
Alma Mater Studiorum - Università di Bologna

dottorato di ricerca in

computer science and engineering

Ciclo 35

Settore Concorsuale: 01/B1

Settore Scientifico Disciplinare: INF/01

Empirical Ontology Design Patterns

Presentata da: Valentina Anita Carriero

Coordinatore Dottorato Supervisore

Ilaria Bartolini Valentina Presutti

Esame finale anno 2023

‘Sul sentiero tortuoso riesce a immaginare di camminare verso qualcosa,

e non in mezzo a qualcosa.’

(Dimora di Ruggine, Khadija Abdalla Bajaber)

To the beautiful souls that held my hand during this winding path.

iv

Abstract

In recent years, knowledge graphs (KGs) and ontologies have been widely adopted

for modelling any kind of domain. Many of them are released openly, which benefits

those who start new projects because they have a wide choice for ontology reuse and

for linking to existing data. Nevertheless, understanding the content of an ontology

or a knowledge graph is far from straightforward, and existing methods only par-

tially address this issue. For example, exploring and comparing multiple ontologies

is a tedious manual task. This thesis is based on the assumption that identifying

the Ontology Design Patterns (ODPs) used in an ontology or a knowledge graph

contributes to address this problem. Most of the time the reused ODPs are not

explicitly annotated, or their reuse may be unintentional. Therefore, there is a chal-

lenge to automatically identify ODPs in existing ontologies and knowledge graphs,

which is the main focus of this research work. To the best of our knowledge, there is

lack of tools to effectively support this task. This thesis contributes to the state of

the art by analysing the role of ODPs in ontology engineering, through experiences

in real-world ontology projects, placing this analysis in the wider context of existing

ontology reuse approaches and implementations. Moreover, this thesis introduces

(i) a novel method for extracting empirical ontology design patterns (EODPs) from

ontologies, and (ii) a novel method for extracting EODPs from knowledge graphs,

whose schemas are implicit.

The first method is able to group the extracted EODPs in clusters that are

named conceptual components. Each conceptual component represents a generalised

v

modelling problem, for example representing collections. As EODPs are fragments

possibly extracted from different ontologies, some of them will fall in the same

cluster, meaning that they are expected to be implemented solutions to the same

modelling problem, e.g. different solutions to model collections. Hence, EODPs and

conceptual components enable the empirical observation of modelling solutions to

common modelling problems adopted by different ontologies, therefore supporting

their comparison.

The second method extracts EODPs from a knowledge graph as sets of probabil-

istic axioms and constraints involving the classes and the properties instantiated in

the KG. The probabilistic axioms are annotated with relevant provenance informa-

tion, e.g. the KG they were observed from. These EODPs may support KG inspec-

tion and comparison, as they provide insights on how certain entities are described

in a KG and linked to other resources. Both methods are applied to ontologies and

knowledge graphs largely adopted and reused, such as Wikidata.

An additional contribution of this thesis is an ontology for annotating ODPs in

ontologies and knowledge graphs, which can be used as a basis for both manual and

automatic annotation.

vi

Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 The semantic web: principles and standards 1

1.2 Context and research questions . 3

1.2.1 The lack of support to choose and implement an effective on-

tology reuse strategy . 4

1.2.2 The role of ontology design patterns in supporting ontology

engineering in real-world projects 5

1.2.3 Modelling solutions to common modelling problems 6

1.2.4 How to annotate ontology design patterns 8

1.2.5 Identifying patterns emerging from knowledge graphs 9

1.3 Summary of the chapters and contributions 9

2 Pattern-based ontology design and reuse 15

2.1 Current approaches to ontology selection and reuse: benefits, limits

and challenges . 15

2.1.1 Motivations guiding ontology selection 16

2.1.2 Policies and implementation strategies for ontology reuse . . . 18

vii

2.2 Pattern-based ontology design and reuse: real-world projects 20

2.2.1 eXtreme Design . 21

2.2.2 ArCo: a pattern-based ontology network and knowledge graph

on cultural heritage . 23

2.2.2.1 An overview . 23

2.2.2.2 Mapping competency questions to ODPs 23

2.2.2.3 Advancements and support to ontology reuse 30

2.2.3 Polifonia: a pattern-based ontology network and knowledge

graph on musical heritage . 37

2.2.3.1 An overview . 37

2.2.3.2 Mapping competency questions to ODPs 37

2.2.3.3 Advancements and support to ontology reuse 41

3 Observing patterns from ontologies 47

3.1 Motivation and problem addressed 48

3.2 Related work . 51

3.3 Input ontology corpora . 53

3.3.1 Cultural Heritage ontology corpus 53

3.3.2 Conference ontology corpus 55

3.4 Approach . 56

3.4.1 Intensional ontology graph . 58

3.4.2 Community detection . 61

3.4.3 Clustering and catalogue generation 63

3.5 Experiment and results . 66

3.6 Evaluation and discussion . 68

3.6.1 Manual inspection of communities 68

3.6.2 Clustering: similarity . 69

3.6.3 Clustering: manual inspection 69

viii

3.6.4 Evaluation against an ontology engineering task 70

3.6.5 The ArCo use case . 73

4 Annotating patterns in ontologies and knowledge graphs 79

4.1 Motivation . 80

4.2 Related work . 82

4.3 OPLaX . 85

4.3.1 Pattern level . 85

4.3.2 Conceptual component level 86

4.3.3 Pattern instance level . 87

4.4 Use cases . 87

4.4.1 ArCo ontology network . 88

4.4.2 Conceptual components and ODPs catalogue from a corpus

of ontologies . 89

4.4.3 Pattern-based visualization of knowledge graphs 90

5 Observing patterns from data 93

5.1 Method for extracting empirical patterns from a KG 94

5.1.1 Related work . 94

5.1.2 Method . 97

5.2 Empirical patterns from Wikidata . 100

5.2.1 Motivation . 100

5.2.2 Input . 103

5.2.3 Wikidata empirical patterns on music 104

5.2.4 Wikidata empirical patterns on art, architecture, and archae-

ology (AAA) . 110

5.2.5 Discussion and evaluation . 115

5.2.5.1 Music . 115

5.2.5.2 Art, architecture, and archaeology (AAA) 121

ix

5.2.5.3 Music and AAA . 125

5.2.5.4 Evolution of music and AAA patterns across two

versions of Wikidata 127

6 Conclusion and future work 131

6.1 How we answered our research questions 134

6.2 Future work . 136

x

List of Tables

3.1 Corpora of ontologies: statistics . 56

3.2 The number of hierarchical relations among clusters per level of strength. 67

3.3 Correlation between reference alignments (AA, CA, AML, AML.90

and AML.99) with the sets I, E, E0.1, E0.2, E0.3, E0.4. 72

5.1 Most populated classes in the Wikidata music subKG. 105

5.2 Statistics of selected properties and triplets for each music pattern. . 106

5.3 Most populated classes in the Wikidata art, architecture, and archae-

ology subKG. 111

5.4 Statistics of selected properties and triplets for each AAA pattern. . . 112

5.5 Percentages of coverage of the music patterns properties in the KG. . 117

5.6 Comparison between properties recommended by WikiProject Music

and properties included in our pattern for record labels. 119

5.7 Comparison between properties recommended by WikiProject Music

and properties included in our patterns for releases. 120

5.8 Percentages of coverage of the AAA patterns properties in the KG. . 122

5.9 Comparison between properties recommended by WikiProject Mu-

seums and properties included in our pattern for museums. 126

xi

xii

List of Figures

2.1 Prefixes used in the next figures. 24

2.2 Time indexed situation ODP reused for modelling different types of

locations of a cultural property. 26

2.3 Situation ODP reused for representing the coin issuance. 28

2.4 Situation ODP reused for the authorship attribution. 28

2.5 An instance of the model in Figures 2.3 and 2.4: a numismatic prop-

erty involved in a coin issuance and a preferred authorship attribution. 29

2.6 The new pattern Recurrent Situation Series as implemented in ArCo. 31

2.7 Time indexed situation ODP reused for modelling time indexed names

of entities. 40

2.8 Time indexed situation ODP reused for modelling the creation of

pieces of art. 42

3.1 Implementations of the Membership CC from two different ontologies. 50

3.2 Approach for conceptual components extraction. 57

3.3 Example of OWL EODPs and their corresponding intensional onto-

logy graphs. Blue rectangles indicate object properties, green rect-

angles data properties. 59

3.4 Example of communities detected from two ontologies of the CH corpus. 62

3.5 Virtual document disambiguation, frame detection and clustering on

the communities from Fig. 3.4. 64

xiii

3.6 Top-down ODP and Empirical ODP about copyright from ArCo on-

tology network. 78

4.1 OPLaX, the Ontology Pattern Language eXtended. 86

4.2 An example of a specialized ODP annotated with OPLaX. 89

4.3 An example of a conceptual component annotated with OPLaX. . . . 91

4.4 An example of a pattern instance annotated with OPLaX. 92

5.1 Method for extracting empirical patterns from a KG. 97

5.2 The album pattern. 106

5.3 Classes and properties used for annotating the probabilistic pattern. . 109

5.4 The museum pattern. 112

xiv

Chapter 1

Introduction

In 2001, Tim Berners-Lee, the inventor of the web, envisioned an extension of it, in

which content would become meaningful to computers: the semantic web [7]. While

the web of documents was originally designed for humans to read, the semantic

web would make data available on the web machine-readable, i.e. processable by

computers, by encoding its semantics. Thus, a computer would be able to process

not only the structure of a web page (e.g. this is a paragraph, this is an image), but

also the meaning of its content (e.g. this is a person, this person was born in this

country, this person currently works for this company), unleashing a “revolution of

new possibilities” [7].

1.1 The semantic web: principles and standards

Linked Data (LD) lies at the heart of the semantic web: it can be defined as a set of

principles for sharing and interlinking machine-readable data(sets) on the web [47].

When combined with open data, that is, when this data can be freely (re)used and

distributed by anyone, it is called Linked Open Data (LOD). The Linked Data (LD)

initiative enables the easy exposing, sharing, and connecting of structured data on

the web [90].

2 Chapter 1. Introduction

The World Wide Web Consortium1 (W3C) takes care of standardisation for

semantic web, and the Resource Description Framework2 (RDF) is the basic layer

of the semantic web. It has been originally designed as a metadata data model,

consisting of a set of W3C specifications for modelling information. With RDF,

“things” on the web are identified using web identifiers (i.e. Uniform Resource

Identifiers, URIs), and are described through statements about resources.

RDF statements are called triples, and consist of a subject (a resource), a pre-

dicate (a relationship between the subject and the object), and an object, which can

be either a resource or a value. For example, the triples

ex:Momo rdf:type ex:Dog .

ex:Momo ex:livesIn ex:Bologna .

state that Momo is a dog and lives in Bologna. RDF triples can be seen as

a graph: nodes are resources (e.g. real-world entities, concepts) or values (e.g.

strings), and edges represent semantic relations (properties) between nodes. While

the property ex:livesIn has been invented for this example, the rdf:type property

is part of the RDF built-in vocabulary3 and states that the subject is an instance

of a class.

RDF Schema (RDFS)4 vocabulary is an extension of the basic RDF vocabulary,

and allows for a better structuring of resources by e.g. supporting the definition of

hierarchies of both classes and properties (rdfs:subClassOf, rdfs:subPropertyOf).

Complementary to RDF and RDFS, OWL (Web Ontology Language)5 is a logic-

based language for representing richer and more complex knowledge about the mean-

ing of things, and relations between things. So, RDF, RDFS and OWL allow to

formally represent some knowledge through the definition of concepts within a do-

main, and relations that can formally exist between those concepts [44], providing

1https://www.w3.org/
2https://www.w3.org/RDF/
3https://www.w3.org/1999/02/22-rdf-syntax-ns#
4https://www.w3.org/TR/rdf-schema/
5https://www.w3.org/TR/owl-ref/

https://www.w3.org/
https://www.w3.org/RDF/
https://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-ref/

Chapter 1. Introduction 3

a shared and formally defined vocabulary (an ontology) to talk about real-world

entities. A knowledge graph (KG) is usually built when an ontology is applied to

a set of individuals, so it combines the formalization of the domain with the actual

data that instantiate the concepts that have been formally defined. The SPARQL6

query language makes it possible to retrieve information from the web of data, i.e.

from data represented using RDF as data format.

1.2 Context and research questions

“The Semantic Web isn’t just about putting data on the web. It is about making

links, so that a person or machine can explore the web of data.”7.

Exploration is a key point for the semantic web vision. In recent years, there was

an explosion of knowledge graphs and ontologies, that have been widely adopted for

modelling any kind of domain. Many of them are released openly, providing ontology

engineers – and any user of semantic web resources – with a wide choice of ontologies

to be reused as well as knowledge graphs to reuse and link to. This explosion has

led to the need to support the exploration and understanding of such structured

data, in order to be able to effectively exploit it [25]. Indeed, understanding the

content of an ontology or a knowledge graph is far from being straightforward, and

existing methods only partially address this issue. For example, comparing several

ontologies is a tedious manual task. Being able to understand and compare existing

ontologies is crucial for performing various ontology engineering tasks, including

ontology reuse [56]: reusing existing ontologies across different knowledge graphs is

recommended in order to foster interoperability and facilitate knowledge reuse in the

semantic web. However, if there is no actual support to understand what is modelled

inside an ontology, the selection and reuse process becomes more error-prone and

time-consuming.

Starting from the argument that there are classes of problems in ontology design

6https://www.w3.org/TR/rdf-sparql-query/
7https://www.w3.org/DesignIssues/LinkedData.html

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/DesignIssues/LinkedData.html

4 Chapter 1. Introduction

that can be addressed by using common solutions, Ontology Design Patterns (ODPs)

can support reusability of ontologies [12], and of knowledge graphs relying on such

ontologies. Indeed, ontologies may be (un)intentionally designed as a composition

of small, reusable building blocks, i.e. the ODPs, that provide modelling solutions

to recurrent modelling problems, e.g. modelling collections. Hence, they inherently

have a modular structure, and even large ontologies can be more easily explored,

compared and reused based on these smaller fragments.

However, most of the time the ODPs used in an ontology or knowledge graph

are not explicitly annotated, and their reuse may be unintentional. Therefore, there

is a challenge to automatically identify ODPs in existing ontologies and knowledge

graphs. To the best of our knowledge, there is lack of tools to effectively support

this task [20].

Therefore, our main research question is the following:

RQ0: What ontology design patterns can be observed in existing ontolo-

gies and knowledge graphs?

In the remainder of this chapter, we will formulate more detailed research ques-

tions, after discussing their background and context.

1.2.1 The lack of support to choose and implement an ef-

fective ontology reuse strategy

Ontology reuse is one of the main ontology engineering tasks our research work

may potentially impact on. Indeed, we start from the assumption that identifying

ontology design patterns in ontologies (and knowledge graphs) make them more

understandable in terms of what is inside such ontologies (and KGs). A good un-

derstanding of existing ontologies is needed in order to effectively select them for

reuse. Based on these premises, we considered relevant to analyse the state of the

art of ontology reuse practices and implementations.

There exists a vast literature on ontology reuse, which provides definitions and

requirements. However, there are many factors that may affect the decision for

Chapter 1. Introduction 5

an ontology selection and reuse policy, and its implementation. On the one hand,

ontology reuse policies are usually intertwined with ontology design methodologies.

Methods originating in software engineering, philosophy and cognitive science have

emerged, and include: competency questions [45], foundational ontologies [36], on-

tology design patterns [34, 37, 51]. Such methods are based on the preliminary

expression of the general cognitive requirements that should lead an ontology pro-

ject. Furthermore, social motivations may influence the reuse strategies adopted by

an ontology designer. International institutions and standardisation bodies tend to

support the reuse of (their) standard and shared ontologies, and adopt their own

common practices; domain experts may suggest the reuse of popular and/or stand-

ard ontologies as more straightforward and authoritative; ontologists tend to give

priority to what they consider the best ontology modelling practices based on their

expertise, etc. So, even if ontology reuse is a crucial aspect for the evolution of the

semantic web, and should support semantic interoperability, it is still sometimes

difficult to define shareable good practices and pragmatic guidelines about which

ontology reuse approach should be adopted when developing a new ontology. This

often leads to taking solutions on a case-by-case basis. Thanks to this investigation

of the current landscape of ontology selection and reuse approaches, and based on

existing ontology projects that worked as use cases (see the following section), we

were able to outline some useful guidelines for implementing a pattern-based reuse

approach.

1.2.2 The role of ontology design patterns in supporting

ontology engineering in real-world projects

As previously mentioned, ontology reuse approaches are usually motivated by onto-

logy design methodologies. There exist many methodologies, including [32, 71, 85,

68], but some of them lack actual guidelines and support for collecting requirements

that should guide the ontology development, others do not define a specific workflow

for developing the ontology, or they do not include evaluation/testing steps.

6 Chapter 1. Introduction

An ontology engineering methodology, currently used in different ontology pro-

jects, is eXtreme Design (XD) [9, 12], which is iterative and incremental. XD

provides methodological support for incrementally addressing small sets of require-

ments, thus minimising the impact of changes in incremental releases. eXtreme

Design addresses all main phases of the ontology design process: from the collection

of requirements to the testing activities. Its guidelines have been implemented, and

updated and integrated, in the context of actual ontology projects. Specifically, XD

focuses on, and provides guidelines for, the use of ontology design patterns (ODPs):

as previously mentioned, an ODP provides a modelling solution to a recurrent mod-

elling problem, in the form of a small template ontology. The recommended ontology

reuse process is also based on ontology design patterns, which can be found in ODPs

catalogues8, or extracted from existing ontologies and replicated in the ontology un-

der development. The claim of XD is that ODPs support, and make it more effective,

ontology selection and reuse, and this has been proven through multiple experiments

[9, 12].

Two ontology projects we contributed to during the PhD, i.e. ArCo [20] and

Polifonia9, allowed us to experience firsthand the usefulness of the (re)use of on-

tology design patterns in ontology engineering activities, including ontology reuse.

This motivated our aim to extract ontology design patterns from ontologies and

knowledge graphs. We report in the thesis our direct experience and contributions

to these two projects, with a special focus on the role of ontology design patterns

for ontology reuse.

1.2.3 Modelling solutions to common modelling problems

As previously mentioned, being able to explore and understand (large) ontologies

has an impact on many ontology engineering tasks, including (but not limited to)

ontology selection and reuse.

8E.g. https://ontologydesignpatterns.org/
9https://polifonia-project.eu/

https://ontologydesignpatterns.org/
https://polifonia-project.eu/

Chapter 1. Introduction 7

According to [29], existing ontology visualisation tools fail in offering overviews

of big ontologies – which are the ones that would most benefit from effective visu-

alisations for their exploration. None of them allow to compare different ontologies

simultaneously. Most summarisation methods only address the data level, e.g. to

return a summary of a knowledge graph in the form of a subset of triples. In this

way, they reduce its size and give an insight into what is inside the knowledge graph

through a relevant subgraph [73, 25]. There exist some summarisation methods

that focus on the ontology level. However, they are based on extractive approaches

that select and return a subset of key nodes (classes, properties) from the original

ontology, presented as an ontology summary [73].

We believe that an overall understanding of an ontology requires more than view-

ing its key concepts: it would need to consider all the facts an ontology models, all

the modelling issues it addresses. That is, for example, not only knowing that the

two main concepts of an ontology are e.g. musician and musical composition, but

also being aware that there is a fragment of the ontology answering the question

about which musical compositions have been played by a musician during a musical

performance. Additionally, there is no method actually supporting a comparison

between multiple ontologies [29], in order to understand which solutions may be

proposed by different ontologies to a specific modelling problem, e.g. different solu-

tions for modelling collections. When multiple ontologies are to be analysed, e.g.

for selecting the more pertinent ontology – or ontology fragment - to be reused, this

activity would benefit from the possibility of exploring, and comparing, all ontolo-

gies at once, rather than exploring one ontology at a time, and comparing them as

a separate step.

Based on these premises, our first research question is:

RQ1: Are there different modelling solutions implemented in multiple

ontologies addressing the same modelling problem? Is it possible to auto-

matically identify and classify them?

8 Chapter 1. Introduction

1.2.4 How to annotate ontology design patterns

Regardless of whether ontology design patterns are (re)used in an intentional or

unintentional way in ontologies10, ontology selection and reuse would benefit from

annotations of the patterns included in such ontologies and knowledge graphs. In-

deed, using existing ontologies as input to build new ontologies is a difficult, non-

trivial and time-consuming process, and is often hampered by an inadequate, if

not even missing, documentation accompanying such ontologies. Based on the as-

sumption that ontology design patterns play a role in supporting ontology reuse,

pattern-based ontology development and reuse should go through this annotation

task, which may ease the process of exploring and understanding an ontology (and,

consequently, a knowledge graph). Other ontology engineering tasks would benefit

from these annotations, like a pattern-based ontology matching, as the process of

finding correspondences (i.e. mappings) between ontology fragments (rather than

individual entities) belonging to different ontologies, producing a set of alignments.

The need for a language for annotating ontology design patterns has been already

acknowledged [11], and led to some proposals. This language can work as a basis

for both manual and automatic annotation. [53] and [50] propose complementary,

simple representation languages for ontology design patterns, which make use of

OWL annotation properties for documenting them, while [77] introduces a frame-

work aiming at supporting goal-oriented reuse of ontologies. However, these lan-

guages’ expressiveness requires further improvements: for instance, it is not possible

to indicate the modelling problem addressed by an ODP at a more abstract level,

nor to annotate the data that instantiate an ODP.

This leads to our second research question:

RQ2: What are the relevant concepts and relations to describe the onto-

logy design patterns used in ontologies and knowledge graphs?

10And possibly instantiated in knowledge graphs.

Chapter 1. Introduction 9

1.2.5 Identifying patterns emerging from knowledge graphs

While a better understanding and exploration of ontologies is crucial for making

more accessible and usable the knowledge graphs that rely on such ontologies, not

all knowledge graphs are based on explicitly modelled ontologies. In some cases,

knowledge graphs may be built directly from actual data, without going through an

ontology modelling process: the ontology emerges from the usage of blurred concepts

and relations in the knowledge graph. Moreover, even if such an explicit ontological

resource does exist, the population of the ontology through one (or more than one)

knowledge graph may give important insights about the actual usage of the ontology

in real-world use cases. There exist a number of approaches for generating sets of

contraints/formal definitions/patterns from a set of data, which may exploit the

graph structure (e.g. [31, 15]) or rely on knowledge graph profiling, i.e deriving sets

of constraints (shapes) from summaries of knowledge graphs, as in [82].

However, as highlighted in [76], all existing approaches supporting the automatic

creation of shapes generate a great number of shape constraints such that it may

be difficult to verify their soundness and completeness. Moreover, most generated

shapes do not suggest specific classes that the objects of a property should be mem-

ber of. Considering that existing methods leave room for improvements, our last

research question is:

RQ3: Is it possible to automatically identify the patterns that emerge

from a knowledge graph without relying on an explicit ontology?

1.3 Summary of the chapters and contributions

We summarise the content and contributions of each chapter of the thesis11, report-

ing the publications this thesis is based on, and extends, in the following list:

• Chapter 2: We report in this chapter our investigations on current approaches

to ontology selection and reuse, analysing their motivations and strategies.

11This thesis has been reviewed by professor Enrico Motta and professor Marta Sabou.

10 Chapter 1. Introduction

We argue that solutions for ontology reuse are often adopted on a case-by-case

basis, hindering the definition of good and shared practices, and that to date

there are no effective solutions for supporting the developers’ decision-making

process when deciding on an ontology reuse strategy. Analysing their benefits

and limits, we provide some guidelines on the choice for the most appropri-

ate ontology reuse practice. Moreover, we present two real-world use cases of

how the eXtreme Design methodology has been applied for the development of

domain-specific knowledge graphs (cultural heritage and music), showing how

a pattern-based ontology engineering can actually support ontology engineer-

ing activities, including ontology selection and reuse. Part of the content of

this chapter was published in the following publications:

– Valentina Anita Carriero, Marilena Daquino, Aldo Gangemi, Andrea Gio-

vanni Nuzzolese, Silvio Peroni, Valentina Presutti and Francesca Tomasi.

‘The Landscape of Ontology Reuse Approaches’. In: Applications and

Practices in Ontology Design, Extraction, and Reasoning. Edited by Gi-

useppe Cota, Marilena Daquino and Gian Luca Pozzato. Volume 49.

Studies on the Semantic Web. Amsterdam: IOS Press, 2020, pages 21–

38. doi: 10.3233/SSW200033 [18]

Individual contribution to the paper : collaboration to the analysis of the

state-of-the-art, and to one of the use cases presented.

– Valentina Anita Carriero, Aldo Gangemi, Maria Letizia Mancinelli, An-

drea Giovanni Nuzzolese, Valentina Presutti and Chiara Veninata. ‘Pattern-

based design applied to cultural heritage knowledge graphs’. In: Se-

mantic Web 12.2 (2021), pages 313–357. doi: 10.3233/SW-200422 [20]

Individual contribution to the paper : collaboration to the design and test-

ing of the ontologies, and to the generation of the knowledge graph.

– Valentina Anita Carriero, Aldo Gangemi, Andrea Giovanni Nuzzolese

and Valentina Presutti. ‘An Ontology Design Pattern for Represent-

ing Recurrent Situations’. In: Advances in Pattern-Based Ontology En-

https://doi.org/10.3233/SSW200033
https://doi.org/10.3233/SW-200422

Chapter 1. Introduction 11

gineering, extended versions of the papers published at the Workshop on

Ontology Design and Patterns (WOP). edited by Eva Blomqvist, Tor-

sten Hahmann, Karl Hammar, Pascal Hitzler, Rinke Hoekstra, Raghava

Mutharaju, Maŕıa Poveda-Villalón, Cogan Shimizu, Martin G. Skjæve-

land, Monika Solanki, Vojtech Svátek and Lu Zhou. Volume 51. Studies

on the Semantic Web. IOS Press, 2021, pages 166–182. doi: 10.3233/

SSW210013 [22]

Individual contribution to the paper : collaboration to the design of the

ontology design pattern.

– Valentina Anita Carriero, Fiorela Ciroku, Jacopo de Berardinis, Delfina

Sol Martinez Pandiani, Albert Meroño-Peñuela, Andrea Poltronieri and

Valentina Presutti. ‘Semantic integration of MIR datasets with the Poli-

fonia ontology network’. In: Proceedings of Late Breaking Demo Session

of the 22nd Int. Society for Music Information Retrieval Conference (IS-

MIR 2021). 2021 [17]

Individual contribution to the paper : collaboration to the design of the

ontology network.

• Chapter 3: In this chapter, we propose a method to identify which are the

conceptual components, and the patterns implementing them, used for model-

ling KGs on the web through ontologies. A conceptual component is a complex

(cognitive) relational structure that a designer implements in an ontology by

using ontological constructs, and that may be implemented by means of dif-

ferent ontology fragments - the Empirical ODPs - across different ontologies.

The method is applied to two domain-specific ontology corpora. The results

show the potential of extracting patterns from ontologies, and grouping them

based on the common modelling issues they address. This method offers an

answer to RQ1. The chapter is based on the following publication:

– Luigi Asprino, Valentina Anita Carriero and Valentina Presutti. ‘Extrac-

tion of Common Conceptual Components from Multiple Ontologies’. In:

https://doi.org/10.3233/SSW210013
https://doi.org/10.3233/SSW210013

12 Chapter 1. Introduction

Proceedings of K-CAP ’21: Knowledge Capture Conference 2021. Edited

by Anna Lisa Gentile and Rafael Gonçalves. ACM, 2021, pages 185–192.

doi: 10.1145/3460210.3493542 [4]

Individual contribution to the paper : design of the method and the ex-

periments.

• Chapter 4: In this chapter, we address RQ2 by developing an ontology for

annotating ontology design patterns implemented in ontologies and knowledge

graphs, which reuses and extends existing languages. This annotation ontology

can be the basis for both manual and automatic annotations, and supports

the annotation of ODPs at both conceptual component, pattern, and instance

level. This chapter is based on the following publication:

– Luigi Asprino, Valentina Anita Carriero, Christian Colonna and Valentina

Presutti. ‘OPLaX: annotating ontology design patterns at conceptual

and instance level’. In: Proceedings of the 12th Workshop on Ontology

Design and Patterns (WOP 2021) co-located with 20th International Se-

mantic Web Conference (ISWC 2021). Edited by Karl Hammar, Cogan

Shimizu, Hande Küçük-McGinty, Luigi Asprino and Valentina Anita Car-

riero. Volume 3011. CEUR Workshop Proceedings. CEUR-WS.org,

2021, pages 1–13 [3]

Individual contribution to the paper : collaboration to the design of the

ontology, and to two of the use cases presented.

• Chapter 5: This chapter contains an answer to RQ3 in the form of a

method for empirically extracting patterns that emerge from a knowledge

graph, without relying on an explicit ontology. These patterns are extracted

as statistically frequent domain-property-range triplets, which are then trans-

lated into probabilistic OWL ontology design patterns. The axioms inferred

from statistics in the data are generated and associated with a probability.

This method has been applied to two domain-specific portions of the Wikidata

https://doi.org/10.1145/3460210.3493542

Chapter 1. Introduction 13

knowledge graph12. The results of our experiments show how these patterns

can integrate the current support in Wikidata to the understanding and reuse

of the informally defined Wikidata ontology. The chapter is adapted, with

relevant extensions13, from the following publication:

– Valentina Anita Carriero, Paul Groth and Valentina Presutti. ‘Towards

improving Wikidata reuse with emerging patterns’. In: Proceedings of

the 3rd Wikidata Workshop 2022 co-located with the 21st International

Semantic Web Conference (ISWC 2022). Edited by Lucie-Aimée Kaf-

fee, Simon Razniewski, Gabriel Amaral and Kholoud Saad Alghamdi.

Volume 3262. CEUR Workshop Proceedings. CEUR-WS.org, 2022 [23]

Individual contribution to the paper : design of the method and the ex-

periments.

• Chapter 6: This chapter presents a summary of the overall research activity,

along with some open questions and future directions of research.

12https://www.wikidata.org/
13A new publication extending [23] has been submitted to the Special Issue on Wikidata of the

Semantic Web Journal on 14 February 2023 [24].

https://www.wikidata.org/

14 Chapter 1. Introduction

Chapter 2

Pattern-based ontology design and reuse

Ontology Reuse (OR) aims at fostering semantic interoperability and integration

between different data sources, and constitutes a main step of the ontology design

process, strongly related to the ontology selection (OS) activities.

To date, several approaches to OR do exist, with different motivations and im-

plementations. However, despite the vast literature, a tendency to opt for a solution

on a case-by-case basis, and without following a specific methodology, can hamper

the definition of shareable good practices.

In this Chapter, we (i) provide an account of existing OR solutions, addressing

their benefits and limits (Section 2.1), and (ii) discuss two real-world scenarios, thor-

oughly describing the experience in applying a pattern-based ontology engineering

methodology (eXtreme Design) to the development of two domain-specific know-

ledge graphs, showing how we implemented and extended it, with a special focus on

the ontology reuse approach (Section 2.2).

2.1 Current approaches to ontology selection and

reuse: benefits, limits and challenges

The decision about what OR approach to adopt usually depends on the project’s

requirements, so it is made by ontology engineers when bootstrapping a project.

Firstly, ontology developers search and select candidate ontologies to be reused, and

16 Chapter 2. Pattern-based ontology design and reuse

secondly, they choose the more suitable strategy for implementing ontology reuse. In

Section 2.1.1 we introduce common motivations guiding the selection of ontologies

to reuse, while Section 2.1.2 discusses policies for ontology reuse.

2.1.1 Motivations guiding ontology selection

Some guidelines for Linked Open Data and vocabularies publication [54, 8] provide

support to ontology designers in selecting valid and documented ontologies to be

reused, promoting either the reuse of standards, or the reuse of popular ontologies.

Some research communities [45, 36, 86, 52, 75] and some W3 Consortium working

groups (such as the Ontology Engineering and Patterns Task Force1) foster explicit

cognitive analysis in OR, which may result in the reuse of ontology patterns rather

than ontology terms.

OR by standardisation. OR by standardisation consists in the practice of re-

using ontologies released by authoritative organisations, like ISO, W3 Consortium,

and professional/community consortia. Examples include ISO standard ontologies

such as CIDOC-CRM [43], W3C approved ontologies such as PROV-O [59], and

community standard ontologies such as FRBRoo [78]. Standard ontologies can

work as reference models for representing cross-domain information, e.g. events,

people-related information, provenance, but they can also model domain-specific re-

quirements, e.g. cultural heritage attributes as in CIDOC-CRM. Usually, standard

ontologies are recommended for direct reuse to the members of a community, or can

be used as reference models that can be then specialised and extended.

OR by popularity. OR by popularity consists in reusing ontologies that are

considered popular, usually because they are reused in (i) many third-party ontolo-

gies [54] by importing, specialising or extending them, and in (ii) existing datasets

by populating their ontology entities [79]. Popular ontologies might be designed as

standards, or might be based on a cognitive analysis, but the reason they are reused

is often related to their popularity. For instance, FOAF2 is the result of an early

1https://www.w3.org/2001/sw/BestPractices/OEP/
2http://xmlns.com/foaf/spec/

https://www.w3.org/2001/sw/BestPractices/OEP/
http://xmlns.com/foaf/spec/

Chapter 2. Pattern-based ontology design and reuse 17

exemplification (1999) of a vocabulary for the semantic web, which did not result

from any standardisation or formal analysis. However, it is now a reference model

for social network knowledge graphs. A further example is Good Relations [49],

which is a lightweight ontology for exchanging e-commerce information. It is not

the result of a standardisation process, but is based on formal requirements collec-

ted from industry and derived from a cognitive analysis. Other popular ontologies

include DBpedia3, a shallow cross-domain ontology resulting from a crowd-sourcing

effort, and schema.org4, an initiative launched by an industrial standardisation body

to develop and support a common set of schemas for structured data markup on

web pages, fostering search engine optimisation via semantics.

OR by cognitive analysis. OR by cognitive analysis is based on the collec-

tion and definition of the requirements of an ontology project as primary source of

decisions. This may lead to design novel models, or to use existing design com-

ponents, such as foundational ontologies [36] or ontology design patterns [52]. The

cognitive analysis justifies and supports decisions about the reuse or the novel design

of ontology terms and axioms. Specifically, whether to reuse something or not is

supposed to depend on the requirements of the project. That is, if a conceptual-

isation has already been specified in an existing ontology, it can be directly reused

or aligned. If not, reuse is not recommended, and generic solutions might be spe-

cialised. Cognitive analysis inherits methods from philosophy, cognitive science and

software engineering, including competency questions (CQs) [45], that is questions

expressing the requirements the ontology should satisfy, formal ontological analysis

reusing patterns already encoded in foundational ontologies, e.g. DOLCE [36], task-

oriented quality assessment [35], etc. A research community has grown to integrate

and support cognitive analysis by means of Ontology Design Patterns (ODPs) [34,

37, 52].

Benefits and limits. Popularity-based metrics are widespread when looking for

ontologies to reuse, and can avoid time-consuming selection activities when searching

3http://dbpedia.org/ontology/
4https://schema.org/

http://dbpedia.org/ontology/
https://schema.org/

18 Chapter 2. Pattern-based ontology design and reuse

for general purpose ontologies. Moreover, reusing ontologies that are already popular

can increase the chances that data will be reused by other applications [48]. Such

common practice in the Linked Data community is motivated by the assumption

that the semantics of an ontology is clear and intuitive if it is popular and commonly

used in the web of data. Reusing ontologies that are well-known, considering that

their ontological solutions are well established and possibly subject to a shared

understanding, does foster semantic interoperability and homogenization between

different resources, making it easier to build rational agents able to automatically

share, reuse, exchange, and reason on the knowledge at web scale.

However, selecting the ontologies that fit for the purpose is, to date, a highly

subjective and error-prone task, usually performed manually and in an intuitive way.

Moreover, the only metrics for ontology selection currently available are based on

popularity, which may induce biased behaviours in OR practices, like boosting only

OR by popularity or OR by standardisation. Additionally, more detailed informa-

tion about at what extent these ontologies are actually reused in other ontologies,

along with information of the domain of application, would help to guide the reuse

of ontologies across domains of knowledge. In any case, an ontology selection should

always start from clear ontological requirements related to the modelling problems

and the domain being modelled, and these requirements are not necessarily com-

patible with popular or standard ontologies. Moreover, ontology selection criteria

should take into account internationalisation [42] and licensing for reuse, as well

as other possible statistics, that e.g. could show how ontologies are combined (by

composition or merging), providing important information for their reuse.

2.1.2 Policies and implementation strategies for ontology

reuse

International institutions, community consortia and standardisation bodies tend

to encourage direct reuse of (their) existing standard or popular ontologies, also

driven by social motivations. Instead, research communities may suggest indir-

Chapter 2. Pattern-based ontology design and reuse 19

ect approaches, i.e. drafting new ontologies tailored specifically to the collected

requirements of the project, and aligning them to existing ones when considered

appropriate, or hybrid approaches that mix direct and indirect approaches.

Therefore, we distinguish 3 policies for ontology reuse: direct reuse, indirect

reuse, and hybrid reuse.

Direct reuse. This policy may be implemented in three ways: (i) importing

the whole ontology to be reused (by means of the property owl:imports in the

new ontology under development); (ii) embedding fragments (possible implement-

ations of ontology design patterns) from a reused ontology in the local ontology;

and (iii) embedding individual and selected ontology entities in the new ontology,

possibly referencing the reused ontology by annotating their terms with the prop-

erty rdfs:isDefinedBy. In the first case, the new ontology directly includes the

semantics of the reused (via import) ontology, while in the last two cases the se-

mantics of individual terms is delegated to the external ontology containing its

formal definition. Directly reusing fragments of ontologies – as in (ii) – produces on-

tologies that can be seen as a composition of modules [70], intended as sets of terms

and axioms that address a specific subset of requirements. This allows to clearly

identify the specific areas that have been reused from source ontologies. Instead,

reusing individual ontology terms – as in the third case – from different ontologies,

leads to an ontology that does not allow to immediately understand which source

ontology contributes, and how, to address a modelling issue (e.g. a competency

question), as individual concepts, axioms, and statements, when merged into a new

model [70], may loose or change their semantics in the context of the new ontology.

Indirect reuse. In this policy, terms and patterns from external ontologies

are reused as templates in the new ontology. This means that ontology terms,

and their semantics (i.e. their axioms), are reproduced in the local ontology, with

possible changes or extensions. Thus, the local ontology is self-defined, and does

not depend on external resources, but alignment axioms (such as rdfs:subClassOf,

owl:equivalentClass, owl:equivalentProperty) are needed in order to support

interoperability with other ontologies and make it explicit which parts have been

20 Chapter 2. Pattern-based ontology design and reuse

reused.

Hybrid reuse is a reuse policy that combines direct and indirect reuse, guided

by different motivations. These may be related to the characteristics of the reused

ontologies, e.g. if they are considered reasonably stable and with a nearly absent

or slow evolution, as in the case of important reference standards, or not. Or they

may be motivated by the specific requirements of the ontology project, e.g. if an

ontology is recommended as standard by designers involved in the development of

the new ontology, or not.

Benefits and limits. On the one hand, owl:imports axiom is included in

OWL, which provides a clear semantics, and is supported by most ontology de-

velopment frameworks, such as Protégé. On the other hand, using an annotation

property like rdfs:isDefinedBy allows for more flexibility, since it is possible to

annotate the ontological entities that have been reused from an external ontology,

rather than importing the whole ontology.

Directly reusing third parties ontologies can be convenient thanks to the possib-

ility of delegating the issue of dealing with ontology preservation, versioning, storage

and evolution. However, it generates a strong dependency on the reused vocabulary

and its semantics: any (small) change in the reused ontologies, that is outside the

control of the ontology designer reusing them5, up to a reused ontology that is no

longer available due to maintenance issues, could introduce inconsistencies in the

local ontology and jeopardize its stability.

2.2 Pattern-based ontology design and reuse: real-

world projects

As it can be noticed, reuse of existing ontologies is not in focus of most ontology

engineering methodologies, but is often an activity that is performed ad-hoc and as

a kind of appendix to the chosen methodology. However, whether and how to reuse

5Unless the reused ontologies are directly developed and maintained by the same team.

Chapter 2. Pattern-based ontology design and reuse 21

external ontologies is usually much related to the ontology design methodology. As

for a pattern-based ontology engineering, it is not surprising that ontology design

patterns play a role also in the reuse practice, and are recommended as a best

practice for the design activity as a whole, including reusing existing resources.

This is the case of the eXtreme Design (XD) methodology.

In Section 2.2.1 we describe the eXtreme Design methodology [74], with a special

focus on the pattern-based ontology design and reuse, while in Sections 2.2.2 and

2.2.3 we present two ontology and knowledge graph projects we have been contrib-

uting to, showing how eXtreme Design can be applied to real-world scenarios, the

usefulness of ODPs in ontology design and reuse, and specifically how with these two

projects (that are both still live and ongoing) we enriched the methodology itself

thanks to specific requirements and lessons learned.

2.2.1 eXtreme Design

eXtreme Design is an iterative, incremental and test-driven methodology, and puts

the reuse of ontology design patterns at the core of its process, providing guidelines

for such activity. Experiments and real use cases have proved the positive impact

of ODPs on the ontology quality [12, 9, 80]. The intensive use of ODPs, modular

design, and collaborative approach are the main characterising guidelines of the

method [74].

When the project has started, XD is implemented by iterating a set of steps, each

involving one or more teams: a customer team, that provides the requirements that

guide the design and testing processes; a design team, which identifies and imple-

ments the most appropriate ODPs to the given requirements; a testing team, which

takes care of testing the produced ontology components; an integration team, which

is in charge of integrating the different components. In XD, the same requirements

are used as input by the design team, for building the ontology, and by the testing

team, for transforming them into unit tests.

Requirements engineering. The first step is the collection of requirements.

XD suggests to collect them in the form of user stories, provided by the customer

22 Chapter 2. Pattern-based ontology design and reuse

team, intended as sets of sentences that describe by example the kind of facts that

the resulting knowledge graph should be able to encode.

Competency Questions. After possibly generalising the stories provided, by

identifying the main concepts they exemplify, one or more competency questions

(CQs) [45] are derived from each of them. CQs are the natural language counterpart

of structured queries that the resulting knowledge graph should answer to. Besides

deriving CQs, the design team works with the customer team for extracting from

user stories possible general constraints, which express possible inferences or rules

that apply to the concepts involved in the story.

Matching CQs to ODPs. CQs drive the selection of ODPs to reuse, so CQs

are matched to ODPs. Possible existing solutions (ODPs in online catalogues or

as fragments in existing ontologies) are analysed in order to find the most suitable

ones to be reused in the local ontology. This is a complex cognitive task that,

currently, lacks proper tool support. However, a published ODP that is thoroughly

defined and documented should, in principle, also describe the modelling issue(s)

that it addresses, along with the related competency questions. In this way, the

ontology designers can assess whether an ODP matches (even at a different level of

generalisation) the CQs that they have at hand by comparison.

Testing and integration. The unit testing approach followed by XD is de-

scribed in [74, 13]. The testing team uses the CQs and the general constraints to

design unit tests: CQs are translated into SPARQL queries, while general constraints

are used as input to create sample triples that should provoke either consistency and

coherence errors, or correct inferences. The results of the tests, when positive, are

reported to the design team, which fixes the problems and resubmits to the testing

team. Integration tests have a similar process, but focus on running regression tests,

that is re-running all previously defined unit tests and additional tests on the whole

ontology to check whether the ontology performs the same after an update.

Chapter 2. Pattern-based ontology design and reuse 23

2.2.2 ArCo: a pattern-based ontology network and know-

ledge graph on cultural heritage

2.2.2.1 An overview

ArCo project [20, 19] has as its main source of requirements the General Catalogue

of Italian Cultural Heritage6 (GC), which is the official institutional database of

Italian cultural heritage (CH), maintained and published by ICCD-MiC (Italian

Institute for Catalogue and Documentation - Italian Ministry of Culture). The

catalogue contains hundreds of thousand catalogue records, which are XML files

recording information about specific cultural properties. The maintenance of ArCo,

which is an evolving project we contributed to, along with its produced resources,

is guaranteed by MiC’s commitment to evolve the resource, by following the XD

methodology, with the support of researchers of the CNR (Italian National Research

Council) and the University of Bologna.

ArCo includes as main resources: (i) a knowledge graph consisting of a network of

ontologies modelling the CH domain7, and a LOD dataset with the data transformed

from the available catalogue records; (ii) a software for the automatic conversion of

catalogue records to ArCo-compliant LOD8; (iii) a detailed documentation reporting

the ontological requirements (user stories and CQs), diagrams and examples of usage

of the ontology, example SPARQL queries to be run on the KG9; (iv) a test suite

that has been used for validating ArCo KG10; (v) a SPARQL endpoint11.

2.2.2.2 Mapping competency questions to ODPs

In this subsection, we use some of the main modelling issues that have emerged

from ArCo’s requirements as driving examples to describe the process of matching

6https://catalogo.beniculturali.it/
7https://github.com/ICCD-MiBACT/ArCo/tree/master/ArCo-release/ontologie
8https://github.com/ICCD-MiBACT/ArCo/tree/master/ArCo-release/rdfizer
9https://dati.beniculturali.it/arco-rete-ontologie

10https://github.com/ICCD-MiBACT/ArCo/tree/master/ArCo-release/test
11https://dati.cultura.gov.it/sparql

https://catalogo.beniculturali.it/
https://github.com/ICCD-MiBACT/ArCo/tree/master/ArCo-release/ontologie
https://github.com/ICCD-MiBACT/ArCo/tree/master/ArCo-release/rdfizer
https://dati.beniculturali.it/arco-rete-ontologie
https://github.com/ICCD-MiBACT/ArCo/tree/master/ArCo-release/test
https://dati.cultura.gov.it/sparql

24 Chapter 2. Pattern-based ontology design and reuse

requirements to Ontology Design Patterns (ODPs), as part of the XD methodo-

logy. In this way, that is by sharing its “behind the scenes”, the intellectual and

methodological processes that have been performed during the design and reuse of

ontology design patterns, we aim at supporting the use of such ontology engineering

methodology, and at showcasing by example a pattern-based ontology reuse. Figure

2.1 shows all the prefixes used in the next diagrams.

Figure 2.1: Prefixes used in the next figures.

Multiple time-indexed and typed locations for one cultural property.

Dynamic concepts, such as situations that evolve over time, are present in almost

every domain. Cultural property locations, which may change over time, are an

exemplification of such dynamics in the cultural heritage domain. A tangible cultural

property, i.e. a physical object, is placed in a physical location, which can be

identified by e.g. its country, region, city, address. The location of an immovable

cultural property (e.g. a monumental park) overlaps with the area occupied by

it. Instead, the data about the address of a movable cultural property (e.g. a

statue) refers to the building in which it is situated, and the possible related cultural

institute. While an immovable cultural property, due to its nature, will be related

to a unique geographical location during its life cycle, a movable cultural property

can change multiple places, at different time intervals. Therefore, it is important to

represent the situations in which a cultural property is located at some places, along

Chapter 2. Pattern-based ontology design and reuse 25

with the temporal indexing of the locations associated with it. This requirement,

if generalised, can be mapped to the existing Time Indexed Situation12 ODP [39],

which represents a situation that has an explicit time parameter, so this ODP has

been reused and specialised for the specific use case, leading to the creation, inside

the ArCo ontology network, of the Time Indexed Typed Location ODP. An additional

requirement, not included in the more general pattern, is the need of modelling the

reason why a cultural property is linked to a place: it can be the location where

it was found/created, where an exhibition involving the cultural property has been

held, where it was temporarily stored, etc. One location can play different roles with

respect to different cultural properties, and this is why we want to specify this role

in the time indexed situation. Specifically, as represented in Figure 2.2a, the core

class of this pattern is a-loc:TimeIndexedTypedLocation, which is a a situation of

a cultural property that is located in some place, at a certain time (tiapit:atTime),

and where the location plays a specific role (a-loc:LocationType) in the situation

(e.g. finding location, exhibition location, etc.). a-loc:atLocation represents the

geographical entity involved in the situation, while its subproperty a-loc:atSite

is used when this geographical entity corresponds to a physical building that hosts

cultural properties, and is linked to at least one cultural institute. For instance, the

Pitti Palace is the cis:Site of multiple cultural institutes, including the “Palatine

Galleries” and the “Museum of Custom and Fashion”, and hosts many cultural

properties.

Figure 2.2b depicts an example: the place where a balsarium glass from the

Imperial Roman age13 was temporarily stored, i.e. one of its time-indexed typed

locations. Indeed, the location type of data:TimeIndexedTypedLocation/10001

76477-alternative-1 is a-loc:StorageLocation. From the other pieces of in-

formation about the time interval and cultural site, we can assert that this archae-

ological property has been stored in a Municipal Warehouse in the city of Norcia

(Italy) in 2010.

12http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl
13https://w3id.org/arco/resource/ArchaeologicalProperty/1000176477

http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl
https://w3id.org/arco/resource/ArchaeologicalProperty/1000176477

26 Chapter 2. Pattern-based ontology design and reuse

(a) The model for time indexed typed locations.

(b) An instance of the model in Figure 2.2a, with the site where an archaeological property has been temporarily

stored in 2010.

Figure 2.2: Time indexed situation ODP reused for modelling different types of

locations of a cultural property.

Situations and their descriptions. Besides its locations, a cultural property

can be involved in many other different situations during its life cycle: it can be

commissioned, bought, obtained, used (e.g. a garment that is wore by one person

for a particular event), it can be part of a collection, or a numismatic series, can

change its availability as a result of theft, destruction or rescue, etc. Each one

of these situations defines a contextual relation between the cultural property and

other entities involved in the situation. The Situation14 ODP [39] is relevant in this

14http://www.ontologydesignpatterns.org/cp/owl/situation.owl

http://www.ontologydesignpatterns.org/cp/owl/situation.owl

Chapter 2. Pattern-based ontology design and reuse 27

case because it models the concept of a contextual ≥ 2-ary (usually called n-ary)

relation.

When a coin is issued, there are many entities that play a role: the coin itself, the

issuer, the issuing State, the mint and the minter. The coin issuance is a situation

representing the relation between all these entities, for that purpose. Figure 2.3

shows how we model the a-cd:CoinIssuance by specialising the Situation ODP,

representing all the entities involved.

Another important situation in which a cultural property can be involved is

the authorship attribution, a specific type of a-cd:Interpretation, that is a situ-

ation in which data about a cultural property are processed by an agent, generating

explicit knowledge, thanks to specific sources or criteria. An a-cd:AuthorshipAt

tribution (see Figure 2.4) is a situation in which one author is attributed to a

cultural property, based on an a-cd:InterpretationCriterion, e.g. an inscrip-

tion, a bibliography, a documentation that motivates this attribution. Each cultural

property has at least one preferred (more accredited) authorship attribution and/or

a cultural scope attribution (e.g. Swedish workshop), and can have one or more

alternative (previous and obsolete) authorship attributions.

Let us take as an example a coin15 (Figure 2.5) from the 20th century, issued by

Victor Emmanuel III of Italy: the relation of the coin with the issuer is expressed as

both an n-ary relation (a-cd:AgentRole), involving the King and the role he played

as issuer, and as a shortcut object property (a-cd:hasIssuer). Moreover, this coin

has a preferred authorship attribution data:PreferredAuthorshipAttribution/-

1400019640-1 with Calandra Davide as attributed author; this attribution is based

on a ‘stylistic analysis’ (data:InterpretationCriterion/analisi-stilistica).

The object property a-cd:hasAuthor directly relates the cultural property to the

preferred author(s).

Recurrence in cultural events and intangible cultural heritage. Let us

think about different editions of an annual painting award, as the repetition of a

cultural event: usually, we informally use the term recurrent event as we are referring

15https://w3id.org/arco/resource/NumismaticProperty/1400019640

https://w3id.org/arco/resource/NumismaticProperty/1400019640

28 Chapter 2. Pattern-based ontology design and reuse

Figure 2.3: Situation ODP reused for representing the coin issuance.

Figure 2.4: Situation ODP reused for the authorship attribution.

to an event that occurs more than once. Instead, we are implicitly talking about

a series of conceptually unified situations: for example, the Art Biennale16 is a

series of consecutive situations that can be somehow considered as part of the same

collection of situations. If we consider that a traditional ceremony related to the year

16https://www.labiennale.org/en/art/

https://www.labiennale.org/en/art/

Chapter 2. Pattern-based ontology design and reuse 29

Figure 2.5: An instance of the model in Figures 2.3 and 2.4: a numismatic property

involved in a coin issuance and a preferred authorship attribution.

cycle (e.g. Carnival) can be considered a cultural property itself (an intangible one),

we can say that even cultural properties can be recurrent, when they have regular

time intervals between their repetitive occurrences. In their iteration, there needs to

be a recognisable pattern: e.g. an exhibition that has different editions over years

usually follows a pattern in scheduling consecutive editions at regular time intervals

(e.g. one edition every two years). Moreover, there are specific attributes that give

all different occurrences a unity: for the Art Biennale, these include a general topic

that unites them and does not change i.e. contemporary art, and a place that always

hosts the situations i.e. Venice, etc.

Recurrent situations are usually modelled as a special type of events (e.g. in

Wikidata17), while the fact that they are multiple situations belonging to a series,

and the nature of such a unifying entity, is neglected or confused with the concept

of event in the literature (see for instance the DBpedia resource for Venice Bien-

nale18). In order to be fully expressive, we need to model both the unitary series of

situations, e.g. the Art Biennale16 intended as something that occurs biennially un-

der certain conditions, and its individual member situations, e.g. the Art Biennale

2019 intended as a particular edition of the series that has a start date and an end

date. This requirement brought us to the development of a new ODP for modelling

17https://www.wikidata.org/wiki/Q15275719
18http://dbpedia.org/page/Venice Biennale

https://www.wikidata.org/wiki/Q15275719
http://dbpedia.org/page/Venice_Biennale

30 Chapter 2. Pattern-based ontology design and reuse

Recurrent situation series19 [21, 22]. When modelling this pattern, other 5 patterns

have been reused and specialised: Classification, Collection, Description, Sequence,

Situation.

Indeed, a recurrent situation series (see Figure 2.6a) is represented as a collection,

whose members are the multiple situations (a-ce:hasMemberSituation). Member

situations need to share at least one common property (e.g. the topic, the organiser),

so that they are conceptually unified by what we call unifying factors (a-ce:has-

UnifyingFactor) of the series. At the same time, a recurrent situation series is

also represented as a situation, since it represents the relational context of all the

member situations. Each member situation is related to its own time interval and is

part of a sequence that links it to the other member situations of the same series (e.g.

a-ce:hasPreviousSituation). The time period between two consecutive member

situations is (approximately) regular and is represented as a distinctive attribute of

the series (a-ce:hasRecurrentTimePeriod).

An instance of this pattern, depicted in Figure 2.6b, is the ex:ArtBiennale

(Biennale d’arte di Venezia), which is a contemporary visual art exhibition, whose

member situations are conceptually unified by: the promotion of new contempor-

ary art trends as mission, the Biennale Foundation as organiser, Venice as place.

The time period between two consecutive situations of the Art Biennale series

is approximately ex:2Years. All situations member of the series are in a tem-

poral sequence: for example, the immediate next situation of ex:ArtBiennale1895

is ex:ArtBiennale1897, while the object property a-cd:hasImmediatePrevious

Situation relates the 1899 edition to the one held in 1897.

2.2.2.3 Advancements and support to ontology reuse

Requirements from an evolving heterogeneous community. The main cus-

tomer of the project is ICCD, i.e. the institute that collects and preserves the data

of the General Catalogue, and takes care of releasing and updating the cataloguing

standards. ICCD domain experts composed the customer team and guided the

19http://www.ontologydesignpatterns.org/cp/owl/recurrentsituationseries.owl

http://www.ontologydesignpatterns.org/cp/owl/recurrentsituationseries.owl

Chapter 2. Pattern-based ontology design and reuse 31

(a) The model for recurrent situation series.

(b) An instance of the model in Figure 2.6a, with the 3 first situations member of the Art Biennale.

Figure 2.6: The new pattern Recurrent Situation Series as implemented in ArCo.

design team in selecting and prioritising the requirements. They also supported the

design team in the understanding of the cataloguing standards. ArCo ontologies

reflect – and are compatible with – ICCD standards. However, with ArCo project,

ICCD wanted to address the needs of a diverse community of potential stakehold-

ers and consumers of its data, while managing the development process, thus ArCo

ontologies are not exclusively modelling their interpretation of the cultural heritage

domain, which would limit them to the point of view of ICCD cataloguing prac-

tices. For this reason, the collection of requirements has been handled as an open

process by directly involving external actors, and in particular an “Early Adoption

Program” has been launched, with the aim of engaging a group of representatives

32 Chapter 2. Pattern-based ontology design and reuse

of potential consumers, who would provide both requirements and validation. This

approach led to the building of an open community as well as widening the scope

of the project requirements. The members of the Early Adoption Program (Early

Adopters) are provided with assistance and support, and are guaranteed that the

fulfillment of their issues and requirements is given a high priority. Many differ-

ent means of interaction have been used, in order to guarantee a lively interaction

within this project community. First of all, regular meetings, such as webinars and

in-person meetups, have been held, and an open mailing list supported the discus-

sion of specific issues. Moreover, GitHub issues20 can be submitted for proposing

improvements and reporting bugs. Thanks to this approach, the customer team

became an evolving creature, which can extend over time, involving additional rep-

resentatives of potential producers and consumers of CH data. During its first main

phase, this ArCo community, actively providing requirements, involved private com-

panies, public administrations, researchers and creative developers. Following XD

guidelines, these requirements are collected in the form of small stories. A story is a

narrative text that exemplifies a possible scenario or reports an actual use case. A

Google Form supported the submission of such stories by the customer team, and

the maximum number of characters for the text was 25021. User stories are also

useful for defining the ontology vocabulary. The submission form requires that each

story is associated with one of three proposed categories, that indicate the type

of project motivating the story, namely: (i) publishing cultural heritage data as a

knowledge graph, (ii) linking an existing CH KG to ArCo KG, (iii) feeding some

applications with ArCo data or providing services based on ArCo KG. Additional

stories and materials (such as a sample of the original data) can be uploaded.

Based on the methodology, the requirements that can be extracted from these

user stories, as well those extracted from ICCD standards, are translated into Com-

petency Questions.

As an example, we report one of the stories collected through the Google form

20https://github.com/ICCD-MiBACT/ArCo/issues
21https://goo.gl/forms/zCixt3B1ABYbj9JS2

https://github.com/ICCD-MiBACT/ArCo/issues
https://goo.gl/forms/zCixt3B1ABYbj9JS2

Chapter 2. Pattern-based ontology design and reuse 33

in the first iteration with the customer team:

Type: Linking my data to ArCo data

Title: Cultural heritage and residential property

Story: I am looking for a residential property to buy, and I want to filter the

results based on the type of cultural heritage nearby.

From this story the following CQs can be extracted: “What are the types of

cultural properties located in a certain area?”, “Which is the current location of

a cultural property?”, “Which are the geographic coordinates of the current loca-

tion of a cultural property?”, “Which is the type of a cultural property?”. Other

user stories were focused on linking cultural properties to multimedia resources (e.g.

photographic documentation); modelling specific properties of music heritage; re-

porting the changes over time of the availability of cultural properties that have

been confiscated from organised crime; linking catalogue records to the related her-

itage protection agencies.

Having a clear strategy for collecting such stories, and interacting with the cus-

tomer team with the appropriate tools is a precious activity for starting with clear,

well defined and representative stories. This is one of the prerequisites for perform-

ing an effective mapping of the extracted CQs to the issues possibly addressed by

existing ODPs and existing ontologies, i.e. for implementing ontology reuse activit-

ies.

An architectural pattern for large ontology networks. Managing big on-

tologies is a non-trivial activity for ontology designers, reasoners and users. A mod-

ular design, as opposed to a monolithic one, i.e. one ontology module addressing

all requirements, has proved to favour readability, reusability and maintainability of

an ontology [84, 67]. Ontologies are usually split in modules based on conceptually

coherent sub-parts of the domain. However, eXtreme Design does not contain ex-

plicit guidelines on how to approach a modular and networked design of potentially

large ontologies. Starting from our experience in developing the ArCo ontology net-

work, we provide some guidelines, and propose an architectural pattern, that can

be applied in other contexts with similar characteristics as the ArCo’s project.

34 Chapter 2. Pattern-based ontology design and reuse

The ArCo ontology network follows what we name a root-thematic-foundations

architectural pattern. It can be described as follows:

• a root module represents the entry point of the network: it imports all main

thematic modules, thus causing the whole network to be loaded. In ArCo this

is named the arco module, and, besides importing the network, it also models

the ontology top-level hierarchy of classes, with :CulturalProperty as its

root class.

• the second layer of the network consists of the main thematic modules, the

ones that are directly imported by the root module. These thematic modules

may import additional, secondary thematic modules, that depend on them

(e.g. they are a specialisation of them) and may form additional layers in the

network. The version 1.0 of the ArCo ontology network includes one layer of

thematic modules: denotative-description, context-description, cultural-event,

location and catalogue.

• a leaf module contains foundational, and not domain-specific, concepts, such

as agent, physical object, role, part-whole, etc. This module needs to be

imported by all main thematic modules. The name of this module in ArCo is

core.

The implementation of the root-thematic-foundations pattern needs to follow a

preliminary and clear conceptual organisation of the domain into separate coherent

subdomains, that is a kind of clustering of the requirements based on thematic areas.

Of course, there are not general criteria to be followed for identifying thematic areas

and defining their granularity: these can vary depending on the project scope, design

choices and the size of the domain. New thematic modules can be added over time,

when a set of new requirements make up new subdomains.

In the context of ArCo, from the very beginning of the project, we analysed

the ICCD General Catalogue data, along with their standards, and the user stories

provided by the customer team at a very early stage of development. We initially

Chapter 2. Pattern-based ontology design and reuse 35

focused on concepts and relations relevant to all types of cultural properties: this

activity gave us an overview of the CH domain, without diving into concepts specific

to particular types of cultural properties. We manually clustered these attributes,

which led us to identify five topics that would then drive the modelling of the 5

main thematic modules of the ArCo ontology network.

The General Catalogue of Italian CH contains both data directly describing a

cultural property and its contextual information (e.g. techniques, materials, surveys,

exhibitions), data about the records that catalogue the cultural properties (e.g. the

date of creation of the catalogue record, their version, etc.); data about other entities

related to cultural properties (e.g. documents, inventories, bibliography).

Based on this analysis, one thematic module of the network (catalogue22) has

been dedicated to the ICCD General Catalogue (GC), and in particular to its cata-

logue records and their properties. Cultural properties can be described by means

of both measurable, intrinsic aspects such as weight, height, material(s), state of

conservation, as well as properties that result from an interpretation activity, such

as the attribution of one (or more than one) author, the definition of the date of

creation, etc. This distinction led us to the definition of two additional thematic

modules, respectively: denotative description23, and context description24. Finally,

other two thematic modules are dedicated to two major components of the life cycle

of a cultural property: (i) the different locations associated with it (e.g. the current

location, the place where it was found, where it was exhibited, where it was created,

temporarily stored, etc.), and information about the physical sites (e.g. a building),

geometry and related cadastral entities, and (ii) the cultural events in which it takes

part, including events that recur over time, such as festivals and festivities. These

modules are the location25 module and the cultural event26 module.

Finally, as in the architectural pattern, the core27 module captures foundational

22a-cat: https://w3id.org/arco/ontology/catalogue/
23a-dd: https://w3id.org/arco/ontology/denotative-description/
24a-cd: https://w3id.org/arco/ontology/context-description/
25a-loc: https://w3id.org/arco/ontology/location/
26a-ce: https://w3id.org/arco/ontology/cultural-event/
27core: https://w3id.org/arco/ontology/core/

https://w3id.org/arco/ontology/catalogue/
https://w3id.org/arco/ontology/denotative-description/
https://w3id.org/arco/ontology/context-description/
https://w3id.org/arco/ontology/location/
https://w3id.org/arco/ontology/cultural-event/
https://w3id.org/arco/ontology/core/

36 Chapter 2. Pattern-based ontology design and reuse

concepts, and is reused (by direct import) in all thematic modules, and the arco28

module is the entry point of the network, importing all thematic modules, and

defining the top-level hierarchy of CH concepts in ArCo.

This kind of design, i.e. splitting a big set of requirements into clusters, which

will then correspond to separate interconnected modules of an ontology network,

can support ontology reuse. Indeed, each module can be explored and understood

more easily thanks to its more limited size, and it is made explicit which (sub)topic

and subset of requirements that module addresses. For instance, a user interested in

(cultural property) locations, for direct or indirect reuse, will have the opportunity

to avoid the exploration of the whole network. She can limit her exploration to

the dedicated module. Of course, the creation of an ontology network with a clear

architecture, following specific criteria/patterns (as the architectural pattern we

propose), will make the network itself more readable and reusable.

Indirect reuse of existing ontologies. During the process of increment-

ally selecting the CQs representing ArCo’s requirements, and then matching them

with one or more existing ODPs, we also inspected state-of-the-art relevant onto-

logies, such as CIDOC CRM29, EDM30, BIBFRAME31, FRBR32, etc, in order to

find possible reusable fragments. In any case, this reuse and matching activity was

incremental and manual, and the most significant effort to look for reusable ontology

fragments involved large ontologies such as CIDOC CRM. This experimented issue

represents one of the motivations to the development of the method in Chapter 3.

Such method aims at helping to make the inspection of ontologies clearer and more

understandable by extracting ontology design patterns, and grouping them based

on the modelling issues they address, hence easing ontology reuse, and may possibly

contribute to supporting automatic matching procedures.

28: https://w3id.org/arco/ontology/arco/
29https://www.cidoc-crm.org/
30https://pro.europeana.eu/page/edm-documentation
31http://id.loc.gov/ontologies/bibframe.html
32http://vocab.org/frbr/core

https://w3id.org/arco/ontology/arco/
https://www.cidoc-crm.org/
https://pro.europeana.eu/page/edm-documentation
http://id.loc.gov/ontologies/bibframe.html
http://vocab.org/frbr/core

Chapter 2. Pattern-based ontology design and reuse 37

2.2.3 Polifonia: a pattern-based ontology network and know-

ledge graph on musical heritage

2.2.3.1 An overview

Polifonia33 is a project funded by the EU Horizon 2020 Programme, that will run

from January 2021 until April 2024. Its main result is the ongoing development

of a digital ecosystem for European Musical Heritage, intended as music objects,

their cultural and historical contexts, possibly expressed in different languages and

styles, and across centuries. The ecosystem includes both methods, tools, resources,

guidelines, and creative designs. The development of the project is driven by ten

pilots, that provide requirements to the project and validate its developed technolo-

gies. Knowledge graphs, and ontologies, are the background technologies that have

been chosen for integrating, representing, and interlinking music-related data with

heterogeneous and distributed provenance. We are contributing to this project by

developing, within the ontology design team, an ontology network that, based on

the collected requirements, aims to cover a wide variety of musical aspects (musical

features, instruments, emotions, performances) [17]. This ontology network is also

developed following the eXtreme Design methodology principles, and adopts the

same architectural pattern as implemented in ArCo, and presented in the previous

Section.

2.2.3.2 Mapping competency questions to ODPs

In this subsection, we will use two modelling issues that have emerged from one of

the pilots of Polifonia, namely MusicBO, as examples to show how, in Polifonia as in

ArCo, we matched the collected requirements to Ontology Design Patterns (ODPs),

following the XD methodology.

MusicBO34 has the objective to support the enhancement and dissemination of

the musical heritage of the Italian city of Bologna, by publishing easily consumable

33https://polifonia-project.eu/
34https://polifonia-project.eu/pilots/musicbo

https://polifonia-project.eu/
https://polifonia-project.eu/pilots/musicbo

38 Chapter 2. Pattern-based ontology design and reuse

data that documents its historical role as a creative city for music. The main output

of MusicBO are multilingual (English, French, Spanish and Italian) digital textual

corpora, containing documents (letters, reports, news, etc.) that provide an evid-

ence of scholars, journalists, travelers, writers and students related to the European

musical landscape from medieval to modern times. The resulting MusicBO corpus

undergoes a process that transforms it automatically into a knowledge graph. First,

sentences from the corpus are parsed into semantic graphs by relying on Abstract

Meaning Representation (AMR)35 [6]. Then, the AMR2Fred tool [63] transforms

AMR graphs into RDF/OWL KGs based on FRED [40], having as a result a know-

ledge graph whose design is based on frame semantics and ontology design patterns.

A frame is usually expressed by verbs, so all occurrences of frames from an input

text are formalised as OWL n-ary relations, all being instances of some type of event

or situation [40].

The domain experts involved in MusicBO defined some useful stories in order to

provide requirements. Some MusicBO stories are also data-driven, i.e. they have

been extracted by looking at the resulting knowledge graph, e.g. by retrieving and

analysing the most instantiated frames in the MusicBO KG, and then modelling

an appropriate ontology design pattern to be included in the Polifonia ontology

network, and aligning it to the original frame.

(Nick)names with temporal and contextual validity. An interesting frame

instantiated in the MusicBO KG is the name.01 frame36. From the comment of the

frame: ‘this frame contains words that talk about how Speakers name Entities’.

The main roles included in this frame are: (i) named, (ii) name of arg1, and (iii)

time. Indeed, this frame represents a situation in which an entity (named) is given

a name (name of arg1), and this name may have a temporal validity (time). For

example, a person may decide to change her name over time, or may be given

a name that is valid within a certain organisation she is member of for a cer-

35This pipeline has been described in the deliverable D4.5 of the Polifonia project [88]
36See https://w3id.org/framester/framenet/abox/frame/Name conferral, aligned with https://

w3id.org/framester/pb/pbdata/name.01

https://w3id.org/framester/framenet/abox/frame/Name_conferral
https://w3id.org/framester/pb/pbdata/name.01
https://w3id.org/framester/pb/pbdata/name.01

Chapter 2. Pattern-based ontology design and reuse 39

tain period of time, or a street may have multiple denominations over time, etc.

Starting from this requirement, and based on this frame, we modelled in the Po-

lifonia ontology network the Time Indexed Name ODP, which is a specialisation

of the more general ODP Time Indexed Situation37. Specifically, as represented

in Figure 2.7a, the main class of the pattern is p-core:TimeIndexedName, that is

a situation involving an entity (p-core:isTimeIndexedNameOf owl:Thing) that

has a name (p-core:includesName p-core:Name) for a certain period of time

(p-core:hasTimeInterval). The properties and classes of this pattern, when pos-

sible, have been aligned with the frame name.01 and its roles (see the blue rectangles

in the Figure). An additional requirement, that emerged from the examples in the

MusicBO corpus, consists in modelling the organisation within which a certain name,

given to an entity, may be valid: we modelled a relation p-core:isValidWithin

with p-core:Organization as range. Moreover, the class p-core:Name has been

specialised by the subclass p-core:Nickname for specific use cases. Finally, a name

can be an anagram of another name: this has been modelled with the relation

p-core:isAnagramOf. Figure 2.7b depicts an example of instantiation of this pat-

tern, based on an actual sentence extracted from the corpus: ‘In 1615 he [Adri-

ano Banchieri] helped to found the Accademia dei Floridi, the first such society in

Bologna; his name in it was Il Dissonante’. In this sentence, we have a person

(ex:Agent/AdrianoBanchieri), which had a (nick)name (ex:Nickname/TheDisso

nant, from the Italian Il Dissonante) that was given to him inside an organisation,

i.e. an academia (ex:Organization/AccademiaDeiFloridi). It is not mentioned

in the sentence that Adriano Banchieri was given this name starting from 1623,

while we could not find any information about until when this name was considered

still valid, therefore in the example we just added ex:TimeInterval/1623-unknown

as time interval.

Time-indexed art creation. Another frame frequently occurring in the Mu-

sicBO KG is compose.02, i.e. ‘to create, produce art’. This frame includes the

roles: (i) entity composed, (ii) artist, (iii) beneficiary, (iv) time, and (v) location.

37http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl

http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl

40 Chapter 2. Pattern-based ontology design and reuse

(a) The model for time indexed names.

(b) An instance of the model in Figure 2.7a, with the nickname of Adriano Banchieri inside the Accademia dei

Floridi.

Figure 2.7: Time indexed situation ODP reused for modelling time indexed names

of entities.

This frame represents the process of an artist that creates a piece of art, with a

possible agent (person, organisation) that benefits from it, i.e. it is a beneficiary,

and this situation happens at a certain time and at a certain place. This require-

Chapter 2. Pattern-based ontology design and reuse 41

ment led to the modelling of the Art Creation ODP, which is also a specialisa-

tion of the Time Indexed Situation ODP. The core class of the pattern (see Figure

2.8a) is p-mc:ArtCreation, that is a situation in which an agent (p-mc:hasArtist

p-core:Agent) creates an entity (p-mc:hasArtEntityCreated owl:Thing), at some

place (p-core:Place) and time (p-core:TimeInterval). This art creation can

be linked to a beneficiary with the property p-mc:hasBeneficiary. When ap-

plicable, the ontological entities of the pattern are aligned with the frame com-

pose.02 and its roles (see the blue rectangles in the Figure). Figure 2.8b shows an

example instance of the pattern in 2.8a, derived from the corpus’ sentence ‘the

cantata of Didone Abbandonata which Rossini composed for a relation, the af-

terwards celebrated Esther Mombelli, in 1811’. ex:Agent/GioachinoRossini is

the agent that, in the context of the situation ex:ArtCreation/GioachinoRossini

DidoneAbbandonataCreation, is creating the cantata titled ‘Didone Abbandonata’.

The creation happened in 1881 (ex:TimeInterval/1881), the art entity created

(ex:Cantata/DidoneAbbandonata) is dedicated to ex:Agent/EstherMombelli.

2.2.3.3 Advancements and support to ontology reuse

Requirements from a big heterogeneous community, and for developing

user interfaces. The digital ecosystem for European Musical Heritage implemen-

ted by Polifonia has many different outputs: along with ontologies and knowledge

graphs, relevant resources include also highly interactive (visual) user interface tools,

to allow consumers of musical content to browse, access and explore the resources

developed by the project, and interfaces that will exploit gestures and haptic sensa-

tion for supporting musical exploration and engagement. These tools will also rely

on developed ontologies and knowledge graphs, and all pilots will have as output

both ontologies and knowledge graphs, and interaction components. For this reason,

it was needed to look for a methodological convergence between the ontology en-

gineering and the interaction design tasks. We contributed to the definition of an

integrated approach for collecting requirements for both ontology design activities,

and interaction components, by collaborating with the user interaction team. As

42 Chapter 2. Pattern-based ontology design and reuse

(a) The model for art creations.

(b) An instance of the model in Figure 2.8a, with the creation of a cantata dedicated by Gioachino Rossini to Esther

Mombelli.

Figure 2.8: Time indexed situation ODP reused for modelling the creation of pieces

of art.

in eXtreme Design, the collection of requirements is still based on the creation of

stories, from which Competency Questions can be derived. However, the Persona

and Scenario have been included in the process, borrowed by User eXperience (UX)

Design practices. UX Design focuses on the design of the interface and of the human

experience in which that interface can play a role. This is why UX developers need

Chapter 2. Pattern-based ontology design and reuse 43

to focus on a wide range of characteristics of the people for whom the design is being

developed (such as their interests, background) and the relevant contexts into which

the design will be situated. Personas are basically descriptions of typical users (in-

cluding their name, age, possible occupation). They can evolve during the design

process. A Scenario is a description of how the Persona’s main task or problem is

solved before, during and after the interaction with the resource/software developed.

The Scenario gives some insight into the Persona’s activities and goals. Each Persona

may be associated with multiple stories, intended as in eXtreme Design methodo-

logy, and examples of data to be modelled in the ontology. This clear template,

besides supporting the collection of requirements for both ontology and interaction

design, eases the creation of useful documentation for supporting the reuse of the

project’s resources.

Guidelines for publishing and documenting ontologies and knowledge

graphs. As Polifonia involves a high number of different partners, and has a big

and evolving network of ontologies and knowledge graphs as output (in addition

to other types of resources and softwares), it was crucial to define clear guidelines

for publishing such resources. A publication process that is clear and consistent

over the project, and a detailed and complete documentation that follows the same

structure and includes the same pieces of information per type of resource, contribute

to support not only the management of the resources developed inside Polifonia,

but also the reuse of such resources by users both internal and external to the

project. Polifonia widely uses GitHub38 as a code hosting platform for version

control and collaboration, and defined a rulebook 39 in order to provide guidelines and

recommendations on how to contribute to the Polifonia Ecosystem. In particular,

we contributed to define rules and guidelines for the publication and documentation

of ontologies and knowledge graphs developed by Polifonia ontology designers. More

guidelines will be added to the current list, as new possible requirements emerge.

Guidelines for ontologies. These guidelines are about both the development of

38https://github.com/polifonia-project
39https://github.com/polifonia-project/rulebook

https://github.com/polifonia-project
https://github.com/polifonia-project/rulebook

44 Chapter 2. Pattern-based ontology design and reuse

the ontology, and its documentation. As for the development, the ontology should:

(i) have a namespace that can be dereferenced (relying on the w3id.org40 service)

and that follows a specific rule (https://w3id.org/polifonia/ontology/[name-of-the-

ontology]); (ii) should be annotated with labels and comments; (iii) should be expli-

citly annotated with alignments to possible reused ODPs (using OPLaX ontology,

see Chapter 4) and to indirectly reused external ontologies. As for the documenta-

tion, the ontology needs to be stored as an RDF/OWL file in a dedicated GitHub

repository. A rule also defines how this repository should be named, in order to guar-

antee consistency across repositories, and what pieces of information the readme file

of the repository should contain, namely: (i) a brief description of the scope of the

ontology; (ii) statistics about the ontology, like the number of classes; (iii) examples

of relevant Competency Questions with respective SPARQL queries; (iv) a graph-

ical representation of the main classes and properties; (v) licence for the reuse; (vi)

ontology tests run by following the eXtreme Design methodology. Moreover, an ad-

ditional repository represents the whole network, by providing links to all ontology

modules: therefore, information about the specific ontology must be added/updated

in this ontology-network GitHub repository.

Guidelines for knowledge graphs. Similarly, these guidelines are split into those

related to the development of the knowledge graphs, and those about the document-

ation. As for the development, the knowledge graph should: (i) contain individuals

with a namespace that follows a specific rule (https://w3id.org/polifonia/resource/

followed by the local name of the class and by the SHA-1 hash function of the unique

attribute(s) of the individual); (ii) be available on the web through a SPARQL end-

point. As for the documentation, each knowledge graph should: (i) be documented

in a GitHub repository, that needs to follow the rules already defined in the Poli-

fonia rulebook valid for all GitHub repositories; (ii) be accompanied by a readme

file containing a brief description of its scope, the link to the SPARQL endpoint,

useful statistics e.g. number of triples, the data sources from where the KG was

derived from, examples of CQs and SPARQL queries to be run, licence for data

40https://w3id.org/

https://w3id.org/

Chapter 2. Pattern-based ontology design and reuse 45

reuse. Moreover, this repository should contain a copy of the KG using a standard

serialisation (e.g. turtle, RDF/XML).

46 Chapter 2. Pattern-based ontology design and reuse

Chapter 3

Observing patterns from ontologies

With the rise of the Linked Open Data (LOD) initiative, we are faced with an

unprecedented amount of distributed knowledge about any kind of general-purpose

or specialised domain. This knowledge is expressed in the form of knowledge graphs

(KGs), usually leaning on formally defined ontologies. The widespread adoption of

KGs in various domains, and the different processes for generating both ontologies

and KGs, which often overlook a proper and intuitive documentation, have made the

contents of these resources complicated [61]. Users, regardless of their objectives,

would need to gradually discover, and understand, the content of a (possibly large)

unfamiliar ontology or knowledge graph, i.e. to effectively explore it.

As for the ontology level, users may need to perform a progressive analysis of

the content of the ontology with the goal of (i) understanding the structure of the

ontology, (ii) learning about the domain(s) and main questions the ontology can

answer, and consequently (iii) identifying whether the ontology can satisfy possible

questions constituting their modelling requirements. A competency question may be

(partially) addressed by an ontology fragment – a possible ontology design pattern

(ODP) – intended as a subset of concepts connected by relations. As already proven

by previous experiments [12, 9], ODPs support the reusability of the ontology: this

is the reason why we believe that the exploration of an ontology would be more

effective if it was based on the patterns contained in such ontology. Moreover, when

multiple ontologies are to be analysed for e.g. choosing the more pertinent ontologies

48 Chapter 3. Observing patterns from ontologies

– or ontology fragments – to be reused, the user would benefit from the possibility of

exploring all ontologies at once, thus comparing them in a straightforward manner,

rather than explore one ontology at a time, and try to compare the results of the

analysis at a later time.

In this Chapter, we present a method aiming at empirically extracting ontology

design patterns from ontologies, which may possibly support a pattern-based explor-

ation and understanding of a (domain-specific) corpus of ontologies, as a preliminary

step to different ontology engineering tasks including ontology reuse.

3.1 Motivation and problem addressed

There exist some solutions that aim at supporting users wanting to learn an onto-

logy, to inspect it, and understand its content. The ability of visualisations to give

an overview of a resource is something that a user could benefit from: an effective

visual overview can be already useful for users to have a quick understanding of

the concepts, relations and structure of an ontology and the domain it addresses.

However, while this result can be easily obtained with small (a few tens of classes)

ontologies, in the case of larger ontologies, for which a user particularly needs a

support in the exploration, a satisfying solution – including sophisticated visualisa-

tion and filtering techniques – has not yet been found [29]. Moreover, a user may

need, as a second step, to get to the details from the overview, while keeping the

context of the ontology: this is another challenge that none of the existing tools

attempted to solve yet [29]. Most tools use a node-link visualisation, a few of them

allow to choose different types of visualisation. As stated in [29], it seems that only

few developers of visualisation methods/tools have specific use cases in mind when

they design them. Indeed, no visualisations designed so far offer a solution to the

common use case of an ontology designer that needs to understand and compare

different ontologies at once, for learning, for instance, which one covers a specific

domain/modelling requirement, and with which specific ontology fragment.

Summarisation methods – those focused on the ontology level, rather than on

Chapter 3. Observing patterns from ontologies 49

the data level – can be useful for exploring an ontology too, and could be used as

input to visualisation tools. These methods return a summary of the ontology in the

form of a set of relevant classes (and possibly properties) from the source ontology

[73, 25]. The importance of a node in an ontology can be computed by applying

different measures (e.g. various types of centrality, density, popularity in search

engines, etc.). While summarisation methods can be useful for some individual use

cases and user goals (e.g. the user just needs to know which are the main entities

modelled in the ontology), they may not fit other needs, e.g. when a user wants to

understand all facts addressed in the ontology, not only the most important, without

having to inspect all ontology entities one by one.

For instance, we may identify, using a summarisation technique (e.g. the one

[69] is based on), that in an ontology on the cultural heritage domain the concepts

Cultural Object and Collection are key ones; however, we would not be able to

understand if that ontology allows to answer whether a cultural object has been

in a collection. Moreover, it can not be automatically inferred that two ontologies

address the same modelling problem only based on the fact that they have the same

key concepts.

For instance, an ontology O1 may model the relation of “being a member of a

collection” (membership) between an object and a collection, as an object property

hasMember with a class Collection as domain and a class Object as range, while

an ontology O2 may implement it as an n-ary relation, with the class Membership

related to its arguments: the classes Collection, Time, and Object (see Figure

3.1). These specific implementations of relations can be seen as empirical ontology

design patterns1 (EODPs) [34], intended as implemented modelling solutions that

can be empirically observed in actual ontologies or knowledge graphs, regardless

their correctness or quality level. EODPs may or may not be considered as – or

reuse – reference ontology design patterns (ODPs). Therefore, different ontology

fragments, i.e. the empirical ontology design patterns, may implement the same

1What we term here empirical ontology design pattern corresponds to what we termed observed

ontology design pattern in [4].

50 Chapter 3. Observing patterns from ontologies

relational structure across different ontologies. We name conceptual component (CC)

this complex, cognitive relational structure that an ontology engineer implements

in an ontology as a set of ontology constructs (classes, properties, axioms, etc.).

In our previous example, as depicted in Figure 3.1, membership is the conceptual

component, implemented in different ways in two ontologies.

Figure 3.1: Implementations of the Membership CC from two different ontologies.

The notion of conceptual component takes origin from the concept of know-

ledge pattern presented in [38], which is in turn inspired by the concept of frame.

The intended meaning of frame across the different theories can be summarised as

“a structure that is used to organize our knowledge, as well as for interpreting,

processing or anticipating information” [38]. Conceptual components are cognitive

objects: they are the intensional counterparts of RDF/OWL implementations in

ontologies of the semantic web2. If we are able to extract a number of conceptual

components from an ontology, or a corpus of multiple ontologies, we have an in-

dication of which types of facts, rather than which types of concepts/relations, an

ontology (corpus) can represent. So, CCs provide a complete overview of the content

of an ontology. Then, from this kind of summary in the form of a set of CCs, the

user has access to all the EODPs that implement a specific CC, i.e. the modelling

solutions adopted in specific ontologies, which answer to one (or more than one)

competency question [46] and support specific inferences.

Available approaches for ontology summarisation, as well as other relevant meth-

2OWL has purely extensional semantics.

Chapter 3. Observing patterns from ontologies 51

ods for partitioning an ontology into modules, making it more easily explorable (see

Section 3.2), apply extractive techniques, meaning that the final summaries/modules

contain as selected nodes the exact classes or properties from the source ontology.

Instead, as part of the method presented in this Chapter, we apply a non-extractive

technique. Indeed, the conceptual components that our approach identifies from

a corpus of ontologies are not part of the original sources. After identifying the

EODPs from each ontology, we group them in semantically-meaningful clusters:

these clusters, as sets of EODPs from multiple ontologies, which are given a meaning-

ful name, are our conceptual components. They provide a conceptual classification

over the different implementations (the empirical ODPs) across various ontologies,

and by being linked to their implementations and being organised as a hierarchical

network, they may support understanding and comparison of the ontologies of a

corpus. This method addresses a task, i.e. the exploration and understanding of ex-

isting ontologies relevant to a user, that is preliminary to other ontology engineering

tasks, such as pattern-based ontology reuse, visualisation, matching and evaluation,

having a potentially strong impact on semantic web interoperability.

3.2 Related work

Ontology selection and understanding. General catalogues of ontologies (e.g.

vocab.org), catalogues of domain ontologies (e.g. BioPortal3 for biomedicine), ODPs

catalogues (e.g. ontologydesignpatterns.org), and semantic search engines (e.g. pre-

fix.cc) aim at supporting ontology selection and reuse. With these catalogues, users

can usually search individual ontology terms, but an actual comparison between mul-

tiple ontologies, e.g. for choosing the best one to reuse, is not supported. Moreover,

none of them support a pattern-based browsing or filtering, in order to e.g. select

the best ontology fragment that matches the user’s requirements.

Most ontology summarisation approaches, e.g. those cited in [73, 25], look for the

most important nodes (usually, classes) using centrality measures, such as between-

3https://bioportal.bioontology.org/

http://purl.org/vocab/
http://ontologydesignpatterns.org/
http://prefix.cc/
http://prefix.cc/
https://bioportal.bioontology.org/

52 Chapter 3. Observing patterns from ontologies

ness or PageRank, and other measures, e.g. the popularity intended as the norm-

alised number of results returned by a search engine with a concept as keyword, as

in [60]. Alternatively, they extract relevant subgraphs to support the querying and

testing, aimed at validating requirements against available data. In both cases, by

generating a summary based on the most informative nodes [25], they do not give

an overview of possible less key, but still relevant, areas of an ontology. To the best

of our knowledge, our method is the first one that uses a pattern-based approach,

which has the advantage of providing an ontology designer with relevant ontology

fragments to reuse based on specific modelling issues.

Ontology partitioning. Modularisation approaches e.g. [2, 28, 41] take as

input a single ontology and return non-overlapping, consistent modules, which, if

combined together, form the original ontology [28]. These methods are mainly based

on logical and structural modularisation, and no additional insight about the content

of the modules is provided, so that each module should be looked into in order to

understand if it does satisfy a specific modelling requirement. On the contrary, each

cluster of EODPs (each CC) is given a name, a description, and each EODP is

accompanied by a diagram.

Complex ontology matching. Complex ontology matching consists in the

generation of complex alignments, i.e. alignments that contain at least one entity

that is a complex expression, on which a constructor or a transformation function

has been applied [87]. [33] proposed a pattern-based approach to this task, which

also provides a formalisation of the common structure of two (or more) aligned pat-

terns, which could be a potential logical characterisation of CCs. Our method may

be the basis to novel approaches or implementations to address the complex onto-

logy matching task.

Patterns discovery. Ontology patterns discovery consists in discovering struc-

tures repeating frequently. [66] proposes a clustering of repetitive structures of ax-

ioms, and then tries to generalise them. Instead, our method starts from detecting

dense communities in ontologies, and as a second step clusters them based on their

Chapter 3. Observing patterns from ontologies 53

vocabulary. The method by [58] investigates axiom patterns frequently recurring

in ontologies, by proposing a tree-mining method: it first transforms ontology ax-

ioms in a tree shape and then uses association analysis to mine co-occurring axiom

patterns, which may indicate emerging ODPs. However, this method does not take

into account inferences, nor the influence of the vocabulary in the process.

3.3 Input ontology corpora

As previously explained, our method takes an ontology corpus as an input (which

may even consist of a single ontology) for extracting the EODPs from the source

corpus and grouping them in CCs. For our experiments, we used two corpora on

two different domains as an empirical basis.

3.3.1 Cultural Heritage ontology corpus

The first corpus consists of 43 Cultural Heritage (CH) ontologies4 that we have

collected.

There are two main motivations for choosing this domain: (i) as clarified in Sec-

tion 2.2, we have direct experience in modelling CH ontologies and have previous

knowledge about existing ontologies on CH, and (ii) the requirements of CH onto-

logies are usually quite complex (as demonstrated in the case of ArCo ontology),

hence we hypothesise that CH ontologies represent a good testbed from which to

try to generalise our method. Indeed, cultural heritage consists of many differ-

ent types of cultural properties (e.g. archaeological, numismatic, musical, etc.), all

sharing some features (e.g. location, author), but each one also with distinguish-

ing features, not shared with other types (e.g. the legend on a specific side of a

coin), which can involve different levels of representation [20]. As for these features,

there are at least three levels of representation [20]: (i) the inherent attributes of

a cultural property, e.g. its material(s) and measures; (ii) the cataloguing process,

4https://github.com/stlab-istc-cnr/conceptual-components/tree/main/

conceptual-components-extraction/corpora

https://github.com/stlab-istc-cnr/conceptual-components/tree/main/conceptual-components-extraction/corpora
https://github.com/stlab-istc-cnr/conceptual-components/tree/main/conceptual-components-extraction/corpora

54 Chapter 3. Observing patterns from ontologies

aimed at recording pieces of information which describe a cultural property; (iii) the

interpretation of this information based on certain criteria for further knowledge ex-

traction. Moreover, there are many different domains that are related to the already

vast domain of CH (e.g. geology for archaeological properties, chemistry for anthro-

pological materials). Additionally, there are various cultural institutions, such as

galleries, libraries and archives, describing various cultural entities, each providing

possible different views on them and adopting different classifications and termin-

ologies. Based on these premises, we believe that ontologies from the CH domain

provide us with an adequate level of complexity and variety – wrt both the content

and the vocabulary – that make our method generalisable to other domains.

Ontologies that specifically focus on related domains (e.g. geometry, chemistry)

and top-level ontologies have been left out from the corpus. To select the ontologies

we used two main sources: an online catalogue of ontologies, and an online survey.

Queries on LOV. Linked Open Vocabularies Repository (LOV)5 is a repository

of ontologies. In this repository, each ontology can be assigned one or more topical

tag. We analysed and searched the Vocabs section of LOV by filtering the results

with tags related to cultural heritage (such as Catalogs, FRBR, Metadata).

Online survey. Furthermore, we published a call to fill a Survey6 and dissem-

inated it on 3 mailing lists related to cultural heritage and ontology engineering,

and on social medias: the survey was filled in by 40 people, and most of them were

researchers. The survey required the users to (i) check the ontologies that they

already knew, choosing from the list of ontologies that we selected from LOV; (ii)

recommend other possible ontologies not included in the list; (iii) specify in which

ontology projects they had used any of those ontologies, if any. Almost all ontologies

were known by at least one participant, and four ontologies on the cultural heritage

domain have been recommended from the users, and then added to our corpus. For

each ontology, we retrieved the latest version available to be included in the corpus.

Four of them are not monolithic ontologies, but ontology networks, i.e. they are

5https://lov.linkeddata.es
6https://t.co/ghwk6lxCOH?amp=1

https://lov.linkeddata.es
https://t.co/ghwk6lxCOH?amp=1

Chapter 3. Observing patterns from ontologies 55

composed of multiple modules: we treat each networked ontology as one ontology.

When we do not encounter any issues related to import or inconsistency, we include

the inferred version of the ontologies, i.e. the version with materialised inferences.

We generate the inferred version using the OWL API7 and the HermiT Reasoner8.

For 10 ontologies we were not able to generate the inferred version, thus we include

the asserted version.

The resulting CH corpus (see Table 3.1) counts a total number of 2,707 classes (with

rdf:type owl:Class or rdfs:Class), with an average of ∼63 classes per ontology.

As for the properties (both object properties owl:ObjectProperty and datatype

properties owl:DatatypeProperty, rdf:Property), they are 9,132 in total, with

an average of ∼212 per ontology. The total number of logical axioms is 26,392, with

an average of ∼613 per ontology.

3.3.2 Conference ontology corpus

For the second corpus, we rely on the dataset of the Conference evaluation track9 of

the OAEI 2020 campaign (Conf for short). OAEI (Ontology Alignment Evaluation

Initiative) is a coordinated international initiative, whose main objectives are as-

sessing strengths and weaknesses of alignment/matching systems, comparing their

performances, helping improve evaluation techniques of such systems. The means

to achieve these goals include the organization of a yearly evaluation event, where

different datasets of ontologies are used as testbed. The Conference corpus contains

16 ontologies10 on the specific domain of conferences, which is less vast than CH but

has, in any case, a good range of subtopics and related domains (e.g. travel, price).

The total number of classes within the corpus is 851 (cf. Table 3.1), with an average

of ∼53 classes per ontology; the total number of properties is 714, with an average

of ∼44 properties per ontology. In this case, it was possible to compute the inferred

7https://github.com/owlcs/owlapi
8http://www.hermit-reasoner.com
9http://oaei.ontologymatching.org/2020/results/conference

10https://owl.vse.cz/ontofarm/#ontologies

https://github.com/owlcs/owlapi
http://www.hermit-reasoner.com
http://oaei.ontologymatching.org/2020/results/conference
https://owl.vse.cz/ontofarm/#ontologies

56 Chapter 3. Observing patterns from ontologies

Table 3.1: Corpora of ontologies: statistics

Dataset # ontologies # logical axioms # classes # properties

tot avg min max tot avg min max tot avg min max

CH 43 26,392 ∼613 16 1,060 2707 ∼63 5 539 9132 ∼212 6 4324

Conf 16 4097 ∼256 65 739 851 ∼53 14 140 714 ∼44 17 78

versions of all 16 ontologies. The total number of logical axioms is 4,097, with an

average of ∼256 axioms per ontology.

3.4 Approach

Our approach is summarised in Figure 3.2. The intuition our method is based on

is that ontologies are designed, in an either intentional or unintentional way, as

compositions of conceptual components, i.e. they offer solutions to some abstract

modelling issues. Indeed, these conceptual components are implemented by (empir-

ical) ODPs (EODPs). EODPs are the adopted modelling solutions, in the form of

ontology fragments, i.e. sets of ontology entities (classes and properties, along with

axioms).

Our hypothesis is that these EODPs can be observed based on their distinctive

vocabulary and the high density of their internal connections. Specifically, their

vocabulary shows a semantic coherence with the relational meaning they represent,

i.e. the combination of words used for describing an EODP (through local names

and labels of classes and properties) evokes that relation. For example, in an EODP

addressing the Membership relation, a possible vocabulary may include terms such

as collection, is member of, has member, has unifying property, which can be easily

traced back to the membership concept. Moreover, we can hypothesise that the

density of the connections (edges) inside the specific ontology fragment (EODP) is

higher than the density of the connections between different EODPs. For example,

let us consider an ontology that represents the address of an object as a class Address

related to four arguments: the object located at that address, the city of the address,

Chapter 3. Observing patterns from ontologies 57

Figure 3.2: Approach for conceptual components extraction.

the street and number, and the postal code. The class Address, the four arguments,

and the properties that relate the main class to its arguments, form altogether

an EODP Address. Let us imagine that the same ontology also includes another

EODP Event, modelling events, their participants and other attributes (e.g. time,

place). The connections between the entities included in the Address EODP, and

the connections between the entities involved in the Event one, will be denser than

the connections across Address and Event. This is a topological phenomenon that

can be recognised by community detection algorithms, such as [27].

Our method, depicted in Figure 3.211, detects the communities from each on-

tology of a corpus of multiple ontologies (cf. Section 3.4.2), after a pre-processing

step that generates what we call an intensional ontology graph for each ontology (cf.

Section 3.4.1). Each community corresponds to a potential empirical ODP. Then,

we recreate the OWL/RDF12 fragment corresponding to a community (the actual

EODP), extracting from the original ontology the ontology entities and axioms in-

11In the Figure, one owl-logo means that the process works on one ontology at a time, two

owl-logos that it works on the whole corpus.
12OWL ontologies, RDF vocabularies.

58 Chapter 3. Observing patterns from ontologies

volved in that community. Additionally, from each community we also generate a

virtual document, intended as a bag of words built through the concatenation of the

vocabulary terms describing its entities (e.g. the values of the property rdfs:label).

Each virtual document undergoes a disambiguation process and a frame detection

step, and all documents are then given as input to a clustering algorithm (cf. Sec-

tion 3.4.3). Each cluster that we obtain groups different communities (i.e. EODPs),

potentially coming from different ontologies of the corpus. Based on our assump-

tions, each cluster corresponds to an empirically extracted conceptual component,

and each EODP related to it is one of its possible OWL/RDF implementations.

Each cluster is given a name based on some heuristics. Finally, the exploration of

the ontology corpus based on its conceptual components and EODPs is supported

by the generation of a catalogue, which provides an indexed summary of the whole

ontology corpus.

3.4.1 Intensional ontology graph

Most community detection algorithms manipulate undirected graphs, ignoring nodes

and edges labels and focusing instead only on the topological structure of a net-

work. Therefore, as a preliminary step, we transform the ontologies given in input

into graph structures that preserve as much as possible the pieces of information

about the formalisation of their conceptualisation, so that we can then have them

processed by a community detection algorithm. We call this intermediate graph

structure intensional ontology graph: it is a graph derived from an OWL/RDF on-

tology whose nodes correspond to the original classes and properties, and whose

edges specify meaningful relations between the nodes (e.g. two classes, or a class

and a property). Informally, with this graph we encode the intensional level of the

ontology. The formal rules that we defined to translate an ontology to the respective

intensional ontology graph are presented in Listing 3.1. With the notation edge label

(source label, target label), we indicate a pair of nodes source label, target label that

are connected by the edge edge label, in the intensional graph. To indicate undirec-

ted and unlabelled edges we use no label. A rule is a set of premises, expressed in

Chapter 3. Observing patterns from ontologies 59

(a) Two EODPs from the CH corpus.

(b) Intensional graphs corresponding to the OWL EODPs in 3.3a.

Figure 3.3: Example of OWL EODPs and their corresponding intensional ontology

graphs. Blue rectangles indicate object properties, green rectangles data properties.

turtle syntax, and a conclusion, expressed with the introduced notation, that follows

the symbol “→”.

Frame 3.1: Transformation rules from an OWL/RDF ontology to its corresponding

intensional graph.

(r1) : p r d f s : domain : d . : p r d f s : range : r . → : p (: d , : r)

(r2) : c1 r d f s : subClassOf | owl : equ i va l en tC la s s [

owl : onProperty : p ;

owl : someValuesFrom | owl : al lValuesFrom | owl : hasValue |
owl : maxCardinal ity | owl : minCardina l i ty | owl : c a r d i n a l i t y : c2]

60 Chapter 3. Observing patterns from ontologies

→ : p (: c1 , : c2)

(r3) : p (: n1 , : n2) → no−label (: n1 , : n1−p−n2) no−label (: n1−p−n2 , : n2)

Given an ontology O, the first rule (r1) generates an edge :p linking two nodes, :d

and :r, for all properties that have domain :d and range :r. We do not consider

domain/range declarations that involve blank nodes. We assume that properties

that do not specify their domain/range have owl:Thing as domain/range. Existen-

tial, universal, and cardinality property restrictions on classes generate an edge :p

between the class local to the restriction and the class in the restriction expression

(r2). We ignore all class expressions, that is we only consider restrictions involving

named classes or datatypes. We empirically verified on our corpora that the loss

of information and the impact of ignoring class expressions is almost insignificant:

only 1.62% of subClassOf/equivalence axioms and 5.42% of domain/range axioms

involve class expressions in the CH corpus, while 1.48% of subClassOf/equivalence

axioms and 9.22% of domain/range axioms involve class expressions in the Conf

dataset.

Hierarchical and equivalence relations between classes and properties are left

out of the intensional graph, to avoid merely taxonomic patterns, but they are

reintroduced when the OWL/RDF EODPs are retrieved (cf. Subsec. 3.4.2).

By applying rules (r1) and (r2), we obtain a labelled multi-graph, that is a graph

having multiple labelled edges. The last rule (r3) translates the intensional graph

resulting from (r1) and (r2) to the corresponding unlabeled and undirected graph,

that is the input needed to the chosen community detection algorithm. For each

edge :p between two nodes :n1 and :n2, rule (r3) generates two unlabelled edges.

The first edge connects n1 to a new node :n1 − p − n2, the second edge connects

:n1−p−n2 to :n2. The node :n1−p−n2 represents the meaning of the property :p,

contextualised to its use for connecting :n1 and :n2. This maximises the quality of

the detected communities. Indeed, communities extracted with community detec-

tion algorithms are disjoint, hence if we only store information about a property :p,

this property will only end up in one community. However, a same property :p may

Chapter 3. Observing patterns from ontologies 61

be relevant to different contexts (and EODPs), and these contexts are captured by

its local usage, i.e. the predicates it connects. With this representation we enable

overlapping communities, which is crucial to capture entities that are relevant to

multiple patterns.

We transform each ontology included in the two corpora into its intensional

ontology graph. Figure 3.3 shows two EODPs (in 3.3a) from POSTDATA (on the

left) and CIDOC CRM (on the right) and their corresponding intensional graphs13

(in 3.3b).

3.4.2 Community detection

Community detection gathers the nodes of a network into groups, in a way that

there is a higher density of edges within groups than between them. For detecting

the communities from each ontology, we use the Clauset-Newman-Moore algorithm

[27]. This community detection algorithm is based on the greedy optimization of the

modularity, i.e. a measure of how much the computed division is good, based on the

ratio between the number of edges inside the communities and the number of edges

between them. At the first step, there are as many communities as the nodes, where

each node is the only member of its own community, then the two communities that,

if merged, most increase the modularity, are repeatedly joined, until it is no longer

feasible to merge communities without decreasing the modularity.

After running this algorithm on the intensional ontology graphs, we observed

that there is a significant difference in the density of the detected communities,

and that many communities having a lower density could be further split into more

meaningful sub-communities. Based on our experiments, we found that recursively

running the algorithm on communities with a density lower than the average density

of all communities detected at the previous step, would improve the results. There-

fore, we modified the algorithm such that it would behave in this way, until there is

13pd: http://postdata.linhd.uned.es/ontology/postdata-core# tr: http://postdata.linhd.

uned.es/ontology/postdata-transmission# dates: http://postdata.linhd.uned.es/ontology/

postdata-dates# crm: http://www.cidoc-crm.org/cidoc-crm/

http://postdata.linhd.uned.es/ontology/postdata-core#
http://postdata.linhd.uned.es/ontology/postdata-transmission#
http://postdata.linhd.uned.es/ontology/postdata-transmission#
http://postdata.linhd.uned.es/ontology/postdata-dates#
http://postdata.linhd.uned.es/ontology/postdata-dates#
http://www.cidoc-crm.org/cidoc-crm/

62 Chapter 3. Observing patterns from ontologies

no community that can be split further.

OWL/RDF EODPs. The community detection step generates communities

as sets of nodes. In order to obtain the actual empirical ODPs, and to better

study and present their structure and content, we retrieve the OWL/RDF ontology

fragments that contain the original nodes, both classes and properties. To define

what to include and determine their boundary, we use the following heuristics: for

each node in the community (both classes and properties), we retrieve the triples

that assert its type(s). As for properties, we include domain and range axioms,

inverse properties, super-properties and equivalent properties. As for the classes, we

retrieve all super- and equivalent classes, and all restrictions that involve at least

one property that is inside the community. Figure 3.4 depicts the sets of nodes

retrieved from the two communities depicted in Figure 3.3b (from POSTDATA and

CIDOC)14.

As it can be noticed, these communities almost perfectly overlap with the onto-

logy fragments in Figure 3.3a.

Figure 3.4: Example of communities detected from two ontologies of the CH corpus.

14Arrows mean consecutive steps.

Chapter 3. Observing patterns from ontologies 63

3.4.3 Clustering and catalogue generation

Communities are detected based on the topological features of the intensional graphs.

We hypothesise that each community identifies an EODP. The vocabulary used in

an ontology (pattern) – e.g. through labels – contributes, along with formal con-

structs, to define the relational meaning(s) represented by that ontology (pattern).

We believe that the terms in their vocabulary will contribute to evoke the relational

meaning captured by these EODPs. These relational meanings correspond to (pos-

sible specialisations of) the conceptual components that we are trying to extract.

Since we start from a corpus of multiple ontologies, if we cluster all communities

from the corpus according to their vocabularies, we may identify CCs that group

together EODPs across all ontologies.

Clustering input. We generate a virtual document corresponding to each com-

munity by the concatenation of all rdfs:label values from the entities included in

the community. We take all English terms in the labels and, when no label is

present, we extract and use the local ID. We remove the repetitions and do not

consider comments, since in many cases they may introduce noise, e.g. if they con-

tain long explanations with examples. Entities with namespaces owl:, rdf:, rdfs:

and xsd: are excluded from the virtual documents. At this point, we disambig-

uate all virtual documents by using the UKB15 Word Sense Disambiguation tool,

which is based on WordNet (English) version 3.016. Then, we query the profile B

of Framester17, a knowledge graph that links many linguistic resources (including

WordNet and FrameNet18), in order to extract all FrameNet frames that have a

close match with (i.e. are evoked by) the synsets of the virtual documents, and we

enrich the documents with such frames. We also exploit the hierarchy of frames to

include additional, more general frames. As a result of this step, each community

is represented by the concatenation of all the synsets and frames that have been

retrieved.

15https://github.com/asoroa/ukb
16https://wordnet.princeton.edu/
17https://github.com/framester/Framester
18https://framenet.icsi.berkeley.edu/fndrupal/

https://github.com/asoroa/ukb
https://wordnet.princeton.edu/
https://github.com/framester/Framester
https://framenet.icsi.berkeley.edu/fndrupal/

64 Chapter 3. Observing patterns from ontologies

Figure 3.5: Virtual document disambiguation, frame detection and clustering on

the communities from Fig. 3.4.

Figure 3.519 shows the synsets and frames included in the virtual documents of

the two communities depicted in Figure 3.4.

Clustering. At this point, we cluster the virtual documents of the communities,

using the K-Means algorithm [62] and the elbow method. K-Means is a general-

purpose clustering algorithm that has been tested in different application areas and

domains [92]. K-Means splits the observations into a predefined number of k disjoint

groups, defining, after a number of iteration, k centroids, one for each cluster.

The resulting conceptual components, i.e. the clusters, are placed in a hierarchical

network. To define hierarchical relations between them we use inheritance relations

existing between FrameNet frames.

Given a cluster c, we indicate with F (c) the set of frames associated with c. Two

clusters c1 and c2 have a hierachical relation r(c1, c2), with an associated weight w,

if at least one frame f1 ∈ F (c1) inherits from at least one frame f2 ∈ F (c2). We

indicate with max the maximum number of inheritance relations between frames

that occur between two clusters of the network. The weight w reflects the strength

of r(c1, c2) and is computed in the following way. Given two clusters c1 and c2, the

strength w of r(c1, c2) is the sum of the frames in c1 that are subsumed under at

19wn30: https://w3id.org/framester/wn/wn30/instances/ frame: https://w3id.org/framester/

framenet/abox/frame/

https://w3id.org/framester/wn/wn30/instances/
https://w3id.org/framester/framenet/abox/frame/
https://w3id.org/framester/framenet/abox/frame/

Chapter 3. Observing patterns from ontologies 65

least one frame in c2, divided by max. The values for w ranges between 0 and 1

[0,1].

Naming conceptual components. To automatically associate a meaningful

name with each cluster, which aims at giving a name to the conceptual component,

we derive a label, which is manually checked, from the most frequent synsets and

frames that belong to the cluster, i.e. we count how many times a same synset or

frame is included in the virtual documents belonging to a cluster, i.e. the number of

repetitions. Additionally, each cluster is accompanied by a textual description that

merely concatenates all terms (coming from the labels or the local IDs) representing

its communities. This description is useful to better understand the more specific

concepts included in the empirical ODPs grouped by a cluster. For example, the

communities in Figure 3.5 end up in the same cluster, which is given the name

Event : the most frequent frame within the cluster (41 times from 21 communities

that belong to 13 different ontologies). The description indicates that the ontologies

implementing the Event conceptual component cover different types of events (e.g.

cultural events, reproductions), and entities related to events, such as organisers,

time, etc.

Catalogue generation. The last step of the method (cf. Figure 3.2) gener-

ates a catalogue that connects and organises the input ontologies according to the

conceptual components that have been extracted from the whole corpus, and their

corresponding EODPs. From each CC in the catalogue is possible to access its as-

sociated EODPs that implement it within the ontologies. Therefore, the catalogue

classifies the ontologies based on the conceptual components that they implement.

We provide an HTML rendering of the catalogue20 included in the online package21,

generated from the CH corpus.

20https://stlab-istc-cnr.github.io/cc-and-odps-catalogue/
21https://github.com/stlab-istc-cnr/conceptual-components

https://stlab-istc-cnr.github.io/cc-and-odps-catalogue/
https://github.com/stlab-istc-cnr/conceptual-components

66 Chapter 3. Observing patterns from ontologies

3.5 Experiment and results

The overall time required for producing all results with our method is about 1h15m

for the CH corpus and 30m for the Conference corpus, using a commodity hardware:

specifically, we used a laptop (2,3 GHz Intel Core i5, 16GB of RAM).

Intensional graphs. The average number of nodes and edges of the intensional

graphs generated from the CH corpus is ∼165 and ∼217, respectively. For the Conf

corpus, they are ∼91 and ∼115. The intensional graphs keep an average of 47%

(CH corpus) and 54% (Conf corpus) of classes and 90% (CH corpus) and 87% (Conf

corpus) of object and datatype properties. The loss of information about ontology

classes is caused by the fact that the transformation rules from the ontology to the

intensional graph, as defined in Listing 3.1, are biased towards ontologies with rich

axiomatisation: ontologies that have poor axiomatisation are mostly affected by loss

of classes and properties. However, it is important to notice that this is also due to

the fact that all superclasses and superproperties are discarded in this step, while

they are all re-included when the EODPs are retrieved.

Community detection. The total number of communities detected is 1,300

from the CH corpus. Only in one case, that is for the RDA ontology, the algorithm

could not split the ontology in different communities. The ontology with the greatest

number of communities is ArCo (363 communities). The average number of com-

munities per ontology is ∼30. As for the Conf corpus, from 16 ontologies our al-

gorithm detects a total of 419 communities, with an average of ∼26 communities

per ontology. The minimum number of communities per ontology is 8, while the

maximum is 83.

Clustering. We convert the virtual documents in numerical feature vectors and

apply tf-idf in order to discard too frequently occurring tokens. Our setting ignores

terms that have a document frequency higher than 90%, while a minimum value

was not specified. To evaluate the optimal number of clusters k for our data, we

used the elbow method and we run the algorithm with a fixed number of 100 (CH

Chapter 3. Observing patterns from ontologies 67

Table 3.2: The number of hierarchical relations among clusters per level of strength.

Strength levels

0.0 0.1 0.2 0.3 0.4

tot max avg tot max avg tot max avg tot max avg tot max avg

CH 6644 91 69.2 813 66 8.4 274 42 2.8 114 30 1.18 58 22 0.6

Conf 2000 47 25.9 572 30 7.4 260 25 3.3 133 15 1.72 63 11 0.8

dataset) and 81 (Conf dataset) clusters, as a result of the elbow method. Being

K-Means nondeterministic, we set the random state parameter to a commonly used

integer value (42), so that our cluster assignments is reproducible.

For the CH corpus, the average number of communities per cluster is 13, with

a maximum of 111, and a minimum of 3. Each cluster includes communities that

come from an average of ∼4.5 different ontologies. 11 clusters contain communities

coming only from one ontology. 88 clusters group an average of ∼15 communities

that belong to a range between 2 and 10 different ontologies. 1 cluster includes 111

communities from 26 different ontologies.

As for the Conf corpus, the average number of communities per cluster is 5.17, with

a maximum of 13, and a minimum of 1. The communities in each cluster belong to

an average of ∼2.6 different ontologies. 25 clusters include communities from the

same ontology, the remaining 56 clusters group an average of ∼7.2 communities that

belong to a range between 2 and 8 different ontologies.

Catalogue. Table 3.2 gives an overview of the number of hierarchical relations

among the clusters per level of strength (see Section 3.4.3). The strength levels

reported in the table are those used in the experiments. For each level l, it is

indicated the total, maximum and average number of relations having a strength

≥ l.

68 Chapter 3. Observing patterns from ontologies

3.6 Evaluation and discussion

3.6.1 Manual inspection of communities

A manual inspection of the communities, analysing both their structures and labels,

has been a preliminary step for assessing the quality and soundness of our results.

In the context of this analysis, we defined four categories of communities based on

their quality: bad, medium, good, ideal. A community is bad if it can belong to

more than two CCs: this means that it lacks a conceptual coherence, it actually

addresses different (more than two) modelling problems, and this is usually due to

an implementation (i.e. the EODP) that is poorly axiomatised. For instance, a

community from the Conf corpus contains 27 heterogeneous properties (e.g. created

by and has conflict type), and these properties, in the original ontology, are not

involved in any kind of restriction, e.g. domain or range. As another example, a

community from the CH corpus includes unrelated properties that have the same

domain and the same range (xsd:string). In these cases, the topology did not

help to identify significant modules, while an analysis of the vocabulary highlighted

the presence of different conceptual areas. The detection of bad communities, along

with good ones, may be a useful result for evaluating the quality of an ontology.

A community has medium quality if it can belong to (not more than) two different

CCs. A community is good if it can be assigned to exactly one CC, but includes a

maximum of 20% intruders entities (i.e. ontology entities that are incoherent with

respect to the others, and the conceptual component). An ideal community has less

than 20% intruders.

About 8% of communities in both the CH and Conf ontologies are bad. ∼7% (CH)

and ∼3% (Conf) have medium quality, ∼17% (CH) and ∼5% (Conf) are good, while

the majority of the communities of both corpora (∼67% for the CH corpus, ∼84%

for the Conf corpus) have an ideal level of semantic coherence. As an example, see

the two implementations of the CC Event presented in Figure 3.5.

Let us take two additional examples from the two corpora. A community from the

Conf dataset (extracted from the cmt-2 ontology) identifies an EODP modelling the

Chapter 3. Observing patterns from ontologies 69

fact of being a member of a conference: it includes the two (explicitly declared)

inverse binary relations and the concepts conference and conference member, which

are, respectively, their domain and range. A CH community from CIDOC CRM

implements an EODP for capturing that an object changed its ownership: it contains

the core concept acquisition (crm:E8 Acquisition), and the classes and properties

modelling the physical entity involved and the actors that acquired and surrendered

the title over it. By inspecting the EODP, and the original ontology, we found that

all properties in this fragment have domain and range restrictions; however, inverse

relations between object properties are not asserted.

3.6.2 Clustering: similarity

For a first assessment of the quality of the clusters, we computed a pairwise similarity

among them. In particular, we chose to adopt the Overlap Coefficient22, which is

commonly used in data mining techniques, for measuring the overlap between the

sets of synsets and frames of a pair of clusters. This score shows how similar two

clusters are, and its values ranges from 0.0 (i.e. dissimilar) to 1.0 (i.e. similar). We

can conclude that, on average, the clusters of both corpora score very low (0.20 for

CH and 0.17 for Conf): this indicates a good quality of the clusters.

3.6.3 Clustering: manual inspection

The clusters that have been extracted from both corpora identify a wide range of

different conceptual components, with different levels of abstraction. There are some

general conceptual components, such as Event, Categorization, Membership, and

Intentionally act, that emerge from both corpora. CCs common to different corpora

can support the interoperability between ontologies addressing different domains.

Other components are instead more peculiar to the specific domain: for instance,

Performing arts, Measurement and Attribution from the CH corpus; Submitting

documents, Respond to proposal, Award from the Conf corpus. By inspecting a CC,

22https://en.wikipedia.org/wiki/Overlap coefficient

https://en.wikipedia.org/wiki/Overlap_coefficient

70 Chapter 3. Observing patterns from ontologies

it is possible to compare implementations (EODPs) from different ontologies and

choose the one, if any, that best fits our requirements. For example, for a user

that needs to model the acquisition process of a cultural property, there would be

two candidate reusable EODPs, one from the CIDOC CRM ontology and one from

ArCo. These two implementations of the CC Acquisition partially overlap: ArCo

addresses the acquisition place and time too, while it does not represent the new

owner, which is instead included in the CIDOC EODP.

In both corpora, there are some clusters that could be either split or merged. On

the one side, if no frames/synsets clearly emerge from a cluster, it may be a signal

that it is actually grouping different conceptual components. On the other side, the

emergence of the same frame(s) as the most frequent in different components (thus,

these CCs will be given the same name) may indicate that they could be merged,

or that they are a specialisation of the same conceptual component: looking at less

frequent frames and at their hierarchical relations could clarify this.

3.6.4 Evaluation against an ontology engineering task

Along with this manual evaluation, we evaluate our method by also analysing our

results in the context of the ontology matching task, which is one of the ontology

engineering tasks our work may have an impact on. While this is an indirect evalu-

ation, we believe it is useful for assessing the quality of our method.

The hypothesis behind this evaluation is that, given a pair of ontology entities

that should be aligned, through subsumption or equivalence, these entities should

belong to either the same cluster or two hierarchically related clusters. Considering

that a cluster groups EODPs from different ontologies based on their close semantics,

a human or artificial agent performing ontology alignment activities on a corpus of

ontologies, can start the identification of entities that should be aligned by looking

within a same cluster or following strong hierarchical relations between clusters. The

question we want to answer with this evaluation is whether a good number of these

alignments can be identified with our approach.

Chapter 3. Observing patterns from ontologies 71

We rely on three sets of alignments to compare our results: (i) a set AA of

224 asserted and curated alignments (1 equivalence and 223 subsumptions) from

the CH corpus; (ii) a set AML of 237 alignments (all equivalences) generated by

AgreementMakerLight [30], which proved to be the best ontology matching tool in

most of the OAEI 2020 tracks, for all pairs of ontologies included in the CH corpus;

(iii) a dataset CA of 224 alignments on the Conf corpus (all equivalences) that has

been used as a gold standard in the OAEI 2020 conference track23.

The AML dataset annotates each alignment with a confidence score cs, while

for the CA and AA datasets we assume that cs is equal to 1 for all alignments. We

introduce AML.90 ⊆ AML and AML.99 ⊆ AML which are the sets containing the

alignments having a confidence score ≥ 0.9 and ≥ 0.99, respectively.

To measure the quality of our results, we want to verify whether, given a set of

alignments A, the pairs of entities belonging to A are assigned to a same cluster or

to related clusters, with the same cs provided for that alignment. For example, if

a pair (e1, e2) belongs to AML with a confidence score cs = 0.98, then we assume

that AML would assign (e1, e2) to the same cluster or to two related clusters with

cs = 0.98. Finally, we define the sets D, I, H and E to provide an interpretatio

of the results of our method. Given a set of entity pairs D from the alignment in

AA, CA or AML, we introduce: (i) the set I ⊆ D as the set of entity pairs in D,

that are member of the same clusters; (ii) H ⊆ D as the set of entity pairs that

belong to hierarchically related clusters; and (iii) E := I ∪ H. Hn (and, similarly,

En) indicates the set of entity pairs that belong to two clusters related with strength

l ≥ n. We remind that n = [0,1] is the strength of the hierarchical relation between

two clusters.

We introduce the measure corr (see the Formula 3.1) in order to compute the

correlation between the alignment sets and the results of our method. Given two

sets of entity pairs A and B, where each pair is associated with a confidence score

cs(ei, ej), we define corr(A,B) as the sum of all cs of the alignments in A divided

23http://oaei.ontologymatching.org/2019/conference/data/reference-alignment.zip

http://oaei.ontologymatching.org/2019/conference/data/reference-alignment.zip

72 Chapter 3. Observing patterns from ontologies

Table 3.3: Correlation between reference alignments (AA, CA, AML, AML.90 and

AML.99) with the sets I, E, E0.1, E0.2, E0.3, E0.4.

Alignments I E E0.1 E0.2 E0.3 E0.4

AA .21 .99 .64 .46 .34 .32

AML .47 .99 .77 .64 .58 .56

AML.90 .46 .99 .77 .64 .57 .55

AML.99 .51 1.0 .75 .63 .60 .57

CA .27 .76 .51 .43 .36 .35

by the sum of all cs in B, that is:

corr(A,B) =

∑
(ei,ej)∈A

cs((ei, ej))∑
(ei,ej)∈B

cs((ei, ej))
(3.1)

The cs associated with the alignments of AA and CA is 1.0. The correlation ranges

from 0.0 (which means no correlation) to 1.0 (that is strong correlation). The entity

pairs from our method inherit the cs value from the comparing set. Intuitively, corr

results from the computation of the ratio between the pairs that should be aligned

and the pairs that belong to the same or to two related clusters. Table 3.3 reports

the value of corr computed for comparing AA, CA, AML, AML.90 and AML.99 (the

testing sets) with the sets I, E, En, E0.2, E0.3, E0.4.

Discussion. Almost all cultural heritage entity pairs aligned in the testing sets

(corr ≥ .99) can be found either into the same cluster or in two related clusters,

a lower number for CA pairs (corr = .76) (see column E of Table 3.3). In the

worst case, all hierarchical relations between clusters are to be inspected (69.2/CH

and 25.9/Conf on average per cluster). This task may sound inconvenient to be

performed manually, however we remark that an entity-to-entity analysis of the on-

tologies in the two corpora would require the inspection of 43 ontologies (CH corpus)

and 16 ontologies (Conf corpus) and, in the worst case, of 11839/1565 ontology en-

tities (classes and properties), respectively. An artificial agent, that is an ontology

alignment algorithm, may exploit our clusters and their hierarchical relations to be

Chapter 3. Observing patterns from ontologies 73

integrated in a method for ranking candidate pairs inside a corpus – at the moment,

ontology alignment tools only work with a pair of ontologies at a time. By setting

a threshold for l, i.e. by ignoring weaker hierarchical relations, the value of corr

decreases, but it remains reasonably good for the CH corpus until up to l = 0.3

(with only 1.18 average relations per cluster). With l = 0.4, it is possible to find up

to 57% of the most precise alignments (AML.99) by looking into entities belonging

to the same clusters. As for AA, the performance is the worst in our experiment

e.g. for column I. To better understand this result we run AgreementMakerLight

on the CH corpus and compared its results against AA (that are curated alignments

asserted in the ontologies). Only 1.5% of the alignments are identified. Our ap-

proach does not aim to identify alignments, therefore we cannot claim to perform

better than AgreementMakerLight, however we believe that this result (see Table

3.3), as compared to this extremely bad performance, supports our hypothesis that

clusters and their relations may be exploited to improve the performance of ontology

alignment algorithms.

3.6.5 The ArCo use case

In this Section, we use the ArCo ontology network as a use case for evaluating our

communities and clusters involving ArCo ontological entities. Indeed, as already dis-

cussed in Section 2.2, this ontology we contributed to has been explicitly developed

following a pattern-based methodology, and is richly documented. This evaluation

shows that (i) our catalogue of CCs could contribute to support the identification

of ontology fragments (EODPs) that address specific competency questions, hence

possibly easing the ontology selection and reuse process; (ii) the EODPs we detect

may suggest possible missing axioms in the input ontology (e.g. in the case of bad

EODPs), and integrations or possible modifications to the ODPs documented in a

top-down manner, thus possibly supporting evaluation/refactoring activities.

CQ-based evaluation. Competency questions, besides being a crucial means

for defining requirements and driving the design activities, can also be used to

document an ontology, making it clear which are the main requirements it addresses;

74 Chapter 3. Observing patterns from ontologies

this contributes to support an ontology designer that wants to understand, and

possibly reuse, such ontology.

In the context of the ArCo project, ArCo’s ontology design team has defined a set

of relevant competency questions the ontology network provides an answer to, along

with the respective SPARQL queries24. We use these CQs, and SPARQL queries,

to analyse how our catalogue of CCs would support the identification of the most

appropriate ArCo fragments to be looked into, and possibly be reused, for answering

any of these CQs. To this end, we generalised the CQs that were strictly related to

the data in the ArCo knowledge graph, such that they would include only elements

that are defined within the ontology, e.g. What are the complex cultural properties

which have a number of components greater than 2? becomes Which is the number of

components of a complex cultural property?. In this process, some CQs corresponded

to the same generalised CQ, thus we do not consider duplicates. Moreover, we split

CQs clearly including more CQs inside, e.g. What is the conservation status of the

cultural property X? Which interventions have been proposed?. We obtain a list of 43

competency question - SPARQL query pairs25. We consider as (i) totally supported

(TS) a CQ the answer of which can be found in one (or more than one) community

with ideal or good quality, and this community is included in one (or more than

one) CC, which groups coherent EODPs addressing the same modelling problem;

(ii) with a medium support (MS) a CQ the answer of which can be found in multiple

ideal or good communities, which are partly included in good CCs – intended as

explained in (i) – and partly included in bad CCs, as grouping partially incoherent

EODPs; (iii) with a low support (LS) a CQ the answer of which can be found in one

(or more than one) ideal or good community included in bad CC(s); and (iv) not

supported (NS) a CQ the answer of which can be hardly found, since it is included

in a community with a medium/bad quality, inside a bad CC.

24https://github.com/ICCD-MiBACT/ArCo/blob/master/ArCo-release/test/CQ/

CQs-SPARQLqueries.txt
25The 43 CQs, along with their evaluation, can be found here: https://github.com/

stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/

communities-manual-evaluation/evaluationCCs-ArCoCQs.xlsx

https://github.com/ICCD-MiBACT/ArCo/blob/master/ArCo-release/test/CQ/CQs-SPARQLqueries.txt
https://github.com/ICCD-MiBACT/ArCo/blob/master/ArCo-release/test/CQ/CQs-SPARQLqueries.txt
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluationCCs-ArCoCQs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluationCCs-ArCoCQs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluationCCs-ArCoCQs.xlsx

Chapter 3. Observing patterns from ontologies 75

28/43 CQs are totally supported : for instance, the competency question What

is the place and time of the exhibition which includes the cultural property X? is

addressed by one Empirical ODP, which is included in a CC named Event, grouping

together 21 EOPDs related to events. 2/43 CQs have a medium support. E.g., the

CQ When was the catalogue record about the cultural property edited or updated? is

addressed by two EODPs, one in a good CC named Event, the other in a wrong CC

about descriptions (Communicate categorization). As another example, What are

the dimensions of a photograph X? is answered by 3 EODPs, two of which are in the

appropriate CC named Measurement, while the third one is a CC named Statement.

11/43 CQs have a low support, e.g. the only EODP perfectly addressing the CQ

Who holds the copyright of a photograph X? is included in the Agent CC, which is

an example of cluster grouping together many incoherent EODPs. 2/43 CQs are

not supported : the property needed to address the CQ Which interventions have

been proposed? is included in a bad community, and this community ended up in a

cluster, named Locale, that actually groups together incoherent EODPs.

In conclusion, we can say that our catalogue of CCs would provide an important

support to retrieve the ontology fragments from ArCo addressing more than 65% of

the representative CQs of ArCo, and it would provide partial (medium) support for

2 additional competency questions. For 11 CQs, good EODPs addressing them can

be found, but in a wrong CC. Finally, for the remaining 2 CQs, it would be difficult

for a user to quickly find an appropriate ArCo’s EODP(s) answering them through

the catalogue.

Comparison between our empirical ODPs and ArCo’s top-down ODPs.

As a documentation activity related to the pattern-based methodology adopted,

ArCo’s ontology designers have manually catalogued, through graphical diagrams,

the main ontology design patterns implemented in the ontology network. We com-

pare these top-down defined patterns with the EODPs that we extracted with our

method from ArCo ontology network26, in order to understand how much the EODPs

26The results of this comparison can be found here: https://github.com/

stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/

https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx

76 Chapter 3. Observing patterns from ontologies

that we can automatically find match the actual intent of the ontology designers27.

ArCo’s ontology design team defined 43 relevant ontology design patterns in the

version 1.0 of the ontology network. Since we included ArCo 1.0 in our CH corpus,

we discarded 11 additional patterns included in later versions of the ontology.

These 43 patterns map to 110 distinct communities extracted from ArCo. On

average, one top-down defined pattern corresponds to 3 communities (max: 8; min:

1). Indeed, it can be reported as a first observation that these top-down ODPs tend

to be bigger than our communities, in some cases grouping together patterns that

seem to have been combined: for instance, the top-down ODP acquisition maps

to 2 EODPs, one including the acquisition situation and its involved entities (the

cultural property, the previous owner, the location, the time), the other including

the relation between the acquisition situation and its acquisition type (a possible

specialisation of a general type pattern).

We label as positive (P) an EODP whose entities (classes and properties) are

part of a single ArCo’s top-down ODP, as negative (N) an EODP including entities

that are reported as part of separate patterns from ArCo’s ontology design team28.

Out of the 110 EODPs corresponding to ArCo’s main patterns, 95 can be classified

as positive, and the remaining 15 as negative. An example of negative EODP is

one including the relationship between a cultural property and the collection it is

member of, along with the relationship between a cultural property and its estimate,

while the ontology design team defined two separate ODPs, one for the estimate,

one for the membership to a collection. 24/43 top-down patterns match to only

positive communities. Instead, only 2/43 top-down patterns match to only negative

communities.

In some cases, we include in our EODPs additional classes and properties that

communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
27The diagrams of the top-down defined ODPs of ArCo, along with the com-

munities mapped to them, can be found here: https://drive.google.com/drive/folders/1

2SsvtkyEoauv9HaAjQ71t31TvYFFrxC?usp=sharing
28We are designing an additional evaluation that, rather than using a binary classification of

EODPs, computes their percentage of coverage of classes and properties in the top-down ODPs.

https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://github.com/stlab-istc-cnr/conceptual-components/blob/main/conceptual-components-extraction/results/communities-manual-evaluation/evaluation-ArCo-patterns-EODPs.xlsx
https://drive.google.com/drive/folders/1_2SsvtkyEoauv9HaAjQ71t31TvYFFrxC?usp=sharing
https://drive.google.com/drive/folders/1_2SsvtkyEoauv9HaAjQ71t31TvYFFrxC?usp=sharing

Chapter 3. Observing patterns from ontologies 77

are not mentioned in ArCo’s top-down pattern diagrams: for example, the diagram

for authorship attribution does not include subclasses of AuthorshipAttribution

(CulturalScope, PreferredAuthorshipAttribution, and AlternativeAuthorship

Attribution), that correspond to 3 different communities, nor the property has

AuthorityFileCataloguingAgency. Moreover, ArCo’s top-down pattern diagrams

tend to overlook inverse properties.

It may also happen that our communities do not include properties and classes

that are depicted in ArCo’s patterns, however, this is always due to missing axioms

in the ontology. For example, the use pattern is depicted in one diagram, and

corresponds to 6 different EODPs. The diagram also includes the property hasUser,

which links the core class Use to the class Agent. However, unlike other properties,

the property hasUser is not included in any property restriction on the class Use,

and has owl:Thing as domain. Therefore, by considering the axioms in the ontology,

it would not be possible to automatically include the hasUse property in the use

EODPs: indeed, this property ends up in a bad community including a number of

properties with owl:Thing as domain and Agent as range.

Let us consider an additional example, the copyright pattern. The top-down

ODP (Figure 3.6a) corresponds to exactly one extracted EODP (Figure 3.6b). We

include in our EODP 3 out of a total of 6 properties included in the top-down

ODP, that is hasCopyright, hasCopyrightHolder, and expiryDate. However,

the hasAgentRole property, that we do not detect, is not included in any prop-

erty restriction on the class Copyright, and has owl:Thing as domain, so it is

not surprising we could not be able to include it. As for the other 2 proper-

ties we do not detect (hasAgent, and hasRole), they are actually part of an-

other top-down pattern, agent role. While in 3.6a the property hasCopyright

links the class CulturalProperty to Copyright, there is no property restriction

on CulturalProperty with the hasCopyright property, so in 3.6b hasCopyright

properly links owl:Thing to Copyright, based on the domain axiom on the property.

Finally, as it can be noticed, while 3.6a does not depict any inverse property, we also

include all inverse properties, that is isCopyrightOf, and isCopyrightHolderIn.

78 Chapter 3. Observing patterns from ontologies

(a) Top-down diagram of the ArCo’s Copyright ODP.

(b) Automatically extracted EODP corresponding to Copyright ODP.

Figure 3.6: Top-down ODP and Empirical ODP about copyright from ArCo on-

tology network.

As is made clear in the examples, this comparison of classes and properties

included in top-down patterns and our EODPs can support possible suggestions

about missing axioms to add to the core classes of the patterns. In some cases, the

detected EODPs may even highlight errors or oversights when manually creating

the graphical diagram. For example, in the diagram of the protective measure ODP

the properties noticeDate and openingNoticeDate have rdfs:Literal as range,

while in our corresponding EODP they have the range xsd:dateTime, as in the

source of the ontology. Hence, we hypothesise that our method could also support

the evaluation and refactoring of an ontology.

Chapter 4

Annotating patterns in ontologies and

knowledge graphs

A necessary next step to the extraction of patterns and conceptual components from

ontologies, and the consequent identification of portions of knowledge graphs that

populate those patterns, would consist in keeping track of the patterns extracted, so

that the presence of a specific pattern is made explicit, and can effectively contribute

to the interoperability between ontologies and knowledge graphs, supporting relevant

tasks such as ontology selection and reuse. An ontology annotated with the ontology

design patterns included in it – regardless of whether they have been intentionally

developed as patterns, or they are the result of a pattern-unaware modelling and

have been later extracted with a specific method – can be more easily explored

through its patterns. These patterns somehow summarise the way the ontology

addresses some modelling issues, and can be an input to ontology visualisation

tools. Similarly, knowledge graph exploration and visualization can benefit from

the annotation of instances of patterns. Moreover, when annotated with patterns,

ontologies can be aligned (thus, can be made interoperable) based on the patterns

they implement, and this annotation and alignment can happen at 3 different levels.

It can be annotated the ontology design pattern implemented inside the ontology,

as a set of classes, properties and axioms that propose a solution to a modelling

problem. Secondly, an ontology designer may annotate an ontology with all the

facts that ontology addresses (the conceptual components), irrespective of specific

80 Chapter 4. Annotating patterns in ontologies and knowledge graphs

RDF/OWL implementations as ODPs, that is annotating the ontology, and making

it comparable with other ontologies, at a more abstract level. Finally, pattern-based

interoperability can be reached even at the data level, by annotating the knowledge

graph with the sets of triples that altogether populate the patterns of the ontology

the KG is based on, enabling e.g. a visualization of the KG with a modular view

that would ease its inspection.

In this Chapter we present a language for annotating ontology design patterns

in ontologies and knowledge graphs.

4.1 Motivation

There are three main motivations to the development of a comprehensive language

for a pattern-based annotation of ontologies and knowledge graphs, that we present

in this Chapter.

Pattern. As already mentioned in previous chapters, a pattern-based ontology

engineering is based on the creation or reuse of ontology design patterns, which

are integrated in an ontology as small reusable components, following e.g. eXtreme

Design methodology [12, 10]. An ontology can be modelled following a pattern-

based approach since the start of the ontology project, or it can be refactored by

trying to reuse existing ODPs. As previously stated, patterns can be implemented

in an ontology even implicitly, e.g. by defining relations and classes that are com-

patible with an existing pattern. Annotating patterns (re)used within an ontology

eases the process of understanding and exploring, and possibly reusing, an ontology,

by making it explicit which sets of ontology entities are members of an ODP that

addresses a specific modelling issue, and by allowing to represent hierarchical and

other types of relations between related ODPs. Moreover, annotations can improve

the interoperability between ontologies reusing the same patterns (or generalisa-

tions/specialisations of the same patterns), when these patterns are annotated and

aligned.

Chapter 4. Annotating patterns in ontologies and knowledge graphs 81

Conceptual component. An ODP is a particular implementation of a model-

ling solution to a modelling problem, in the form of a small RDF/OWL ontology. An

ODP can be easily reused and integrated in a larger ontology that needs to address

the same modelling problem the pattern provides a solution for. However, there may

exist multiple ODPs that, in different ways, address the same modelling problem,

i.e. they are different solutions to the same modelling issue. As proposed in the

previous Chapter, this is where the idea of conceptual component comes into play.

We report again the example presented in the previous Chapter. Let us consider

the modelling problem “being a member of a collection”: it can be implemented as

(i) a binary relation hasMember between an Object and a Collection, or (ii) as an

n-ary relation Membership between the arguments Collection, Time, and Object

(see Figure 3.1). Therefore, (i) and (ii) are two ODPs that address, in different

ways and with different levels of expressiveness, the modelling issue of an object

that is member of a collection. An ontology O1 may reuse the ODP in (i), while an

ontology O2 may reuse the ODP in (ii): even if reusing different implementations,

the two ontologies are addressing the same modelling problem. An ontology can be

seen as a composition of conceptual components. If we annotate an ontology with

the conceptual components it addresses, and we relate the RDF/OWL implement-

ations to the respective conceptual components they implement, we may ease the

exploration of, and the interoperability between, ontologies at a more abstract level,

i.e. regardless of actual implementations.

Pattern instance. If one (or more than one) knowledge graph is built by re-

using an ontology, this knowledge graph will contain triples that comply with that

ontology – along with other possible reused ontologies. If this ontology is pattern-

based, and includes a number of ontology design patterns, the knowledge graph may

contain instances of that pattern. A pattern instance is a collection of ABox triples,

including individuals and properties that comply with an ontology design pattern.

Let us consider the pattern Collection1. This ODP defines two inverse proper-

ties (hasMember and isMemberOf) that have the classes Collection and Thing as

1http://ontologydesignpatterns.org/wiki/Submissions:Collection

http://ontologydesignpatterns.org/wiki/Submissions:Collection

82 Chapter 4. Annotating patterns in ontologies and knowledge graphs

domain or range. An example of instance of this ODP would be the set of the

following 4 triples: (i) :collection X :hasMember :member A, (ii) :collection X

:hasMember :member B, (iii) :member A :isMemberOf :collection X, and (iv) :mem

ber B :isMemberOf :collection X. Having pattern instances annotated with re-

spect to the ODP that they comply with, would allow us to support a pattern-based

exploration and visualization of a knowledge graph.

4.2 Related work

OPLa. [53] introduces a simple and extendable language for annotating informa-

tion about ontology design patterns (ODPs) and the corresponding modelling pro-

cess, with OWL annotation properties. With this language it is possible to indic-

ate the patterns that an ontology (module) reuses, the ontology entities (classes,

properties, individuals and axioms) that belong to a pattern (or ontology mod-

ule); the possible modules an ontology can consist of; specialization or generaliz-

ation relations between patterns and modules. Specifically, this annotation onto-

logy defines the class OntologicalEntity, and its subclasses (namely, Individual,

Property, Class, Axiom). The property isNativeTo links an ontological entity to

the OntologicalCollection it is member of and is a core entity of. The classes

Ontology, Module (intended as a part of an ontology that captures a conceptual

sub-area of the domain) and Pattern are subclasses of OntologicalCollection.

A module can be declared as native to an ontology, and an ontological collec-

tion can be annotated with the property reusesPatternAsTemplate for indicat-

ing the ODPs that have been reused in it. Finally, additional relations between

patterns and modules are modelled with properties such as hasRelatedPattern,

generalizationOfPattern, or specializationOfModule.

CP annotation schema. The ODP Portal2 is a catalogue that aims at collect-

ing Ontology Design Patterns. Specifically, the CP annotation schema3 has been

2http://www.ontologydesignpatterns.org
3http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

http://www.ontologydesignpatterns.org
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

Chapter 4. Annotating patterns in ontologies and knowledge graphs 83

defined to annotate a Content Pattern, i.e. an ODP addressing content modelling

problems, in order for the pattern to be submitted to the ODP Portal. Similarly

to OPLa, this ontology makes use of OWL annotation properties to feed the in-

formation fields of each catalogue entry, that can also be exploited by Semantic

Web applications [37], and allows an ontology designer to describe an ODP by

specifying: (i) its intent, i.e. the overall scope of the ontology pattern; (ii) the

requirement(s) addressed; (iii) related scenarios, intended as examples of instanti-

ation of the pattern; (iv) its consequences, i.e. benefits or trade-offs in using the

pattern; (v) relations between patterns (specialization, generalization, componency);

(vi) requirement-based unit tests that have been run to evaluate it; (vii) ontologies

or other schemas that the pattern was extracted or reengineered from.

In their current state, neither OPLa nor the CP annotation schema are able to

represent the relations between a pattern and its abstract counterpart (conceptual

component), and between a pattern and its instance in a KG (pattern instance).

[50] introduces some small changes and extensions to OPLa and CP annotation

schema, reorganising them into three different namespaces4: opla-core for storing

the OPLa original annotation properties and classes; opla-cp, that is an adaptation

of the CP annotation schema; opla-sd, including new annotation properties pos-

sibly needed by tools supporting modular graphical ontology modelling (specifically,

coordinates of a node in a schema diagram).

GO-FOR. The authors of [77] introduce GO-FOR, the “Goal-Oriented Frame-

work for Ontology Reuse”, aimed at supporting a pattern- and goal-based reuse of

ontologies. Its core entity is a goal-oriented ontology pattern (GOOP): an ontology

fragment that is bound to a goal, that is the scope addressed by the pattern. A

repository integrated in the GOOP-HUB5 stores existing GOOPs. Based on their

goals, GOOPs can be related through part-of relationships.

The GOOP OWL metamodel6, besides deriving from OWL the Class, Object

4https://github.com/cogan-shimizu/Extended-OPLa
5https://github.com/nemo-ufes/goophub
6https://github.com/nemo-ufes/goophub/blob/master/src/main/resources/goop-meta-model.

owl

https://github.com/cogan-shimizu/Extended-OPLa
https://github.com/nemo-ufes/goophub
https://github.com/nemo-ufes/goophub/blob/master/src/main/resources/goop-meta-model.owl
https://github.com/nemo-ufes/goophub/blob/master/src/main/resources/goop-meta-model.owl

84 Chapter 4. Annotating patterns in ontologies and knowledge graphs

Property and DatatypeProperty concepts for representing the constructs that a

GOOP can consist of, models the class Goal, which has AtomicGoal and ComplexGoal

as subclasses. A complex goal consists of other goals by either OR decomposition

(at least one subgoal is to be addressed) or AND decomposition (all subgoals need

to be satisfied). Moreover, a goal is related to the Actor that aims to achieve it.

The concept of goal of a pattern in GO-FOR can be aligned to the concept of intent

in the CP annotation schema. However, while in GO-FOR part-of relations are

defined at the level of the goals (the designer can specify subgoals of complex goals),

in both OPLa and CP annotation schema the composition, specialization and gen-

eralization relations are expressed at the level of patterns. Search for patterns in

GOOPR can be based on goals and specific actors related to them (e.g. a doctor, a

researcher), while the patterns of the ODP Portal are grouped based on the domain

they address (e.g. multimedia, time). Like the previous ones, this metamodel has

the limit of focusing only on the pattern level.

OTTR. In [81] the Reasonable Ontology Templates (OTTRs) are described:

OTTRs are OWL ontology macros through which it is possible to define and instan-

tiate ontology design patterns. An OTTR T is a parametrised ontology that can

be instantiated providing arguments that fit the parameters of the template. The

OTTR T is formalised as a knowledge base OT together with a list of parameters

(p1, ..., pn) of concepts, roles or individuals from OT . Given a list (q1, ..., qn) of con-

stants, concepts or role expressions that are called arguments, T (q1, ..., qn) represents

a template instance, that is an occurrence of a pattern. OTTRs can also be spe-

cialised for specific use cases and sub-domains. Moreover, specific templates can be

used for generating instances of a modelled pattern. OTTRs are expressed in a spe-

cific syntax (stOTTR), however the authors developed a tool7 that converts OTTR

templates into OWL ontologies. These templates’ aim is to automatize ODP-based

ontology engineering and support interoperability between ontologies that use the

same or related templates. Moreover, the concept of pattern instance is also used.

However, as a drawback, the definition and maintenance of these templates may

7https://gitlab.com/ottr/lutra/lutra

https://gitlab.com/ottr/lutra/lutra

Chapter 4. Annotating patterns in ontologies and knowledge graphs 85

result to be expensive, and to hardly support changes in already defined ODPs.

4.3 OPLaX

OPLaX8,9 (Ontology Pattern Language eXtended) is the annotation ontology we

developed, with the aim of providing the ontology designers with a language for

annotating ontology design patterns at both pattern, conceptual component, and

instance level (see Figure 4.1). OPLaX reuses and is aligned with OPLa (see the

plain classes and properties in the figure) and with CP annotation schema (see the

properties in italics). OPLaX introduces some changes with respect to these two

reused ontologies, and integrates them with specific classes and properties (see the

bold classes and properties in the figure) for modelling data related to conceptual

components and pattern instances.

4.3.1 Pattern level

OPLaX reuses from OPLa classes and properties that allow the ontology pattern

designer to define more specific types of :OntologicalCollection, that is :Module,

:Ontology, and :Pattern. Moreover, patterns can be related with their member

ontological entities with the :isNativeTo property, and it is possible to specify

componency (:componentOfPattern/Module), derivation (:derivedFromPattern/

Module), specialization (:specializationOfPattern/Module), and generalization

(:generalizationOfPattern/Module) relations between ontological collections of

the same or different types. Moreover, it can be annotated that an :Individual,

a :Class or a :Property, that is out of scope of that particular pattern, has

been used (property :ofExternalType). The property :reusesAsTemplate indic-

ates that an ontological collection reuses as templates other ontological collections,

e.g. an ontology that reuses multiple patterns as templates. Additional proper-

ties have been reengineered from the CP annotation schema: :addressesScenario

8https://w3id.org/OPLaX/
9https://github.com/stlab-istc-cnr/OPLaX

https://w3id.org/OPLaX/
https://github.com/stlab-istc-cnr/OPLaX

86 Chapter 4. Annotating patterns in ontologies and knowledge graphs

defines the scenario; :hasIntent annotates the intent; the requirement(s) covered

are indicated with :coversRequirement; the consequence through the property

:hasConsequence and the competency question(s) with :hasCompetencyQuestion.

To annotate the ontological collection with possible unit tests the property :hasUnit

Test can be used. Moreover, it is possible to explicitly annotate that an ontological

collection is :extractedFrom another ontological collection, e.g. a pattern that has

been widely or partially cloned by an ontology.

Figure 4.1: OPLaX, the Ontology Pattern Language eXtended.

4.3.2 Conceptual component level

In OPLaX, a :Pattern can be related to the :ConceptualComponent it is an

implementation of with the OWL annotation property :implementsConceptual

Component. Multiple conceptual components can be related to each other with :has

RelatedConceptualComponent. For example, the conceptual component ‘a cultural

Chapter 4. Annotating patterns in ontologies and knowledge graphs 87

property that is located at a cultural site’ would be a specialization of the more gen-

eral conceptual component ‘an object being located at a place’ (:specializationOf

ConceptualComponent), and the other way around (:generalizationOfConcep

tualComponent). A conceptual component can be annotated with its :name (e.g.

locating for the conceptual component ‘an object being located at a place’), and

with a more detailed description (:description). Moreover, a conceptual compon-

ent satisfies one (or more than one) general competency question (:hasCompetency

Question), e.g. where is an object? for the previously mentioned component locat-

ing. Finally, a conceptual component has a :Domain (:hasDomain): for instance, a

conceptual component Paper award and a conceptual component Submitting paper

(as from the experiments presented in the previous Chapter) could be included in

the Conference domain.

4.3.3 Pattern instance level

An instance of a :Pattern, i.e. an entity member of the class :PatternInstance,

is related to the pattern it is an instance of with the annotation property :is

PatternInstanceOf. All the individuals that are member of a pattern instance

are annotated with the property :isMemberOfPatternInstance. By retrieving all

individuals linked to a pattern instance by means of this property, it is possible to

obtain the boundary of the pattern instance itself.

4.4 Use cases

In this section, we show how OPLaX has been used in practice in three use cases:

the ArCo ontology (described in 2.2.2), the catalogue of conceptual components and

ontology design patterns extracted from the cultural heritage corpus (see the previ-

ous Chapter), and an external work, i.e. a pattern-based visualization of knowledge

graphs [5] which uses ArCo as a use case too.

88 Chapter 4. Annotating patterns in ontologies and knowledge graphs

4.4.1 ArCo ontology network

As reported in Section 2.2.2, ArCo [19, 20] has been developed following the pattern-

based eXtreme Design (XD) ontology engineering methodology [12, 10]. ArCo ver-

sion 1.0 is composed of 7 ontology modules, across which 12 different ODPs pub-

lished in the ODP Portal have been reused and specialised. ArCo directly reuses,

by a direct embedding of the ontology entities in the local ontology, only two on-

tologies: indeed, these ontologies are considered reference standards by the Italian

Government and their development involves ArCo’s team. Instead, other ontologies

and ontology design patterns are indirectly reused, that is they are used as tem-

plates, reproduced (and in some cases extended/specialised) in the local ontology,

and aligned with rdfs:subClassOf/subPropertyOf and owl:equivalentClass/

equivalentProperty axioms [18]. These alignment axioms support ontology and

knowledge graphs interoperability, by making it explicit a correspondence between

single ontology entities.

With OPLaX it is possible to annotate all the ontology entities as members of

an ODP, and generate alignments between different ontologies at the level of pat-

terns. An example – taken from ArCo – of ODP specialization, annotated through

OPLaX, is presented in Figure 4.2. The arco ontology module, that is the root

module of the network (see Section 2.2.2.3), indirectly reuses the ODP Compon-

ency10, published on the ODP Portal: the whole module is indeed annotated with

the property :reusesAsTemplate for representing the reuse of the pattern. Spe-

cifically, the ArCo’s pattern Cultural Property Component of 11, included in the arco

module, specialises the pattern Componency, since it represents the componency re-

lation between a complex cultural property and its components. Hence, the pattern

is annotated with the property :specializationOfPattern (see Figure 4.2a). For

expressing that individual properties (e.g. arco:hasCulturalPropertyComponent)

and classes (e.g. arco:ComplexCulturalProperty) implemented in the module be-

long to this specialised ODP, the annotation property :isNativeTo is used (as in

10http://ontologydesignpatterns.org/wiki/Submissions:Componency
11https://w3id.org/arco/pattern/cultural-property-component-of

http://ontologydesignpatterns.org/wiki/Submissions:Componency
https://w3id.org/arco/pattern/cultural-property-component-of

Chapter 4. Annotating patterns in ontologies and knowledge graphs 89

(a) The property :reusesAsTemplate relates the arco module to the Componency ODP

reused over the module. The property :specializationOfPattern expresses the special-

ization relation between the pattern Cultural Property Component of implemented in the

module and the ODP Componency.

(b) The annotation property :isNativeTo relates the object properties and the classes of

the Cultural Property Component of ODP to the ODP itself.

Figure 4.2: An example of a specialized ODP annotated with OPLaX.

Figure 4.2b).

4.4.2 Conceptual components and ODPs catalogue from a

corpus of ontologies

Let us take as an example the catalogue generated from the corpus of 43 ontologies

on Cultural Heritage12, that we presented in Chapter 3. The conceptual compon-

12https://stlab-istc-cnr.github.io/cc-and-odps-catalogue/

https://stlab-istc-cnr.github.io/cc-and-odps-catalogue/

90 Chapter 4. Annotating patterns in ontologies and knowledge graphs

ent named (annotation property :name) Event (Figure 4.3), which represents the

general modelling problem of the happening of an event, is implemented by 21

observed ontology design patterns, extracted from 13 distinct ontologies. Each ob-

served ontology design pattern is thus related to the CC Event with the property

:implementsConceptualComponent. These patterns implement the general com-

ponent at different levels of specialization, thus addressing also more specific intents:

for instance, an ODP extracted from the Europeana Data Model (see the ODP at

the top of Figure 4.3) represents the general concept of an Event that happenedAt

some Place, and occurredAt a certain TimeSpan, while the event modelled by an

ODP extracted from Cultural-ON (see the ODP at the bottom of Figure 4.3) is a

more specific type of event, that is a CulturalEvent, which involves at least one

cultural entity. This conceptual component is also associated with a description

(with the property :description), which, in the catalogue’s case, is generated by

concatenating all the labels that annotate the entities of the patterns. A manually

generated competency question that could be associated with this conceptual com-

ponent by the property :hasCompetencyQuestion would be “What happened?”.

The conceptual components are included in a hierarchical network, that is built

based on the inheritance relations between the frames that are detected from the

virtual documents of the individual patterns. For instance, the CC Event in Figure

4.3 is related through the property :generalizationOfConceptualComponent to

the conceptual component Intentionally act.

4.4.3 Pattern-based visualization of knowledge graphs

In [5], the authors present a novel pattern-based approach for visualising a knowledge

graph based on the ontology design patterns it includes. ODPs become the key

access point for the exploration of the knowledge graph: based on them, possible

thematic paths can be built, for guiding the exploration of, and interaction with,

the KG. Moreover, the user can exploit the set of the patterns that are instantiated

in the KG as a concise summary of its content. The presented approach relates

a visual frame, that is an intuitive standard visualisation, to an ontology design

Chapter 4. Annotating patterns in ontologies and knowledge graphs 91

Figure 4.3: An example of a conceptual component annotated with OPLaX.

pattern, such that every time an ODP is used in an ontology, the data of a KG

can be visualized thanks to that reusable visual frame. There are three levels of

exploration. At the first level (ODP level), the user can access the patterns that

are populated in the knowledge graph, viewing their related visual frames, along

with the most important concepts (key concepts) in the KG, based on the number

of occurrences. At the second level (exploration level), the user can view all the

instances of a specific pattern in the KG, and can filter them based on predefined

semantic filters specific to the ODP in question. The third level (visualization level)

displays a single instance of an ODP that has been selected by the user.

The tool developed13 in the paper [5] uses OPLaX annotation properties. In par-

ticular, the ODP level relies on OPLaX annotations that are related to the pattern

level, in order to display the patterns in the graphical user interface. If any, it is pos-

sible to view specialisation and composition relations between patterns, thanks to

the annotation properties :specializationOfPattern and :componentOfPattern.

The :isNativeTo property is reused to annotate the relation between a pattern and

its key concept(s). At the exploration level, the tool relies on the annotation prop-

erty :isPatternInstanceOf for linking a pattern instance to the pattern that is

being instantiated. Thanks to this annotation, the user can access the list of all

the instances of a pattern, and then browse it for possibly selecting the instances

13https://github.com/ODPReactor

https://github.com/ODPReactor

92 Chapter 4. Annotating patterns in ontologies and knowledge graphs

of interest, using predefined filters. The property :isMemberOfPatternInstance

allows to link all the entities that are member of a pattern instance to the pattern

instance itself, so that, at the visualisation level, an individual pattern instance,

with its members, can be visualised by means of a graphical component associated

with the given pattern.

Figure 4.4: An example of a pattern instance annotated with OPLaX.

As graphically represented in the example of Figure 4.4, ex:cultural-property-

component-of-instance-a is an instance of the ArCo’s ODP Cultural Property

Component of : indeed, it is related to the pattern with the property :isPat

ternInstanceOf. The property :isMemberOfPatternInstance annotates each mem-

ber of this pattern instance, that is: the complex cultural property (ex:cultural-

property-b) and its two components, i.e. ex:cultural-property-component-c

and ex:cultural-property-component-d.

Chapter 5

Observing patterns from data

Most times, ontologies are developed top-down, starting from some application

needs, requirements coming from domain experts, requirements extracted from a

non-LOD dataset, etc. Then, as a separate and following step, knowledge graphs

populate those pre-defined and formally specified ontologies. However, this is not

always the case. Some knowledge graphs include triples that make use of properties

and instantiate classes, but those classes and properties are not formally defined in

an ontology, or their definition is quite incomplete and shallow. Therefore, the use

of such classes and properties is subject to the interpretation of the knowledge graph

developers that generate the data, possibly aided by some informal definition/doc-

umentation/guidelines. When an explicitly and well defined ontology is missing, it

becomes even more difficult for an external user to understand a knowledge graph, to

reuse its data, or to reuse its underlying semantics (classes, properties) for another

use case. Similarly to the case of ontology understanding and reuse, the progressive

analysis of the content of a KG could have as goals (i) understanding its structure

and nature, (ii) identifying whether the KG can satisfy some user needs/questions,

and (iii) finding the exact set of triples pertinent to the use case [61]. In this context,

it becomes crucial to exploit the data level, and all the pieces of information we can

derive from it, in order to infer some sets of axioms or constraints, i.e. building

blocks of a background ontology empirically extracted from the data. Contrary to

most cases, this ontology would be (partially) built bottom-up, and would reflect

94 Chapter 5. Observing patterns from data

the usage of classes and properties in actual KGs, representing an access point to

the content of the knowledge graph, and possibly supporting its reuse.

In this Chapter, we present a method for extracting empirical ontology design

patterns that emerge from a knowledge graph. These patterns are initially built in

the form of domain-property-range triplets, accompanied by their usage statistics,

and are then translated into (i) owl-compliant ontology design patterns, as sets of

axioms to which a probability is assigned based on the usage in the KG, and (ii)

shapes, as sets of constraints accompanied by their probability. A shape is a set of

conditions, also called constraints, usually used for validating a knowledge graph,

but also providing a description of a certain graph complying with those conditions.

Moreover, using the Wikidata knowledge graph as a use case, we show how

these empirical patterns can provide additional information about the content of a

domain-specific portion of the knowledge graph, information that is not available

from existing guidelines on the usage of the semi-formally defined ontology the

Wikidata KG is built upon.

5.1 Method for extracting empirical patterns from

a KG

5.1.1 Related work

There exist many approaches to generate constraints for concepts, in the form of

shapes or patterns, in order to mainly support knowledge graph validation, but

possibly useful also for its exploration.

Some of them (like Astrea [26]) are only based on ontologies. Astrea1 [26] is

a tool that automatically generates SHACL2 shapes from a collection of ontologies

by executing a set of mappings between ontology constraint patterns and SHACL

constraint patterns, encoded in the Astrea-KG. However, Astrea does not take into

1https://github.com/oeg-upm/astrea
2https://www.w3.org/TR/shacl/

https://github.com/oeg-upm/astrea
https://www.w3.org/TR/shacl/

Chapter 5. Observing patterns from data 95

account the data level. [57] compares various aspects of OWL and SHACL, and

useful mappings between the two languages are provided. However, most meth-

ods focus on generating shapes from a knowledge graph. Shape Designer [15] is a

graphical tool for the automatic construction of valid SHACL or ShEx constraints

that are satisfied by an RDF dataset. The cardinality of the triple constraints (ex-

actly one, optional, at least one, any number) is inferred from the data based on

some rules. However, a limit to the number of the SPARQL query results needs to

be specified, when working with large KGs such as Wikidata. [76] performs some

experiments that show that the existing methods cannot handle the scale of large

knowledge graphs like Wikidata, indeed they crash even with KGs with a few mil-

lions triples3. sheXer [31] is an automatic shape extractor that extracts shapes,

which are serialised in both ShEx and SHACL, by mining the graph structure and

exploring the neighborhood of specific target nodes. All constraints are associated

with a trustworthiness score, which allows to filter constraints based on their fre-

quency and to sort and merge the constraints that are inferred in order to build

the final shapes. Some methods exploit knowledge graph profiling techniques: the

concise and meaningful summaries generated from RDF knowledge graphs are used

as input for building shapes. [65] describes a data-driven approach that uses ma-

chine learning techniques for automatically generating RDF shapes, as collections

of validation rules. Profiled RDF data is used as features, and the method relies on

the Loupe tool4 [64], which provides information about the frequency of triple pat-

terns (in the form ⟨subjectType, predicate, objectType⟩) that appear in a dataset.

Even if the approach can be extended to other types of constraints, in this work

shapes are generated at the class level (e.g. a shape for validating instances of the

class dbo:Person), and can combine only two constraint types, i.e. cardinality and

range constraints, by analyzing data patterns and statistics. In [82], the profiles

generated by ABSTAT are converted into SHACL shapes around a specified target

3The subKG of Wikidata on the music domain, to which we applied our method, contains more

than 5 millions triples.
4http://loupe.linkeddata.es/

http://loupe.linkeddata.es/

96 Chapter 5. Observing patterns from data

class; then, a human user can update and correct automatically generated shapes.

ABSTAT [83, 1] is a profiling tool that generates a semantic profile, starting from

a KG and, if any, an ontology that is used in the KG. The resulting profile is com-

posed of what they name Abstract Knowledge Patterns (AKPs), that are associated

with their occurrences, where subjectType is the most specific type of the subject

and objectType is the most specific type of the object, excluding more generic and

redundant patterns by using the possible ontology.

As demonstrated by [76], all approaches that support the automatic generation

of shapes build a high number of shape constraints such that it is non-trivial for

a human user to check their validity. Moreover, in most cases no constraint is

generated for non-literal objects, i.e. most constraints do not indicate that the

objects of a property should be of a specific type.

The closest work to ours is described in [93, 14]: Statistical Knowledge Patterns

(SKPs) are extracted from knowledge graphs through a method based on statistical

measures similar to the ones usually used for generating data-driven shapes, that

is related to the frequency in the data. An SKP is expressed in OWL and is con-

structed around one of the main (i.e. most populated) classes from an ontology: it

summarises the usage of that class by enriching the properties and axioms involving

the class from the ontology with properties and axioms that can be induced from

statistical measures on the data. The most frequent (based on a threshold) prop-

erties in the data are selected, and the appropriate range(s) is/are specified, unless

they are already explicitly asserted in the ontology. The catalogue with 34 SKPs

extracted from a version of DBpedia is online5. However, the code of the method

described in the paper is not publicly available, so it is not possible to reproduce

their results, and the SKPs do not include any metadata about the actual usage of

the selected properties in the KGs, such as the number of occurrences in the data.

5http://www.ontologydesignpatterns.org/skp/

http://www.ontologydesignpatterns.org/skp/

Chapter 5. Observing patterns from data 97

5.1.2 Method

As mentioned above, our method extracts the empirical patterns from a knowledge

graph, without relying on a formally defined ontology. For this reason, any ax-

iom/constraint that is generated from a KG and is part of an empirical pattern is

associated with a probability, due to the fact that it is strictly related to the specific

KG being processed. The interpretation of probability we adopt is the frequentist

one6: it defines the probability of an event as the limit of its relative frequency in

many trials. In our case, for trials we mean the occurrences in the data. For in-

stance, if we have a knowledge graph on the fishing domain with 100 instances, 100

will be our trials ; if 55 of them are instances of the class Fishing Rod, the probability

that an instance in the fishing domain is a fishing rod, based on that particular KG,

is equal to 55/100, i.e. 55%. Moreover, each axiom/constraint is also annotated

with the KG which it is derived from.

In the following paragraphs, we describe in detail our method for extracting

empirical patterns from a knowledge graph. An overview of the method is shown in

Figure 5.1.

Figure 5.1: Method for extracting empirical patterns from a KG.

Select relevant classes from the domain subgraph. The first step of the

method takes as input the domain subgraph and counts the number of instances

6https://en.wikipedia.org/wiki/Frequentist probability

https://en.wikipedia.org/wiki/Frequentist_probability

98 Chapter 5. Observing patterns from data

for each instantiated class of the graph. A percentage of coverage for each class

is also computed, indicating its frequentist probability, as a simple ratio between

the instances of a class and the total number of distinct instances in the subgraph.

Then, a threshold is required to be given as input, and is used to filter out all the

classes whose instances fall below it. Only the classes that have been selected based

on this threshold will be used to generate the empirical patterns, i.e. at the end of

the process there will be one pattern for each filtered class.

The threshold is based on the absolute distance between the number of instances

of a specific class and the number of instances of the class that is most instantiated,

that is the maximum number in the distribution. This distance undergoes a nor-

malization, by dividing the result by the maximum value, so that the threshold falls

within the range [0, 1]. If the threshold Tc is equal to 0, only the most instantiated

class will be selected, since the distance between the count of the class in question

and the maximum count must be smaller or equal to 0; on the contrary, if Tc is equal

to 1, all classes with at least one instance in the KG will be considered: indeed, the

distance between the count of a given class and the maximum count must be smaller

or equal to the maximum count. Notice that our method does not define the best

thresholds to be used: the value of the generated patterns is the incorporation of

information about the frequentist probability; however, it is the user that, based on

her requirements and use case, chooses the most appropriate thresholds.

Extract a subgraph for each selected class. Once we have the list of classes,

we build a subgraph for each class, by picking from the domain subgraph only the

triples with an instance of the given class as subject. For example, for the class

album, we will build a subgraph including all the triples where an instance of album

is in the subject position.

Most frequent properties for each class. At this point, we iterate over the

subgraphs, and compute the number of occurrences of all the properties instantiated

in each subgraph, i.e. we count the number of distinct instances that have at least

one triple involving that property. Again, the frequentist probability, expressed as

a percentage, indicates the ratio between the number of instances that have that

Chapter 5. Observing patterns from data 99

property, and the total number of instances of the specific subgraph. Then, for each

subgraph, we consider only the properties that are above a new threshold Tp given

as input. Notice that we discard from this computation both the property expressing

the type of an instance (e.g. rdf:type for RDF KGs, wdt:P317 for Wikidata KG)

and the property used for expressing the hierarchy of classes (e.g. rdfs:subClassOf

for RDF KGs, wdt:P279 for Wikidata KG).

Most frequent ranges for each frequent property. For each subgraph, we

compute all the domain-property-range triplets, where domain is the type of the

subject and range is either the type of the object (when the object is a resource)

or the data type (e.g. rdfs:Literal for RDF KGs). The number of occurrences of

each triplet is then computed to find the most common domain-range pairs for each

property in the graph. Again, a threshold Tdr, given as input, allows to filter only

the most common domain-range pairs for any of the most common properties that

have been selected in the previous step.

Empirical patterns: from triplets to probabilistic ODPs. At this point, we

have computed the patterns in the form of sets of domain-property-range triplets

associated with their number of occurrences and a probability value. In order to

translate these informal patterns in OWL-compliant ontology design patterns, we

transform each domain-property-range triplet into an OWL existential axiom. Each

axiom is annotated with its frequentist probability with respect to the specific pat-

tern. For this reason, in our implementation of the method, we express the patterns

using rdf-star8, which extends RDF with a convenient way to make statements about

other statements, and we rely on the owl-star vocabulary9 for encoding ontological

assertions (axioms) as statements that can be annotated. Moreover, we also extend

(and reuse) for this particular use case the OPLaX ontology (see Chapter 4), by

introducing the class oplax:FrequentistProbabilisticPattern, as a subclass of

oplax:Pattern. As a result, to each pattern will correspond a file containing all

probabilistic axioms.

7wdt: http://www.wikidata.org/prop/direct/
8https://w3c.github.io/rdf-star/cg-spec/editors draft.html
9https://github.com/cmungall/owlstar/blob/master/owlstar.ttl

http://www.wikidata.org/prop/direct/
https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
https://github.com/cmungall/owlstar/blob/master/owlstar.ttl

100 Chapter 5. Observing patterns from data

Empirical patterns: from triplets to shapes. Additionally, each set of triplets

is transformed into a shape, associating each constraint with its probability value

through comments. In our implementation of the method, we rely on the ShEx10

schema language for expressing the shape.

5.2 Empirical patterns from Wikidata

Wikidata11 is a huge knowledge graph that has been built collaboratively, and stores

structured data for its Wikimedia sister projects, including Wikipedia and Wiktion-

ary [91]. The collaborative editing activities on the Wikidata KG are performed on

a daily basis; indeed, Wikidata contains a wide and rich set of factual statements

about a huge number of different entities and events in the real world. Due to

its frequent updates by its contributors and the possible changes in the way they

model the data, the ontology underlying the knowledge graph is constantly subject

to change.

Considering that the definition of the Wikidata ontology is bottom-up, often

implicit, and undergoes a constant evolution, it can sometimes be challenging to

effectively reuse the Wikidata ontology [72, 16]. While the Wikidata project does

provide some flexible guidelines around use (see Section 5.2.1), there still remains

room to provide additional and more detailed guidance on how to use the ontology

based on its actual usage. For these reasons, the Wikidata KG worked as a perfect

use case for our method.

5.2.1 Motivation

In this section, we provide some details about the various resources and approaches

adopted by Wikidata for recommending how to use its underlying ontology.

10https://shex.io/
11https://www.wikidata.org/

https://shex.io/
https://www.wikidata.org/

Chapter 5. Observing patterns from data 101

Property constraints. Property constraints12, as defined by the Wikidata com-

munity, are rules on a property that specify how the property should be used in

the knowledge graph, with possible exceptions. Indeed, these rules have a degree

of flexibility: they aim at guiding the Wikidata editor in injecting or editing (new)

statements in the KG, providing possible useful suggestions. Their definition is in-

formal, without an explicit logical specification, thus they can still be violated or

ignored. There are several types of property constraints. Two popular property

constraint types are the subject type constraint and the value-type constraint, which

indicate that the domain or range of a property, respectively, should be one in a list

of classes. However, unlike OWL property restrictions on classes, they do not limit

the applicable classes. For example, a triple with an instance of recurrent event

edition (wd:Q27968055) as subject, part of the series (wdt:P179) as predicate, and

an instance of collection of articles (wd:Q17518557) as object would comply with

the property constraints of the property wdt:P179, even if a more appropriate range

in this case would be the class recurring event (wd:Q15275719).

Properties for this type. The property properties for this type (wdt:P1963)

allows to list the properties recommended to be used for instances of a certain type.

For example, part of the series is one of the recommended properties for instances

of the type recurrent event edition, however the appropriate range(s) to be paired

with that specific type (e.g. recurring event) cannot be specified.

Type of Wikidata property. The class Type of Wikidata property (wd:Q107649491)

is a Wikidata metaclass, i.e. the instances of this class are other classes that are

related to a specific set of items, domain or topic; the property facet of (wdt:P1269)

expresses the relation between the metaclass and its topic. These classes are placed

into a hierarchy, and their instances are properties. For instance, the property

Chessgames.com player ID (wdt:P1665) is an instance of the class Wikidata property

related to chess (wd:Q27698571) that is a subclass of Wikidata property related to

sport (wd:Q21818626) , which includes e.g. the property number of medals (P10659)

between its instances. However, this classification of properties is an activity in pro-

12https://wikidata.org/wiki/Help:Property constraints portal

https://wikidata.org/wiki/Help:Property_constraints_portal

102 Chapter 5. Observing patterns from data

gress, thus it is not close to be complete for some domains; moreover, properties

that are actually relevant to be used for instances of a certain type may be excluded

from the metaclass specific to that set of items because they are declared as relevant

only for more general domains.

Wikidata schemas. The Schemas Wikidata project13 aims to define schemas,

expressed in the Shape Expression language (ShEx) that can be used for the valid-

ation of subsets of items inside the Wikidata KG, in order to check whether they

conform to a specific and recommended structure and possibly improve the quality

of the data. Currently, more than 300 schemas have been manually defined by the

Wikidata community14, and these schemas vary considerably with respect to their

size and granularity. For instance, the shape E25 for actors15 includes 4 constraints,

and the only domain-specific constraint, i.e. a constraint that can be considered

valid only for humans that are authors, not any human, specifies their occupation

(actor). Instead, the shape E42 for authors16 is more detailed, and includes both

constraints that are valid for all humans (shape E10) and more author-specific con-

straints, such as copyright status. In any case, it is rare that these constraints express

the suggested range; for example, the property notable work in the author shape

has generically an IRI as recommended range, instead of possible specific classes.

Properties list in a WikiProject. In the context of domain-specific projects

(e.g. music, astronomy, books, geology), the members of the community that are

expert in that domain may define a list of properties that are recommended to

be used for describing relevant entities of that domain. Each property, listed in a

table, is usually associated with the data type of its range (that is, item, string,

etc.), and a description of the usage of that property. This description, in some

cases, also includes in plain text possible types for the range. For example, in the

context of the WikiProject Books17, the textual description of the property inspired

13https://wikidata.org/wiki/Wikidata:WikiProject Schemas
14https://wikidata.org/wiki/Special:AllPages?from=&to=&namespace=640
15https://www.wikidata.org/wiki/EntitySchema:E25
16https://www.wikidata.org/wiki/EntitySchema:E42
17https://wikidata.org/wiki/Wikidata:WikiProject Books

https://wikidata.org/wiki/Wikidata:WikiProject_Schemas
https://wikidata.org/wiki/Special:AllPages?from=&to=&namespace=640
https://www.wikidata.org/wiki/EntitySchema:E25
https://www.wikidata.org/wiki/EntitySchema:E42
https://wikidata.org/wiki/Wikidata:WikiProject_Books

Chapter 5. Observing patterns from data 103

by, recommended for instances of written work, recommends artistic inspiration as

range. The whole process of defining relevant properties for a domain is performed

manually, and possible ranges for properties are not always specified, and, in any

case, not formally.

Some tools proposed by/to the Wikidata community for inserting new data suffer

from a problem similar to the shapes generated with current automatic methods:

for instance, Recoin18 recommends properties for a class based on their frequency

in the KG, and lists frequent properties that are missing for instances of a specific

type, but does not provide information on the appropriate ranges.

5.2.2 Input

In order to deal with the huge size of Wikidata, we used the Knowledge Graph

Toolkit (KGTK)19 [55]. KGTK is a recent framework, developed as a Python library

that aims at supporting an easy manipulation of knowledge graphs, thanks to its

scalability and speed. We downloaded a json dump of two versions of Wikidata20:

on 04-04-2022 and 6 months later, on 10-10-2022. The experiments that we present

in Sections 5.2.3 and 5.2.4, and that we evaluate in Section 5.2.5, have been run on

the former version (04-04-2022); however, in Section 5.2.5.4 we compare the patterns

obtained from the two versions in order to show their evolution in 6 months.

In order to extract domain-specific patterns, and to handle a sub-graph of

Wikidata with a more manageable size, we focused on specific domains represented

in the Wikidata KG. While we choose to work on the ‘music’ and ‘art, architecture,

and archaeology’ domains (AAA), the method can be applied to any domain. The

extraction of instances related to both domains is based on a list of WordNet and

BabelNet synsets identified as belonging to the respective domains, according to Ba-

belDomains [89]. Then, the two Wikidata subgraphs are extracted by selecting each

triple where the Wikidata domain-specific instance is in the subject position. We

18https://www.wikidata.org/wiki/Wikidata:Recoin
19https://kgtk.readthedocs.io/en/latest/
20https://dumps.wikimedia.org/wikidatawiki/entities/

https://www.wikidata.org/wiki/Wikidata:Recoin
https://kgtk.readthedocs.io/en/latest/
https://dumps.wikimedia.org/wikidatawiki/entities/

104 Chapter 5. Observing patterns from data

remark that our method does not focus on the extraction of domain-specific know-

ledge graphs from Wikidata (or any KG): by relying on BabelDomains we were able

to easily obtain the two Wikidata subgraphs, however, a user that wants to use our

method for extracting empirical patterns from a KG, could either run the method

on the whole Wikidata KG, or give as input a Wikidata subgraph customized with

a method of her choice.

As explained in Section 5.1, each main step of our method takes as input a

threshold, for filtering the list of classes (which defines the set of empirical patterns

that will be extracted), the list of properties to be considered for each pattern,

and the number of ranges that will define the final number of triplets/probabilistic

axioms. These thresholds are to be chosen by the user, based on her requirements.

In this work, we do not define a method for finding the best thresholds to be used.

However, for the purpose of presenting our results in this thesis, comparing them

with the current support offered in Wikidata, we have chosen the thresholds we

considered reasonable. For both the music and AAA patterns, the threshold Tc is

equal to 0.95, the threshold Tp is equal to 0.85, and the threshold Tdr is 0.521.

5.2.3 Wikidata empirical patterns on music

The Wikidata subgraph on the music domain contains 5,083,818 triples, and 226,989

distinct instances.

Most populated classes: music patterns. Having Tc equal to 0.95, we filter out

all classes that have a number of instances that is lower than the 5% of the number of

instances of the most populated class (from a total of 6,043 classes, ∼6,000 of which

have less than 200 instances). Consider that the same entity can be an instance of

more than one class.

In Table 5.1, the 7 classes around which we build our music patterns are presen-

ted, with the respective number of instances and of triples that have an instance

21Both code and results are available on GitHub: https://github.com/valecarriero/

wikidata-emerging-patterns

https://github.com/valecarriero/wikidata-emerging-patterns
https://github.com/valecarriero/wikidata-emerging-patterns

Chapter 5. Observing patterns from data 105

Table 5.1: Most populated classes in the Wikidata music subKG.

Class Instances Triples

Q5 human 63,594 2,348,331

Q482994 album 63,213 723,722

Q215380 musical group 25,016 527,537

Q134556 single 20,977 253,201

Q105543609 musical work/composition 14,600 198,841

Q169930 extended play 3,816 33,725

Q18127 record label 3,640 35,118

of the class as subject. The most relevant entities in this Wikidata music KG in-

clude both agents (such as human and musical group) and objects (namely, single,

album, musical work, extended play, record label). Notice that single (wd:Q134556)

and extended play (wd:Q169930) are not subclasses of musical work/composition

(wd:Q105543609) in the general Wikidata hierarchy (wdt:P279*).

If we have a look at the ratio between the number of instances and the number of

triples for each class, we can notice at first sight that humans are more well described

by facts than albums, if we consider that the number of respective instances is

roughly equal.

Recommended properties for each pattern. The average number of the most

frequent properties selected for each pattern based on the Tp threshold is ∼21. In

Table 5.2 we report the actual number of properties for each class, and the respective

maximum and minimum number of their occurrences, intended as the number of

instances that are subject of at least one triple including a specific property. As

it can be noticed from the table, the number of selected properties is not directly

proportional to the number of triples in the subgraph: for instance, for musical

groups we recommend more properties that are frequently used (selected out of a

total of 891 properties) than albums (369 properties in total). The most common

properties across all patterns (without considering ID properties) are: wdt:P136

genre, which is used with all 7 classes, and wdt:P264 record label, present in all

patterns except for record labels.

106 Chapter 5. Observing patterns from data

Table 5.2: Statistics of selected properties and triplets for each music pattern.

Class Properties Occurrences Triplets

max min

Q5 human 48 63,583 9,543 63

Q482994 album 14 61,772 11,735 18

Q215380 musical group 33 22,423 3,474 38

Q134556 single 15 20,860 5,076 22

Q105543609 musical work/composition 17 13,916 2,204 29

Q169930 extended play 10 3,793 650 12

Q18127 record label 11 3,577 625 20

Figure 5.2: The album pattern.

Recommended ranges for each property. Table 5.2 lists the number of triplets

⟨d, p, r⟩ – that is, the domain d and range r pairs for each recommended property

p – generated for each pattern. Datatype properties will have only one range in any

case, while for other properties the number of ranges depends on the Tdr threshold.

The average number of triplets across all patterns is ∼29. Since the same property

Chapter 5. Observing patterns from data 107

can be involved in more than one pattern, for each pattern we may recommend

different ranges for that property, except for datatype properties. That is, ranges

recommendations are local to the individual pattern. For example, both the patterns

for albums and singles include the property wdt:P155 follows, with different ranges:

album for albums, and single for singles, as expected.

Example: the album pattern. In Figure 5.2 we graphically represent the pattern

for albums. Each domain-property-range triplet is accompanied by the number of

instances in the Wikidata music subgraph that comply with that triplet (light blue

rectangles). Based on the threshold we used, for most properties we recommend

only one range. However, the performer property, when used with albums, can

have either a human or a musical group as range within the pattern, and the 3

recommended ranges for the property language of work or name have a subclass-of

relation. It is interesting to notice that 4 recommended properties link to other

empirical patterns as recommended ranges (record label, human, musical group).

Listing 5.1 contains a snapshot of the rdf-star – using the ttl-star syntax – prob-

abilistic pattern about albums, derived from the sets of triplets selected from our

method. The first 9 triples that can be found in 5.1, after the list of prefixes, aim

at annotating the pattern itself and its related resources: the pattern (weps:music

Q482994 09508505 is defined as an oplax:FrequentistProbabilisticPattern,

is related to its source, i.e. the music Wikidata subgraph, and to the actual

Wikidata class it is built around (dcterms:references wd:Q482994). Then, the

music Wikidata subgraph, defined as a dataset, is linked to the whole Wikidata

KG version it was derived from, and is part of (weps:wikidata 20220404). Fi-

nally, the whole version of Wikidata is annotated with the date on which the KG

dump was downloaded (“2022-04-04”). The main properties and classes used for

these annotations are also reported in Figure 5.3. The next statements are a subset

of the probabilistic axioms we generate starting from the triplets of the pattern.

os:interpretation os:AllSomeInterpretation indicates that these axioms are

existential. The first one, wd:Q482994 wdt:P175 wd:Q35120 (album, performer,

entity) is the general probabilistic axiom about an album linked to some entity with

108 Chapter 5. Observing patterns from data

the property performer. The frequentist probability of this axiom, annotated with

os:frequentistProbability, is equal to 97.72%. However, as already explained,

we also suggest more specific ranges for properties. In this case, two additional

probabilistic axioms are generated: album, performer, human (probability 44.62%)

and album, performer, musical group (probability 40.39%). The sum of the probab-

ilities of such axioms is 85.01%: the remaining 12.71% corresponds to the sum of the

probabilities of all the other possible, less frequent, ranges for this property when

used with albums, that have been discarded based on the selected Tdr threshold.

Frame 5.1: Snapshot of the album empirical ODP, expressed using rdf-star and

owl-star.

@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix wd: <http://www.wikidata.org/entity/> .

@prefix wdt: <http://www.wikidata.org/prop/direct/> .

@prefix wikibase: <http:// wikiba.se/ontology#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix prov: <http://www.w3.org/ns/prov#> .

@prefix os: <http://w3id.org/owlstar/> .

@prefix oplax: <https://w3id.org/OPLaX/> .

@prefix weps: <https://w3id.org/wikidata -eps/> .

weps:music_Q482994_09508505 rdf:type

oplax:FrequentistProbabilisticPattern ;

dcterms:source weps:wikidata_music_subkg_20220404 ;

dcterms:references wd:Q482994 .

weps:wikidata_music_subkg_20220404 rdf:type dcterms:Dataset ;

prov:derivedFrom weps:wikidata_20220404 ;

dcterms:isPartOf weps:wikidata_20220404 .

weps:wikidata_20220404 rdf:type dcterms:Dataset ;

dcterms:hasPart weps:wikidata_music_subkg_20220404 ;

dcterms:date "2022 -04 -04"^^ xsd:date .

Chapter 5. Observing patterns from data 109

’album ’ ’performer ’ ’entity ’

<< << wd:Q482994 wdt:P175 wd:Q35120 >>

os:interpretation os:AllSomeInterpretation . >>

os:frequentistProbability "97.72%" ;

oplax:isNativeTo weps:music_Q482994_09508505 .

’album ’ ’performer ’ ’human ’

<< << wd:Q482994 wdt:P175 wd:Q5 >>

os:interpretation os:AllSomeInterpretation . >>

os:frequentistProbability "44.62%" ;

oplax:isNativeTo weps:music_Q482994_09508505 .

’album ’ ’performer ’ ’musical group ’

<< << wd:Q482994 wdt:P175 wd:Q215380 >>

os:interpretation os:AllSomeInterpretation . >>

os:frequentistProbability "40.39%" ;

oplax:isNativeTo weps:music_Q482994_09508505 .

Figure 5.3: Classes and properties used for annotating the probabilistic pattern.

The axioms in 5.1 correspond to the subset of the ShEx shape we generate for this

pattern, that can be found in Listing 5.2. The frequentist probabilities are reported

via comments. Additionally, the shape also includes the constraint about the type

(wdt:P31) of the instances that need to comply with the shape, i.e. wd:Q482994.

Frame 5.2: Snapshot of the album empirical ODP, expressed as a shape using

ShEx.

110 Chapter 5. Observing patterns from data

shape extracted from dataset

wikidata_music_subkg_20220404

which is derived from wikidata_20220404 ,

dated 2022 -04 -04

start = @<album >

<album > { wdt:P31 [wd:Q482994] } ;

’album ’ ’performer ’ ’entity ’

wdt:P175 { wdt:P31 [wd:Q35120] } ; # probability: 97.72%

’album ’ ’performer ’ ’human ’

wdt:P175 { wdt:P31 [wd:Q5] } ; # probability: 44.62%

’album ’ ’performer ’ ’musical group ’

wdt:P175 { wdt:P31 [wd:Q215380] } ; # probability: 40.39%

}

5.2.4 Wikidata empirical patterns on art, architecture, and

archaeology (AAA)

The Wikidata subgraph on the art, architecture, and archaeology (AAA) domain

contains 493,999 triples, and 26,380 distinct instances.

Most populated classes: AAA patterns. From the Wikidata art, architecture,

and archaeology (AAA) subgraph, using the 0.95 threshold, we select 11 classes from

a total of 2184 classes, ∼2100 of which have less than 50 instances.

Table 5.3 presents the list of 11 AAA patterns, along with their number of in-

stances and the number of triples with an instance of the class as subject. The

only agent included in the most relevant entities of the Wikidata AAA domain is

Chapter 5. Observing patterns from data 111

Table 5.3: Most populated classes in the Wikidata art, architecture, and archae-

ology subKG.

Class Instances Triples

Q5 human 7,622 214,881

Q3947 house 2,333 21,433

Q41176 building 1,617 15,382

Q23413 castle 1,043 13,556

Q33506 museum 636 9,129

Q11303 skyscraper 601 8,011

Q1343246 English country house 596 7,240

Q3305213 painting 564 12,814

Q1307276 single-family detached home 459 4,922

Q27686 hotel 427 4,577

Q207694 art museum 413 7,994

human, while all other patterns are built around objects (house, skyscraper, paint-

ing, museum, etc.). As for hierarchical relations (wdt:P279*) between the classes

of the AAA patterns, building has 6 (indirect) subclasses (house, castle, skyscraper,

English country house, single-family detached home, art museum); English country

house and single-family detached home are subclasses of house (indirect and direct,

respectively); art museum is an indirect subclass of both museum and building. Sur-

prisingly, museum, unlike art museum, is not a subclass of building, as well as hotel.

Finally, human and painting are not subclasses of any other empirical pattern. Hu-

mans, paintings and art museums are more well described with facts than the other

selected classes.

Recommended properties for each pattern. The average number of selected

properties for each pattern on the AAA domain is ∼16. In Table 5.4 you can find

reported the number of selected properties for each pattern, and the maximum and

minimum number of occurrences from this set of properties.

Recommended ranges for each property. Table 5.4 also reports the number

of triplets ⟨d, p, r⟩ recommended for each pattern, based on the 0.5 threshold. The

112 Chapter 5. Observing patterns from data

Table 5.4: Statistics of selected properties and triplets for each AAA pattern.

Class Properties Occurrences Triplets

max min

Q5 human 33 7,614 1,151 46

Q3947 house 9 2,331 494 15

Q41176 building 10 1,613 278 16

Q23413 castle 12 1,043 161 22

Q33506 museum 15 632 99 19

Q11303 skyscraper 19 600 106 28

Q1343246 English country house 11 596 110 17

Q3305213 painting 23 562 91 32

Q1307276 single-family detached home 11 459 108 17

Q27686 hotel 13 427 79 19

Q207694 art museum 21 413 65 26

average number of triplets across all AAA patterns is ∼23.

Figure 5.4: The museum pattern.

Example: the museum pattern. In Figure 5.4 we provide a graphical repres-

entation of the museum pattern. Based on the 0.5 threshold, 15 properties have

Chapter 5. Observing patterns from data 113

been selected. 11 out of the total number of properties are datatype, having only

one recommended range (monolingual text, url, etc.). 1 of the remaning 4 object

properties has one recommended range, i.e. heritage designation for the property

heritage designation, while the other 3 properties, which are all related to locations,

have more than one range: country and its subclass sovereign state for the property

country, with a very close percentage of coverage; city (8%) and its subclass big city

(9%) for the property location; and city (15%) and big city (21%) for the property

located in the administrative territorial entity, in addition to U.S. state (15%). As

it can be noticed from the percentages, country is the most frequent place-related

properties, being used by almost all museums (99%). Listing 5.3 contains a snapshot

of the museum probabilistic pattern. After the triples for annotating the pattern

and its related sources, we include part of the probabilistic axioms automatically

generated. wd:Q33506 wdt:P571 wikibase:Time (museum, inception, time) is a

probabilistic axiom including a datatype (time), which is, as expected, the only

range for the property inception, with a frequentist probability equal to 66.35%.

Then, the following statements involve the property country ; it is clear from the

probabilities that country and sovereign state are very frequently used as ranges for

this property when the subject is a museum, and the majority of the instances of

the ranges for this property are both of type country and sovereign state.

Frame 5.3: Snapshot of the museum empirical ODP, expressed using rdf-star and

owl-star.

weps:AAA_Q33506_09508505 rdf:type

oplax:FrequentistProbabilisticPattern ;

dcterms:source weps:wikidata_AAA_subkg_20220404 ;

dcterms:references wd:Q33506 .

weps:wikidata_AAA_subkg_20220404 rdf:type dcterms:Dataset ;

prov:wasDerivedFrom weps:wikidata_20220404 ;

dcterms:isPartOf weps:wikidata_20220404 .

weps:wikidata_20220404 rdf:type dcterms:Dataset ;

114 Chapter 5. Observing patterns from data

dcterms:hasPart weps:wikidata_AAA_subkg_20220404 ;

dcterms:date "2022 -04 -04"^^ xsd:date .

’museum ’ ’inception ’ time

<< << wd:Q33506 wdt:P571 wikibase:Time >>

os:interpretation os:AllSomeInterpretation . >>

os:frequentistProbability "66.35%" ;

oplax:isNativeTo weps:architecture_Q33506_09508505 .

’museum ’ ’country ’ ’entity ’

<< << wd:Q33506 wdt:P17 wd:Q35120 >>

os:interpretation os:AllSomeInterpretation . >>

os:frequentistProbability "99.37%" ;

oplax:isNativeTo weps:architecture_Q33506_09508505 .

’museum ’ ’country ’ ’country ’

<< << wd:Q33506 wdt:P17 wd:Q6256 >>

os:interpretation os:AllSomeInterpretation . >>

os:frequentistProbability "99.21%" ;

oplax:isNativeTo weps:architecture_Q33506_09508505 .

’museum ’ ’country ’ ’sovereign state ’

<< << wd:Q33506 wdt:P17 wd:Q3624078 >>

os:interpretation os:AllSomeInterpretation . >>

os:frequentistProbability "94.5%" ;

oplax:isNativeTo weps:architecture_Q33506_09508505 .

In 5.4 you can find the constraints that correspond to the axioms in 5.3.

Frame 5.4: Snapshot of the museum empirical ODP, expressed as a shape using

ShEx.

shape extracted from dataset

wikidata_AAA_subkg_20220404

which is derived from wikidata_20220404 ,

dated 2022 -04 -04

Chapter 5. Observing patterns from data 115

start = @<museum >

<museum > { wdt:P31 [wd:Q33506] } ;

’museum ’ ’inception ’ time

wdt:P571 xsd:dateTime ; # probability: 66.35%

’museum ’ ’country ’ ’entity ’

wdt:P17 { wdt:P31 [wd:Q35120] } ; # probability: 99.37%

’museum ’ ’country ’ ’country ’

wdt:P17 { wdt:P31 [wd:Q6256] }; # probability: 99.21%

’museum ’ ’country ’ ’sovereign state ’

wdt:P17 { wdt:P31 [wd:Q3624078] } ; # probability: 94.5%

}

5.2.5 Discussion and evaluation

In this section, we discuss the results obtained from both the music and AAA do-

mains, and we perform an evaluation of the resulting patterns by comparing them

with the current support provided by Wikidata.

5.2.5.1 Music

Patterns coverage. In order to analyse how the extracted patterns are populated

in the Wikidata music subKG, we report in Table 5.522 the percentage of the total

number of instances that cover different and increasing subsets of recommended

22Columns indicate the number/fraction of properties considered. The actual number of prop-

erties corresponding to the fraction is reported in square brackets. The number of instances

covering the whole pattern is in round brackets. Example instances populating the whole pat-

terns can be found here: https://github.com/valecarriero/wikidata-emerging-patterns/tree/main/

results/music/supplementary materials/example instances

https://github.com/valecarriero/wikidata-emerging-patterns/tree/main/results/music/supplementary_materials/example_instances
https://github.com/valecarriero/wikidata-emerging-patterns/tree/main/results/music/supplementary_materials/example_instances

116 Chapter 5. Observing patterns from data

properties. No pattern has a 100% coverage even if we only consider the most fre-

quent property; in some cases, the percentage of coverage of the set including the

two most common properties is very close to the one of the first property (e.g. in

the human pattern), while in other cases (e.g. the pattern musical work) it already

decreases significantly. In 4 out of 7 patterns, the instances that comply with the

first half (1/2) of the recommended properties are between the 35 and ∼58% of the

total number of instances; instead, musical works, humans, and musical groups have

already a very low percentage of coverage. The most populated pattern (including

all properties), with respect to the total number of its instances, is extended play

(112/3,816), followed by album (845/63,213) and musical group (327/25,016). In-

stead, the pattern that has the lower percentage of coverage is musical work : only

1 out of a total of 14,600 musical works. Anyway, all patterns have at least 1 rep-

resentative instance. While the coverage percentages might seem very low, this is

not bad, neither surprising: by using the 0.85 threshold, as in our experiments, we

include all properties that are used by at least 15% of the total number of instances.

So, taking the record label pattern as an example, if the least common property is

used for 625/3,577 instances, it is not surprising that the intersection of instances

with all the 11 recommended properties is equal to 28 instances.

Comparison with property constraints. If we consider the most common prop-

erties across all patterns, that is genre (7/7 patterns) record label (6/7), we can ob-

serve that the domains and ranges we suggest are all included in the subject type and

value-type constraints of the two properties. In some cases, the Wikidata constraints

include as ranges classes that are more general in the hierarchy with respect to the

classes we suggest: for instance, they include work in place of the more specific

musical work. However, as explained in Section 5.2.1, the correct pairs of domain

and range cannot be specified inside Wikidata, thus our results integrate these con-

straints by suggesting that e.g. music genre is more appropriate as range of the

property genre with record label as domain, than e.g. criticism – which is included

in the value-type constraint of genre, and which never occurs in the data. Moreover,

the subject type and value-type constraints are not available for all properties; for

Chapter 5. Observing patterns from data 117

instance, follows (used in 4 out of 7 patterns) has no such constraints.

Table 5.5: Percentages of coverage of the music patterns properties in the KG.

Class 1 prop 2 props 1/8 1/4 1/2 all

Q5 human 99.98 98.99 [8] 50.34 [12] 32.97 [24] 3.65 [48] 0.007 (5 instances)

Q482994 album 97.72 94.19 [2] 94.19 [4] 78.30 [7] 40.48 [14] 1.33 (845 instances)

Q215380 musical

group

89.63 78.36 [4] 60.99 [8] 34.22 [16] 9.82 [33] 1.31 (327 instances)

Q134556 single 99.44 98.80 [2] 98.80 [4] 87.87 [7] 57.67 [15] 0.71 (151 instances)

Q105543609 musical

work

95.31 76.36 [2] 76.36 [4] 39.69 [8] 6.34 [17] 0.006 (1 instance)

Q169930 extended

play

99.39 97.95 [1] 99.39 [3] 92.29 [5] 56.70 [10] 2.93 (112 instances)

Q18127 record label 98.26 84.25 [1] 98.26 [3] 69.06 [5] 35.0 [11] 0.76 (28 instances)

Comparison with properties for this type. Taking into account our selected

music patterns, we compared the properties we include and those included as value

of the property properties for this type (wdt:P1963) for those classes. Based on a

manual observation, we can report that some properties that are highly populated in

the data are not suggested as properties for this type, while all the properties actually

listed as properties for the type, but not included in our patterns, are significantly

less frequent, and in some cases with a very low number of occurrences. Let us take

musical group23 (wd:Q215380) as an example. IDs properties such as Freebase ID,

MusicBrainz artist ID and Discogs artist ID are widely used (about 81, 75 and 74

% respectively), but not listed as properties for this type. On the contrary, IDs that

are less frequent in the data (e.g. Apple Music artist ID (U.S. version), with ∼6.5%

coverage for musical groups), thus filtered out from our pattern, are recommended

as properties for this type. As another example, the properties influenced by and

award received are recommended for musical groups inside Wikidata, while they are

discarded in our pattern because they have a very low frequency (less than 0.5 and

2 %, respectively). Anyway, 10 out of the 18 properties recommended as properties

23https://github.com/valecarriero/wikidata-emerging-patterns/blob/main/results/music/

supplementary materials/properties forthis type/Q215380 properties comparison.tsv

https://github.com/valecarriero/wikidata-emerging-patterns/blob/main/results/music/supplementary_materials/properties_forthis_type/Q215380_properties_comparison.tsv
https://github.com/valecarriero/wikidata-emerging-patterns/blob/main/results/music/supplementary_materials/properties_forthis_type/Q215380_properties_comparison.tsv

118 Chapter 5. Observing patterns from data

for this type are also included in our pattern.

Comparison with type of wikidata property. wd:Q27525351, a subclass of

Type of Wikidata property, includes as instances properties related to music, such as

music-related IDs (such as YouTube playlist ID) and other relations (e.g. composer,

performed at, discography). However, it is not indicated, for each property, their

possible domain(s), so, if a user needed to model a specific musical entity, e.g. a

musical group, would have no support for understanding which of those properties

to use for musical groups. Wikidata property related to music has 24 subclasses that

are specific to some musical entities (e.g. music genres, songs, instruments). How-

ever, 14/24 include only identifiers, e.g. IDs for musical works, songs and bands.

Even considering just the identifiers, our patterns are more complete and repres-

entative. For example, the class Wikidata property to identify bands, which is facet

of musical group, has as instance only the property Encyclopaedia Metallum band

ID (wdt:P1952). The pattern we extracted for the class musical group contains 33

properties, including the most common IDs, – like Freebase ID, MusicBrainz artist

ID and Discogs artist ID – while excluding wdt:P1952, which is used with only 8%

of musical groups. Moreover, some relevant properties that we are able to include

in the patterns cannot be identified based on the Wikidata property classes: for in-

stance, genre, which is widely used in the data for describing instances of musicians

(about 50%) and musical works (about 60%), is recommended for both humans and

musical works/compositions, while it can only be found as instance of the more

general classes Wikidata property for items about people and for items about works.

Comparison with properties listed in the WikiProject Music. The WikiPro-

ject Music24 (WPMusic hereinafter) identifies 6 relevant entities in the domain, and

defines a set of recommended properties for each of them: human, musical ensemble,

musical work, track, release, record label. Apart from human and record label, our

patterns do not perfectly overlap with these 6 classes: musical ensemble vs musical

group (the latter is the most populated subclass of the former); musical work vs

musical work/composition (musical work has very few direct instances, while many

24https://wikidata.org/wiki/Wikidata:WikiProject Music

https://wikidata.org/wiki/Wikidata:WikiProject_Music

Chapter 5. Observing patterns from data 119

of its subclasses are widely populated e.g. song); release, which groups together its

subclasses album, single and extended play. However, it is still possible and useful

to make a comparison between them. Let us consider the class record label : the

WPMusic recommends 4 properties25 in addition to 13 IDs. Our pattern contains

6 properties, in addition to 5 identifiers. Apart from instance of wdt:P31, which

we always exclude from our patterns, we report in Table 5.6 a comparison between

the properties recommended by WPMusic and those selected by our method (EP),

except for IDs and wdt:P3126. It can be observed that our pattern is more inclusive

(6 vs 3 properties) with the threshold we have chosen. More importantly, we include

all properties recommended by WPMusic, while WPMusic does not recommend the

property inception, even if it is the second most frequent property. In our pattern,

country (that is the range of the property country recommended by WPMusic) is

indeed the most frequent range, but we also suggest 6 additional and more specific

classes, such as sovereign state.

Table 5.6: Comparison between properties recommended by WikiProject Music

and properties included in our pattern for record labels.

Property Occurrences WPM EP

P17 country 3,123 Y Y

P571 inception 2,905 N Y

P856 official website 1,833 Y Y

P159 headquarters

location

1,023 Y Y

P136 genre 972 N Y

P112 founded by 714 N Y

Now, let us compare the properties recommended for instances of subclasses of

Release by WPMusic and our relevant patterns album (A), single (S) and extended

play (P) (Table 5.7). 6 properties recommended by WPMusic are included in all

our 3 patterns, 3 properties are included in some of our patterns, while 9 properties

25https://wikidata.org/wiki/Wikidata:WikiProject Music#Record label properties
26Y stands for yes, N stands for no.

https://wikidata.org/wiki/Wikidata:WikiProject_Music#Record_label_properties

120 Chapter 5. Observing patterns from data

Table 5.7: Comparison between properties recommended by WikiProject Music

and properties included in our patterns for releases.

WPM Property EP WPM Property EP WPM Property EP

P577 publication

date

A, S, P P136 genre A, S, P P156 followed by A, S, P

P155 follows A, S, P P264 record label A, S, P P175 performer A, S, P

P162 producer A, S P407 language of

work

P P361 part of S

P1303 instrument none P483 recorded at

studio

none P676 lyrics by none

P86 composer none P658 tracklist none P736 cover art by none

P2291 charted in none P9237 reissue of none P1638 working title none

are not included. However, for instance, the property composer is used only 6,

186 and 1602 times for instances of extended play, album and single, respectively;

instrument is never used for any of these entities (instead, it is frequently used, and

is included, in the human pattern); working title is used only twice for albums, while

the property title (wdt:P1476) is much more frquent (9,007 occurrences).

Comparison with music-related shapes. We manually identified from the com-

plete list of Wikidata entity schemas27 only two music-related shapes: music com-

position by W.A.Mozart (E66), and album (E248), so it is strongly relevant to try to

increase the coverage at least of the music domain. The shape for albums28 (E248)

recommends 18 properties as obligatory (with exactly one/at least one constraints):

7 of these properties are also included also in our pattern; while some recommended

properties can actually be considered statistically relevant (such as the property

title: 9,007/63,213 occurrences) and would have been included in our pattern with

a little higher threshold, other properties included in the shape have very few oc-

currences that, at least, do not seem to justify their mandatory use (e.g. review

score, with 722 occurrences, and distributed by, with 299 occurrences). Instead, for

instance, the producer property (with any number as cardinality constraint in the

27https://wikidata.org/wiki/User:HakanIST/EntitySchemaList
28https://www.wikidata.org/wiki/EntitySchema:E248

https://wikidata.org/wiki/User:HakanIST/EntitySchemaList
https://www.wikidata.org/wiki/EntitySchema:E248

Chapter 5. Observing patterns from data 121

E248 shape) is much more used (18,362), and is indeed recommended in our pattern.

5.2.5.2 Art, architecture, and archaeology (AAA)

Patterns coverage. In Table 5.8 we show the percentages, out of the total number

of instances, that cover increasing subsets of the properties recommended for each

AAA class. 3 out of 11 AAA patterns (i.e. castle, English country house, and art

museum) have 100% coverage considering only the most frequent property, that is,

all instances of the 3 classes are subject of at least one triple involving the most

frequent property of the respective pattern. However, in the case of the castle and

English country house patterns also the percentage of coverage considering the whole

set of properties of the patterns is high (wrt the other patterns), i.e. 2.78% and

9.89%, respectively, being English country house the most populated pattern out of

all patterns. Instead, art museum has the 0.24% of its instances complying with the

whole pattern (i.e. 1/413). Other patterns widely populated taking into account

all properties, wrt the total number of instances, are house (4.88%) and single-

family detached home (5.88%). painting is the only pattern that does not have at

least one representative entity for all properties. This pattern, which instead has a

coverage higher than other patterns when considering the first sets of properties (e.g.

97.34% with the first three properties), has a 0.70 percentage of coverage with 20/23

selected properties, while has no instances covering all the most frequent 21, 22, and

23 (i.e. all) properties. Other patterns with a relatively low percentage of coverage

considering the whole set of properties are: human (8 individuals complying with

the whole pattern out of 7,622), museum (1 out of 636), and hotel (1 out of 427).

Comparison with property constraints. The two properties more used across

all patterns are wdt:P17 country (that is recommended for 9 out of 11 patterns) and

wdt:P131 located in the administrative territorial entity (9/11 patterns). Neither

properties have the subject type constraint, thus we could contribute by integrat-

ing the constraints and suggesting possible classes the subject can be type of (like

building) in the AAA domain. All ranges we recommend for the located in the ad-

ministrative territorial entity property have a wdt:P279* hierarchical relation with

122 Chapter 5. Observing patterns from data

Table 5.8: Percentages of coverage of the AAA patterns properties in the KG.

Class 1 prop 2 props 1/8 1/4 1/2 all

Q5 human 99.89 99.39 [4] 90.12 [8] 39.71 [16] 2.91 [33] 0.10 (8 instances)

Q3947 house 99.91 98.92 [1] 99.91 [2] 98.92 [4] 96.39 [9] 4.88 (114 instances)

Q41176 building 99.75 97.71 [1] 99.75 [3] 94.61 [5] 77.79 [10] 0.37 (6 instances)

Q23413 castle 100 99.04 [2] 99.04 [3] 93.76 [6] 60.88 [12] 2.78 (29 instances)

Q33506 museum 99.37 90.72 [2] 90.72 [4] 70.12 [7] 33.96 [15] 0.15 (1 instance)

Q11303 skyscraper 99.83 97.17 [2] 97.17 [5] 71.38 [9] 33.44 [19] 0.33 (2 instances)

Q1343246 English

country house

100 93.95 [1] 100 [3] 92.44 [5] 73.15 [11] 9.89 (59 instances)

Q3305213 painting 99.64 98.93 [3] 97.34 [6] 72.51 [11] 51.59 [23] 0 (0 instances)

Q1307276 single-

family detached

home

99.78 99.78 [1] 100 [3] 99.12 [5] 97.16 [11] 5.88 (27 instances)

Q27686 hotel 100 94.14 [2] 94.14 [3] 81.49 [6] 20.84 [13] 0.23 (1 instance)

Q207694 art mu-

seum

100 94.67 [3] 86.44 [5] 75.54 [10] 41.64 [21] 0.24 (1 instance)

one of the classes included in the value-type constraint (namely wd:Q56061 adminis-

trative territorial entity), excluding village (wd:Q532). 3 out of 11 ranges suggested

for the property country are included in the value-type constraint, 5/11 are instead

subclasses of classes listed in the constraint, while 3/11 (namely democratic republic,

constitutional republic and superpower) are not included in the value-type constraint

list; however, for example, more than 80% buildings have a constitutional republic

as type of the object of the property country, so this range, even if not explicitly

recommended, is very common in the data.

Comparison with properties for this type. 8 out of the 11 AAA classes have

some values for the property properties for this type (wdt:P1963). Many frequently

used properties that we include are left out from the properties for this type. For

example, Wikidata recommends 30 properties for the type painting. 19 of these prop-

erties (like creator, collection, height, width, etc.) are also included in our pattern

for paintings, while the remaining 11 properties have a percentage of occurrences

that ranges between 11% of all paintings and 0%. Our pattern recommends also

Chapter 5. Observing patterns from data 123

other 4 properties that are absent from the properties for this type: Freebase ID

(99.65%), Commons category (40.78%), BabelNet ID (40.07%) and Google Arts &

Culture asset ID (17.3%). Let us take skyscraper as another example: out of the 16

properties for this type, 7 are also present in our pattern, and the remaining 9 have

been excluded due to their low frequency (from 8% to 0.17%), while very frequent

properties of our pattern, such as coordinate location (97.17%) and image (83.86%),

are not listed as properties for this type.

Comparison with type of wikidata property. Instances of Type of Wikidata

property relevant to the AAA domain are: Wikidata property related to artworks

(wd:Q44847669), and Wikidata property related to architecture (wd:Q43831109).

Wikidata property related to artworks is only linked to very specific identifier prop-

erties, e.g. IDs related to individual museums, while the only IDs we selected for

paintings, based on their usage, are quite general: Freebase ID (which is the most

common property for paintings), inventory number, BabelNet ID, catalog code, and

Google Arts & Culture asset ID – which is actually included in the Wikidata prop-

erties related to artworks too. Wikidata property related to architecture, apart from

IDs, lists the properties architect29, which is recommended by our skyscraper and

single-family detached home patterns, and architectural style, which is included in

the patterns for skyscrapers, single-family detached homes and buildings. Wikidata

property for items about buildings only includes the property has certification, which

is never used for buildings.

Comparison with properties listed in the WikiProjects. There is no Wiki-

Project that addresses the whole Art, architecture, and archaeology (AAA) domain.

The WikiProject Archaeology30 is related to archeology in general, however the list

of properties included, which does not specify the different classes of the subject,

contains only identifiers, apart from the property director of archaeological fieldwork.

The WikiProject sum of all paintings lists 6 important properties for paintings31,

29And the more specific landscape architect.
30https://www.wikidata.org/wiki/Wikidata:WikiProject Archaeology
31https://www.wikidata.org/wiki/Wikidata:WikiProject sum of all paintings#Item structure

to describe paintings on Wikidata

https://www.wikidata.org/wiki/Wikidata:WikiProject_Archaeology
https://www.wikidata.org/wiki/Wikidata:WikiProject_sum_of_all_paintings#Item_structure_to_describe_paintings_on_Wikidata
https://www.wikidata.org/wiki/Wikidata:WikiProject_sum_of_all_paintings#Item_structure_to_describe_paintings_on_Wikidata

124 Chapter 5. Observing patterns from data

which we all include in our painting pattern. There is also a list of properties related

to structures32; however, it is not completely clear the kind of structures it refers

to. By looking at the triples mentioned as examples, we can find instances of hotels,

bridges, skyscrapers, airports, so we could probably associate these properties with

instances of the class building and subclasses. Except for IDs, the properties that we

can relate to buildings are quite specific (e.g. structure replaced by, which is never

used neither for buildings nor hotels in our AAA subKG), so most of them are absent

from our structure-related patterns, apart from floors above ground, that is included

in the skyscraper and hotel patterns, and number of elevators, recommended by the

skyscraper pattern.

The WikiProject Museums33 (WPMuseum hereinafter) identifies a set of properties

recommended for museums, splitting them based on different topics (location, com-

munications, practical information, and so on). We report in Table 5.9 a comparison

between the properties recommended by WPMuseum and our method (i.e. the EP

museum), except for identifiers. Our pattern includes 7 properties that are also

recommended by WPMuseum, whose percentages of occurrence range from 99% to

18%, while WPMuseum does not recommend 3 properties we include, one of which is

very frequently used: image is used for 75.79% museums, while WPMuseum recom-

mends a more specific property, logo image, which is only used by 1.57% museums.

In addition to logo image, WPMuseum also recommends 17 other properties that

are instead absent from our pattern; however, even if we used a higher threshold,

thus including more properties, many of them would be discarded in any case: closed

on, open period from and open period to have 0 occurrences in the data, and other

9 properties have a percentage of occurrence between 0% and 3%.

Comparison with AAA-related shapes. There are 10 shapes related to archi-

tecture, archaeology and art that we were able to identify from the list of Wikidata

entity schemas34, namely: statue (E99), museum (E125), painting (E130), UNESCO

32https://www.wikidata.org/wiki/Wikidata:List of properties/work#Wikidata property

related to structures
33https://www.wikidata.org/wiki/Wikidata:WikiProject Museums
34https://wikidata.org/wiki/User:HakanIST/EntitySchemaList

https://www.wikidata.org/wiki/Wikidata:List_of_properties/work#Wikidata_property_related_to_structures
https://www.wikidata.org/wiki/Wikidata:List_of_properties/work#Wikidata_property_related_to_structures
https://www.wikidata.org/wiki/Wikidata:WikiProject_Museums
https://wikidata.org/wiki/User:HakanIST/EntitySchemaList

Chapter 5. Observing patterns from data 125

world heritage site (E142), hospital (E187), public artwork (E216), building (E270),

runic inscription (E276), and street (E317). Let us take a closer look at the two

shapes that correspond to two patterns we extract, i.e. museum and painting. The

shape for museums35 recommends 33 properties: 30/33 are included in optional con-

straints (zero or more, zero or one), while only 3 properties are mandatory: country

(wdt:P17), located in the administrative territorial entity (wdt:P131), coordinate

location (wdt:P625). All 3 mandatory properties are also included in our museum

pattern. As for the optional properties, we include 2 identifiers and 5 other prop-

erties that are also in the shape. Some of the IDs recommended as optional in the

shape – such as ISNI, GND ID, Commons Institution page, and Twitter username

– have a number of occurrences not that lower than the last property we include

using the 0.85 threshold, so they would have been selected with a more inclusive

threshold. Instead, other IDs are very uncommon, including Museofile (0.47%) and

GitHub username (0.31%), or not used in the data, such as SUDOC authorities ID.

On the contrary, the shape does not include in its constraints some quite frequent

properties of our pattern, like Freebase ID (87.74%) and location (34.12%).

The shape for paintings36 is much less rich in number of properties, recommend-

ing 4 mandatory (one or more) properties – i.e. title, location, collection, creator –

and one optional (zero or one) property, i.e. inception. The list of 23 properties of

our painting pattern also includes all 5 properties of the painting Wikidata shape.

5.2.5.3 Music and AAA

The only class, around which we build our patterns, that is common to both do-

mains is wd:Q5 human. The music human pattern includes 48 properties, while the

AAA human pattern includes 33 properties. The two patterns share 27 common

properties, that can be indeed mostly considered general, such as sex or gender,

occupation, country of citizenship, given name. The music human recommends 21

additional properties, 11 of which are clearly music-specific, including properties

35https://www.wikidata.org/wiki/EntitySchema:E125
36https://www.wikidata.org/wiki/EntitySchema:E130

https://www.wikidata.org/wiki/EntitySchema:E125
https://www.wikidata.org/wiki/EntitySchema:E130

126 Chapter 5. Observing patterns from data

Table 5.9: Comparison between properties recommended by WikiProject Museums

and properties included in our pattern for museums.

Property Percentage of occurrence WPM EP

P17 country 99.37% Y Y

P625 coordinate location 91.35% Y Y

P131 located in the administrat-

ive territorial entity

87.11% Y Y

P856 official website 66.67% Y Y

P571 inception 66.35% Y Y

P276 location 34.12% Y Y

P6375 street address 18.24% Y Y

P18 image 75.79% N Y

P1435 heritage designation 16.51% N Y

P1619 date of official opening 15.57% N Y

P1612 Commons Institution page 8.33% Y N

P159 headquarters location 7.86% Y N

P1329 phone number 7.86% Y N

P968 email address 5.03% Y N

P1174 visitors per year 5.03% Y N

P669 located on street 4.87% Y N

P2851 payment types accepted 2.83% Y N

P576 dissolved, abolished or de-

molished date

2.2% Y N

P1037 director/manager 2.04% Y N

P2900 fax number 2.04% Y N

P154 logo image 1.57% Y N

P3025 open days 0.63% Y N

P1436 collection or exhibition size 0.31% Y N

P2555 fee 0.16% Y N

P2846 wheelchair accessibility 0.16% Y N

P3026 closed on 0% Y N

P3027 open period from 0% Y N

P3028 open period to 0% Y N

such as genre, instrument, and record label, along with many domain-specific iden-

Chapter 5. Observing patterns from data 127

tifiers, like Spotify artist ID and MusicBrainz artist ID. The AAA human pattern

includes 7 properties in addition to those shared by humans from both domains,

4 of which are specific to the AAA domain: RKDartists ID, Artnet artist ID, In-

valuable.com person ID, and has works in the collection. Instead, other properties

included in either the music or the AAA human patterns are applicable to both do-

mains, such as Facebook ID and official website (music), Union List of Artist Names

ID and award received (AAA), but they have a higher frequency in either domains.

Let us now have a look at the ranges recommended for some common proper-

ties. The property occupation has, as common ranges, the classes occupation and

profession in both patterns; however, the more specific range artistic profession is

recommended for AAA humans (45.76%), while the domain-specific range musical

profession is recommended for music humans (83.78%). The property educated at

has as recommended ranges, along with other general classes, conservatory in the

music human pattern, and art school in the AAA human pattern. It is evident from

these examples that, even in the case of general properties common to patterns from

different domains, it is possible to have domain-specific recommendations of ranges.

5.2.5.4 Evolution of music and AAA patterns across two versions of

Wikidata

In this section, we report our observations after analysing the patterns extracted

on both the music and the art, architecture, and archaeology domains, from two

different versions of Wikidata, i.e. the one on which the experiments presented

above have been run (which we will call april version from now on), and a release

dated 6 months later (october version from now on). For both domains, the classes

selected for building the patterns are the same across the two versions, and the

number of instances for each class is almost equal, or slightly different.

Music. 3 out of the 7 patterns extracted from both versions of the Wikidata sub-

KG on the music domain have exactly the same set of properties in the two versions,

with the same – or slightly different – order of frequency. As for the remaining 4

patterns:

128 Chapter 5. Observing patterns from data

• the human pattern includes 2 additional properties in the october version, that

is two IDs: National Library of Israel J9U ID (with an increase of 14.26% of

coverage than the april version) and Grove Music Online ID (+15.47%);

• musical group has 2 additional identifiers in the october version: Musik-

Sammler.de artist ID (+6.58%) and Bibliothèque nationale de France ID (+0.18%);

• album also recommends 2 more properties (not IDs) than the april version:

place of publication (+10.37%) and title (+1.2%);

• the musical work/composition pattern is the only one loosing one property

from the april to the october version, that is followed by (-0.31%), however

this is the first most frequent property between the properties excluded based

on the threshold.

The properties that have undergone a wider increase in their usage, due to the

edits along 6 months, are National Library of Israel J9U ID (human), Grove Music

Online ID (human), and place of publication (album).

AAA. Out of the 11 patterns extracted on the art, architecture, and archaeology

Wikidata sub-KG, 7 patterns have the same set of properties across the two ver-

sions. We list here the remaining 4 patterns with some changes in the recommended

properties:

• the human pattern has 2 additional identifiers in the october version: described

by source (+5.08%) and National Library of Israel J9U ID (+12.42%);

• castle includes 4 additional properties in the later version, that is: TripAdvisor

ID (+16.36%), described by source (+15.67%), official website (+3.11%), and

Historic England research records ID (it was never used for castles in the earlier

version);

• hotel recommends 4 more properties: hotel rating (+4.73%), Skyscanner hotel

ID (+4.96%), Agoda hotel numeric ID (+3.78%), and Booking.com numeric

ID (+4.72%);

Chapter 5. Observing patterns from data 129

• the art museum pattern has one additional property, that is National Library

of Israel J9U ID (+15.23%).

It is interesting to notice that, for both humans related to the AAA domain and

to the music domain, one of the properties that most increased in their usage is

National Library of Israel J9U ID ; moreover, in the AAA domain, this property is

more used also for art museums. Other properties that have undergone a significant

increase are TripAdvisor ID and described by source (castle).

130 Chapter 5. Observing patterns from data

Chapter 6

Conclusion and future work

In this thesis we investigated how to empirically extract ontology design patterns

from ontologies and knowledge graphs. The main assumption behind this was that

the identified ontology design patterns contribute to support the exploration and

understanding of semantic web resources, through a pattern-based view on such

resources. Ontology and KG understanding is a key prerequisite for performing

multiple ontology and knowledge graph engineering tasks, such as ontology reuse,

and for exploiting and reusing such shared knowledge.

The thesis contributes to this goal by proposing two methods for extracting what

we term empirical ontology design patterns (EODPs) from ontologies and knowledge

graphs, respectively.

Extracting EODPs from ontologies, and grouping them in what we name con-

ceptual components based on the modelling problems they are addressing, allow us

to empirically observe the common conceptual issues that an ontology designer may

face, and the actual modelling solutions adopted in existing ontologies, regardless

their correctness or quality level, or whether they reuse state-of-the-art ontology

design patterns. The output of the method, that builds a catalogue of conceptual

components from a corpus of ontologies, may be used as a resource for supporting

multiple ontology engineering tasks, such as a pattern-based ontology selection and

reuse, and ontology interoperability, by proposing possible ontology fragments to

align. A better understanding of ontologies is also an access point to the under-

132 Chapter 6. Conclusion and future work

standing, and possible reuse, of a knowledge graph relying on such ontologies.

However, a knowledge graph does not always use an explicitly and formally

modelled ontology, but can be based on an underlying model, defined in a shallow

way. This is the reason for the second method that we propose in this thesis. This

method takes as input a knowledge graph, which may be related to a specific domain,

and extracts the empirical ontology design patterns around the classes that are

populated in the KG, generating axioms/constraints involving those classes. These

EODPs include data about the probability of such axioms/constraints to happen,

based on the number of occurrences in the KG in question. Information about

the probabilities can be used as a filter to decide how frequent a class or axiom

should be to be considered relevant e.g. for reuse purposes. This method allows

us to empirically observe the main (in term of frequency) EODPs in a (domain-

specific) knowledge graph, and how the core classes of such EODPs are described

with properties, and to which other types of entities are linked, in the actual usage.

Besides providing a method for extracting patterns without relying on an ontology,

the extracted patterns can be used as an access point to understand the content

of the knowledge graph, and to possibly compare multiple knowledge graphs. Both

methods have been applied to real-world ontologies and knowledge graphs, and the

results of the experiments are presented in the thesis.

To lay the foundations for the proposed methods, and thanks to two important

projects that also worked as use cases, we analysed the role of ontology design

patterns in the ontology engineering activities, with a specific focus on ontology

reuse, that is particularly crucial for guaranteeing the interoperability needed for

the semantic web to function how it was conceived. We placed this analysis in the

general context of currently implemented ontology reuse approaches.

From our analysis of the state of the art with respect to current approaches for

selecting and reusing existing ontologies, presented in Section 2.1, we conclude that

there exist several approaches to address these tasks, and that such approaches dif-

fer for their motivations (reuse of popular ontologies, reuse of standard ontologies,

reuse guided by a cognitive analysis of the requirements), and implementations (dir-

Chapter 6. Conclusion and future work 133

ect, indirect, hybrid reuse). All approaches and implementations have both benefits

and limits. While reusing popular or standard ontologies can foster interoperability

between knowledge graphs relying on those ontologies, and increase the chances that

such data will be reused by external applications, popularity-based metrics should

not be the only ones to be considered, as the selection of ontologies to be reused

should be primarily driven by clear ontological requirements, which not necessar-

ily are compatible with popular/standard ontologies. Directly reusing third parties

ontologies can be convenient since it makes it possible to delegate the issue of deal-

ing with ontology preservation, versioning, storage and evolution. However, this

creates a strong dependency on the original vocabulary and the semantics adopted

there, such that any change in the reused ontologies could introduce inconsistencies

contrary to the original requirements. In any case, the most appropriate approach

and implementation strategy should be chosen based on the project requirements;

however, there is still a lack of clear guidelines for supporting ontology designers in

their decision-making when it comes to ontology selection and reuse.

In Section 2.2, we focused on the pattern-based ontology engineering methodo-

logy named eXtreme Design. Several experiments have already proven that devel-

oping ontologies as compositions of small, reusable building blocks, that is ontology

design patterns, makes such ontologies more reusable in different contexts. We con-

tributed to two projects adopting this methodology, and thanks to these use cases we

show in this thesis how eXtreme Design supports ontology reuse in actual projects,

and how real-world use cases can continuously improve the methodology. Indeed,

eXtreme Design provides clear guidelines about the approach to ontology selection

and reuse, which should be pattern-based, and always subsequent to the process

of collecting requirements as competency questions, and matching such CQs with

existing, or new, ontology design patterns. This produces ontologies that are in-

herently modular, thus easier to understand and reuse. Based on the ontology in

question (e.g. whether it is developed by the same ontology design team, or not),

direct or indirect reuse is implemented. The two use cases analysed showcase the

pattern-based ontology reuse process, and we advance the methodology by (i) re-

134 Chapter 6. Conclusion and future work

fining methods and tools for requirements collection, (ii) proposing an architectural

pattern for organising the modules of a big ontology network into a clear structure,

and (iii) integrating existing guidelines for ontology and knowledge graph publica-

tion and documentation. All these activities are important to perform in order to

make the ontology more reusable, and to better reuse external ontologies.

Moreover, the thesis proposes an ontology for annotating ontology design pat-

terns in ontologies, and their instances in knowledge graphs, in order to ease the

process of exploring and understanding an ontology and a knowledge graph, and

possibly reusing their patterns, both explicitly defined by the ontology designer, or

empirically extracted through methods like the ones we present in this thesis.

We perform an evaluation of each component developed, thanks to multiple suit-

able experiments and use cases that underwent both a manual analysis, performed

following specific criteria and measures, and a quantitative analysis: the methods

have been evaluated against specific ontology engineering tasks, relevant to our ob-

jectives, such as ontology reuse and ontology matching, and have been compared

with currently existing resources/guidelines for supporting such tasks.

6.1 How we answered our research questions

In this section we review the research questions presented in 1.2, discussing the

answers we formulate to those questions.

RQ1: Are there different modelling solutions implemented in multiple ontologies ad-

dressing the same modelling problem? Is it possible to automatically identify

and classify them?

This thesis answers to this RQ by developing a method that, after the ex-

traction of what we term empirical ontology design patterns from multiple

ontologies, is able to cluster them based on the complex (cognitive) relational

structures they implement, in a (more or less) similar way (see Chapter 3).

Chapter 6. Conclusion and future work 135

Splitting an ontology into a set of ontology fragments that are proposing mod-

ellig solutions to specific modelling problems makes such ontology more man-

ageable, and easier to understand and reuse, as opposed to a monolithic view

on the ontology. Moreover, grouping these fragments (EODPs) occurring in

multiple ontologies into clusters (that we call conceptual components) that rep-

resent the abstract modelling problems they are all addressing in their specific

way, provides a means of accessing one or more ontologies based on the model-

ling issues they provide solutions for, and of exploring and comparing multiple

ontologies at once. This method is evaluated with both manual observations

of the results and through experiments against specific ontology engineering

tasks that can be supported, starting from two corpora of domain-specific

ontologies.

RQ2: What are the relevant concepts and relations to describe the ontology design

patterns used in ontologies and knowledge graphs?

The answer to this research question is included in the ontology that we de-

velop, by partially reusing existing ontologies addressing a subset of our re-

quirements, presented in Chapter 4. Indeed, building an ontology by reusing

and implementing ontology design patterns, or empirically extracting them

from existing ontologies and knowledge graphs, is not sufficient to guarantee

that a user that wants to reuse the ontology and/or the knowledge graph actu-

ally benefits from the presence of patterns: such resources should be explicitly

annotated with the patterns they (un)intentionally implement, and these an-

notations would have the function of documenting the ontology or knowledge

graph, and easing a pattern-based reuse or alignment. Our ontology addresses

a number of new requirements not satisfied by previous ontology design pat-

terns’ annotation languages: it allows to annotate the ontology with the con-

ceptual components it implements through its ontology design patterns, and

to annotate a knowledge graph with the sets of triples complying with a pat-

tern. The usefulness of our ontology is also showcased by three real-world use

136 Chapter 6. Conclusion and future work

cases that we report at the end of the chapter.

RQ3: Is it possible to automatically identify the patterns that emerge from a know-

ledge graph without relying on an explicit ontology?

The question about how to extract patterns from a knowledge graph that does

not rely on an explicit ontology, or, even so, without considering the ontology

behind it, is answered by the method we develop and present in Chapter 5. In-

formation about the number of instances of the classes in a knowledge graph,

and about the occurrences of combinations of subject type (domain), prop-

erty, and object type (range), is exploited for empirically extracting ontology

design patterns that are expressed as sets of axioms associated with a probab-

ility based on their frequency. These patterns are also expressed in the form

of sets of constraints against which the KG can be evaluated (shapes). Our

evaluation, based on the Wikidata KG use case, demonstrates how these em-

pirical ODPs extracted from a knowledge graph can offer a modularised view

of such KG, and give insights into its content. Moreover, they provide a user

with a tool to choose the level of probability above which a pattern, or an

axiom inside it, will be included in the output, generating patterns that are

informed about the fact that they are inferred from a KG based on the actual

usage of ontology entities.

6.2 Future work

We conclude this thesis with a discussion on possible lines of future work, some of

which are underway at the time of writing.

Comparison and integration of patterns extracted from ontologies and

knowledge graphs. In this thesis, we proposed two methods for extracting em-

pirical ontology design patterns. The first works only with ontologies, the second

takes into account the knowledge graph exclusively. In the future, we would like to

compare the patterns that we extract from ontologies and those that emerge from

Chapter 6. Conclusion and future work 137

knowledge graphs, in order to draw conclusions about how much the way modelling

issues are addressed in formally modelled ontologies matches with the way know-

ledge is expressed in the data, i.e. how different are ontology-driven and KG-driven

empirical ODPs, in terms of structure and semantics. Moreover, the EODPs extrac-

ted from a knowledge graph that is based on an ontology can be compared with the

EODPs extracted from such ontology, in order to analyse how an ontology is used

in practice. An important future development would be combining the two methods

in an overall method that, starting from a knowledge graph based on one ontology,

or multiple ontologies, extracts EODPs that take into account both the formally

defined ontology, and the statistical information that can be found at the data level.

Comparison and alignment of empirical ODPs and sota ODPs. The

two methods to empirically extract ODPs from ontologies and knowledge graphs

show their potential to provide a means of observing how an ontology is being

modelled, addressing which modelling issues, and how a knowledge graph can shed

light on modelling practices put into use at the data level. However, it is to be

considered that there are many ontology design patterns explicitly defined, both as

independent small ontologies, e.g. published in online catalogues, and included in

larger ontologies. A line of research we want to follow in the future is the design of a

method for automatically linking empirical patterns to state-of-the-art catalogues’

ODPs, and managing a possible synchronous evolution of both resources.

User-based evaluation. As presented in this thesis, and mentioned above,

we evaluated our methods for extracting empirical ontology design patterns from

ontologies and knowledge graphs with multiple experiments and manual analysis.

However, a task-based user study would allow us to gather more evidences to assess

the validity of the proposed solutions, and, more importantly, to have external users

testing our tools by performing tasks related to the ontology engineering activities

that we want to support, like ontology understanding, selection and reuse. In this

way, we could prove whether we actually support those tasks, in terms of ease of

performing them, saving of time, etc. Moreover, users would provide useful feedback

to improve our methods, along with clear improvements we are already working

138 Chapter 6. Conclusion and future work

on, like refining the conceptual components, by split or merge, and polishing their

naming.

Facing other domains. In our experiments, we focused on some domains of

knowledge, for proving the generalisability of our methods. Part of future activities

will be dedicated to widening the set of domains, in order to make additional ana-

lysis, also expecting that new requirements may emerge from such new experiments.

Moreover, we want to test our method for extracting EODPs from knowledge graphs

on KGs other than Wikidata.

Bibliography

[1] Renzo Arturo Alva Principe, Andrea Maurino, Matteo Palmonari, Michele

Ciavotta and Blerina Spahiu. ‘ABSTAT-HD: a scalable tool for profiling very

large knowledge graphs’. In: VLDB Journal (2021), pages 1–26. doi: 10.1007/

s00778-021-00704-2.

[2] Flora Amato, Aniello De Santo, Vincenzo Moscato, Fabio Persia, Antonio Pi-

cariello and Silvestro Roberto Poccia. ‘Partitioning of ontologies driven by a

structure-based approach’. In: Proceedings of the 9th IEEE International Con-

ference on Semantic Computing (ICSC 2015). Edited by Mohan S. Kankan-

halli, Tao Li and Wei Wang. IEEE Computer Society, 2015, pages 320–323.

doi: 10.1109/ICOSC.2015.7050827.

[3] Luigi Asprino, Valentina Anita Carriero, Christian Colonna and Valentina

Presutti. ‘OPLaX: annotating ontology design patterns at conceptual and in-

stance level’. In: Proceedings of the 12th Workshop on Ontology Design and

Patterns (WOP 2021) co-located with 20th International Semantic Web Con-

ference (ISWC 2021). Edited by Karl Hammar, Cogan Shimizu, Hande Küçük-

McGinty, Luigi Asprino and Valentina Anita Carriero. Volume 3011. CEUR

Workshop Proceedings. CEUR-WS.org, 2021, pages 1–13.

[4] Luigi Asprino, Valentina Anita Carriero and Valentina Presutti. ‘Extraction of

Common Conceptual Components from Multiple Ontologies’. In: Proceedings

of K-CAP ’21: Knowledge Capture Conference 2021. Edited by Anna Lisa

Gentile and Rafael Gonçalves. ACM, 2021, pages 185–192. doi: 10 . 1145 /

3460210.3493542.

https://doi.org/10.1007/s00778-021-00704-2
https://doi.org/10.1007/s00778-021-00704-2
https://doi.org/10.1109/ICOSC.2015.7050827
https://doi.org/10.1145/3460210.3493542
https://doi.org/10.1145/3460210.3493542

140 BIBLIOGRAPHY

[5] Luigi Asprino, Christian Colonna, Misael Mongiov̀ı, Margherita Porena and

Valentina Presutti. Pattern-based Visualization of Knowledge Graphs. 2021.

arXiv: 2106.12857 [cs.HC].

[6] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt,

Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer and Nathan

Schneider. ‘Abstract Meaning Representation for Sembanking’. In: Proceed-

ings of the 7th Linguistic Annotation Workshop and Interoperability with Dis-

course, LAW-ID@ACL 2013. Edited by Stefanie Dipper, Maria Liakata and

Antonio Pareja-Lora. Association for Computational Linguistics, 2013, pages 178–

186.

[7] Tim Berners-Lee, James Hendler and Ora Lassila. ‘The Semantic Web’. In:

Scientific American 284.5 (2001), pages 34–43.

[8] Diego Berrueta, Jon Phipps, Alistair Miles, Thomas Baker and Ralph Swick.

‘Best practice recipes for publishing RDF vocabularies’. In: Working draft,

W3C 7 (2008).

[9] Eva Blomqvist, Aldo Gangemi and Valentina Presutti. ‘Experiments on pattern-

based ontology design’. In: Proceedings of the 5th International Conference on

Knowledge Capture (K-CAP 2009). Edited by Yolanda Gil and Natasha Frid-

man Noy. ACM, 2009, pages 41–48. doi: 10.1145/1597735.1597743.

[10] Eva Blomqvist, Karl Hammar and Valentina Presutti. ‘Engineering Ontologies

with Patterns - The eXtreme Design Methodology’. In: Ontology Engineering

with Ontology Design Patterns - Foundations and Applications. Volume 25.

Studies on the Semantic Web. Amsterdam: IOS Press, 2016. doi: 10.3233/978-

1-61499-676-7-23.

[11] Eva Blomqvist, Pascal Hitzler, Krzysztof Janowicz, Adila Krisnadhi, Tom

Narock and Monika Solanki. ‘Considerations regarding Ontology Design Pat-

terns’. In: Semantic Web 7.1 (2016), pages 1–7. doi: 10.3233/SW-150202.

https://arxiv.org/abs/2106.12857
https://doi.org/10.1145/1597735.1597743
https://doi.org/10.3233/978-1-61499-676-7-23
https://doi.org/10.3233/978-1-61499-676-7-23
https://doi.org/10.3233/SW-150202

BIBLIOGRAPHY 141

[12] Eva Blomqvist, Valentina Presutti, Enrico Daga and Aldo Gangemi. ‘Experi-

menting with eXtreme Design’. In: Proceedings of the 17th International Con-

ference on Knowledge Engineering and Management by the Masses (EKAW

2010). Edited by Philipp Cimiano and Helena Sofia Pinto. Volume 6317. Lec-

ture Notes in Computer Science. Springer, 2010, pages 120–134. doi: 10.1007/

978-3-642-16438-5\ 9.

[13] Eva Blomqvist, Azam Seil Sepour and Valentina Presutti. ‘Ontology Testing

- Methodology and Tool’. In: Proceedings of the 18th International Confer-

ence on Knowledge Engineering and Knowledge Management (EKAW). Ed-

ited by Annette ten Teije, Johanna Völker, Siegfried Handschuh, Heiner Stuck-

enschmidt, Mathieu d’Aquin, Andriy Nikolov, Nathalie Aussenac-Gilles and

Nathalie Hernandez. Volume 7603. Lecture Notes in Computer Science. Springer,

2012, pages 216–226. doi: 10.1007/978-3-642-33876-2.

[14] Eva Blomqvist, Ziqi Zhang, Anna Lisa Gentile, Isabelle Augenstein and Fabio

Ciravegna. ‘Statistical Knowledge Patterns for Characterising Linked Data’.

In: WOP co-located with ISWC. Edited by Aldo Gangemi, Michael Gruninger,

Karl Hammar, Laurent Lefort, Valentina Presutti and Ansgar Scherp. Volume 1188.

CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[15] Iovka Boneva, Jérémie Dusart, Daniel Fernández-Álvarez and José Emilio

Labra Gayo. ‘Shape Designer for ShEx and SHACL constraints’. In: Proceed-

ings of Posters & Demonstrations, Industry, and Outrageous Ideas - ISWC

2019. Edited by Mari Carmen Suárez-Figueroa, Gong Cheng, Anna Lisa Gen-

tile, Christophe Guéret, C. Maria Keet and Abraham Bernstein. Volume 2456.

CEUR Workshop Proceedings. CEUR-WS.org, 2019, pages 269–272.

[16] Freddy Brasileiro, João Paulo A. Almeida, Victorio A. Carvalho and Giancarlo

Guizzardi. ‘Applying a Multi-Level Modeling Theory to Assess Taxonomic

Hierarchies in Wikidata’. In: WWW ’16 Companion. Edited by Jacqueline

Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks and Ben Y. Zhao.

2016, pages 975–980. doi: 10.1145/2872518.2891117.

https://doi.org/10.1007/978-3-642-16438-5_9
https://doi.org/10.1007/978-3-642-16438-5_9
https://doi.org/10.1007/978-3-642-33876-2
https://doi.org/10.1145/2872518.2891117

142 BIBLIOGRAPHY

[17] Valentina Anita Carriero, Fiorela Ciroku, Jacopo de Berardinis, Delfina Sol

Martinez Pandiani, Albert Meroño-Peñuela, Andrea Poltronieri and Valentina

Presutti. ‘Semantic integration of MIR datasets with the Polifonia ontology

network’. In: Proceedings of Late Breaking Demo Session of the 22nd Int.

Society for Music Information Retrieval Conference (ISMIR 2021). 2021.

[18] Valentina Anita Carriero, Marilena Daquino, Aldo Gangemi, Andrea Giovanni

Nuzzolese, Silvio Peroni, Valentina Presutti and Francesca Tomasi. ‘The Land-

scape of Ontology Reuse Approaches’. In: Applications and Practices in On-

tology Design, Extraction, and Reasoning. Edited by Giuseppe Cota, Marilena

Daquino and Gian Luca Pozzato. Volume 49. Studies on the Semantic Web.

Amsterdam: IOS Press, 2020, pages 21–38. doi: 10.3233/SSW200033.

[19] Valentina Anita Carriero, Aldo Gangemi, Maria Letizia Mancinelli, Ludovica

Marinucci, Andrea Giovanni Nuzzolese, Valentina Presutti and Chiara Ven-

inata. ‘ArCo: The Italian Cultural Heritage Knowledge Graph’. In: Proceedings

of the 18th International Semantic Web Conference ISWC 2019, Part II. Ed-

ited by Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Isa-

bel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois and Fabien Gandon.

Volume 11779. Lecture Notes in Computer Science. Springer, 2019, pages 36–

52. doi: 10.1007/978-3-030-30796-7\ 3.

[20] Valentina Anita Carriero, Aldo Gangemi, Maria Letizia Mancinelli, Andrea

Giovanni Nuzzolese, Valentina Presutti and Chiara Veninata. ‘Pattern-based

design applied to cultural heritage knowledge graphs’. In: Semantic Web 12.2

(2021), pages 313–357. doi: 10.3233/SW-200422.

[21] Valentina Anita Carriero, Aldo Gangemi, Andrea Giovanni Nuzzolese and

Valentina Presutti. ‘An Ontology Design Pattern for representing Recurrent

Events’. In: Proceedings of the 10th Workshop on Ontology Design and Pat-

terns (WOP 2019) co-located with the 18th International Semantic Web Con-

ference (ISWC 2019). Edited by Krzysztof Janowicz, Adila Alfa Krisnadhi,

Maŕıa Poveda-Villalón, Karl Hammar and Cogan Shimizu. 2019.

https://doi.org/10.3233/SSW200033
https://doi.org/10.1007/978-3-030-30796-7_3
https://doi.org/10.3233/SW-200422

BIBLIOGRAPHY 143

[22] Valentina Anita Carriero, Aldo Gangemi, Andrea Giovanni Nuzzolese and

Valentina Presutti. ‘An Ontology Design Pattern for Representing Recurrent

Situations’. In: Advances in Pattern-Based Ontology Engineering, extended

versions of the papers published at the Workshop on Ontology Design and

Patterns (WOP). Edited by Eva Blomqvist, Torsten Hahmann, Karl Ham-

mar, Pascal Hitzler, Rinke Hoekstra, Raghava Mutharaju, Maŕıa Poveda-

Villalón, Cogan Shimizu, Martin G. Skjæveland, Monika Solanki, Vojtech

Svátek and Lu Zhou. Volume 51. Studies on the Semantic Web. IOS Press,

2021, pages 166–182. doi: 10.3233/SSW210013.

[23] Valentina Anita Carriero, Paul Groth and Valentina Presutti. ‘Towards im-

proving Wikidata reuse with emerging patterns’. In: Proceedings of the 3rd

Wikidata Workshop 2022 co-located with the 21st International Semantic Web

Conference (ISWC 2022). Edited by Lucie-Aimée Kaffee, Simon Razniewski,

Gabriel Amaral and Kholoud Saad Alghamdi. Volume 3262. CEUR Workshop

Proceedings. CEUR-WS.org, 2022.

[24] Valentina Anita Carriero, Paul Groth and Valentina Presutti. ‘Empirical on-

tology design patterns and shapes from Wikidata’. In: Semantic Web (2023).

under review.

[25] Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos,

Ioana Manolescu, Georgia Troullinou and Mussab Zneika. ‘Summarizing se-

mantic graphs: a survey’. In: VLDB Journal 28.3 (2019), pages 295–327. doi:

10.1007/s00778-018-0528-3.

[26] Andrea Cimmino, Alba Fernández-Izquierdo and Raúl Garćıa-Castro. ‘Astrea:

Automatic Generation of SHACL Shapes from Ontologies’. In: ESWC. Ed-

ited by Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko

Paulheim, Anisa Rula, Anna Lisa Gentile, Peter Haase and Michael Cochez.

Volume 12123. Lecture Notes in Computer Science. Springer, 2020, pages 497–

513. doi: 10.1007/978-3-030-49461-2\ 29.

https://doi.org/10.3233/SSW210013
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1007/978-3-030-49461-2_29

144 BIBLIOGRAPHY

[27] Aaron Clauset, Mark EJ Newman and Cristopher Moore. ‘Finding community

structure in very large networks’. In: Physical review E 70.6 (2004), page 066111.

doi: 10.1103/PhysRevE.70.066111.

[28] Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt and Marta Sabou.

‘Criteria and Evaluation for Ontology Modularization Techniques’. In: Modu-

lar Ontologies: Concepts, Theories and Techniques for Knowledge Modulariz-

ation. Edited by Heiner Stuckenschmidt, Christine Parent and Stefano Spac-

capietra. Volume 5445. Lecture Notes in Computer Science. Springer, 2009,

pages 67–89. doi: 10.1007/978-3-642-01907-4\ 4.

[29] Marek Dudás, Steffen Lohmann, Vojtech Svátek and Dmitry Pavlov. ‘Onto-

logy visualization methods and tools: a survey of the state of the art’. In:

The Knowledge Engineering Review 33 (2018), pages 1–39. doi: 10 . 1017 /

S0269888918000073.

[30] Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Palmonari, Isabel F.

Cruz and Francisco M. Couto. ‘The AgreementMakerLight Ontology Matching

System’. In: Proceedings of On the Move to Meaningful Internet Systems: OTM

Conferences 2013. Edited by Robert Meersman, Hervé Panetto, Tharam S.

Dillon, Johann Eder, Zohra Bellahsene, Norbert Ritter, Pieter De Leenheer

and Dejing Dou. Volume 8185. Lecture Notes in Computer Science. 2013,

pages 527–541. doi: 10.1007/978-3-642-41030-7\ 38.

[31] Daniel Fernandez-Álvarez, Jose Emilio Labra-Gayo and Daniel Gayo-Avello.

‘Automatic extraction of shapes using sheXer’. In: Knowledge-Based Systems

(2021), page 107975. doi: 10.1016/j.knosys.2021.107975.

[32] Mariano Fernández-López, Asunción Gómez-Pérez and Natalia Juristo. ‘Methon-

tology: from ontological art towards ontological engineering’. In: AAAI Tech-

nical Report (1997).

[33] Pablo Rubén Fillottrani and C Maria Keet. ‘Patterns for heterogeneous tbox

mappings to bridge different modelling decisions’. In: Proceedings of the 14th

European Semantic Web Conference (ESWC 2017). Edited by Eva Blomqv-

https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1007/978-3-642-01907-4_4
https://doi.org/10.1017/S0269888918000073
https://doi.org/10.1017/S0269888918000073
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.1016/j.knosys.2021.107975

BIBLIOGRAPHY 145

ist, Diana Maynard, Aldo Gangemi, Rinke Hoekstra, Pascal Hitzler and Olaf

Hartig. Springer. 2017, pages 371–386. doi: 10.1007/978-3-319-58068-5\ 23.

[34] Aldo Gangemi. ‘Ontology Design Patterns for Semantic Web Content’. In:

Proceedings of the 4th International Semantic Web Conference (ISWC 2015).

Edited by Yolanda Gil, Enrico Motta, V. Richard Benjamins and Mark A.

Musen. Lecture Notes in Computer Science. Springer, pages 262–276. doi:

10.1007/11574620\ 21.

[35] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita and Jos Lehmann.

‘Modelling Ontology Evaluation and Validation’. In: Proceedings of the 3rd

European Semantic Web Conference (ESWC 2006). Edited by York Sure and

John Domingue. Volume 4011. Lecture Notes in Computer Science. Springer,

2006, pages 140–154. doi: 10.1007/11762256\ 13.

[36] Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari and

Luc Schneider. ‘Sweetening ontologies with DOLCE’. In: Proceedings of the

13th International Conference Knowledge Engineering and Knowledge Man-

agement (EKAW 2002). Volume 2473. Lecture Notes in Computer Science.

Springer. Springer, 2002, pages 166–181. doi: 10.1007/3-540-45810-7\ 18.

[37] Aldo Gangemi and Valentina Presutti. ‘Ontology Design Patterns’. In: Hand-

book on Ontologies. Edited by Steffen Staab and Rudi Studer. International

Handbooks on Information Systems. Springer, 2009, pages 221–243. doi: 10.

1007/978-3-540-92673-3\ 10.

[38] Aldo Gangemi and Valentina Presutti. ‘Towards a pattern science for the Se-

mantic Web’. In: Semantic Web 1.1-2 (2010), pages 61–68. doi: 10.3233/SW-

2010-0020.

[39] Aldo Gangemi and Valentina Presutti. ‘Multi-layered n-ary Patterns’. In: On-

tology Engineering with Ontology Design Patterns - Foundations and Applic-

ations. 2016, pages 105–131. doi: 10.3233/978-1-61499-676-7-105.

https://doi.org/10.1007/978-3-319-58068-5_23
https://doi.org/10.1007/11574620_21
https://doi.org/10.1007/11762256_13
https://doi.org/10.1007/3-540-45810-7_18
https://doi.org/10.1007/978-3-540-92673-3_10
https://doi.org/10.1007/978-3-540-92673-3_10
https://doi.org/10.3233/SW-2010-0020
https://doi.org/10.3233/SW-2010-0020
https://doi.org/10.3233/978-1-61499-676-7-105

146 BIBLIOGRAPHY

[40] Aldo Gangemi, Valentina Presutti, Diego Reforgiato Recupero, Andrea Gio-

vanni Nuzzolese, Francesco Draicchio and Misael Mongiov̀ı. ‘Semantic Web

Machine Reading with FRED’. In: Semantic Web 8.6 (2017), pages 873–893.

doi: 10.3233/SW-160240.

[41] Soudabeh Ghafourian, Amin Rezaeian and Mahmoud Naghibzadeh. ‘Graph-

based partitioning of ontology with semantic similarity’. In: Proceedings of

the 3rd International eConference on Computer and Knowledge Engineering

(ICCKE 2013). IEEE, 2013, pages 80–85. doi: 10.1109/ICCKE32111.2013.

[42] Jorge Gracia, Elena Montiel-Ponsoda, Philipp Cimiano, Asunción Gómez-

Pérez, Paul Buitelaar and John McCrae. ‘Challenges for the multilingual

web of data’. In: Journal of Web Semantics 11 (2012), pages 63–71. doi:

10.1016/j.websem.2011.09.001.

[43] ICOM/CIDOC CRM Special Interest Group. ‘Definition of the CIDOC Con-

ceptual Reference Model’. In: ICOM, 2017, 6.2.2 edn.

[44] Thomas R Gruber. ‘A translation approach to portable ontology specifica-

tions’. In: Knowledge acquisition 5.2 (1993), pages 199–220.

[45] Michael Gruninger and Mark S. Fox. ‘The role of competency questions in en-

terprise engineering’. In: Proceedings of the IFIP WG5.7 Workshop on Bench-

marking - Theory and Practice. 1994.

[46] Michael Grüninger and Mark S. Fox. In: Benchmarking – Theory and Practice.

Edited by Asbjørn Rolstad̊as. Springer, 1995. Chapter The Role of Compet-

ency Questions in Enterprise Engineering, pages 22–31. doi: 10.1007/978-0-

387-34847-6\ 3.

[47] Tom Heath and Christian Bizer. ‘Linked data: Evolving the web into a global

data space’. In: Synthesis lectures on the semantic web: theory and technology.

Synthesis Lectures on the Semantic Web 1.1 (2011), pages 1–136. doi: 10 .

2200/S00334ED1V01Y201102WBE001.

https://doi.org/10.3233/SW-160240
https://doi.org/10.1109/ICCKE32111.2013
https://doi.org/10.1016/j.websem.2011.09.001
https://doi.org/10.1007/978-0-387-34847-6_3
https://doi.org/10.1007/978-0-387-34847-6_3
https://doi.org/10.2200/S00334ED1V01Y201102WBE001
https://doi.org/10.2200/S00334ED1V01Y201102WBE001

BIBLIOGRAPHY 147

[48] Tom Heath and Christian Bizer. ‘Linked data: Evolving the web into a global

data space’. In: Synthesis lectures on the semantic web: theory and technology

1.1 (2011), pages 1–136.

[49] Martin Hepp. ‘Goodrelations: An ontology for describing products and services

offers on the web’. In: Proceedings of the 16th International Conference of

Knowledge Engineering: Practice and Patterns (EKAW 2008). Volume 5268.

Lecture Notes in Computer Science. Springer, 2008, pages 329–346. doi: 10.

1007/978-3-540-87696-0\ 29.

[50] Quinn Hirt, Cogan Shimizu and Pascal Hitzler. ‘Extensions to the Ontology

Design Pattern Representation Language’. In: Proceedings of the 10th Work-

shop on Ontology Design and Patterns (WOP 2019) co-located with 18th Inter-

national Semantic Web Conference (ISWC 2019). Edited by Krzysztof Janow-

icz, Adila Alfa Krisnadhi, Maŕıa Poveda-Villalón, Karl Hammar and Cogan

Shimizu. Volume 2459. CEUR Workshop Proceedings. CEUR-WS.org, 2019,

pages 76–75.

[51] Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Krisnadhi and Valentina

Presutti, editors. Ontology Engineering with Ontology Design Patterns - Found-

ations and Applications. Volume 25. SSWS. IOS Press, 2016.

[52] Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Krisnadhi and Valentina

Presutti, editors. Ontology Engineering with Ontology Design Patterns - Found-

ations and Applications. Volume 25. SSWS. IOS Press, 2016. isbn: 978-1-

61499-675-0.

[53] Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Alfa Krisnadhi and

Valentina Presutti. ‘Towards a Simple but Useful Ontology Design Pattern

Representation Language’. In: Proceedings of the 8th Workshop on Ontology

Design and Patterns (WOP 2017) co-located with the 16th International Se-

mantic Web Conference (ISWC 2017). Volume 2043. CEUR Workshop Pro-

ceedings. CEUR-WS.org, 2017.

https://doi.org/10.1007/978-3-540-87696-0_29
https://doi.org/10.1007/978-3-540-87696-0_29

148 BIBLIOGRAPHY

[54] Bernadette Hyland, Ghislain Atemezing and Boris Villazón-Terrazas. ‘Best

practices for publishing linked data’. In: W3C Working Group Note (2014),

pages 1–22.

[55] Filip Ilievski, Daniel Garijo, Hans Chalupsky, Naren Teja Divvala, Yixiang

Yao, Craig Rogers, Ronpeng Li, Jun Liu, Amandeep Singh, Daniel Schwabe

and Pedro Szekely. ‘KGTK: A Toolkit for Large Knowledge Graph Manipu-

lation and Analysis’. In: Proceedings of the 19th International Semantic Web

Conference (ISWC 2020) - Part II. Edited by Jeff Z. Pan, Valentina A. M.

Tamma, Claudia d’Amato, Krzysztof Janowicz, Bo Fu, Axel Polleres, Osh-

ani Seneviratne and Lalana Kagal. Volume 12507. Lecture Notes in Computer

Science. Springer. 2020, pages 278–293. doi: 10.1007/978-3-030-62466-8\ 18.

[56] Megan Katsumi and Michael Grüninger. ‘What is ontology reuse?’ In: Proceed-

ings of the 9th International Conference on Formal Ontology in Information

Systems (FOIS 2016). 2016, pages 9–22.

[57] Holger Knublauch. SHACL and OWL Compared. https://spinrdf.org/shacl-

and-owl.html/. 2017.

[58] Agnieszka Lawrynowicz, Jedrzej Potoniec, Micha l Robaczyk and Tania Tudor-

ache. ‘Discovery of emerging design patterns in ontologies using tree mining’.

In: Semantic Web 9.4 (2018), pages 517–544. doi: 10.3233/SW-170280.

[59] Timothy Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhajjame, James

Cheney, David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik

and Jun Zhao. ‘Prov-o: The prov ontology’. In: W3C recommendation 30

(2013).

[60] Ning Li, Enrico Motta and Mathieu d’Aquin. ‘Ontology summarization: an

analysis and an evaluation’. In: Proceedings of the International Workshop on

Evaluation of Semantic Technologies (IWEST 2010), co-located with the 9th

International Semantic Web Conference (ISWC 2010). Edited by Asunción

Gómez-Pérez, Fabio Ciravegna, Frank van Harmelen and Jeff Heflin. Volume 666.

CEUR Workshop Proceedings. CEUR-WS.org, 2010.

https://doi.org/10.1007/978-3-030-62466-8_18
https://spinrdf.org/shacl-and-owl.html/
https://spinrdf.org/shacl-and-owl.html/
https://doi.org/10.3233/SW-170280

BIBLIOGRAPHY 149

[61] Matteo Lissandrini, Torben Bach Pedersen, Katja Hose and Davide Mottin.

‘Knowledge graph exploration: where are we and where are we going?’ In:

ACM SIGWEB Newsletter Summer 2020 (2020), pages 1–8.

[62] James MacQueen. ‘Some methods for classification and analysis of multivariate

observations’. In: Proceedings of the 5th Berkeley symposium on mathematical

statistics and probability. Volume 1. 14. 1967, pages 281–297.

[63] Antonello Meloni, Diego Reforgiato Recupero and Aldo Gangemi. ‘AMR2FRED,

A Tool for Translating Abstract Meaning Representation to Motif-Based Lin-

guistic Knowledge Graphs’. In: The Semantic Web: ESWC 2017 Satellite

Events - ESWC 2017 Satellite Events. Springer International Publishing, 2017,

pages 43–47. doi: 10.1007/978-3-319-70407-4\ 9.

[64] Nandana Mihindukulasooriya, Maŕıa Poveda-Villalón, Raúl Garćıa-Castro and

Asunción Gómez-Pérez. ‘Loupe - An Online Tool for Inspecting Datasets in the

Linked Data Cloud’. In: Proceedings of the Posters & Demonstrations Track

of the 14th International Semantic Web Conference (ISWC 2015). Edited by

Serena Villata, Jeff Z. Pan and Mauro Dragoni. Volume 1. CEUR Workshop

Proceedings 1. CEUR-WS.org, 2015.

[65] Nandana Mihindukulasooriya, Mohammad Rifat Ahmmad Rashid, Giuseppe

Rizzo, Raúl Garćıa-Castro, Oscar Corcho and Marco Torchiano. ‘RDF shape

induction using knowledge base profiling’. In: Proceedings of the 33rd Annual

ACM Symposium on Applied Computing, SAC 2018. Edited by Hisham M.

Haddad, Roger L. Wainwright and Richard Chbeir. ACM, 2018, pages 1952–

1959. doi: 10.1145/3167132.3167341.

[66] Eleni Mikroyannidi, Luigi Iannone, Robert Stevens and Alan Rector. ‘Inspect-

ing regularities in ontology design using clustering’. In: Proceedings of the the

10th International Semantic Web Conference (ISWC 2011) - Part I. Edited

by Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein,

Lalana Kagal, Natasha Fridman Noy and Eva Blomqvist. Volume 7031. Lec-

https://doi.org/10.1007/978-3-319-70407-4_9
https://doi.org/10.1145/3167132.3167341

150 BIBLIOGRAPHY

ture Notes in Computer Science. Springer, 2011, pages 438–453. doi: 10.1007/

978-3-642-25073-6\ 28.

[67] Christine Parent and Stefano Spaccapietra. ‘An Overview of Modularity’. In:

Modular Ontologies: Concepts, Theories and Techniques for Knowledge Mod-

ularization. Edited by Heiner Stuckenschmidt, Christine Parent and Stefano

Spaccapietra. Volume 5445. Lecture Notes in Computer Science. Springer,

2009, pages 5–23. doi: 10.1007/978-3-642-01907-4\ 2.

[68] Silvio Peroni. ‘A simplified agile methodology for ontology development’. In:

OWL: - Experiences and Directions - Reasoner Evaluation - 13th Interna-

tional Workshop, OWLED 2016, and 5th International Workshop, ORE 2016,

Revised Selected Papers. Volume 10161. Lecture Notes in Computer Science.

Springer, 2016, pages 55–69. doi: 10.1007/978-3-319-54627-8\ 5.

[69] Silvio Peroni, Enrico Motta and Mathieu d’Aquin. ‘Identifying key concepts

in an ontology, through the integration of cognitive principles with statistical

and topological measures’. In: Proceedings of the 3rd Asian Semantic Web

Conference (ASWC 2008). Springer, pages 242–256.

[70] Helena Sofia Pinto and João P Martins. ‘Ontologies: How can they be built?’

In: Knowledge and information systems 6.4 (2004), pages 441–464. doi: 10.

1007/s10115-003-0138-1.

[71] Helena Sofia Pinto, Steffen Staab and Christoph Tempich. ‘DILIGENT: To-

wards a fine-grained methodology for DIstributed, Loosely-controlled and evolvInG

Engineering of oNTologies’. In: Proceedings of the 16th Eureopean Conference

on Artificial Intelligence (ECAI 2004), including Prestigious Applicants of In-

telligent Systems (PAIS 2004). Volume 16. IOS Press, 2004, page 393.

[72] Alessandro Piscopo and Elena Simperl. ‘Who Models the World? Collaborative

Ontology Creation and User Roles in Wikidata’. In: Proceedings of the ACM

on Human-Computer Interaction 2.CSCW (2018).

https://doi.org/10.1007/978-3-642-25073-6_28
https://doi.org/10.1007/978-3-642-25073-6_28
https://doi.org/10.1007/978-3-642-01907-4_2
https://doi.org/10.1007/978-3-319-54627-8_5
https://doi.org/10.1007/s10115-003-0138-1
https://doi.org/10.1007/s10115-003-0138-1

BIBLIOGRAPHY 151

[73] Seyed Amin Pouriyeh, Mehdi Allahyari, Krys Kochut and Hamid R. Arabnia.

‘A Comprehensive Survey of Ontology Summarization: Measures and Meth-

ods’. In: CoRR abs/1801.01937 (2018).

[74] Valentina Presutti, Enrico Daga, Aldo Gangemi and Eva Blomqvist. ‘eXtreme

Design with Content Ontology Design Patterns’. In: Proceedings of the 1st

Workshop on Ontology Patterns (WOP 2009), co-located with the 8th Inter-

national Semantic Web Conference (ISWC 2009). Edited by Eva Blomqvist,

Kurt Sandkuhl, François Scharffe and Vojtech Svátek. Volume 516. CEUR

Workshop Proceedings. CEUR-WS.org, 2009.

[75] Valentina Presutti, Giorgia Lodi, Andrea Giovanni Nuzzolese, Aldo Gangemi

et al. ‘The Role of Ontology Design Patterns in Linked Data Projects’. In:

Proceedings of the 35th International Conference on Conceptual Modeling (ER

2016). 2016, pages 113–121. doi: 10.1007/978-3-319-46397-1\ 9.

[76] Kashif Rabbani, Matteo Lissandrini and Katja Hose. ‘SHACL and ShEx in

the Wild: A Community Survey on Validating Shapes Generation and Ad-

option’. In: Companion of The Web Conference 2022. Edited by Frédérique

Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis,

Ivan Herman and Lionel Médini. Volume 2043. CEUR Workshop Proceedings.

CEUR-WS.org, 2022.

[77] Cássio Reginato, Jordana Salamon, Gabriel Nogueira, Monalessa Barcellos,

Vı́tor Souza and Maxwell Monteiro. ‘GO-FOR: A Goal-Oriented Framework

for Ontology Reuse’. In: 2019 IEEE 20th International Conference on Inform-

ation Reuse and Integration for Data Science (IRI). IEEE. 2019, pages 99–

106.

[78] Pat Riva and Maja Žumer. FRBRoo, the IFLA Library Reference Model, and

now LRMoo: a circle of development. Technical report. 2017.

[79] Marta Sabou, Vanessa López, Enrico Motta and Victoria S. Uren. ‘Ontology

Selection: Ontology Evaluation on the Real Semantic Web’. In: Proceedings of

4th International EON Workshop 2006 Evaluation of Ontologies for the Web

https://doi.org/10.1007/978-3-319-46397-1_9

152 BIBLIOGRAPHY

co-located with the WWW 2006. Edited by Denny Vrandecic, Mari Carmen

Suárez-Figueroa, Aldo Gangemi and York Sure. Volume 179. CEUR Workshop

Proceedings. CEUR-WS.org, 2006.

[80] Cogan Shimizu, Karl Hammar and Pascal Hitzler. ‘Modular Graphical Onto-

logy Engineering Evaluated’. In: Proceedings of the 17th International Con-

ference of Semantic Web (ESWC 2020). Edited by Andreas Harth, Sabrina

Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko Paulheim, Anisa Rula, Anna Lisa

Gentile, Peter Haase and Michael Cochez. Volume 12123. Lecture Notes in

Computer Science. Springer, Cham, 2020, pages 20–35. doi: 10.1007/978-3-

030-49461-2\ 2.

[81] Martin G. Skjæveland, Henrik Forssell, Johan W. Klüwer, Daniel P. Lupp,

Evgenij Thorstensen and Arild Waaler. ‘Pattern-Based Ontology Design and

Instantiation with Reasonable Ontology Templates’. In: Proceedings of the

8th Workshop on Ontology Design and Patterns (WOP 2017) co-located with

the 16th International Semantic Web Conference (ISWC 2017). Edited by

Eva Blomqvist, Óscar Corcho, Matthew Horridge, David Carral and Rinke

Hoekstra. Volume 2043. CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[82] Blerina Spahiu, Andrea Maurino and Matteo Palmonari. ‘Towards Improving

the Quality of Knowledge Graphs with Data-driven Ontology Patterns and

SHACL’. In: Proceedings of the 9th Workshop of Ontology Design and Patterns

(WOP 2018) co-located with the 17th International Semantic Web Conference

(ISWC 2018). Edited by Martin G. Skjæveland, Yingjie Hu, Karl Hammar,

Vojtech Svátek and Agnieszka Lawrynowicz. Volume 2195. CEUR Workshop

Proceedings. CEUR-WS.org, 2018, pages 52–66.

[83] Blerina Spahiu, Riccardo Porrini, Matteo Palmonari, Anisa Rula and Andrea

Maurino. ‘ABSTAT: Ontology-driven Linked Data Summaries with Pattern

Minimalization’. In: Proceedings of the 2nd International Workshop on Sum-

marizing and Presenting Entities and Ontologies (SumPre 2016) co-located

with the 13th Extended Semantic Web Conference (ESWC 2016). Edited by

https://doi.org/10.1007/978-3-030-49461-2_2
https://doi.org/10.1007/978-3-030-49461-2_2

BIBLIOGRAPHY 153

Andreas Thalhammer, Gong Cheng and Kalpa Gunaratna. Volume 1605. CEUR

Workshop Proceedings. CEUR-WS.org, 2016.

[84] Heiner Stuckenschmidt and Michel C. A. Klein. ‘Reasoning and change man-

agement in modular ontologies’. In: Data & Knowledge Engineering 63.2 (2007),

pages 200–223. doi: 10.1016/j.datak.2007.02.001.

[85] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez and Mariano Fernández-

López. ‘The NeOn methodology for ontology engineering’. In: Ontology en-

gineering in a networked world. Edited by Mari Carmen Suárez-Figueroa,

Asunción Gómez-Pérez, Enrico Motta and Aldo Gangemi. Springer, 2012,

pages 9–34. doi: 10.1007/978-3-642-24794-1\ 2.

[86] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta and

Aldo Gangemi, editors. Ontology Engineering in a Networked World. Springer,

2012. doi: 10.1007/978-3-642-24794-1.

[87] Elodie Thiéblin, Ollivier Haemmerlé, Nathalie Hernandez and Cassia Tro-

jahn. ‘Survey on complex ontology matching’. In: Semantic Web 11.4 (2020),

pages 1–39. doi: 10.3233/SW-190366.

[88] Rocco Tripodi and Arianna Graciotti. Software for knowledge extraction from

text - context - 1st version (v1.0). Deliverable 4.5. Polifonia Grant 101004746,

2022.

[89] Rocco Tripodi, Eleonora Marzi, Andrea Poltronieri, Valentina Presutti, An-

gelo Pompilio, Antonella Luporini, Peter van Kranenburg and Enrico Daga.

Plurilingual corpora containing source texts in English, French, Spanish and

German (v1.0). Deliverable 4.1. Polifonia Grant 101004746, 2021.

[90] Maŕıa Poveda Villalón, Mari Carmen Suárez-Figueroa and Asunción Gómez-

Pérez. ‘The landscape of ontology reuse in linked data’. In: Proceedings Onto-

logy Engineering in a Data-driven World (OEDW 2012). Informatica, 2012.

https://doi.org/10.1016/j.datak.2007.02.001
https://doi.org/10.1007/978-3-642-24794-1_2
https://doi.org/10.1007/978-3-642-24794-1
https://doi.org/10.3233/SW-190366

154 BIBLIOGRAPHY

[91] Denny Vrandečić and Markus Krötzsch. ‘Wikidata: A Free Collaborative Know-

ledgebase’. In: Communications of the ACM 57.10 (Sept. 2014), pages 78–85.

doi: 10.1145/2629489.

[92] Dongkuan Xu and Yingjie Tian. ‘A comprehensive survey of clustering al-

gorithms’. In: Annals of Data Science 2.2 (2015), pages 165–193. doi: 10 .

1016/j.engappai.2022.104743.

[93] Ziqi Zhang, Anna Lisa Gentile, Eva Blomqvist, Isabelle Augenstein and Fabio

Ciravegna. ‘Statistical knowledge patterns: Identifying synonymous relations

in large linked datasets’. In: Proceedings of the 12th International Semantic

Web Conference (ISWC 2013) - Part I. Edited by Harith Alani, Lalana Kagal,

Achille Fokoue, Paul Groth, Chris Biemann, Josiane Xavier Parreira, Lora

Aroyo, Natasha F. Noy, Chris Welty and Krzysztof Janowicz. Volume 8218.

Lecture Notes in Computer Science. Springer, 2013, pages 703–719. doi: 10.

1007/978-3-642-41335-3\ 44.

https://doi.org/10.1145/2629489
https://doi.org/10.1016/j.engappai.2022.104743
https://doi.org/10.1016/j.engappai.2022.104743
https://doi.org/10.1007/978-3-642-41335-3_44
https://doi.org/10.1007/978-3-642-41335-3_44

	List of Tables
	List of Figures
	Introduction
	The semantic web: principles and standards
	Context and research questions
	The lack of support to choose and implement an effective ontology reuse strategy
	The role of ontology design patterns in supporting ontology engineering in real-world projects
	Modelling solutions to common modelling problems
	How to annotate ontology design patterns
	Identifying patterns emerging from knowledge graphs

	Summary of the chapters and contributions

	Pattern-based ontology design and reuse
	Current approaches to ontology selection and reuse: benefits, limits and challenges
	Motivations guiding ontology selection
	Policies and implementation strategies for ontology reuse

	Pattern-based ontology design and reuse: real-world projects
	eXtreme Design
	ArCo: a pattern-based ontology network and knowledge graph on cultural heritage
	An overview
	Mapping competency questions to ODPs
	Advancements and support to ontology reuse

	Polifonia: a pattern-based ontology network and knowledge graph on musical heritage
	An overview
	Mapping competency questions to ODPs
	Advancements and support to ontology reuse

	Observing patterns from ontologies
	Motivation and problem addressed
	Related work
	Input ontology corpora
	Cultural Heritage ontology corpus
	Conference ontology corpus

	Approach
	Intensional ontology graph
	Community detection
	Clustering and catalogue generation

	Experiment and results
	Evaluation and discussion
	Manual inspection of communities
	Clustering: similarity
	Clustering: manual inspection
	Evaluation against an ontology engineering task
	The ArCo use case

	Annotating patterns in ontologies and knowledge graphs
	Motivation
	Related work
	OPLaX
	Pattern level
	Conceptual component level
	Pattern instance level

	Use cases
	ArCo ontology network
	Conceptual components and ODPs catalogue from a corpus of ontologies
	Pattern-based visualization of knowledge graphs

	Observing patterns from data
	Method for extracting empirical patterns from a KG
	Related work
	Method

	Empirical patterns from Wikidata
	Motivation
	Input
	Wikidata empirical patterns on music
	Wikidata empirical patterns on art, architecture, and archaeology (AAA)
	Discussion and evaluation
	Music
	Art, architecture, and archaeology (AAA)
	Music and AAA
	Evolution of music and AAA patterns across two versions of Wikidata

	Conclusion and future work
	How we answered our research questions
	Future work

