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Abstract 

Leaf-level hyperspectral reflectance has become an effective tool for high-throughput phenotyping of plant leaf traits 
due to its rapid, low-cost, multi-sensing, and non-destructive nature. However, collecting samples for model cali-
bration can still be expensive, and models show poor transferability among different datasets. This study had three 
specific objectives: first, to assemble a large library of leaf hyperspectral data (n=2460) from maize and sorghum; 
second, to evaluate two machine-learning approaches to estimate nine leaf properties (chlorophyll, thickness, water 
content, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur); and third, to investigate the usefulness 
of this spectral library for predicting external datasets (n=445) including soybean and camelina using extra-weighted 
spiking. Internal cross-validation showed satisfactory performance of the spectral library to estimate all nine traits 
(mean R2=0.688), with partial least-squares regression outperforming deep neural network models. Models calibrated 
solely using the spectral library showed degraded performance on external datasets (mean R2=0.159 for camelina, 
0.337 for soybean). Models improved significantly when a small portion of external samples (n=20) was added to the 
library via extra-weighted spiking (mean R2=0.574 for camelina, 0.536 for soybean). The leaf-level spectral library 
greatly benefits plant physiological and biochemical phenotyping, whilst extra-weight spiking improves model trans-
ferability and extends its utility.

Keywords:  Biochemical traits, camelina, extra-weighted spiking, high-throughput phenotyping, leaf hyperspectral reflectance, 
machine-learning, maize, partial least squares regression, sorghum, soybean, trait modeling.

Introduction

The ability to collect phenomic data at sufficiently high reso-
lution with low cost has been a key bottleneck in many basic 

and applied plant research fields (Furbank and Tester, 2011). 
With recent advances in imaging (particularly low-cost RGB 
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imaging) and image processing, this bottleneck has been largely 
relieved for traits related to size, biomass, and growth (Fahlgren 
et al., 2015; Ge et al., 2016). However, the bottleneck remains 
a major challenge when studying a wide range of traits related 
to plant physiology, function, and biochemistry, such as leaf 
thickness, photosynthetic parameters, transpiration, and nu-
trient status. Conventional approaches to the quantification of 
these traits either entail a destructive process where leaf sam-
ples are collected and subjected to laboratory-based analysis 
procedures (such as mineral contents), or the use of specialized 
instruments for quantification (such as parameters related to 
photosynthesis). These analyses are time-consuming, expensive, 
and labor-intensive, and therefore are difficult or impossible to 
scale to the phenotyping of large, replicated studies of diver-
sity panels, structured populations, breeding material, or multi-
environment trials.

Leaf-level hyperspectral reflectance data in the visible, 
near-infrared, and shortwave infrared region (VIS-NIR-SWIR, 
combined from 400–2500 nm) have been used as a rapid and 
non-destructive method for plant analysis (Blackburn, 2007; 
Prananto et al., 2020). Applications of VIS-NIR-SWIR hyper-
spectral data for estimating many leaf physiological and bio-
chemical traits in the context of high-throughput phenotyping 
have recently been reported for maize (Yendrek et al., 2017; 
Ge et al., 2019), wheat (Silva-Perez et al., 2018), sorghum (Chai 
et al., 2021), and other crop species (Ely et al., 2019). Promising 
results have been reported for leaf nutrient contents such as 
nitrogen and phosphorus (Ge et al., 2019), leaf mass per area 
(or equivalently leaf thickness; Coast et al., 2019), leaf physio-
logical parameters related to photosynthetic capacity and gas 
exchange (Meacham-Hensold et al., 2019), and metabolites 
(Vergara-Diaz et al., 2020). These studies demonstrate the great 
potential of VIS-NIR-SWIR hyperspectral data for high-
throughput analysis of leaf traits related to plant physiology, 
function, and biochemistry, as well as the detection of geno-
typic differences of phenotypic traits (Yendrek et al., 2017), and 
ultimately enable genetic association analyses to elucidate the 
controlling genetic factors (Grzybowski et al., 2021).

The clear advantage of VIS-NIR-SWIR lies in its rapid 
and non-destructive nature. The acquisition of leaf-level 
hyperspectral data can be done in vivo and takes several sec-
onds at most, which is critically important for large-scale, in-
field phenotypic data collection. An additional advantage of 
VIS-NIR-SWIR is its multi-sensing capability for integrating 
complementary information. Provided that relevant calibration 
models are available, many leaf traits can be quantified simul-
taneously using data collected from a single VIS-NIR-SWIR 
leaf scan. This ability to quantify multiple traits simultaneously 
further reduces the cost of experiments, increases measurement 
throughput, and facilitates the study of pleiotropy and genetic 
trade-offs between different traits.

Estimating leaf traits from VIS-NIR-SWIR data usually 
employs a data-driven approach where multivariate statistical 
models are calibrated from a set of samples that have been 

chemically analysed in the laboratory or with sophisticated 
physiological instrumentation. These multivariate models can 
be as simple as linear regression models using vegetation in-
dices, but can also be more complex models based on machine-
learning algorithms (Heckmann et al., 2017; Ge et al., 2019). 
This data-driven approach poses two potential problems for 
the widespread use of VIS-NIR-SWIR. First, the development 
of calibration models is expensive and usually requires a large 
number of samples to be analysed in the laboratory. Second, 
because the models are calibrated on a limited set of samples (a 
single species, few genotypes, and one or two environments), 
the performance of these models on other independent data-
sets is not guaranteed and can decline substantially relative to 
their initial performance. This second problem has been illus-
trated and discussed previously (see Yendrek et al., 2017; Silva-
Perez et al., 2018). One potential solution to address the first 
problem is to establish a leaf-level VIS-NIR-SWIR spectral 
library comprising many samples with both laboratory data 
and spectral data that is widely available to the research com-
munity. Models can be calibrated from the samples in the 
library and used for other projects, which makes the use of 
VIS-NIR-SWIR more practical and economical. However, 
the use of spectral libraries makes the question of how models 
will perform on out-of-sample datasets even more pressing. 
One potential solution to the second problem of performance 
on external datasets is an approach called ‘spiking’.

Spiking has previously been used in soil spectroscopy to im-
prove the accuracy of regional or national spectral models at 
local scales (Guerrero et al., 2014; Barthès et al., 2020). The core 
concept of spiking is to add a small number of ‘local’ samples 
from an investigator’s own experiment to the library samples 
to form a calibration sample set so that the model will perform 
better than those calibrated from the spectral library samples 
alone. This procedure often increases the accuracy of the pre-
dictions for the samples from the local experiment. The larger 
the number of local samples, the higher the accuracy gained 
by spiking. However, a large spiking set still increases the cost 
of the application due to the need for laboratory analysis. As 
an alternative, ‘extra-weighted spiking’ increases the statis-
tical weight of the spiking set by adding several copies of it to 
match the number of samples in the original spectral library. 
This forces the calibration to fit for the extra-weighted samples 
(i.e. the local samples) better than without extra-weighing, thus 
leading to more accurate predictions (Guerrero et al., 2014).

The objectives of this current study were three-fold. First, 
to assemble and report a leaf-level VIS-NIR-SWIR spectral 
library that was constructed from maize and sorghum leaves 
collected across multiple years and experimental conditions. 
Second, to evaluate two machine-learning approaches, namely 
partial least-squares regression (PLSR) and deep neural net-
works (DNN), to estimate nine leaf properties. And third, to 
investigate the utility of this spectral library for predicting the 
nine leaf properties of external datasets for maize, sorghum, 
soybean, and camelina with ‘extra-weighted spiking’. We 
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hypothesized that spiking with samples from specific experi-
ments could extend the use of this spectral library for different 
crop species.

Materials and methods

Construction of the VIS-NIR-SWIR spectral library
Maize (Zea mays) and sorghum (Sorghum bicolor) leaf samples were col-
lected from a series of seven field and greenhouse experiments conducted 
between 2018–2020 at University of Nebraska-Lincoln (Table 1). Leaves 
were collected and measured at developmental stages spanning the late-
vegetative to flowering. In flowering plants, the 2nd, 3rd, and 4th leaves 
from the top of the plant (i.e. the first three leaves below the flag leaf) 
were sampled, while in late-vegetative stage plants the three leaves below 
the most recently emerged leaf were sampled. A total of 2460 samples 
were included in the spectral library.

A benchtop spectroradiometer (LabSpec4, Malvern Panalytical Ltd.) 
with a contact probe accessory was used to measure the VIS-NIR-SWIR 
reflectance spectra of the leaf samples. The spectral range of this instru-
ment is 350–2500 nm, and the spectral resolution is 3 nm from 350–
1000 nm and 10 nm from 1000–2500 nm. The instrument resampled the 
raw measurement to an interval of 1 nm, giving 2151 data points at every 
nm for each raw spectrum. The effective measurement area of the contact 
probe was 10 mm in diameter. Three spectral readings were taken at the 
tip, middle, and basal sections of the leaf (avoiding the mid-rib for maize 
and sorghum), and the nine readings were averaged as a final measure-
ment to minimize the effects of within-leaf heterogeneity. Spectral read-
ings were taken from the adaxial side of the leaves. A white panel with 
99% reflectance (Spectralon®, Labsphere Inc.) was used every 15 min to 

keep the instrument well-calibrated during data acquisition. A dark panel 
(mean 2% reflectance) was kept under the scanning area of the leaf to pre-
vent backscattering of the transmitted light through the leaf.

Laboratory data were collected for the following leaf traits: chlorophyll 
content (CHL), leaf mass per area (LMA), leaf water content (LWC), and 
the nutrient contents of nitrogen (N), phosphorus (P), potassium (K), cal-
cium (Ca), magnesium (Mg), and sulfur (S). A handheld leaf chlorophyll 
meter (MC-100, Apogee Instruments) was used to measure CHL with 
its built-in calibrations for respective crop species. Leaf area (LA) was 
measured with a leaf area meter (LI-3100, LI-COR Biosciences). After 
the fresh weight (FW) of the leaf was recorded, it was placed in an oven 
at ~50 °C and dried over 72 h to a constant weight, at which point the 
dry weight (DW) was recorded. LWC (%) was derived as (FW–DW)/FW 
×100. LMA (g m–2) was derived as DW/LA. Dried plant samples were 
ground, homogenized, and analysed for nutrient contents. N was deter-
mined using the Dumas method with a LECO FP428 nitrogen analyser 
(AOAC method 968.06). Other nutrients were determined using micro-
wave nitric acid digestion followed by inductively coupled plasma spec-
trometry (AOAC method 985.01). All nutrient contents were expressed 
on a percentage of dry matter basis.

Independent test sets were collected from four species: maize, sor-
ghum, soybean (Glycine max), and camelina (Camelina sativa; Table 1). 
The inclusion of soybean and camelina allowed us to evaluate the per-
formance of the spectral library on different species. Both the labora-
tory leaf property data and VIS-NIR-SWIR spectral data for the four 
independent test sets were collected in the same way as the library data, 
with two distinctions. First, CHL and LMA were not measured for the 
camelina set because the leaf chlorophyll meter and the leaf area meter 
were not available. Second, because soybean and camelina have smaller 
leaves, the three spectral measurements on each leaf were made on a less 
spread-out area (in contrast to maize and sorghum on the tip, middle, 
and base section of the leaf).

Table 1. Summary of samples used in the VIS-NIR-SWIR spectral library and the independent, external samples used to assess the 
performance of the spectral library

 Data-
set 

Spe-
cies 

Year Environ-
ment 

n Notes 

Library samples 
(n=2460)

1 Maize 2018 Green-
house

260 Maize diversity panel (Flint-Garcia et al., 2005)

2 Maize 2018 Field 567 Maize diversity panel under normal low-nitrogen 
treatments (Flint-Garcia et al., 2005)

3 Maize 2019 Field 497 Maize diversity panel under normal and low-nitrogen 
treatments (Flint-Garcia et al., 2005)

4 Maize 2020 Field 247 Maize association panel (Mazaheri et al., 2019)
5 Sor-

ghum
2018 Green-

house
322 Sorghum association panel (Boatwright et al., 2022)

6 Sor-
ghum

2019 Green-
house

299 15 genotypes of grain, sweet, and energy sorghum

7 Sor-
ghum

2020 Field 268 Sorghum association panel under normal and low-
nitrogen treatments (Boatwright et al., 2022)

Independent, external 
test sets (n=445)

8 Soy-
bean

2019 Green-
house

126 Single variety (Thorne)

9 Cam-
elina

2020 Green-
house

96 12 genotypes under normal and reduced irrigation 
treatments

10 Maize 2018 Field 163 Unknown varieties
11 Sor-

ghum
2019 Green-

house
60 Single variety (Tx430) under two-factor nitrogen and 

water treatments (two levels each, four combinations)
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Model calibration, extra-weighted spiking, and validation
Before any model calibration for VIS-NIR-SWIR, wavelength averaging 
with a window size of 10 nm was implemented on all spectra to reduce 
the dimensionality and decrease the computational load. We investigated 
two machine-learning approaches to build the calibration models: partial 
least-squares regression (PLSR) and deep neural networks (DNNs). We 
selected these two techniques to represent a linear, less computation-
ally demanding, more interpretable, and most frequently used method 
(PLSR) and a non-linear method that is reported to produce superior 
accuracies with spectral libraries (DNN; Viscarra Rossel and Behrens, 
2010; Wijewardane et al., 2016, 2018; Ng et al., 2019).

PLSR is a conventional and commonly used spectroscopic modeling 
technique that implements an algorithm similar to principal component 
analysis to reduce predictors (i.e. the number of wavelengths) to a few 
latent variables. Unlike principal component analysis, construction of la-
tent variables in PLSR considers the response variable (i.e. the property 
of interest) to ensure highest correlations. A linear model is then fitted 
between the response variable and latent variables (Helland, 2004).

DNNs consist of layers of nodes operating as non-linear summing 
devices similar to biological neurons. Nodes in each layer are connected 
to the nodes in the adjacent layers through weights that are optimized 
iteratively to produce the best-fitting model. These weights are adjusted 
by back-propagation where learning error is propagated back to the pre-
vious layers. Unlike PLSR, DNNs are not interpretable, but are consid-
ered effective when signal-to-noise ratio is low (Rumelhart et al., 1988; 
Dayhoff and DeLeo, 2001; Hastie et al., 2009).

Data analysis and plotting were implemented in Python 3.8 with the fol-
lowing libraries: scikit-learn (Pedregosa et al., 2011), pandas (McKinney, 2010), 
NumPy (Stéfan van der Walt et al., 2011), and Matplotlib (Hunter, 2007).

Our goal was to find the approach that gave the best overall perfor-
mance to estimate the leaf traits. The entire library was used for model 
calibration with 10-fold cross-validation to avoid model overfitting and 
to identify the best tuning parameters. For PLSR, models having as many 
as 30 latent variables were considered. For DNNs, hidden layer sizes (5, 
10, 15, and 20) and L2 penalty (0.005, 0.01, and 0.03) with the activa-
tion function ‘relu’ were used as the tuning parameters. The best tuning 
parameters were obtained considering the lowest cross-validated root 
mean-squared error (RMSECV) in 10-fold cross-validation. The resulting 
best tuning parameters were then used to build a final model for each 
modeling technique using the whole dataset.

The steps to test the ‘extra-weighted spiking’ method to improve the 
model performance using the spectral library were as follows. Twenty 
samples from each external dataset were randomly selected as the ‘spiking’ 
sets. The remaining samples of each external dataset were considered as 
test sets. Three methods of model calibration and testing were compared. 
First, the models calibrated from the library were directly applied to the 
test sets. Secondly, models calibrated from the spiking sets (i.e. the 20 
samples randomly drawn as the calibration set) were used to predict for 
the test sets. Third, we investigated how ‘extra-weighted spiking’ could 
improve the predictive performance for the external, independent sets by 
adding spiking sets to the library to form an augmented set. To increase 
the weight of the spike samples relative to the library (20 versus 2460), 
the spike samples were replicated 123 times such that the numbers of the 
two groups were the same. The method is therefore also referred to as 
‘spiking with extra weight’. The augmented set (or the spiked library) was 
then used to develop the calibration models and validated on the test sets.

The impact of the size of the spiking set on the model transferability 
was further investigated by recalibrating and validating the models with 
spiking sets of different sizes. For this analysis, the soybean dataset was 
used as the validation set since it was a species not included in the spectral 
library and all the leaf properties had been measured. First, a randomly 
selected 50 samples from the soybean dataset was set aside to be used for 
spiking. From this spiking dataset, different number of samples (10, 20, 
30, 40, 50) were randomly selected and used for PLSR model calibration 

with extra-weighted spiking. Each model was then used to predict for the 
remaining soybean samples. All the models were evaluated by calculating 
R2 (coefficient of determination), the root mean-squared error (RMSE), 
bias, and ratio of performance to deviation (RPD).

Results

Comparison of the library samples and the external 
independent test samples

The plant spectral library used in this study consisted of 
seven datasets collected from different field and greenhouse 
experiments from 2018–2020. There were four maize datasets 
(n=1571) and three sorghum datasets (n=889) making a total 
of 2460 leaf spectra with associated ground-truth informa-
tion. The external test sets included four different datasets of 
soybean, camelina, maize, and sorghum, totaling to 445 plant 
spectra (Table 1). Note that the spectral library did not in-
clude any soybean or camelina spectra, providing us with the 
opportunity to evaluate how successfully the library could be 
employed for other non-grass species.

The distribution of the nine leaf properties for the spectral 
library and the independent external test sets are shown in 
Fig. 1 (numerical values are provided in Supplementary Table 
S1). The library and external test sets showed significant dif-
ferences in maize for N, K, Mg, Ca, LWC, and CHL, and in 
sorghum for P, Ca, S, and LMA. When considering all four 
species, the library and the external test sets were significantly 
different from each other across all the properties except for 
the P content. .

The spectra of the different datasets and species, and their 
95% confidence ellipses in principal component (PC) space 
are shown in Fig. 2, and statistical comparisons of variances 
and means in PC space among the different datasets and spe-
cies using Levene’s and Hotelling’s T2 tests are given in Table 2 
(Hotelling, 1992; Levene, 1960). There was a prominent spectral 
difference between the spectral library and the external test sets 
in both wavelength domain and PC space (Fig. 2A, B, Table 2). 
Compared to the spectral library, the external test datasets had 
a broader spectral variation in the wavelength domain, which 
could have resulted from the fact that the spectral library con-
sisted of only two similar species while the external datasets had 
four different species with more diversity in terms of leaf mor-
phology, physiology, and biochemistry. Both maize and sorghum 
are monocots while soybean and camelina are eudicots, hence 
differentiating the library and external test sets. Camelina stood 
out as a different spectral group in the PC2 space when com-
pared to the other species. Maize showed less spectral overlap 
with camelina and soybean while more with sorghum (Fig. 2D).

Comparison of modeling techniques

We compared PLSR and DNN using the cross-validation R2 
value and the RMSE to identify the best modeling technique 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erad129#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erad129#supplementary-data


Copyedited by: OUP

4054 | Wijewardane et al.

for estimating the different leaf properties using the spectral li-
brary. As shown in Table 3, the cross-validation R2 (R2

CV) across 
all nine leaf properties varied from 0.36–0.92. PLSR showed 
higher accuracies than DNN except for LMA. Cross-validation 
RMSE (RMSECV) showed a similar pattern, confirming the 
superiority of the PLSR models. Similar observations of su-
perior performance from PLSR models compared to other 
machine-learning approaches have been reported previously 
for hyperspectral remote-sensing data (Siegmann and Jarmer, 
2015; Krishna et al., 2019). PLSR is a linear modeling tech-
nique while DNN is non-linear. We speculate that the in-
herent relationships between the leaf properties and spectra 
considered here are linear and that the non-linear modeling 
technique could capture the subtle noise components, thus 
causing degraded model performances. Because PLSR showed 
the best modeling performance, further analysis with ‘extra-
weighted spiking’ and testing on the independent test sets were 
based on this technique.

Among the nine leaf properties studied, CHL, LMA, and N 
were estimated most successfully, with R2

CV>0.84. Mg and Ca 

were also estimated satisfactorily, with R2
CV of ~0.75. P, K, and 

S were estimated moderately well, with R2
CV>0.5. LWC was 

the only property modeled with R2
CV<0.5. The better model 

performance of CHL, LMA, and N from leaf hyperspectral 
data is in agreement with several other studies (Yendrek et al., 
2017; Silva-Perez et al., 2018; Coast et al., 2019). Chlorophylls 
have strong absorption peaks in the blue and red regions of the 
spectrum, resulting in a successful PLSR model to quantify its 
concentration. Leaf N can be successfully modeled primarily 
for two reasons. Firstly, about half of the N in fresh leaves is 
found in chlorophyll molecules; thus, a successful PLSR spec-
tral model of CHL would also indicate a good model of N 
due to this association. Secondly, the other N in fresh leaves 
is primarily found in proteins and amino acids, which contain 
amide bonds that have absorption bands in the SWIR region ( 
1550–1750 nm). LMA is a measure of leaf thickness, which ef-
fectively determines the path length of the hyperspectral light 
energy (thicker leaves have longer path lengths) and therefore 
results in a satisfactory PLSR model. Similarly, N, P, and S pro-
duce covalent bonds with carbon compounds (nucleic acids, 

Fig. 1. Variations in measured leaf properties among maize, sorghum (Sorg), camelina (Cam), and soybean (Soy) and between the spectral library and 
external test datasets for percentage contents of (A) N, (B) P, (C) K, (D) Mg, (E) Ca, and (F) S, (G) leaf water content (LWC), (H) chlorophyll content (CHL), 
and leaf mass per area (LMA). No data were obtained for CHL and LMA for camelina because the leaf chlorophyll meter and the leaf area meter were not 
available. The bottom, middle, and top lines of the boxes indicate the first quartile (Q1), median (Q2), and third quartile (Q3) of the data. Whiskers indicate 
the range of the data excluding outliers, which are identified as data points laying outside of Q1–1.5(Q3–Q1) and Q3 + 1.5(Q3–Q1). Significant differences 
between the library and the test set samples within a species were determined using ANOVA followed by Tukey’s Honestly Significant Difference: 
*P<0.05.
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sugar-phosphate intermediates, phospholipids, co-enzymes, 
sulfolipids, and amino acids) that are often present in photo-
synthetic complexes and absorb light in the VIS-NIR-SWIR 
region, which leads to spectral signatures that can be used for 
estimations (Vance et al., 2003; Benning et al., 2008). The other 
leaf macronutrients that we examined, K, Ca, and Mg, often 
exist as free ions in living plant tissues and do not produce ac-
tive spectral absorption features in the VIS-NIR-SWIR region. 

However, they do bond electrostatically or as ligands to larger 
carbon-containing compounds, and therefore can be indirectly 
derived as secondary compounds using spectroscopy (Hepler 
and Winship, 2010; Nieves-Cordones et al., 2016; Pandey et al., 
2017). For example, Mg is a constituent of chlorophyll mol-
ecules and actively participates in the photosynthetic process 
(Palta, 1990), which can be correlated with the chlorophyll 
content of the leaf.

Fig. 2. Spectra of the library, external test datasets, and the different species in the wavelength domain and the principal components space for 
maize, sorghum (Sorg), camelina (Cam), and soybean (Soy). (A) Spectra of the library and test datasets, with the two superimposed below (Merged), 
and (B) principal components analysis of the datasets. (C) Spectra of the datasets for the individual species, and all species superimposed below, and 
(D) principal components analysis of the species. The spectra show the mean and 95% confidence intervals, and the 95% ellipses are shown for the 
principal components.

Table 2. Statistical comparisons of variances and means in principal component space among the different datasets

Comparison P-value Conclusions 

Levene’s test Hotelling’s T2 test 

PC1 PC2 

Library/Test <0.001 <0.001 <0.001 Different variances, different centers
Maize/Sorghum <0.001 <0.001 <0.001 Different variances, different centers
Maize/Soybean <0.001 0.003 <0.001 Different variances, different centers
Maize/Camelina 0.005 <0.001 <0.001 Different variances, different centers
Sorghum/Soybean <0.001 0.273 <0.001 Different variances for PC1 only, different centers
Sorghum/Camelina <0.001 0.968 <0.001 Different variances for PC1 only, different centers
Soybean/Camelina 0.351 0.333 <0.001 Same variances, different centers
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Improvements by extra-weighted spiking

Independent validation on an external dataset is one of the 
most robust ways to assess likely model performance in real-
world applications (Siegmann and Jarmer, 2015). In this study, 
we used datasets from the four different species maize, sor-
ghum, camelina, and soybean as the external datasets to validate 
the model calibrated on the spectral library. Again, the spectral 
library consisted of data only from maize and sorghum. The 
spectral library was spiked (with extra-weight) using 20 sam-
ples from each external test set. Values for R2 and some selected 
prediction plots are shown in Figs 3 and 4 (complete summary 
statistics for all the model testing schemes and the leaf proper-
ties are provided in Supplementary Table S2).

Most of the models for the different leaf properties failed to 
show good predictions for the external datasets for any species 
using the spectral library models (Fig. 3). This might be due 
to the spectral differences between the library and test sets, as 
shown in Fig. 2B. Surprisingly, despite the fact that the spec-
tral library incorporated large quantities of maize and sorghum 
data, the models were not able to accurately predict most of the 
properties of maize (N, P, K, Mg, Ca, S, LWC, and LMA) and 
some of the properties of sorghum (P, K, LMA). We speculate 
that this might be due to the differences in varieties and/or 
the treatments used in the specific experiments that we studied 

(Table 1). In addition, the variation of the spectral library may 
have been insufficient to calibrate accurate models even for 
maize and sorghum (see Fig. 1). The models built using only the 
spike sets also did not perform well, obviously due to the small 
number of samples (n=20) that was not enough to effectively 
capture the spectra–property relationships. However, when 
the spectral library was spiked with extra-weight, the models 
often showed better performances compared to the other two 
schemes. This was due to the introduction and equalizing of 
the local variability (i.e. variability in the external dataset) with 
the inherent variability of the spectral library through extra-
weighing, which provided a balanced calibration dataset for the 
models to capture both global and local variations and hence 
increased the model robustness. For maize, a notable improve-
ment was observed for P, while most of the other properties 
showed some increases in R2. The highest improvement due to 
spiking for sorghum was observed with LMA, while the other 
properties showed only marginal or no improvements. This 
was not surprising since the spectral library already consisted 
of maize and sorghum samples, which sufficiently captured 
the spectral variabilities for the models. Out of all the species 
tested, the most prominent improvements were observed for 
camelina, where all the properties measured showed enhanced 
R2, with six showing >100% improvement. Similarly, soybean 
showed >100% improvements for K, Mg, CHL, and LMA. 
Both camelina and soybean were not included in the orig-
inal spectral library; regardless of this, extra-weighted spiking 
substantially enhanced the model performance for these data-
sets. This is noteworthy, because the spiking incorporated the 
spectral variability of a completely different species into the 
original calibration dataset, confirming the ability of spiking to 
successfully integrate new and unseen variability into the orig-
inal dataset. In essence, spiking was effectively able to capture 
the local variabilities of the external datasets through the spike 
set to increase the model robustness for the species outside the 
spectral library. Similar improvements were observed for other 
statistics as well (Supplementary Table S2).

The changes in model R2 and RMSE with increasing 
number of samples in the spiking set for the leaf properties is 
shown in Fig. 5 (with a threshold of R2>0.7). It can be seen 
from this analysis that there was a general increase in R2 and 
decrease in RMSE as the size of spiking set increased from 10 
to 40, and the improvement started to level off toward a size 
of 50. This result was expected as a higher number of spik-
ing samples would represent the external, independent dataset 
better, therefore leading to better model performance with the 
spiked library. However, when the spiking set reaches a certain 
size (40 in our analysis), continuing to include more samples 
will no longer lead to substantial increases in model perfor-
mance. When deciding what an appropriate size for the spiking 
set should be, we consider not only model performance but 
also the practical cost, as each sample used for spiking will need 
to be analysed in the laboratory.

Table 3. Cross-validation statistics of the two modeling 
techniques for the nine leaf traits using the VIS-NIR-SWIR spectral 
library

Leaf trait Statistic Modeling technique

PLSR DNN 

N (%) RMSECV 0.282 0.297
R2

CV 0.842 0.825
P (%) RMSECV 0.085 0.093

R2
CV 0.577 0.489

K (%) RMSECV 0.337 0.364
R2

CV 0.517 0.437
Mg (%) RMSECV 0.062 0.089

R2
CV 0.759 0.498

Ca (%) RMSECV 0.136 0.157
R2

CV 0.742 0.667
S (%) RMSECV 0.06 0.072

R2
CV 0.558 0.355

LWC (%) RMSECV 3.085 3.152
R2

CV 0.437 0.41

CHL (μmol m–2) RMSECV 40.178 40.625
R2

CV 0.92 0.918
LMA (g m–2) RMSECV 9.43 7.558

R2
CV 0.841 0.898

PLSR, partial least-squares regression; DNN, deep neural networks. 
RMSECV, root mean-squared error of cross-validation; R2

CV, coefficient 
of determination of cross-validation. LWC, leaf water content; CHL, leaf 
chlorophyll content; LMA, leaf mass per area,

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erad129#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erad129#supplementary-data
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Discussion

A large spectral library benefits phenotyping of leaf 
physiological and biochemical traits, but the initial cost 
of its construction can be high

Spectral libraries such as the one reported in this study are a 
critical requirement towards implementing VIS-NIR-SWIR 
as a rapid, low-cost operational tool for phenotyping leaf 
physiological and biochemical traits. There have been a sig-
nificant number of studies reporting promising results from 
the application of VIS-NIR-SWIR to quantify plant traits. 
These studies have all followed a traditional paradigm where 
hyperspectral models are calibrated and tested on data from 
the specific studies, and application of models on external, in-
dependent datasets has been rare. As noted above, collecting 
ground-truth data for hyperspectral modeling is typically the 
most expensive part of a study. It is neither economical nor 
practical to collect such data for a large number of samples to 
calibrate a model, and it is also wasteful if these data are just 
used once for a particular project. Plant leaf spectral libraries 

can effectively address this challenge by providing the neces-
sary samples for model calibration while avoiding the need 
for collecting a large number of samples for ground-truthing 
during the field experiments, and this will lead to significant 
savings in both cost and time.

Ideally, the spectral libraries should span wide ranges of both 
genetic diversity and experimental conditions to ensure their 
applicability under wider settings, and hence include different 
species, physiological conditions (water, nutrients, tempera-
ture, and biotic stresses), growth stages, geographical regions, 
and environments (greenhouse, field, temperate, tropical). 
Such an all-inclusive spectral library will ensure robust model 
deployment. The spectral library developed in this paper can 
be dynamically grown through the addition of new spectra 
from laboratory chemical data. Thus, over time this spectral 
library can potentially become very large and diverse (e.g. in-
cluding tens of thousands of samples and numerous species 
and experimental conditions), and provide useful training sets 
and prediction models to estimate many leaf properties rap-
idly and accurately. The ultimate goal is to compile a spectral 

Fig. 3. Values of R2 for maize, sorghum (Sorg), camelina (Cam), and soybean (Soy) for different leaf traits using the partial least-squares regression model 
calibrated on the spectral library only (Lib), the spike set only (Spk), and the extra-weighted spiked library (Lib+Spk). (A–F) percentage contents of (A) N, 
(B) P, (C) K, (D) Mg, (E) Ca, and (F) S. (G) Leaf water content (LWC), (H) chlorophyll content (CHL), and leaf mass per area (LMA). No data were obtained 
for CHL and LMA for camelina because the leaf chlorophyll meter and the leaf area meter were not available.
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Fig. 4. Prediction scatterplots for selected nutrient contents of camelina test samples (n=76) using the partial least-squares regression model calibrated 
on the spectral library only (Lib), the spike set only (Spk), and the extra-weighted spiked library (Lib+Spk). (A–C) N, (D–F) P, (G–I) Mg, and (J–L) Ca. RMSE, 
root mean-squared error; RPD, ratio of performance to deviation.
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library that can be used to build robust models without exces-
sive cost to serve diverse applications including phenotyping, 
sensing, modeling, and precision agriculture.

The initial development of such a leaf spectral library can re-
quire large investments due to the need for a high number of 
samples and their associated laboratory work. Indeed, the scope of 
the spectral library could be well beyond the capacity of individual 
research laboratories. Here, one effective solution is to implement a 
community-based approach where researchers conducting similar 
work can contribute their data to build a central spectral library, 
and in turn they can get access to the whole library with a diverse 
sample set. The soil spectroscopy community has already initiated 
such an effort in the ‘Soil Spectroscopy 4 Global Good’ project 
(https://soilspectroscopy.org/), where the community contributes 
to building an open spectral library. A similar effort for plants could 
potentially contribute to building an equivalent large spectral li-
brary for the benefit of the plant science community. However, 
such collaborative spectral libraries can pose multiple challenges, 
and need a pragmatic approach in terms of such things as data 
ownership, privacy, standardization, operational costs, maintenance, 
and the high computational requirements for model calibration.

Extra-weighted spiking is an effective strategy for 
improving model transferability and robustness from 
the spectral library

Another key challenge with the use of large spectral libraries 
is model transferability. That is, models calibrated on one set of 

samples often perform sub-optimally when applied on a dif-
ferent dataset; for example, from different years, experimental 
conditions, or crop species. This poor model transferability rep-
resents a limitation for the practical value of VIS-NIR-SWIR 
spectral libraries. Extra-weighted spiking is one methodology 
that can be used to enhance the model accuracy of the spec-
tral library, and has been previously demonstrated in soil spec-
troscopy (Guerrero et al., 2014), but not in plant spectroscopy. 
Due to a lack of variation for a plant trait in experiments from 
which a given spectral library has been derived, the model cali-
brated on the library alone may not yield satisfactory predic-
tions. Including some local variability (i.e. a low number of 
samples from outside the spectral library) can improve model 
accuracy in situations where creating a calibration dataset 
solely from the local samples would be prohibitive in terms 
of cost and time. As can be seen from this study, increasing the 
number of samples in the spiking set can effectively increase 
the model transferability (i.e. model robustness) by incorporat-
ing more local variability into the calibration dataset (Figs 3, 4). 
However, increasing the number of samples in the spiking set 
requires more local samples to be collected, processed, scanned, 
and analysed, which can drastically increase the labor and cost. 
Therefore, the number of spiking samples is a trade-off be-
tween the cost of additional sample analysis and the effective-
ness of transferability (the robustness) of the library models.

From our results, it was evident that even with a low number 
of spiking samples (n=20), the transferability of the models was 
enhanced (Fig. 5). This can broaden the applicability of our 

Fig. 5. Effects of using different numbers of samples in the spiking set on the prediction performance (R2 and RMSE) of the partial least-squares 
regression model for leaf traits in soybean. (A–D) Percentage contents of (A) N, (B) P, (C) K, and (D) S. (E) Chlorophyll content (CHL and (F) leaf mass per 
area. RMSE, root-mean squared error. 

https://soilspectroscopy.org/
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spectral library and reduce the cost of operation by enabling 
accurate and robust model calibrations for different crops under 
different settings (field, greenhouse, different stresses) for di-
verse applications. In such scenarios, the model accuracy could 
be further enhanced by the use of stratified random sampling, 
application of the Kennard–Stone algorithm, or use of Latin 
Hypercube Sampling instead of random sampling in the spectral 
space to account for diverse conditions in the external dataset.

Regardless of the model improvements that result from extra-
weighted spiking, this technique significantly increases the 
number of samples in the calibration datasets. Indeed, it exactly 
doubles the number of calibration samples, which will increase 
the computational demand of the model calibration, especially 
when machine-learning techniques are used. This will require 
high-performance computing resources to be available; oth-
erwise, low computationally demanding modeling techniques 
such as PLSR could be implemented for model calibration.

A leaf spectral library is a key component to 
operationalize field-based hyperspectral phenotyping

With the advancement of sensor and robotic technologies and 
their adoption within the plant phenotyping community, the 
cost of obtaining hyperspectral reflectance data from leaves will 
continue to decline. There are a number of off-the-shelf, port-
able spectrometers that can be used in the laboratory and field 
environments (Prananto et al., 2021). New developments have 
emerged such as a dedicated hyperspectral plant leaf scanner 
(Wang et al., 2020) and the integration of a hyperspectral sensor 
with a robotic manipulator to automate data acquisition (Atefi 
et al., 2019). However, hyperspectral data alone are of limited use 
unless they can be used to estimate leaf traits related to important 
plant processes and conditions. In this sense, the spectral library 
and the models calibrated from the library samples serve as an 
essential link between the sensor/raw hyperspectral data and the 
traits of interest. The library can also be incorporated as a software 
component to the hyperspectral sensors, such that leaf traits can 
be estimated in real time after a hyperspectral scan is acquired.

In recent years, hyperspectral measurements have been used 
as a tool to replace conventional destructive sampling and rap-
idly estimate plant biochemical and physiological traits, thereby 
enabling breeders and geneticists to increase the throughput of 
phenotyping. With clear evidence of accurate estimations for 
different properties including leaf nutrients, chlorophyll, mass, 
protein, starch, sugars, water content, metabolites, and temper-
ature (Silva-Perez et al., 2018; Yendrek et al., 2017; Ely et al., 
2019; Ge et al., 2019; Cotrozzi et al., 2020; Chai et al., 2021), 
trait measurements across hundreds of plants of different spe-
cies within a short period of time at a low cost is becoming 
more realistic. This is highly beneficial for quantitative genetics 
and can significantly accelerate the process of identifying genes 
and genetic markers controlling a specific target trait while 
decreasing costs. In these applications the model accuracy 
and robustness are immensely important. The development of 

robust models using hyperspectral data is often challenging, es-
pecially in situations where models have to be transferred from 
one dataset to another due to the lack of sufficient numbers 
of samples. Grzybowski et al. (2021) have demonstrated that 
model accuracy markedly diminishes when transferring mod-
els from one year to another even when using data from the 
same crop species, grown in the same region, and collected 
by the same research group. This can hinder the use of hyper-
spectral data for plant phenotyping. However, as shown in our 
study, ‘extra-weighted spiking’ can provide an effective solution 
by improving model transferability across multiple species or 
growing conditions. As only a minimal number of samples are 
required, the substantial improvements in model performance 
should frequently outweigh the modest increase in cost and 
time invested in phenotyping efforts.

Conclusions

In this study, we have reported a leaf-level VIS-NIR-SWIR 
spectral library that can potentially be used for high-throughput 
phenotyping of several leaf physiological and biochemical traits. 
A comparison of two machine-learning modeling techniques 
showed the superiority of PLSR to DNN. Models calibrated 
on the spectral library showed poor transferability to external 
test datasets containing different plant species. However, extra-
weighted spiking with a small number of samples (n=20) from 
external datasets markedly improved model transferability, indi-
cating that this technique can be effectively deployed to im-
prove the use of spectral libraries under diverse conditions and 
to widen the applicability of VIS-NIR-SWIR data in plant phe-
notyping. Overall, our study has shown that VIS-NIR-SWIR 
leaf spectral libraries can enable rapid and low-cost analysis of 
several important leaf physiological and biochemical traits. In 
addition, we have validated the analytical approach of extra-
weighted spiking as a means to extend the applicability of the 
spectral library for more species and experimental conditions.

Supplementary data

The following supplementary data are available at JXB online.
Table S1. Descriptive statistics of the nine leaf properties in 

the spectral library and the independent, external test sets.
Table S2. Prediction statistics of the different modeling 

schemes on different leaf properties and using two modeling 
techniques.

Acknowledgements

The authors would like to thank Dr Abbas Atefi of University of 
Nebraska-Lincoln for his involvement in the data collection, and the 
greenhouse staff members Vincent Stoerger and Troy Pabst of the same 
institute for caring for the plants grown in the greenhouse.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erad129#supplementary-data


Copyedited by: OUP

A leaf-level spectral library to support plant phenotyping | 4061

Authors contributions

NKW and YG performed the data analysis and wrote the manuscript; 
NKW and HZ contributed to the data collection; JCS, JY, DPS, and YG 
conceived, supervised, and implemented the greenhouse and field trials, 
which provided the samples for data collection; all the authors edited and 
approved the manuscript for publication.

Conflict of interest

The authors declare that they have no conflicts of interest in relation to 
this work.

Funding

This research was supported by grants from the US Department of 
Agriculture–National Institute of Food and Agriculture (award 2020-
68013-32371 to YG and JCS; award 2016-67009-25639 to DPS and YG), 
the US Department of Energy (award DE-SC0020355 to JCS and YG; 
award DE-SC0023138 to JY, JCS, and YG), and the National Science 
Foundation (award OIA-1557417 to JCS, DPS, JY, and YG).

Data availability

All data including the VIS-NIR-SWIR spectral library used in this study 
are available from the corresponding author, Yufeng Ge, upon request.

References
Atefi A, Ge Y, Pitla S, Schnable J. 2019. In vivo human-like robotic phe-
notyping of leaf traits in maize and sorghum in greenhouse. Computers and 
Electronics in Agriculture 163, 104854.

Barthès BG, Kouakoua E, Coll P, Clairotte M, Moulin P, Saby NPA, Le 
Cadre E, Etayo A, Chevallier T. 2020. Improvement in spectral library-
based quantification of soil properties using representative spiking and local 
calibration – the case of soil inorganic carbon prediction by mid-infrared 
spectroscopy. Geoderma 369, 114272.

Benning C, Garavito, RM, Shimojima M. 2008. Sulfolipid biosynthesis 
and function in plants. In: Hell R, Dahl C, Knaff D, Leustek T. eds. Sulfur 
metabolism in phototrophic organisms. Advances in photosynthesis and 
respiration, vol 27. Dordrecht: Springer, 185–200.

Blackburn GA. 2007. Hyperspectral remote sensing of plant pigments. 
Journal of Experimental Botany 58, 855–867.

Boatwright JL, Sapkota S, Jin H, Schnable JC, Brenton Z, Boyles R, 
Kresovich S. 2022. Sorghum Association Panel whole-genome sequenc-
ing establishes cornerstone resource for dissecting genomic diversity. The 
Plant Journal 111, 888–904.

Chai YN, Ge Y, Stoerger V, Schachtman DP. 2021. High-resolution 
phenotyping of sorghum genotypic and phenotypic responses to low ni-
trogen and synthetic microbial communities. Plant, Cell & Environment 44, 
1611–1626.

Coast O, Shah S, Ivakov A, et al. 2019. Predicting dark respiration rates 
of wheat leaves from hyperspectral reflectance. Plant, Cell & Environment 
42, 2133–2150.

Cotrozzi L, Peron R, Tuinstra MR, Mickelbart MV, Couture JJ. 2020. 
Spectral phenotyping of physiological and anatomical leaf traits related with 
maize water status. Plant Physiology 184, 1363–1377.

Dayhoff JE, DeLeo JM. 2001. Artificial neural networks. Cancer 91, 
1615–1635.

Ely KS, Burnett AC, Lieberman-Cribbin W, Serbin SP, Rogers A. 
2019. Spectroscopy can predict key leaf traits associated with source–sink 
balance and carbon–nitrogen status. Journal of Experimental Botany 70, 
1789–1799.

Fahlgren N, Gehan MA, Baxter I. 2015. Lights, camera, action: high-
throughput plant phenotyping is ready for a close-up. Current Opinion in 
Plant Biology 24, 93–99.

Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell 
SE, Doebley J, Kresovich S, Goodman MM, Buckler ES. 2005. Maize 
association population: a high-resolution platform for quantitative trait locus 
dissection. The Plant Journal 44, 1054–1064.

Furbank RT, Tester M. 2011. Phenomics – technologies to relieve the phe-
notyping bottleneck. Trends in Plant Science 16, 635–644.

Ge Y, Atefi A, Zhang H, Miao C, Ramamurthy RK, Sigmon B, Yang 
J, Schnable JC. 2019. High-throughput analysis of leaf physiological and 
chemical traits with VIS-NIR-SWIR spectroscopy: a case study with a maize 
diversity panel. Plant Methods 15, 66.

Ge Y, Bai G, Stoerger V, Schnable JC. 2016. Temporal dynamics of 
maize plant growth, water use, and leaf water content using automated high 
throughput RGB and hyperspectral imaging. Computers and Electronics in 
Agriculture 127, 625–632.

Grzybowski M, Wijewardane NK, Atefi A, Ge Y, Schnable JC. 2021. 
Hyperspectral reflectance-based phenotyping for quantitative genetics in 
crops: progress and challenges. Plant Communications 2, 100209.

Guerrero C, Stenberg B, Wetterlind J, Viscarra Rossel RA, Maestre 
FT, Mouazen AM, Zornoza R, Ruiz-Sinoga JD, Kuang B. 2014. 
Assessment of soil organic carbon at local scale with spiked NIR cali-
brations: effects of selection and extra-weighting on the spiking subset. 
European Journal of Soil Science 65, 248–263.

Hastie T, Friedman J, Tibshirani R. 2009. The elements of statistical 
learning. New York: Springer.

Heckmann D, Schlüter U, Weber APM. 2017. Machine learning tech-
niques for predicting crop photosynthetic capacity from leaf reflectance 
spectra. Molecular Plant 10, 878–890.

Helland, I. 2004. Partial least squares regression. In: Kotz S, Read CB, 
Balakrishnan N, Vidakovic B, Johnson NL. eds. Encyclopedia of statistical 
sciences. John Wiley & Sons, Inc.

Hepler PK, Winship LJ. 2010. Calcium at the cell wall–cytoplast interface. 
Journal of Integrative Plant Biology 52, 147–160.

Hotelling H. 1992. The generalization of Student’s ratio. In: Kotz S, 
Johnson NL. eds. Breakthroughs in statistics. Springer series in statistics. 
New York: Springer, 54–65.

Hunter JD. 2007. Matplotlib: a 2D graphics environment. Computing in 
Science & Engineering 9, 90–95.

Krishna G, Sahoo RN, Singh P, et al. 2019. Comparison of various mod-
elling approaches for water deficit stress monitoring in rice crop through 
hyperspectral remote sensing. Agricultural Water Management 213, 
231–244.

Levene H. 1960. Robust tests for equality of variances. In: Olkin I, et al. 
eds. Contributions to probability and statistics. Stanford, CA: Stanford 
University Press, 278–292.

Mazaheri M, Heckwolf M, Vaillancourt B, et al. 2019. Genome-wide 
association analysis of stalk biomass and anatomical traits in maize. BMC 
Plant Biology 19, 45.

McKinney W. 2010. Data structures for statistical computing in Python. In: 
van der Walt S, Millman J. eds. Proceedings of the 9th Python in Science 
Conference. SciPy.org, 56–61.

Meacham-Hensold K, Montes CM, Wu J, et al. 2019. High-throughput 
field phenotyping using hyperspectral reflectance and partial least squares 
regression (PLSR) reveals genetic modifications to photosynthetic capacity. 
Remote Sensing of Environment 231, 111176.

Ng W, Minasny B, Montazerolghaem M, Padarian J, Ferguson R, 
Bailey S, McBratney AB. 2019. Convolutional neural network for simul-
taneous prediction of several soil properties using visible/near-infrared, 
mid-infrared, and their combined spectra. Geoderma 352, 251–267.



Copyedited by: OUP

4062 | Wijewardane et al.

Nieves-Cordones M, Shiblawi A, Razzaq F, Sentenac H. 2016. Roles 
and transport of sodium and potassium in plants. In: Sigel A, Sigel H, Sigel 
R. eds. The alkali metal ions: their role for life. Metal ions in life sciences, vol 
16. Cham, Switzerland: Springer, 291–324.

Palta JP. 1990. Leaf chlorophyll content. Remote Sensing Reviews 5, 
207–213.

Pandey P, Ge Y, Stoerger V, Schnable JC. 2017. High throughput in 
vivo analysis of plant leaf chemical properties using hyperspectral imaging. 
Frontiers in Plant Science 8, 1348.

Pedregosa F, Varoquaux G, Gramfort A, et al. 2011. Scikit-learn: 
machine learning in Python. Journal of Machine Learning Research 1, 
2825–2830.

Prananto JA, Minasny B, Weaver T. 2020. Near infrared (NIR) spectros-
copy as a rapid and cost-effective method for nutrient analysis of plant leaf 
tissues. In: Sparks DL. ed. Advances in agronomy, vol. 164. Cambridge, 
MA: Academic Press, 1–49.

Prananto JA, Minasny B, Weaver T. 2021. Rapid and cost-effective nu-
trient content analysis of cotton leaves using near-infrared spectroscopy 
(NIRS). PeerJ 9, e11042.

Rumelhart DE, Hinton GE, Williams RJ. 1988. Learning internal rep-
resentations by error propagation. In: Collins A, Smith EE. eds. Readings 
in cognitive science. Burlington, MA: Morgan Kaufmann, 399–421.

Siegmann B, Jarmer T. 2015. Comparison of different regression models 
and validation techniques for the assessment of wheat leaf area index from 
hyperspectral data. International Journal of Remote Sensing 36, 4519–4534.

Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, 
Furbank RT, Evans JR. 2018. Hyperspectral reflectance as a tool 

to measure biochemical and physiological traits in wheat. Journal of 
Experimental Botany 69, 483–496.

Stéfan van der Walt S, Colbert C, Varoquaux G. 2011. The NumPy 
array: a structure for efficient numerical computation. Computing in Science 
& Engineering 13, 22–30.

Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and 
use: critical adaptations by plants for securing a nonrenewable resource. 
New Phytologist 157, 423–447.

Vergara-Diaz O, Vatter T, Kefauver SC, Obata T, Fernie AR, Araus 
JL. 2020. Assessing durum wheat ear and leaf metabolomes in the field 
through hyperspectral data. The Plant Journal 102, 615–630.

Viscarra Rossel RA, Behrens T. 2010. Using data mining to model and 
interpret soil diffuse reflectance spectra. Geoderma 158, 46–54.

Wang L, Jin J, Song Z, Wang J, Zhang L, Rehman TU, Ma D, Carpenter 
NR, Tuinstra MR. 2020. LeafSpec: an accurate and portable hyperspectral 
corn leaf imager. Computers and Electronics in Agriculture 169, 105209.

Wijewardane NK, Ge Y, Wills S, Libohova Z. 2018. Predicting physical 
and chemical properties of US soils with a mid-infrared reflectance spectral 
library. Soil Science Society of America Journal 82, 722–731.

Wijewardane NK, Ge Y, Wills S, Loecke T. 2016. Prediction of soil 
carbon in the conterminous United States: visible and near infrared reflect-
ance spectroscopy analysis of the Rapid Carbon Assessment Project. Soil 
Science Society of America Journal 80, 973–982.

Yendrek CR, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ, 
McIntyre LM, Leakey ADB, Ainsworth EA. 2017. High-throughput phe-
notyping of maize leaf physiological and biochemical traits using hyperspec-
tral reflectance. Plant Physiology 173, 614–626.


	A leaf-level spectral library to support high-throughput plant phenotyping: predictive accuracy and model transfer
	Authors

	tmp.1693584224.pdf.2ZW0A

