular, in addition to the
constraints for the fixed effects, the multivariate random intercepts are subject to a
sum-to-zero constraint over all evaluation points as given by, for example, Goldsmith
et al. (2016).
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We propose a weighted regression approach to handle the heteroscedasticity
assumption contained in 6. We weigh each observation proportionally to the inverse
of the estimated univariate measurement error variances σ̂2

d from the estimation of
the univariate covariances (3.2). Alternatively, updated measurement error variances
can be obtained from fitting separate univariate FAMMs on the dimensions using the
univariate components of the multivariate FPCs basis. In practice, we found that the
less computationally intensive former option gives reasonable results.

As our proposed model is part of the FAMM framework, inference for the
multiFAMM is readily available based on inference for scalar additive mixed models
(Wood, 2017). Note, however, that all inferential statements do not incorporate
uncertainty due to the estimated multivariate eigenfunction bases, nor in the chosen
smoothing parameters. The estimation process readily provides, amongst other
things, standard errors for the construction of point-wise univariate confidence bands
(CBs).

3.3 Implementation

We provide an implementation of the estimation of the proposed multiFAMM in
the multifamm R-package (Volkmann, 2021). It is possible to include up to two
functional random intercepts in U(t), which can have a nested or crossed structure,
in addition to the curve-specific random intercept Ei(t). While including, for example,
functional covariates is conceptually straightforward (see Scheipl et al., 2015), our
implementation is restricted to scalar covariates and interactions thereof. We provide
different alternatives for specifying the multivariate scalar product, the multivariate
cut-off criterion, and the covariance matrix of the white noise error term. Note
that the estimated univariate error variances have been proposed as weights for two
separate and independent modelling decisions: as weights in the scalar product of the
MFPCA and as regression weights under heteroscedasticity across dimensions.

4 Applications

We illustrate the proposed multiFAMM for two different data applications
corresponding to intrinsically multivariate and multimodal fuctional data. The
presentation focuses on the first application with a detailed description of the
multimodal data application in Supplementary Material C. We provide the data
and the code to produce all analyses in the Supplementary Material (http:
//www.statmod.org/smij/archive.html).

4.1 Snooker training data

4.1.1 Data set and preprocessing
In a study by Enghofer (2014), 25 recreational snooker players split into two groups,
one of which had instructions to follow a self-administered training schedule over
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Figure 1 Screenshot of software for tracking (lines) the points of interest (circles) (left), two-dimensional
trajectories of the snooker training data set (grey curves, right). For both groups of skilled and unskilled
participants, three randomly selected observations are highlighted and every line type corresponds to one
multivariate observation, that is, one observation consists of three trajectories: elbow (top), shoulder
(right) and hand (bottom). The start of the exemplary trajectories are marked with a black asterisk with the
hand trajectory centred at the origin

the next six weeks consisting of exercises aimed at improving snooker specific
muscular coordination. The second was a control group. Before and after the
training period, both groups were recorded on high-speed digital camera under
similar conditions to investigate the effects of the training on their snooker shot
of maximal force. In each of the two recording sessions, six successful shots per
participant were videotaped. The recordings were then used to manually locate
points of interest (a participant’s shoulder, elbow, and hand) and track them on
a two-dimensional grid over the course of the video. This yields a six-dimensional
functional observation per snooker shot y∗ = (y∗(elbow.x), ..., y∗(shoulder.y)) : I = [0,1]→
R6, that is, a two-dimensional movement trajectory for each point of interest (see
Figure 1).

In their starting position (hand centred at the origin), the snooker players are
positioned centrally in front of the snooker table aiming at the cue ball. From their
starting position, the players draw back the cue, then accelerate it forwards and hit
the cue ball shortly after their hands enter the positive range of the horizontal x-axis.
After the impulse onto the cue ball, the hand movement continues until it is stopped
at a player’s chest. Enghofer (2014) identify two underlying techniques that a player
can apply: dynamic and fixed elbow. With a dynamic elbow, the cue can be moved in
an almost straight line (piston stroke) whereas additionally fixing the elbow results
in a pendular motion (pendulum stroke). In both cases, the shoulder serves as a fixed
point and should be positioned close to the snooker table.

We adjust the data for differences in body height and relative speed (Steyer et al.,
2021) and apply a coarsening method to reduce the number of redundant data points,
thereby lowering computational demands of the analysis. Supplementary Material
B provides a detailed description of the data preprocessing. As some recordings
and evaluations of bivariate trajectories are missing, the final dataset contains 295
functional observations with a total of 56,910 evaluation points. These multivariate
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functional data are irregular and sparse, with a median of 30 evaluation points per
functional observation (minimum 8, maximum 80) for each of the six dimensions.

4.1.2 Model specification
We estimate the following model

yijht = µ(xij, t) + Bi(t) + Cij(t) + Eijh(t) + εijht, (4.1)

with i = 1, ...,25 the index for the snooker player, j = 1,2 the index for the session,
h = 1, ...,Hij the index for the typically six snooker shot repetitions in a session, and
t ∈ [0,1] relative time. Correspondingly, Bi(t) is a subject-specific random intercept,
Cij(t) is a nested subject-and-session-specific random intercept, and Eijh(t) is the
shot-specific random intercept (smooth residual). The nested random effect Cij(t)
is supposed to capture the variation within players between sessions (e.g., differences
due to players having a good or bad day). Different positioning of participants with
respect to the recording equipment or the snooker table as well as shot to shot
variation are captured by the smooth residual Eijh(t). The white noise measurement
error εijht is assumed to follow a zero-mean multivariate normal distribution with
covariance matrix σ2I6, as all six dimensions are measured with the same set-up. The
additive predictor is defined as

µ(xij, t) = f 0(t) + skilli · f 1(t) + groupi · f 2(t) + sessionj · f 3(t)
+ groupi · sessionj · f 4(t).

The dummy covariates skilli and groupi indicate whether player i is an advanced
snooker player and belongs to the treatment group (i.e., receives the training
programme), respectively. Note that the snooker players self-select into training and
control group to improve compliance with the training programme, which is why
we include a group effect in the model. The dummy covariate sessionj indicates
whether the shot j is recorded after the training period. The effect function f 4(t) can
thus be interpreted as the treatment effect of the training programme.

Cubic P-splines with first-order difference penalty, penalizing deviations from
constant functions over time, with 8 basis functions are used for all effect functions
in the preliminary mean estimation as well as in the final multiFAMM. For the
estimation of the auto-covariances of the random processes, we use cubic P-splines
with first-order difference penalty on five marginal basis functions. We use an
unweighted scalar product (3.3) for the MFPCA to give equal weight to all spatial
dimensions, as we can assume that the measurement error mechanism is similar
across dimensions. Additionally, we find that hand, elbow, and shoulder contribute
roughly the same amount of variation to the data, cf. Table 1 in Supplementary
Material B.3, where we also discuss potential weighting schemes for the MFPCA.
The multivariate truncation order is chosen such that 95% of the (unweighted) sum
of variation (3.4) is explained.
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Figure 2 Dominant mode (ψC1) of the subject-and-session-specific random effect, explaining 27.7% of
total variation and shown as mean trajectory (black solid) plus (+) or minus (−) 2

√
νC1 times the first FPC

(left). An asterisk marks the start of a trajectory. Estimated covariate effect functions for skill (right). The
central plot shows the effect of the coefficient function (solid) on the two-dimensional trajectories for the
reference group (dashed). The marginal plots show the estimated univariate effect functions (solid) with
pointwise 95% CBs (dotted) and the baseline (dashed)

4.1.3 Results
The MFPCA gives sets of five (for C and E) and six (for B) multivariate FPCs that
explain 95% of the total variation. The estimated eigenvalues allow to quantify
their relative importance. Approximately 41% of the total variation (conditional
on covariates) can be attributed to the nested subject-and-session-specific random
intercept Cij(t), 33% to the subject-specific random intercept Bi(t), 14% to the
shot-specific Eijh(t), and 7% to white noise. This suggests that day to day variation
within a snooker player is larger than the variation between snooker players. Note
that these proportions are based on estimation step 1 (see Section 3.1).

The left plot of Figure 2 displays the first FPC for C, which explains about 28%
of total variation. A suitable multiple of the FPCs is added (+) to and subtracted
(−) from the overall mean function (black solid line, all covariate values set to
0.5). We find that the dominant mode of the random subject-and-session-specific
effect influences the relative positioning of a player’s elbow, shoulder, and hand,
thus suggesting a strong dependence between the dimensions. Enghofer (2014) argue
from a theoretical viewpoint that the ideal starting position should place elbow
and hand in a line perpendicular to the plane of the snooker table (corresponding
to the x-axis). The most prominent mode of variation captures deviations from
this ideal starting position found in the overall mean. The next most important
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FPC ψB1 of the subject-specific random effect, which explains about 15% of total
variation, represents a subject’s tendency towards the piston or pendulum stroke
(see Supplementary Material Figure 4). This additional insight into the underlying
structure of the variance components might be helpful for, for example, developing
personalized training programmes.

The central plot on the right of Figure 2 compares the estimated mean movement
trajectory for advanced snooker players (solid line) to that in the reference group
(dashed). It suggests that more experienced players tend towards the dynamic
elbow technique, generating a hand trajectory resembling a straight line (piston
stroke). Uncertainties in the trajectory could be represented by pointwise ellipses,
but inference is more straightforward to obtain from the univariate effect functions.
The marginal plots display the estimated univariate effects with pointwise 95%
confidence intervals. Even though we find only little statistical evidence for increased
movement of the elbow (horizontal-left and vertical-top marginal panels), the hand
and shoulder movements (horizontal centre and right, vertical centre and bottom)
strongly suggest that the skill level indeed influences the mean movement trajectory
of a snooker player. Further results indicate that the mean hand trajectories might
slightly differ between treatment and control group at baseline as well as between
sessions (f 2(t) and f 3(t), see Supplementary Material Figure 8). The estimated
treatment effect f 4(t) (Supplementary Material Figure 7), however, suggests that the
training programme did not change the participants’ mean movement trajectories
substantially. Supplementary Material B.3 contains a detailed discussion of all model
terms as well as some model diagnostics and sensitivity analyses.

4.2 Consonant assimilation data

4.2.1 Data set and model specification
Pouplier and Hoole (2016) study the assimilation of the German /s/ and /sh/
sounds such as the final consonant sounds in ‘Kürbis’ (English example: ‘haggis’)
and ‘Gemisch’ (English example: ‘dish’), respectively. The research question is how
these sounds assimilate in fluent speech when combined across words such as in
‘Kürbis-Schale’ or ‘Gemisch-Salbe’, denoted as /s#sh/ and /sh#s/ with # the word
boundary. The 9 native German speakers in the study repeated a set of 16 selected
word combinations five times. Two different types of functional data, that is, acoustic
(ACO) and electropalatographic (EPG) data, were recorded for each repetition to
capture the acoustic (produced sound) and articulatory (tongue movements) aspects
of assimilation over (relative) time t within the consonant combination.

Each functional index varies roughly between +1 and −1 and measures how
similar the articulatory or acoustic pattern is to its reference patterns for the first
(+1) and second (−1) consonant at every observed time point (Cederbaum et al.,
2016). Without assimilation, the data are thus expected to shift from positive to
negative values in a sinus-like form (see Figure 3). The dataset contains 707 bivariate
functional observations with differently spaced grids of evaluation points per curve
and dimension, with the number of evaluation points ranging from 22 to 59 with a
median of 35. Note that the consonant assimilation data are unaligned as registration

Statistical Modelling xxxx; xx(x): 1–24

4. Multivariate Functional Additive Mixed Models

106



18 Alexander Volkmann et al.
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Figure 3 Index curves of the consonant assimilation dataset for both ACO and EPG data as a function of
standardized time t (grey curves). For every consonant order, three randomly selected observations have
been highlighted and every line type corresponds to one multivariate observation, that is, one observation
consists of two index curves

of the time domain would mask transition speeds between the consonants, which are
an interesting part of assimilation.

For comparability, we follow the model specification of Cederbaum et al. (2016),
who analyse only the ACO dimension and ignore the second mode EPG. Our specified
multivariate model is similar to (4.1) with i = 1, ...,9 the speaker index, j = 1, ...,16
the word combination index, h = 1, ...,Hij the repetition index and t ∈ [0,1] relative
time. Note that the nested effect Cij(t) is replaced by the crossed random effect Cj(t)
specific to the word combinations. The additive predictor µ(xj, t) now contains eight
partial effects: the functional intercept plus main and interaction effects of scalar
covariates describing characteristics of the word combination such as the order of
the consonants /s/ and /sh/. The white noise measurement error εijht is assumed to
follow a zero-mean bivariate normal distribution with diagonal covariance matrix
diag(σ2

ACO, σ
2
EPG). The basis and penalty specifications follow the univariate analysis

in Cederbaum et al. (2016). Given different sampling mechanisms, we also compare
the multiFAMM based on weighted and unweighted scalar products for the MFPCA.

4.2.2 Results
The multivariate analysis supports the findings of Cederbaum et al. (2016) that
assimilation is asymmetric (different mean patterns for /s#sh/ and /sh#s/). Overall,
the estimated fixed effects are similar across dimensions as well as comparable to the
univariate analysis. Hence, the multivariate analysis indicates that previous results for
the acoustics are consistently found also for the articulation. Compared to univariate
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analyses, our approach reduces the number of FPC basis functions and thus the
number of parameters in the analysis. The multiFAMM can improve the model fit and
can provide smaller CBs for the ACO dimension compared to the univariate model in
Cederbaum et al. (2016) due to the strong cross-correlation between the dimensions.
We find similar modes of variation for the multivariate and the univariate analysis as
well as across dimensions. In particular, the word combination-specific random effect
Cj(t) is dropped from the model as much of the between-word variation is already
explained by the included fixed effects. The definition of the scalar product has
little effect on the estimated fixed effects but changes the interpretation of the FPCs.
Supplementary Material C contains a more in-depth description of this application.

5 Simulations

5.1 Simulation set-up

We conduct an extensive simulation study to investigate the performance of the
multiFAMM depending on different model specifications and data settings (over
20 scenarios total), and to compare it to univariate regression models as proposed
by Cederbaum et al. (2016), estimated on each dimension independently. Given
the broad scope of analysed model scenarios, we refer the interested reader to
Supplementary Material D for a detailed report and restrict the presentation here
to the main results.

We mimic our two presented data examples (Section 4) and simulate new data
based on the respective multiFAMM-fit. Each scenario consists of model fits to
500 generated datasets, where we randomly draw the number and location of the
evaluation points, the random scores, and the measurement errors according to
different data settings. The accuracy of the estimated model components is measured
by the root relative mean squared error (rrMSE) based on the unweighted multivariate
norm but otherwise as defined by Cederbaum et al. (2016), see Supplementary
Material D.1. The rrMSE takes on (unbounded) positive values with smaller values
indicating a better fit.

5.2 Simulation results

Figure 4 compares the rrMSE values over selected modelling scenarios based on the
consonant assimilation data. We generate a benchmark scenario (far left boxplots),
which imitates the original data without misspecification of any model component.
In particular, the number of FPCs is fixed to avoid truncation effects. Comparing
this scenario to the two scenarios left and centre illustrates the importance of the
number of FPCs in the accuracy of the estimation. Choosing the truncation order
via the proportion of univariate variance explained (Cut-Off Uni) as in (3.5) gives
models with roughly the same number of FPCs (mean B : 2.8,E : 5) as is used for
the data generation (B : 3,E : 5). The cut-off criterion based on the multivariate
variance (Cut-Off Mul) given by (3.4) results in more parsimonious models (mean
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Figure 4 rrMSE values of the fitted curves yijh(t), the mean µ(xij , t), and the random effects Bi (t) and Eijh(t)
for different modelling scenarios. The three leftmost scenarios correspond to different model specifications
in the same data setting

B : 2.15,E : 4) and thus considerably higher rrMSE values. The increased variation
in the rrMSE values can also be attributed to variability in the truncation orders (cf.
Supplementary Material Figure 19), leading to a mixture distribution. Comparing
the benchmark scenario to more sparsely observed functional data (ceteris paribus)
suggests a lower estimation accuracy for the Sparse Data scenario (right), especially
for the curve-specific random effect Eijh(t) and resultingly the fitted curves yijh(t), but
pooling the information across functions helps the estimation of µ(xij, t) and Bi(t).
In particular, the estimation of the mean µ(xij, t) is quite robust against the increased
uncertainty of these three scenarios. Only when the random scores are not centred
and decorrelated as in the benchmark scenario do we find an increase in rrMSE
values for the mean (Uncentred Scores, far right). This corresponds to a departure
from the modelling assumptions likely to occur in practice when only few levels of
a random effect are available (here for the subject-specific Bi(t)). The model then
has difficulties to correctly separate the intercept in µ(xij, t) and the random effects
Bi(t). The empirical (non-zero) mean of the Bi(t) is then absorbed by the intercept in
µ(xij, t), resulting in higher rrMSE values for both of these model terms. However, this
shift does not affect the overall fit to the data yijh(t) nor the estimation of the other
fixed effects (cf. Supplementary Material Figure 27). Note that the rrMSE values
of the Sparse Data and Uncentred Scores scenarios are based on slightly different
normalizing constants (i.e., different true data) and cannot be directly compared
except for the mean.

Our simulation study thus suggests that basing the truncation orders on the
proportion of explained variation on each dimension (3.5) gives parsimonious
and well-fitting models. If interest lies mainly in the estimation of fixed effects,
the alternative cut-off criterion based on the total variation in the data (3.4)
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allows even more parsimonious models at the cost of a less accurate estimation
of the random effects and overall model fit. Furthermore, the results presented
in Supplementary Material D show that the mean estimation is relatively stable
over different model scenarios including misspecification of the measurement error
variance structure or of the multivariate scalar product, as well as in scenarios
with strong heteroscedasticity across dimensions. In our benchmark scenario, the
CBs cover the true effect 89− 94% of the time but coverage can further decrease
with additional uncertainty, for example, about the number of FPCs. Overall, the
covariance structure such as the leading FPCs can be recovered well, also for a
nested random effect such as in the snooker training application. The comparison
to the univariate modelling approach suggests that the multiFAMM can improve the
mean estimation but is especially beneficial for the prediction of the random effects
while reducing the number of parameters to estimate. In some cases like strong
heteroscedasticity, including weights in the multivariate scalar product might further
improve the modelling.

6 Discussion

The proposed multivariate functional regression model is an additive mixed
model, which allows to model flexible covariate effects for sparse or irregular
multivariate functional data. It uses FPC based functional random effects to model
complex correlations within and between functions and dimensions. An important
contribution of our approach is estimating the parsimonious multivariate FPC basis
from the data. This allows us to account not only for auto-covariances, but also
for non-trivial cross-covariances over dimensions, which are difficult to adequately
model using alternative approaches such as parametric covariance functions like the
Matèrn family or penalized splines, which imply a parsimonious covariance only
within but not necessarily between functions. As a FAMM-type regression model,
a wide range of covariate effect types is available, also providing pointwise CBs.
Our applications show that the multiFAMMs can give valuable insight into the
multivariate correlation structure of the functions in addition to the mean structure.

An apparent benefit of multivariate modelling is that it allows to answer
research questions simultaneously relating to different dimensions. In addition, using
multivariate FPCs reduces the number of parameters compared to fitting comparable
univariate models while improving the random effects estimation by incorporating
the cross-covariance in the multivariate analysis. The added computational costs
are small: For our multimodal application, the multivariate approach prolongs the
computation time by only 5% (104 vs. 109 minutes on a 64-bit Linux platform).

We find that the average point-wise coverage of the point-wise CBs can in some
cases lie considerably below the nominal value. There are two main reasons for this:
One, the CBs presented here do not incorporate the uncertainty of the eigenfunction
estimation nor of the smoothing parameter selection. Two, coverage issues can arise
in (scalar) mixed models, if effect functions are estimated as constant when in truth
they are not (e.g., Wood, 2017; Greven and Scheipl, 2016). To resolve these issues,
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further research on the level of scalar mixed models might be needed. A large body
of research covering CB estimation for functional data (e.g., Goldsmith et al., 2013;
Choi and Reimherr, 2018; Liebl and Reimherr, 2019) suggests that the construction
of CBs is an interesting and complex problem, also outside of the FAMM framework.

It would be interesting to extend the multiFAMM to more general scenarios
of multivariate functional data such as observations consisting of functions with
different dimensional domains, for example, functions over time and images as
in Happ and Greven (2018). This would require adapting the estimation of the
univariate auto-covariances for spatial arguments t, t′. Exploiting properties of
dense functional data, such as the block structure of design matrices for functions
observed on a grid, could help to reduce computational cost in this case. Future
research could further generalize the covariance structure of the multiFAMM by
allowing for additional covariate effects. In our snooker training application, for
example, a treatment effect of the snooker training might show itself in the
form of reduced intra-player variance (cf. Backenroth et al., 2018). Ideas from
distributional regression could be incorporated to jointly model the mean trajectories
and covariance structure conditional on covariates.
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5. Functional Additive Models on Manifolds of
Planar Shapes and Forms

While Chapters 3 and 4 consider flat geometries of functional data in Hilbert spaces,
we generalize FAM to model shapes of planar curves as elements of a Riemannian man-
ifold (Kendall’s shape space in infinite dimensions) in this contribution. We model the
mean shape via a geodesic response function inspired by geodesic regression and fit the
model with respect to the squared Riemannian distance, for which we propose a novel
Riemannian L2-Boosting algorithm. Besides considering the shape of curves modulo
translation, rotation and scale, we also model the form of curves modulo translation
and rotation but preserving the size to offer more flexibility in adapting to the data
problem at hand. While known from literature in the shape case, we derive the parallel
transport in the form space which is required for model formulation and fitting. More-
over, we establish a novel model effect visualization based on a suitable tensor-product
factorization, which allows for systematic graphical interpretation also in the multidi-
mensional functional case. The proposed methods are illustrated in a morphological
study on sheep bone shapes and for inferring cell forms generated in biophysical simu-
lations.

Contributing article:
Stöcker, A., Steyer, L., and Greven, S. (2022). Functional additive models on mani-
folds of planar shapes and forms. arXiv pre-print. Licensed under CC BY 4.0. Copy-
right © 2022 The Authors. DOI: 10.48550/ARXIV.2109.02624. Tentatively accepted
for publication in the Journal of Computational and Graphical Statistics.
Supplementary material provided in Appendix B.
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Functional additive models on manifolds of
planar shapes and forms

Almond Stöcker, Lisa Steyer, and Sonja Greven
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Abstract

The “shape” of a planar curve and/or landmark configuration is considered its
equivalence class under translation, rotation and scaling, its “form” its equivalence
class under translation and rotation while scale is preserved. We extend generalized
additive regression to models for such shapes/forms as responses respecting the re-
sulting quotient geometry by employing the squared geodesic distance as loss function
and a geodesic response function to map the additive predictor to the shape/form
space. For fitting the model, we propose a Riemannian L2-Boosting algorithm well
suited for a potentially large number of possibly parameter-intensive model terms,
which also yields automated model selection. We provide novel intuitively inter-
pretable visualizations for (even non-linear) covariate effects in the shape/form space
via suitable tensor-product factorization. The usefulness of the proposed framework
is illustrated in an analysis of 1) astragalus shapes of wild and domesticated sheep and
2) cell forms generated in a biophysical model, as well as 3) in a realistic simulation
study with response shapes and forms motivated from a dataset on bottle outlines.

Keywords: functional regression, boosting, shape analysis, tensor-product model, visual-
ization
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1 Introduction

In many imaging data problems, the coordinate system of recorded objects is arbitrary or

explicitly not of interest. Statistical shape analysis (Dryden and Mardia, 2016) addresses

this point by identifying the ultimate object of analysis as the shape of an observation,

reflecting its geometric properties invariant under translation, rotation and re-scaling, or

as its form (or size-and-shape) invariant under translation and rotation. This paper es-

tablishes a flexible additive regression framework for modeling the shape or form of planar

(potentially irregularly sampled) curves and/or landmark configurations in dependence on

scalar covariates. A rich shape analysis literature has been developed for 2D or 3D land-

mark configurations – presenting for instance selected points of a bone or face – which are

considered elements of Kendall’s shape space (see, e.g. Dryden and Mardia, 2016). In many

2D scenarios, however, observed points describe a curve reflecting the outline of an object

rather than dedicated landmarks (Adams et al., 2013). Considering outlines as images

of (parameterized) curves shows a direct link to functional data analysis (FDA, Ramsay

and Silverman, 2005) and, in this context, we speak of functional shape/form data anal-

ysis. As in FDA, functional shape/form data can be observed on a common and often

dense grid (regular/dense design) or on curve-specific often sparse grids (irregular/sparse

design). While in the regular case, analysis often simplifies by treating curve evaluations

as multivariate data, more general irregular designs gave rise to further developments in

sparse FDA (e.g. Yao et al., 2005; Greven and Scheipl, 2017), explicitly considering irregular

measurements instead of pre-smoothing curves. To the best of our knowledge, we are the

first to consider irregular/sparse designs in the context of functional shape/form analysis.

Shapes and forms are examples of manifold data. Petersen and Müller (2019) pro-

pose “Fréchet regression” for random elements in general metric spaces, which requires

estimation of a (potentially negatively) weighted Fréchet mean for each covariate combi-

nation. Their implicit rather then explicit model formulation renders model interpretation

difficult. More explicit model formulations have been developed for the special case of a

Riemannian geometry. Besides tangent space models (Kent et al., 2001), extrinsic models

(Lin et al., 2017) and models based on unwrapping (Jupp and Kent, 1987; Mallasto and
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Feragen, 2018), a variety of manifold regression models have been designed based on the

intrinsic Riemannian geometry. Starting from geodesic regression (Fletcher, 2013), which

extends linear regression to curved spaces, these include MANOVA (Huckemann et al.,

2010), polynomial regression (Hinkle et al., 2014), smoothing splines (Kume et al., 2007),

regression along geodesic paths with non-constant speed (Hong et al., 2014), or kernel

regression (Davis et al., 2010) and Kriging (Pigoli et al., 2016). However, mostly only

one metric covariate or categorical covariates are considered, possibly in hierarchical model

extensions for longitudinal data (Muralidharan and Fletcher, 2012; Schiratti et al., 2017).

By contrast, Zhu et al. (2009); Shi et al. (2009); Kim et al. (2014) generalize geodesic

regression to regression with multiple covariates focusing on symmetric positive-definite

(SPD) matrix responses. Cornea et al. (2017) develop a general generalized linear model

(GLM) analogue regression framework for responses in a symmetric manifold and apply

it to shape analysis. Recently, Lin et al. (2020) proposed a Lie group additive regression

model for Riemannian manifolds focusing on SPD matrices rather than shapes.

In FDA, there is a much wider range of developed regression methods (see overviews in

Morris, 2015; Greven and Scheipl, 2017). Among the most flexible models are functional

additive models (FAMs) for (univariate) functional responses (in contrast to FAMs with

functional covariates (Ferraty et al., 2011)) with different strategies existing to model a)

response functions and b) smooth covariate effects. For a), basis expansions in spline

(Brockhaus et al., 2015), functional principal component (FPC) bases (Morris and Carroll,

2006) or both (Scheipl et al., 2015) are employed as well as wavelets (Meyer et al., 2015),

sometimes directly expanding functions to model on coefficients and sometimes expanding

only predictions while keeping the raw measurements. Other approaches effectively evaluate

curves on grids or apply pre-smoothing techniques instead (e.g., Jeon and Park, 2020). For

b), again penalized spline basis approaches are employed (Scheipl et al., 2015; Brockhaus

et al., 2015), or local linear/polynomial (Müller and Yao, 2008; Jeon et al., 2022) or other

kernel-based approaches (Jeon and Park, 2020; Jeon et al., 2021). The different approaches

come with different theoretical and practical advantages, but similiarities such as regarding

asymptotic behavior are also known from scalar nonparametric regression (Li and Ruppert,

3

5. Functional Additive Models on Manifolds of Planar Shapes and Forms

118



2008). Advantages of the fully basis expansion based approach summarized in Greven

and Scheipl (2017) include its appropriateness for sparse irregular functional data and its

modular extensibility to functional mixed models (Scheipl et al., 2015; Meyer et al., 2015)

and non-standard response distributions (Brockhaus et al., 2015; Stöcker et al., 2021). For

bivariate or multivariate functional responses, which are closest to functional shapes/forms

but without invariances, Rosen and Thompson (2009); Zhu et al. (2012); Olsen et al. (2018)

consider linear fixed effects of scalar covariates, the latter also allowing for warping. Zhu

et al. (2017); Backenroth et al. (2018) consider one or more random effects for one grouping

variable, linear fixed effects and common dense grids for all functions. Volkmann et al.

(2021) combine the FAM model class of Greven and Scheipl (2017) with multivariate FPC

analysis (Happ and Greven, 2018) to model multivariate (sparse) functional responses.

This paper establishes an interpretable FAM framework for modeling the shape or form

of planar (potentially irregularly sampled) curves and/or landmark configurations in de-

pendence on scalar covariates, extending L2-Boosting (Bühlmann and Yu, 2003; Brockhaus

et al., 2015) to Riemannian manifolds for model estimation. The three major contributions

of our regression framework are: 1. We introduce additive regression with shapes/forms of

planar curves and/or landmarks as response, extending FAMs to non-linear response spaces

or, vice versa, extending GLM-type regression on manifolds for landmark shapes both to

functional shape manifolds and to include (non-linear) additive model effects. 2. We pro-

pose a novel Riemannian L2-Boosting algorithm for estimating regression models for this

type of manifold response, and 3. a visualization technique based on tensor-product factor-

ization yielding intuitive interpretations even of multi-dimensional smooth covariate effects

for practitioners. Although related tensor-product model transformations based on higher-

order SVD have been used, i.a., in control engineering (Baranyi et al., 2013), we are not

aware of any comparable application for visualization in FAMs or other statistical models

for object data. Despite our focus on shapes and forms, transfer of the model, Rieman-

nian L2-Boosting, and factorized visualization to other Riemannian manifold responses is

intended in the generality of the formulation and the design of the provided R package

manifoldboost (developer version on github.com/Almond-S/manifoldboost). The ver-

4

119



satile applicability of the approach is illustrated in three different scenarios: an analysis of

the shape of sheep astragali (ankle bones) represented by both regularly sampled curves

and landmarks in dependence on categorical “demographic” variables; an analysis of the

effects of different metric biophysical model parameters (including smooth interactions) on

the form of (irregularly sampled) cell outlines generated from a cellular Potts model; and a

simulation study with irregularly sampled functional shape and form responses generated

from a dataset of different bottle outlines and including metric and categorical covariates.

In Section 2, we introduce the manifold geometry of irregular curves modulo translation,

rotation and potentially re-scaling, which underlies the intrinsic additive regression model

formulated in Section 3. The Riemannian L2-Boosting algorithm is introduced in Section 4.

Section 5 analyzes different data problems, modeling sheep bone shape responses (Section

5.1) and cell outlines (Section 5.2). Section 5.3 summarizes the results of simulation studies

with functional shape and form responses. We conclude with a discussion in Section 6.

2 Geometry of functional forms and shapes

Riemannian manifolds of planar shapes (and forms) are discussed in various textbooks at

different levels of generality, in finite (Dryden and Mardia, 2016; Kendall et al., 1999) or

potentially infinite dimensions (Srivastava and Klassen, 2016; Klingenberg, 1995). Starting

from the Hilbert space Y of curve representatives y of a single shape or form observation,

we successively characterize its quotient space geometry under translation, rotation and re-

scaling including the respective tangent spaces. Building on that, we introduce Riemannian

exponential and logarithmic maps and parallel transports needed for model formulation and

fitting, and the sample space of (irregularly observed) functional shapes/forms.

To make use of complex arithmetic, we identify the two-dimensional plane with the

complex numbers, R2 ∼= C, and consider a planar curve to be a function y : R ⊃ T → C,

element of a separable complex Hilbert space Y with a complex inner product 〈·, ·〉 and

corresponding norm ‖ · ‖. This allows simple scalar expressions for the group actions of

translation Trl = {y Trlγ7−→ y + γ1 : γ ∈ C} with 1 ∈ Y canonically given by 1 : t 7→ 1
‖t7→1‖ the

real constant function of unit norm; re-scaling Scl = {y Sclλ7−→ λ·(y−0y)+0y : λ ∈ R+} around

5
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the centroid 0y = 〈1 , y〉1 (which we consider more natural than using 0, the zero element

of Y , mostly chosen in the literature); and rotation Rot = {y Rotu7−→ u · (y− 0y) + 0y : u ∈ S1}
around 0y with S1 = {u ∈ C : |u| = 1} = {exp(ω

√
-1) : ω ∈ R} reflecting counterclockwise

rotations by ω radian measure. Concatenation yields combined group actions G as direct

products, such as the rigid motions G = Trl×Rot = {Trlγ ◦Rotu : γ ∈ C, u ∈ S1} ∼= C×S1

(see Supplement S.1.1 for more details). The two real-valued component functions of y are

identified with the real part Re(y) : T → R and imaginary part Im(y) : T → R of

y = Re(y) + Im(y)
√

-1. While the complex setup is used for convenience, the real part

of 〈·, ·〉 constitutes an inner product Re(〈y1, y2〉) = 〈Re(y1) ,Re(y2)〉+ 〈Im(y1) , Im(y2)〉 for

y1, y2 ∈ Y on the underlying real vector space of planar curves. Typically Re(y) , Im(y)

are assumed square-intregrable with respect to a measure ν and we consider the canonical

inner product 〈y1, y2〉 =
∫
y†1y2dν where y† denotes the conjugate transpose of y, i.e. y†(t) =

Re(y) (t)−Im(y) (t)
√

-1 is simply the complex conjugate, but for vectors y ∈ Ck, the vector

y† is also transposed. For curves, we typically assume ν to be the Lebesgue measure on

T = [0, 1]; for landmarks, a standard choice is the counting measure on T = {1, . . . , k}.
The ultimate response object is given by the orbit [y]G = {g(y) : g ∈ G} (or short

[y]) of y ∈ Y , the equivalence class under the respective combined group actions G: with

G = Trl×Rot× Scl, [y] =[y]Trl×Rot× Scl = {λu y + γ1 : λ ∈ R+, u ∈ S1, γ ∈ C} is referred

to as the shape of y and, for G = Trl×Rot, [y] =[y]Trl×Rot = {uy + γ1 : u ∈ S1, γ ∈ C}
as its form or size-and-shape. Y/G = {[y]G : y ∈ Y} denotes the quotient space of Y with

respect to G. The description of the Riemannian geometry of Y/G involves, in particular,

a description of the tangent spaces T[y]Y/G at points [y] ∈ Y/G, which can be considered

local vector space approximations to Y/G in a neighborhood of [y]. For a point q in a

manifold M the tangent vectors β ∈ TqM can, i.a., be thought of as gradients ċ(0) of

paths c : R ⊃ (−δ, δ) → M at 0 where they pass through c(0) = q. Besides their

geometric meaning, they will also play an important role in the regression model, as additive

model effects are formulated on tangent space level. Choosing suitable representatives

ỹG ∈ [y]G ⊂ Y (or short ỹ) of orbits [y]G, we use an identification of tangent spaces with

suitable linear subspaces T[y]GY/G ⊂ Y .

6
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Form geometry: Starting with translation as the simplest invariance, an orbit [y]Trl

can be one-to-one identified with its centered representative ỹTrl = y − 〈y,1〉1 yielding

an identification Y/Trl
∼= {y ∈ Y : 〈y,1 〉 = 0} with a linear subspace of Y . Hence,

also T[y]Y/Trl = {y ∈ Y : 〈y,1 〉 = 0}. For rotation, by contrast, we can only find local

identifications with Hilbert subspaces (i.e. charts) around reference points [p]Trl×Rot we

refer to as “poles”. Moreover, we restrict to y, p ∈ Y∗ = Y \ [0 ]Trl eliminating constant

functions as degenerate special cases in the translation orbit of zero. For each [y]Trl×Rot in

an open neighborhood around [p]Trl×Rot which can be chosen with 〈ỹTrl, p̃Trl〉 6= 0, y can be

uniquely rotation aligned to p, yielding a one-to-one identification of the form [y]Trl×Rot with

the aligned representative given by ỹTrl×Rot = 〈ỹTrl,p̃Trl〉
|〈ỹTrl,p̃Trl〉| ỹ

Trl = argmin
y′∈[y]Trl×Rot

‖y′− p‖ (compare

Fig. 1). While ỹTrl×Rot depends on p, we omit this in the notation for simplicity. All ỹTrl

rotation aligned to p̃Trl lie on the hyper-plane determined by Im
(
〈ỹTrl, p̃Trl〉

)
= 0 (Figure

1), which yields T[p]Y∗/Trl + Rot = {y ∈ Y : 〈y,1〉 = 0, Im(〈y, p〉) = 0} with normal vectors

ζ(1) = 1, ζ(2) =
√

-11, ζ(3) =
√

-1 p. Note that, despite the use of complex arithmetic,

T[p]Y∗/Trl×Rot is a real vector space not closed under complex scalar multiplication. The

geodesic distance of [y]Trl×Rot to the pole [p]Trl×Rot is given by d([y]Trl×Rot, [p]Trl×Rot) =

‖ỹTrl×Rot− p̃Trl‖ = argmin
y′∈[y]Trl×Rot,p′∈[p]Trl×Rot

‖y′−p′‖. It reflects the length of the shortest path

(i.e. the geodesic) between the forms and the minimum distance between the orbits as sets.

Shape geometry: To account for scale invariance in shapes [y]Trl×Rot× Scl, they are

identified with normalized representatives ỹTrl×Rot× Scl = ỹTrl×Rot

‖ỹTrl×Rot‖ . Motivated by the nor-

malization, we borrow the well-known geometry of the sphere S = {y ∈ Y : ‖y‖ = 1}, where

TpS = {y ∈ Y : Re(〈y, p〉) = 0} is the tangent space at a point p ∈ S and geodesics are

great circles. Together with translation and rotation invariance, the shape tangent space

is then given by T[p]Y∗/Trl×Rot× Scl = T[p]Y∗/Trl×Rot ∩ TpS = {y ∈ Y : 〈y,1〉 = 0, 〈y, p〉 = 0}
with normal vector ζ(4) = p in addition to ζ(1), ζ(2), ζ(3) above. The geodesic distance

d([p]Trl×Rot× Scl, [y]Trl×Rot×Scl) = arccos |〈ỹTrl×Rot× Scl, p̃Trl×Rot× Scl〉| corresponds to the

arc-length between the representatives. This distance is often referred to as Procrustres

distance in statistical shape analysis.

7
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We may now define the maps needed for the regression model formulation. Let ỹ

and p̃ be shape/form representatives of [y] and [p] rotation aligned to the shape/form

pole representative p. Generalizing straight lines to a Riemannian manifold M, geodesics

c : (−δ, δ) → M can be characterized by their “intercept” c(0) ∈ M and “slope” ċ(0) ∈
Tc(0)M. The exponential map Expq : TqM → M at a point q ∈ M is defined to

map β 7→ c(1) for c the geodesic with q = c(0) and β = ċ(0). It maps β ∈ TqM
to a point Expq(β) ∈ M located d(q,Expq(β)) = ‖β‖ apart of the pole q in the di-

rection of β. On the form space Y/Trl×Rot, the exponential map is simply given by

Exp[p]Trl×Rot
(β) =

[
p̃Trl×Rot + β

]
Trl×Rot. On the shape space Y/Trl×Rot× Scl, identification

with exponential maps on the sphere yields Exp[p]G
(β) =

[
cos(‖β‖)p̃G + sin(‖β‖) β

‖β‖

]
G

with G = Trl×Rot× Scl. In an open neighborhood U , q ∈ U ⊂ M, Expq is invertible

yielding the Logq : U → TqMmap from the manifold to the tangent space at q. For forms, it

is given by Log[p]Trl×Rot
([y]Trl×Rot) = ỹTrl×Rot− p̃Trl×Rot and, for shapes, by Log[p]G

([y]G) =

d([p]G, [y]G) ỹG−〈p̃G,ỹG〉p̃G
‖ỹG−〈p̃G,ỹG〉p̃G‖ with G = Trl×Rot× Scl. Finally, Transpq,q′ : TqM → Tq′M

parallel transports tangent vectors ε 7→ ε′ isometrically along a geodesic c(τ) connecting

q and q′ ∈ M such that the slopes Transpq,q′(ċ(q))=ċ(q
′) are identified and all angles are

preserved. For shapes, Transp[y]G,[p]G
(ε) = ε − 〈ε, p̃G〉 ỹG+p̃G

1+〈ỹG,p̃G〉 , with G = Trl×Rot× Scl,

takes the form of the parallel transport on a sphere replacing the real inner product with

its complex analogue. For forms, it changes only the Im(〈ε, p̃〉) coordinate orthogonal to

the real ỹ-p̃-plane as in the shape case, while the remainder of ε is left unchanged as in a

linear space. This yields Transp[y]G,[p]G
(ε) = ε − Im

(
〈p̃G/‖p̃G‖, ε〉

) ỹG/‖ỹG‖+p̃G/‖p̃G‖
1+〈ỹG/‖ỹG‖,p̃G/‖p̃G‖〉

√
-1,

with G = Trl×Rot, for form tangent vectors. While equivalent expressions for the parallel

transport in the shape case can be found, e.g., in Dryden and Mardia (2016); Huckemann

et al. (2010), a corresponding derivation for the form case is given in Supplement S.1.2

including a discussion of the quotient space geometry in differential geometric terms.

Based on this understanding of the response space, we may now proceed to consider

a sample of curves y1, . . . , yn ∈ Y representing orbits [y1], . . . , [yn] with respect to group

actions G. In the functional case, with the domain T = [0, 1], these curves are usually

observed as evaluations yi = (yi(ti1), . . . , yi(tiki))
> on a finite grid ti1 < · · · < tiki ∈ T
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which may differ between observations. In contrast to the regular case with common grids,

this more general data structure is referred to as irregular functional shape/form data. To

handle this setting, we replace the original inner product 〈·, ·〉 on Y by individual 〈yi, y′i〉i =

y†iWiy
′
i providing inner products on the ki-dimensional space Yi = Cki of evaluations yi,y

′
i

on the same grid. The symmetric positive-definite weight matrix Wi can be chosen to

implement an approximation to integration w.r.t. the original measure ν with a numerical

integration measure νi such as given by the trapezoidal rule. Alternatively, Wi = 1
ki

Iki

with ki × ki identity matrix Iki presents a canonical choice that is analog to the landmark

case for ki ≡ k. Moreover, data-driven Wi could also be motivated from the covariance

structure estimated for (potentially sparse) y1, . . . , yn along the lines of Yao et al. (2005);

Stöcker et al. (2022). While this is beyond the scope of this paper, potential procedures

are sketched in Supplement S.7. With the inner products given for i = 1, . . . , n, the sample

space naturally arises as the Riemannian product Y∗1/G × · · · × Y∗n/G of the orbit spaces,

with the individual geometries constructed as described above.

3 Additive Regression on Riemannian Manifolds

Consider a data scenario with n observations of a random response covariate tuple (Y,X),

where the realizations of Y are planar curves yi : T → C, i = 1, . . . , n, belonging to

a Hilbert space Y defined as above and potentially irregularly measured on individual

grids ti1 < · · · < tiki ∈ T . The response object [Y ] is the equivalence class of Y with

respect to translation, rotation and possibly scale and the sample [y1], . . . , [yn] is equipped

with the respective Riemannian manifold geometry introduced in the previous section. For

i = 1, . . . , n, realizations xi ∈ X of a covariate vector X in a covariate space X are observed.

X can contain several categorical and/or metric covariates.

For regressing the mean of [Y ] on X = x, we model the shape/form [µ] of µ ∈ Y as

[µ] = Exp[p] (h(x)) = Exp[p]

(
J∑

j=1

hj(x)

)
, (1)

with an additive predictor h : X → T[p]Y∗/G acting in the tangent space at an “intercept”

[p] ∈ Y∗/G. Generalizing an additive model “Y = µ + ε = p + h(x) + ε” in a linear

9
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Figure 1: Left: Quotient space geometry: assuming p and y centered, translation in-

variance is not further considered in the plot; given pole representative p, we express

y = Re(〈p,y〉)
‖p‖2 p+ Im(〈p,y〉)

‖p‖2 ip+ (y− 〈p,y〉‖p‖2 p) ∈ Y in its coordinates in p and ip direction, subsum-

ing all orthogonal directions in the third dimension. In this coordinate system, the rotation

orbit [y]Rot corresponds to the dotted horizontal circle, and is identified with the aligned

ỹ := ỹRot in the half-plane of p; [y]Rot× Scl is identified with the unit vector ỹRot× Scl = ỹ
‖ỹ‖

projecting ỹ onto the hemisphere depicted by the vertical semicircle. Form and shape dis-

tances between [p] and [y] correspond to the length of the geodesics c(τ) (thick lines) on the

plane and sphere, respectively. Right: Geodesic line c(τ) between p = c(0) and p′ = c(1),

Log-map projecting y to ε ∈ TpM, parallel transport Transppp′ forwarding ε to ε′ ∈ Tp′M,

and Exp-map projecting ε′ ontoM visualized for a sphere. Tangent spaces, identified with

subspaces of the ambient space, are depicted as gray planes above the respective poles. The

parallel transport preserves all angles between tangent vectors and identifies ċ(0) ∼= ċ(1).
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space, we implicitly define [µ] as the conditional mean of [Y ] given X = x by assuming

zero-mean “residuals” ε. In their definition, we follow Cornea et al. (2017) but extend to

the functional shape/form and additive case. We assume local linearized residuals ε[µ] =

Log[µ]([Y ]) in T[µ]Y∗/G to have mean E
(
ε[µ]

)
= 0, which corresponds to E

(
ε[µ](t)

)
= 0

for (ν-almost) all t ∈ T . Here, we assume [Y ] is sufficiently close to [µ] with probability

1 such that Log[µ] is well-defined, which is the case whenever 〈Ỹ , µ̃〉 6= 0 for centered

shape/form representatives Ỹ and µ̃, an un-restrictive and common assumption (compare

also Cornea et al., 2017). However, residuals ε[µ] for different [µ] belong to separate tangent

spaces. To obtain a formulation in a common linear space instead, local residuals are

mapped to residuals ε = Transp[µ],[p](ε[µ]) by parallel transporting them from [µ] to the

common covariate independent pole [p]. After this isometric mapping into T[p]Y∗/G, we can

equivalently define the conditional mean [µ] via E (ε) = 0 for the transported residuals ε.

Exp[p] maps the additive predictor h(x) =
∑J

j=1 hj(x) ∈ T[p]Y∗/G to the response space. It

is analogous to a response function in GLMs but depends on [p]. While other response

functions could be used, we restrict to the exponential map here, such that the model

contains a geodesic model (Fletcher, 2013) – the direct generalization of simple linear

regression – as a special case for h(x) = βx1 with a single covariate x1 and tangent vector

β. Typically, it is assumed that h is centered such that E (h(X)) = 0, and the pole [p] is

the overall mean of [Y ] defined, like the conditional mean, via residuals of mean zero.

3.1 Tensor-product effect functions hj

Scheipl et al. (2015) and other authors employ tensor-product (TP) bases for functional

additive model terms. This naturally extends to tangent space effects, which we model as

hj(x) =
∑

r,l

θ
(r,l)
j b

(l)
j (x) ∂r

with the TP basis given by the pair-wise products of m linearly independent tangent vectors

∂r ∈ T[p]Y∗/G, r = 1, . . . ,m, and mj basis functions b
(l)
j : X → R, l = 1, . . . ,mj, for the j-th

covariate effect depending on one or more covariates. The real coefficients can be arranged

as a matrix {θ(r,l)
j }r,l = Θj ∈ Rm×mj . Also for infinite-dimensional T[p]Y∗/G and a general
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non-linear dependence on x, a basis representation approach requires truncation to finite

dimensions m and mj in practice. Choosing the bases to capture the essential variability in

the data, their size can be extended with increasing data size and computational resources.

While, in principle, the basis {∂r}r could also vary across effects j = 1, . . . , J , we

assume a common basis for notational simplicity, which presents the typical choice. Due

to the identification of T[p]Y∗/G with a subspace of the function space Y , the {∂r}r may

be specified using a function basis commonly used in additive models: Let b
(l)
0 : T →

R, l = 1, . . . ,m0 be a basis of real functions, say a B-spline basis (other typical bases

used in the literature include wavelet (Meyer et al., 2015) or FPC bases (Müller and Yao,

2008)). Then we construct the tangent space basis as ∂r =
∑m0

l=1

(
z

(l,r)
p + z

(m0+l,r)
p

√
-1
)
b

(l)
0 ,

employing the same basis for the 1- and
√

-1-dimension before transforming it with a basis

transformation matrix Zp = {z(l,r)
p }l,r ∈ R2m0×m with m < 2m0 implementing the linear

tangent space constraints (Section 2). Practically, Zp is obtained as null space basis matrix

of the matrix (Re(C) , Im(C)) with C = {〈b(l)
0 , ζ

(r)〉}r,l (or with the empirical inner product

on the product space of irregular curves instead) constructed from the normal vectors

ζ(r) ∈ Y , r = 1, . . . , 2m0 −m, to T[p]Y∗/G. For closed curves, we additionally choose Zp to

enforce periodicity, i.e. ∂r(t) = ∂r(t+ t0) for some t0 ∈ R (compare Hofner et al., 2016).

Given the tangent space basis, we may now modularly specify the usual additive model

basis functions b
(l)
j : X → R, l = 1, . . . ,mj, for the j-th covariate effect to obtain the full

functional additive model “tool box” offered by, e.g., Brockhaus et al. (2015). A linear effect

– linear in the tangent space – of the form hj(x) = βz with a scalar (typically centered)

covariate z in x and β ∈ T[p]Y∗/G is simply implemented by a single function b
(1)
j (x) = z.

A smooth effect of the generic form hj(x)(t) = f(z, t) can be implemented by choosing,

e.g., a B-spline basis (Asymptotic properties of penalized B-splines and connections to

kernel estimators are discussed, e.g., by Wood et al. (2016); Li and Ruppert (2008)). For

a categorical covariate effect of the form hj(x) : {1, . . . , K} → T[p]Y∗/G, κ 7→ βκ, the basis

bj(x) : κ 7→ eκ ∈ RK−1 maps category κ to a usual contrast vector eκ just as in standard

linear models. Here, we typically use effect-encoding to obtain centered effects. Moreover,

TP interactions of the model terms described above, as well as group-specific effects and
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smooth effects with additional constraints (Hofner et al., 2016) can be specified in the

model formula, relying on the mboost framework introduced by Hothorn et al. (2010),

which also allows to define custom effect designs. For identification of an overall mean

intercept [p], sum-to-zero constraints yielding
∑n

i=1 hj(xi) = 0 for observed covariates xi

can be specified, and similar constraints can be used to distinguish linear from non-linear

effects and interactions from their marginal effects (Kneib et al., 2009). Different quadratic

penalties can be specified for the coefficients Θj, allowing to regularize high-dimensional

effect bases and to balance effects of different complexity in the model fit (cf. Section 4).

3.2 Tensor-product factorization

The multidimensional structure of the response objects makes it challenging to graphically

illustrate and interpret additive model terms, in particular when it comes to non-linear

(interaction) effects, or when effect sizes are visually small. To solve this problem, we

suggest to re-write estimated TP effects ĥj with estimated coefficient matrix Θ̂j as

ĥj(x) =

m′j∑

r=1

ξ
(r)
j ĥ

(r)
j (x)

factorized into m′j = min(mj,m0) components consisting of covariate effects ĥ
(r)
j : X →

R, r = 1, . . . ,m′j, in corresponding orthonormal directions ξ
(r)
j ∈ T[p]Y∗/G with 〈ξ(r)

j , ξ
(l)
j 〉 =

1(r = l), i.e. 1 if r = l and 0 otherwise. Assuming E
(
b

(l)
j (X)2

)
< ∞, l = 1, . . . ,mj, for

the underlying effect basis, the ĥ
(r)
j are specified to achieve decreasing component vari-

ances v
(1)
j ≥ · · · ≥ v

(m′j)
j ≥ 0 given by v

(r)
j = E

(
ĥ

(r)
j (X)2

)
. In practice, the expecta-

tion over the covariates X and the inner product 〈., .〉 are replaced by empirical analogs

(compare Supplement Corollary 3). Due to orthonormality of the ξ
(r)
j , the component

variances add up to the total predictor variance
∑m′j

r=1 v
(r)
j = vj = E

(
〈ĥj(X), ĥj(X)〉

)
.

Moreover, the TP factorization is optimally concentrated in the first components in the

sense that for any l ≤ m′j there is no sequence of ξ
(r)
∗ ∈ Y and ĥ

(r)
∗ : X → R, such that

E
(
‖ĥj(X)−∑l

r=1 ξ
(r)
∗ ĥ

(r)
∗ (X)‖2

)
< E

(
‖hj(X)−∑l

r=1 ξ
(r)
j ĥ

(r)
j (X)‖2

)
, i.e. the series of the

first l components yields the best rank l approximation of ĥj. The factorization relies on

SVD of (a transformed version of) the coefficient matrix Θ̂j and the fact that it is well-
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defined is a variant of the Eckart-Young-Mirsky theorem (proof in Supplement S.2).

Particularly when large shares of the predictor variance are explained by the first com-

ponent(s), the decomposition facilitates graphical illustration and interpretation: choosing

a suitable constant τ 6= 0, an effect direction ξ
(r)
j can be visualized by plotting the pole

representative p together with Expp(τ ξ
(r)
j ) on the level of curves, while accordingly re-

scaled 1
τ
ĥ

(r)
j (x) is displayed separately in a standard scalar effect plot. Adjusting τ offers

an important degree of freedom for visualizing ξ
(r)
j on an intuitively accessible scale while

faithfully depicting ξ
(r)
j ĥ

(r)
j (x). When based on the same τ , different covariate effects can be

compared across the plots sharing the same scale. We suggest τ = maxj
√
vj, the maximum

total predictor standard deviation of an effect, as a good first choice.

Besides factorizing effects separately, it can also be helpful to apply TP factorization

to the joint additive predictor, yielding

h(x) =
m′∑

r=1

ξ(r)ĥ(r)(x) =
m′∑

r=1

ξ(r)
(
ĥ

(r)
1 (x) + · · ·+ ĥ

(r)
J (x)

)
, m′ = min(

∑

j

mj,m),

with again ξ(r) ∈ T[p]Y∗/G orthonormal and the corresponding variance concentration in the

first components, but now determined w.r.t. entire additive predictors ĥ(r) =
∑J

j=1 ĥ
(r)
j

spanned by all covariate basis functions in the predictor. In this representation, the first

component yields a geodesic additive model approximation where the predictor moves along

a geodesic line c(τ) = Exp[p]

(
ξ(1)τ

)
with the signed distance τ ∈ R from [p], modeled by

a scalar additive predictor ĥ(1)(x) composed of covariate effects analogous to the original

model predictor. In Section 5, we illustrate its potential in three different scenarios.

4 Component-wise Riemannian L2-Boosting

Component-wise gradient boosting (e.g. Hothorn et al., 2010) is a step-wise model fitting

procedure accumulating predictors from smaller models, so called base-learners, to built

an ensemble predictor aiming at minimizing a mean loss function. To this end, the base-

learners are fit (via least squares) to the negative gradient of the loss function in each

step and the best fitting base-learner is added to the current ensemble predictor. Due to

its versatile applicability, inherent model selection, and slow over-fitting behavior, boosting
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has proven useful in various contexts (Mayr et al., 2014). Boosting with respect to the least

squares loss function `(y, µ) = 1
2
(y − µ)2, y, µ ∈ R, is typically referred to as L2-Boosting

and simplifies to repeated re-fitting of residuals ε = y−µ = −∇µ`(y, µ) corresponding to the

negative gradient of the loss function. For L2-Boosting with a single learner, Bühlmann and

Yu (2003) show how fast bias decay and slow variance increase over the boosting iterations

suggest stopping the algorithm early before approaching the ordinary (penalized) least

squares estimator. Lutz and Bühlmann (2006) prove consistency of component-wise L2-

Boosting in a high-dimensional multivariate response linear regression setting and Stöcker

et al. (2021) illustrate in extensive simulation studies how stopping the boosting algorithm

early based on curve-wise cross-validation applies desired regularization when fitting (even

highly autocorrelated) functional responses with parameter-intense additive model base-

learners and, thus, leads to good estimates even in challenging scenarios.

When generalizing to least squares on Riemannian manifolds with the loss 1
2
d2([y], [µ]) given

by the squared geodesic distance, the negative gradient −∇[µ]
1
2
d2([y], [µ]) = Log[µ]([y]) =

ε[µ] (compare e.g. Pennec, 2006) corresponds to the local residuals ε[µ] defined in Section 3.

This analogy to L2-Boosting motivates the presented generalization where local residuals

are further transported to residuals ε in a common linear space.

Consider the pole [p] known and fixed for now. Assuming its existence, we aim to

minimize the population mean loss

σ2(h) = E
(
d2
(
[Y ],Exp[p] (h(X))

))

with the point-wise minimizer h?(x) = argmin
h:X→T[p]Y∗/G

E
(
d2
(
[Y ],Exp[p] (h(X))

)
| X = x

)
mini-

mizing the conditional expected squared distance. Fixing a covariate constellation x ∈ X ,

the prediction [µ] = Exp[p] (h?(x)) corresponds to the Fréchet mean (Karcher, 1977) of [Y ]

conditional on X = x. In a finite-dimensional context, Pennec (2006) show that E
(
ε[µ]

)
= 0

for a Fréchet mean [µ] if residuals ε[µ] are uniquely defined with probability one. This in-

dicates the connection to our residual based model formulation in Section 3. We fit the

model by reducing the empirical mean loss σ̂2(h) = 1
n

∑n
i=1 d

2
i

(
[yi],Exp[p] (h(xi))

)
, where

we replace the population mean by the sample mean and compute the geodesic distances

di with respect to the inner products 〈·, ·〉i defined for the respective evaluations of yi.
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A base-learner corresponds to a covariate effect hj(x) =
∑

r,l θ
(r,l)
j b

(l)
j (x) ∂r, Θj =

{θ(r,l)
j }r,l, which is repeatedly fit to the transported residuals ε1, . . . , εn by penalized least-

squares (PLS) minimizing
∑n

i=1 ‖εi − hj(xi)‖2
i + λj tr

(
ΘjPjΘ

>
j

)
+ λ tr

(
Θ>PΘ

)
. Via

the penalty parameters λj, λ ≥ 0 the effective degrees of freedom of the base-learners

are controlled (Hofner et al., 2011) to achieve a balanced “fair” base-learner selection

despite the typically large and varying number of coefficients involved in the TP ef-

fects. The symmetric penalty matrices Pj ∈ Rmj×mj and P ∈ Rm×m (imposing, e.g.,

a second-order difference penalty for B-splines in either direction) can equivalently be ar-

ranged as a mjm × mjm penalty matrix Rj = λj(Pj ⊗ Im) + λ(Imj ⊗ P) for the vec-

torized coefficients vec (Θj) = (θ
(1,1)
j , . . . , θ

(m,1)
j , . . . , θ(m,mj))>, where ⊗ denotes the Kro-

necker product. The standard PLS estimator is then given by vec (Θ̂j) = (Ψj + Rj)
−1ψj

with Ψj =
∑n

i=1

{
Re
(
〈b(l)
j (xi)∂r, b

(l′)
j (xi)∂r′〉i

)}
(r,l)=(1,1),...,(m,1),...,(m,mj)

(r′,l′)=(1,1),...,(m,1),...,(m,mj)

∈ Rmmj×mmj and

ψj =
∑n

i=1

{
Re
(
〈b(l)
j (xi)∂r, εi〉i

)}
(r,l)=(1,1),...,(m,1),...,(m,mj)

∈ Rmmj . In a regular design,

using the functional linear array model (Brockhaus et al., 2015) can save memory and

computation time by avoiding construction of the complete matrices. The basis construc-

tion of {∂r}r via a transformation matrix Zp (Section 3.1) is reflected in the penalty by

setting P = Z>p (I2⊗P0)Zp with P0 the penalty matrix for the un-transformed basis {b(r)
0 }r.

In each iteration of the proposed Algorithm 1, the best-performing base-learner is added

to the current ensemble additive predictor h(x) after multiplying it with a step-length

parameter η ∈ (0, 1]. Due to the additive model structure this corresponds to a coefficient

update of the selected covariate effect. Accordingly, after repeated selection, the effective

degrees of freedom of a covariate effect, in general, exceed the degrees specified for the base-

learner. They are successively adjusted to the data. To avoid over-fitting, the algorithm

is typically stopped early before reaching a minimum of the empirical mean loss. The

stopping iteration is determined, e.g., by re-sampling strategies such as bootstrapping or

cross-validation on the level of shapes/forms.

The pole [p] is, in fact, usually not a priori available. Instead we typically assume [p] =

argmin
q∈Y∗

E (d2([Y ], [q])) is the overall Fréchet mean, also often referred to as Riemannian

center of mass for Riemannian manifolds or as Procrustes mean in shape analysis (Dryden
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Algorithm 1: Component-wise Riemannian L2-Boosting

# Initialization:

Geometry : specify geometry (shape/form) and pole representative p

Hyper-parameters: Step-length η ∈ (0, 1], number of boosting iterations

Base-learners : hj(x) with penalty matrix Rj and

initial coefficient matrix Θj = 0

for j = 1 to J do # Prepare penalized least-squares (PLS)

# set up mmj ×mmj matrix:

Ψj ←
∑n

i=1

{
Re
(
〈b(l)
j (xi)∂r, b

(l′)
j (xi)∂r′〉i

)}
(r,l)=(1,1),...,(m,1),...,(m,mj)

(r′,l′)=(1,1),...,(m,1),...,(m,mj)

end

repeat # boosting steps

for i = 1, . . . , n do # Compute current transported residuals

[µi]← Exp[p](h(xi))

ε[µi] ← Log[µi]
([yi])

εi ← Transp[µi],[p]
(ε[µi])

end

for j = 1, . . . , J do # PLS fit to residuals

# mmj vector:

ψj ←
∑n

i=1

{
Re
(
〈b(l)
j (xi)∂r, εi〉i

)}
(r,l)=(1,1),...,(m,1),...,(m,mj)

Θ̂j = {θ̂(r,l)
j }r,l ← Solve( (Ψj + Rj) vec(Θ) = ψj)

end

̂← argmin
j∈{1,...,J}

∑n
i=1 ‖εi −

∑
r,l θ̂

(r,l)
j b

(l)
j (x)∂r‖2

i ; # Select base-learner

Θ̂ ← Θ̂ + η Θ̂̂; # Update selected model coefficients

until Stopping criterion (e.g. minimal cross-validation error)
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and Mardia, 2016). Here, we estimate it as [p] = Exp[p0](h0) in a preceding Riemannian

L2-Boosting routine. The constant effect h0 ∈ T[p0]Y∗/G in the intercept-only special case

of our model is estimated with Algorithm 1 based on a preliminary pole [p0] ∈ Y∗/G. For

shapes and forms, a good candidate for p0 can be obtained as the standard functional mean

of a reasonably well aligned sample y1, . . . , yn ∈ Y of representatives.

The proposed Riemannian L2-Boosting algorithm is available in the R (R Core Team,

2018) package manifoldboost (github.com/Almond-S/manifoldboost). The implemen-

tation is based on the package FDboost (Brockhaus et al., 2020), which is in turn based on

the model-based boosting package mboost (Hothorn et al., 2010).

5 Applications and Simulation

5.1 Shape differences in astragali of wild and domesticated sheep

In a geometric morphometric study, Pöllath et al. (2019) investigate shapes of sheep as-

tragali (ankle bones) to understand the influence of different living conditions on the mi-

cromorphology of the skeleton. Based on a total of n = 163 shapes recorded by Pöllath

et al. (2019), we model the astragalus shape in dependence on different variables, in-

cluding domestication status (wild/feral/domesticated), sex (female/male/NA), age (juve-

nile/subadult/adult/NA), and mobility (confined/pastured/free) of the animals as cate-

gorical covariates. The sample comprises sheep of four different populations: Asiatic wild

sheep (Field Museum, Chicago; Lay, 1967; Zeder, 2006), feral Soay sheep (British Nat-

ural History Museum, London; Clutton-Brock et al., 1990), and domestic sheep of the

Karakul and Marsch breed (Museum of Livestock Sciences, Halle (Saale); Schafberg and

Wussow, 2010). Table S1 in Supplement S.3 shows the distribution of available covariates

within the populations. Each sheep astragalus shape, i = 1, . . . , n, is represented by a

configuration composed of 11 selected landmarks in a vector ylm
i ∈ C11 and two vectors

of sliding semi-landmarks yc1
i ∈ C14 and yc2

i ∈ C18 evaluated along two outline curve seg-

ments, marked on a 2D image of the bone (dorsal view). Several example configurations

are displayed in Supplement Figure S1. In general, we could separately specify smooth
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function bases for the outline segments yc1
i and yc2

i , respectively. Due to their system-

atic recording, we assume, however, that not only landmarks but also semi-landmarks are

regularly observed on a fixed grid, and refrain from using smooth function bases for sim-

plicity. Accordingly, shape configurations can directly be identified with their evaluation

vectors yi =
(
ylm>
i ,yc1>

i ,yc2>
i

)> ∈ C43 = Y , and the geometry of the response space

Y∗/Trl×Rot× Scl widely corresponds to the classic Kendall’s shape space geometry, with the

difference that, considering landmarks more descriptive than single semi-landmarks, we

choose a weighted inner product 〈yi,y′i〉 = y†iWy′i with diagonal weight matrix W with di-

agonal
(
1>11,

3
14

1>14,
3
18

1>18

)>
assigning the weight of three landmarks to each outline segment.

We model the astragalus shapes [yi] ∈ Y∗/Trl×Rot× Scl as

[µi] = Exp[p]

(
βstatusi

+ βpopi
+ βagei

+ βsexi
+ βmobilityi

)

with the pole [p] ∈ Y∗/G specified as overall mean and the conditional mean [µi] ∈ Y∗/Trl×Rot×Scl

depending on the effect coded covariate effects xij 7→ βxij ∈ T[p]Y∗/Trl×Rot× Scl. For identifi-

ability, the population and mobility effects are centered around the status effect, as we only

have data on different populations/mobility levels for domesticated sheep. All base-learners

are regularized to one degree of freedom by employing ridge penalties for the coefficients

of the covariate bases {b(l)
j }l while the coefficients of the response basis (the standard basis

for C43) are left un-penalized. With a step-length of η = 0.1, 10-fold shape-wise cross-

validation suggests early stopping after 89 boosting iterations. Due to the regular design,

we can make use of the functional linear array model (Brockhaus et al., 2015) for saving

computation time and memory, which lead to 8 seconds of initial model fit followed by 47

seconds of cross-validation. To interpret the categorical covariate effects, we rely on TP

factorization (Figure 2). The first component of the status effect explains about 2/3 of the

variance of the status effect and over 50% of the cumulative effect variance in the model. In

that main direction, the effect of feral is not located between wild and domestic, as might

be naively expected. By contrast, the second component of the effect seems to reflect the

expected order and still explains a considerable amount of variance. Similar to Pöllath

et al. (2019), we find little influence of age, sex and mobility on the astragalus shape. Yet,

all covariates were selected by the boosting algorithm.
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Figure 2: Left : Shares of different factorized covariate effects in the total predictor vari-

ance. Right : Factorized effect plots showing the two components of the status effect (rows):

in the right column, the two first directions ξ
(1)
1 , ξ

(2)
1 ∈ T[p]Y∗/Trl + Rot + Scl are visualized via

line-segments originating at the overall mean shape (empty circles) and ending in the shape

resulting from moving 1 unit into the target direction (solid circles ; large: landmarks; small :

semi-landmarks along the outline); in the left column, the status effect in the respective

direction is depicted. As illustrated in the middle plot, an effect of 1 would correspond to

the full extend of the direction shown to the right.

Visually, differences in estimated mean shapes are rather small, which is, in our ex-

perience, quite usual for shape data. With differences in size, rotation and translation

excluded by definition, only comparably small variance remains in the observed shapes.

Nonetheless, TP factorization provides accessible visualization of the effect directions and

allows to partially order the effect levels in each direction.
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5.2 Cellular Potts model parameter effects on cell form

The stochastic biophysical model proposed by Thüroff et al. (2019), a cellular Potts model

(CPM), simulates migration dynamics of cells (e.g. wound healing or metastasis) in two

dimensions. The progression of simulated cells is the result of many consecutive local ele-

mentary events sampled with a Metropolis-algorithm according to a Hamiltonian. Different

parameters controlling the Hamiltonian have to be calibrated to match real live cell prop-

erties (Schaffer, 2021). Considering whole cells, parameter implications on the cell form

are not obvious. To provide additional insights, we model the cell form in dependence on

four CPM parameters considered particularly relevant: the bulk stiffness xi1, membrane

stiffness xi2, substrate adhesion xi3, and signaling radius xi4 are subsumed in a vector xi

of metric covariates for i = 1, . . . , n. Corresponding sampled cell outlines yi were provided

by Sophia Schaffer in the context of Schaffer (2021), who ran underlying CPM simulations

and extracted outlines. Deriving the intrinsic orientation of the cells from their movement

trajectories, we parameterize yi : [0, 1] → C, clockwisely relative to arc-length such that

yi(0) = yi(1) points into the movement direction of the barycenter of the cell. With an

average of k = 1
n

∑n
i=1 ki ≈ 43 samples per curve (after sub-sampling preserving 95% of

their inherent variation, as described in Volkmann et al., 2021, Supplement), the evaluation

vectors yi ∈ Cki are equipped with an inner-product implementing trapezoidal rule inte-

gration weights. Example cell outlines are depicted in Supplement Figure S4. The results

shown below are based on cell samples obtained from 30 different CPM parameter config-

urations. For each configuration, 33 out of 10.000 Monte-Carlo samples were extracted as

approximately independent. This yields a dataset of n = 990 = 30× 33 cell outlines.

As positioning of the irregularly sampled cell outlines yi, i = 1, . . . , n, in the coordinate

system is arbitrary, we model the cell forms [yi] ∈ Y∗/Trl + Rot. Their estimated overall form

mean [p] serves as pole in the additive model

[µi] = Exp[p]

(
h(xi)

)
= Exp[p]

(∑

j

βjxij +
∑

j

fj(xij) +
∑

j 6=̈
fj̈(xij, xi̈)

)

where the conditional form mean [µi] is modeled in dependence on tangent-space linear

effects with coefficients βj ∈ T[p]Y/Trl×Rot and non-linear smooth effects fj for covariate
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j = 1, . . . , 4, as well as smooth interaction effects fj̈ for each pair of covariates j 6= ̈.

All involved (effect) functions are modeled via a cyclic cubic P-spline basis {b(r)
0 }r with 7

(inner) knots and a ridge penalty, and quadratic P-splines with 4 knots for the covariates

xij equipped with a second order difference penalty for the fj and ridge penalties for

interactions. Covariate effects are mean centered and interaction effects fj̈(xj, x̈) are

centered around their marginal effects fj(xj), f̈(x̈), which are in turn centered around the

linear effects βjxj and β̈x̈, respectively. Resulting predictor terms involve 69 (linear effect)

to 1173 (interaction) basis coefficients but are penalized to a common degree of freedom of

2 to ensure a fair base-learner selection. We fit the model with a step-size of η = 0.25 and

stop after 2000 boosting iterations observing no further meaningful risk reduction, since

no need for early-stopping is indicated by 10-fold form-wise cross-validation. Due to the

increased number of data points and coefficients, the irregular design, and the increased

number of iterations, the model fit takes considerably longer than in Section 5.1, with about

50 initial minutes followed by 8 hours of cross-validation. However, as usual in boosting,

model updates are large in the beginning and only marginal in later iterations, such that

fits after 1000 or 500 iterations would already yield very similar results.

Observing that the most relevant components point into similar directions, we jointly

factorize the predictor as ĥ(xi) =
∑

r ξ
(r)ĥ(r)(xi) with TP factorization. The first com-

ponent explains about 93% of the total predictor variance (Supplement Fig. S3), indi-

cating that, post-hoc, a good share of the model can be reduced to the geodesic model

[µ̂i] = Exp[p](ξ
(1)ĥ(1)(xi)) illustrated in Figure 3. A positive effect in the direction ξ(1)

makes cells larger and more keratocyte / croissant shaped, a negative effect – pointing into

the opposite direction – makes them smaller and more mesenchymal shaped / elongated.

The bulk stiffness xi1 turns out to present the most important driving factor behind the

cell form, explaining over 75% of the cumulative variance of the effects (Supplement Fig.

S2). Around 80% of its effect are explained by the linear term reflecting gradual shrinkage

at the side of the cells with increasing bulk stiffness.
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Figure 3: Center: the main direction ξ(1) of the model illustrated as vectors pointing from

the overall mean cell form [p] (grey curve) to the form Exp[p](ξ
(1)) (blue dots), which are

both oriented as cells migrating rightwards. Left: Effects of the bulk stiffness xi1 into the

direction ξ(1). A vertical line from 0, corresponding to [p], to 1, corresponding to the full

extent of ξ(1), underlines the connection between the plots and helps to visually asses the

amount of change for a given value of xi1. Right: The overall effect of xi1 and membrane

stiffness xi2, comprising linear, smooth and interaction effects, as a 3D surface plot. The

heat map plotted on the surface shows only the interaction effect f
(1)
12 (xi1, xi2) illustrating

deviations from the marginal effects, which are of particular interest for CPM calibration.

5.3 Realistic shape and form simulation studies

To evaluate the proposed approach, we conduct simulation studies for both form and shape

regression for irregular curves. We compare sample sizes n ∈ {54, 162} and average grid

sizes k = 1
n

∑n
i=1 ki ∈ {40, 100} as well as an extreme case with ki = 3 for each curve but

n = 720, i.e. where only random triangles are observed (yet, with known parameterization

over [0, 1]). We additionally investigate the influence of nuisance effects and compare

different inner product weights. While important results are summarized in the following,

comprehensive visualizations can be found in Supplement S.5.
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Simulation design: We simulate models of the form [µ] = Exp[p] (βκ + f1(z1)) with

overall mean [p], a binary effect with levels κ ∈ {0, 1} and a smooth effect of z1 ∈ [−60, 60].

We choose a cyclic cubic B-spline basis with 27 knots for T[p]Y∗/G, placing them irregularly

at 1/27-quantiles of unit-speed parameterization time-points of the curves. Cubic B-splines

with 4 regularly placed knots are used for covariates in smooth effects. True models are

based on the bot dataset from R package Momocs (Bonhomme et al., 2014) comprising

outlines of 20 beer (κ = 0) and 20 whiskey (κ = 1) bottles of different brands. A smooth

effect is induced by the 2D viewing transformations resulting from tilting the planar outlines

in a 3D coordinate system along their longitudinal axis by an angle of up to 60 degree

towards the viewer (z1 = 60) and away (z1 = −60) (i.e. in a way not captured by 2D

rotation invariance). Establishing ground truth models based on a fit to the bottle data, we

simulate new responses [y1], . . . , [yn] via residual re-sampling (Supplement S.5) to preserve

realistic autocorrelation. Subsequently, we randomly translate, rotate and scale y1, . . . , yn ∈
Y somewhat around the aligned form/shape representatives to obtain realistic samples.

The implied residual variance 1
n

∑n
i=1 ‖εi‖2

i = 1
n

∑n
i=1 d

2
i ([yi], [µi]) on simulated datasets

ranges around 105% of the predictor variance 1
n

∑n
i=1 ‖h(xi)‖2

i = 1
n

∑n
i=1 d

2
i ([µi], [p]) in the

form scenario and around 65% in the shape scenario. All simulations were repeated 100

times, fitting models with the model terms specified above and three additional nuisance

effects: a linear effect βz1 (orthogonal to f1(z1)), an effect f2 of the same structure as

f1 but depending on an independently uniformly drawn variable z2, and a constant effect

h0 ∈ T[p]Y∗/G to test centering around [p]. Base-learners are regularized to 4 degrees of

freedom (step-length η = 0.1). Early-stopping is based on 10-fold cross-validation.

Form scenario: In the form scenario, the smooth covariate effect f1 offers a particularly

clear interpretation. TP factorization decomposes the true effect into its two relevant

components, where the first (major) component corresponds to the bare projection of the

tilted outline in 3D into the 2D image plane and the second to additional perspective

transformations (Fig. 4). For this effect, we observe a median relative mean squared error

rMSE(ĥj) =
∑n

i=1 ‖ĥj(xi) − hj(xi)‖2
i /
∑n

i=1 ‖h(xi)‖2
i of about 3.7% of the total predictor

variance for small data settings with n = 54 and k = 100 (5.9% with k = 40), which
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Figure 4: Left: First (row 1) and second (row 2) main components of the smooth effect

f1(z1) in the form scenario obtained from TP factorization. Normalized component di-

rections are visualized as bottle outlines after transporting them to the true pole (gray

solid outline). Underlying truth (orange solid lines / areas) are plotted together with five

example estimates for n = 162 and k = 100 (black solid lines) and the extremely sparse

ki = 3 setting (gray dashed lines). Center: Conditional means for both bottle types with

fixed metric covariate z1 = 0 in the shape scenario with n = 54 and k = 40. Five example

estimates (black solid outlines) are plotted in front of the underlying truth (olive-green ar-

eas). Right: rMSE of shown example estimates (jittered colored diamonds) contextualized

with boxplots of rMSE distributions observed in respective simulation scenarios.

reduces to 1.5% for n = 162 (for both k = 40 and k = 100). It is typical for functional data

that, from a certain point, adding more (highly correlated) evaluations per curve leads to

distinctly less improvement in the model fit than adding further observations (compare,

e.g., also Stöcker et al., 2021). In the extreme ki = 3 scenario, we obtain an rMSE of

around 15%, which is not surprisingly considerably higher than for the moderate settings

above. Even in this extreme setting (Fig. 4), the effect directions are captured well, while
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the size of the effect is underestimated. Rotation alignment based on only three points

(which are randomly distributed along the curves) might considerably differ from the full

curve alignment, and averaging over these sub-optimal alignments masks the full extend of

the effect. Still, results are very good given the sparsity of information in this case. Having

a simpler form, the binary effect βκ is also estimated more accurately with an rMSE of

around 1.5% for n = 54, k = 100 (1.9% for k = 40) and less than 0.8% for n = 162 (for

both k = 40 and k = 100). The pole estimation accuracy varies on a similar scale.

Shape scenario: Qualitatively, the shape scenario shows a similar picture. For k = 40,

we observe median rMSEs of 2.8% (n = 54) and 2.2% (n = 162) for f1(z1), and 1.5% and

0.6% for the binary effect βκ. For k = 100, accuracy is again slightly higher.

Nuisance effects and integration weights: Nuisance effects in the model where

generally rarely selected and, if selected at all, only lead to a marginal loss in accuracy.

The constant effect is only selected sometimes in the extreme triangle scenarios, when pole

estimation is difficult. We refer to Brockhaus et al. (2017), who perform gradient boosting

with functional responses and a large number of covariate effects with stability selection,

for simulations with larger numbers of nuisance effects and further discussion in a related

context, as variable selection is not our main focus here. Finally, simulations indicate that

inner product weights implementing a trapezoidal rule for numerical integration are slightly

preferable for typical grid sizes (k = 40, 100), whereas weights of 1/ki equal over all grid

points within a curve gave slightly better results in the extreme ki = 3 settings.

All in all, the simulations show that Riemannian L2-Boosting can adequately fit both

shape and form models in a realistic scenario and captures effects reasonably well even for

a comparably small number of sampled outlines or evaluations per outline.

6 Discussion and Outlook

Compared to existing (landmark) shape regression models, the presented approach extends

linear predictors to more general additive predictors including also, e.g., smooth nonlinear

model terms and interactions, and yields the first regression approach for functional shape

as well as form responses. Moreover, we propose novel visualizations based on TP factor-
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ization that, similar to FPC analysis, enable a systematic decomposition of the variability

explained by an additive effect on tangent space level. Yielding meaningful coordinates for

model effects, its potential for visualization will be useful also for FAMs in linear spaces and

also beyond our model framework, such as we exemplarily illustrate for the non-parametric

approach of Jeon and Park (2020) in Supplement S.8.

Instead of operating on the original evaluations yi ∈ Cki of response curves yi as in all

applications above, another frequently used approach expands yi, i = 1, . . . , n, in a common

basis first, before carrying out statistical analysis on coefficient vectors (compare Ramsay

and Silverman (2005); Morris (2015) and Müller and Yao (2008) for smoothing spline,

wavelet or FPC representations in FDA or Bonhomme et al. (2014) in shape analysis).

Shape/form regression on the coefficients is, in fact, a special case of our approach, where

the inner product is evaluated on the coefficients instead of evaluations (Supplement S.6).

The proposed model is motivated by geodesic regression. However, in the multiple

linear predictor, a linear effect of a single covariate does, in general, not describe a geodesic

for fixed non-zero values of other covariate effects. Or put differently, Exp[p] (h1 + h2) 6=
ExpExp[p](h1) (h2) 6= ExpExp[p](h2) (h1) in general. Thus, hierarchical geodesic effects of the

form ExpExp[p](h1) (h2), relevant, i.a., in mixed models for hierarchical/longitudinal study

designs (Kim et al., 2017), present an interesting future extension of our model. Moreover,

an “elastic” extension based on the square-root-velocity framework (Srivastava and Klassen,

2016) presents a promising direction for future research, as do other manifold responses.
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Volkmann, A., A. Stöcker, F. Scheipl, and S. Greven (2021). Multivariate functional addi-

tive mixed models. Statistical Modelling .

33

5. Functional Additive Models on Manifolds of Planar Shapes and Forms

148
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6. Elastic Analysis of Irregularly and Sparsely
Sampled Curves

Complementary to Chapter 5, we consider curves with fixed orientation and size in
this contribution – but as equivalence classes modulo re-parameterization (warping).
Based on the square-root-velocity (SRV) framework, we develop methods for estimating
Fréchet means of irregularly/sparsely sampled curves using spline-representations and
show identifiability statements for these. Using the “elastic” metric, proper distances
can be defined via optimal warping alignment (registration) of parameterized curves
(up to translation). Moreover, we illustrate the use of elastic distances for clustering
and classification in irregularly sampled curves in data on undocumented walking paths
in Berlin Tempelhofer Feld and a spiral test used for diagnosis of Parkinson’s disease.

Contributing article:
Steyer, L., Stöcker, A., and Greven, S. (2022). Elastic analysis of irregularly or sparsely
sampled curves. Biometrics. Licensed under CC BY 4.0. Copyright © 2022 The Au-
thors. DOI: 10.1111/biom.13706.
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Abstract
We provide statistical analysis methods for samples of curves in two or more
dimensions, where the image, but not the parameterization of the curves, is
of interest and suitable alignment/registration is thus necessary. Examples are
handwritten letters, movement paths, or object outlines. We focus in particu-
lar on the computation of (smooth) means and distances, allowing, for example,
classification or clustering. Existing parameterization invariant analysismethods
based on the elastic distance of the curves modulo parameterization, using the
square-root-velocity framework, have limitations in common realistic settings
where curves are irregularly and potentially sparsely observed.We propose using
spline curves to model smooth or polygonal (Fréchet) means of open or closed
curves with respect to the elastic distance and show identifiability of the spline
model modulo parameterization. We further provide methods and algorithms to
approximate the elastic distance for irregularly or sparsely observed curves, via
interpreting them as polygons. We illustrate the usefulness of our methods on
two datasets. The first application classifies irregularly sampled spirals drawn
by Parkinson’s patients and healthy controls, based on the elastic distance to a
mean spiral curve computed using our approach. The second application clusters
sparsely sampled GPS tracks based on the elastic distance and computes smooth
cluster means to find new paths on the Tempelhof field in Berlin. All methods
are implemented in the R-package “elasdics” and evaluated in simulations.

KEYWORDS
curve alignment, Fisher–Rao Riemannian metric, functional data analysis, multivariate
functional data, registration, square-root-velocity transformation, warping

1 INTRODUCTION

In the biomedical sciences, data are increasingly collected
that take the formof open or closed curves 𝜷 ∶ [0, 1] → ℝ𝑑,𝑑 ∈ ℕ. Examples for such curves in two or three dimen-
sions are (human) movement patterns (e.g., Backenroth
et al., 2018), handwritten letters or symbols (e.g., Dryden
and Mardia, 2016; Isenkul et al., 2014), protein structures
(Srivastava et al., 2010), or the outline of an (e.g., anatomic)
object, such as the corpus callosum (Joshi et al., 2013). The
two applications we consider in this paper concern a spiral

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

drawing test for the detection of Parkinson’s disease, and
GPS-recorded movement tracks. In most of the named
cases, only the image of the curve represents the object of
interest. An “elastic” analysis is then required, that is, a
statistical analysis of the curves’ image inℝ𝑑 that does not
take their parameterization over [0, 1] into account and
is invariant under different parameterizations. Ideally, it
should also yield an optimal alignment of different curves
to allow point-to-point comparison, as illustrated in the
example in Figure 1. As in this example, curves are often
observed at a differing number of discrete points. The aim

Biometrics. 2022;1–13. wileyonlinelibrary.com/journal/biom 1
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2 STEYER et al.

F IGURE 1 Two toy examples of sparsely and irregularly observed curves in ℝ2 with observed points indicated as black dots and linear
interpolation (first three columns). Ideally, the analysis should yield an optimal alignment of different curves to allow comparison of
corresponding points such as bumps and other features (the mouth of the fish/the branches of the trees). Smooth or polygonal spline means
(last column in dark gray) are computed using our methods, with black dots indicating values at the model-based spline knots

of this paper is to extend elastic statistical methodology
to such realistic cases where curves are irregularly and
sparsely sampled. In particular, we develop suitable elastic
spline models for (Fréchet) mean curves of samples of
such curves, and show that certain first- and second-order
splines meet the identifiability properties required in a
modulo parameterization context. These means can be
smooth curves, such as shown for the fish in Figure 1, or
polygonal curves, better suited for curves with sharp cor-
ners like the trees in Figure 1. To this end, we also propose
suitable algorithms for alignment and distance computa-
tion of irregularly or sparsely sampled curves—necessary
for mean computation, but also useful for distance-based
analyses such as clustering or classification. In partic-
ular, we derive a useful simplification of the warping
(reparameterization, alignment) problem when
interpreting the observed curves as polygons.
The alignment problem for curves in ℝ𝑑 is closely

related to the registration problem in functional data anal-
ysis (Ramsay and Silverman, 2005), which corresponds
to the case 𝑑 = 1. For two functions 𝑓1 and 𝑓2, warping
has commonly been treated as an optimization prob-
lem inf 𝛾∈Γ ‖𝑓1 − 𝑓2◦𝛾‖𝐿2 on a suitable function spaceΓ of warping functions 𝛾. This choice is problematic asinf 𝛾∈Γ ‖𝑓1 − 𝑓2◦𝛾‖𝐿2 does not define a proper distance on
the space of curves modulo parameterization. The map-
ping is not symmetric and can be zero even if 𝑓2 is not
a warped version of 𝑓1, which is related to the so-called

“pinching” problem (Marron et al., 2015). Intuitively, this
“pushes” the integrationmass to parts of the domainwhere𝑓1 and 𝑓2 are close. To avoid this “pinching” effect, a regu-
larization term can be added to the loss function (Ramsay
and Silverman, 2005). This is done in various dynamic
time warping algorithms, where usually large values of the
derivative of the warping function are penalized (Sakoe
and Chiba, 1978). Alternatively, one can choose a small
number of basis functions for the warping or combine
both approaches to use penalized basis functions (Ramsay
and Li, 1998). Moreover, Bayesian approaches to model-
ing warping functions have been suggested (e.g., Lu et al.,
2017, or Matuk et al., 2021 for sparse one-dimensional
functions).
All of these approaches restrict the amount of warp-

ing; thus, the analysis is not completely independent of
the observed parameterization. This seems more suitable
for one-dimensional functions (𝑑 = 1) where one seeks to
separate phase (parameterization) and amplitude (image)
but considers both as informative. If we analyze curves
in ℝ𝑑, 𝑑 > 1, however, we are usually only interested in
the image representing the curve, that is, the equivalence
class of the curve with respect to (w.r.t.) parameterization,
whichmakes penalized, restricted, or Bayesian approaches
for the warping less suitable.
Srivastava et al. (2010) propose a proper metric on

the resulting quotient space via minimizing the dis-
tance between the square-root-velocity (SRV) transformed
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curves. For more details on this framework, see Srivastava
and Klassen (2016) and Subsection 2.1. Their perspective
is focused on the curves as functions (rather than dis-
crete observations) that, in practice, requires interpolating
the curves on a regular grid for the mean computation.
This works well in the case of densely observed curves.
Often, however, for example, in our applications, curves
are only observed at a relatively small number of discrete
points, where the number differs between curves (sparse
and irregular setting). We show in examples that (elastic)
methods designed for densely observed curves have limita-
tions for such sparse settings. This problem is well known
in functional data analysis (𝑑 = 1), where spline represen-
tations or other smoothing methods are frequently used
to model sparsely and/or irregularly observed functions
(e.g., Greven and Scheipl, 2017; Yao et al., 2005).
The main contributions of this paper thus are to care-

fully introduce spline functions to model elastic (Fréchet)
mean curves in ℝ𝑑 on SRV or curve level, to show that
the proposedmodel is identifiable via its spline coefficients
modulo parameterization, and to discuss limitations of this
identifiability. This extends approaches for functional data
to curves in ℝ𝑑, 𝑑 ≥ 2 and to the elastic setting.
As part of the mean estimation, but also of interest in its

own right, we also develop algorithms to align open and
closed curves if at least one of them is piecewise linear, for
instance, a sparsely observed curve treated as a polygon,
and show local maximization properties of our algorithm
for open curves. We show the usefulness of our methods
for statistical analysis of irregularly or sparsely observed
curves in two applications to a Parkinson spiral drawing
test and to GPS movement tracks, involving mean compu-
tation, clustering, and classification of curves. Proofs of all
formal statements are provided in Web Appendix B.

2 ELASTIC ANALYSIS OF OBSERVED
CURVES

In Section 2.1, we briefly review the SRV framework for
analyzing curves modulo parameterization. Then, in Sec-
tions 2.2 and 2.3, we introduce our methods for elastic
distance computation for irregularly or sparsely sampled
curves, a building block for the spline-based Fréchet mean
that we propose, and additionally of interest for distance-
based analysismethods such as clustering or classification.
In Sections 2.4 and 2.5, we introduce spline functions to
model smooth or polygonal elastic mean curves and dis-
cuss identifiability of these modulo parameterization in
Section 2.6. For all proposed methods, we focus on open
curves for better readability and present adapted versions
for closed curves in Web Appendix A.

2.1 Square-root-velocity framework

Srivastava et al. (2010) show that for two absolutely con-
tinuous curves 𝜷1 and 𝜷2, the Fisher–Rao metric can be
simplified to the 𝐿2-distance between the corresponding
SRV-curves, which can be minimized over the warping to
obtain an elastic distance between the two curves.

Definition 1 Elastic distance; Srivastava et al., 2010. Let𝜷1, 𝜷2 ∶ [0, 1] → ℝ𝑑 be absolutely continuous and [𝜷1] and[𝜷2] their respective equivalence classes modulo param-
eterization and translation. Then the elastic distance
between [𝜷1] and [𝜷2] is𝑑([𝜷1], [𝜷2]) = inf𝛾1,𝛾2∈Γ ‖(𝐪1◦𝛾1) ⋅√𝛾1 − (𝐪2◦𝛾2) ⋅√𝛾2‖𝐿2 , (1)

with Γ being the set of boundary-preserving diffeomor-
phisms 𝛾 ∶ [0, 1] → [0, 1], ‖𝐪‖2𝐿2 = ∫ 10 ‖𝐪(𝑡)‖2𝑑𝑡 and SRV
transformations 𝐪1 and 𝐪2 of 𝜷1 and 𝜷2 defined via

𝐪𝑖(𝑡) = ⎧
⎪⎨⎪⎩

𝜷̇𝑖 (𝑡)√
‖𝜷̇𝑖 (𝑡)‖ if 𝜷̇𝑖(𝑡) ≠ 00 if 𝜷̇𝑖(𝑡) = 0 for 𝑖 = 1, 2.

Here, (𝐪𝑖◦𝛾𝑖) ⋅√𝛾̇𝑖 is the SRV transformation of the repa-
rameterized curve 𝜷𝒊◦𝛾𝑖 , 𝑖 = 1, 2.
Srivastava and Klassen (2016) showed that it is sufficient

to align one of the curves in (1),𝑑([𝜷1], [𝜷2]) = inf𝛾∈Γ ‖𝐪1 − (𝐪2◦𝛾) ⋅√𝛾̇‖𝐿2 . (2)

Moreover, they pointed out that to obtain a proper quo-
tient space structure on the space of absolutely continuous
curves, we need to consider the closure of SRV-curves
w.r.t. parameterization as equivalence classes. That is, for
a curve 𝜷 with SRV transformation 𝐪, [𝜷] consists of all
curves whose SRV transformation is in the closure of{(𝐪𝑖◦𝛾) ⋅√𝛾̇|𝛾 ∈ Γ}.
Note that any analysis based on this elastic distance will

be modulo translation as a result of taking derivatives. If
the position of the curve in space is of interest, it has to
be analyzed separately. On the other hand, if curves are
used to model shape objects, translation invariance is a
desired property. In classic shape data analysis (Dryden
and Mardia, 2016), the analysis should additionally be
invariant under rotation and scaling, and parameteriza-
tion invariance presents a further key aspect in functional
shape analysis (Srivastava and Klassen, 2016). In this
paper, we solely discuss parameterization invariance and
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give examples of handwritten spirals and GPS tracks
where this elastic analysis is suitable.
A solution to the variational problem in the distance

(2) is usually approximated using a dynamic program-
ming algorithm or gradient-based optimization (e.g., in
Srivastava et al., 2010). Both approaches discretize the
warping space Γ. The dynamic programming algorithm,
for instance, assumes a discrete grid for the domain of
the warping function. An extension by Bernal et al. (2016)
allows for an unequal number of points on both curves and
improves computation time. Lahiri et al. (2015) provide an
algorithm to align two piecewise linear curves and show
that an optimal warping exists if at least one curve is piece-
wise linear. Such an optimal warping also exists if both
curves are continuously differentiable (Bruveris, 2016).

2.2 Elastic distance for discretely
observed curves

In practice, we observe curves in ℝ𝑑, 𝑑 ∈ ℕ, not continu-
ously but only discretely via evaluations of these curves on
discrete (and potentially sparse and curve-specific) grids.
An elastic analysis needs to explicitly address this point.
We propose to treat a discretely observed curve 𝜷 as a
polygon parameterized with constant speed between the
observed corners 𝜷(𝑠0), … , 𝜷(𝑠𝑚). This is illustrated in the
toy examples (Figure 1) with observed points marked as
black dots and the polygon connecting the observations
indicated by gray lines. If, as in this example, no param-
eterization over [0,1] is given for the observed points, we
will parameterize the polygon by arc length. Note that we
address the case of sparsely observed curves here, whereas
the problem of fragmented curves (i.e., curves with unob-
served start or end points) generally cannot be handled by
the proper distance defined in (1).
If 𝜷 is such a polygon, the problem of finding an optimal

reparameterized curve 𝜷◦𝛾 to another arbitrary curve can
be simplified (similarly as in Lahiri et al., 2015). We show
that instead of solving the minimization problem (2) over
the space Γ of warping functions, we only need to solve
a maximization problem over a subset of ℝ𝑚−1 w.r.t. the
new parameterizations 𝑡1 = 𝛾−1(𝑠1), … , 𝑡𝑚−1 = 𝛾−1(𝑠𝑚−1)
at the observed corners.

Lemma 1. Let 𝜷 be a polygon in ℝ𝑑 with constant speed
parameterization between its corners 𝜷(𝑠0), … , 𝜷(𝑠𝑚). For its
piecewise constant SRV transformation 𝒒, denote 𝒒|[𝑠𝑗 ,𝑠𝑗+1]= 𝒒𝑗 ∈ ℝ𝑑 for all 𝑗 = 0,… ,𝑚 − 1. Let 𝜷 be an absolutely
continuous curve with SRV transformation 𝒑, ‖𝒑‖∞ < ∞.
Then calculating the optimal 𝛾 in (2) to obtain the elastic
distance 𝑑([𝜷], [𝜷]) is equivalent to the following problem:

Maximize Φ(𝒕) = 𝑚−1∑
𝑗=0

√√√√(𝑠𝑗+1 − 𝑠𝑗)∫ 𝑡𝑗+1
𝑡𝑗 ⟨𝒑(𝑡), 𝒒𝑗⟩2+ 𝑑𝑡

(3)

w.r.t. 𝒕 = (𝑡1, … , 𝑡𝑚−1), 0 = 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑚 = 1,
where ⟨⋅, ⋅⟩+ denotes the positive part of the scalar product
in ℝ𝑑. For a maximizer 𝒕 of (3), there is a 𝛾 ∶ [0, 1] → [0, 1]
with 𝛾(𝑡𝑗) = 𝑠𝑗 for all 𝑗 = 1,… ,𝑚 − 1 that minimizes (2).
The proof includes an explicit construction of the mini-

mizing warping function 𝛾 ∈ Γ̄ (or a minimizing sequence
of warping functions), where Γ̄ is the set of absolutely
continuous curves 𝛾 ∶ [0, 1] → [0, 1], onto and with 𝛾̇ ≥ 0
almost everywhere. The statement for Γ follows as Γ is
dense in Γ̄ and the warping action of Γ̄ continuous (Bru-
veris, 2016). Thus, the warping problem can be simplified
if one of the SRV-curves is piecewise constant, indepen-
dent of the form of the second SRV-curve 𝒑. If 𝒑 is at least
continuous, for example, the SRV-curve of a model-based
smooth mean curve like the fish mean in Figure 1 on
the top right, the loss function in (3) is differentiable. We
propose to tackle the remaining maximization problem
with a gradient descent algorithm that can handle linear
constrains (for instance, method BFGS in constrOptim
from R-package “stats;” R Core Team, 2020) and provide a
derivation of the gradient in Web Appendix B.

2.3 Elastic distance for two piecewise
linear curves

We present an algorithm that can be used to find an opti-
mal warping function, and therefore, compute the elastic
distance, when both curves are piecewise linear. This is rel-
evant either because wemodel one of the curves as a linear
spline (mean) (see Subsection 2.4), as we do for the tree
shapes in Figure 1, or becausewewant to compute the elas-
tic distance between two observed curves, for example, two
different discretely observed fish or trees. The latter allows
any distance-based analysis of the data such as clustering
or classification.
To obtain an optimal warping for a curve with piecewise

constant SRV transformation 𝒒 to a curve with SRV trans-
formation 𝒑, we first note that the maximization in one𝑡𝑗 direction of the objective function in (3) only depends
on the current values of 𝑡𝑗−1 and 𝑡𝑗+1 for any 𝒑. If 𝒑 is
also a piecewise constant SRV-curve, we can even derive
a closed-form solution of the maximization problem in (3)
w.r.t. each 𝑡𝑗 ∈ [𝑡𝑗−1, 𝑡𝑗+1] (cf. Web Appendix B). Hence,
we propose a coordinate wise maximization procedure in
Algorithm 1, iterating updates of odd and even indices.
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The warping problem for two (open) piecewise linear
curves has been previously discussed by Lahiri et al. (2015).
They propose a precise matching algorithm, which pro-
duces a globally optimal reparameterization of 𝒒, but is
arguably demanding to implement. Our algorithm can be
seen as an alternative,which ismuchmore straightforward
to understand and to extend to the closed case (cf. Web
Appendix A) not explicitly addressed by Lahiri et al. (2015).
We provide an implementation in the R-package “elas-
dics.”Although our algorithmdoes not guarantee finding a
globally optimal solution, we observe convincing results in
simulations (Section 3) and can prove local maximization
in the following sense:

Theorem 1. Every accumulation point of the sequence(𝒕(𝑘))𝑘∈ℕ = (𝑡(𝑘)1 , … , 𝑡(𝑘)𝑚−1)𝑘∈ℕ resulting from Algorithm 1 is
a local maximizer of Φ in (3).

To prove this theorem, we first establish that the direc-
tional derivatives exist and are nonpositive for all coor-
dinate directions. Then we show that this carries over
to all directional derivatives using local concavity of the
objective function.
If the sequence (𝒕(𝑘))𝑘∈ℕ has more than one accumula-

tion point, they all give the same value Φ(𝒕). They then
correspond to different reparameterizations of the sec-
ond curve, but give the same distance between the two
curves. This can happen as the warping problem does
not guarantee unique solutions (see Web Appendix C for
an example). In practice, one can pick any maximizing𝒕 to obtain a locally optimal warping function. As we
cannot guarantee this 𝒕 to also be a global maximizer,
we propose using varying starting points to find a global
maximum.

Our algorithm computes the elastic distance between
two piecewise linear and continuous curves. These curves
form a subspace in the space of absolutely continuous
curves and are called splines of degree 1. For modeling
smooth (differentiable) curves, for example, for a mean
function, a spline space of a higher degree may be more
suitable.

2.4 Modeling spline curves or spline
SRV-curves

As common in functional data analysis (Ramsay and Sil-
verman, 2005), we like to model curves or means for
samples of curves as splines. This is in particular beneficial
for sparsely observed curves, which cannot be evaluated
at arbitrary points. Moreover, splines impose parsimo-
nious models for smooth curves, which can help to avoid
overfitting the observed curves given limited information.

Definition 2 (Spline curves). We call 𝝃 = (𝜉1, … , 𝜉𝑑)𝑇 ∶[0, 1] → ℝ𝑑 with 𝑑 ∈ ℕ a 𝑑-dimensional spline curve of
degree 𝑙 ∈ ℕ0 if all its components 𝜉1, … , 𝜉𝑑 ∶ [0, 1] → ℝ
are spline curves of degree 𝑙 with a common knot set0 = 𝜅0 < 𝜅1 < ⋯ < 𝜅𝐾−1 < 𝜅𝐾 = 1 for some 𝐾 ≥ 2. That
means that 𝜉1, … , 𝜉𝑑 are piecewise polynomial of degree𝑙 between the knots 𝜅0, … , 𝜅𝐾 , as well as continuous and(𝑙 − 1)-times continuously differentiable on the whole
domain [0,1] for 𝑙 ≥ 1. Denote by  𝑙𝐾;𝜅0,…,𝜅𝐾 the set of all
such spline curves.

We can either model the curve 𝜷 as a 𝑑-dimensional
spline curve, or its SRV transformation𝒑 (see Figure 2). If 𝜷
is a spline of degree 𝑙 ≥ 2, the corresponding SRV-curve 𝒑

6. Elastic Analysis of Irregularly and Sparsely Sampled Curves
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F IGURE 2 Left: Two-dimensional curves and corresponding SRV transformations. Spline curves are plotted as red curves with their
values at knots marked as black dots; other curves are gray. Note that the SRV-curve in the sixth panel is piecewise constant in 𝑡 and 𝑡 is not
visible in the image. Right: Smooth means (with 11 knots each) for four spiral curves based on linear splines on SRV level. The dashed mean
curve is based on assuming piecewise linear observations for the integral approximations and the solid mean curve is based on the integral
approximation using the mean value theorem

will not be a spline curve. The same holds true for curve𝜷 if 𝒑 is a spline of degree 𝑙 ≥ 1. Only if 𝜷 is piecewise
linear (𝑙 = 1), then both 𝜷 and its piecewise constant SRV
transformation are splines.However, if we use linear spline
curves, we need a large number of knots to obtain simi-
larly smooth curves as using linear splines on SRV level,
and thus, expect less parsimonious models.
To use these spline curves or spline SRV-curves asmodel

spaces modulo warping, we need to ensure model iden-
tifiability, that is, that each equivalence class contains at
most one spline curve. The unique spline representative
then allows to identify and interpret the equivalence class
of a curve modulo warping via its spline basis coefficients.
We will see in Subsection 2.6 that this is true for quadratic
or cubic splines on curve level and for linear spline SRV-
curves (under mild conditions). Linear spline curves are
identifiable under additional assumptions.
Therefore, we can use the space of cubic, quadratic, or

linear spline curves as a model space for smooth curves.
However, using quadratic or cubic splines on the curve
level would not imply a vector space structure on the
SRV level, where the distance is computed. We therefore
propose to consider linear spline (and thus continuous)
SRV-curves to model smooth curves. If 𝒑 is a continuous
SRV transformation of 𝜷, the backtransform 𝜷(𝑡) = 𝜷(0)+ ∫ 𝑡0 𝒑(𝑠)‖𝒑(𝑠)‖𝑑𝑠 is differentiable, as the norm ‖ ⋅ ‖ is also
continuous. Alternatively, constant spline SRV-curves can
be used to model less regular, polygonal mean curves. We
thus work with a linear or constant spline model on SRV
level in the following.

2.5 Elastic means for samples of curves

As the space of curvesmodulo parameterization and trans-
lation does not form a Euclidean space, standard statistical
techniques for describing probability distributions cannot
be applied directly. In particular, we cannot define the
expected value as an integral or the mean as a weighted
average, which would require a linear structure of the
space. To generalize the mean as a notion of location to
arbitrary metric spaces, Fréchet (1948) proposed to use its
property of being the minimizer of the expected squared
distances.

Definition 3 Fréchet mean; Fréchet, 1948. Let (Ω, , 𝑃)
be a probability space and  a metric space with dis-
tance function 𝑑, equipped with the Borel-𝜎-Algebra. For
a random variable 𝑋 ∶ Ω →  , we call every element inarginf𝐴∈ 𝑬𝑃(𝑑(𝑋,𝐴)2) an expected element of𝑋. For a set
of observations 𝑥1, … , 𝑥𝑛 ∈  , we define the Fréchet mean
as an element in arginf𝐴∈ ∑𝑛𝑖=1 𝑑(𝑥𝑖, 𝐴)2.
Thus, Fréchet means are empirical versions of expected

elements and neither of them need to exist or be unique.
For a uniform distribution on the sphere, for example,
every point on the sphere is a valid Fréchet mean. This
nonuniqueness can occur for the elastic distance as well,
see the example given in Web Appendix C. Nevertheless,
Ziezold (1977) showed a set version of the law of large
numbers for the Fréchet mean, whichmeans that for inde-
pendently and identically distributed random variables
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𝑋1,… , 𝑋𝑛 ∶ Ω →  , the set of Fréchet means converges to
the set of the expected elements.
As discussed in the previous subsection, we propose to

use linear or constant splines on SRV level as model spaces
for the Fréchet mean. For a set of curves with SRV trans-
formations 𝒒1, … , 𝒒𝑛 and for a given degree 𝑙 ∈ {0, 1} and a
given set of knots 𝜅0, … , 𝜅𝐾 , we thus define

𝒑̄ ∈ arginf𝒑∈ 𝑙𝐾;𝜅0,…,𝜅𝐾
𝑛∑
𝑖=1 inf𝛾𝑖 ‖‖‖𝒑 − (𝒒𝑖◦𝛾𝑖)√𝛾̇𝑖‖‖‖2𝐿2 (4)

as the SRV transformation of the spline Fréchet mean
(i.e., SRV transformation of the Fréchet mean restricted
to the spline SRV space) w.r.t. the elastic distance (2). The
corresponding restricted Fréchet mean 𝜷 is thus either
a polygon or a smooth curve. Similarly to the proposal
of Srivastava and Klassen (2016) for densely observed
curves, we tackle the minimization problem (4) with an
iterative approach in Algorithm 2, alternating between

fitting the mean and optimizing the warping for each of
the observations, but now using our warping approach
for sparse curves and modeling the mean with a constant
or linear spline. If we were to model the Fréchet mean
in a spline space on curve level instead of SRV level, the
mean fitting step would be a minimization problem in
a nonlinear space, hence more challenging. That is why
we refrain from using splines on curve level, although we
show that quadratic and cubic splines are identifiable via
their coefficients as well (Theorem 2).
For the warping step, we update the optimal warpings𝛾𝑖 of the observed curves 𝜷𝑖 , 𝑖 = 1, …𝑛 via interpreting

them as observed polygons with piecewise constant
SRV transformations 𝒒𝑖 , 𝑖 = 1, …𝑛, as in Lemma 1. We
tackle the remaining maximization problem (3) using
a gradient descent algorithm as discussed before if 𝒑̄
is piecewise linear and Algorithm 1 if 𝒑̄ is piecewise
constant. In the 𝐿2 spline fitting step, the integrals

‖𝒑̄ − (𝒒𝑖◦𝛾𝑖)√𝛾̇𝑖‖2𝐿2 in the sum need to be approximated,
because the curves 𝜷𝑖 are only observed on a finite
grid 0 = 𝑠𝑖,0 ≤ 𝑠𝑖,1 ≤ ⋯ ≤ 𝑠𝑖,𝑚𝑖 = 1, and the SRV-curves𝒒1, … , 𝒒𝑛 are thus unobserved. One option is to assume
that the SRVs 𝒒𝑖 of the observed curves are piecewise
constant as in the warping step. As 𝒑̄ is piecewise lin-
ear, (𝒒𝑖◦𝛾𝑖)√𝛾̇𝑖 also is (see proof of Lemma 1 in Online
Appendix B), which leads to a closed-form solution of the
integral. Alternatively, we derive an approximation of the
integrals in the 𝐿2 fitting step of Algorithm 2 using the
mean value theorem and the monotonicity of the warping
inWebAppendix B.5. Both approaches lead to a (weighted)
least-squares problem for the spline coefficients of 𝒑̄. (An
adapted algorithm for closed curves in Web Appendix A
uses an additional penalty for openness with increasing
weight.) We compare them using an example in Figure 2
on the right, where the second approach here leads to a
better fit of the estimated spiral shape (and is used in the
following).

2.6 Identifiability of spline curves

We model curves or means for samples of curves using
basis representations. If we study equivalence classes of
curves modulo reparameterization, we have to ensure
unique spline representatives in each class, meaning that
elements of the quotient space are identifiable via their
basis coefficients. To see why this is not self-evident,
consider as a simple counterexample in ℝ1 the space
of quadratic polynomials 𝑃 ∶ [0, 1] → ℝ, a subspace of
the quadratic spline space. Note that 𝛾𝑎(𝑥) = 𝑎𝑥2 + (1 −𝑎)𝑥 defines a feasible warping function for all 𝑎 ∈]0, 1[,
because 𝛾𝑎 is differentiable with 𝛾′𝑎(𝑥) ≥ 0 and 𝛾𝑎(0) = 0,𝛾𝑎(1) = 1. Hence, all quadratic polynomials of the form𝑃(𝑥) = 𝑝1𝛾𝑎(𝑥) + 𝑝0 with 𝑝0, 𝑝1 ∈ ℝ are elements of the
same equivalence class, although they have varying basis
coefficients 𝑎𝑝1, (1 − 𝑎)𝑝1 and 𝑝0 for 𝑎 ∈]0, 1[ w.r.t. the
monomial basis expansion. This counterexample shows in

6. Elastic Analysis of Irregularly and Sparsely Sampled Curves
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particular that one-dimensional spline functions do not
have unique representatives in the space of functionsmod-
ulo reparameterization. Moreover, every 1d function is in
the orbit of a linear spline with at least as many knots
as the function has local extrema. As identifiability is
essential in any modeling approach, it is fortunate that
in contrast to 𝑑 = 1, we can show that in ℝ𝑑 with 𝑑 ≥ 2,
nearly all quadratic or cubic spline curves have unique
basis representations.

Theorem 2. Let 𝑑 ≥ 2 and𝑸,𝑷 ∶ [0, 1] → ℝ𝑑 be quadratic
or cubic spline curves, where 𝑸 has a nonlinear image
between each of its knots. Moreover, let 𝛾 ∶ [0, 1] → [0, 1] be
monotonically increasing and onto. Then 𝑷 = 𝑸◦𝛾 ⇒ 𝛾 =𝑖𝑑.
Thus, nearly all equivalence classes modulo reparam-

eterization contains at most one spline curve. Hence we
can identify these curves modulo warping via their spline
basis coefficients. The only exception are splines with lin-
ear image, which occur if and only if the splines in each
coordinate direction are multiples of each other modulo
translation. Note that we do not make any assumptions on
the knots here, in particular the knots could be different
for 𝑸 and 𝑷. That means there is almost always a unique
representative modulo warping in⋃𝐾,𝜅0,…,𝜅𝐾  𝑙𝐾;𝜅0,…,𝜅𝐾 for
given 𝑙 = 2, 3, that is, in the union of all spline spaces with
varying (also varying number of) knots. Considering only
quadratic or cubic splines is crucial, as this statement is not
true for nonprime spline degrees.We show a counterexam-
ple for splines of degree four inWebAppendixC. The result
for cubic spline curves also implies uniqueness of represen-
tatives for linear spline SRV-curves, another useful result
for identifiable modeling of elastic curves.

Corollary 1. Let 𝜷1, 𝜷2 ∶ [0, 1] → ℝ𝑑 with SRV functions 𝒒1
and 𝒒2, respectively. If 𝒒1 and 𝒒2 are nowhere constant linear
splines and 𝒒2(𝑡) = 𝒒1(𝛾(𝑡))√𝛾̇(𝑡), then 𝒒1 = 𝒒2.
In summary, the space of linear SRV spline curves seems

particularly suitable tomodel smooth elastic curves as they
are identifiable, that is, there is a unique representation in
this space, and the corresponding curves are differentiable,
which leads to visually smooth curves. In our toy example,
we used linear spline SRV-curves to model the smooth fish
mean (Figure 1, top right).

Remark 1 (Linear spline curves). Linear spline curves or
equivalently piecewise constant SRV-curves are identifi-
able via their spline basis coefficients modulo warping, if
we consider one spline space 1𝐾;𝜅0,…,𝜅𝐾 but not the union
of several such spaces, and assume that the curve is not dif-
ferentiable at all of its knots (i.e., no knot is superfluous).
For an illustration, see Web Appendix C.

Hence, with this weaker identifiability result, piecewise
constant SRV-curves are a suitable model space as well,
with curvesmodeled as polygons. This is more appropriate
for mean curves that are assumed to have sharp corners,
like the trees in Figure 1.
As we use these spline spaces for estimation of smooth

or polygonal curves, we need the following result on conti-
nuity of the embedding. It allows us to interpret estimated
coefficients—for instance, compare the coefficients of two
estimated group means to investigate local differences—
as it ensures convergence of the spline coefficients if we
construct a converging sequence of curves. For instance,
we aim to construct such a sequence for the elastic mean
in Algorithm 2. We show that this continuity property
holds whenever the model space Ξ is a (subset of a) finite-
dimensional spline space of the following form. Note that,
for simplicity, we do not consider unions of spline spaces
here.

Definition 4. Let Ξ be one of the following for given fixed𝐾 ≥ 2, 0 = 𝜅0 < ⋯ < 𝜅𝐾 = 1: (i) a subset of  𝑙𝐾;𝜅0,…,𝜅𝐾 , 𝑙 =2, 3, which consists of identifiable splines as described in
Theorem 2, additionally centered (i.e., with integral zero)
to account for translation; (ii) a set of identifiable curves
with linear spline SRV-curves in 1𝐾;𝜅0,…,𝜅𝐾 from Corol-
lary 1; or (iii) the set of curves with piecewise constant
SRV-curves in 0𝐾;𝜅0,…,𝜅𝐾 from Remark 1.

Lemma 2 (Topological embedding). Let 𝑓 ∶ (Ξ, ‖ ⋅ ‖) →(, 𝑑) be the embedding of the spline coefficients defining the
functions in Ξ, equipped with the usual Euclidean distance
‖ ⋅ ‖, into the space  of absolutely continuous curves w.r.t.
the elastic distance 𝑑. Then 𝑓 is a topological embedding,
that is, 𝑓 is a homeomorphism on its image.

Thus, the distance of spline coefficients and the elas-
tic distance of curves modulo translation are topologically
equivalent on suitable spline spaces. Consequently, a
sequence of curves converges w.r.t. the spline coefficients
if, and only if, it converges w.r.t. the elastic distance. Over-
all, we see that any spline model Ξ in Definition 4 yields
an identifiable model for the Fréchet mean of observed
curves, with the possibility to interpret spline coefficients.
This also holds for converging series of estimators which
we aim to construct in our algorithms.

3 SIMULATION

We test our methods, which we made available for pub-
lic use in the R-package “elasdics,” on simulated data.
A first simulation focuses on the special case of equal
numbers of observed points on the curves, where we can
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compare our methods to an existing implementation of
the SRV framework in the R package “fdasrvf” (Tucker,
2020) based on Srivastava et al. (2010). Results presented
in Web Appendix D show that Algorithm 1 (and its vari-
ant for closed curves) produce clearly better alignment for
sparsely and irregularly sampled curves. The correspond-
ing average elastic distance is smaller for our method in
all cases, for example, a reduction of 25% and 26% on aver-
age for 30 observed points per curve in the open and closed
setting, respectively. As expected, this difference decreases
if 90 points of the closed butterfly shapes are selected (1%
reduction on average), as in this case, the points are nearly
observed on a regular, fairly dense grid, which is the set-
ting “fdasrvf” is designed for. This simulation also shows
that a highly unbalanced distribution of observed points on
the curves causes difficulties for the mean computation in
“fdasrvf” as well, which is not the case for our methods.
Here wemainly discuss the second simulation, focusing

on the convergence and the identifiability of the newly pro-
posed splinemeans and their associated coefficients. Aswe
vary the number of points per curve, there is no competitor
to compare our methods with. For a given template curve𝜷 with known B-spline coefficients 𝜗1, … , 𝜗𝐵, we gener-
ate a sample of observed curves 𝜷1, … , 𝜷𝑛 by indepen-
dently sampling the coefficients 𝜗𝑖,𝑏 ∼  (𝜗𝑏, 𝜎2) for all𝑖 = 1, … , 𝑛, 𝑏 = 1,… , 𝐵. If the template curve is closed,
we additionally close the sampled curves via minimiz-
ing a penalty function penalizing openness in gradient
direction. The penalty is given inWeb Appendix A for esti-
mating a closed mean. The points 𝑡𝑖,1, … , 𝑡𝑖,𝑚𝑖−1 on which𝜷𝑖 is observed are sampled uniformly on [0, 1], where
the number of observed points 𝑚𝑖 is sampled uniformly
either from {10, … , 15} (very sparse and unbalanced) or{30, … , 50} (less sparse but unbalanced).
Examples for curves sampled with standard deviation𝜎 = 4 from a heart-shaped template curve, modeled as

linear spline on SRV level with 10 equally spaced inner
knots, are displayed in Figure 3. Two further examples
for open curves are given in Web Appendix C. The sam-
ples in the very sparse setting are hardly recognizable as
heart shapes (Figure 3, right). However, the elastic mean
curve over 𝑛 = 5 observations, estimated using the true
knot set and linear SRV splines to allow a comparison
of estimated and true coefficients, represents the original
heart surprisingly well even in this challenging setting. We
repeated this simulation 100 times each for varying num-
bers of observations 𝑛 ∈ {5, 20} and observed points per
curve𝑚𝑖 (Figure 3, left). For𝑚𝑖 ∈ {10, … , 15} observations
per curve, we generally obtain a heart-shapedmean,which
seems smaller and shows less pronounced features than

the template. Increasing the number of observed curves
from 𝑛 = 5 to 𝑛 = 20 decreases the variance of the mean
curve, but a certain bias due to undersampling the curves
remains. Likewise, the variance of the spline mean coef-
ficients is smaller for 𝑛 = 20 than for 𝑛 = 5, but their
distribution is still not centered at the coefficients of the
template (indicated as black dots in Figure 3).
If we increase the number of points on each curve to𝑚𝑖 ∈ {30, … , 50}, the estimated means w.r.t. the elastic dis-

tance adapt closer to the template. Moreover, the variance
of the estimated spline coefficients decreases as well as
their distance to the template. The reduction of variance
indicates convergence of the spline coefficients for 𝑛 → ∞,
although we do not expect them to precisely converge to
the coefficients of the template in this simulation setup,
not even if 𝑚𝑖 → ∞ for all 𝑖 = 1, … , 𝑛. This is because
we draw the sample curves 𝜷1, … , 𝜷𝑛 such that 𝜷 is the
mean w.r.t. the 𝐿2 distance on SRV level, but this does in
general not imply that 𝜷 is the mean w.r.t. the elastic dis-
tance. Nevertheless, we expect this difference to be small,
as the coefficients in the rightmost boxplot are close to the
black dots that indicate the template’s coefficients. In addi-
tion, their low variance for 𝑛 = 20 confirms our theoretical
results on identifiability of spline coefficients in our model
(Corollary 1) and continuity of the embedding (Lemma 2).
As expected, the run time of our elastic mean algorithm

grows with the number of observed curves as well as with
the number of observed points per curve. On a standard
Windows PC, we report run times of 19 s (𝑛 = 5) and 30 s
(𝑛 = 20) on average for onemean in the very sparse setting.
In the less sparse setting, 𝑚𝑖 ∈ {30, … , 50}, the run times
increase to 22 and 88 s for 𝑛 = 5 and 𝑛 = 20, respectively.
So far, we have discussed the convergence of correctly

specified spline means, as in this case, convergence of
elastic means corresponds to convergence of the corre-
sponding spline coefficients (Lemma 2). As correct spec-
ification is questionable in practice, we demonstrate the
behavior of our methods in the case of model misspecifi-
cation (varying spline degree and number of knots) in a
further simulation given in Web Appendix D. We observe
that both smooth and polygonalmeans reproduce the orig-
inal template well and that results are not very sensitive
to the number of knots, given that it is sufficiently large.
Generally, the elastic distance to the template decreases
for an increasing number of knots. Distances to the tem-
plate are smaller for the smooth than for the polygonal
modelmeans for a fixed number of knots, and decrease to a
lower level, indicatingmore parsimoniousmodels and less
undersampling bias for truly smooth means when using
linear SRV-curve models.

6. Elastic Analysis of Irregularly and Sparsely Sampled Curves
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F IGURE 3 Top left: Smooth means (in gray) computed for a set of 𝑛 simulated curves drawn from the heart-shaped template curve
(in black) via sampling its B-spline coefficients from a normal distribution with standard deviation 𝜎 = 4 and𝑚𝑖, 𝑖 = 1, … , 𝑛 points observed
per curve. The means are computed using linear SRV splines and the same knot set as the template (10 equally spaced inner knots). Bottom
left: Corresponding distribution of spline mean coefficients (in gray) and template coefficients (in black). Right: Simulated data 𝑖 = 1, … 5with
observed values marked as black dots and corresponding smooth elastic means over 𝑛 = 5 observations in gray
4 APPLICATIONS ON REAL DATA

As our main goal is to develop statistical (elastic) anal-
ysis methods for discretely observed data curves, we
demonstrate their practicality on two datasets.

4.1 Classifying spiral curve drawings for
detecting Parkinson’s disease

(Isenkul et al., 2014) provide a dataset of spiral curve
drawings by Parkinson patients and healthy controls in
a so-called Archimedes spiral-drawing test, which is a
common, noninvasive tool for diagnosing patients with
Parkinson’s disease. The data have been obtained in two
different settings: In the “static spiral test,” the partici-
pants had to follow a template on a digital tablet; in the
“dynamic test,” the template curve appeared and disap-
peared in certain time intervals. We propose an intuitive
classifier mimicking a doctor’s decision of the form: Clas-
sify as “Parkinson” if the distance of the drawn curve to the
template curve exceeds a threshold for one or for both of
the settings. As the template curve has not been recorded,
we use the elastic mean (see Subsection 2.5) of all curves

from the static spiral test with piecewise constant splines
and 201 knots on SRV level, instead. Then we compute the
elastic distance of each observed spiral curve to the tem-
plate using Algorithm 1. We report a leave-one-curve-out
cross-validated accuracy of 72.5% for the static, 90.0% for
the dynamic setting, and 92.5% for the classifier based on
both, which indicates good separation in particular for the
dynamic spiral test.
A detailed description of our analysis and a comparison

to the methods implemented in the “fdasrvf” package can
be found in Web Appendix E. Our methods lead to bet-
ter classification accuracy in this application and themean
calculation proves to be faster.

4.2 Clustering and modeling smooth
means of GPS-tracks

The second dataset is an example of increasingly common
human movement data and comprises GPS waypoints
tracked on Tempelhof Field, a former airfield (up to 2008)
in Berlin, which is now used as a recreation area. The
dataset consists of 55 paths with 15–45 waypoints each,
recorded by members of our working group using their
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F IGURE 4 Top left: The observed trajectories with elements of the four largest clusters indicated by color. Bottom left: Longitude and
latitude for the trajectories (with the four largest clusters indicated by the same colors) over relative time. Top right: Smooth means modeled as
linear SRV-curves with 10 inner knots for the four largest clusters and centered at the mean center of the observed paths per cluster to account
for translation. Bottom right: Cluster means plotted on Microsoft Bing Map accessed via the R package “OpenStreetMap” (Fellows, 2019)

mobile phones for tracking. Due to the variety of mobile
devices used, the number of points per curve differs consid-
erably, resulting in irregularly and quite sparsely observed
data. We are solely interested in analyzing the paths
(Figure 4, bottom right) the participants walked on, not the
trajectories over time. Separately looking at longitude and
latitude over time suggests that the individuals had quite
different walking patterns and did not move with constant
speed. This implies that standard (nonelastic) functional
data analysis is not suitable here.
Clustering and smooth mean estimation allow us to

recover the paths that the individuals walked on. In a fur-
ther step, these could be used to identify new paths on
Tempelhof field not yet included in existingmaps. In a first
step, the tracks are clustered using average linkage based
on the elastic distance and the elbow criterion for stopping.
Here we apply Algorithm 1 to approximate the pairwise
distance between the sparsely observed open tracks. In a
second step,we compute a smooth elastic Fréchetmean for
each of the four largest clusters using Algorithm 2 and lin-
ear splines on SRV level with 10 inner knots. The clustering
result displayed in Figure 4, top row, is visually satisfying.
Looking at longitude and latitude separately clearly indi-
cates that clustering based on the 𝐿2 distance would not
work well.
The smooth mean curves for each of the four largest

clusters (Figure 4, top right) seem to describe the observed
tracks well, despite the dimension reduction (24 spline

coefficients compared to 30–90 observations per curve)
and also match the actual paths visible in the satellite
image (Figure 4, bottom right) provide by Microsoft Bing
and made available for R in the package “OpenStreetMap”
(Fellows, 2019).

5 DISCUSSION

Although our approach addresses the discrete and often
sparse nature of observed curves explicitly, the interpreta-
tion as polygonswith observed values at the corners under-
estimates the curvature of the real unobserved curves.
This leads to a kind of shrinkage bias for the estimated
elastic mean for sparsely observed curves. Although this
bias toward curves with smaller curvature decreases with
increasing observations per curve, it would be of interest
to develop correction methods for (very) sparse settings in
future work.
We have shown that the SRV splines modulo parame-

terization used for modeling the elastic mean is in general
identifiable via their coefficients and we have confirmed
this result in simulations. Although we did not explic-
itly address the choice of the optimal number of knots
for such splines, a further simulation has shown that the
estimation of the mean curve is not sensitive to the spe-
cific spline degree and choice of knots, given the number
of knots is sufficiently large. As the union of any spline

6. Elastic Analysis of Irregularly and Sparsely Sampled Curves
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space with fixed degree but varying knots is dense in
the space of absolutely continuous curves w.r.t. the elas-
tic distance, using an increasing number of knots would
ensure that the mean curve can be arbitrarily well approx-
imated. For a finite dataset, this would lead to overfitting
the curves though, which may be addressed via penal-
ized estimation, although the interpretation of coefficients
and convergence properties would need to be studied in
this setting.
Another appealing direction for further research is to

include our methods for sparsely and irregularly sampled
curves in existing approaches for functional shape analy-
sis. Here the curves have to be aligned w.r.t. scaling and/or
rotation in addition to the alignment w.r.t. parameteriza-
tion and translation. As this is usually done iteratively, it
seems promising to combine this with the iterative warp-
ing and mean fitting steps in our methods. Furthermore,
elastic mean estimation for irregularly and/or sparsely
sampled curves can be seen as a first step toward elastic
regression models for such data. That means our meth-
ods might be useful building blocks for modeling curves
or shapes depending on covariates using splines.
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SUPPORT ING INFORMATION
Web Appendices A, B and C referenced in Section 2 and
Web Appendix D referenced in Sections 3 and 4 are avail-
able with this paper at the Biometrics website on Wiley
Online Library. All developed methods are implemented
in the R-package elasdics (Steyer, 2021) available on CRAN
and the code to reproduce the findings of this paper is
available in the Supporting Information of this article.
Figure 1: First three iterations of the algorithm for

closed mean curves on a toy dataset
Figure 2: Left: Two piecewise linear curves in gray with

Frechet mean curves in red and blue
Figure 3: Three constant SRV splines (right) with

corresponding linear spline curves (middle)
Figure 4: Comparison of the optimal alignment pro-

duced by ourmethod CWOand the one computedwithDP
Figure 5: Elastic means for irregularly sampled curves
Figure 6:Example simulated data in gray with observed

values marked as black dots and corresponding smooth
elastic means over n = 5 observations in blue
Figure 7: Top: Smooth means (in blue) computed for a

set of n curves drawn from the open template curve (in red)
via sampling its B-spline coefficients from a normal distri-
bution with standard deviation 𝜎 = 0.3 and𝑚𝑖, i=1, . . . , n
points observed per curve
Figure 8: Top: Smooth means (in blue) computed for

a set of n curves drawn from the open template curve (in
red) via sampling its B-spline coefficients from a normal
distribution with standard deviation 𝜎=0.4 and𝑚𝑖, i=1,...,
n points observed per curve

Figure 9: Left: Smooth mean based on linear splines on
SRV level with varying number of knots and therefore coef-
ficients computed on a sample of 20 curves with mi 𝜖30, 50
points per curve
Figure 10: Left: Spiral curves drawn by either a healthy

control group or by patients with Parkinson’s disease in
two different settings
Figure 11: Left: Distance of the curves drawn by the

participants to the mean spiral curve for both settings
Figure 12: Optimal warping in both settings separated

by the actual status and the predicted status using the clas-
sifiers based on only the corresponding distance each and
leave-one-out cross-validation
Table 1: Classification accuracy in the dynamic setting

with a varying fraction of points per curve
Table 2:Comparison of the classification accuracy in the

dynamic setting with a varying number of points per curve
Table 3: Run-times for the mean computation of the

spiral data in seconds
Figure 13: Left: Comparison of means for the spirals in

the static setting with 100 observations per curve
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7. Elastic Full Procrustes Analysis of Plane
Curves via Hermitian Covariance
Smoothing

Generalized Procrustes analysis (GPA) presents a popular procedure in statistical shape
analysis, superimposing landmark configurations by optimal translation, rotation and
scaling alignment to their full Procrustes mean. In this contribution, we generalize
GPA to elastic full Procrustes analysis of shapes of plane curves. The full Procrustes
shape distance used here differs from the Riemannian distance used in Chapters 5 and
8 but offers an important connection to covariance estimation as conducted in Chapter
4. This lets us estimate elastic full Procrustes means of plane curves modulo trans-
lation, rotation, scale and warping based on their complex covariance structure. To
this end, we develop Hermitian covariance smoothing as a generalization of symmetric
covariance smoothing used in Chapter 4 to complex-valued stochastic processes. In
preparation of the proposed method, we present two results that shed light on the
role of the complex covariance operator and complex principal component analysis of
rotation-invariant data, and provide a theorem on feasible SRV-representation of irreg-
ularly/sparsely sampled curves, which are also of independent interest. We illustrate
the performance of our method in familiar everyday shapes and a phonetic analysis of
tongue shape during speech production.

Contributing article:
Stöcker, A., Pfeuffer, M., Steyer, L., and Greven, S. (2022). Elastic Full Procrustes
Analysis of Planar Curves via Hermitian Covariance Smoothing. arXiv pre-print. Li-
censed under CC BY 4.0. Copyright © 2022 The Authors.
DOI: 10.48550/ARXIV.2203.10522.
Supplementary material provided in Appendix C.
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parts of the manuscript including proposal and proofs of theoretical results. Lisa Steyer
substantially contributed to the proofs of Proposition 1 and Theorem 3. Software (also
for the applications) was implemented by Manuel Pfeuffer, who also wrote single parts
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SUMMARY

Determining the mean shape of a collection of curves is not a trivial task, in particular when
curves are only irregularly/sparsely sampled at discrete points. We propose an elastic full Pro-
crustes mean of shapes of (oriented) plane curves, which are considered equivalence classes of
parameterized curves with respect to translation, rotation, scale, and re-parameterization (warp-
ing), based on the square-root-velocity framework. Identifying the real plane with the complex
numbers, we establish a connection to covariance estimation in irregular/sparse functional data
analysis and propose Hermitian covariance smoothing for (in)elastic full Procrustes mean esti-
mation. We demonstrate the performance of the approach in a phonetic study on tongue shapes
and in different realistic simulation settings, inter alia based on handwriting data.

Some key words: Complex Gaussian process; Functional data; Phonetic tongue shape; Principal component analysis;
Shape analyis; Square-root-velocity.

1. INTRODUCTION

When comparing the shape of, say, a specific outline marked on medical images across differ-
ent patients, the concrete coordinate system used for recording is often arbitrary and not of inter-
est: the shape neither depends on positioning in space, nor on orientation or size. Analogously,
the outline can be mathematically represented via a parameterized curve β : [0, 1]→ R2, but the
particular parameterization of the outline curve is often not of interest, only its image. We study
datasets where an observational unit is the shape of a plane curve, defined as equivalence class a)
over the shape invariances translation, rotation and scale and b) over re-parameterization. More
specifically, we generalize the notion of a full Procrustes mean from discrete landmark shape
analysis (Dryden & Mardia, 2016) with invariances a) to this functional (curve) case, implying
the alignment of the recorded data with respect to all involved invariances a) and b).

For landmark shapes (i.e. a)), different notions of mean shape are well-established including,
in addition to the full Procrustes mean, in particular also the intrinsic shape mean, i.e. the Rie-
mannian center of mass in the shape space. Dryden et al. (2014) discuss properties of different
shape mean concepts, pointing out that the full Procrustes mean is more robust with respect to
outliers than the intrinsic mean or the partial Procrustes mean fixing scale to unit size. Further
discussion of these three mean concepts, which all present Fréchet means based on different dis-
tances, can be found in Huckemann (2012). The full Procrustes mean also arises as the mode
(Dryden & Mardia, 2016) of a complex Bingham distribution (Kent, 1994) on (unit-norm) land-
mark configurations X ∈ Ck of k landmarks, which is commonly used to model planar landmark

7. Elastic Full Procrustes Analysis of Planar Curves
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shapes, identifying the real plane R2 ∼= C with the complex numbers. Moreover, it corresponds to
the leading eigenvector of the complex covariance matrix of X, an important point we generalize
for the estimation strategy proposed for curve mean shapes in this paper.

Compared to landmark shapes, invariance with respect to re-parameterization (warping) b)
poses an additional challenge in the analysis of curves, which is highly related to the registration
problem in function data analysis (FDA, Ramsay & Silverman, 2005). In this context, Srivastava
et al. (2011) propose an elastic re-parameterization invariant metric on curves, allowing to define
a proper distance between two curves via optimal warping alignment. Greatly simplifying the
formulation of the metric by working with square-root-velocity (SRV) transformations of the
curves, their framework also allows incorporation of shape invariances a) along the lines of
statistical shape analysis. This lead to a rapidly growing literature on functional shape analysis
of curves in the SRV-framework (see e.g., Srivastava & Klassen, 2016). However, so far the focus
lay on elastic generalization of the intrinsic shape mean instead of the (potentially more robust)
full Procrustes mean. We will compare both approaches in our simulations.

Moreover, except for Steyer et al. (2021) considering only reparameterization invariance b),
analysis of sparsely/irregularly observed curves in the SRV-framework has not yet been consid-
ered. Such data with a comparatively low number of samples per curve often results in practice
when the sampling rate of a measurement device is limited, or the resolution of images used
for curve segmentation is coarse. In FDA (Ramsay & Silverman, 2005), sparse/irregular func-
tional data is commonly distinguished from dense/regular data, as it requires explicit treatment.
Models for sparse/irregular data are often based on smooth (spline) function bases and involve
an assumption of (small) measurement errors on the discrete curve evaluations as common in
practice (Greven & Scheipl, 2017).

Focusing on shape analysis of sparsely/irregularly measured curves combining a) and b), we
consider the full Procrustes mean concept particularly attractive due to its robustness known
from landmark shape analysis, and due to its direct connection to the covariance structure of the
data, which allows relying on a core estimation strategy in sparse/irregular FDA: following Yao
et al. (2005), covariance smoothing has become a major tool for sparse/irregular FDA, allowing
to reconstruct the functional covariance structure based on sparse evaluations. Cederbaum et al.
(2018); Reiss & Xu (2020) discuss (symmetric) tensor-product spline smoothing for this purpose,
considering univariate functional data. Happ & Greven (2018) generalize univariate approaches
to conduct functional principal component analysis also for multivariate sparse/irregular data.
Here, our contributions are to 1. propose Hermitian covariance smoothing for complex functions
and 2. use it as tool in the estimation of the 3. (elastic) full Procrustes means we propose to 4.
handle sparsely/irregularly measured plane curves.

In the following, we first discuss in Section 2 complex stochastic processes as random ele-
ments of Hilbert spaces, illustrating their convenience for rotation-invariant bivariate FDA and
propose Hermitian tensor-product smoothing for complex functional principle component anal-
ysis as our first contribution. This lays the groundwork for the second part and second contri-
bution of the paper in Section 3, where we introduce the notion of elastic (and inelastic) full
Procrustes mean shapes of plane curves based on the SRV-framework. We show conditions un-
der which sparsely/irregularly observing SRVs of curves (i.e., curve derivatives) is feasible and
propose estimation of their full Procrustes means via Hermitian covariance smoothing. Finally,
we present an elastic full Procrustes analysis of tongue outlines observed from participants of a
phonetic study and validate the proposed approach in three simulation scenarios. Proofs for all
propositions are given in an online supplement. A ready to use implementation is offered in the
R-package elastes (github.com/mpff/elastes).

167
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2. HERMITIAN COVARIANCE SMOOTHING

2.1. Complex processes and rotation invariance
Although functional data analysis traditionally focuses on Hilbert spaces over R (compare,

e.g., Hsing & Eubank, 2015), underlying functional analytic statements cover Hilbert spaces
over C as well (e.g., Rynne & Youngson, 2007). This lets us formulate principal component
analysis for complex-valued functional data and underlying concepts in analogy to the real case
in the following. Subsequently, we present two results on the relation of complex to bivariate
(real) functional data and on the convenience of a complex viewpoint under rotation invariance
that will be key in our estimation approach. Although complex stochastic processes have been
discussed in the literature (Neeser & Massey, 1993), we are not aware of any previous discussion
of the results we present in this section. In the complex viewpoint, the real plane R2 is identified
with the complex numbers C via the canonical vector space isomorphism κ : C→ R2, z 7→ z =
(ℜ(z),ℑ(z))⊤ mapping z ∈ C to its real part ℜ(z) and imaginary part ℑ(z). By z† we denote
the complex conjugate ℜ(z)− iℑ(z) of z ∈ C, with i2 = −1, or more generally the Hermitian
adjoint (conjugate transpose) for complex matrices or operators. Rotation of z ∈ R2 by ω ∈ R
radians simplifies to scalar multiplication exp(iω) z ∈ C.

Let Y be a complex-valued stochastic process with realizations y : T → C in L2(T ,C), where
T is a compact metric space with finite measure ν. Here, T = [0, 1] is typically the unit interval
with ν the Lebesgue measure, and t ∈ T is referred to as “time”. The complex, separable Hilbert
space L2(T ,C) of square-integrable complex-valued functions is equipped with the inner prod-
uct ⟨x, y⟩ =

∫
x†(t)y(t) dν(t) for x, y ∈ L2(T ,C) and the corresponding norm ∥ · ∥.

DEFINITION 1. i) Y is called random element in a real or complex Hilbert space H if
⟨x, Y ⟩ is measurable for all x ∈ H and the distribution of Y is uniquely determined by
the (marginal) distributions of ⟨x, Y ⟩ over x ∈ H.

ii) The mean µ ∈ H and covariance operator Σ : H→ H of a random element Y are defined
via ⟨µ, x⟩ = E (⟨Y, x⟩) and ⟨Σ(x), y⟩ = E (⟨x, Y − µ⟩⟨Y − µ, y⟩) for all x, y ∈ H.

In the following, we assume Y is a random element of L2(T ,C). Being self-adjoint and com-
pact, its covariance operator Σ admits a representation Σ(f) =

∑
k≥1 λk⟨ek, f⟩ek via count-

ably many eigenfunctions e1, e2, · · · ∈ L2(T ,C), Σ(ek) = λkek, with real eigenvalues λ1 ≥
λ2 ≥ · · · ≥ 0 of Σ (see Supplement). The {ek}k form an orthonormal basis of the Hilbert
subspace formed by the closure of the image of Σ. The random element can be represented
as Y = µ+

∑
k≥1⟨ek, Y ⟩ek with probability one. The scores Zk = ⟨ek, Y ⟩, k ≥ 1, are com-

plex random variables with mean zero and covariance Cov (Zk, Zk′) = E (⟨Y, ek⟩⟨ek′ , Y ⟩) =
λk1{k′}(k), where 1S(t) = 1 if t ∈ S and 0 else for a set S .
Y is canonically identified with the bivariate real process Y = κ(Y ) = (ℜ(Y ),ℑ(Y ))⊤, ran-

dom element in the Hilbert space L2(T ,R2) with the inner product of x = κ(x),y = κ(y),
x, y ∈ L2(T ,C), defined by ⟨x,y⟩ =

∫
ℜ (x(t))ℜ (y(t)) dν(t) +

∫
ℑ (x(t))ℑ (y(t)) dν(t) =

ℜ (⟨x, y⟩).
THEOREM 1. Define the pseudo-covariance operator Ω of Y with mean µ by ⟨Ω(x), y⟩ =

E (⟨Y − µ, x⟩⟨Y − µ, y⟩) for all x, y ∈ L2(T ,C), and let Σ denote the covariance operator
of Y = κ(Y ). Then the covariance and pseudo-covariance operators Σ and Ω of Y together
determine Σ via

κ−1 ◦Σ ◦ κ = (Σ + Ω)/2.

Aiming at shape analysis, we are particularly interested in rotation-invariant distributions
L(Y) of Y = κ(Y ), corresponding to L(Y ) = L(exp(iω)Y ) for all ω ∈ R. In this case, L(Y )
is typically referred to as ‘proper’, ‘circular’ or ‘complex symmetric’ (Neeser & Massey, 1993;

7. Elastic Full Procrustes Analysis of Planar Curves
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Picinbono, 1996; Kent, 1994) and the simplification by taking a complex approach becomes
evident:

THEOREM 2. A stochastic process Y with covariance operator Σ with eigenbasis {ek}k and
corresponding eigenvalues {λk}k follows a complex symmetric distribution if and only if all
scores Zk = ⟨ek, Y ⟩ with λk > 0 do, and additionally the mean of Y is µ = 0. In this case,

i) the pseudo-covariance Ω of Y vanishes, i.e. Ω(y) = 0 for all y ∈ L2(T ,C), and the covari-
ance operator Σ of the bivariate process Y = κ(Y ) is completely determined by Σ;

ii) the pairs ek = κ(2−1/2ek), e−k = κ(i 2−1/2ek) ∈ L2(T ,R2) yield an eigen decomposition
Σ(f) =

∑
k ̸=0 λk⟨ek, f⟩ek of Σ. With probability one, Y =

∑
k ̸=0 ekZk with uncorrelated

real scores Zk with mean zero, variance var (Zk) = λk and κ(Zk) = (Zk,Z−k)
⊤.

While rotation invariance of L(Y) leads to even multiplicities in the eigenvalues of the bi-
variate covariance operator Σ, it does not pose a constraint on the complex eigenvalues and
eigenfunctions of Σ, which would complicate the eigendecomposition. Here, rotation invariance
of L(Y) instead translates to complex symmetry of the distribution of the scores Zk.

Mean and covariance structure of Y can also be approached from the point-wise mean
µ∗(t) = E (Y (t)) and Hermitian covariance surface C(s, t) = E

(
Y †(s)Y (t)

)
= C(t, s)†.

Under complex symmetry, we obtain again µ∗(t) = 0, while the auto-covariances
E(ℜ(Y (s))ℜ(Y (t))) = E(ℑ(Y (s))ℑ(Y (t))) = ℜ (C(s, t)) and cross-covariances
E(ℜ(Y (s))ℑ(Y (t))) = −E(ℑ(Y (s))ℜ(Y (t))) = ℑ (C(s, t)) of the bivariate Y are
completely determined by C(s, t), as shown in the Supplement. The integral operator
Σ∗(f)(t) =

∫
C(s, t)f(s) dν(s) on L2(T ,C) induced by the covariance surface again consti-

tutes a compact and self-adjoint operator and admits, as such, an eigen decomposition. In fact,
under standard assumptions, such as continuity of µ∗(t) and C(s, t), Fubini allows switching
integrals such that the point-wise mean µ∗ = µ coincides with the mean element and the
operator Σ∗ = Σ with the covariance operator. In this case, the eigen decomposition of Σ also
yields a decomposition

C(s, t) =
∑

k≥1

λke
†
k(s)ek(t)

of the covariance surface.

2.2. Hermitian covariance estimation via tensor-product smoothing
Based on a densely/regularly sampled collection of realizations y1, . . . , yn : T → C (with

equal grids) of a complex symmetric process Y , the covariance surface C(s, t) of Y can be
estimated by the empirical covariance surface Ĉemp.(s, t) =

1
n

∑n
i=1 y

†
i (s)yi(t) for each pair

of grid-points s, t. This is, however, not possible in a sparse/irregular setting where only a
limited number of evaluations yi(ti1) = yi1, . . . , yi(tini) = yini are available for i = 1, . . . , n

such that, for a given (s, t)-tuple, Ĉemp.(s, t) would only be based on few observations if com-
putable at all. Consequently, some kind of smoothing over samples becomes necessary and,
following the seminal work of Yao et al. (2005), covariance estimation in the sparse/irregular
functional case has widely been approached as a non-/semi-parametric regression problem. We
proceed accordingly in the complex case and model E

(
Y †(s)Y (t)

)
= C(s, t) with a (smooth)

regression estimator Ĉ(s, t) fitted to response products y†ijyiȷ̈ at respective tuples (tij , tiȷ̈) ∈ T 2,
for j, ȷ̈ = 1, . . . , ni and i = 1, . . . , n. Here, it is often reasonable to assume that, in fact, only
measurements ỹij = yij + εij are observed with εij = εi(tij) uncorrelated measurement errors
originating from a white noise error process ε(t), t ∈ T . This leads to a combined covariance
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C̃(s, t) = C(s, t) + τ2(t) 1{s}(t) with τ2(t) = var(ε(t)) the variance function of ε(t). Assum-
ing C(s, t) continuous, τ2(t) can be distinguished as a discontinuous “nugget effect” at s = t.

Generalizing the approach of Cederbaum et al. (2018) for real covariance surfaces to the com-
plex case, we propose to model C(s, t) using a Hermitian tensor-product smooth

C(s, t) ≈
m∑

g=1

m∑

k=1

ξgkfg(s)fk(t) = f⊤(s)Ξf(t) = vec(Ξ)⊤(f(t)⊗ f(s))

with real-valued basis functions fk : T → R, k = 1, . . . ,m, stacked to a vector f(t) =
(f1(t), . . . , fm(t))⊤, and a Hermitian coefficient matrix Ξ = {ξkk′}kk′ = Ξ† ∈ Cm×m ensur-
ing C(s, t) is Hermitian as required, with vec stacking the columns of a matrix to a vector.
Both the symmetry of the real part ℜ(Ξ) = ℜ(Ξ)⊤ and the anti-symmetry of the imaginary part
ℑ(Ξ) = −ℑ(Ξ)⊤ present linear constraints. As such they can be implemented via suitable ba-
sis transforms Dℜ (f ⊗ f)(s, t) and Dℑ (f ⊗ f)(s, t) of the tensor-product basis (f ⊗ f)(s, t) =

(f1(s)f
⊤(t), . . . , fm(s)f⊤(t))⊤ with transformation matrices Dℜ ∈ R(m2+m)/2×m2

and Dℑ ∈
R(m2−m)/2×m2

for the symmetric and anti-symmetric part, respectively. Since Rm×m is a direct
sum of the vector spaces of symmetric and antisymmetric m×m matrices, Dℑ can be ob-
tained, e.g., as basis matrix of the null space of Dℜ. A possible construction of Dℜ is described
by Cederbaum et al. (2018). In addition to the covariance, we also model the error variance
τ2(t) ≈ ξ⊤τ fτ (t) expanded in a real function basis fτ (t). Here, it might be convenient to em-
ploy the same basis fτ (t) = f(t) or to assume constant error variance by setting fτ (t) = 1 for
all t. At any t with τ2(t) = 0, the measurement error is excluded from the model. The coeffi-
cients vec

(
Ξ̂
)
= Dℜξ̂ℜ + iDℑξ̂ℑ of the covariance estimator Ĉ(s, t) minimize the penalized

least-squares criterion

PLS(Ξ, ξτ ) =
∑

i,j,ȷ̈

∣∣∣f⊤(tij)Ξf(tiȷ̈) + ξ
⊤
τ fτ (tij) 1{ȷ̈}(j)− y†ijyi ȷ̈

∣∣∣
2
+ PEN(Ξ, ξτ )

with quadratic penalty term PEN. They are seperately obtained for the real and imag-
inary part of the covariance using PLS = PLSℜ + PLSℑ via the well-known linear esti-
mators ξ̂ℜ ∈ R(m2+m)/2, ξ̂τ ∈ Rmτ minimizing PLSℜ =

∑
i,j,ȷ̈(ξ

⊤
ℜ Dℜ (f ⊗ f)(tij , tiȷ̈) +

ξ⊤τ f(tij) 1{ȷ̈}(j)−ℜ(y†ijyi ȷ̈))2 + ηℜ ξ⊤ℜDℜP⊗D⊤
ℜξℜ + ητ ξ

⊤
τ Pτ ξτ , and ξ̂ℑ ∈ R(m2−m)/2

minimizing PLSℑ =
∑

i,j,ȷ̈(ξ
⊤
ℑ Dℑ (f ⊗ f)(tij , tiȷ̈)−ℑ(y†ijyi ȷ̈))2 + ηℑ ξ⊤ℑDℑP⊗D⊤

ℑξℑ.
Smoothing parameters ητ , ηℜ, ηℑ > 0 control the penalty induced by the matrices Pτ and
P⊗ = P⊗ Im + Im ⊗P constructed from a suitable penalty matrix P ∈ Rm×m for the basis
coefficients of f(t) and the m×m identity matrix Im. Assuming the error variance not too
heterogeneous over t, the matrix Pτ should typically penalize deviations from the constant.
Based on a working normality assumption, ηℜ, ητ and ηℑ are obtained via restricted maximum
likelihood (REML) estimation (Wood, 2017), avoiding computationally intense hyper-parameter
tuning. For practical use, we extended the R package sparseFLMM (Cederbaum, 2018) to
also offer anti-symmetric tensor-product smooths for the package mgcv (Wood, 2017) used
for estimation. For asymptotic theory on the used penalized spline estimators, please see Wood
et al. (2016).

After estimation, eigenfunctions ek and eigenvalues λk of the covariance operator Σ of Y
are estimated by the corresponding eigen decomposition Ĉ(s, t) =

∑
k≥1 λ̂kê

†
k(s)êk(t) of the

respective covariance operator Σ̂. Based on Ξ̂ and the Gram matrix G = {⟨fk, fk′⟩}mk,k′=1, the
right eigenvalues of the matrix G−1Ξ̂ yield the eigenvalues λ̂k of Σ̂. The corresponding eigen-
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vectors θ̂k yield the eigenfunctions êk(t) = θ̂⊤k f(t) of Σ̂ for k = 1, . . . ,m. To ensure positive-
definiteness, eigenfunctions with λk ≤ 0 are omitted from the basis. Nonnegativity of τ2 is en-
forced post-hoc by setting negative values to zero.

3. ELASTIC FULL PROCRUSTES ANALYSIS

3.1. Full Procrustes analysis in the square-root-velocity framework
To now propose (elastic) full Procrustes means for plane curves, we first introduce some un-

derlying concepts and notation. We understand a parameterized curve as a function β : [0, 1]→
C, which is assumed absolutely continuous such that the component-wise derivative β̇(t) =
d
dtℜ ◦ β(t) + i ddtℑ ◦ β(t) exists almost everywhere and also the integral φβ(t) =

∫ t
0 |β̇(s)| ds <

∞ exists for t ∈ [0, 1]. Denoting the set of absolutely continuous functions [0, 1]→ C by
AC([0, 1],C), we further assume β ∈ AC∗([0, 1],C) = AC([0, 1],C) \ {t 7→ z : z ∈ C} exclud-
ing constant functions as degenerate curves. Then β has positive length L(β) = φβ(1) > 0, and
a constant-speed parameterization α = β ◦ φ−1

β always exists, when taking the generalized in-
verse φ−1

β (s) = inf{t ∈ [0, 1] : sL(β) ≤ φβ(t)}, s ∈ [0, 1]. Two parameterized curves β1, β2 ∈
AC∗([0, 1],C) are said to describe the same curve if they have the same constant-speed param-
eterization α1 = α2, which yields an equivalence relation β1 ≈ β2. An oriented curve is then
defined as equivalence class with respect to ‘≈’. If the context allows it, we commonly refer to
both oriented plane curves and their parameterized curve representatives β simply as “curve”. A
diffeomorphism γ : [0, 1]→ [0, 1] which is orientation-preserving, i.e., with derivative γ̇(t) > 0
for t ∈ [0, 1], is called warping function and the set of such warping functions is denoted by Γ.
With obviously β ◦ γ ≈ β, warping can equivalently be used to define equivalence of parameter-
ized curves (see, e.g, Bruveris, 2016, which we also recommend for further details). Abstracting
also from the particular coordinate system for C, the shape of an (oriented) curve with param-
eterization β is then defined by [β] = {β̃ ∈ AC([0, 1],C) : u β̃ + v ≈ β for some u, v ∈ C}, its
equivalence class under translation, rotation, re-scaling and warping. This presents our ultimate
object of interest. In establishing a metric on the quotient space B = {[β] : β ∈ AC∗([0, 1],C)},
we follow and extend the idea of the full Procrustes distance in landmark shape analysis and
define

dΨ([β1], [β2]) = inf
a≥0,vi∈C,
ωi∈R,γi∈Γ

∥ Ψ(exp(iω1) β1 ◦ γ1 + v1)− a Ψ(exp(iω2) β2 ◦ γ2 + v2) ∥ (1)

for β1, β2 ∈ AC∗([0, 1],C), with a pre-shape map Ψ : AC∗([0, 1],C)→ L2([0, 1],C), β 7→ q
discussed below allowing to base computation on the L2-metric while optimizing over all in-
volved invariances. Acting differently than the other curve-shape preserving transformations
(see, e.g., Srivastava & Klassen, 2016, Chap. 3.7), scale invariance is generally accounted for
by a normalization constraint ∥Ψ(β)∥ = ∥q∥ = 1 for all β. Fixing a = 1 in (1) would yield a
partial-Procrustes-type distance instead. Replacing also the norm by the arc length on the L2-
sphere would correspond to an intrinsic shape distance. To obtain a proper and sound metric, Ψ
has to be carefully chosen. It is well-known that directly applying the L2-metric on the level of
parameterized curves β is problematic, since in this case the warping action of γ ∈ Γ is not by
isometries (Srivastava & Klassen, 2016).

We set Ψ̃(β) to the SRV-transformation (Srivastava et al., 2011), representing a curve
β by its square-root-velocity (SRV) transform q : [0, 1]→ C given by q(t) = β̇(t)/|β̇(t)|1/2
wherever this is defined and q(t) = 0 elsewhere. Indeed, q is square-integrable with
∥q∥2 =

∫ 1
0 |q(t)|2 dt = L(β). Since Ψ̃ (uβ ◦ γ + v) (t) = (u/|u|1/2) q ◦ γ(t)γ̇(t)1/2, warping
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and rotation act by isometries with ∥Ψ̃(a exp(iω)β1 ◦ γ + v)− Ψ̃(a exp(iω)β2 ◦ γ + v)∥ =
a1/2∥Ψ̃(β1)− Ψ̃(β2)∥ for any two curves β1, β2 and γ ∈ Γ, a ≥ 0, ω ∈ R, u, v ∈ C. The L2-
metric on the SRV-transforms induces a metric on the space of curves modulo translation (Bru-
veris, 2016). It is commonly referred to as “elastic” metric due to the isometric action of γ
allowing to construct a metric on oriented curves via optimal warping alignment. Ψ̃ is surjective
but not injective, with Ψ̃−1({Ψ̃(β)}) = {β + v : v ∈ C} ⊂ [β]. Without loss of generality, we
can, thus, set Ψ̃−1(q)(t) =

∫ t
0 β̇(s) ds =

∫ t
0 q(s)|q(s)| ds when discussing shapes.

PROPOSITION 1. With Ψ(β) = Ψ̃(β/L(β)) = Ψ̃(β)/∥Ψ̃(β)∥ the normalized SRV-transform,
dΨ defines a metric on B, referred to as elastic full Procrustes distance dE . It takes the form

d2E([β1], [β2]) = inf
u∈C,γ∈Γ

∥q1 − u q2 ◦ γ γ̇1/2∥2 = 1− sup
γ∈Γ
|⟨q1, q2 ◦ γ γ̇1/2⟩|2

for qi = Ψ(βi) unit-norm SRV-transforms of curve shape representatives β1, β2 ∈
AC∗([0, 1],C).

With a metric at hand, we may proceed by considering random shapes and define the concept
of a Fréchet mean induced by the metric (compare, e.g., Huckemann, 2012; Ziezold, 1977). A
random element A in a metric space (A, d) is a Borel-measurable random variable taking values
in A. A (population) Fréchet mean or expected element m ∈ A is defined as a minimizer of the
expected square distance

E
(
d2(m, A)

)
= σ2 = inf

a∈A
E
(
d2(a, A)

)
.

assuming a finite variance σ2 <∞.
DEFINITION 2. A random (plane curve) shape [B] is a random element in the shape space B

equipped with the elastic full Procrustes distance dE . We call a Fréchet mean [µE ] ∈ B of [B],
represented by µE ∈ AC∗([0, 1],C), an elastic full Procrustes mean of the random shape [B].

As distance computation is carried out on SRV-transforms, it is, however, typically more con-
venient to consider the mean shape via a distribution L (Q) of a random element Q = Ψ(B) in
the Hilbert space L2([0, 1],C) inducing the shape distribution L([B]).

PROPOSITION 2. Consider a random element Q in L2([0, 1],C) with ∥Q∥ = 1 almost surely.
Then the elastic full Procrustes means [µE ] of the induced random shape [B] = [Ψ−1(Q)] are
determined by their SRV-transform ψE = Ψ(µE) fulfilling

ψE ∈ argmax
y:∥y∥=1

E
(
sup
γ∈Γ
|⟨y,Q ◦ γ γ̇1/2⟩|2

)
.

In contrast to the shape invariances, we have no closed form solution for the optimization
over γ ∈ Γ available. This makes it convenient to also define an inelastic full Procrustes mean
of shapes of plane curves with fixed parameterization. It will present a building block in elastic
mean estimation but is also interesting in its own right especially in data scenarios involving
natural curve parameterizations.

PROPOSITION 3. For β ∈ AC∗([0, 1],C) define the shape of a parameterized plane curve as
(β) = {uβ + v : u, v ∈ C}. Then

i) the inelastic full Procrustes distance d̸E((β1), (β2)) = infu∈C ∥q1 − uq2∥ with ∥qi∥ = 1 for
Ψ(βi) = qi, i = 1, 2, defines a metric on the shape space B̃ = {(β) : AC∗([0, 1],C)} of
parameterized plane curves and can be expressed as d2̸E((β1), (β2)) = 1− |⟨q1, q2⟩|2;

ii) multiplication by ⟨q1, q2⟩†/|⟨q1, q2⟩| = argminu:|u|=1 ∥q1 − uq2∥ yields rotation alignment
of β2 to β1;

7. Elastic Full Procrustes Analysis of Planar Curves
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iii) for a complex symmetric random element Q in L2([0, 1],C) with covariance operator Σ,
let Y1 = {y : Σ(y) = λ1y} denote the spectrum of the leading eigenvalue λ1 of Σ. Then,
(Y1) = {(y) : y ∈ Y1} is the set of Fréchet means of the random shape (B) = (Ψ−1(Q))
in B̃ with respect to d̸E , which we refer to as inelastic full Procrustes means. In particu-
lar, the leading eigenfunction ψ̸E = e1 of an eigen decomposition of Σ yields an inelastic
full Procrustes mean (µ ̸E) of (B) with SRV-transform ψ̸E = Ψ(µ ̸E). It is unique if λ1 has
multiplicity 1. The variance of (B) is σ2̸E = E(d2̸E((µ ̸E), (B))) = 1− λ1.

To allow estimation of the (in)elastic full Procrustes means from a sample of plane curves in
practice, we have to address potentially sparse and/or irregular sampling points of such curves. In
the following, we first answer the question of how it is still possible to work with derivative-based
SRV-curves even in the sparsely observed setting. We then propose to use Hermitian covariance
smoothing as introduced in Section 2 to deal with sparsity in estimation of (in)elastic full Pro-
crustes means.

3.2. The square-root-velocity representation in a sparse/irregular setting
In practice, the shape of an (oriented) plane curve is observed via a vector b = (b0, . . . bn0)

⊤ ∈
Cn0+1 of points, which can be considered evaluations β∗(t∗j ) = bj of some continuous param-
eterization β∗ : [0, 1]→ C of the curve at arbitrary time points t∗0 < · · · < t∗n0

. However, fixing
the time grid, the derivatives β̇∗(t∗i ) are not observable. Instead, evaluations of an SRV-transform
describing the curve can be directly obtained from the finite differences ∆j = bj − bj−1, if the

curve segments β∗
(
(t∗j−1, t

∗
j )
)
⊂ C between the observed points in b have no edges or loops:

THEOREM 3 (FEASIBLE SAMPLING). If β∗ is continuous and β∗ : (t∗j−1, t
∗
j )→ C is injective

and continuously differentiable with β̇∗(t) ̸= 0 for all t ∈ (t∗j−1, t
∗
j ), for j = 1, . . . , n0, then for

any time points 0 < t1 < · · · < tn0 < 1 and speeds w1, . . . , wn0 > 0, there exists a γ ∈ Γ such
that

q(tj) = w
1/2
j (β∗(t∗j )− β∗(t∗j−1)) = w

1/2
j ∆j (j = 1, . . . n0)

for the SRV-transform q of β = β∗ ◦ γ.
We call a vector of sampling points b of a curve feasible if the conditions of Lemma 3 hold.

This is always fulfilled if there is a β∗ ∈ (β) such that β∗ is continuously differentiable with non-
vanishing derivative on all (0, 1) and, in particular, if it describes an embedded one-dimensional
differentiable submanifold. However, if the curve has edges, they must be contained in b, as
well as a point inside of each loop. Note that while discrete observations often result in approx-
imate derivative computations, Theorem 3 ensures that the derivative-based SRV-transform can
be exactly recovered on a desired grid - up to a re-parameterization not essential in an analysis
invariant to re-parameterization.

Selected time points t1 < · · · < tn0 and speeds w1, . . . , wn0 > 0 implicitly determine the pa-
rameterization. In principle, they could be arbitrarily selected due to parameterization invariance
of the analysis, but with regard to mean estimation it is desirable to initialize them in a coher-
ent way. Without any prior knowledge, constant speed parameterization of underlying curves β
presents a canonical choice. To approximate this, we borrow from constant speed parameteriza-
tion β̂ of the sample polygon with vertices b, implying a piece-wise constant SRV-transform
q̂(t) =

∑n0
j=1 qj 1[sj−1,sj)(t) with SRVs qj = ∆j |∆j |−1L1/2(β̂), with L(β̂) =

∑n0
j=1 |∆j | the

length of the polygon. The nodes sj =
∑j

l=1 |∆j |/L(β̂) indicate the vertices β̂(sj) = bj , j =
0, . . . , n0. In accordance with that, we set q(tj) = qj and select time points tj = (sj + sj−1)/2
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in the center of the edges, for j = 1, . . . , n0. Depending on the context other choices might be
preferable, but we generally expect this choice to imply reasonable starting parameterizations.

3.3. Estimating elastic full Procrustes means via Hermitian covariance smoothing
Consider a collection of sample vectors bi ∈ Cni+1 of n curves βi ∈ AC∗([0, 1],C), i =

1, . . . , n, realizations of a random plane curve shape [B]. For scale-invariance, sample poly-
gons are normalized to unit-length. Moreover, the bi are assumed feasibly sampled to represent
them by evaluations qi(tij) = qij at time points tij , j = 1, . . . , ni, of the SRV-transform qi of βi
as described in the previous Subsection 3.2. We model an elastic full Procrustes mean [µ] of [B]
via the SRV-transform ψ of µ ∈ AC∗([0, 1],C) expanded as ψ(t) =

∑m
k=1 θkfk(t) = θ

⊤f(t) in
a basis f(t) = (f1(t), · · · fm(t))⊤ of functions fk ∈ L2([0, 1],R), k = 1, . . . ,m, with complex
coefficient vector θ = (θ1, . . . , θm)⊤ ∈ Cm. For the basis, piece-wise linear B-splines of order
1 present an attractive choice, since they have been proven identifiable under warping-invariance
(Steyer et al., 2021) while still implying continuity of ψ and a differentiable mean curve µ.

The idea of alternating between a) mean estimation on aligned data and b) alignment of the
data to the current mean is used for estimation of landmark full Procrustes means (Dryden &
Mardia, 2016, p. 139) and intrinsic elastic mean curve shapes (Srivastava & Klassen, 2016, p.
319). We follow a similar strategy to find an estimator ψ̂(t) = θ̂⊤f(t) for ψ but estimate an in-
elastic full Procrustes mean in a) and base the estimate on Hermitian covariance smoothing for
irregularly/sparsely sampled curves. The covariance estimate is also used for estimating normal-
ization and rotation alignment multipliers, which are not directly computable for sparse curve
data. For warping alignment in b), we utilize the approach of Steyer et al. (2021), which has also
proven suitable for irregularly/sparsely sampled curves. Involved steps of the algorithm are de-
tailed in the following and a discussion of its empirical performance is given in the next section.

Initialize in iteration h = 0 SRV-representations q[h]i (t
[h]
ij ) = q

[h]
ij with q[0]ij = qij and t[0]ij = tij

as in Section 3.2 for all i, j, and repeat the following steps for n = 1, 2, . . . :

I. Covariance estimation: We estimate the covariance surface C [h](s, t) of a complex sym-
metric process Q underlying q

[h]
1 , . . . , q

[h]
n with a tensor-product estimator Ĉ [h](s, t) =

f(s)⊤Ξ̂[h] f(t) with coefficient matrix Ξ̂[h] ∈ Cm×m. While for dense sampling, an esti-
mate can be directly obtained from the covariance of the ⟨q[h]i , fk⟩ (Supplement), we pro-
pose Hermitian covariance smoothing as described in Section 2 for sparse/irregular data.
This also yields eigenfunctions ê[h]k and eigenvalues λ̂[h]k , k = 1, . . . ,m, of the correspond-
ing covariance operator Σ̂[h], as well as an estimate τ̂2[h](t) ≥ 0 of the variance of a white
noise zero mean residual process ε(t) at t ∈ [0, 1], if measurement uncertainty on observa-
tions Q(tij) + ε(tij) is assumed.

II. Mean estimation: Set ψ̂[h](t) = ê
[h]
1 (t) = θ̂

[h]⊤
1 f(t) to the leading eigenfunction of Σ̂[h]

obtained from the leading right eigenvector θ̂[h]1 of G−1Ξ̂[h] with Gramian G of f . This
yields an inelastic full Procrustes mean estimate [µ̂[h]] = [Ψ−1(ψ̂[h])] of the curves with the
current parameterization (Proposition 3), presenting the current estimate of the elastic full
Procrustes mean.

III. Rotation alignment and re-normalization: For u[h]i =
(
z
[h]
i1 /|z

[h]
i1 |
)†
(L[h](βi))

−1/2 with

z
[h]
i1 = ⟨ê[h]1 , qi⟩, u[h]i q

[h]
i has norm 1 and is rotation aligned to ψ̂[h]. We estimate u[h]i by û[h]i

for i = 1, . . . , n based on the covariance estimation by plugging in conditional expecta-
tions ẑ[h]i1 = E

(
⟨ê[h]1 , Q⟩ | Q(tij) + ε(tij) = q

[h]
ij , j = 1, . . . , ni

)
and L̂[h](βi) = E

(
∥Q∥2 |

7. Elastic Full Procrustes Analysis of Planar Curves
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Q(tij) + ε(tij) = q
[h]
ij , j = 1, . . . , ni

)
under a working normality assumption, an estima-

tion approach in the spirit of Yao et al. (2005). Expressions can be found in the Supplement.
IV. Warping alignment: Based on its rotation aligned SRV evaluations, the ith curve is (ap-

proximately) warping aligned to µ̂[h] using the approach of Steyer et al. (2021), where
SRV-transforms are approximated as piece-wise constant functions q̂[h]i (t) ≈ q[h]i (t) to find
the infimum of ∥µ̂[h] − q̂[h]i ◦ γ γ̇1/2∥ over γ ∈ Γ. This yields new parameterization time-
points t[h+1]

ij , j = 1, . . . , ni, and corresponding SRVs q[h+1]
ij = w

[h]
ij û

[h]
i q

[h]
ij , with w[h]

ij > 0

depending on the t[h]ij and t[h+1]
ij , passed forward to proceed with the next iteration at Step I.

Details can be found in the Supplement.

Stop the algorithm when ∥ψ̂[h] − ψ̂[h−1]∥ is below a specified threshold in Step II. An ad-
ditional execution of Steps III and IV then yields rotation aligned samples of approximately
unit-length curves and current time points.

4. ADEQUACY AND ROBUSTNESS OF ELASTIC FULL PROCRUSTES MEAN ESTIMATION IN
REALISTIC CURVE SHAPE DATA

Familiar everyday shapes offer an ideal platform for evaluation of shape mean estimation, al-
lowing for intuitive and visual assessment of results. We consider three different such datasets
for investigating the performance of elastic full Procrustes mean shape estimation and compar-
ing it to other mean concepts: 1. digit3.dat from Dryden & Mardia (2016) comprising a
total of 30 handwritten digits “3” sampled at 13 landmarks each; 2. irregularly sampled spi-
rals β(t) = t exp(13 i t), t ∈ [0, 1], with random ni ∈ {17, . . . , 22} sampling points per spiral
or with ni ∈ {4, . . . , 7} in a very sparse setting, additionally provided with small measurement
errors and random rotation, translation and scaling; and 3. handwritten letters “f ” extracted from
the handwrit data in Ramsay & Silverman (2005) comprising 20 repetitions of the letter with
a total of 501 samples per curve. While we focus on one letter here for simplicity, example fits
on the entire “fda” writings can be found in Figure S1 in the Online Supplement.

Based on digit3.dat, we compare our elastic full Procrustes mean estimator µ̂E with its
inelastic analog µ̂ ̸E and with an elastic curve mean estimator µ̂C taking shape invariances not
into account (fitted with R package elasdics). Moreover, we investigate fitting performance
of µ̂E for n = 4, 10, 30 observed digits in a simulation. All estimators are fitted using piece-wise
constant and piece-wise linear B-splines with 13 equally spaced knots on SRV-level applying
2nd order difference penalties in the covariance estimation for µ̂E and µ̂ ̸E . No penalty is avail-
able for µ̂C . Figure 1 shows the estimates fitted on the first n = 4 digits in the dataset. Without
warping alignment, µ̂ ̸E does not capture the pronounced central nose in the digit “3” as distinctly
as µ̂E . The difference is somewhat smaller when fitting on all n = 30 digits (not shown), yet
only marginally. Since the data is roughly rotation and scaling aligned, µ̂C is very close to µ̂E
when fitting on all digits. When fitting only on the first n = 4 digits in the data, however, µ̂C
substantially deviates, in particular for the smooth estimator using linear splines, as shown in
Figure 1 (top left). This can presumably be attributed to a) µ̂C being more affected by the one
outlying “3” (top-left) than µ̂E , and b) the nose pointing into different directions depending on
the handwriting. Overall, deficiencies in warping and rotation alignment tend to mask features in
the curve shapes by averaging over different orientations and parameterizations, similarly to the
effect of measurement error in covariates in a regression model. With missing scale alignment,
the shape of the estimated mean is mainly driven by the shape of the largest curve(s) in the data.
Good estimation quality is also confirmed in simulations that compare elastic full Procrustes
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Fig. 1: Top left: Different digit “3” mean curves (black: order 1, grey: order 0 B-splines on
SRV-level) estimated on the first n = 4 sample polygons in digit3.dat shown in the bottom-
right. Top center: Simulation results from 101-fold bootstrap samples of different sample sizes
on digit3.dat. Four bootstrap estimates as examples of cases with relatively high deviations
from µ (95% and for n = 4 also 75% distance quantiles) are depicted in the bottom and marked in
the top panel (filled dots). Here, distances to [µ] are provided relative to the standard deviation σ
estimated on the original dataset (as described below in Section 5). However, in some sense, σ is
an underestimate as it does not include variation induced by irregular/sparse sampling. Top right:
Performance comparison of our elastic full Procrustes mean and the fdasrvf elastic intrinsic
mean estimator based on 101-fold boostrap with npoints = 10, 20, 30 points sampled per letter
“f ”. Top shows the distribution of geodesic distances of estimated means to the overall intrinsic
mean “f ” [µ] (computed with fdasrvf). For fdasrvf, three outliers for npoints = 10 and one
for npoints = 20 above 0.6 are omitted for the sake of visibility. Bottom shows example means
of median geodesic distance in each setting. Bottom: Elastic full Procrustes means estimated on
the spiral samples polygons displayed to their right, in front of the original spiral (grey, dashed
line).

mean estimates µ̂l, l = 1, . . . , 101, estimated on independently drawn bootstrap samples of the
digits (with n = 4, 10, 30), with the mean µ estimated on the original dataset and taken as true
mean. While single mean estimates for as few curves as n = 4 might considerably deviate, the
majority visually resembles µ well, including µ̂(0.75) where µ̂(a) denotes the bootstrap estima-
tor with d(a) the a-quantile of the distances dl = dE([µ̂l], [µ]), l = 1, . . . , 101. Except for two
outliers, all estimates with n = 10 and n = 30 are better than µ̂(0.75) for n = 4 (Figure 1, top
middle).
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We illustrate the role of sparsity in shape mean estimation in the spiral data with its varying
level of detail over the curve (i.e. varying curvature) and random irregular grids sampled roughly
at constant angle distances (Figure 1, bottom). Elastic full Procrustes mean estimates are based
on piece-wise linear splines on SRV-level with 20 knots and 2nd order penalties in covariance
smoothing. With a moderate number of sample points ni ∈ {17, . . . , 22}, the estimate based on
n = 9 curves regains the original spiral shape close to perfectly. Only the inner end of the spiral
with the most curvature shows some deviation. With ni ∈ {4, . . . , 7} and n = 20, the estimator
does not capture the higher curvature in the inner part of the spiral but otherwise fits its shape
well despite extreme sparsity. In sparse functional data analysis, borrowing of strength across
curves allows for consistent estimation of principle components based on a minimum number of
sampling points ni for each curve under mild conditions (Yao et al., 2005). However, this cannot
equally be expected under shape invariances, as indicated by the fact that no shape information
remains when curves are observed at ni < 3 points, and in particular when warping-alignment
can only be approximated on sparse samples. Still, we observe that bias becomes vanishingly
small when the sampling points cover the curve sufficiently well. As this is often the case in
real data, elastic full Procrustes mean estimation performs reliably well in practice already for
comparably sparse data in our experience.

Based on n = 20 handwritten letters “f ”, we compare to R package fdasrvf (Tucker, 2017),
which offers state-of-the-art elastic (intrinsic, not full Procrustes) shape mean estimation for reg-
ularly and densely observed curves. To test different degrees of sparsity, we consider three sce-
narios with npoints = 10, 20, 30 sampling points per curve. For each, we draw l = 1, . . . , 101
bootstrap samples with n1 = · · · = n20 = npoints points subsampled from the total recorded
points of each “f ” giving a higher acceptance probability to points important for curve recon-
struction. This leads to datasets of sparse but still recognizable letters. For all three settings
our elastic full Procrustes mean estimator is fitted using piece-wise constant B-splines with 30
equally spaced knots on SRV-level and applying a 2nd order difference penalty in the covariance
estimation. This leads to polygonal means on curve level as in fdasrvf where the number of
knots is, however, always equal to npoints. As they estimate a different, intrinsic shape mean
based on the elastic geodesic shape distance ρ, a fair comparison is not possible. We thus tai-
lor the comparison to favor fdasrvf by comparing (also our full Procrustes) to their intrinsic
shape mean on the full data, and using their distance ρ. Figure 1 (top right) illustrates perfor-
mance based on their “true mean” [µ], estimated on the complete original data. In the very sparse
npoints = 10 setting, differences in the mean concept are clearly dominated by the gain of using
our mean estimator, which shows stable estimates gradually improving with npoints. With more
densely observed curves the differences in fitting performance become smaller and the fdasrvf
implementation gains a distinct computational advantage due to quadratic increase of the design
matrix dimension in Hermitian covariance smoothing. While also in the npoints = 30 scenario
fitting time remains below 1.5 minutes on a standard computer, it can dramatically increase with
the numbers of knots and sampling points. In dense scenarios, we, thus, recommend utilizing
an alternative covariance estimator for elastic full Procrustes mean estimation as described in
the Online Supplement. Still, also in this denser setting, our approach estimating the elastic full
Procrustes mean is at least as good in recovering the elastic intrinsic mean as fdasrvf, which
is actually designed to estimate this mean.

5. PHONETIC ANALYSIS OF TONGUE SHAPES

The modulation of tongue shape presents an integral part of articulation (Hoole, 1999). Sev-
eral authors investigate the shape variation in different phonetic tasks by analyzing tongue sur-

177



Elastic Full Procrustes Analysis of Plane Curves 13

face contours during speech production (Stone et al., 2001; Iskarous, 2005; Davidson, 2006) to
obtain insights into speech mechanics. They model tongue contour shapes with (penalized) B-
splines fitted through points marked on the tongue surface in ultrasound or MRT images of the
speaker profile. While different measures to register/superimpose the tongue contour curves are
undertaken, shape and warping invariances are not explicitly incorporated into their statistical
analysis so far. In particular, reducing tongue shapes to one dimensional curves over an angle as
in Davidson (2006) brings the problem that the different functions (due to different tongue shapes
for different sounds) extend over different angle domains, which is ignored in the analysis. We
suggest elastic full Procrustes analysis to appropriately handle the inherently two-dimensional
curves. This approach accounts for the lack of a coordinate system in the ultrasound image, dif-
ferent positioning of ultrasound devices and size differences of speakers (Procrustes analysis)
as well as flexibility of the tongue muscle to adjust its shape (elastic analysis). We illustrate the
approach in experimental data kindly provided by Marianne Pouplier: tongue contour shapes are
recorded in an experimental setting from six native German speakers (S = {1, . . . , 6}) repeating
the same set of fictitious words, such as “pada”, “pidi”, “pala” or “pili”. The words imple-
ment different combinations of two flanking vowels in V = {a ∗ a, i ∗ i} around a consonant
in C = {d, l, n, s}. Each combination is repeated multiple times by each of the speakers (1-8
times), observing tongue contour shapes formed at the central time point of consonant articu-
lation (estimated from the acoustic signal). In total, this yields n = 299 sample polygons with
nodes bi ∈ Cni , i = 1, . . . , n, each sampled at ni = 29 points from the tongue root to the tongue
tip. A feature vector Xi = (vi, ci, si)

⊤ ∈ X = V × C × S identifies the word-speaker combina-
tion of the ith curve. We investigate the different sources of shape variability (consonants, vowel
context, speakers, repetitions) by elastic Full Procrustes analysis on different levels of hierar-
chy. Let [µ̂A] ∈ B denote the elastic full Procrustes mean estimated for all i with Xi ∈ A ⊂ X .
Figure 2 depicts the overall shape mean [µ̂X ], separate means [µ̂{(c,v)}×S ] for the consonants
c ∈ {d, s} in both vowel contexts v ∈ V , and speaker-word means [µ̂{(c,v,s)}] reflecting indi-
vidual articulation by speaker s ∈ S. Not displayed consonants “l” and “n” yield very similar
shapes as “d”. Shape means are estimated using linear B-splines on SRV level with 13 equidistant
knots and a 2nd order difference penalty for the basis coefficients. Homogeneous measurement
error variance is assumed. Fitting the overall mean in this setting takes about 3 minutes on a
standard computer.

For quantitative assessment of the hierarchical variation structure, we consider the conditional
variances σ2A = E(d2E([B], [µA]) | X ∈ A) with X constrained on a subset A ⊂ X , which we
estimate by σ̂2A = 1− λ̂A,1(

∑m
k=1 λ̂A,k)

−1 with λ̂A,1, . . . , λ̂A,m the positive eigenvalues of the
covariance operator obtained in the final iteration of estimating [µA]. In a dense setting, where
observations can be exactly normalized, the estimator σ̌2A = 1− λ̂A,1 can be used directly, since
when ∥Q∥ = 1 almost surely also E(∥Q∥2) =∑k≥1 λk = 1. In a sparse setting, however, di-
viding by

∑m
k=1 λ̂A,k in σ̂2A ensures non-negative variance estimates.

In analogy to standard analysis of variance, we define the coefficient of determination for
A1 in some decomposition A1 ×A2 = X as R2

A1
= 1− (|X | σ̂2X )−1|A2|

∑
a∈A1

σ̂2{a}×A2
re-

flecting the variance reduction achieved by conditioning on the features in A1. Inspecting
these measures underpins the visual impression from Figure 2: although the tongue move-
ment is induced by consonant pronunciation, the vowel context appears more dispositive for
the tongue shape during articulation explaining more than half of the total variation (R2

V = 0.68,
R2

C = 0.11), which increases only to R2
V×C = 0.73 when also distinguishing consonants. Com-

paring the different vowel contexts, we observe nearly double variation for a ∗ a than for
i ∗ i with σ̂2{a∗a}×C×S/σ̂

2
{i∗i}×C×S = 1.95, which might potentially relate to different pronun-
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asa
isi

tongue
muscle

a ∗ a i ∗ i

d
s

root tip root tip
ℜ(β)

ℑ(
β
)

Hierarchical mean tongue shapes

overall word speaker/word example

Fig. 2: Left: schematic illustrating the tongue muscle modulation when pronouncing “isi” and
“asa”. Dashed lines correspond to the respective mean shapes in the right plot. With its multiple
and multi-directional fibers, the tongue muscle almost fills the entire oral cavity and can flexibly
adjust its shape. In particular, not only tongue tip but also tongue root can move relatively freely.
Right: elastic full Procrustes mean tongue shape estimates for different levels of aggregation.
Each panel shows the overall mean shape in the dataset (light gray, thick long-dashed line), the
vowel-consonant mean shape (black, dashed line), and speaker-wise mean shapes (dark gray,
solid lines) for each combination. In each panel, original sample polygons (light red, thin lines,
dots at sample points) are added for the speaker with most intra-speaker variation (which is the
same speaker except for “idi”). Tongue shapes are depicted in Bookstein coordinates, i.e. with
the tongue roots at β(0) = 0 and the tongue tips at β(1) = 1.

ciations of “a” in German dialects. When considering single word articulation of a speaker
(R2

V×C×S = 0.93) about 7 percent of the variation remain as residual variance, indicating that,
while there is still non-negligible intra speaker variation, the inter speaker variance is consider-
ably higher.

Recorded via ultrasound images, the shape of tongue surface contours modulo the respective
invariances presents a natural object of analysis. Yet, if suitable reference landmarks allowed, the
information on positioning, size, orientation and warping of the curve could also be separately
investigated.

6. DISCUSSION

While we find good performance of the proposed elastic full Procrustes mean estimator in
realistic irregular/sparse curve data, future work should focus on theoretical assessment of esti-
mation quality as well as inference. In particular, evaluation of the bias introduced by sub-optimal
alignment of curves based on single discrete measurements would be of interest, as well as char-
acterization of suitable sampling schemes where the bias is empirically negligible, which often
appears to be the case in practice.
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As it can be analytically computed, inelastic full Procrustes analysis can also serve as a good
starting point for estimating other types of shape means of plane curves. In addition, the esti-
mated covariance structure supports estimation of inner products in sparse/irregular data scenar-
ios, which are involved also in estimation of, e.g., other types of shape means.
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8. Elastic Shape Regression for Plane Curves

This contribution combines previous work in Chapters 5 and 6 to obtain elastic shape
regression for plane curve responses based on the SRV-framework, allowing to model
and systematically interpret various types of (non-)linear effect types of scalar covari-
ates. The proposed approach generally covers open curves, but also closed curves when
modeling axial symmetric curves as often required in practice. In the second case, which
is illustrated in an analysis of bottle design, implemented symmetry constraints pro-
mote practically satisfactory results despite ignoring non-linear closedness constraints
for computational simplification.

Contributing article:
Stöcker, A., Steyer, L., and Greven, S. (2022). Elastic Shape Regression for Plane
Curves. Unpublished manuscript. Copyright © 2022 The Authors.
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also provided helpful discussion on closure of symmetric curves and the proofs asociated
therewith.
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Almond Stöcker, Lisa Steyer, Sonja Greven

Humboldt-Universität zu Berlin

Abstract

For outline data such as arising for anatomical shapes in biomedical imaging, often only
the shape of the outline rather than the used coordinate system or the parametrization of the
outline curve are of interest. The square-root-velocity framework provides a basis for “elastic”
statistical analysis of variability in the shapes of such curves, allowing to incorporate invariance
with respect to the curve parameterization integrally into the data geometry, in addition to
traditional shape invariances with respect to rotation, translation and scaling. However, little
work has been down so far on elastic modeling of such data in dependence on covariates. We
introduce an approach based on generalized additive regression that transfers the accustomed
flexibility for scalar data to response shapes of plane curves, and provide necessary constraints
required for modeling symmetric shapes. We illustrate interpretability of estimated non-linear
covariate effects in an analysis of bottle shapes.
Keywords: Functional data, additive regression, square-root-velocity, geometric data, semi-
parametric modeling

1 Introduction

Understanding shape variability of curves, for instance recorded in medical imaging, promises im-
portant insights in the areas of life sciences and beyond. In many data problems, say, when an-
alyzing outlines of a particular brain area across different patients, the coordinate system applied
for recording is likely arbitrary and size differences in patients are often not of interest. This has
motivated statistical shape analysis (Dryden and Mardia, 2016) to define the shape of a plane curve
as equivalence class modulo the shape invariances of translation, rotation and scale, equipped with
a Riemannian manifold structure. Similarly, a curve is naturally described in parameterized form
as a function, yet potentially only the image of the curve is of interest and analysis should then
be invariant under re-parameterization (“warping”) – a problem closely related to the registration
problem in functional data analysis (Marron et al., 2014). The square-root-velocity (SRV) frame-
work (Srivastava and Klassen, 2016) provides a basis for statistical analysis of such shapes of curves
modulo all mentioned invariances employing an “elastic” distance: Unlike for other approaches,
re-parameterization proves isometric here, allowing to induce a quotient space distance on shapes
of curves as infimum distance over its parameterizations. While first approaches to regression in
this framework with shapes of curves as covariates are presented by Ahn et al. (2018) and Tucker
et al. (2019), regression for such shapes as response variable are so far restricted to the work of Guo
et al. (2020), who model tangent space principal component representations after warping alignment.
However, this does not incorporate the elastic quotient space distance integrally into the model fit.
Related regression models for (one-dimensional) functional data with warping-alignment (but no
shape alignment) in the response were proposed by Matuk et al. (2021) and Hadjipantelis et al.
(2014, 2015).

1
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We introduce functional additive regression-type models (Greven and Scheipl, 2017; Morris, 2015)
to flexibly model shapes of plane curves in dependence on covariates and base the entire model esti-
mation on the elastic quotient space distance, which arises in the SRV framework and incorporates
all considered invariances. The proposed approach extends earlier inelastic shape regression (Stöcker
et al., 2022) combining gradient boosting for functional additive models (Brockhaus et al., 2015) with
ideas of regression for manifold-valued responses (Cornea et al., 2017). Moreover, we consider the
important special case of modeling curves with axial symmetry, and provide and implement corre-
sponding required symmetry constraints. The approach is provided in the R package manifoldboost
(github.com/Almond-S/manifoldboost/tree/elastic).

In Section 2, we provide a brief introduction into SRV-representation of plane curves (Section 2.1)
and discuss generalized additive models from an object data perspective (Section 2.2) to motivate
the proposed regression approach presented in Section 2.3. Having introduced the general model, we
discuss constraints for modeling axial symmetric closed curves in Section 2.4 and present an elastic
Riemannian L2-Boosting approach for model fitting in Section 2.5. In Section 3, we analyze bottle
design based on outline shapes (Section 3.1) and use the analysis to motivate a simulation study
investigating the impact of invariances on fitting performance (Section 3.2). Section 4 concludes
with a discussion and outlook.

2 Elastic functional additive shape regression

2.1 Representation of shapes of plane curves in the SRV-framework

Identifying the real plane R2 ∼= C with the complex numbers for convenience, we consider a param-
eterized plane curve an absolute continuous function y : I → C defined on an interval I, where we
assume y to be non-constant to avoid the degenerate case of a curve describing only a point and
write y ∈ AC∗(I). For any such y, the component-wise derivative ẏ(t) = dy(t)/dt exists for almost
all t ∈ I and there exists a monotonously increasing warping function γ : I → I re-parameterizing
the curve as u = y ◦ γ with constant speed, i.e. with |u̇(t)| constant for all t (e.g., Bruveris, 2016).
Two parameterized curves y1, y2 ∈ AC∗(I) are called equivalent if they have the same constant speed
parameterization u1 = u2, defining an oriented curve as their equivalence class. Although both are
commonly referred to simply as “curves”, we explicitly write [y]w for the oriented curve described by
a parameterized curve y for clarity. Mapping into an arbitrary coordinate system, the shape [y]s of
y is defined as its equivalence class [y]s = {λ exp(

√
−1ω)y + z | λ > 0, ω ∈ R, z ∈ C} over re-scaling

by λ, rotation by ω radian, and translation by z. The definition directly carries over to the shape
of [y]w as union over its representatives [y] =

⋃
y∈[y]w

[y]s presenting our object of primary inter-

est. The square-root-velocity (SRV) transform (Srivastava and Klassen, 2016), mapping y 7→ q with
q(t) = ẏ(t)/

√
|ẏ(t)| where defined and q(t) = 0 elsewhere, establishes an surjective map from AC∗(I)

to L2
C(I), or briefly L2

C, the Hilbert space of square-integrable complex-valued functions defined on
I (Bruveris, 2016). Loosing translation in the derivative, this yields a one-to-one identification of
[y]s with [q]s = {λ2 exp(

√
−1ω)q | λ > 0, ω ∈ R} on SRV-level. The quotient space of such [q]s with

q ̸= 0 corresponds to the complex projective space PL2
C with a well-known symmetric Riemannian

manifold structure (e.g., Klingenberg, 1995). This link is analogous to Kendall’s shape space (e.g.,
Dryden and Mardia, 2016) and a more detailed motivation of the geometry for modeling shapes of
parameterized plane curves can be found in Stöcker et al. (2022). Inducing the geometry, however,
via the SRV-representation of the curves allows to establish a suitable, elastic metric on [AC∗(I)],
the space of oriented plane curve shapes [y], as introduced by Srivastava et al. (2011) and defined
below in Section 2.3. Modeling such [y] as response objects in dependence on covariates is the target
of this paper.

2
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2.2 Generalized additive regression for modeling object data

Ever since Hastie and Tibshirani (1986) proposed generalized additive models as extension of gener-
alized linear models (Nelder and Wedderburn, 1972) to non-linear covariate effects, a wealth of often
inter-combinable extensions have been proposed (partly summarized in textbooks such as Fahrmeir
et al., 2013; Wood, 2017; Stasinopoulos et al., 2017) leading to a versatile regression framework for
statistical analysis in various data problems. While approaches so far have predominantly focused
on scalar response variables Y , we take a geometric object data perspective on generalized additive
models here to provide a roadmap for our model for shapes of plane curves. Their general model
structure

g(µ) = f(x) = f1(x) + · · ·+ fJ(x)

consists of three components: a target parameter µ of the distribution of Y depending on covariate
values x, an additive predictor f(x) =

∑J
j=1 fj(x), and a link function g linking µ to the predictor.

Most commonly, µ presents a conditional mean of Y . The Fréchet mean (Fréchet, 1948; Ziezold,
1977) presents a general mean concept assuming Y a random element in a metric space (Y, d), i.e. a
Borel-measurable map from some probability space into Y. For simplicity, covariatesX are assumed
a random vector of scalar covariates x ∈ X in the following. A conditional Fréchet mean µ of Y , as
modeled e.g. in the “Fréchet Regression” approach of Petersen and Müller (2019), is defined as a
minimizer of the conditional expected squared distance

E
(
d2(µ, Y ) |X = x

)
= σ2

x = inf
µ′∈M

E
(
d2(µ′, Y ) |X = x

)

assuming finite variance(s) σ2
x < ∞ and the model, which potentially restricts µ to some subspace

M ⊆ Y. When d is the geodesic distance on a Riemannian manifold Y, the Fréchet mean is
typically referred to as intrinsic mean or Riemannian center of mass (Karcher, 1977; Afsari, 2011).
In Euclidean spaces, it corresponds to the usual expected value.

While additive models have also been formulated on Lie groups (Lin et al., 2020), an approach
extending and in the tradition of generalized linear models requires a linear structure for the space
of the predictor, i.e. for the predictor f : X → V to map the covariates into a vector space V.
The predictor values can then be mapped into the space of the responses using a suitable response
(inverse link) function g−1. In practice, f(X ) typically restricts to a finite-dimensional subspace of
V with a basis v1, . . . , vK ∈ V. This lets us follow an analogous approach to Brockhaus et al. (2015);
Scheipl et al. (2016) for functional data, modeling covariate effect functions fj(x) as

fj(x) =
K∑

k=1

H∑

h=1

θjhkbjh(x)vk

expanded in a finite tensor-product basis of the basis {vk}k and some effect basis bjh : X → R, h =
1, . . . ,H. Estimating fj(x) then reduces to estimating the H×K coefficient matrix Θj = {θjhk}h,k.
This approach effectively models each basis coefficient for the vk as an additive function of the
covariates. The tensor-product effect structure thus prepares the ground for directly building on
covariate effects established for scalar additive models. Typical example effects of a metric covariate
x1 in x include linear effects fj(x) = βx1 (specifying bj1(x) = x1, H = 1) and smooth spline effects
with {bjh}h, say, a B-spline basis, where coefficient β like all fj(x) here is an element of V. Effects
of a categorical covariate x2 ∈ {1, . . . , L} are implemented by mapping the lth level to a contrast
vector bj(l) as in linear regression. Interactions and other types of effects are possible, and effect
visualizations can be achieved by tensor-product factorization (Stöcker et al., 2022).
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The link function g is commonly assumed invertible with the response function g−1 : V → M
mapping the predictor to the desired model spaceM for the response. Its choice is usually motivated
by properties of the involved spaces, and aims at offering a natural and convenient interpretation.
For the special case where Y has a (symmetric) Riemannian manifold structure, the Riemannian
exponential map Expp : TpY → Y takes a prominent role here, mapping a tangent vector v ∈ V =
TpY in the tangent space of Y at p ∈ Y to a point in Y. Although other options are possible (Cornea
et al., 2017), the Exp map was established as a response function in generalized-linear-regression-
type models for manifold-valued responses by Zhu et al. (2009); Shi et al. (2009); Kim et al. (2014);
Cornea et al. (2017); Stöcker et al. (2022) generalizing geodesic regression (Fletcher, 2013) to multiple
regression. Geodesic regression is the direct generalization of simple linear regression: a covariate
value of x1 = 1 of a single linear effect is mapped from the “intercept” p to µ = Expp(βx1) at a
distance d(µ, p) = ∥β∥ corresponding to the norm of the “slope” β ∈ TpY. Conversely, this yields a
Riemannian Logp-link function given by the inverse of Expp, which can unrestrictively be assumed
to exist almost surely for symmetric Riemannian manifolds (Pennec, 2006; Cornea et al., 2017). The
Logp-link maps y ∈ Y to the tangent space TpY, which is equipped with a Hilbert space structure
corresponding to the Riemannian metric on Y.

For other cases than Riemannian manifolds, suitable choices of V and of the response function
are less straightforward. For elastic shape analysis, we propose in the following to build on the
Riemannian manifold structure and choice of tangent space V of the inelastic shape case, but to
adjust the response function appropriately.

2.3 Functional additive regression for shapes of plane curves

Consider a sample of plane curves y1, . . . , yn ∈ AC∗(I) recorded together with vectors of scalar
covariates x1, . . . ,xn. We model the conditional Fréchet mean [µi] of their shapes [yi], i = 1, . . . , n,
considering the ([yi],xi) independent realizations of response-covariate tuples with the response
presenting a random element in the metric space ([AC∗(I)], d). The elastic distance d on the shape
space [AC∗(I)] proposed by Srivastava et al. (2011) is induced as

d([y1], [y2]) = inf
γ∈Γ

dPL2
C
([q1]s, [q2 ◦ γ

√
γ̇]s) = inf

γ∈Γ,ω∈R
dS(q1, exp(ω

√
−1)q2 ◦ γ

√
γ̇)

by the geodesic distance dPL2
C
on the complex projective space of the [qi]s, where qi denotes the SRV-

transform of yi, i = 1, 2. The set Γ of warping functions γ contains the strictly increasing surjective
differentiable functions γ : I → I. When modeling closed curves on the interval I = [t0, t1], i.e. with
yi(t0) = yi(t1), Γ in addition contains all functions γ : t 7→ t+ τ − (t1− t0)1(t1−τ,t1](t) that shift the
starting point by τ ∈ [0, t1−t0], where 1U (t) = 1 if t ∈ U is contained in the set U and 0 otherwise, as
well as concatenations of functions in Γ. The metric on PL2

C is in turn induced from the submanifold
geometry of the Hilbert sphere S = {q ∈ L2

C | ∥q∥ = 1} ⊂ L2
C, where ∥q∥ = (

∫
I |q(t)|2 dt)1/2 denotes

the standard norm on L2
C. The geodesic distance dS(q1, q2) on the sphere reflects the arc-length

between unit-norm representatives q1 and q2 with ∥qi∥ = 1. This corresponds to scaling curves
[yi]w to unit-length. Due to the SRV-representation, not only rotation by ω radian but also re-
parameterization by γ ∈ Γ acts by isometries, i.e. for common actions exp(ω

√
−1) yi ◦ γ, i = 1, 2,

the L2
C inner product ⟨q1, q2⟩ = ⟨ exp(ω

√
−1) q1 ◦γ

√
γ̇, exp(ω

√
−1) q2 ◦γ

√
γ̇ ⟩ is left unchanged. This

allows to define the quotient space distance d as infimum over distances in the original space. While
we focus on d in the following, related alternative elastic distances on shapes of plane curves have
been proposed, including the geodesic distance on the subspace of closed curves (Srivastava et al.,
2011), a more general family of elastic distances (Kurtek and Needham, 2018), and the elastic full
Procrustes distance (Stöcker et al., 2022).
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We model the mean shape [µi] for the ith observation via the SRV-transform mi of a unit-length
curve mean representative µi ∈ AC∗(I) using an additive model of the form

[µi] = g−1
[ψ]

(
f(xi)

)
= g−1

[ψ]

( J∑

j=1

fj(xi)
)

induced by the Riemannian (inelastic) functional additive model

mi = Expp
(
f(xi)

)

on SRV-level: we choose the Riemannian exponential Expp(β) = cos(∥β∥)p + sin(∥β∥)β/∥β∥ on S
as response function mapping the additive predictor f(x) along great-arcs. Constraining tangent
vectors β ∈ TpS to the subspace horizontal to rotation, this also corresponds to the Riemannian
exponential on PL2

C and lets us identify T[p]sPL2
C with the subspace Vp = {q ∈ L2

C | ⟨q, p⟩ = 0}
orthogonal to p ∈ S (compare, e.g., Stöcker et al., 2022; Dryden and Mardia, 2016; Klingenberg,
1995). Thus, common basis functions ṽk : I → R, k = 1, . . . ,K + 1, used for functional additive
models (Scheipl et al., 2015), such as polynomial splines, can be utilized for constructing tensor-
product effects fj(x) after linear transformation to a constrained basis vk , k = 1, . . . ,K, spanning
a K-dimensional subspace of Vp (analogous to Stöcker et al., 2022). To obtain a transparent model
space, we assume that the same basis {vk}k is utilized for all f1, . . . fJ and also p, such that also
m is in its span. Steyer et al. (2021) show identifiability of a representation of SRV-transforms in
a B-spline basis of order one under warping, ensuring that for this choice, we can un-restrictively
assume that g[ψ]([µ]) = Logp(m) yields a valid link function of the target mean shape [µ] modulo
re-parameterization. The intercept p is typically specified as the SRV-transform of a representative
ψ ∈ AC∗(I) of the unconditional Fréchet mean [ψ] of the marginal distribution of [y1], . . . , [yn].
Correspondingly, effects fj(x) are typically constrained to be centered to zero mean

∑n
i=1 fj(xi) = 0.

Basing our implementation in the R package manifoldboost on the package FDboost, an overview
over implemented covariate effects is provided by Brockhaus et al. (2020).

2.4 Modeling symmetric and closed shape means

In many data scenarios, such as the bottle design data presented in Section 3.1, it is desirable to
model mean curves as symmetric by imposing respective constraints. For convenience, we consider
curves defined on I = [−1, 1] in the following and call a function f : [−1, 1]→ C even if f(t)† = f(−t)
and odd if f(t)† = −f(−t) for all t ∈ [−1, 1], where z† = ℜ(z) −

√
−1ℑ(z) denotes the complex

conjugate of z ∈ C. [µ] is called (axis)symmetric if there is an odd µ ∈ [µ] (i.e. µ is symmetric about
the imaginary axis) or, equivalently if there is an even µ ∈ [µ] (i.e. µ is symmetric about the real

axis). The back-transform given by µ̃(t) :=
∫ t
0
m(s)|m(s)| ds (i.e. µ̃ = µ− µ(0)) is odd whenever its

SRV-transform m is even (see Appendix A.1)). Hence, we ensure symmetry of the mean shape [µ] by
constraining the modeled m to be even. This can be implemented by utilizing even basis functions
vℜk : [−1, 1] → R for its real part and odd basis functions vℑk : [−1, 1] → R for its imaginary part
in the effect functions (with the same notion of odd/even in the real special case). Constraining
a B-spline basis to even or odd splines presents linear constraints, which we implement via basis
transforms for general use in the R package mboost (Hothorn et al., 2010).

In contrast to symmetry, closedness of curves – also often desired in practice – poses a more
challenging, non-linear constraint. Under symmetry, however, we argue that good results can already
be expected with only a simpler closedness constraint on SRV-level. The (shape of the) oriented
curve [µ]w is closed if any and hence all µ ∈ [µ]w are closed. If µ is closed and continuously
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differentiable in the vicinity of µ(−1) = µ(1), also its SRV-transform m is closed. The package
mboost already offers a linear constraint for closed (cyclic) B-splines (Hofner et al., 2016), which
we employ for m. However, closedness of m is not sufficient for closedness of µ̃ but leaves a gap
δ = µ̃(1)− µ̃(−1) between its end-points. The geometry of closed curves in the SRV-framework has
been considered in the literature (Srivastava et al., 2011; Srivastava and Klassen, 2016) but involves

the non-linear constraint δ =
∫ 1

−1
m(s)|m(s)| ds = 0. Instead, we focus on implementation of the

symmetry constraint here and naively close µ̃ with a small line segment between the endpoints of
both sides of the curve. While extending curves by a line segment to a closed curve is always possible,
the symmetry constraint ensures that transitions are differentiable in typical cases (for details see
Appendix A.1). This pragmatic solution will, thus, be satisfactory in many data problems of this
type, avoiding further restrictions of the geometry and more expensive computations.

2.5 Model fitting using elastic Riemannian L2-Boosting

For model estimation, we adapt Riemannian L2-Boosting (Stöcker et al., 2022) to elastic fitting
in the SRV-framework. Component-wise gradient boosting (Bühlmann and Hothorn, 2007) is a
forward step-wise estimation procedure offering inherent variable selection and a high flexibility to
fit with respect to various loss functions (Mayr et al., 2014a,b) by effectively fitting gradients of
the target loss with separate “base-learners” with respect to penalized least-squares. The dual reg-
ularization imposed by the base-learner penalty and informed early stopping make boosting also
well-suited for high-dimensional (functional) responses (Stöcker et al., 2018; Lutz and Bühlmann,
2006). In the case of the quadratic loss, gradient boosting reduces to L2-Boosting (Bühlmann and
Yu, 2003) corresponding to iterative re-fitting of model residuals. Stöcker et al. (2022) generalize
conventional Euclidean L2-Boosting to Riemannian L2-boosting fitting base-learners to transported
residuals (Cornea et al., 2017) in an approach based on the functional data extension (Brockhaus
et al., 2015) of the boosting framework of Hothorn et al. (2010). Computing transported resid-
uals, however, involves concatenation of the Riemannian Log-map and parallel transport, which
are, as such, not available in our case. Hence, we borrow the Log-map from PL2

C after preceding
warping-alignment, which is along the lines of Srivastava and Klassen (2016). This analogous to the
procedure for rotation and, after full alignment with respect to rotation and warping, the length of
the residual reflects the distance d([µ̂i], [yi]) of a prediction [µ̂i] to the respective shape [yi]. Using
this generalization, we fit our additive model for shapes of plane curves in the SRV-framework with
respect to the quadratic elastic loss d2([µ̂], [y]), estimating the conditional Fréchet mean by succes-
sively reducing the empirical risk

∑n
i=1 d

2([µ̂i], [yi]) over observations i = 1, . . . , n analogously to the
Riemannian case. After initialization, the proposed boosting algorithm (Algorithm 1) repeatedly

adds to the model predictor f̂(x) by iteratively A) computing warping-aligned transported resid-
uals, B) fitting them with the base-learners corresponding to predictor components fj(x), and C)
updating the best-performing base-learner, until a stopping criterion is met. The single steps are
detailed in the following.
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Algorithm 1: Elastic Riemannian L2-Boosting

Fix intercept p, specify step-length η > 0 and base-learner penalty, initialize
f̂(x) = 0;
repeat

A) Computing residuals:
foreach i = 1, . . . , n do

Predict mean shape representative µ̂i based on current predictor f̂(xi) ;

Warping-align yi
align to µ̂i7−→ ỹi ;

Map ỹi{SRV-trafo7−→ q̃i
Log7−→ ε̃i

Transp7−→ εi to transported residual εi ∈ T[p]sPL2
C ;

end
B) Fitting baselearners:
foreach j = 1, . . . , J do

Fit jth base-learner to residuals εi, i = 1 . . . , n, to obtain f̌j(x) ;
Determine insample performance ;

end
C) Updating the predictor:

Set f̂(x)← f̂(x) + ηf̌j(x) for the best performing base-learner j ;

until stopping criterion is met ;

Initialization: The algorithm presupposes a fixed intercept p. However in practice, p is typically
estimated as SRV-transform p̂ of a curve representative ψ̂ of an estimate [ψ̂] of the overall Fréchet
mean shape [ψ] of the response. We obtain p̂ from an intercept model (i.e., with a single constant
base-learner) fitted in a previous Riemannian L2-Boosting run. This fit is based on a preliminary
intercept p0 fitted for instance as L2

C-average on reasonably aligned curve data. Some alternatives
to this choice are described in Section 3.2.

A) Computing residuals: In the Riemannian manifold of shapes of prameterized curves [yi]s
predicted as [µ̂i]s via the SRV-transform m̂i of the predicted curve representative µ̂i, transported
residuals εi are defined as follows: first, a local residual ϵ̃i ∈ T[m̂i]sPL2

C in the (linear) tangent space
is obtained as ϵ̃i = Log[m̂i]s([qi]s) from the SRV-transform qi of yi. Due to the geometry of PL2

C, this
can effectively be computed using the Log-map on the sphere S as ϵ̃i = Logm̂i

(q̃i) when q̃i ∈ [qi]s
and m̂i are rotation-aligned (compare, e.g., Huckemann et al., 2010). The local residuals reflect
the distance ∥ϵ̃i∥ = d([m̂]s, [qi]s) and correspond to the negative gradient ϵ̃i = −∇[m̂]sd

2([m̂]s, [qi]s)
pointing into the direction of loss-reduction (Pennec, 2006). However, for i = 1, . . . , n, they are
elements of different spaces. Parallel-transport Transp[m̂i]s,[p]s : T[m̂i]sPL2

C → T[p]sPL2
C isometrically

maps the local residuals to transported residuals εi = Transp[m̂i]s,[p]s(ε̃i) in the space Vp ∼= T[p]sPL2
C

of the linear predictor. In Riemannian L2-Boosting (Stöcker et al., 2022), transported residual εi
are repeatedly fit to reduce the loss. Details concerning the involved maps can be found, e.g., also
in Cornea et al. (2017); Huckemann et al. (2010).
As rotation, warping presents an isometric action. To fit shapes of curves [yi] also involving warping-
invariance, we proceed analogously to rotation, and warping align yi to µi before computing trans-
ported residuals on the parameterized curve shapes [ỹi]s of the aligned representatives ỹi ∈ [yi] as
described above. Due to alignment and concatenation of length-preserving maps, the quadratic loss
on predictor-level ∥Logp(m̂i)− ϵi∥2 = d2

PL2
C
([m̂i]s, [q̃i]s) ≈ d2([µ̂i], [yi]) approximates the target elas-

tic loss. Hence, fitting warping-aligned transported residuals on predictor level, we may reduce the
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loss on the level of curve shapes. Perfect equality in the second relation would require simultaneous
rotation and warping alignment, but we approximate it by subsequent alignment for computational
efficiency.

B) Fitting base-learners: Base-learners are associated with the additive model components
fj(x), j = 1, . . . , J , by considering them as individual predictors fitted to a sample of pseudo-
responses ϵi ∈ Vp in the Hilbert space Vp at covariate values xi ∈ X , i = 1, . . . , n. As ele-
ments of Vp, they are fitted with respect to the penalized least-squares criterion to obtain f̌j =

argminfj
∑n
i=1 ∥fj(xi)−ϵi∥2+penj(fj). Using tensor-product effects fj(x) =

∑K
k=1

∑H
h=1 θjhkbjh(x)vk

and a non-negative definite quadratic penalty term penj(fj), f̌j is given by the well-known linear
estimator for the vector of coefficients θjhk. Typically, penj(fj) is induced by suitable penalties for
the basis {vk}k in V and the scalar effect basis {bjh}h. For B-splines, ridge or higher-order differ-
ence penalties on the coefficients θjhk present convenient choices (for details see, e.g., Brockhaus
et al., 2015; Stöcker et al., 2022). For comparability across base-learners, the penalties are typically
specified to achieve the same effective degrees of freedom (Hofner et al., 2011) for j = 1, . . . , J .
The in-sample performance of the jth base-learner is then measured in terms of its residual sum of
squares rssj =

∑n
i=1 ∥f̌j(xi)− ϵi∥2.

C) Updating the predictor: In each boosting iteration, only the base-learner with lowest rssj
is added to the current predictor, weighted with a step-length of typically η = 0.1. If a base-learner
is never selected, the corresponding covariate effect drops out of the model. If it has been selected
already, the addition results in a coefficient update.

Stopping the algorithm early provides important means of regularization in high-dimensional
data scenarios (Mayr et al., 2012). We select the stopping iteration via curve-wise cross-validation.
For functional responses, this has proven a valuable tool to avoid over-fitting also in scenarios with
high auto-correlation without explicit modeling of the covariance structure (Stöcker et al., 2018).

In practice, curves yi, i = 1, . . . , n, are recorded at discrete sampling points and computations
involving L2

C inner products are approximated by numerical integration as described by Stöcker
et al. (2022). For warping-alignment based on discretely recorded curves, we rely on the approach
of Steyer et al. (2021) and its implementation in the R package elasdics (Steyer, 2021).

3 Analysis of bottle design

3.1 Modeling bottle outline shapes

Shapes of everyday objects yield an ideal platform for illustration and evaluation of shape analysis,
providing intuitive visual access to assess even small changes in shape. Bonhomme et al. (2014)
provide a dataset of whisky and beer bottle outlines of 20 different brands, each with their charac-
teristic designs. Based on the n = 40 recorded curves yi, i = 1, . . . , n, we model their conditional
mean shape [µi] with representatives µi ∈ AC∗(I) in dependence on their bottle type (whisky/beer)
and size in centiliter (covariates xi = (xtype,i, xsize,i)

⊤) as

[µi] = g−1
[p] (αtype,i + βxsize,i + βtypexsize,i + f(xsize,i) + ftype(xsizei))
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Figure 1: Left: Shares
∑n
i=1

(
f̂
[k]
j (xi)

)2
/
∑n
i=1

∑J
j=1 ∥f̂j(xi)∥2 of the variance of each (centered)

factorized effect component f̂
[k]
j (x) selected into the model in overall predictor variance. Bars for its

factorization components are stacked for each base-learner. Right: Estimated elastic mean shape of
beer and whisky bottles setting size-effects f̂(xsize) + f̂type(xsize) = 0. Bottle outlines are plotted
aligned to the estimated overall mean shape (grey line) and corresponding time-points are connected
by line segments.

via the unit-norm SRV-transform

mi = Expp(αtype,i + βxsize,i + βtypexsize,i + f(xsize,i) + ftype(xsize,i))

of µi with an effect-coded binary effect xtype 7→ αtype ∈ Vp and, for size, a linear effect with coeffi-
cient β and a smooth effect f(xsize) centered around the linear effect, as well as their interactions with
type. The effect functions f and ftype are modeled as cubic B-splines and m and p with piece-wise
linear B-splines with symmetry and closedness constraints (adjusting penalty matrices correspond-
ingly). In covariate direction, a second order difference penalty on coefficients implements equal effec-
tive degrees of freedom for all base-learners. For model fitting, the densely observed response curves
are regularly evaluated at 100 points following a consistent parameterization scheme (constant-speed
between landmarks). Although irregular sampling is possible, the regular design allows use of the
functional linear array model (Brockhaus et al., 2015) for efficient computations (ca. 70 seconds for a
single fit followed by 7.6 minutes of cross-validation on a regular computer without parallelization).
After 10-fold curve-wise cross-validation, the algorithm with step-length η = 0.1 is stopped after 30
iterations resulting in an estimated predictor f̂(xtype, xsize) = α̂type+ f̂(xsize)+ f̂type(xsize) omitting
linear terms for size. The effect of type is illustrated in Fig. 1 presenting the largest effect in the
model. As typical for shape variation, differences are comparably small after registration. Yet, they
reflect characteristic design patterns, with whisky bottles exhibiting more pronounced “shoulders”
and more tendency towards vaulted bottle necks.

For visualization of the size effect in Fig. 2, we employ tensor-product factorization (Stöcker

et al., 2022) to decompose f̂(xsize) =
∑K′

k=1 v̂
[k]f̂ [k](xsize), with K

′ the minimum of marginal basis
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Figure 2: The two leading size-effect components f̂ [1](xsize) (black solid lines) and f̂ [2](xsize) (black
dashed lines), explaining around 13.2% and 2.2% of the predictor variance respectively, depicted
together with their respective directions v̂[1] and v̂[2]. Directions are illustrated by showing bottle
outlines represented by ζ = Expp(v̂

[k]) aligned to the overall mean shape (gray). Accordingly, the

shown changes in the bottle outlines reflect an effect of f̂ [k](xsize) = 1, k = 1, 2.

dimensions, into independent effect components f̂ [k] : [0, 100] → R presenting scalar effects into

orthogonal effect directions v̂[k] ∈ T[p]PL2
C sorted with decreasing effect variance 1

n

∑n
i=1(f̂

[k](xsize))
2

over the data. The decomposition lets us plot the effect despite its non-linearity and allows to depict
also visually small effects on a suitable scale. Effects into the main direction v̂[1] and the second
direction v̂[2] effectively explain all predictor variance of the size-effect (Fig. 1). The first reflects a

broadening or tightening of the bottle shoulders for f̂ [1](xsize) > 0 or < 0, respectively. A positive

or negative second component f̂ [2](xsize) leads to a more wedge-shaped or more champagne-bottle-
shaped neck of the bottle. The estimated interaction effect of size and type is vanishingly small
in size and, thus, not shown. Even though the size distribution of beer (xsize ∈ [25, 75], average
x̄size ≈ 42 centiliter) and whisky bottles (xsize ∈ [70, 100], x̄size ≈ 73) in the data overlap, their
ranges clearly differ and the size-effect is highly correlated with type. Moreover, beverage brands
are not selected representatively. Hence, we avoid a deeper interpretation, remaining with the
illustration of the proposed model that capturs familiar directions of shape variability in the data.

3.2 Empirical evaluation of elastic Riemannian L2-Boosting

Performance of model-based boosting was investigated and justified in simulation studies in various
advanced modeling scenarios (e.g., Thomas et al., 2018) and also in (inelastic) modeling of functional
and shape responses (Brockhaus et al., 2015; Stöcker et al., 2022). Boosting is generally known
for its slow over-fitting behavior (Bühlmann and Hothorn, 2007). Nevertheless, early stopping is
important for variable selection (investigated, e.g., by Hofner et al., 2011; Brockhaus et al., 2018)
as well as for comparably small sample sizes of highly auto-correlated response curves in functional
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models (Stöcker et al., 2018). The SRV framework is well-established for modeling shapes of curves
(Srivastava and Klassen, 2016), good performance of the utilized warping-alignment procedure has
been shown by Steyer et al. (2021), and good fitting behavior of Riemannian L2-Boosting in a
related shape geometry has been validated by Stöcker et al. (2022). Here, we thus focus on warping
invariance in the fitting behavior of our elastic regression approach and compare this also to the role
of shape invariances. Although the model is widely invariant under warping and shape preserving
transformations, the estimate p̂ of the SRV representative p of the intercept [ψ] serves as starting
point and typically depends in turn on a starting value p̂0 depending on the starting parameterization
and positioning of the recorded curve representatives y1, . . . , yn. Initially aligning all curves to p̂,
the model fit then indirectly also depends on “reasonable” starting representatives. While indicating
a good performance overall, the simulations will hence also show that a good model fit relies on a
good fit of the intercept.

To provide a realistic scenario and control the sources of variability, we simulate datasets by
sampling from the bottle outline dataset of Section 3.1, applying random warping and/or random
positioning (i.e., random translation, rotation, and scaling) to the original curves. For random
warping, original curves are interpolated at a total of 100 points along the bottle outlines (of 123 to
193 orginal sample points), which are then considered as the observations sampled on a fixed regular
grid. All random transformations are applied with a moderate variability around the original curves,
which already exceeds the warping variability observed in usual data settings where curve data is
commonly more or less registered with similar parameterizations (for simulation details see Appendix
A.2). We sample response-covariate tuples without replacement, such that variability in scenarios
with all n = 40 observations is exclusively due to the random transformations. Scenarios with a
sample size of n = 30 also reflect generalization error, subsampling 75% of the data stratified with
respect to bottle type. In addition to these main scenarios, we also consider one n = 80 scenario
with all observations twice in the data but with different random transformations. For each scenario,
100 simulated datasets are fit with the bottle model of Section 3.1, considering the original fit as
ground truth and fixing the number of boosting iterations to 30 to speed up computations.

Given the relatively small effects and sample size and the high correlation between type and
size effects, covariate effects are captured well (Fig. 3): In the n = 30 scenario with the original
starting parameterizations and positioning of the curves, effects are mostly estimated comparably
accurately with mean squared errors (MSE) below 5% of the original additive predictor variance
in the data (corresponding to about up to 8% of the variance of the original type-effect). Outliers
are likely due to uncertainty in the choice of linear or non-linear (“smooth”) effects. Under random
warping and positioning of the curves, errors of the type-effect increase to a median MSE of 10% of
the total original additive predictor variance. Although with distinctly smaller MSE, it is evident
that random transformations affect the estimation of the effects to some extend also in scenarios
based on the entire original data (n = 40 and n = 80). Here, the more complex transformation
given by random warping shows a larger impact than random positioning, leading to larger MSE.

Tracing error resulting from the random transformations to its root, leads to the estimation of the
intercept [ψ] as overall shape mean of the curves as its cause. Our applied default estimator [ψ̂] shows

a good performance in terms of d2([ψ̂], [ψ]) << σ2
0 ranging mostly below 1% of the total variance

σ2
0 = 1

n

∑n
i=1 d

2([ŷi], [ψ]) obtained from the original model fit. Yet, the starting parameterization
still shows a strong effect, in the sense that without random warping the error decreases to nearly
zero. Visual inspection shows that, while bottle proportions (and also the direction of the type-
effect) are captured well, edges perceived as characteristic landmarks are slightly over-smoothed. As

model effects take their origin at [ψ̂], this lack of detail is carried forward to model prediction and

visualization. The over-smoothing behavior can be explained by the fact that [ψ̂] is based in turn on
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Figure 3: Top left: Distributions of intercept (overall mean) estimation accuracy (squared errors

d2([ψ̂], [ψ])/σ2
0 relative to total variance) for simulation scenarios with random warping of bottle

outline representatives y1, . . . , yn. For concise display, relative errors in scenarios without random
warping are not shown, being very small (below 2 · 10−4 for n = 30 and below 4 · 10−5 for n = 40).
Top right: Two example estimates of the bottle type effect (black) in front of the overall mean
estimate (gray), corresponding to the depiction of the original effect in Fig. 1, for simulation runs
marked with × and △ in the plot on the left. Bottom: MSE distributions for covariate effects in
the model relative to the overall variance 1

n

∑n
i=1 ∥f(xi)∥2 of the (centered) additive predictor, for

simulation scenarios with and without random positioning and warping of recorded curves. MSEs
are relative to the fit from Section 3.1 taken as true values. Bars reflecting the single effect variances
1
n

∑n
i=1 ∥fj(xi)∥2, j = 1, . . . , n, are added for individual comparison. For neither of the random

transformations, only the n = 30 setting is depicted, reflecting the generalization error of the model
with naively aligned curve data as underlying the original model fit. Other settings have zero error
here by design.
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elastic Riemannian L2-Boosting, where the preliminary intercept [ψ̂0] does depend on the specific
representatives, since its representative p0 is estimated without warping/rotation alignment as L2

C-
average of the SRV-transforms q1, . . . , qn of recorded curves. Mismatch in warping and rotation
masks distinct curve features by averaging over miss-aligned representatives (compare also Stöcker
et al., 2022,?). Hence, although in principle the original [ψ] could be retrieved from a different
starting point p0, lacking features in p0 to align to can render it difficult to fully estimate these
features in [ψ̂].

Various possibilities exist to avoid this problem by choosing a better starting point that ex-
hibits the desired features: a) in our experience also from Steyer et al. (2021), using similar initial
parameterizations (such as constant-speed parameterization) in curves y1, . . . , yn already yields a

well-working default starting point [ψ̂0] for the estimator [ψ̂] utilized in this paper, as illustrated by
the natural bottle appearance in the original model fit in 3.1. b) in particular for sparsely recorded

curves, the estimator [ψ̂eFP] of the elastic full Procrustes shape mean [ψeFP] proposed by Stöcker
et al. (2022) and implemented in the R package elastes (github.com/mpff/elastes) presents
an attractive choice for [ψ0] due to its fit based on Hermitian covariance smoothing. c) if a good
template curve is available, it can be directly used to represent [ψ0]. Such a curve might be simply
selected from the dataset. d) as an alternative to our overall elastic shape mean estimation approach,

[ψ̂] might be obtained from the implementation in R package fdasrvf (Tucker, 2017). An approach
to landmark-constrained elastic shape mean estimation was proposed by Strait et al. (2017).

Nonetheless, we keep the straightforward estimator here to illustrate the role of the intercept: as
it presents the starting point of the model fit, prediction and visualization, it has a strong impact
on the model results. Inaccuracy in details of the fit of the intercept are likely carried forward. In
general, this is not problematic, since the intercept can be estimated very accurately as overall shape
mean. However, to capture also shape details well, it is recommended to ensure that the fit of the
overall shape mean is fully satisfying, which requires a starting point that contains all important
features of the shape.

4 Discussion

Depending on the data problem, different modifications of the presented elastic regression approach
for shapes of plane curves might be of interest: further development will be needed to model (non-
symmetric) closed curves with closedness explicitly integrated into the model, while regression for
open curves is already covered in our framework. Instead of modeling the shape of the curves,
it might also desirable to model the “form” (or size-and-shape) of curves without scale invariance
(analogously to Stöcker et al., 2022), or to model curves with a fixed coordinate system without
shape invariances. Integrating different intercept options mentioned in Section 3.2 into our software
package will improve flexible usability. The architecture of our R package manifoldboost is designed
to simplify modular extension to such variations in the response geometry and model fit, adding to
the modular covariate effect specification borrowed from scalar additive models. Finally, applying
our approach to further data sets will illustrate flexibility and usefulness of the proposed model
framework for analyzing data problems of scientific interests.
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Appendix

A.1 Closing symmetric curves

To avoid non-linear constraints guaranteeing closedness of a curve µ ∈ AC∗([−1, 1]) via its SRV-
transform m, we argue that unconstrained estimation already promises satisfactory results when
modeling symmetric curves, since in this case, µ can be differentiably extended by a line segment to
obtain a closed curve under mild assumptions. For a symmetric shape [µ] of µ, we assume without loss
of generality that its SRV-transform m is even (in general it could be rotated or based on a different
parameterization). Modeling µ continuously differentiable, m is also assumed closed and continuous

in the following. In this case, also µ̇ is even and closed, and the back-transform µ̃ =
∫ t
0
m(s) ds is

odd. For simplicity and without loss of generality, we assume µ = µ̃. Our aim is to close the gap
δ = µ(−1) − µ(1) by a line segment such that the resulting curve µ∗ is differentiable. Lemma 1
below yields that under the given assumptions δ ∈ R, µ̇(0) ∈ R and µ̇(1) = µ̇(−1) ∈ R. Hence, when
considering the two symmetric sides of the curve described by µ

∣∣
[0,1]

and µ
∣∣
[−1,0]

restricting µ to the

respective interval, directions at the endpoints of the sides of µ are all orthogonal to the imaginary
axis presenting the symmetry axis. Hence, differentiable closing will be possible if µ̇(1) and µ̇(0)
have the right combination of signs, for which three cases have to be distinguished (assuming a
parameterization with µ̇(1) ̸= 0 and µ̇(0) ̸= 0 and a relevant gap δ ̸= 0):

If δ µ̇(1) > 0, µ can be directly extended to a differentiable closed curve µ∗ : [−1 − δ
2µ̇(1) , 1 +

δ
2µ̇(1) ]→ C with

µ∗(t) =





µ(t) for t ∈ [−1, 1]
µ̇(1) (t− 1) + µ(1) for t > 1

µ̇(1) (t+ 1) + µ(−1) for t < −1

If δ µ̇(0) < 0, the two sides µ
∣∣
[0,1]

and µ
∣∣
[−1,0]

of the symmetric curve can be shifted to close the

curve at -1/1 while opening it at 0. Then, we may differentiably extend them at 0 to obtain a closed
curve µ∗ : [−1 + δ

2µ̇(0) , 1− δ
2µ̇(0) ]→ C as

µ∗(t) =





µ(t− δ
2µ̇(0) )− δ

2 for t ∈ [−1 + δ
2µ̇(0) ,

δ
2µ̇(0) ]

µ(t+ δ
2µ̇(0) ) +

δ
2 for t ∈ [− δ

2µ̇(0) , 1− δ
2µ̇(0) ]

µ̇(0) t otherwise.

Although involving the shift, the second option in fact corresponds to the first after simple re-
parameterization as µ′(t) = µ(t− 1) for t ∈ [0, 1] and µ′(t) = µ(t+1) for t ∈ [−1, 1), switching t = 0
with t = ±1.

If δ µ̇(1) < 0 and δ µ̇(0) > 0, µ cannot be differentiably closed by a line segment, since µ̇(1)
points in the same direction as µ̇(0) and away from 0. We do not implement a constraint to avoid
this case, since we would hardly expect to encounter in practice: being bound to values in R by the
symmetry constraint, µ̇(1) and µ̇(0) can only point into the right direction for closing or precisely
into the opposite direction. This makes it unlikely that, when all curves y1, . . . , yn in the data are
closed and, hence, in line with the constraint, µ̇(1) and µ̇(0) still point into the wrong direction for
closing.

Lemma 1. For an even SRV-transform m : [−1, 1]→ C of a plane curve µ ∈ AC∗([−1, 1]),

i) the back-transform µ̃(t) =
∫ t
0
m(s)|m(s)| ds is odd.
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ii) the gap between the endpoints of µ is a real number δ = µ(−1)− µ(1) ∈ R.

iii) if m is closed, we have m(1) ∈ R and, hence, also µ̇(1) ∈ R.

Proof. i) follows by plugging m(t)† = m(−t) into the definition of µ̃:

µ̃(t)† =
∫ t

0

m(s)†|m(s)†| ds =
∫ t

0

m(−s)|m(−s)| ds

= −
∫ −t

0

m(s)|m(s)| ds = −µ̃(−t).

To see ii), first note that µ(t) = µ̃(t) + z for some z ∈ C and, thus, δ = µ̃(−1)− µ̃(1). Hence,

2ℑ(δ) = δ − δ† = µ̃(−1)− µ̃(1)− (µ̃(−1)† − µ̃(1)†)
= −µ̃(1)† − µ̃(1) + µ̃(1) + µ̃(1)† = 0

by repeatedly applying i). iii) immediately follows from m(1)†
even
= m(−1) closed

= m(1).

A.2 Simulating curves with random warping and positioning

To control variability of random transformations applied in the simulation study to a moderate
amount (exceeding what we expect to find in typical data but not completely arbitrary), we draw
sampling points of a randomly transformed version ỹi of an original curve yi : [0, 1] → C, given
by the sample polygon of the ith curve in our original data from 3.1 with the corresponding initial
parameterization on [0, 1], as

ỹi(tl) = λi exp(ωi) yı̈(γi(tl)) + zi (l = 1, . . . , 100)

where λi > 0, ωi ∈ R, zi = zℜi + zℑi
√
−1 ∈ C, and 0 = γi(t1) < · · · < γi(t100) = t100 are randomly

drawn independently for the ith curve in the simulated data corresponding to the ı̈th curve in the
original dataset. In scenarios with random positioning, we draw

λi ∼ Gamma(100, 100) (given with shape and rate parameter)

ωi ∼ N(0,
π2

400
), zℜi ∼ N(0, σ2

ℜ), zℑi ∼ N(0, σ2
ℑ)

where E(λi) = 1 with standard deviation sd(λi) = 0.1, the standard deviation of ωi corresponds to
a rotation about ca. 9 degrees, and σ2

ℜ and σ2
ℑ are selected to reflect the standard deviation of the

evaluations of the original curve along the real and imaginary axis, respectively. In scenarios with

random warping, we draw γ(tl) =
∑l

l′=2
∆l′∑100

l′=2
∆l′

t100 with

∆l ∼ Gamma(3, 3)

such that E(∆l) = 1 and sd(∆i) = 1
3 . Figure 4 illustrates the resulting variability with random

positioning and warping in different samples of one example bottle outline.

References

Afsari, B. (2011). Riemannian Lp center of mass: existence, uniqueness, and convexity. Proceedings
of the American Mathematical Society 139 (2), 655–673.

15

8. Elastic Shape Regression for Plane Curves

198



-0
.1
0

-0
.0
5

0.
00

0.
05

0.
1
0

-0
.1
0

-0
.0
5

0.
00

0
.0
5

0.
10

-0
.1
0

-0
.0
5

0.
00

0.
0
5

0.
10

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

-0.4

-0.2

0.0

0.2

ℜ(ỹ1)
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2 Stöcker et. al.

Abstract: This Online Supplement contains supplementary material in four

different respects: Appendix A provides more details concerning the construc-

tion of partial effect functions from tensor product bases, as discussed in Section

2 of the main manuscript; Appendix B introduces the technical background nec-

essary to draw appropriate smooth random response curves and random effect

functions in the GAMLSS-scenario for both simulation studies presented in Sec-

tion 4; Appendix C gives more detailed insights into the setup of the simulation

studies, the used measures of estimation quality, and the obtained results; and

Appendix E contains additional information concerning the analysis of bacterial

interaction in Section 3, i.e. data details, a comparison to other growth models

in the literature and further model results.

Key words: Bacterial Growth, Distributional Regression, Functional data, Func-

tional Regression, GAMLSS

A Basis representations and orthogonalization

A.1 Tensor product bases

For both fitting and prediction, it is necessary to evaluate effect functions h j, as

defined in Section 2.1, at all data points simultaneously. Following Scheipl et al.
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(2015), this can be written in a simple closed form expression using row tensor

products.

Definiton Consider an n × m matrix A and an r × s matrix B. The Kronecker

product ’⊗’ is defined as

A ⊗ B =




a1,1B . . . a1,mB
...

. . .
...

an,1B . . . an,mB




If A and B have the same number of rows n = r, the row tensor-product ’�’ is

defined by

A � B =




a1 ⊗ b1

...

an ⊗ bn




,

where ai and bi are the i-th rows of the matrices A and B.

Consider two variables t ∈ T and x ∈ X. Let h j(x, t) = (bXj(x, t) ⊗ bYj(t))>θ j

with parameter vectorθ j and function basis vectors bXj(x, t) and bYj(t) as defined

in Section 2.1. For a data set with N observations and G measurements per

response curve, let covariates X =
(
x1,1, . . . , x1,G, x2,1, . . . , xN,G

)>
and respective

A. Appendix for Chapter 2

208
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time points t =
(
t1,1, . . . , t1,G, t2,1, . . . , tN,G

)>
. Define

BXj(X, t) =




b>Xj(x1,1, t1,1)
...

b>Xj(xN,G, tN,G)




the NG×K j design matrix. Analogously, define the vector H j(X, t) of length NG

to entail the evaluations of h j and the NG × KY design matrix BYj(t) with the

evaluations of bYj. Then, we can write the joint evaluation as equation

H j(X, t) =
(
BXj(X, t) � BYj(t)

)>
θ j (A.1)

in terms of the row tensor product. In the same way, covariate effect bases

of two different covariates can be combined to an interaction effect. Note that

a common number of measurements per curve G is only assumed for ease of

notation.

If all response curves are observed on a common grid t0 =
(
t1, ..., tG

)>
and

covariates and their effect bases are not time dependent, equation (A.1) can

be re-written in terms of the Kronecker product. In this case, we can denote

covariates as X0 =
(
x1, . . . , xN

)>
. Then the covariate part simplifies to an N × K j

matrix BXj(X0) = BXj(X0, t0) that is independent of t0 and also the BYj(t0) can be
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arranged as a G × KY matrix. For these matrices, we obtain

H j(X, t) =
(
BXj(X0) ⊗ BYj(t0)

)>
θ j . (A.2)

The Kronecker product has desirable mathematical properties, which simplify

the implementation of linear constraints in Section A.2. In particular, it enables

us to consider the model as Functional Linear Array Model (Brockhaus et al.,

2015), which increases computational efficiency. In terms of Generalized Linear

Array Models (Currie et al., 2006), the model can be fitted without actually

computing the Kronecker product.

A.2 Othogonalization of effect functions

Consider two effect functions h1(x, t) = b>1 (x, t)θ1 and h2(x, t) = b>2 (x, t)θ2 with

function bases b1 and b2 of dimension K1 and K2. Assume constant functions

are entailed in span(b2), i.e. ∃θc : b2(x, t)θc = 1 ∀x, t. Assume the same for

b1. This property typically holds for, e.g., spline bases. We want to construct

an interaction effect in terms of the Kronecker product basis b1(x, t) ⊗ b2(x, t).

Applying θc from above we get

h1(x, t) = b>1 (x, t)θ1 = b>1 (x, t)θ1 ⊗ b>2 (x, t)θc = (b1(x, t) ⊗ b2(x, t))> (θ1 ⊗ θc) .

This is analogously obtained for h2. Hence, h1, h2 ∈ span(b1 ⊗ b2). However, for

separate model fitting, interpretation and automatic model selection, we want to
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include marginal effects h1, h2 and their interaction h12 as distinct effects into the

additive predictor. To do so, we have to construct linearly independent design

matrices:

For observed covariates X and NG time points t, let B1 = B1(X, t) and B2 = B2(X, t)

be the NG×K j design matrices as defined in Section A.1. The k-th column of B1

corresponds to the evaluations of the k-th basis function b1,k(x, t). The same for

B2. Let B̃ = B1 � B2 denote the complete tensor product design matrix. Then,

we obtain the design matrix B for the interaction effect via a linear transform

B = B̃Z. The transformation matrix Z is specified as a matrix with NG columns

and with a maximum number of orthogonal rows such that B>B1 = B>B2 = 0.

This means, we construct B such that it is orthogonal to the design matrices of

the marginal effects. Applying QR-decomposition to the matrix C = B̃>
[
B1 : B2

]

a suitable matrix Z is determined by

C =
[
Q : Z

]



R

0




= QR ,

since B>
[
B1 : B2

]
= Z>B̃>

[
B1 : B2

]
= Z>QR = 0, i.e. B is orthogonal to B1

and B2 (Wood, 2006; Brockhaus et al., 2015). According to Brockhaus et al.

(2015), we proceed just the same way in order to distinguish effect functions

h j(x, t) = (b j(x, t)⊗bY(t))>θ j from the functional linear intercept h0(x, t) = b>Y(t)θ0,

which is a special case of the above. Computation can be further simplified in
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the linear array case.

B Simulation details I:

generation of random smooth errors and effect

functions

In order to sample appropriate data for a simulation study concerning functional

GAMLSS, we have to draw appropriate smooth random response curves and,

at the same time, we do not only have to flexibly control the mean, but also

the variance and other distributional parameters over time. In the Gaussian

response simulation study, we additionally sample the true underlying effect

functions to increase representativeness. For both purposes, we have to control

the smoothness of the randomly drawn curves in order to achieve realistic

samples. This section introduces the technical framework used to implement

these points.

B.1 Random spline generation

The simulation relies crucially on random spline generation. Given a closed

interval T ⊂ R, a random spline r : T → R, t 7→ b>(t)θ is understood as the

product of a fixed spline basis vector b(t) =
(
b1(t), . . . , bK(t)

)>
and a random vector

θ of K coefficients. In the following, θ is always N(0, IK) distributed, with any
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necessary transformation subsumed into the basis b(t), i.e. b(t) is obtained by

transforming an underlying prototype basis b̃(t) =
(
b̃1(t), . . . , b̃K(t)

)>
. For b̃(t) we

take a B-spline basis of degree l with K− l + 1 equally spaced knots. The random

splines are scaled employing a scale parameter σ̄2 ≥ 0. In correspondence to

P-splines, a d-th order difference penalty analogue can be specified, which is

controlled with a smoothing parameter n ∈ [0, 1]. This is accomplished by

specifying the random spline as r(t) = b>(t)θ = b̃>(t)ΩWθ with a suitable

K × K orthogonal matrix Ω and a diagonal weight matrix W depending on two

parameters σ̄2 and n, which will be further clarified below.

In order to adjust the degree of smoothness of randomly drawn splines, we

follow the mixed model representation of P-splines (Fahrmeir et al., 2004). Let

P = D>D be a d-th order difference penalty matrix inducing a quadratic penalty

of the form θ̃
>Pθ̃, with d ≤ l. Then there is a quadratic orthogonal matrix Ω,

such that for θ̃ = Ωθ we obtain θ̃>Pθ̃ = (Ωθ)>PΩθ = θ>I(d)
K θ, where I(d)

K is the

diagonal matrix with the first d diagonal entries zero and the rest one. Thus, by

multiplying withΩ> the basis b̃(t) is transformed such that b1(t), . . . , bd(t) repre-

sent the unpenalized part of the spline and bd+1(t), . . . , bK(t) are subject to a ridge

penalty. A suitable transformation matrix is given by Ω =
[
L : D>(DD>)−1

]
.

The m-th column of the K × d matrix L is given by Lm =
(
pm−1(1), . . . , pm−1(K)

)>

with orthogonal polynomials p0, ..., pd−1 of order 0, ..., d − 1, such that L>L = Id.

In the mixed model estimation, the penalized coefficients θd+1, ..., θK are con-

sidered random, whereas the unpenalized coefficients θd, ..., θK are considered
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fixed. However, for drawing the whole vector θ, this would lead to a improper

distribution. So, we also add some variance to the unpenalized coefficients and

control the trade-off between the variance for the penalized and unpenalized

parts with the smoothing parameter n, which corresponds to the part of the

variance of the randomly generated spline curve, which is explained by the

unpenalized smooth part. Moreover, we want to be able to control the scale

of the randomly generated spline curves and, therefore, use the parameter σ̄2,

which is given by the total variance of the random curves. These two parameters

determine W. More precisely, they are defined as follows:

Evaluating the prototype B-spline basis b̃(t) on a grid t ∈ TG we obtain a ’design’

matrix B̃ with b̃>(t1), . . . , b̃>(tG) as its rows. For a given W, B = B̃ΩW presents

the corresponding matrix for the desired spline basis b(t) of the random spline.

Drawing θ ∼ N(0, IK), the covariance matrix for the random spline evaluations

r = Bθ on t is given by Cov(r) = BB>. For the scale parameter we employ

the mean variance over time σ̄2 = Var(r) = 1
G tr(BB>) = 1

G tr(B>B). To control

the smoothness of the resulting random spline curves we use n = 1 − tr(B>BI(d)
K )

tr(B>B) ,

which corresponds to the percentage of Var(r) explained by the unpenalized

part of the spline. It presents a natural parameter of smoothness: Similar to the

smoothing parameter λ in penalized regression, a high value of n corresponds

to a high degree of smoothness, because, in this case, most of the variance in

the randomly drawn spline curves stems from the smooth unpenalized part.

However, n and λ are not directly mathematically related.
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Technically, the above definitions of n and σ̄2 are implemented via specifying the

weight matrix W2 = σ̄2
(
n

dσ̄2
un

(IK − I(d)
K ) + (1−n)

(K−d)σ̄2
pe

(I(d)
K )

)
with σ̄2

un = 1
G tr

(
(B̃Ω)>B̃Ω(IK − I(d)

K )
)

the mean variance of the unpenalized part and σ̄2
pe = 1

G tr
(
(B̃Ω)>B̃ΩI(d)

K

)
the mean

variance of the penalized part.

Tensor product random splines depending on multiple variables are generated

and orthogonalized as described in Sections A.1 and A.2. For tensor product

random splines the total mean variance is adjusted in a further step.

B.2 Sampling smooth response curves

In order to sample response curves with the desired smoothness, i.e. the desired

in-curve dependency structure, we sample splines with random coefficients, and

then transform them, such that they follow the desired point-wise distribution

of the response.

2.2.1 The Gaussian case

We start with the Gaussian case, where we may re-formulate the functional

GAMLSS models as

yi(t) = µ(xi, t) + γi(t) + εi,t (B.1)

with t ∈ T, covariates xi, a mean structure µ(xi, t), a smooth random error curve

γi(t) and independent errors εi,t ∼ N(0, σ2
ε(xi, t)), with the joint error γi(t) +

εi,t ∼ N(0, σ2(xi, t)). In order to sample smooth error curves with the desired
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properties, we represent them as γi(t) = w(xi, t)ri(t) with w(xi, t) a suitable weight

function and ri(t) = b>(t)ζi a random spline with a vector of KY basis functions

b(t) and ζi ∼ N(0, IKY) constructed as described above in Section B.1.

Hence, for obtaining the desired joint error variance it must hold that

σ2(xi, t) = (w(xi, t))2 · b>(t)b(t) + σ2
ε(xi, t) ,

as the variance of the random spline is given by Var(ri(t)) = b>(t)Cov(ζi)b(t) =

b>(t)IKYb(t). This is achieved by setting w(xi, t) =

√
σ2(x,t)−σ2

ε(x,t)
b>(t)b(t) .

In our simulating studies, we either restrict to the smooth error γi(t) for response

curves with in-curve dependency or to εi,t for the independent case.

2.2.2 The general case

Let the random spline ri(t) = b>(t)ζi of degree l be defined as above. Consider a

probability distribution with a cumulative distribution function (CDF) F, such

that its quantile function F−1 is l − 1 times continuously differentiable (of class

Cl−1). Let F depend on Q parameters in a parameter space Θ ⊆ RQ and assume

F−1 is also Cl−1-differentiable with respect to these parameters. Let ϑi : T 7→ Θ

be an Cl−1-differentiable parameter function and let Ψ denote the CDF of the

standard normal distribution. Then,

yi(t) = F−1


 Ψ




ri(t)√
b>(t)b(t)




∣∣∣ϑi(t)



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is aCl−1-differentiable curve and for every t ∈ T the yi(t) is marginally distributed

according to F with the current parameter setting ϑi(t). This is due to chain rule

and inversion method (see, e.g., Devroye (1986)).

C Simulation details II: simulation studies

We perform two different simulation studies: the first is a large simulation

study for the case of Gaussian functional response curves, where we model both

mean and standard deviation in dependence of scalar and categorical covariates

and can compare to a competitor in this special case. The second simulation

study is motivated by the bacterial interaction model applied in Section 3. It

includes functional covariates and response measurements following a zero

adjusted gamma distribution. In both studies, we explore the fitting behavior

with respect to different tuning parameters, sample sizes and in-curve auto-

correlation structures.

C.1 Measures for evaluation

In accordance with the fitting aim formulated in Section 2.2, the general goodness-

of-fit of a model is measured with respect to the Kullback-Leibler divergence to

the true probability distributions: we use KLD(ĥ) = 1
NG

∑N
i=1

∑
t∈T0

KLD
[
FY(t)|X : F̂Y(t)|X

]
,

the mean Kullback-Leibler divergence over all point-wise evaluations for an es-

timated predictor ĥ, whereFY(t)|X is the true distribution with the true parameter
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Boosting functional response GAMLSS 13

functions θi(t) and F̂Y(t)|X is the one with the estimated θ̂i(t) for the i-th curve.

In order to evaluate and compare the goodness-of-fit of the individual effects

or coefficient functions, we rely on the root mean square error (RMSE). In the

application motivated simulation study, where the scale of the true covariate

effects are not controlled, the RMSE is normalized by the range of the partic-

ular true effect to achieve comparability. In this case, the applied individual

goodness-of-fit measure is given by

relRMSE
(

f̂ (q)
j

)
= RMSE

(
f̂ (q)

j

) / (
max

t
f (q)

j (t) −min
t

f (q)
j (t)

)
or

relRMSE
(
β̂(q)

j

)
= RMSE

(
β̂(q)

j

) / (
max

s,t
β(q)

j (s, t) −min
s,t
β(q)

j (s, t)
)
,

for effect or coefficient functions, respectively.

C.2 Gaussian response model simulation

As in scalar regression, Gaussian functional response models play a prominent

role in functional response regression. However, in contrast to previous regres-

sion frameworks, we consider the case where both mean and standard deviation

depend on covariates. In this large scale simulation study, we consider two dif-

ferent models: one with scalar continuous covariates z1, z2 ∈ [0, 1] and one with

categorical covariates g1, g2 ∈ {1, ..., 4}. The covariates z1 and g1 influence both

the mean µ(t) and the standard deviation σ(t). z2 and g2 influence only the mean.

The continuous covariate model includes a covariate interaction for µ(t). Precise
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Table 1: Simulated models with scalar continuous and categorical covariates
Models: Distribution: Y(t) | x ∼ N

(
µ (t) , σ2 (t)

)

1. Continuous µ(t) = f µ0 (t) + f µ1 (z1, t) + f µ2 (z2, t) + f µ3 (z1, z2, t)
log σ(t) = f σ0 (t) + f σ1 (z1, t)

2. Categorical µ(t) = β
µ
0 (t) + β

µ
g1

(t) + β
µ
g2

(t)
log σ(t) = βσ0(t) + βσg1

(t)

model formulations are presented in Table 1.

3.2.1 Sampling

The simulations follow a two-stage sampling approach: in each run, ne f f true

effect function sets and ncov covariate and random error sets are sampled. Evalu-

ating the true effect functions on the covariates yields a total of ne f f ncov simulated

data sets.

For N observations, continuous or categorical covariates are drawn indepen-

dently from a uniform distribution on the unit interval or on {1, 2, 3, 4}, respec-

tively.

We simulate smooth covariate effect functions f (q)
j , β

(q)
j generating them as cubic

B-splines with random coefficients. Note that the smooth interaction effect

f µ3 (z1, z2, t) is fairly complex as it involves a double tensor product spline basis,

and we distinguish this interaction effect from the marginal effects f µ1 (z1, t) and

f µ2 (z2, t) using basis-orthogonalization.

All effect functions are drawn as random splines. The scale of mean and vari-

ance effects is specified via scale parameters σ̄2
µ, σ̄

2
σ > 0. σ̄2

µ corresponds to the
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Boosting functional response GAMLSS 15

overall mean variance over time of the effect functions, i.e. a weighted sum of

the individual random spline scale parameters. All effect functions except for

the interaction effect are weighted equally. The interaction effect is weighted

with 1/8 as for this type of effect more extreme values occur. For σ̄2
σ, the over-

all mean variance of the effect functions is transformed for comparability, as

a log-link is applied for the standard deviation: The overall mean variance

τ2 = τ2 (σ̄2
σ

)
is specified such that for a random variable Z ∼ N(0, τ2) we obtain

Var(exp(Z)) = σ̄2
σ. Via the properties of the log-normal distribution, τ2 is deter-

mined as τ
(
σ̄2
σ

)
= − log(2) + log(

√
4σ̄2

σ + 1 + 1). If not otherwise specified, we set

σ̄2
µ = σ̄2

σ = 1. All smooth effect function bases are chosen as cubic B-splines with

2nd order difference penalty using the smoothing parameter n = 0.8, which

results in sensibly smooth true effect functions. For functional intercepts we use

B-spline bases with k = 8 basis functions. The tensor product bases have a total

of k = 3·8 = 24 basis functions for categorical effect functions (4 categories minus

reference times the size of the intercept basis), k = 6 ·5 = 30 for smooth marginal

continuous effect functions (6 for time and covariate, respectively, minus 6 for

orthogonalization constraint) and k = 6 · 6 · 8 − 2 · 30 − 8 = 220 for the smooth

interaction of continuous covariates (6 for both covariates, 8 for the intercept,

minus sizes of the other bases). All effects are centered with respect to the partic-

ular functional intercept and the continuous interaction effect is orthogonalized

with respect to its marginal effect functions.

Given the covariate values and the true underlying effect functions, smooth

A. Appendix for Chapter 2

220
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Figure 1: Sampled response curves for different in-curve dependency levels. A
sample of N = 20 response curves (four highlighted in black) sampled around
the mean curve (blue) over time for fixed covariate values. The blue area plotted
around the mean corresponds to ± the standard deviation. Three levels of
in-curve dependency are presented in increasing order. Compare Onl. App. B.

response curves are drawn randomly with the respective mean and standard

deviation given by the model. Each curve is evaluated on G grid points of

the time interval T = [0, 10]. Point-wise, the response curves are normally

distributed. As described in Section B.2 smoothness is induced with random

error splines. For obtaining different levels of in-curve dependency, different

random splines are employed. For level independent, we do not use any random

splines, but sample directly from the marginal distribution of yi(t). For level

dependent, we use a cubic random spline with no smoothing penalty and k = 20

basis functions. We use a first order difference penalty with n = 0.5 for level

high dependency.

3.2.2 Model specification

Corresponding to sampled true effect functions, all scalar function bases used to

construct the effect functions occurring in the fitted model are specified as cubic

P-splines with second order difference penalty. All base learners are set up such
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Boosting functional response GAMLSS 17

that they have the same total degrees of freedom df . The default is df = 13. To

obtain this, an additional Ridge penalty is applied to the categorical effects. The

P-spline bases for the functional intercepts contain k = 20 basis splines, which

is more than for the true intercepts such that the knowledge of the true knots

is not used in the model fit. For other effects, the same basis dimension k is

used as for the corresponding true effect. Again, all effects are centered around

the functional intercept and marginal scalar effects are distinguished from the

interaction.

For the hyper-parameters a default of step-size ν = 0.2 is employed and by

default the optimal stopping iteration mstop is estimated by 10-fold curve-wise

bootstrap. Furthermore, unless otherwise stated, the model is fitted with the

GAMLSS boosting method described in Section 2.2, which corresponds to the

’noncyclic’ boosting method in the R package gamboostLSS.

C.3 Application-motivated simulation study

In this simulation study, we adopt model and covariates entirely from the analy-

sis of bacterial interaction in Section 3. Estimated effect functions from the orig-

inal model fitted to the data present the true model structure in the simulation.

Response curves are generated on the basis of random splines as described in

Section B.2 and with the same specifications as discussed in 3.2.1 for the generic

simulation study. Thus, in contrast to the above simulation study, we have one

set of true effect functions and one set of covariates, only. In each simulation
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run new response curves are sampled. We evaluate the model on 120 data sets

per dependency level and compare independent, dependent and high dependency

response curves.

Figure 2 shows simulated response curves for each level of in-curve dependency,

as well as corresponding original growth curves for comparison.
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Figure 2: 24 simulated example curves for the applied dependency levels inde-

pendent, dependent and high dependency and original growth curves for compar-

ison. Five randomly selected curves are highlighted in colors. Corresponding

curves have the same covariate setting.

Visual comparison of the simulated curves and the original growth curves sug-

gests that high dependency might be roughly comparable to the in-curve depen-

dency in the data. However, as we do not model the dependency structure in

the presented model, the correspondence is limited.
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D Simulation details III: results

In order to achieve comprehensive results, we consider a series of different sim-

ulation scenarios, where we vary the following parameters: the model scenario,

i.e. continuous or categorical covariates; the sample size N and the number of

measurements per curve G; the amount of in-curve dependency in the three

categories described above; the boosting and re-sampling method; the effective

degrees of freedom of the base-learners and the step length ν; and the ratio of

the variance of the randomly generated true predictors for the mean and for

the standard deviation. In addition, we compare the performance with the pe-

nalized likelihood approach of Greven and Scheipl (2017). An overview can be

found in Table 2.
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D.1 Figures

Figure 3: KLD for continuous and categorical covariate model: Comparison of KLD in the

continuous models with σ̄2
µ = 1, 2 and for the categorical model with σ̄2

µ = 1 for different sample

sizes and dependency levels. Grey box-plots in the background depict the distribution for the

KLD-optimal stopping iteration, instead of the one chosen by bootstrapping. Note that the

y-axis limits change for the different dependency levels to enhance readability for the small

values in the independent case.
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Figure 4: Example fit for high response in-curve dependency. The figure shows an example of
true effect functions and estimates with the gradient boosting (FDboost) and penalized likelihood
(refund) methods for the simulated continuous model scenario. The fit is based on a moderate
number of N = 334 response-curves with G = 100 highly dependent measurements per curve
and respective covariate samples. As the covariate interaction depends on z1, z2 and t, its effect
functions are plotted for five fixed time points (bottom). Especially for this complex effect, we
see how the regularization via curve-wise bootstrapping for FDboost prevents the over-fitting
that might occur with refund, if the estimated effects are too complex in relation to the given
sample size of curves.
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Figure 5: Weighted RMSE for individual effects in the continuous and categorical model:

Comparison of goodness-of-fit for effect functions in the continuous models with σ̄2
µ = 1, 2 and

for the categorical model with σ̄2
µ = 1 for different sample sizes and dependency levels. To

account for their scaling, individual RMSE values are presented relative to the mean variance

of simulated effect functions, i.e. relative to σ̄2
µ and τ(σ̄2

σ), respectively. For each effect function,

the mean weighted RMSE over the simulations is depicted.

A. Appendix for Chapter 2

228
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Figure 6: Comparison of different grid sizes G: Grid sizes G = 20, 50, 100, and 150 are compared

for different dependency levels keeping N = 100 fixed. Box-plots visualize the distribution of

KLD for fitted models (blue, foreground). We only observe a considerable effect for independent

response measurements. The KLD that would have been achieved with an optimal stopping

iteration is depicted in the background (gray).

Figure 7: Comparison of re-sampling methods: Box-plots summarizing the deviation of

selected stopping iterations mstop from the KLD-optimal mstop in the simulation. We compare

bootstrapping, k-fold cross-validation, and sub-sampling for no and high in-curve dependency.

Each method is applied with 5, 10, or 25 folds re-sampling. In sub-sampling, the data is randomly

split into 50% training set, 50% test set in each fold. Dashed gray lines depict zero deviation.

Since contribution of base learners decreases with boosting iterations, deviations are worse for

high in-curve dependence.
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Figure 8: Violin-plots reflecting the empirical density of the stopping iterations mstop selected
via 10-fold bootstrap (blue; left) and for the KLD-optimal mstop (gray; right). Plots refer to the
Gaussian model scenario with smooth covariate effects with 200 model fits per combination of
sample size N and different in-curve dependency levels. Note that, as gradients decrease in
absolute size with the number of boosting iterations, earlier iterations have a greater impact on
the actual model fit than later iterations.

Figure 9: Comparison of different df and ν combinations: Base learner degrees of freedom

df and step-length ν determine the flexibility of base learners in each boosting iteration. We

compare different combinations for different dependency levels. To this end, distributions of

KLD (left) and corresponding stopping iterations mstop (right) in simulations are displayed with

box-plots. For the KLD, grey boxes in the background correspond to the KLD for the optimal

mstop. We identify df = 13 and ν = 0.2 to be a suitable and yet fast combination. We do not

consider df < 13, as our model effects are rather complex, and we do not want to apply df

too close to the dimension of the penalty null space of the P-splines. E.g., for the base-learner

reflecting the smooth interaction between z1 and z2 over t, we distribute the degrees of freedom

such that we obtain df = 3 for the P-spline in direction of t (with penalty null space dimension

2) and df =
√

13/3 ≈ 2.1 in direction of z1 and z2, respectively.
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Table 3: Mean KLD for available gradient boosting methods for GAMLSS

cyclic non-cyclic

independent 0.1764 0.0067

dependent 0.2410 0.0353

high dependency 0.3078 0.1010

Mean KLD for available boosting methods and for different levels of in-curve dependency.

Method ’cyclic’ was first proposed by Mayr et al. (2012). Later, non-cyclic methods were

developed by Thomas et al. (2018). For all dependency levels, we observe that method

’non-cyclic’ exhibits a better KLD-performance than ’cyclic’.
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Figure 10: Cross-validation and KLD paths for the two different GAMLSS boosting meth-

ods: Exemplary cross-validation and KLD paths for both available gradient boosting methods

for GAMLSS in an example scenario with N = 100 functional observations. x- and y-axes

correspond to boosting steps in direction of µ and σ. The z-axis corresponds to resulting cross-

validation error or KLD, respectively. We compare cross-validation and KLD paths for in-curve

dependency level independent (top), for dependent (middle), and for high dependency (bottom). In

method ’cyclic’, µ- and σ-base learners are either updated alternately, or, from a certain point, the

learners for one parameter are updated only (black; blue indicates selected path). In the ’noncyclic’

method (chocolate, dashed) free paths can be chosen. We observe, that the cross-validation error

nicely approximates the structure of the KLD. Especially for high in-curve dependencies, the

KLD drops fast in the beginning, but rises afterwards when over-fitting occurs.
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Figure 11: Computation time for available gradient boosting methods for GAMLSS: Compu-

tation time for fitting the continuous model with a maximum of mstop = 400 boosting iterations.

The cyclic and non-cyclic GAMLSS boosting methods are compared with respect to required

time for a single model fit and for 10-fold bootstrapping. The models were fitted on a 64-bit

linux server. While a single model fit in the cyclic method is faster, as the base-learners for

the mean and standard deviation are fitted in an alternating way, re-sampling methods, like

bootstrapping, take a lot longer than with the noncyclic method, since a seperate mstop for each

parameter has to be chosen, which demands for multiple model estimations per re-sampling

fold.
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Figure 12: Top: relRMSE per covariate effect: We compare the mean relRMSE over 120

simulation runs per covariate effect in the model, and per in-curve dependency level. Effect

functions are depicted for the mean µ and for the relative standard deviation σ/ν, as well as for

the zero-probability p. The bars for the C-µ-effects are missing, as – after not being selected by

the boosting algorithm in the original model – their relative error is not defined. Bottom: the

corresponding absolute RMSE per covariate effect. For p both a a step-function intercept (StepI)

and smooth intercept (SmthI) centered around StepI are included into the model formula and

also distinguished in this plot. However, SmthI was never selected in the original model fit. In

addition, the RMSE is here also depicted for σ as it results from the µ and σ/µ effects.
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Figure 13: Diagnostic plots for the application-motivated simulation: Top: Bar-plots depicting

the relative frequency of base-learners to be selected into the model (i.e. in at least one boosting

iteration) in 120 simulation runs for different in-curve dependency levels (columns). Base-

learners selected in less than 100% of the model fits are also labeled with their respective

selection percentage. Base-learners which have not been selected in the original model fit and,

thus, present nuisance effects in the simulation study are marked in red. Bottom, left: box-plots

for KLD (blue, foreground) and the optimal KLD (gray, background). Bottom, right: box-plots for

stopping iteration mstop determined by bootstrapping (blue, foreground) and the KLD-optimal mstop

(gray, background). While in this setting the optimal stopping iteration is typically overestimated

by the bootstrap, this has only a slight effect on the fitting quality, as the KLD achieved by the

estimation is very close to the optimal. This reflects the KLD paths in dependence of mstop having

a very flat minimum.
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D.2 Discussion of results

4.2.1 Preventing over-fitting with early stopping

Especially for a small number N of sampled curves, high in-curve dependency

promotes over-fitting. Flexible time-varying effect functions, as entailed in the

present models, might be fitted to random patterns occurring in single curves.

Early stopping in gradient boosting solves this problem. For dependent re-

sponse measurements the optimal stopping iteration mstop, with respect to the

mean Kullback-Leibler Divergence (KLD) over the domain, is much lower than

for the independent case. At the same time, a larger sample size allows for more

fitting iterations. As shown in Figure 3 in the main manuscript, this is captured

well by estimating the KLD-optimal mstop with 10-fold curve-wise bootstrap. For

high in-curve dependency bootstrapping or sub-sampling turn out to perform

better than cross-validation, which tends to over-estimate the KLD-optimal mstop

(Figure 7). As the information gain per measurement of a response curve is di-

minished by in-curve dependency, it is crucial that the available information is

not over-estimated. In the case of in-curve dependency early stopping greatly

improves the model fit, as otherwise over-fitting might easily occur (see also

Figure 9).

This becomes even clearer when comparing the fitting performance with the

GAMLSS-type regression for Gaussian response presented by Greven and Scheipl

(2017), which is fit with the R package refund. In this alternative approach, the
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model is fit via penalized maximum likelihood based on a working indepen-

dence assumption for the response curve measurements. Usually, independence

is assumed conditionally on a latent Gaussian random error process, which is in-

cluded into the model to account for in-curve dependency. However, this would

prohibit modeling the total variance of the response curves in a separate predic-

tor, and, thus, no such process is included here. In contrast to the early stopping

in our FDboost boosting approach, the current version of refund has, thus, no

mechanism to account for in-curve dependency in the case of GAMLSS. The

simulation results in Figure 3 of the main manuscript show that this may lead

to severe over-fitting. While for the unrealistic case of independent response

measurements the effect estimates are even slightly more accurate with refund,

the fit is far better with FDboost for response curves with realistically dependent

measurements. This is particularly visible for the smooth covariate interaction

effect, the most complex effect in the model. The over-fitting in refund in this

case is clearly visible also when comparing single example model fits (Figure 4).

4.2.2 Sample size

We compare sample sizes N = 50, 100, 334, 500 for a constant grid of G = 100

measurements per response curve. In the independent case, we obtain good

estimations from N = 50 on (Figures 3 and 5). For dependent and highly depen-

dent response measurements estimation is naturally harder due to the decrease

in independent information provided. However, despite the high complexity
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of the model, we observe that the structure of all effect functions is re-covered

fairly well also in the highly dependent case (Figure 4). Here, the performance

considerably improves with increasing sample size, such that we obtain good

results for N = 100. In addition, the model fit gets more stable with higher

sample sizes showing less variation of estimation quality across samples.

When comparing grid sizes G = 20, 50, 100, 150 for N = 100 response curves we

observe no remarkable differences in estimation quality except for the indepen-

dent case (Figure 6).The in-curve dependency structure reduces the ‘effective

number of measurements’ provided by a fine grid.

Corresponding in some sense to the signal-to-noise ratio of simpler simulation

scenarios, we control the scales of predictors for the mean and for the standard

deviation by specifying the variances of the randomly generated true predictors.

In most of the simulation scenarios both variances are chosen to be one. If the

scale of the mean predictor is doubled, we observe that overall fitting gets worse

with respect to the KLD. In this case, we observe an increased estimation quality

for effects on the mean, but much worse estimation of the effects on the variance

(Figures 3 and 5).

4.2.3 Estimation of effects

For the estimation quality of the individual effect functions, we obtain similar

results as discussed above for the global estimation quality. As expected, the

fitting error tends to increase with the effect complexity. In addition, we observe
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238
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that the covariate effects of variables which affect both mean and variance show

an increased fitting error. However, neither mean nor variance effects show a

clear general fitting advantage (see Figure 5).

4.2.4 Application-motivated simulation

Concerning the comparison of different dependency levels and the estimation of

the optimal stopping iteration, we obtain similar results to the Gaussian case dis-

cussed above: accuracy and stability decrease with increasing dependency and

selection of the best stopping iteration mstop with cross-validation is sensitive to

in-curve dependency. In this scenario, we observe a tendency of over-shooting

the KLD-optimal mstop (Figure 13). Still, for all levels of in-curve dependency,

the KLD for the optimal mstop and the KLD achieved with the bootstrap-selected

mstop are quite similar, showing that the discrepancy in the stopping iteration

has little impact on the fitting quality.

We observe that most of the RMSEs for the estimated covariate effects are lower

than 10% of the effect range even in the highly dependent setting (Figure 12).

However, the functional intercept in the predictor for p(t) appears to be harder

to estimate, being composed of a smooth functional intercept and a step func-

tion; the σ/µ-effect of C(t) has a relatively large relRMSE, due to its small effect

size, while having a quite small absolute RMSE (Figure 12); the group-effects

for the eight experimental batches show the largest relRMSEs. They also have
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comparably small effect sizes and the estimated effect for each batch may rely

on the respective data only. Still, for the batch effects the interpretation of their

exact shape is not of primary interest.

Overall, we observe the effects to be estimated quite well despite in-curve de-

pendency and the high complexity of the model.

E Application details

E.1 Data

The data set contains N = 334 observed functional response curves Si(t) and co-

variate curves Ci(t). Their value corresponds to area expansion in mm2 of S- and

C- bacterial strain, respectively. Original values in µm2 were converted to avoid

numerical instability. The curves are measured on a common grid of length

G = 105 in the time interval T = [0, 48 h]. For the first 18 h 30 min, 75 measure-

ments are taken every 15 min. The remaining 29 measurements are taken every

hour. S- and C- strain are distinguished via red and green fluorescence. von

Bronk et al. (2017) employ automatic segmentation of propagation areas from

different color channels of recorded microscope pictures. In order to capture the

full area over the whole time span, four different microscope zoom levels are

applied. After 12 h 15 min the zoom level of the microscope is adjusted for the

first time, again after 18 h 30 min and after 33 h 30 min. The MitC concentration
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is included as a categorical covariate with four levels. As the covariate C′(t) is

calculated from C(t) by numerical differentiation, the last time point at t = 48 h

is dropped for all other curves. For every observation a positive amount of S-

and C-cells is present at the beginning. Due to automatic area segmentation

some growth curves contain outliers marked by distinct jumps in the growth.

Corresponding values of the cures were identified manually, deleted and re-

placed by spline interpolation. For each MitC concentration, two experimental

batches were conducted. For MitC = 0 these include 34 and 41 bacterial growth

spots; for MitC = 0.005 47 and 40 spots; for MitC = 0.01 45 and 40 spots; and for

MitC = 0.1 46 and 41 spots. The number of spots per experimental batch varies

as only spots with a positive number of S- and C-cells in the beginning were

chosen. Figure 14 shows example microscope pictures of bacterial colonies and

an overview over S- and C-growth curves.
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Figure 14: Bacterial growth data: Left: Overlay of bright-field, red and green

fluorescence for three different bacterial spots after 7, 11, 19, and 48 hours. For

the last two observation times the microscope zoom level was adjusted to cover

the full bacterial area. Right: Bacterial growth curves of the C-strain (top) and

S-strain (bottom). Highlighted C- and S- example curves from the same spot are

marked correspondingly.

E.2 Comparison with usual growth models

GAM(LSS) provide flexible means of modeling growth curves. We compare

them to four parametric growths models. The four parameter Baranyi-Roberts

model (Baranyi and Roberts, 1994) and the Gompertz model (Gibson et al.,

1988) in the parametrization of Zwietering et al. (1990) present two popular

approaches to modeling bacterial growth. Baty and Delignette-Muller (2014)

formulate these in terms of common parameters y0, y∞, µmax and L. The Baranyi-
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Roberts model is given by

y(t) = y0 + log10

(−1 + exp(µmaxL) + exp(µmaxt)
exp(µmaxt)

− 1 + 10y∞−y0exp(µmaxL)
)
.

The Gompertz model is given by

y(t) = y0 +
(
y∞ − y0

)
exp

(
− exp

(
µmaxe(L − t)

(y∞ − y0) log(10)
+ 1

))
.

Weber et al. (2014) employ a five-parameter sigmoidal function describing effec-

tive radii of bacterial colonies in bacterial interaction. Depending on parameters

a, . . . , d and y0, their model takes the form

y(t) = a +
y0 − a

(1 + (t/c)b)d

We also add the standard three parameter logistic growth model of the form

y(t) =
y∞y0 exp(rt)

y∞ + y0
(
exp(rt) − 1

) .

We fit two example S-strain growth curves from our data set with each of

the models in order to obtain realistic parameter values. Fitting is done via

least squares. In addition, we pick two alternative parameter settings. For

comparison, we fit each of the generated parametric model curves with GAM.

In analogy to our applied model, we fit the GAM by boosting using a gamma
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distribution loss with a log-link and a functional intercept constructed with a

B-spline. Resulting GAM approximation turns out to be nearly perfect for all

parametric models (Fig. 15).
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t)
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Figure 15: Comparison of growth models: GAM approximations to different

curves of parametric growth models. For the red and blue curves the parametric

models were fitted to example data. Green and violet curves display alternative

growth curve shapes.

E.3 Estimated effect functions

This section contains supplementary figures showing all estimated effect C-

effects (Figure 16) including those not shown in the main document. Figure 17

illustrates the effects of MitC on the overall mean and standard deviation, rather

than the effect on the conditional mean and standard deviation given S(t) > 0.
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Figure 16: Historical effects of C-strain propagation area: Coefficient functions

β(q)(s, t) for the historical effects of C′(t) and C(t) on the mean (top, left), the scale

parameter (top, right), the zero area probability (bottom, left), and the standard

deviation (bottom, right) of the S-strain growth curves. The y-axis presents the

time line for the S-strain curve, the x-axis the one for the C-strain. Grey dashed

lines mark zoom breaks. Note that for in the early phase with s, t ≤ 10 h there

are almost no observations with Si(t) = 0, so the corresponding effects on p(t)

should not be interpreted. Moreover, the C − µ-effect was never selected by the

boosting algorithm and is, thus, constantly zero.

As for t ≤ 10 h the probability P(Si(t) = 0) ≈ 0 and there is almost no vanishing of

S in the data, the estimated effects in this period are questionable and, thus, we

refrain from interpreting them. For later growth periods we observe a mainly

positive effect of Ci(s) and C′i(s) on p(t) corresponding to an increased probability

for Si(t) = 0 for an increased C strain growth (areal competition), consistent with
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results for µ(t). Only the C′-µ-effect for 10 h < s < 20 h is estimated negative for

later S-strain growth.

While we, thus, concentrate on the model part conditioning on Si(t) > 0, we

observed qualitatively similar effects of C′(s) on the mean, when replacing zero

response values by the smallest observed positive values in preliminary analy-

ses. This indicates that C′(s) shows a similar effect on the unconditional mean

E[Si(t)] = µi(t)(1 − pi(t)).

Based on the estimates for p(t) and for µ(t) and σ/µ(t) conditioning on S(t) > 0,

we may also compute the unconditional mean and standard deviation of S(t),

e.g., for the different MitC concentrations (Figure 17).
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Figure 17: Overall MitC-effects: Estimated point-wise mean (top) and standard

deviation (bottom) of the S-strain growth curves Si(t) without conditioning on

Si(t) > 0. Long-dashed black curves correspond to the functional intercept,

dashed vertical lines to the zoom level change-points.
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E.4 Bootstrap uncertainty bounds for effect functions on pre-

dictor level

We computed point-wise bootstrap uncertainty bounds for all effects in a basic

bootstrap 95% confidence interval type procedure with 1066 bootstrap samples.

Accordingly, the intervals are computed as [ f̂ (q)
j (t)−∆∗0.975(t), f̂ (q)

j (t)−∆∗0.025(t)] for

group-specific functional effects and [β̂(q)
j (s, t)−∆∗0.975(s, t), β̂(q)

j (s, t)−∆∗0.025(s, t)] for

historical effect coefficient surfaces, where ∆∗α denotes the bootstrap estimate of

the point-wise α-quantiles of the distribution of f̂ (q)
j − f (q)

j or β̂(q)
j − β(q)

j , respec-

tively. The bounds are meant to give indications on the estimation precision

complementing the results of our simulation study, but due to the complexity

of the matter we refrain from interpreting them as valid confidence bounds.

As the estimators are subject to shrinkage bias introduced by early stopping

of the boosting algorithm, we can not expect the bootstrap estimators ∆∗α to be

unbiased. In addition, we are limited to basic bootstrap confidence intervals as

we do not have proper estimates for the estimators’ variances and, thus, cannot

compute studentized bootstrap or accelerated bias-corrected bootstrap intervals

(compare, e.g., (Hall, 1988)) without tremendous computational burden. Visu-

alizations of the uncertainty bounds can be found in Figure 18 for f (q)
j and in

Figures 19, 20 and 21 for β(q)
j (s, t).
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Figure 18: Estimated effect functions of the functional intercept, the MitC effects

and the batch effects on µ, σ/µ and p with 95% bootstrap confidence interval type

uncertainty bounds based on 1066 bootstrap samples.
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Figure 19: Example surface plot of C′-σ-effect with 95% bootstrap confidence

interval type uncertainty bounds visualizing the line segments in the Figures 20

and 21.
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Figure 20: 95% bootstrap confidence interval type uncertainty bounds (red) for

estimated line segments s 7→ β̂(s, t) of the historical effect of C′(s) for different

fixed values of t (blue). The dots correspond to the values at s = t and therefore

serve for identification (compare Figure 19).
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Figure 21: 95% bootstrap confidence interval type uncertainty bounds (red) for

estimated line segments s 7→ β̂(s, t) of the historical effect of C(s) for different

fixed values of t (blue). The dots correspond to the values at s = t and therefore

serve for identification (compare Figure 19).
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S Online Supplementary Material to

Functional additive models on manifolds of planar shapes and forms
by Almond Stöcker, Lisa Steyer and Sonja Greven

S.1 Geometry of functional forms and shapes

S.1.1 Translation, rotation and re-scaling as normal subgroups

We consider the following invariances of a response curve y ∈ Y with respect to the trans-

formations Y → Y given by the group actions of translation Trl = {y Trlγ7−→ y + γ1 : γ ∈ C}
with some 1 ∈ Y \ {0} (for curves typically 1 : t 7→ 1

‖t7→1‖ the real constant function of

unit norm), re-scaling Scl = {y Sclλ7−→ λ · (y − 0y) + 0y : λ ∈ R+} around a reference

point 0y ∈ C, and rotation Rot = {y Rotu7−→ u · (y − 0y) + 0y : u ∈ S1} around 0y with
S1 = {u ∈ C : |u| = 1} = {exp(ω

√
-1) : ω ∈ R} the circle group reflecting counterclockwise

rotations by ω radian measure. In the literature, the reference point is usually omitted set-
ting 0y = 0, which can be done without loss of generality under translation invariance (i.e.
in particular for shapes/forms). However, keeping other possible combinations of invari-
ances in mind, we explicitly refer to an individual reference point and suggest the centroid
0y = 〈1 , y〉1 or, more generally, 0y = a(y)1 for some linear functional a : Y → R. Assuming
Trlγ(0y) = 0Trlγ(y), as for the centroid, the definition of re-scaling and rotation around 0y
ensures that Trlγ, Sclλ and Rotu commute – and that Trl, Rot and Scl present normal
subgroups of the combined group actions {y 7→ λuy + γ : γ ∈ C, λ ∈ R+, u ∈ S1} of shape
invariances. Thus, the combined group actions can be written as the direct product (or
direct sum) Trl× Scl×Rot = {Trlγ ◦ Sclλ ◦Rotu : γ ∈ C, λ ∈ R+, u ∈ S1} ∼= C × R+ × S1

and invariances with respect to Trl, Scl, Rot can be modularly accounted for in arbitrary
order. Trl×Rot, for instance, describe rigid motions. The ultimate response object is
then given by the orbit [y]G = {g(y) : g ∈ G} (or short [y]), i.e. the equivalence class
with respect to the direct sum G generated by the chosen combination of Trl, Scl and Rot.
[y]Trl×Scl×Rot is referred to as the shape of y and [y]Trl×Rot as its form or size-and-shape
(compare Dryden and Mardia, 2016); studying [y]Scl is closely related to directional data
analysis (Mardia and Jupp, 2009) where the direction of y is analyzed independent of its
size ‖y‖.

S.1.2 Parallel transport of form tangent vectors

To confirm that the parallel transport in the form space Y∗/Trl×Rot can be carried out
via representatives in Y as described in the main manuscript, we closely follow Huckemann
et al. (2010) in their derivation of shape parallel transport. Necessary differential geometric
notions and statements are briefly introduced in the following before stating the main result
in Lemma 1. For a more profound introduction, we recommend Lee (2018, in particular, p.
21, 43, 93, 124, 337, 402), as well as Tu (2011) for an illustrative introduction into some of
the concepts, and Klingenberg (1995, in particular, p.103- 107) for an introduction in the
light of potentially infinite dimensional manifolds.
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The entire argument crucially relies on properties known for Riemannian submersions
between differentiable manifolds M̃ andM, which allow to relate the structure ofM back
to M̃. A submersion is a smooth surjective function Φ : M̃ → M, for which also the
differential dΦ : Tq̃M̃ → TqM, q̃ ∈ M̃, q = Φ(q̃), is surjective at each q̃ ∈ M̃. For q ∈M,

the Φ−1({q}) are submanifolds ofM, and Tq̃M̃ = Tq̃Φ
−1({q})⊕Hq̃M̃ can be decomposed

into the vertical space Tq̃Φ
−1({q}) = ker(dΦ) and its orthogonal complement Hq̃M̃, the

horizontal space. When restricted to the horizontal space, dΦ
∣∣
Hq̃M̃

: Hq̃M̃ → TqM presents

a linear isomorphism. A submersion Φ is called Riemannian submersion if dΦ
∣∣
Hq̃M̃

is also

isometric. It gives rise to an identification TqM ∼= Hq̃M̃ of tangent spaces of M with

horizontal spaces on M̃. Such an identification underlies the presentation of the response
geometry in Section 2 of the main manuscript.
By construction, the quotient map Φ : Y∗ → Y∗/Trl×Rot, y 7→ [y] presents a Riemannian sub-

mersion: Since [p] = {up+ γ1 : u ∈ S1, γ ∈ C} embeds S1×R2 in Y , and, since the tangent
spaces of S1 and R2 are well-known, the vertical space is given by Tp[p] ∼= {λp

√
-1+γ1 : λ ∈

R, γ ∈ C} ⊂ Y , with orthogonal complement HpY∗ ∼= {y ∈ Y : 〈y,1〉 = 0, Im(〈y, p〉) = 0}
(see also Figure 1 in the main manuscript for an illustration). While Φ is obviously sur-
jective, surjectivity and isometry of dΦ|HpY∗ can be seen by expressing Φ in terms of the

charts for Y∗/Trl×Rot: for a given p ∈ [p] ∈ Y∗/Trl×Rot, the map (̃·) : [y] 7→ ỹTrl×Rot provides

a chart U[p] → Vp, i.e. an isomorphism from U[p] = {[y] ∈ Y∗/Trl×Rot : 〈p̃Trl, ỹTrl〉 6= 0} to

Vp = {y ∈ Y : Im(〈p, y〉) = 0,Re(〈p, y〉) > 0, 〈1, y〉 = 0} used to establish the differential

structure on Y∗/Trl×Rot. Expressed in this chart, Φ̃(y) = (̃·)◦Φ(y) = ỹTrl×Rot is the identity

for all y ∈ Vp ⊂ Φ−1
(
U[p]

)
. Thus, since TpVp = HpY∗, also dΦ̃

∣∣
HpY∗ is the identity, which

is obviously an isometric isomorphism. The latter carries over to dΦ
∣∣
HpY∗ independent of

the given chart.
The isometric isomorphism dΦ

∣∣
HpY∗ : HpY∗ → T[p]Y∗/Trl×Rot yields the identification

T[p]Y∗/Trl×Rot
∼= {y ∈ Y : 〈y,1〉 = 0, Im(〈y, p〉) = 0}, which we rely on in the main

manuscript. Unlike there, we denote dΦ
∣∣−1

HyY∗ : ξ 7→ ξ̃ also for tangent vectors in the fol-

lowing, to make the identification of ξ = dΦ(ξ̃) ∈ T[y]Y∗/Trl×Rot with the corresponding

ξ̃ ∈ HyY∗, usually referred to as horizontal lift, explicit in the notation.
The covariant derivative (Levi-Civita connection) ∇MV W ∈ TM of a vector-field W ∈

TM along a vector-field V ∈ TM provides a derivative of vector-fields in the tangent
bundle TM = {TqM : q ∈M} of a Riemannian manifoldM. As a derivation in W and a
linear function in V , ∇M fulfills a set of properties identifying it as unique generalization
of ordinary directional derivatives of the components of W : q 7→ Wq ∈ TqM into the
direction Vq ∈ TqM. For a submanifold M of a linear space Y , ∇MV W corresponds to the
ordinary directional derivative orthogonally projected into TqM. For the linear case (with
M = Y), the covariant derivative of a vector field W (τ) := Wc(τ) along a differentiable
curve c(τ) is directly given as

∇Yċ(t)W (τ) = Ẇ (τ) =
d

dτ
W (τ). (1)

2
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In analogy to straight lines, geodesic curves c(τ) are characterized by

∇Mċ(τ)ċ(τ) = 0,

i.e. curves with zero ‘second derivative’. More generally, a vector-field W is called parallel
along a curve c(τ) if

∇Mċ(τ)W (τ) = 0. (2)

According to that the parallel transport Transpcq,q′ : TqM → Tq′M along a curve c :
[τ0, τ1] → M between c(τ0) = q, c(τ1) = q′ ∈ M is defined to map tangent vectors
ε = W (τ0) 7→ ε′ = W (τ1) for some vector field W parallel along c (fulfilling Equation 2).
If the curve c is clear from context, we omit it in the notation. This is especially the case
in the following, where c can be chosen as the unique geodesic between two forms [p] and
[p′] with 〈p, p′〉 6= 0, yielding a canonical connection (in this case, c corresponds to the line
between p and the aligned p̃′; for 〈p, p′〉 = 0, by contrast, it is easy to see that for each
u ∈ S1 the line between p and up′ corresponds to a different geodesic; the second case can,
however, be neglected).

The possibility to effectively carry out the parallel transport between forms [p], [p′]
on suitable representatives p, p′ ∈ Y∗ stems from the following theorem and subsequent
Corollary (compare, e.g, Klingenberg, 1995, p. 103-105).

Theorem 1. Let Φ : M̃ → M be a Riemannian submersion between manifolds M̃ and
M, and V,W ∈ TM vector-fields. Then

∇M̃
Ṽ
W̃ = ˜(∇MV W ) +

1

2
[Ṽ , W̃ ]⊥

where Z̃ ∈ HM̃ denotes the horizontal lift of Z ∈ TM to the horizontal bundle HM̃ =

{Hp̃M̃ : p̃ ∈ M̃}, Z = dΦ
(
Z̃
)

, and [Ṽ , W̃ ]⊥ is the the Lie bracket [Ṽ , W̃ ] = Ṽ ◦W̃−W̃ ◦ Ṽ
orthogonally projected (·)⊥ : TM̃ → ker (dΦ) to the vertical space.

Corollary 1. Let Φ : M̃ → M be a Riemannian submersion and c : (τ0, τ1) → M a

smooth curve on M with c̃ : (τ0, τ1)→ M̃ its horizontal lift, i.e., Φ ◦ c̃ = c, dΦ ◦ ˙̃c = ċ and
˙̃c(τ) ∈ Hc̃(τ)M̃ horizontal (i.e. ˙̃c = ˜̇c). Then

i) a vector-field W = dΦ ◦ W̃ ∈ TM along c is parallel if and only if

∇M̃˙̃c W̃ =
1

2
[˙̃c, W̃ ]⊥

for the horizontal vector-field W̃ ∈ TM̃ along c̃.

ii) c is a geodesic if and only if c̃ is a geodesic.

While i) yields the basis for confirming the parallel transport computation, ii) is the un-
derlying fact behind the identification of geodesics in form and shape spaces with geodesics
of suitably aligned representatives. Note that, while Huckemann et al. (2010) generally

3
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restrict their discussion to finite dimensional manifolds, the theorem does in fact not have
this restriction. Based on these preparations, we can now verify the presented parallel
transport along the lines of Huckemann et al. (2010), but for forms rather than shapes and
explicitly based on a separable Hilbert space Y rather than on Ck. Note that, while identi-
fying HpY∗ ∼= T[p]Y∗/Trl×Rot and ε ∼= dΦ(ε) in the main manuscript, they are distinguished
here for clarity.

Lemma 1. Let p, p′ ∈ Y∗ with 〈p, p′〉 6= 0 centered and mutually rotation aligned repre-
sentatives of forms [p], [p′] ∈ Y∗/Trl×Rot (i.e. p = p̃Trl×Rot for notational simplicity and p′

accordingly), let ε ∈ T[p]Y∗/Trl×Rot with horizontal lift ε̃ ∈ HpY∗, and let Φ : y 7→ [y] denote
the quotient map. Then

Transp[p],[p′] (ε) = dΦ

(
ε̃− Im(〈p′/‖p′‖, ε̃〉) p/‖p‖+ p′/‖p′‖

1 + 〈p/‖p‖, p′/‖p′‖〉
√

-1

)
(3)

implements the form parallel transport via its horizontal lift.

Proof. For 〈p, p′〉 6= 0 aligned and centered, the unique unit-speed geodesic (uniqueness can
be seen using Corollary 1 ii)) between [p] and [p′] is described by τ → [p+ τ p′−p

‖p′−p‖ ]. Yet, to
simplify the argument, we choose a unit-angular speed parameterization instead. It takes
the form c(τ) := [c̃(τ)] := [ρ(τ)γ(τ)] with γ(τ) = cos(τ)β + sin(τ)β′ where β = p

‖p‖ and

β′ = p′−〈β,p′〉β
‖p′−〈β,p′〉β‖ =

p′
‖p′‖−〈

p
‖p‖ ,

p′
‖p′‖ 〉

p
‖p‖

‖ p′
‖p′‖−〈

p
‖p‖ ,

p′
‖p′‖ 〉

p
‖p‖‖

form an orthonormal basis of the real plain containing

the horizontal geodesic. With c̃(0) = p and c̃(arccos〈 p
‖p‖ ,

p′

‖p′‖〉) = p′, c̃(τ) describes the

line connecting p and p′ in polar coordinates. [γ(τ)]Trl×Rot× Scl corresponds to the shape
geodesic between [p]Trl×Rot×Scl and [p′]Trl×Rot× Scl, and ρ(τ) = ‖c̃(τ)‖ reflects the size of
the geodesic c(τ). An explicit definition of ρ(τ) is not needed.

Due to the alignment of p and p′, γ̇(τ) and also

W̃ (τ) := ε̃+ Im(〈β′, ε̃〉) (γ̇(τ)− β′)
√

-1 (4)

are horizontal along c̃(τ), i.e. W̃ (τ) ∈ Hc̃(τ)Y∗ for each τ , if ε̃ is horizontal, i.e. if
Im(〈p, ε̃〉) = 〈1, ε̃〉 = 0. More concretely, this holds as

Im
(
〈c̃(τ), W̃ (τ)〉

)
= ρ(τ) (Im(〈γ(τ), ε̃〉) + Im(〈β′, ε̃〉) Re(〈γ(τ), γ̇(τ)− β′〉))

ε̃ horizontal
= ρ(τ)


sin(τ) Im(〈β′, ε̃〉) + Im(〈β′, ε̃〉) (0− sin(τ) ‖β′‖2

︸ ︷︷ ︸
=1

)


 = 0

and, obviously, also 〈1, W̃ (τ)〉 = 0 as this is the case for all involved vectors. Moreover, W̃

is smooth and ε̃ 7→ W̃
(

arccos〈 p
‖p‖ ,

p′

‖p′‖〉
)

yields the transport formulated in Equation (3),
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which follows from basic trigonometric relations. In detail, it follows from plugging

γ̇

(
arccos〈 p‖p‖ ,

p′

‖p′‖〉
)
− β′ = 〈 p‖p‖ ,

p′

‖p′‖〉 β
′ −
√

1− 〈 p‖p‖ ,
p′

‖p′‖〉
2 β − β′

=

(
〈 p‖p‖ ,

p′

‖p′‖〉 − 1

)
β′︷ ︸︸ ︷

p′

‖p′‖ − 〈
p
‖p‖ ,

p′

‖p′‖〉
p
‖p‖√

1− 〈 p
‖p‖ ,

p′
‖p′‖〉2

−
√

1− 〈 p‖p‖ ,
p′

‖p′‖〉
2

p

‖p‖

=

(
〈 p
‖p‖ ,

p′

‖p′‖〉 − 1
)

p′

‖p′‖√
1− 〈 p

‖p‖ ,
p′
‖p′‖〉2

+
−〈 p
‖p‖ ,

p′

‖p′‖〉2
p
‖p‖ + 〈 p

‖p‖ ,
p′

‖p′‖〉
p
‖p‖ −

(
1− 〈 p

‖p‖ ,
p′

‖p′‖〉2
)

p
‖p‖√

1− 〈 p
‖p‖ ,

p′
‖p′‖〉2

=
−
(

1− 〈 p
‖p‖ ,

p′

‖p′‖〉
)(

p′

‖p′‖ + p
‖p‖

)

√
1− 〈 p

‖p‖ ,
p′
‖p′‖〉2

and

Im(〈β′, ε̃〉) ε̃ horizontal
=

Im(〈p′, ε̃〉)√
1− 〈 p

‖p‖ ,
p′
‖p′‖〉2

into the definition of W (τ) = dΦ(W̃ (τ)) using (4).

Hence, due to Corollary 1 i), we mainly need to show

∇Y∗˙̃c
W̃ =

1

2
[˙̃c, W̃ ]⊥ (5)

where the left-hand side may directly be computed as

∇Y∗˜̇c(τ)
W̃ (τ)

(1)
=

˙̃
W (τ)

(4)
= − Im(〈β′, ε̃〉) γ(τ)

√
-1

since γ̈(τ) = −γ(τ).

On the right-hand side, the orthogonal projection of a vector-field V (τ) := Vc̃(τ) ∈
Tc̃(τ)Y∗ along c̃(τ) into the vertical spaces (of which {γ(τ),1,

√
-11} constitute an orthonor-

mal basis) is given by

V ⊥(τ) =
Re
(
〈
√

-1 c̃(τ), V (τ)〉
)

‖c̃(τ)‖2
c̃(τ)
√

-1 + 〈1, V (τ)〉1

=
ωRot(V (τ))

ρ(τ)
γ(τ)
√

-1 + ωTrl(V (τ))1
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with the 1-forms ωRot and ωTrl defined as

ωRot(Vp) := Re
(
〈
√

-1 p, Vp〉
)

= Re
(
−
√

-1 〈p, Vp〉
)

= Re
(
−
√

-1
(

Re(〈p, Vp〉) + Im(〈p, Vp〉)
√

-1
))

= Re
(
−
√

-1 Re(〈p, Vp〉) + Im(〈p, Vp〉)
)

= Im(〈p, Vp〉) .

and ωTrl(Vp) = 〈1, Vp〉 for p ∈ Y∗.
Thus, to confirm (5) and complete the proof, it remains to show ωRot([ ˙̃c, W̃ ]) = −2 Im(〈β′, ε̃〉) ρ

and ωTrl([ ˙̃c, W̃ ]) = 0. For this, we use some statements on the exterior derivative dω of a
1-form ω subsumed in the following auxiliary lemma (proven later):

Lemma 2. Let V,W be smooth vector-fields.

i) For any smooth 1-form ω it holds that ω ([V,W ]) = V (ω (W ))−W (ω (V ))−dω (V,W ).

ii) For ωRot defined above, dωRot(V,W ) = 2 Im(〈V,W 〉).

iii) For ωTrl defined above, dωTrl(V,W ) = 0.

Using further that

ωRot
(

˙̃c(τ)
)

= Im(〈γ(τ), ρ(τ) γ̇(τ)〉) + Im(〈γ(τ), ρ̇(τ) γ(τ)〉) = 0

and

ωRot
(
W̃ (τ)

)
= ρ(τ) Im(〈γ(τ), ε̃〉) + ρ(τ) Im(〈β′, ε̃〉) 〈γ(τ), γ̇(τ)− β′〉︸ ︷︷ ︸

∈R

= ρ(τ) (sin(τ) Im(〈β′, ε̃〉)− Im(〈β′, ε̃〉) sin(τ)) = 0

we then have

ωRot([ ˙̃c(τ), W̃ (τ)]) = ˙̃c(τ)
(
ωRot(W̃ (τ))

)

︸ ︷︷ ︸
=0

− W̃ (τ)
(
ωRot(˙̃c(τ))

)

︸ ︷︷ ︸
=0

−dωRot
(

˙̃c(τ), W̃ (τ)
)

= −2
(

Im
(
〈ρ(τ)γ̇(τ), W̃ (τ)〉

)
+ Im

(
〈ρ̇(τ)γ(τ), W̃ (τ)〉

)

︸ ︷︷ ︸
=0 (W̃ horizontal, ρ and ρ̇ real)

)

= −2ρ(τ) Im
(
〈cos(τ)β′ − sin(τ)β, ε̃〉+ 〈γ̇(τ), Im(〈β′, ε̃〉) (γ̇(τ)− β′)

√
-1〉
)

= −2ρ(τ)
(

cos(τ) Im(〈β′, ε̃〉) + Im(〈β′, ε̃〉) 〈γ̇(τ), γ̇(τ)− β′〉︸ ︷︷ ︸
∈R

)

= −2ρ(τ)
(

cos(τ) Im(〈β′, ε̃〉) + Im(〈β′, ε̃〉)− Im(〈β′, ε̃〉) cos(τ)
)

= −2ρ(τ) Im(〈β′, ε̃〉)
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and

ωTrl([ ˙̃c(τ), W̃ (τ)]) = ˙̃c(τ)

(
ωTrl

(
W̃ (τ)

)

︸ ︷︷ ︸

)

=〈1,W̃ 〉=0

− W̃ (τ)

(
ωTrl

(
˙̃c(τ)

)

︸ ︷︷ ︸

)

=〈1, ˙̃c〉=0

− dωTrl
(

˙̃c(τ), W̃ (τ)
)

︸ ︷︷ ︸
=0

= 0,

where tangent vectors ˙̃c(τ) and W̃ (τ) are interpreted as directional derivatives. These are
the two equations that remained to show.

Proof of Lemma 2. i) See, e.g., Lee (2018), Proposition B.12 on page 402. This is a
standard result. Note that based on an alternative (yet also common) definition of
the wedge product and, hence, the exterior derivative, Huckemann et al. (2010) and
others write ω ([V,W ]) = V (ω (W ))−W (ω (V ))− 2 dω (V,W ) instead. In this case,
we also have dωRot(V,W ) = Im(〈V,W 〉) in ii) compensating for the different factor
in the proof of Lemma 1.

ii) Let {er}r be an orthonormal C-basis of Y (a complete orthonormal system existing
since Y is separable) and {ϑ(r)(y)}r = 〈er, y〉 the corresponding dual basis. The
tangent vectors ∂Re,r

∣∣
p
∼= er and ∂Im,r

∣∣
p
∼=
√

-1 er, p ∈ Y together form an R-basis of

TpY∗ ∼= Y . The dual 1-forms are given by dRe,r(Vp) := Vp
(
Re ◦ ϑ(r)

) ∼= Re ◦ ϑ(r)(Vp)

and dIm,r(Vp) := Vp
(
Im ◦ ϑ(r)

) ∼= Im◦ϑ(r)(Vp) where we identify tangent vectors either
with directional derivatives Vp(f) = d

dτ

(
f ◦ Expp(τVp)

) ∣∣
τ=0

of functions f :M→ R

or with elements of Y , and the equality follows fromM = Y∗, and Re ◦ϑ(r), Im ◦ϑ(r)

linear. With this given, we have

ωRot(Vp) = Im

(
〈
∑

r

〈er, p〉er, Vp〉
)

(6)

=
∑

r

Im(〈p, er〉〈er, Vp〉)

=
∑

r

Re(〈er, p〉) Im(〈er, Vp〉)− Im(〈er, p〉) Re(〈er, Vp〉)

=
∑

r

Re ◦ ϑ(r)(p) dIm,j (Vp)− Im ◦ ϑ(r)(p) dRe,j (Vp)

7
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and thus, expressing the exterior derivative in terms of wedge products

dωRot =
∑

r

∑

l

∂Re,r

(
Re ◦ ϑ(r)

)
dRe,l ∧ dIm,r + ∂Im,r

(
Re ◦ ϑ(r)

)
dIm,l ∧ dIm,r

− ∂Re,r

(
Im ◦ ϑ(r)

)
dRe,l ∧ dRe,r − ∂Im,r

(
Im ◦ ϑ(r)

)
dIm,l ∧ dRe,r

=
∑

r

∑

l

dRe,l (∂Re,r) dRe,l ∧ dIm,r + dRe,l (∂Im,r) d
Im,l ∧ dIm,r

− dIm,l (∂Re,r) d
Re,l ∧ dRe,r − dIm,l (∂Im,r) d

Im,l ∧ dRe,r

=
∑

r

dRe,r ∧ dIm,r − dIm,r ∧ dRe,r

= 2
∑

r

dRe,r ∧ dIm,r

which evaluates to

dωRot(V,W ) = 2
∑

r

(
dRe,r (V ) dIm,r (W )− dIm,r (V ) dRe,r (W )

)

= 2 Im(〈V,W 〉)

where the last equation follows from a computation analogous to (6).

iii) By choosing w.l.o.g. e1 =1, we obtain

ωTrl(V ) = dRe,1 +
√

-1 dIm,1

which immediately yields d〈1, ·〉 = 0, since d dRe,1 = d dIm,1 = 0.

S.2 Tensor-product factorization

The optimality of the proposed tensor-product factorization follows from the Eckart-Young-
Mirsky theorem (EYM) which can be found, e.g., in (Gentle, 2007, page 139) for matrices
and, in more general terms, in (Hsing and Eubank, 2015, page 111) for Hilbert-Schmidt
operators. In the following, we present a tensor-product version of EYM designed for
our needs. The optimality of the tensor-product factorization is then illustrated in two
corollaries – first in a theoretical model setting and second for the empirical decomposition
on evaluations which can be practically conducted on given data. Consider two real vector
spaces Bj, j ∈ {0, 1}, with positive semi-definite bilinear forms 〈·, ·〉j : Bj × Bj → R

inducing semi-norms ‖ · ‖j. Assuming B1 to be, in fact, a function space of functions
f : X → R on some set X , the (vector space) tensor product B1 ⊗ B0 of B0 and B1 is the
vector space spanned by all f ⊗ y : X → B0,x 7→ f(x) y with f ∈ B1 and y ∈ B0. By
linear extension, a symmetric positive semi-definite bilinear form on B1⊗B0 is defined by
〈 f ⊗ y , f ′⊗ y′ 〉B1⊗B0 = 〈f, f ′〉1 〈y, y′〉0 for all f, f ′ ∈ B1, y, y

′ ∈ B0. It induces a semi-norm
‖ · ‖B1⊗B0 on the tensor product space.
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Theorem 2 (Eckart-Young-Mirsky for finite-dimensional tensor-products). Let B0,B1 be

semi-normed vector spaces as defined above and h =
∑m0

r=1

∑m1

l=1 θ
(r,l) b

(l)
1 ⊗ b

(r)
0 ∈ B1 ⊗

B0 expressed as a finite linear-combination with b
(1)
1 , . . . , b

(m1)
1 ∈ B1, b

(1)
0 , . . . , b

(m0)
0 ∈ B0,

and coefficient matrix {θ(r,l)}r,l = Θ ∈ Rm0×m1. Then we can optimally decompose h =∑m
r=1 d

(r) ξ
(r)
1 ⊗ξ(r)

0 with m = min{m0,m1}, d(1) ≥ · · · ≥ d(m) ≥ 0 and 〈ξ(r)
j , ξ

(l)
j 〉j = 1(r = l)

for ξ
(r)
j ∈ Bj , in the sense that for any L ≤ m

‖h−
L∑

r=1

d(r) ξ
(r)
1 ⊗ ξ(r)

0 ‖B1⊗B0 ≤ ‖h−
L∑

r=1

d(r)
? ξ

(r)
1? ⊗ ξ(r)

0? ‖B1⊗B0 (7)

for all d
(r)
? ∈ R and ξ

(r)
j? ∈ Bj, j ∈ {0, 1}, r = 1, . . . , L. Arranging D = diag(d(1), . . . , d(m))

and expressing ξ
(r)
j =

∑
l u

(l,r)
j b

(l)
j , r = 1, . . . ,m, with the coefficient matrices {u(l,r)

j }l,r =
Uj ∈ Rmj×m, j ∈ {0, 1}, an optimal decomposition is obtained as follows:

i) If for j ∈ {0, 1} the Gram matrices Gj = {〈b(r)
j , b

(l)
j 〉j}r,l are the identity Gj = Imj ,

the matrices D and Uj, j ∈ {0, 1}, are directly determined via SVD of the coefficient
matrix Θ = U0DU>1 .

ii) In general, there are suitable matrices Mj ∈ RrankGj×mj , j ∈ {0, 1}, such that Ξ =
V0DV>1 is the SVD of the matrix Ξ = M0ΘM>

1 and Uj = M−
j Vj with generalized

inverse M−
j = M>

j (MjM
>
j )−1.

(a) In general, a suitable matrix is given by Mj =
√

Gj
>

with Gj =
√

Gj

√
Gj
>

a
Cholesky decomposition.

(b) If the b
(r)
j can be identified with vectors b

(r)
j ∈ Rm′j of some length m′j, arranged

as column vectors of a “design matrix” Bj ∈ Rm′j×mj , such that 〈b(r)
j , b

(l)
j 〉j =

(b
(r)
j )>Wjb

(l)
j , with r, l = 1, . . . ,mj, for a symmetric positive definite weight

matrix Wj, we may equivalently set Mj = Rj based on the QR-decomposition√
Wj

>
Bj = QjRj. In this case, design matrices Ej of vector representatives

ξ
(r)
j for the ξ

(r)
j can, alternatively, be obtained as Ej =

√
Wj

−>
QjVj (where

Wj is typically diagonal and, hence,
√

Wj
−>

fast to compute).

Proof. i) For j ∈ {0, 1}, denote the column vectors of Uj by u
(r)
j , r = 1, . . . ,m, and

consider the space of m0×m1 matrices equipped with the inner product 〈Θ1,Θ2〉F =
tr
(
Θ>1 Θ2

)
, for Θ1,Θ2 ∈ Rm0×m1 , inducing the Frobenius norm ‖ · ‖F .

The EYM for matrices (e.g. Gentle, 2007, page 139) states that the matrix ΘL =∑L
r=1 d

(r)u
(r)
0 (u

(r)
1 )> is the best rank L approximation of Θ, in the sense that

‖Θ−ΘL‖F ≤ ‖Θ−
L∑

r=1

d(r)
? u

(r)
0? (u

(r)
1? )>‖F for any d(r)

? ∈ R,u(r)
j? ∈ Rmj , r = 1, . . . ,m.
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To apply the theorem, we point out that, provided the Gram matrices Gj = Imj ,

the {b(r)
j }r=1,...,mj and, thus, also { b(r)

1 ⊗ b
(l)
0 }r,l are orthonormal bases of finite-

dimensional subspaces Aj ⊂ Bj and A1 ⊗ A0 ⊂ B1 ⊗ B0 , respectively, forming

Hilbert spaces. Hence, the basis representation map sending ξ
(r)
j 7→ u

(r)
j to its co-

efficient vector w.r.t. {b(r)
j }r presents an isometric isomorphism from Aj to Rmj .

Accordingly, the basis representation A1 ⊗ A0 → Rm0×m1 , h 7→ Θ presents an iso-
metric isomorphism identifying ξ

(r)
1 ⊗ξ(l)

0 with u
(l)
0 (u

(r)
1 )>. The isometry follows from

〈h1, h2〉 =
∑

r,l,r′,l′ θ
(r,l)
1 θ

(r′,l′)
2 〈 b(r)

1 ⊗ b(l)
0 , b

(r′)
1 ⊗ b(l′)

0 〉 =
∑

r,l θ
(r,l)
1 θ

(r,l)
2 = tr

(
Θ>1 Θ2

)
for

basis representations h1 7→ Θ1 and h2 7→ Θ2. This lets us carry over the EYM for
matrices to A1 ⊗A0 yielding the desired inequality (7) restricted to ξ

(r)
j? ∈ Aj ⊂ Bj.

The property d1 ≥ · · · ≥ dm ≥ 0 and orthonormality of the ξ
(r)
j are also inherited

from the SVD.

Moreover, we can project any ξ
(r)
j? ∈ Bj as ξ

(r)
j‖ =

∑
l〈b

(l)
j , ξ

(r)
j? 〉j b(l)

j into Aj and define

ξ
(r)
j⊥ = ξ

(r)
j? − ξ

(r)
j‖ , which yields an analogous decomposition h? =

∑L
r=1 d

(r)
? ξ

(r)
1? ⊗

ξ
(r)
0? = h‖ + h⊥ with h‖ ∈ A1 ⊗ A0 and 〈h, h⊥〉B1⊗B0 = 〈h‖, h⊥〉B1⊗B0 = 0. Thus,

we have ‖h − h?‖2
B1⊗B0 = ‖h − h‖‖2

B1⊗B0 + ‖h⊥‖2
B1⊗B0 ≥ ‖h − h‖‖2

B1⊗B0
EYM

≥
onA1⊗A0

‖h−∑L
r=1 d

(r) ξ
(r)
1 ⊗ ξ(r)

0 ‖B1⊗B0 , which completes the proof.

ii) We represent b
(r)
j =

∑
l=1M

(l,r)
j a

(l)
j in an orthonormal basis {a(l)

j }l of the Hilbert

space Aj ⊂ Bj spanned by {b(r)
j }r as in i) with the coefficients forming the matrix

Mj = {M (l,r)
j }l,r, for j ∈ {0, 1}, such that Ξ = M0ΘM>

1 is the coefficient matrix

of h w.r.t. {a(l)
j }l. Hence, due to i), the matrices Ξ = V0DV>1 obtained by SVD

fulfill the desired properties where the Vj are the coefficient matrices of the {ξ(r)
j }r

w.r.t. {a(r)
j }r. We may set Uj = M−

j Vj to represent {ξ(r)
j }r in the original basis

{b(r)
j }r instead, since, due to MjM

−
j = IrankGj

, we have a
(r)
j =

∑
l=1M

−(l,r)
j b

(l)
j for

M− = {M−(l,r)
j }l,r.

a) Constructing the orthonormal basis {a(r)
j }r via a

(r)
j =

∑
l=1 M

−(l,r)
j b

(l)
j with

M−
j = {M−(l,r)

j }l,r =
√

Gj
>−

is straight forward yielding

{〈a(r)
j , a

(l)
j 〉}r,l = M−>

j GjM
−
j

=
(√

Gj
>√

Gj

)−1√
Gj
>√

Gj

√
Gj
>√

Gj

(√
Gj
>√

Gj

)−1

= IrankGj
.

b) As in this case, Gj = B>j
√

Wj

√
W
>
j Bj = R>j Q>j QjRj

Qj orthogonal
= R>j Rj the

choice Mj = Rj is equivalent to a). Accordingly, Uj = R−j Vj and thus Ej =

BjUj = BjR
−
j Vj =

√
W
−>

QjVj.
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Corollary 2 (Tensor-product factorization). Let {b(r)
0 }r=1,...,m0 elements of a Hilbert space

Y with norm ‖ · ‖ and b
(l)
1 ∈ L2(X ) = {f :X → R : f ◦X measurable, E (‖f(X)‖2) < ∞},

l = 1, . . . ,m1, square-integrable functions of a random covariate vector X taking values
in X . Let further h(x) =

∑m0

r=1

∑m1

l=1 θ
(r,l) b

(l)
1 (x) b

(r)
0 for x ∈ X . Then we can optimally

decompose h(x) =
∑m

r=1 h
(r)(x) ξ(r) with m = min{m0,m1}, ξ(1), . . . , ξ(m) orthonormal and

h(r) ∈ L2(X ) with E
(
h(1)(X)2

)
≥ · · · ≥ E

(
h(m)(X)2

)
, in the sense that for any L ≤ m

E

(
‖h(X)−

L∑

r=1

h(r)(X) ξ(r)‖2

)
≤ E

(
‖h(X)−

L∑

r=1

h(r)
? (X) ξ(r)

? ‖2

)
,

for any other ξ
(r)
? ∈ Y and h

(r)
? ∈ L2(X ), r = 1, . . . , L. An optimal decomposition is

obtained by specifying ξ(r) = ξ
(r)
0 and h(r) = d(r) ξ

(r)
1 as in Theorem 2 with 〈·, ·〉0 = 〈·, ·〉 the

inner product of Y and 〈f, f ′〉1 = E (f(X) f ′(X)) for f, f ′ ∈ L2(X ).

Proof. After applying Theorem 2, it remains to check that ‖h‖2
L2(X )⊗Y = E (‖h(X)‖2).

Indeed, this holds for all simple h = f ⊗ y , since

〈 y ⊗ f , y′ ⊗ f ′ 〉L2(X )⊗Y = 〈y, y′〉E (f(X) f ′(X)) = E (〈f(X) y, f ′(X) y′〉)

for any y, y′ ∈ Y and f, f ′ ∈ L2(X ), and, therefore, carries over to all h ∈ L2(X ) ⊗ Y in
the vector space.

Corollary 3 (Tensor-product factorization, empirical version). Let F(X ,R) and F(T ,C)
denote the sets of functions X → R and T → C, respectively, which are both considered real
vector spaces. Let b

(r)
0 ∈ F(T ,C), r = 1, . . . ,m0, and b

(l)
1 ∈ F(X ,R), l = 1, . . . ,m1. Con-

sider h(x)(t) =
∑m0

r=1

∑m1

l=1 θ
(r,l) b

(l)
1 (x) b

(r)
0 (t) for x ∈ X , t ∈ T evaluated, for i = 1, . . . , n,

at xi ∈ X and ti,ι ∈ T , ι = 1, . . . , ki. Then we can decompose h(x) =
∑m

r=1 h
(r)(x) ξ(r) with

m = min{m0,m1} optimally, in the sense that for any L ≤ m and any other functions

ξ
(r)
? : T → C and h

(r)
? : X → R, r = 1, . . . , L,

n∑

i=1

w1i
1

n

n∑

ı̈=1

ki∑

ι=1

w0ı̈ι|h(xi)(tı̈ι)−
L∑

r=1

h(r)(xi) ξ
(r)(tı̈ι)|2

≤ (8)

n∑

i=1

w1i
1

n

n∑

ı̈=1

ki∑

ι=1

w0ı̈ι|h(xi)(tı̈ι)−
L∑

r=1

h(r)
? (xi) ξ

(r)
? (tı̈ι)|2,

with integration/sample weights w0iι ≥ 0 and w1i ≥ 0. An optimal decomposition is ob-

tained by specifying ξ(r) = ξ
(r)
0 and h(r) = d(r) ξ

(r)
1 , r = 1, . . . ,m, specified as in Theo-

rem 2 with 〈y, y′〉0 = 1
n

∑n
ı̈=1

∑ki
ι=1w0ı̈ι Re

(
y†(tı̈ι)y′(tı̈ι)

)
for y, y′ ∈ F(T ,C) and 〈f, f ′〉1 =∑n

i=1w1if(xi)f
′(xi) for f, f ′ ∈ F(X ,R).
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Proof. Again, we confirm ‖h‖2
F(X ,R)⊗F(T ,C) =

∑n
i=1w1i

∑ki
ι=1 w0ı̈ι (h(xi)(tı̈ι))

2 by showing

〈 y ⊗ f , y′ ⊗ f ′ 〉F(X ,R)⊗F(T ,C) = 〈y, y′〉0
n∑

i=1

w1if(xi)f
′(xi) =

n∑

i=1

w1i〈f(xi)y, f
′(xi)y

′〉1

=
n∑

i=1

w1i
1

n

n∑

ı̈=1

ki∑

ι=1

w0ı̈ι Re
(

(f(xi)y(tı̈ι))
† f ′(xi)y

′(tı̈ι)
)

for any y, y′ ∈ F(T ,C) and f, f ′ ∈ F(X ,R).

Remark 1. For the regular case with k1 = · · · = kn =: k and for all ι = 1, . . . , k also
tiι = t1ι =: tι and w0iι = w01ι =: w0ι equal for all observations i = 1, . . . , n, Inequality (8)
simplifies to

n∑

i=1

w1i

ki∑

ι=1

w0ι|h(xi)(tι)−
L∑

r=1

h(r)(xi) ξ
(r)(tι)|2

≤
n∑

i=1

w1i

ki∑

ι=1

w0ι|h(xi)(tι)−
L∑

r=1

h(r)
? (xi) ξ

(r)
? (tι)|2.

S.3 Shape differences in astragali of wild and domesticated sheep

Table S1: Distribution of covariate levels over the sheep populations in the data set.

Sex Age group
female male na juvenile subadult adult na

Karakul 21 19 1 1 5 35 0
Marsch 18 5 0 5 5 13 0
Soay 21 25 12 7 8 13 30
Wild sheep 21 20 0 5 18 14 4

Mobility Status
confined pastured free domestic feral wild

Karakul 31 10 0 41 0 0
Marsch 23 0 0 23 0 0
Soay 0 0 58 0 58 0
Wild sheep 0 0 41 0 0 41
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Karakul: juvenile Karakul: subadult Karakul: adult

Wild: juvenile Wild: subadult Wild: adult

Figure S1: Six example sheep astragalus shape configurations consisting of landmarks
(blue dots) and semi-landmarks describing two outline curves (black dots) recorded in male
Karakul and wild sheep of different age. Points are weighted such that the total weight
of each curve corresponds to three landmarks (weights reflected in point-size). Shapes are
depicted aligned to their overall mean shape (grey circles).

S.4 Cellular Potts model parameter effects on cell form

In the graphics below, the CPM parameters are abbreviated as

b: bulk stiffness xi1 ∈ [0.003, 0.015]

m: membrane stiffness xi2 ∈ [0.001, 0.015]

a: substrate adhesion xi3 ∈ [30, 70]

r: signaling radius xi4 ∈ [5, 40]
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in each covariate in the model
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Figure S2: Tensor-product effect factorization: Predictor variance share explained by each
effect direction (separated by vertical lines) relative to the total predictor variance of the
effects of each covariate (left) and of the overall model (right). Linear effect components
are presented together with the respective nonlinear effects of a covariate – they point,
however, in individual directions. Interaction effects are listed separately. We observe that
for many covariates the nonlinear effect is already almost entirely captured by its first
component.
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Figure S3: Tensor-product model factorization: Predictor variance shares into the first
three directions (dashed vertical lines) resulting from joint model factorization (unlike in-
dividual factorization of effects in Figure S2). Horizontal bars reflect the variance of the
single covariate effects within each model predictor component. They roughly – but due to
potential correlation not precisely – add up to the predictor component variance shares.
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Figure S4: Top: Example cell outline (black), one randomly selected out of 33 for each
of six different CPM parameter (covariate) configurations chosen for visualization, aligned
to the overall mean form (grey). Note that while panel scales are individually adjusted
for better visibility, contrasting plotted forms with the overall mean, which is equal in all
plots, also allows to compare their sizes across panels. Headers show parameter deviations
from a standard configuration with b = 0.009, m = 0.003, a = 50 and r = 20. Dashed lines
indicate point correspondences. Cell outlines are oriented as cells migrating rightwards and
not connected between y(0) and the point left of it (while outlines are modeled as closed
forms in the model). Bottom: Predictions for the corresponding mean form of our cell form
model described in Section 5.2.
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S.5 Realistic shape and form simulation studies

S.5.1 Sampling of response observations

Response curves are generated separately for the shape and form scenario as follows: we
obtain the true underlying models by fitting original beer and whisky bottles and 3D
rotated versions of them, four successively rotated towards the viewer and four away from
the viewer, and compute transported residuals εi of a total of N = 360 bottle outlines
y1, . . . , yN (20 whisky and 20 beer brands, each from 9 different angles z1). For each
simulated dataset, a sample of the desired size n is randomly drawn (with replacement)
from the model residuals ε1, . . . , εN . To obtain irregular data with an average grid length
k = 1

n

∑n
i=1 ki, we subsample the original evaluations εi(ti1), . . . , εi(tiKi), with original grid

sizes Ki ≥ 123, in two steps: first we randomly pick three evaluations as minimal sample
size; then we draw evaluations independently with k−3

Ki−3
probability to enter the dataset.

To preserve the original covariate distribution of the data, covariates are not randomly
picked but we select batches of 9 beer and 9 whisky bottles with z1 ∈ [−60, 60] as in
the original dataset. Sample sizes n are, therefore, multiples of 18. With the conditional
means [µi] determined by the covariates, the evaluated residuals εi (on ki points) are parallel
transported to ε[µi],i ∈ T[µi]Y∗i/G, into the tangent space of the true conditional mean, to

generate the simulated shape/form dataset [yi] = Exp[µi]
(ε[µi],i), i = 1, . . . , n.

S.5.2 Simulation results

In order to systematically and efficiently assess model behavior, we vary key aspects of
the model setup and compare fitting performance in selected settings. Here, we list the
different aspects and how they are referred to in subsequent graphical visualizations:

• Scenario: Shape or form responses.

• Sample size n of curves and mean grid size k that curves are evaluated on.

• Setting: simulations adjusted in an additional aspect compared to a default setup

equal weight: Constant inner product weights wiι = 1
ki

, ι = 1, . . . , ki, are uti-
lized for curve evaluations yi(ti1), . . . , yi(tiki) instead of trape-
zoidal rule weights (default).

no nuisance: No constant and smooth nuisance effects h0 and f2(z2) are in-
cluded into the model, which are included by default.

pre-aligned: This setting concerns the pre-alignment of the curves y1, . . . , yn
representing the forms/shapes in the simulated data. Note, how-
ever, that due to alignment to the pole p in the very beginning
of the Riemannian L2-Boosting algorithm, all of this only ef-
fects the preliminary pole p0 used for estimation of p. In the
models fit in the paper, we estimated p0 by using a functional
L2-Boosting algorithm (without any alignment), which makes
sense for typical data where the curves occur roughly aligned.
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Consequently, this aspect translates to a “good or worse starting
point p0”, which is then replaced by p in the actual model fit. In
pre-aligned settings, simulated response curves ỹi = Expµi(εµi,i)
are directly used for fitting. In the default, by contrast, the
model is fit on random representatives of [yi] to mimic realistic
scenarios, where yi = λuỹi + γ ∈ [ỹi] with u = exp(

√
-1ω),

ω ∼ N(0, π
20

), with γ = σ1γ1 + σ2
2γ2

√
-1, γ1, γ2 ∼ N(0, 1),

(σ2
1, σ

2
2) = 1

nk

∑n
i=1

∑ki
ι=1(Re(ỹi(tι)) , Im(ỹi(tι))), and with λ = 1

for forms and λ ∼ Gamma(102, 10−2) for shapes.
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Figure S5: Top, left: Noise-to-signal ratio: distribution of empirical residual variance /
predictor variance ratio in all simulations. Top, right: Runtime distribution of model
fits and subsequent cross-validations (always running 600 boosting iterations). Bottom:
Distribution of stopping iteration mstop selected by 10-fold curve-wise cross-validation for
different simulation settings. All plots displayed separately for the shape and form scenario
(top and bottom row within sub-panel, respectively).
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S.6 Coefficient level modeling

In the main manuscript, we consider the space of complex valued functions Y mostly
a vector space over R and utilize real coefficients to formulate the tensor-product effect
structure in Section 3.1 in corresponding bases. In particular for form tangent spaces,
identified with real linear subspaces that do not correspond to complex subspaces, this
is useful to implement respective constraints via basis transforms. By contrast, here we
represent hj(x) =

∑
r,l ϑ

(r,l)
j b

(l)
j (x)b

(r)
0 with complex coefficients ϑ

(r,l)
j ∈ C, r = 1, . . . ,m0,

l = 1, . . . ,mj, with (possibly all real-valued) basis functions b
(1)
0 , . . . , b

(m0)
0 ∈ Y correspond-

ing to the basis used for construction of the tangent space basis {∂r}r in Section 3.1. This
representation lets us illustrate the link between evaluation level and coefficient level mod-
eling of shapes and forms:
Consider the case where yi ∈ Y , i = 1, . . . , n, can be expanded as yi =

∑m0

r=1 y̌
(r)
i b

(r)
0

in the same basis with complex coefficient vectors y̌i = (y̌
(1)
i , . . . , y̌

(m0)
i )> ∈ Cm0 , and

let also the pole [p] = [
∑m0

r=1 p̌
(r)b

(r)
0 ], p̌i = (p̌(1), . . . , p̌(m0))>, be expanded accordingly.

With 1̌ = (̌1(1)
, . . . ,1̌(m0)

) the coefficient vector of 1 =
∑m0

r=11̌(r)
b

(r)
0 (for B-splines simply

1̌ = 1
|T |(1, . . . , 1)>), we have uyi + γ1 =

∑m0

r=1(u y̌
(r)
i + γ1̌ )b

(r)
0 for u, γ ∈ C, such that

basis representation yields an isomorphism between shapes/forms [y] of curves and the
shapes/forms [y̌] of their coefficients as alternative “landmarks”. Moreover, when choosing
inner products on Y and Cm0 such that y → y̌ is isometric, it follows that [y]→ [y̌] presents
an isometric isomorphism.

Under these assumptions, modeling the mean shape/form [µ̌] = Exp[p̌]

(
ȟ(x)

)
of the

coefficients y̌i, with predictor ȟ(x) =
∑J

j=1 ȟj(x) ∈ Cm0 and µ̌i = (µ̌
(1)
i , . . . , µ̌

(m0)
i )> ∈ Cm0 ,

is equivalent to our presented model on the original level of curves, if coefficient level effects
ȟj(x) =

∑
r,l ϑ

(r,l)
j b

(l)
j (x)er are specified with the canonical basis er = (1 (r = 1) , . . . ,1 (r = m0))>,

since [µ] = [
∑m0

r=1 µ̌
(r)b

(r)
0 ]

(∗)
= Exp

[
∑m0
r=1 p̌

(r)b
(r)
0 ]

(∑m0

r=1 ȟ
(r)(x)b

(r)
0

)
= Exp[p] (h(x)) with ȟ(x) =

(ȟ(1)(x), . . . , ȟ(m0)(x))>. For shapes, equality (∗) follows from

Exp∑m0
r=1 p̌

(r)b
(r)
0

(
m0∑

r=1

ȟ(r)(x)b
(r)
0

)
= cos(‖ȟ(x)‖)

m0∑

r=1

p̌(r)b
(r)
0 + sin(‖ȟ(x)‖)

∑m0

r=1 ȟ
(r)(x)b

(r)
0

‖ȟ(x)‖

=

m0∑

r=1

(
cos(‖ȟ(x)‖)p̌(r) + sin(‖ȟ(x)‖) ȟ

(r)(x)

‖ȟ(x)‖

)
b

(r)
0

=

m0∑

r=1

e>r Expp̌

(
ȟ(x)

)
b

(r)
0 =

m0∑

r=1

µ̌(r)b
(r)
0

where Exp is the exponential map on the sphere (first on the function space and then on

the coefficient level), we use that due to the isometry ‖ȟ(x)‖ = ‖∑m0

r=1 ȟ
(r)(x)b

(r)
0 ‖ and, we

assume w.l.o.g. ‖p‖ = ‖p̌‖ = 1 and 〈p,1〉 =
∑

r p̌
(r) = 0. Accordingly for forms.

However, the expansion yi ≈
∑m0

r=1 y̌
(r)
i b

(r)
0 is typically only approximate. In terms of

the inner product, 〈yi, y′i〉0i = y̌†iW̌y̌′i, with W̌ the Gramian matrix of {b(r)
0 }r, presents an

alternative empirical substitute for the inner product 〈yi, y′i〉 of curves yi, y
′
i ∈ Y , which is
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computed on the coefficients instead of 〈yi, y′i〉i = y†iWiy
′
i computed on evaluation vectors

yi = (yi(ti1), . . . , yi(tiki))
>,y′i = (y′i(ti1), . . . , y′i(tiki))

> as suggested in Section 2. When,
for dense grids, it can be assumed that both 〈yi, y′i〉0i ≈ 〈yi, y′i〉i ≈ 〈yi, y′i〉 approximate the
inner product on the level of curves well, the approach based on the coefficients y̌i may be
computationally preferable, guaranteeing regular and typically more sparse representations
that necessitate operations on smaller design matrices (in particular when utilizing the lin-
ear array framework (Brockhaus et al., 2015)). By contrast, in comparably sparse irregular
scenarios, expanding single observed yi in a basis in a first step might involve unwanted
pre-smoothing. To give a consistent presentation on the original level of curves, we rely on
an evaluation based approach in all applications presented in the main manuscript.

S.7 Functional Principal Component Representation

Various approaches in the literature (e.g., Müller and Yao, 2008; Scheipl et al., 2015; Ceder-
baum et al., 2016; Volkmann et al., 2021) have employed functional principal component
(FPC) basis representations for modeling functional responses in regression models. In com-
bination with covariance smoothing (e.g., Yao et al., 2005; Cederbaum et al., 2018) this
can be particularly useful in sparse/irregular scenarios, allowing to estimate the functional
covariance structure from single curve evaluations. In fact, two variants of corresponding
approaches directly fit into our proposed framework, either a) representing curves using
predicted FPC scores or b) estimating inner products based on the covariance structure.
In the following, we outline both approaches and briefly discuss related perspectives beyond
the scope of this paper.

Prediction of FPC scores and inner products are carried out along the lines of Yao
et al. (2005) and, in the complex case, Stöcker et al. (2022). Assume we have given (an
estimate of) the complex covariance surface C(s, t) = E

(
Y †(s)Y (t)

)
of the process Y

generating the curve samples y1, . . . , yn in the data, with point-wise mean E(Y (t)) = 0 for
all t ∈ T without loss of generality in the following. Under standard assumptions, this
yields a (truncated) FPC basis b

(r)
0 : T → C, r = 1, . . . ,m0 with respective eigenvalues

λ1 ≥ · · · ≥ λm0 ≥ 0. Observing only evaluation vectors yi = (yi1, . . . , yiki)
> = (yi(ti1) +

εi1, . . . , yi(tiki) + εiki)
> at time-points ti1, . . . , tiki ∈ T subject to some iid. white noise

measurement errors εi1, . . . , εiki ∼ N(0, σ2), predicted FPC score vectors y̌i, comprising

predicted basis coefficients of yi expanded in the basis {b(r)
0 }r, can be obtained via the

conditional expectations

y̌i = E
(

(〈b(1)
0 , Y 〉, . . . , 〈b(m0)

0 , Y 〉)> | Yi + εi = yi

)
= ΛB†iΣ

−1
i yi (9)

under a working normality assumption, with matrices Λ = diag(λ1, . . . , λm0), Bi with

columns (b
(r)
0 (ti1), . . . , b

(r)
0 (tiki))

>, r = 1, . . . ,m0, and Σi the covariance matrix of Yi + εi =
(Y (ti1) + εi1, . . . , Y (tiki) + εi1)> obtained from corresponding evaluations of C plus σ2 on
the diagonal.

Approach a) directly analyses shapes of the predicted score vectors y̌1, . . . , y̌n as de-
scribed in Section S.6 of the supplementary material.

Approach b) uses (9) to motivate integration weights Wi = Σ−1
i BiΛB†iΣ

−1
i for the

empirical inner products 〈yi, y′i〉i = y†iWiy
′
i, i = 1, . . . , n, introduced in Section 2 of the
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main manuscript for yi,y
′
i ∈ Cki , such that with this choice

〈yi, y′i〉i = y†iWiy
′
i = E (〈Y, Y ′〉 | Yi + εi = yi,Y

′
i + ε′i = y′i)

for an independent copy Y ′ of Y , with Y′i and ε′i defined as Yi and εi. Approach b)
might be refined by approximating ‖yi‖2 with E (〈Y, Y 〉 | Yi + εi = yi) and 〈b∗, yi〉 with
E (〈b∗, Y 〉 | Yi + εi = yi) for a known function b∗ : T → C as described by Stöcker et al.
(2022), which is slightly different from 〈yi, yi〉i and 〈b∗, yi〉i, respectively. However, basing
all computations on 〈yi, y′i〉i as described in the main manuscript, holds the advantage of a
unified definition of the shape geometry on evaluation vectors and curves.

Both a) and b) rely, however, on the covariance C(s, t) of the process Y underlying
the realizations yi, while we ultimately analyze shapes/forms [yi], i = 1, . . . , n, presenting
equivalence classes. In practice, this might in many cases not be a problem, when the
yi are in fact roughly aligned and not as arbitrarily recorded as they might be in theory.
However in general, it renders FPC based approaches for such settings more complicated
and beyond the scope of this work (compare Stöcker et al., 2022, for related work in a
different non-regression setting). Carrying out the FPC alternatively on tangent space
level (i.e. in a linear space) would require computation of Log[p]([yi]) at some shape/form
[p] involving already computation/prediction of inner products.

We leave such considerations to future research, and focus instead on simpler weight
matrices Wi which are known to also work reasonably well in regression scenarios with
sparsely/irregularly sampled functional response (Scheipl et al., 2015, 2016; Brockhaus
et al., 2015, 2017; Rügamer et al., 2018; Stöcker et al., 2021).

S.8 Tensor-product structure in non-parametric regression

We illustrate the broad applicability of the proposed TP factorization (Section 3.2) for the
example of Additive Regression with Hilbertian Responses proposed by Jeon and Park (2020)
showing that also approaches avoiding (finite-dimensional) basis representations may lead
to the desired form of effect estimates ĥj(x). Hence, although they do not consider manifold
valued responses, TP factorization can be directly applied to visualize and investigate their
effect estimates. We adapt relevant equations to fit our notation and refer for details to
their work.

Jeon and Park (2020) consider regression with an additive predictor h(x) =
∑J

j=1 hj(xj)

with hj(xj) depending on the jth scalar covariate in x = (x1, . . . , xJ)>. In Section 2.5

p. 2679, they point out that the estimator ĥj(xj) of hj(xj) is a linear smoother if the initial
estimate of their back-fitting algorithm is (as, e.g., in all their numerical studies). Assuming
this in the following, the expression becomes

ĥj(xj) =
1

n

n∑

i=1

w
[g]
ij (xj) yi

with weight functions w
[g]
ij (xj), i = 1, . . . , n, j = 1, . . . , J after g fitting iterations. In

fact, this immediately has the desired TP form given in Section 3.1, setting m = mj = n,
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θ
(r,l)
j = 1

n
1(r = l), b

(l)
j = w

[g]
lj and ∂r = yr for all l, r = 1, . . . , n and j. Here, tangent vectors

are naturally identified with elements of the Hilbert space, as we are in the linear case.
It might seem odd to have the effect basis functions b

(i)
j only implicitly defined depending

on the fitting iteration. Yet in fact, the w
[g]
ij are all in the span of

b
(i)
j (xj) =

Kj(xj, xij)∑n
i=1Kj(xj, xij)

, i = 1, . . . , n

with some kernels Kj evaluated around covariate realizations xi = (xi1, . . . , xiJ)>, i =

1, . . . , n. This can be seen by re-writing the definition of w
[g]
ij (Jeon and Park, 2020, Sec.

2.5, p. 2679):

w
[g]
ij (xj) =

Kj(xj, xij)
P̂j(xj)

− 1−
∑

6=j

∫ 1

0

w
[g−1(≥j)]
i (x)

P̂j(xj, x)

P̂j(xj)
dx

=
Kj(xj, xij)
P̂j(xj)

− 1−
n∑

l=1

∑

6=j

∫ 1

0

w
[g−1(≥j)]
i (x)

Kj(xj, xlj)K(x, xl)
P̂j(xj)

dx

=
Kj(xj, xij)
P̂j(xj)︸ ︷︷ ︸

=n b
(i)
j (xj)

−1−
n∑

l=1

Kj(xj, xlj)
P̂j(xj)

∑

 6=j

∫ 1

0

w
[g−1(≥j)]
i (x)K(x, xl) dx

︸ ︷︷ ︸
=: a

[g]
lj ∈R or C, respectively

,

= n

n∑

l=1

(1(l = i)− 1

n
− a[g]

lj ) b
(l)
j (xj),

where by definition

P̂j(xj) =
1

n

n∑

i=1

Kj(xj, xij), P̂j(xj, x) =
1

n

n∑

i=1

Kj(xj, xij)K(x, xi).

and by construction 1 ≡ ∑n
i=1 b

(i)
j (xj). (Starting values for the back-fitting algorithm

presented in the paper are given simply by w
[0]
ij = 0 or the Nadaraya-Watson-type estimator

w
[0]
ij = 1

n

∑n
i=1(

Kj(xj ,xij)
P̂j(xj)

− 1) yi.)

Consequently, also this non-parametric approach leads to the TP effect structure

ĥj(xj) =
n∑

r=1

n∑

l=1

θ̂
(r,l)
j

Kj(xj, xlj)∑n
i=1K(xj, xij)︸ ︷︷ ︸

=b
(l)
j (xj)

yr︸︷︷︸
∂r

with θ̂
(r,l)
j = 1(l = r)− 1

n
− a[g]

lj .
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Volkmann, A., A. Stöcker, F. Scheipl, and S. Greven (2021). Multivariate functional addi-
tive mixed models. Statistical Modelling .

Yao, F., H. Müller, and J. Wang (2005). Functional data analysis for sparse longitudinal
data. Journal of the American Statistical Association 100 (470), 577–590.

27

B. Appendix for Chapter 5

282



C. Supplementary material for Chapter 7
“Elastic Full Procrustes Analysis of Plane
Curves via Hermitian Covariance
Smoothing”

Online supplement for the contribution:
Stöcker, A., Pfeuffer, M., Steyer, L., and Greven, S. (2022). Elastic Full Procrustes
Analysis of Planar Curves via Hermitian Covariance Smoothing. arXiv pre-print. Li-
censed under CC BY 4.0. Copyright © 2022 The Authors.
DOI: 10.48550/ARXIV.2203.10522.

283



Supplementary material for “Elastic Full Procrustes Analysis
of Plane Curves via Hermitian Covariance Smoothing”
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SUMMARY

Determining the mean shape of a collection of curves is not a trivial task, in particular when
curves are only irregularly/sparsely sampled at discrete points. We propose an elastic full Pro-
crustes mean of shapes of (oriented) plane curves, which are considered equivalence classes of
parameterized curves with respect to translation, rotation, scale, and re-parameterization (warp-
ing), based on the square-root-velocity framework. Identifying the real plane with the complex
numbers, we establish a connection to covariance estimation in irregular/sparse functional data
analysis and propose Hermitian covariance smoothing for (in)elastic full Procrustes mean esti-
mation. We demonstrate the performance of the approach in a phonetic study on tongue shapes
and in different realistic simulation settings, inter alia based on handwriting data.

1. HERMITIAN COVARIANCE SMOOTHING

1.1. Complex processes and rotation invariance
In the following, we detail prerequisites on linear operators and proof Theorem 1 and 2. Sub-

sequently, Proposition S2 substantiates the relation of complex and real covariance surfaces in-
dicated in the main manuscript.

We widely follow Hsing & Eubank (2015) in their introduction of functional data fundamen-
tals, but re-state required statements underlying Section 2.1 for the complex case, since they
nominally focus on real Hilbert spaces. Moreover, we give a Bochner integral free definition of
mean elements and covariance operators to avoid introduction of additional notions.

Let H denote a Hilbert space over C or R.
THEOREM S1. Let Ω be a compact self-adjoint operator on H. Then there exists a sequence of

countably many real eigenvalues λ1, λ2, · · · ∈ R of Ω with corresponding orthogonal eigenvec-
tors e1, e2, · · · ∈ H and λ1 ≥ λ2 ≥ . . . such that {ek}k (called eigenbasis of Ω) is an orthonor-
mal basis of the closure Ω(H) of the image of Ω and for every x ∈ H

Ω(x) =
∑

k≥1

λk⟨ek, x⟩ek.

Proof. Compare Rynne & Youngson (2007), Chapter 7.3. □
DEFINITION S1. Let Y be a random element in H with E

(
∥Y ∥2

)
<∞. Then

i) the mean element µ ∈ H of Y is defined by ⟨f, µ⟩ = E (⟨f, Y ⟩) for all f ∈ H.
ii) the covariance operator Σ : H→ H of Y is defined by ⟨Σ(e), f⟩ =

E (⟨Y − µ, f⟩⟨e, Y − µ⟩) for all e, f ∈ H.
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2 A. STÖCKER ET AL.

PROPOSITION S1. Consider µ and Σ as above.

i) µ and Σ are well-defined.
ii) Σ is a nonnegative-definite (thus self-adjoint), trace-class and, hence, also compact linear

operator.

Proof. i) Since E
(
∥Y ∥2

)
<∞, Jensen’s inequality yields E (∥Y ∥) <∞, and therefore

E (⟨f, Y ⟩) <∞ and also E (⟨Y − µ, f⟩⟨e, Y − µ⟩) <∞ for all e, f ∈ H. Uniqueness of
µ and Σ follows from the Riesz Representation Theorem.

ii) Set µ = 0 without loss of generality. Self-adjointness ⟨Σ(e), f⟩ = E (⟨Y, f⟩⟨e, Y ⟩) =
⟨e,Σ(f)⟩ and nonnegative-definiteness ⟨Σ(e), e⟩ = E (⟨Y, e⟩⟨e, Y ⟩) = E

(
|⟨e, Y ⟩|2

)
imme-

diately follow from the definition. Σ is trace-class, since for an orthonormal basis {ek}k of
H it holds that

∑

k

⟨Σ(ek), ek⟩ =
∑

k

E
(
|⟨ek, Y ⟩|2

)
= E

(
∥Y ∥2

)
<∞

as assumed in the definition. Trace-class operators are compact. □
COROLLARY S1. The covariance operator Σ of Y with E(∥Y ∥2) <∞ has an eigenbasis as

descibed in Theorem S1.
Proof. Immediately follows from Theorem S1 and the self-adjointness and compactness of Σ

shown in Proposition S1. □
We proceed by proving Theorem 1 and 2 in the main manuscript characterizing the relation

of the covariance of a complex process Y and the covariance of the corresponding bivariate real
process Y:

Proof Theorem 1. For x, y ∈ L(T ,C) and assuming µ = 0 without loss of generality,
ℜ (⟨Σ(x) + Ω(x), y⟩)) = ℜ (E (⟨x, Y ⟩⟨Y, y⟩+ ⟨Y, x⟩⟨Y, y⟩)) = ℜ (E (2ℜ (⟨Y, x⟩) ⟨Y, y⟩)) =
2E (ℜ (⟨Y, x⟩)ℜ (⟨Y, y⟩)) = 2⟨Σ(κ(x)), κ(y)⟩. □

Proof Theorem 2. From complex symmetry of L(Y ) it follows that L(exp(iω)Zk) =
L(⟨ek, exp(iω)Y ⟩) = L(Zk), ⟨µ, f⟩ = E(⟨Y, f⟩)=E[⟨−Y, f⟩] = 0, and ⟨Ω(e), f⟩ =
E(⟨Y, e⟩⟨Y, f⟩)=E(−⟨Y, e⟩⟨Y, f⟩) = 0 for all ω, k, e, f , which yields the first direction of
the characterization via scores and, together with Theorem 1, statement i). ii) follows from
Theorem 1, statement i) and the fact that if Zk is complex symmetric, κ(Zk) has uncorrelated
components with equal variance. Since exp(iω)Y =

∑
k≥1 exp(iω)Zkek almost surely if

µ = 0, the second direction of the characterization via scores follows. □
PROPOSITION S2. Analogous to Σ, the bivariate covariance surface C(s, t) of Y = κ(Y ) in

L2([0, 1],R2) is characterized by the matrix of covariance and cross-covariance surfaces

C(s, t) =

(
E (ℜ (Y (s))ℜ (Y (t))) E (ℑ (Y (s))ℜ (Y (t)))
E (ℜ (Y (s))ℑ (Y (t))) E (ℑ (Y (s))ℑ (Y (t)))

)

=
1

2

(
ℜ (C(s, t) +R(s, t)) ℑ (R(s, t)− C(s, t))
ℑ (C(s, t) +R(s, t)) ℜ (C(s, t)−R(s, t))

)

determined by the pseudo-covariance surfaceR(s, t) = E (Y (s)Y (t)) in addition to the complex
covariance surface C(s, t).
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Proof.

C(s, t) +R(s, t) = E
(
Y †(s)Y (t) + Y (s)Y (t)

)
= E ((2ℜ (Y (s)) + 0)Y (t))

= 2E (ℜ (Y (s))ℜ (Y (t)))︸ ︷︷ ︸
1
2
ℜ(C(s,t)+R(s,t))

+2i E (ℜ (Y (s))ℑ (Y (t)))︸ ︷︷ ︸
1
2
ℑ(C(s,t)+R(s,t))

C(s, t)−R(s, t) = E
(
Y †(s)Y (t)− Y (s)Y (t)

)
= E ((0− 2iℑ (Y (s)))Y (t))

= −2i E (ℑ (Y (s))ℜ (Y (t)))︸ ︷︷ ︸
1
2
ℑ(R(s,t)−C(s,t))

+2 E (ℑ (Y (s))ℑ (Y (t)))︸ ︷︷ ︸
1
2
ℜ(C(s,t)−R(s,t))

which shows the desired form. □

2. ELASTIC FULL PROCRUSTES ANALYSIS

2.1. Full Procrustes analysis in the square-root-velocity framework
In the following, we start by proving Proposition 3 and use Proposition 3 i) to show Proposition

1 before proving Proposition 2 subsequently.
Proof Proposition 3 i) and ii). d̸E defines a metric on B̃:

d2̸E((β1), (β2)) = inf
u∈C
∥q1 − u q2∥2 = inf

u∈C

[
1−

=r1 exp(iω1)︷︸︸︷
u ⟨q1, q2⟩︸ ︷︷ ︸

=r2 exp(iω2)

−u†⟨q2, q1⟩+ |u|2
]

= inf
r1>0, ω1∈R

[
1− r1r2 exp(i (ω1 + ω2))− r1r2 exp(−i (ω1 + ω2)) + r21

]

= inf
r1>0, ω1∈R

[
1− 2r1r2 cos(ω1 + ω2) + r21

] ω1=−ω2= inf
r1>0

[
1− 2r1r2 + r21

]

(S1)

= inf
r1>0

[
1− r22 + (r1 − r2)2

] r1=r2= 1− |⟨q1, q2⟩|2 = ∥q1 − ⟨q2, q1⟩q2∥2 (S2)

Clearly, d̸E is well-defined (i.e., does not depend on the choice of βi ∈ (βi)),
symmetric, positive. It is zero if and only if |⟨q2, q1⟩| = 1 and, hence, (β1) =

(
∫ t
0 q1(s)|q1(s)| ds) = (⟨q2, q1⟩

∫ t
0 q2(s)|q2(s)| ds) = (β2). To show the triangle inequality let

(β3) ∈ B̃ with q3 = Ψ(β3) and v∗ = ⟨q2, q1⟩. Then d̸E((β1), (β3)) = infu∈C ∥q1 − u q3∥
L2

≤
tr. ineq.

∥q1 − v∗ q2∥︸ ︷︷ ︸
(S2)
= infv∈C ∥q1−v q2∥

+ inf
u∈C
∥v∗ q2 − u q3∥

︸ ︷︷ ︸
=|v∗| infu∈C ∥q2−u q3∥

|v∗|≤1

≤ d̸E((β1), (β2)) + d̸E((β2), (β3)). This shows i).

ii) directly follows from (S1), since exp(−iω2) = ⟨q1, q2⟩/|⟨q1, q2⟩|. □
Proof Proposition 3 iii). min(β)∈B̃ E

(
d2̸E((β), (B))

)
= miny:∥y∥=1 E

(
1− |⟨y,Q⟩|2

)
=

1−maxy:∥y∥=1 E
(
|⟨y,Q⟩|2

)
. Hence, ψ̸E ∈ argmaxy:∥y∥=1 E

(
|⟨y,Q⟩|2

)
, and E

(
|⟨y,Q⟩|2

)
=

⟨y,Σ(y)⟩ = ⟨y,∑k λk⟨ek, y⟩ek⟩ =
∑

k λk|⟨ek, y⟩|2 ≤ λ1
∑

k |⟨ek, y⟩|2 = λ1∥y∥2 = λ1, due
to λk ≤ λ1 and ∥y∥ = 1, with equality attained by all y = x

∥x∥ with x ∈ Y1. This also yields
(µ ̸E) and σ2̸E . □
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Proof Proposition 1. dE defines a metric on B and allows for the provided expression:

d2E([β1], [β2]) = inf
a≥0,vi∈C,ωi∈R,γi∈Γ,i=1,2

∥ exp(iω1) q1 ◦ γ1γ̇1/21 − a exp(iω2) q2 ◦ γ2γ̇1/22 ∥2

(∗)
= inf

u∈C,γ∈Γ
∥q1 − u q2 ◦ γ γ̇1/2∥2

(∗∗)
= 1− sup

γ∈Γ
|⟨q1, q2 ◦ γγ̇1/2⟩|2

where (∗) follows from isometry of rotation and warping action setting u = a exp(i (ω2 −
ω1)), γ = γ2 ◦ γ−1

1 ; and (∗∗) is analogous to the proof of Proposition 3.
As Γ acts on B̃ by isometries, infu∈C,γ∈Γ ∥q1 − u q2 ◦ γ γ̇1/2∥ = infγ∈Γ d̸E((β1), (β2)) is

a semi-metric. To see that it is also positive-definite, assume dE([β1], [β2]) = 0. Consider
any minimizing sequence {ul}l with 0 = dE([β1], [β2]) = infγ∈Γ liml→∞ ∥q1 − ulq2 ◦ γγ̇1/2∥.
Then, {ul}l is bounded, since |ul|∥q2∥ = infγ∈Γ |ul|∥q2 ◦ γγ̇1/2∥ = infγ∈Γ ∥ulq2 ◦ γγ̇1/2∥ ≤
infγ∈Γ ∥ulq2 ◦ γγ̇1/2 − q1∥+ ∥q1∥ = ∥q1∥ and ∥q2∥ > 0 since β1 is assumed non-constant.
Hence, there is a convergent sub-sequence limh→∞ ulh = u, and 0 = infγ∈Γ limh→∞ ∥q1 −
ulhq2 ◦ γγ̇1/2∥

continuity
= infγ∈Γ ∥q1 − u q2 ◦ γγ̇1/2∥ which is known to be a metric on q1 =

κ(q1),q2 = κ(q2) ∈ L2([0, 1],R2) (Bruveris, 2016). Hence, also [β1] = [β2] which completes
the proof. □

Proof Proposition 2. In analogy to Proposition 3, min[β]∈B E
(
d2E([β], [B])

)
=

miny:∥y∥=1 E
(
1− supγ∈Γ |⟨y,Q ◦ γ γ̇1/2⟩|2

)
= 1−maxy:∥y∥=1 E

(
supγ∈Γ |⟨y,Q ◦ γ γ̇1/2⟩|2

)
.□

2.2. The square-root-velocity representation in a sparse/irregular setting
THEOREM S2. Let β : [0, 1]→ C be continuous, injective, and, for all t ∈ (0, 1), continu-

ously differentiable with β̇(t) = d
dtℜ ◦ β(t) + i d

dtℑ ◦ β(t) ̸= 0. Then, there exists a c ∈ (0, 1)

such that β̇(c) = δ (β(1)− β(0)) for some δ > 0.
Proof. Let ρ = ℜ ◦ β and ζ = ℑ ◦ β denote the real and imaginary part of β. Without loss of

generality assume β(0) = 0 and β(1) = i. Choose 0 ≤ t0 < t1 ≤ 1 with ρ(t0) = ρ(t1) = 0 such
that ζ(t) ≥ ζ(t0) for all t ∈ [0, 1] with ρ(t) = 0 and ζ(t) ≤ ζ(t1) for all t ∈ [t0, 1] with ρ(t) = 0.
If ρ(t) = 0 for all t ∈ [t0, t1] and, hence, β̇(t) = i ζ̇(t) within (t0, t1), the Mean Value Theorem
directly yields existence of the desired c ∈ (t0, t1). We may, thus, assume ρ(t) ̸= 0 for some t ∈
[t0, t1], say, with ρ(t) > 0. Accordingly, a maximizer c ∈ [t0, t1] with ρ(c) = maxt∈[t0,t1] ρ(t) >
0 lies in (t0, t1) and ρ̇(c) = 0, since ρ is continuously differentiable. Hence β̇(c) = iζ̇(c) ̸= 0 as
β is regular. t0 ̸= t1 and c all exist due to compactness/continuity arguments.

We will now assume δ = ζ̇(c) < 0 and show that this leads to a contradiction. With some up-
per/lower bounds ρsup > ρ(c)(> 0) and ζinf < mint∈[0,1] ζ(t), we construct the open polygonal
curve α : [c, 1] connecting the points a1 = β(c), a2 = ρsup + iζinf , a3 = iζinf and a4 = β(t0) ≤
0. Then β1[t0,c] + α1[c,1] is a simple closed continuous curve on [t0, 1], hence splits C into two
connected open components, the interior component A ⊂ C which is bounded and the exterior
component U = C \ Ā (Jordan curve theorem) where Ā denotes the closure of A. The path
ϕ : [0,∞)→ C, r 7→ β(t1) + r i does not intersect the boundary β([t0, c]) ∪ α([c, 1]) = Ā ∩ Ū
for all r ≥ 0, since, by construction, ζ(t1) > ℑ(ak) for k = 2, . . . , 4 and, for all t ∈ [t0, c] with
ρ(t) = 0, ζ(t1) > ζ(t) as ζ(t1) ≥ ζ(t), c < t1 and β injective. Thus, ϕ lies entirely inA or in U .
Since A is bounded, the path and, in particular, ϕ(0) = β(t1) ∈ U . Due to the construction of α
and injectivity of β that do not permit intersection of the boundary (Jordan curve), β(t) lies inA
for all t > c if it lies within A for some t > c. This makes the local behavior at c crucial. Thus,
the assumption of ζ̇(c) < 0 entailing β(t) ∈ A for some t > 0 yields, in particular, β(t1) ∈ A
and, hence, the desired contradiction. □
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COROLLARY S2 (FEASIBLE SAMPLING). If β∗ : [0, 1]→ C is continuous and
β∗ : (t∗j−1, t

∗
j )→ C continuously differentiable for j = 1, . . . , n0, t∗0 < · · · < t∗n0

with
non-vanishing derivative, then for any time points 0 < t1 < · · · < tn0 < 1 and speeds
w1, . . . , wn0 > 0, there exists a γ ∈ Γ such that for the SRV-transform q of β = β∗ ◦ γ,
q(tj) = w

1/2
j (β∗(t∗j )− β∗(t∗j−1)) = w

1/2
j ∆j for all j = 1, . . . n0.

Proof. Since this is a local property, it suffices to consider the case of n0 = 1 and t∗0 = 0, t∗1 =
1. By Theorem S2, there exists c ∈ (0, 1) with β̇(c)∗ = a∆1 for some a > 0. Choose γ ∈ Γ

such that γ(t1) = c and γ̇(t1) = w1a
−2. Then, q(tj) = β∗ ◦ γ(tj) ˙γ(tj)

1/2
= a∆1w

1/2
1 a−1 =

w
1/2
1 ∆1 for all j = 1, . . . , n0. □

2.3. Estimating elastic full Procrustes means via Hermitian covariance smoothing
In the following, we provide additional details for three steps in our proposed elastic full

Procrustes mean estimation algorithm. We commence with proposing a more efficient covariance
estimation procedure for data with densely observed curves and continue with a discussion of
conditional complex Gaussian processes in Proposition S3 underlying our estimation of length
and optimal rotation of curves. Finally, we detail the warping alignment strategy proposed for
the re-parameterization step.

Covariance estimation for densely observed curves: If curves y1, . . . , yn, are sampled
densely enough, covariance estimation can be achieved computationally more efficient than by
Hermitian covariance smoothing. In fact, for say ni > 1000 samples per curve and m basis
functions f = (f1, . . . , fm)⊤ for each margin, setting up the joint (

∑n
i=1 n

2
i )× (m2 ±m)/2

design matrices for tensor-product covariance smoothing may also cause working memory
shortage. Using the notation of Section 2.2, we obtain a tensor-product covariance estimator
Ĉ(s, t) = f⊤(s) Ξ̂ f(t) of the same form by setting Ξ̂ = 1

n

∑n
i=1 ϑ̂iϑ̂

†
i to the empirical covari-

ance matrix of complex coefficient vectors ϑ̂i = (ϑ̂i1, . . . , ϑ̂im)⊤ ∈ Cm of basis representations
yi(t) ≈

∑m
k=1 ϑ̂ikfk(t) for i = 1, . . . , n. Partitioning the data intoN1 ∪ · · · ∪ NN = {1, . . . , n}

subsets for computational efficiency (which might simply be given by Ni = {i}), the estimators
ϑ̂i are fit by minimizing the penalized least-squares criterion

PLS(ϑiℜ,ϑiℑ) =
∑

i∈Nl

ni∑

j=1

∣∣∣yij − ϑ⊤
iℜf(tij)− iϑ⊤

iℑf(tij)
∣∣∣
2
+ ηϑ⊤

iℜPϑiℜ + ηϑ⊤
iℑPϑiℑ

with ϑiℜ = ℜ(ϑi) and ϑiℑ = ℑ(ϑi), for l = 1, . . . , N . In principle, real and imaginary parts
can be separately fit with the same smoothing parameter η ≥ 0 in both parts to achieve rotation
invariant penalization. As in Section 2.2, we use the mgcv framework for fitting (Wood, 2017)
using restricted maximum likelihood (REML) estimation for η. To speed up computation, η can
be estimated only on N1 and fixed for l = 2, . . . , N , or set to η = 0 if no measurement error is
assumed or no penalization is desired. The residual variance yields a constant estimate for τ2.
Using for instance mgcv’s “gaulss” family, a smooth estimator τ̂2(t) could be obtained as
well but is not detailed here.

Rotation and length estimation: As proposed by Yao et al. (2005) for predicting scores in
functional principal component analysis, we propose to use conditional expectations under a
working normality assumption to incorporate the covariance structure of the data into estimation
of inner products and quadratic terms. These are used for predicting basis coefficients of a curve
(Proposition S3 iii) Equation (S3)), its optimal rotation to the mean (S4), its length (S5), and its
distance from the mean (S6) or another given curve. We provide required conditional expecta-
tions covering both the case of a positive white noise error variance τ2(t) > 0 and of no white
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noise error (τ2(t) = 0) for each time point t. The distinction runs through all formulations and
reading might be more convenient when assuming either of the cases is always fulfilled.

PROPOSITION S3 (CONDITIONAL GAUSSIAN PROCESS). Consider a random element Y in
a complex Hilbert space H of functions T → C defined on some set T . Assume Y =

∑m
k=1 Zkek

finitely generated with probability one from a finite set e(t) = (e1(t), . . . , em(t))⊤ of functions
ek ∈ H with regular Gramian G = {⟨ek, ek′⟩}k,k′ ∈ Cm×m and with Z = (Z1, . . . , Zm)⊤ fol-
lowing a complex symmetric multivariate normal distribution with positive-definite covariance
matrix Λ. Let further denote ε an uncorrelated complex symmetric error process on T with
variance function τ2 : T → R. We consider a sequence of n∗ = n0 + n+ points t1, . . . , tn∗ ∈ T
and values y1, . . . , yn∗ ∈ C with τ2(t1), . . . , τ2(tn0) = 0 and τ2(tn0+1), . . . , τ

2(tn0+n+) > 0.
Write E = {ek(tj)}jk = (E⊤

0 ,E
⊤
+)

⊤ for the n∗ ×m design matrix of function evaluations sub-
divided into E0 ∈ Cn0×m and E+ ∈ Cn+×m containing the evaluations with zero and posi-
tive error variance, respectively, and analogously y = (y1, . . . , yn∗)

⊤ = (y⊤
0 ,y

⊤
+)

⊤ for the val-
ues and T+ = Diag(τ2(t1), . . . , τ

2(tn+)) for the diagonal n+ × n+ noise covariance matrix.
Let r0 = rank(E0) denote the rank of E0 and Q = (M,N) be an m×m Hermitian matrix
such that M is m× r0 and N spans the null space of E0. Q is obtained, e.g., by the QR-
decomposition E⊤

0 = QR. By convention, matrices are set to 0 if their rank is zero (i.e., if
m− r0, n0, or n+ = 0, respectively). Conditioning on Y (tj) + ε(tj) = Z⊤e(tj) + ε(tj) = yj
for j = 1, . . . , n∗ we obtain:

i) Z = Z+ + z0 is split into a random part Z+ = NZ̃+ constrained to the linear sup-space
span(N) spanned by N, with Z̃+ a complex random vector of length m− r0, and a de-

terministic part z0 = M
(
M†E†

0E0M
)−1

M†E†
0y0. In fact, under the given assumptions

z0 = M(ME0)
−†y0 with probability one, but the generalized inverse is robust with respect

to the case where y0 /∈ span(E0), i.e. where no measurement error is assumed but the curve
cannot be exactly fit by the chosen basis.

ii) Z̃+ follows a complex normal with covariance S =
(
N†
(
E†

+T
−1
+ E+ +Λ−1

)
N
)−1

,

mean ẑ+ = SN†
(
E†

+T
−1
+ (y+ −E+z0)−Λ−1z0

)
and zero pseudo-covariance.

iii) For x ∈ H and gx = (⟨e1, x⟩, . . . , ⟨em, x⟩), this provides conditional means

ẑ = E (Z | Y (tj) + ε(tj) = yj , j = 1, . . . , n∗) = Nẑ+ + z0 (S3)

E (⟨Y, x⟩ | Y (tj) + ε(tj) = yj , j = 1, . . . , n∗) = ẑ†gx (S4)

E
(
∥Y ∥2 | Y (tj) + ε(tj) = yj , j = 1, . . . , n∗

)
= tr (SG) + ẑ†Gẑ. (S5)

E
(
|⟨Y, x⟩|2 | Y (tj) + ε(tj) = yj , j = 1, . . . , n∗

)
= g†

xSgx + gxẑ
†ẑ g†

x. (S6)

Proof. The computation is analogous to the real case. Defining Y = (Y (t1), . . . , Y (tn∗)
⊤,

i.e. Y = EZ, and ϵ = (ε(t1), . . . , ε(tn∗))
⊤, the distribution of Z̃ = Q†Z = (M†Z,N†Z)† =
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(Z̃†
0, Z̃

†
+)

† conditional on Y + ϵ = y has a density proportional to

pZ̃(z̃ | Y + ϵ = y) ∝ pZ̃,Y +ϵ(z̃,Y + ϵ) ∝ pZ,ϵ(
=Mz̃0+Nz̃+︷︸︸︷

Qz̃ ,y −EQ z̃)

∝ exp

(
−1

2
z̃†Q†Λ−1Qz̃

)
·

· exp
(
−1

2
(y+ −E+Qz̃)†T−1

+ (y+ −E+Qz̃)

)
1{y0}(E0Qz̃)

(∗)∝ exp

(
−1

2

(
z̃†+N

†Λ−1Nz̃+

)
−ℜ

(
z̃†+N

†Λ−1z0

))
·

· exp
(
−1

2
z̃†+N

†E†
+T

−1
+ E+Nz̃+ + ℜ

(
z̃†+N

†E†
+T

−1
+ (y+ −E+z0)

))
1{M†z0}(z̃0)

∝ exp

(
− 1

2
z̃†+ N†

(
Λ−1 +E†

+T
−1
+ E+

)
N

︸ ︷︷ ︸
=S−1

z̃++

+ ℜ
(
z̃†+N†

(
E†

+T
−1
+ (y+ −E+z0)−Λ−1z0

)

︸ ︷︷ ︸
=S−1ẑ+

))
1{M†z0}(z̃0)

∝ exp

(
−1

2
(z̃+ − ẑ+)

† S−1 (z̃+ − ẑ+)

)
1{M†z0}(z̃0).

Solving y0 = E0Qz̃ = E0Mz̃0 for z̃0 yields (∗) and shows i). Deriving the kernel of a Gaussian,
the remainder of the computation shows ii). In iii), (S3) and (S4) follow directly by linearity and
(S5) from variance decomposition (omitting conditions for brevity):

E
(
∥Y ∥2

)
= E

(
⟨

m∑

k=1

Zkek,
m∑

k=1

Zkek⟩
)

= E
(
Z†GZ

)
= E

(
tr
(
ZZ†G

))

linearity
= tr

(
E
(
ZZ†

)
G
)
= tr

((
Var (Z) + E (Z)E (Z)†

)
G
)

ii)
= tr (SG) + ẑ†Gẑ.

The computation for (S6) is analogous. □
Warping alignment: Generally, we consider it advisable to base warping alignment of the

ith curve directly on its original SRV-evaluations q[h]i1 , . . . , q
[h]
ini

but, when considerable mea-
surement error presents an issue, it might also be useful to employ a smoothed reconstruc-
tion q̃i : [0, 1]→ C of the SRV-transform in the assumed basis. Based on the working normal-
ity assumption used also for length and rotation estimation, such a reconstruction is obtained
as q̃[h]i (t) = (ẑ

[h]
i /∥ẑi∥)⊤ê[h](t) with ẑ

[h]
i = (ẑ

[h]
i1 , . . . , ẑ

[h]
im)⊤ the predicted score vector for the

eigenbasis ê[h] = (ê
[h]
1 , . . . , ê

[h]
m )⊤.

Following Steyer et al. (2021), warping alignment to µ̂[h] is conducted using an-
other, polygonal approximation of the curve given by a piece-wise constant approximation
q̂
[h]
i ∈ L2([0, 1],C) of q[h]i . With a hyper-parameter ρ ∈ [0, 1], we control the balance be-

tween original q[h]ij (for ρ = 0) and smoothed reconstruction q̃i (for ρ = 1) and set q̂[h]ij =
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û
[h]
i

(
ϱ q̃

[h]
i (t

[h]
ij ) + (1− ϱ) q[h]ij

)
at nodes s[h]i0 = 0, s[h]ij = 2t

[h]
ij − s

[h]
ij−1, j = 1, . . . , ni. This de-

fines q̂[h]i (t) =
∑ni

j=1 q̂
[h]
ij 1

[s
[h]
ij−1,s

[h]
ij )

(t) already rotated by û[h]i .

Warping alignment to µ̂[h] is achieved for i = 1, . . . , n by finding an optimal q̂∗i ∈
L2([0, 1],C) with

∥q̂∗i − ψ̂[h]∥ ≤ ∥q̂[h]i ◦ γ γ̇1/2 − ψ̂[h]∥ for all γ ∈ Γ (S7)

where the polygon approximation yields a practically feasible optimization problem and
has proven suitable for sparse/irregular curves (Steyer et al., 2021). As shown by Steyer
et al. (2021), the optimizers of (S7) have the form q̂∗i (t) =

∑ni
j=1wi(t) q̂

[h]
ij 1[s[h+1]

ij−1 ,s
[h+1]
ij )

(t)

almost-everywhere, where, denoting a+ = max{a, 0} for a ∈ R, the functions wi : [0, 1]→
R are given by w2

i (t) = (s
[h]
ij − s

[h]
ij−1)ℜ

(
ψ[h](t)†q̂[h]ij

)2
+
/
∫ s

[h+1]
ij

s
[h+1]
ij−1

ℜ
(
ψ[h](t)†q̂[h]ij

)2
+
dt for t ∈

[s
[h+1]
ij−1 , s

[h+1]
ij ), and fully determined by the warped time points

(s
[h+1]
i1 , . . . , s

[h+1]
ini−1) = argmax

0=si0≤···≤sini
=1

ni∑

j=1

(
(s

[h]
ij − s

[h]
ij−1)

∫ sij

sij−1

ℜ
(
ψ[h](t)†q̂[h]ij

)2
+
dt
)1/2

.

If s[h+1]
ij = s

[h+1]
ij−1 for some j, there is a minimizing sequence of functions of the form given

for q̂∗i . After optimization over the s[h]ij with R package elasdics (Steyer, 2021), we set

new t
[h+1]
ij = (s

[h+1]
ij−1 + s

[h+1]
ij )/2 and q

[h+1]
ij = w∗

j q
[h]
ij with w∗

ij = (s
[h]
ij − s

[h]
ij−1)

1/2 (s
[h+1]
ij −

s
[h+1]
ij−1 )

−1/2 for s[h+1]
ij > s

[h+1]
ij−1 and omit double time points for j = 1, . . . , ni. The chosen

time-points hereby approximate t[h+1]
ij ≈ t∗ij ∈ (s

[h+1]
ij , s

[h+1]
ij−1 ) with wi(t

∗
ij) = w∗

ij existing by
the Mean Value Theorem.

3. ADEQUACY AND ROBUSTNESS OF ELASTIC FULL PROCRUSTES MEAN ESTIMATION IN
REALISTIC CURVE SHAPE DATA

While we focus on the first letter “f ” in our simulation studies, Figure S1 exemplifies elas-
tic full Procrustes mean estimation on the entire “fda” handwritings contained in the dataset
handwrit.dat in the R package fda (Ramsay & Silverman, 2005). To visualize differ-
ent degrees of sparsity, means are fitted after subsampling recorded points to ni = npoints,
i = 1, . . . , n, n = 20, random sampling points for each curve placing higher acceptance proba-
bility on points more important for curve reconstruction, as illustrated in the bottom of the figure.
Means are fitted using piece-wise constant 0 order B-splines with 70 knots applying a 2nd order
difference penalty in the Hermitian covariance estimation. This results in a nice gradual evo-
lution from a rough “fda” approximation for npoints = 21 to a detailed handwritten “fda” for
npoints = 71.
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