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Abstract 
Advances in quantitative biology data collection and analysis across scales (molecular, cellular, or-
ganismal, and ecological) have transformed how we understand, categorize, and predict complex 
biological systems. This surge of quantitative data creates an opportunity to apply, develop, and 
evaluate mathematical models of biological systems and explore novel methods of analysis. Simul-
taneously, thanks to increased computational power, mathematicians, engineers, and physical scien-
tists have developed sophisticated models of biological systems at different scales. Novel modeling 
schemes can offer deeper understanding of principles in biology, but there is still a disconnect be-
tween modeling and experimental biology that limits our ability to fully realize the integration of 
mathematical modeling and biology. In this work, we explore the urgent need to expand the use of 
existing mathematical models across biological scales, develop models that are robust to biological 
heterogeneity, harness feedback loops within the iterative-modeling process, and nurture a cultural 
shift toward interdisciplinary and cross-field interactions. Better integration of biological experimentation 
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and robust mathematical modeling will transform our ability to understand and predict complex 
biological systems. 
 
Critical time for biological modeling 
 
Biological systems are staggeringly complex. A critical goal of biological research is to un-
tangle this complexity and make predictions about biological systems. Advances in quan-
titative biology data collection and analysis across scales (molecular, cellular, organismal, 
and ecological) have transformed how we understand, categorize, and predict complex 
biological systems. From ecology to single-cell measurements to single-molecule imaging, 
we can now observe fluctuations in biological data that are intrinsic to the system, may 
hold key information, and may be biologically meaningful. This surge of quantitative data 
coincides with increased computational power, creating a unique opportunity to better 
apply, develop, and evaluate mathematical models of complex biological systems at dif-
ferent scales. In the context of this paper, we use “model” to refer to either mathematical represen-
tations or predictions of biological systems. 

All biological subdisciplines could benefit tremendously from systematic integration of 
theoretical mathematical modeling approaches and biology. For example, mathematical 
models can allow biologists to decouple sources of nonbiological noise or experimental 
error from meaningful biological variability, which would be transformative for uncover-
ing biological roles for stochasticity and heterogeneity. With more resources dedicated to 
integration of biology and mathematical modeling, we envision a transformational im-
provement in our ability to both describe and predict complex biology (from molecules to 
organisms to systems) (Westerhoff and Palsson 2004). To fully realize the integration of 
mathematical modeling and biological systems,work in four key areas must be empha-
sized and supported (Fig. 1): 
 
(1) Cross-scales approaches: Mathematical models that can readily scale to other biologi-

cal systems would be transformative in creating common language to facilitate under-
standing between fields. Identifying models and biological systems to develop in 
depth as “anchor” models and systems for validation and characterization is a critical 
goal. 

(2) Increasing complexity: The field needs mathematical models that are robust to com-
plexity within representative biological systems and that can predict accurately how 
perturbations alter those systems. This would allow biologists to better identify new 
variables affecting biological outcomes, predict complex biological systems in a rap-
idly changing world, and even generate entirely virtual biological datasets when sam-
ples are scarce. 

(3) Iterative feedback loops: Not all biological data is collected in such a way that enables 
use in model development or validation. Collecting data with a mind on where and 
how it will be used in modeling is necessary to better integrate biology and mathemat-
ical modeling. Furthermore, applying predictive models to direct or identify research 
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questions would be a long-term payoff of investing in development of robust iterative 
feedback loops. 

(4) Overcome cultural barriers: The current culture of science encourages researchers who 
work in discipline-specific silos, often to the detriment of research advances. The most 
effective route to overcome cultural barriers includes supporting interdisciplinary 
work with long-timeline funding initiatives, providing resources for interdisciplinary 
curriculum, and providing training initiatives for scientists interested in working at 
the interdisciplinary interface between mathematics and biology. 

 

 
 

Figure 1. Frontiers for integrating mathematical modeling and complex biological sys-
tems. In order to fully realize the integration of mathematical modeling and biological 
systems, work in four key areas must be emphasized and supported. Cross-scales Inte-
gration: Development and validation of mathematical models that can readily scale to 
other biological systems. Integrated Feedback Loops: Leverage not only model refinement 
and iteration but also model-driven experimental design to obtain sound, parameterized 
data for model development. Increasing Complexity: Development of models that are ro-
bust to increasingly complex biological systems. Overcoming Cultural Barriers:We must 
support the integration of mathematical modeling and biology through integrated re-
search workforce training, sustained collaborative funding, and curriculum development. 
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Achieving just a subset of these goals would transform our ability to understand and 
predict complex biological systems.We will explore examples and ongoing work needed 
within each of these goals below. 
 
Cross-scales approaches 
 
Siloing of biology means that some mathematical models that are very well known in cer-
tain subfields are often unknown beyond their immediate sphere of application. There are 
a few significant exceptions that demonstrate the broad applicability of mathematical mod-
els across biological scales. Here, we present examples of foundational models developed 
at the organismal- and ecological-scale (Lotka-Volterra competition models and Hardy-
Wienberg population genetics models) that have been successfully applied across biologi-
cal scales to define, describe, and predict biological outcomes. Then we will outline a few 
examples of underutilized mathematical models, more common to one biological level 
than another, and propose how they may be applied in other biological contexts. 

Ecologists have used mathematics to describe phenomena for decades, including the 
Lotka-Volterra competition models (Lotka 1925; Volterra 1926) and the Hardy-Weinberg 
equilibrium of population genetics (Hardy 1908; Edwards 2008). Because competition for 
resources takes place at all levels of biology, competition models originally used to de-
scribe organismal (predator-prey) competition have been readily adapted to describe 
chemotaxis in slime molds (Mizukami and Winkler 2017), cancer cell competition (Goyal, 
Bhardwaj and Prakash 2021), competition for light between trees (Magal and Zhang 2017), 
and evolution (Aristide and Morlon 2019). In addition to being applied across multiple 
biological scales, competition models have also been modified to incorporate biological 
stochasticity (Zhu and Yin 2009) and adapted to accommodate increased biological com-
plexity including interference (Hsu 1982), seasonal succession (Hsu and Zhao 2012), and 
the changing speed of invasive species movement (Hosono 1998). Competition models are 
actively used in mathematics to look at the dynamics of the models themselves (introduced 
in Baigent (2010), e.g., Nathan Ngoteya (2015)), and even to grapple with the challenge of 
evolutionary factors (Zhang and Lam 2013; Afraimovich et al. 2008). 

While other mathematicians and biologists alike have moved to dynamic systems mod-
els, the early Lotka-Voltera model is a great example of how biological models can be 
adapted cross-scales and to model and predict biological systems with increasing complex-
ity. Another classic cross-scales mathematical model adaptation can be found in disease 
transmission models. For example, SIR models (susceptible-infected-recovered), which 
have been successfully used to predict both human and animal disease spread (e.g., 
Almaraz, Gómez-Corral and Rodríguez-Bernal 2016), have also been adapted to model 
nonbiological systems, such as predicting the economic implications of the COVID-19 pan-
demic (Ellison 2020). However, while these examples demonstrate cross-scales adaptation 
of some models, other models can fail when crossing phylogenetic lineages or are not eas-
ily integrated with heterogeneous genomic, signaling, and environmental data (LeNovère 
2015). 

Agent-based models (ABMs) are commonly used in ecology (reviewed in Willem et al. 
2017) and are simulation models that offer a way to test our understanding of latent 
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mechanisms driving visible patterns on many scales. ABMs can have both mobile and 
static “agents” whose interactions the programmer controls. This allows simulation of or-
ganisms (or cells or molecules) and their surrounding environments to understand the 
drivers of a biological pattern. For example, some patterns might include the local abun-
dance of a species or the way cancerous tumors grow. Since one of the purposes of ABMs 
is to model latent properties of a system resulting in an observable phenomenon, they can 
be used at any biological scale, though they have been most prominently used in ecology 
(Grimm 1999; DeAngelis and Grimm 2014) and disease dynamics (reviewed in Willem et 
al. 2017).While still underutilized compared to the cross-scales competition models de-
scribed above, ABMs are starting to be applied in other contexts from modeling cellular 
membrane formation to evolution (Rangel et al. 2018) and ecosystem processes (Grimm, 
Ayllón and Railsback 2017). See Models Library of built-in models in the program Net-
Logo (Wilensky and Resnick 1999). 

Since ABMs are a bottom-up approach to scientific questions, one can model physio-
logical or cellular processes that could be the drivers of behavior or even ultimate drivers 
of population dynamics (e.g., McEntire and Maerz 2019; Sears and Angilletta 2015). In ad-
dition to revealing latent properties of a system, the ABM modeling process also often 
highlights gaps in our understanding of a system. When modeling in a bottom-up ap-
proach, one may discover there is a crucial aspect of the system we do not understand. 
Variance between model predictions and experimental observations reveal latent pro-
cesses, factors, or parameters that are yet to be studied in detail; thus indicating where 
future studies should be initiated, often at a different biological level. For example, when 
modeling salamander activity time based on biophysical models and local weather condi-
tions, the model suggested the salamanders should be active more often and for much 
longer than is observed in the field (McEntire andMaerz 2019). Further studies and field 
observations may clarify this discrepancy between the mathematical model and true sala-
mander behavior. Additional studies on an alternative physiological function may instead 
offer a better mechanism driving salamander activity patterns. Furthermore, we know the 
model referenced above is not completely capturing the drivers of plant climbing behavior, 
as field observations recorded climbing outside themodel rule (unpublished data). ABMs 
are limited by known information, but need to be carefully curated to ensure they are par-
simonious. 

Not only can these models be applied in multiple contexts, ABMs can be used to simul-
taneously model multiple levels of biology. Many ABMs embed mathematical models or 
population estimation models as a part of the modeling process. This offers an opportunity 
to simultaneously model systems that we know are interconnected. For example, when 
modeling the usage of burned habitats by turkeys, we used descriptive models based on 
known movement patterns to estimate the probability of movement into a burned area 
despite being unable to exactly understand an individual turkey’s decision-making pro-
cess (Sullivan et al. 2020). ABMs can thus be used to ask increasingly complex questions or 
include more variation. However, ABMs are limited by being data demanding, making 
technological advances all the more important. Another limitation to the wide adoption of 
versatile models (including ABMs) is that researchers must first know what models are 
being used at other systems/scales, and must also have the opportunity to collaborate to 
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apply new modeling approaches to other systems/scales. Such cross-scale adoption of mod-
els could provide insights and alternative viewpoints to increase understanding of a wider 
range of biological systems. 

Cross-scale adoption is challenging because it is difficult to keep up with techniques 
from other fields, and it can be a struggle to understand how to implement a new modeling 
type. To aid in cross-scales adoption of models, we suggest first determining the type of 
model needed to answer the research question (such as conceptual, statistical, predictive, 
and so on), then identify whether a top-down or a bottom-up approach is desired. For 
example, a scientist interested in adopting ABMs to their question would do well to con-
sider the pros and cons of ABM for their system. They might consider that many traditional 
models commonly used in ecological studies provide information about a system based on 
collected data while ABMs can use this data to test their outcomes or as parameters for 
how the model behaves. Second, ABMs are limited by the data available, which sometimes 
is difficult to measure.However, ABMs do offer the ability to include stochastic factors and 
behavior and can also be used to find gaps in knowledge or to estimate latent properties 
of a system. Once an appropriate modeling strategy has been determined, it is encouraged 
to consult papers that use the same strategy (regardless of the application/specialty) to see 
what alternative methodologies are used. Inevitably, applying multiple types of models is 
essential for understanding and investigating complex biological systems. 
 
Increasing complexity 
 
A challenge in biology is how to build mathematical models that maintain efficacy as they 
are adapted to describe our increasingly complex understanding of biology. Here, we 
would like to make a distinction between “complexity” and “complicatedness” following 
Sun et al. 2016, who distinguished the two as referring to model behavior (complexity) and 
model structure (complicatedness). When we continue to use the word complex in this 
paper, we are referring to biological complexity rather than model complicatedness, as the 
latter can be unhelpful when trying to understand a multifaceted system. Overcomplicated 
models at any level are unhelpful, and models need to be just complicated enough to ap-
propriately model biological complexity of the system being studied. 

At the molecular scale, computational modeling approaches are increasingly important 
for describing complex cellular function based on physical principles, especially in the field 
of microbial metabolism (Keseler et al. 2013).The same is true for ecological systems where 
physical principles can be incredibly important for understanding and making predictions 
about species interactions with each other and the rapidly changing environment (e.g., 
Peterman and Gade 2017; Riddell et al. 2017; McEntire and Maerz 2019). Early models of 
microbial function progressed from strain characterization and phenotyping (Breed, Mur-
ray and Hitchens 1944) to the Central Dogma of molecular biology (Crick 1970) that related 
hereditary information with biochemical function, to genome-scale metabolic models (Duarte 
2004) and network models (Perez-Garcia, Lear and Singhal 2016) that describe relation-
ships between organisms. In isolation, these models accurately describe and, in some cases, 
predict cellular function. For example, the fields of metabolic engineering and synthetic 
biology are predicated on past successes transporting molecular and biochemical modules 
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from one organism to another with reliable outcomes. However, we cannot yet predict 
microbial metabolism from genomic data without extensive experimental curation. Fur-
thermore, modeling multispecies microbial communities is in its infancy, and we are far 
from being able to forecast an organism’s evolutionary trajectory in silico. Though it is 
possible some of the techniques proposed in the previous section on adapting cross-scale 
models may help push this idea further. 

If we could accurately predict species or community metabolism from genome infor-
mation, we could rapidly accelerate work focused on the design and growth of natural 
microbiomes to inhibit pathogens and increase plant, animal, or human health (Ainsworth 
2020), or bacteria to clean the environment of pollutants (Ojuederie and Babalola 2017), to 
name a few examples. Research has shown that microbes interact in complex ways with 
host organisms and with each other; they can be either harmful or helpful to the plant or 
animal host depending on environmental and nutritional parameters (Lewin-Epstein and 
Hadany 2020). Accurately predicting species or community metabolism from genome in-
formation could also be critical to conservation efforts when trying to make predictive 
models about species that are difficult to find, isolate, and/or culture. If it were possible to 
determine metabolism of any organism from environmental DNA, it could offer better 
models of habitat and spatial distribution. One example is the bacterium Escherichia coli (E. 
coli), an inhabitant of the gastrointestinal tract that benefits the host by synthesizing vita-
min cofactors and by contributing to a hostile environment for incoming pathogenic mi-
crobes (Cardinale, Joachimiak and Arkin 2013). When sufficient technical prowess and 
experimental data are available, organisms like E. coli can be engineered to attack patho-
gens (Kurtz et al. 2019) or to deliver drug therapeutics to the host (Claesen and Fischbach 
2015). Many microbes are genetically tractable, and researchers at private, academic, and 
federal research laboratories are engaged in trying to understand how to engineer a wider 
variety of organisms and how to use cooperative behaviors of microbes for human benefit 
(Freed et al. 2018). Tremendous resources are being invested by every US federal research 
agency as we seek to improve the health and function of biological systems at every level. 

The challenge in modeling organism function, whether they be microbial or macroscale, 
is that the biological information-environment space is immense. As foreshadowed in the 
Central Dogma, accurate description of cellular function requires integrating multiple data 
types. For instance, to predict the function of a microbe in a community requires 
knowledge of the environment (temperature, pH, nutrients, and their concentrations; Isaac 
Newton Institute Fellows et al. 2016), the genetic information carried by the cell (Wu et al. 
2009; which may include such things as plasmids, lysogenized viruses, or transposons, 
etc.), patterns of gene expression and coregulation of suites of genes, the function of the 
proteins and enzymes encoded by the genes (Bergthorsson, Andersson and Roth 2007), 
and the probability for genetic exchange (de la Cruz and Davies 2000; Oren et al. 2014). 

Population-, community-, or landscape-level models have similar challenges of com-
plex environments and interactions. For practical technical reasons, experiments are often 
carried out by reducing system complexity to the point that researchers (often undergrad-
uate and graduate students) can observe an unequivocal binary response. For example, in 
microbial systems we can reduce the complexity by focusing on single homogenous pop-
ulations of cells under defined culture conditions over short time scales to avoid the 
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“problem” of evolution (Großkopf et al. 2016) that is observed in longer-term experiments. 
Similarly in ecological systems, we may reduce questions to a binary of community com-
position in urban or suburban environments. 

Through various experimental approaches, we have made tremendous advances in un-
derstanding biological systems from molecular and biochemical functions of discrete met-
abolic systems to broad scale ecological patterns. However, it is challenging to integrate 
modeling data and various types of experimental observations. For instance, just because 
a gene is present in a genome does not mean that it is expressed, and gene expression does 
not always correlate with protein expression level (Gygi et al. 1999; dos Reis 2003; Colin, 
Libri and Porrua 2011), resulting in phenotype heterogeneity in a population. As a conse-
quence, researchers familiar with methodologies that produce discrete quantifiable results 
are sometimes uncomfortable extrapolating into more complex systems research in which 
results are more often expressed as statistical probability outcomes. However, in order to 
understand or predict biological function we must develop models that integrate across 
the information-environment space and can scale with the complexity of the biological sys-
tem. 

A systematic approach is needed to explore the vast biological information-environment 
space and a community of researchers with organism and system-specific expertise who 
can seamlessly collaborate to develop new software for modeling in a common platform. 
The Department of Energy Knowledgebase (KBase; Arkin et al. 2018) is aiming to serve the 
need for a metabolic modeling “playground” where researchers iteratively explore mod-
eling methods, develop new software applications, refine, and propagate successes to cre-
ate a platform from which useful software tools can emerge. KBase allows convergence 
between biology and computer science researchers, allowing them to experiment with 
scale and complexity to create application workflows and software systems that incorpo-
rate increasingly sophisticated machine learning tools grounded in biological and physical 
theory (Suthers et al. 2021). For instance, constraint-based metabolic modeling that takes 
chemical mass balance equations and cellular energetics into account is being applied to 
genome scale models to predict microbial growth and metabolism (Bordbar et al. 2014). 
Methods from software testing (Cashman et al. 2017) can be appliedwith success to statis-
tically sample the biological information-environment space to reduce experiment time 
and cost, and concepts from information theory (Sakkaff et al. 2017) may yet provide break-
throughs in describing how cells in a community interact with each other (Ji and Nielsen 
2015). These approaches and tools must be translated to a diversity of organisms and bio-
logical systems and iteratively tested in order to refine them to the point where they are 
generalizable (Henry et al. 2010). However, with few exceptions, many tools have not yet 
closed the iterative feedback loop that exemplifies a build-test cycle necessary to accelerate 
tool development (Carbonell et al. 2016). 
 
Iterative feedback loops 
 
To understand a biological system fully, one must incorporate both experiments and the-
ory development. This iterative feedback loop method is easily seen when trying to elucidate 
an atomic-level understanding of the structural, thermodynamic, and kinetic principles 
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that control function of dynamic protein complexes, which is too daunting of a task to 
accomplish by experiments alone. Here, we present a case study that demonstrates the 
need for development of both experimental and modeling approaches for understanding 
complex biological systems. 

Dynamic complexes composed of intrinsically disordered proteins (IDPs) and multiple 
folded proteins play a fundamental role in many biological processes, from organizing the 
cell-cycle, tethering cargo to molecular motors (Fejtova et al. 2009; Gupta et al. 2012; Ham-
mer and Wagner 2013), controlling gene regulation (Eastwood et al. 2021), to coordinating 
the formation of meshlike assemblies associated with phase-separation events (Moutin et 
al. 2014; Myllykoski et al. 2018), thus having an impact on a range of diseases from cancer 
(Becker et al. 2018; He et al. 2018: 11) to neurodegenerative pathologies (Chen, Gerwin and 
Sheng 2009) to viral infection (Kirkham et al. 2015). However, despite their prevalence and 
importance, our mechanistic understanding of these multivalent assemblies has been se-
verely stymied by their large size and extreme levels of structural and compositional het-
erogeneity. 

Compositional heterogeneity is a hallmark of biological signaling, as many proteins can 
bind to a different number of interacting partners, all present in equilibrium (Fig. 2). Im-
portantly, there are no experiments that can currently determine the population of each of 
these species (thermodynamics), their rates of exchange between multiple species (kinet-
ics), and how they look (structure). Thus, mathematical modeling of the structures of this 
biological mixture is critical to link the functional biological outcomes observed in experi-
ments. 

To address these key questions in functional structural biology, a host of innovative 
methods integrating multiscale computations with a range of experimental modalities are 
necessary. We highlight here one example from coauthor E. Barbar’s lab that demonstrates 
the importance of integration of experiment and computation. This case study also exem-
plifies the importance of predictive models for mechanistic understanding of highly com-
plex biological systems that cannot be addressed through experiments alone. 

In this example, a heterogeneous assembly of proteins (DNA binding transcription fac-
tor called ASCIZ) with an interacting protein (LC8) regulates transcription of ASCIZ and 
is critical for sensing LC8 concentration in cells, termed the sensor hypothesis. In this model, 
high LC8 occupancy shuts down ASCIZ transcription, and low LC8 occupancy turns on 
transcription (Fig. 2A), but a range of dynamic, low-occupancy complexes (Fig. 2B) are the 
dominant species that function as a rheostat to tune the biology, rather than an on/off 
switch (Jurado et al. 2012; Zaytseva et al. 2014; Clark et al. 2018). Thus, understanding via 
predictive modeling how these reversibly forming “girders” are generated by a range of 
IDPs, through dynamic cross-linking with the hub protein LC8, could transform aspects of 
architectural/ mechanical cell biology (Fig. 2). 
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Figure 2. Combining experimental and modeling approaches to investigate molecular-
scale binding systems. (A) Molecular-scale system: A hub protein dimer (LC8, blue) coor-
dinates with a multidomain protein (ASCIZ) with a DNA binding domain (ZnF, green) 
and a long disordered tail with multivalent LC8 binding sites (orange). (B) Cut-in over-
view of thermodynamic model of LC8-ASCIZ binding, showing three possible interme-
diate species. Boxes 1 and 2 show further detail of the equilibria of the overview diagram 
illustrating the complexity. This is a relatively simple example in terms of multimolecular 
binding complexities observed in biological molecular interactions (C) Multiple experi-
mental techniques to study protein complexes capture only an overall picture of the ther-
modynamics of binding and not the microstates, heterogeneous species, and achieve only 
very low-throughput analysis of intermediate states. (D) Integration of modeling with 
experimental data. Model depends on experimental measurements of macroscopic states 
to compute thermodynamic parameters for microscopic states. Uncertainty in model-
derived parameters dictate what further experiments on partial systems are necessary. 
Those experiments, in turn, can be fed back to the model to improve accuracy and preci-
sion of fit parameters. 

 
As with many biological processes, this example illustrates how complex heterogeneity 

of this system drives diverse functional roles, including modular sensing, responsive feed-
back regulation, and intermediate/equilibrium binding states. Characterization of biologi-
cal interactions actually requires an ensemble perspective at multiple scales—due to 
heterogeneity across four distinct biological concepts: 
 
(1) the number and orientation of interactors. In this example, one ASCIZ protein can 

interact with many LC8 molecules at once. 
(2) potential correlations between clusters of connected interactors. In this example, the 

ASCIZ/LC8 complex interacting with additional LC8 monomers. 
(3) equilibrium interactions between given interactors. In this example, flux as individual 

proteins or interactors equilibrate across distinct states in (i) and (ii). 
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(4) cooperative behavior. In this example, cooperative allostery where binding of LC8 at 
one site enhances rate of LC8 binding at other sites (Fig. 2B). 

 
Biologists working across scales will read this list of factors/examples and be able to 

find connections to key biological and interaction concepts that match at their own scale. 
For example, replace “interactors” above with “species” and you’ll find a list of biological 
concepts that would be easily understood among ecologists (e.g., interspecies interactions, 
predator/prey segregation, population gain/loss affecting other species, and cooperative 
feedback from environment (food/water abundance or scarcity, etc.)). 

One key benefit of modeling at the molecular/atomic scale is that quantitative measure-
ments of these transient equilibria populations are sometimes not possible using typical 
binding experiments which yield values for average stoichiometries (Fig. 2C), with no in-
formation on individual species nor on the interaction between species distributions. Thus, 
what is needed is incorporation of a novel, fully end-to-end automated approach to multi-
species modeling that can robustly account for combinatorial binding equilibria. The ideal 
analysis, using multiple experiments, could extract experimentally invisible species-specific 
binding parameters, leading to population profiles of dynamic complexes. Also needed is 
the development of more robust experimental methods that can better quantify or trap 
transient species to make the unmeasurable measurable. 

The biological impact of this case study is the elucidation of the mechanism that under-
lies the regulatory/sensing abilities of large dynamic complexes and their (dis)assembly 
pathways. Moreover with multiple iterations of experiment and modeling, we hope to 
reach a stage where we can predict from the protein sequence: the number of binding part-
ners, their individual binding affinities, the length of the disordered linkers separating 
them, whether a certain IDP will form a dynamic IDP assembly, phase separate, aggregate, 
or connect multiple assemblies. These impacts are described at the molecular scale, but 
similar integration of experiment and modeling feedback at the cellular or organismal scale 
could transform our understanding of equilibrium dynamics regulating cooperativity and 
competition during cancer growth or in a complex ecosystem. 
 
Overcoming cultural barriers 
 
Traditional practices within science research promote separatism among disciplines. These 
separate or independent research processes often lead to inefficiencies in the scientific re-
search community (Gray 2008). Examples of this practice include, but are not limited to, 
mathematical science researchers tending not to collaborate with biological science re-
searchers and vice versa. Increased collaborations among these disciplines could lead to 
solving bigger, more complex problems. 

We believe the most effective routes to overcoming these cultural barriers include pro-
grams that train new generations of scientists and researchers to work at the transdiscipli-
nary interface between mathematics and biology. A well-developed platform for networking 
and exchange between these fields would provide scientists and researchers with direct 
access to a wealth of knowledge that was frequently underutilized by their predecessors. 
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To this end, we propose a four-fold systematic approach that incorporates sustained fund-
ing, research training, curriculum, and outreach (Fig. 1). 
 
Sustained funding 
Dedicated federal and private funds should be identified and earmarked to expand sup-
port for transdisciplinary research and the creation of education centers. In particular, 
long-term extramural funding opportunities should be provided to establish and maintain 
infrastructure and research expenses for centers housed within colleges and universities. 
Federally, first steps are being taken with grant mechanisms such as the NSF Research 
Coordination Networks that provide funds to foster the creation of collaborative networks. 
However, these grants lack funding for the research itself which often fails to incentivize 
forming transdisciplinary research networks. In the private sector, organizations such as 
the American Cancer Society, Burroughs Wellcome Fund, and the Howard Hughes Medi-
cal Institute all agree that philanthropic giving has to play an important role with investi-
gators, building bridges between traditional and emerging fields of research (see Training 
the Next Generation, https://www.bwfund.org). 
 
Training 
Predoctoral and postdoctoral fellowship opportunities should be established to support 
trainees wanting to work at the mathematics/biology interface. The National Science Foun-
dation Simons MathBioSys Research Center serves as a good example of a model training 
program. This program matches experimentalists and mathematician mentors with inter-
disciplinary trainees with an emphasis on building interactional expertise. Another such 
endeavor is the Institute for Systems Biology (ISB, https://isbscience.org) created in 2000 as 
the first ever institute created for systems biology. ISB serves as an environment in which 
scientific collaboration stretches across disciplines and leverages biological approaches to 
understand mechanisms. 
 
Curriculum 
At both the undergraduate and graduate levels, math and biology degree programs should 
serve to integrate these fields early in a student’s post-secondary training. This new trans-
disciplinary perspective will help expand teaching through implementing new approaches 
to pedagogy. Faculty development efforts should be implemented to help instructional 
staff develop their own skills as well. Students at all levels would be encouraged to pursue 
independent research and engage in laboratory courses, seminar series, and advanced elec-
tive experiences. To support transdisciplinary research, we must create a database of train-
ing modules that include the datasets, code, and model tutorials. One fantastic example of 
an accessible and user-friendly model is PhysiCell (Ghaffarizadeh et al. 2018). PhysiCell is 
a computationally powerful modeling approach for cell-level competition and movement 
modeling, with both easy-to-follow tutorials as well as crowd-sourced curriculum and ed-
ucational modules using the platform. Using the success of PhysiCell as a template, a da-
tabase of training modules that include datasets, code, and model tutorials should be 
developed. 
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Outreach 
Establishing outreach programs at the middle and high school levels will build up strong 
cohorts for pursuing transdisciplinary undergraduate degrees. The training module data-
base just described could be easily simplified and adapted for use in middle and high 
schools to show students how math has improved our understanding of biological ques-
tions relevant to society (i.e., climate change, human health, etc.). 

Transdisciplinary research can be uncomfortable, difficult, and humbling. Critical to 
overcoming cultural barriers is emphasizing the creation of a warm and welcoming envi-
ronment of like-minded researchers who are motivated to learn collectively from diverse 
perspectives. Special attention needs to be placed on setting a stage that lowers barriers to 
building a community of “learning teachers” rather than experts. At the same time, creating 
such an atmosphere would undoubtedly further encourage people from all backgrounds 
to continue at the interface between biology and math and enhance the diverse and crea-
tive potential of the field. 
 
Scientific outcomes 
 
All biological subdisciplines could benefit tremendously from better integrating theoreti-
cal modeling approaches as proposed here. The theoretical modeling approaches devel-
oped in physics and chemistry disciplines are powerful tools used to elucidate mechanism 
and can be highly predictive under defined or constrained biological conditions. However, 
even mathematicians recognize that these constrained conditions rarely happen in biolog-
ical systems. Conversely, the complexity of biological systems necessitates new ideas on 
how to express higher-order model behavior and how to scale models to higher levels of 
complexity. Further development of models that are applicable and validated across bio-
logical scales is required in order to fully harness the power of mathematical modeling. 
Unifying biology with physics, chemistry, and mathematics/ statistics through the use of 
common model methodologies that apply across scales has the potential to revolutionize 
our fundamental understanding of biology and biological systems. Finally, building a 
foundation of integrated feedback loops between model and experiment will serve the 
goals of both cross-scales applicability and dealing with increased biological complexity. 
Feedback loops include model refinement and iteration to better reflect the biology, which 
is routinely accomplished for standard statistical modeling but is essential for integrated 
predictive modeling. An additional underutilized feedback loop of using the model to 
guide experimental design is critical for efficient model validation, easier application of 
models across scales, and for maximizing return on investment for experimental resources. 

Accurate models have the power to transform society by serving as a foundation for 
technological innovation. If biological models begin to approach the predictive accuracy 
of physical models, we could predict and design biology with the ease that we can design 
a computer. Systematic and iterative refinement of models that describe biological systems 
forms the bedrock conceptual framework needed to understand molecular, organism, and 
population behaviors. The development of predictive biological models is also necessary 
to generate hypotheses, to capture the drivers of biological heterogeneity, and to inspire 
future discovery. Integrated cross-scale models will inevitably be needed to solve pressing 
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social challenges such as counteracting the effects of climate or habitat change, reducing 
the time to harvest food crops to feed a growing world population, curing disease, identi-
fying and preventing the spread of emerging infections threats, and designing biological 
technologies to generate clean renewable energy. These outcomes cannot be achieved un-
less we foster cross-disciplinary collaboration, provide long-term funding opportunities at 
this interface, and train the next generation of scientists to explore a new science frontier 
at the interface between biology and mathematical modeling. 
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