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Abstract

Accurate prediction of the phenotypic outcomes produced by different combinations of genotypes, environments, and management inter
ventions remains a key goal in biology with direct applications to agriculture, research, and conservation. The past decades have seen an 
expansion of new methods applied toward this goal. Here we predict maize yield using deep neural networks, compare the efficacy of 2 
model development methods, and contextualize model performance using conventional linear and machine learning models. We examine 
the usefulness of incorporating interactions between disparate data types. We find deep learning and best linear unbiased predictor (BLUP) 
models with interactions had the best overall performance. BLUP models achieved the lowest average error, but deep learning models per
formed more consistently with similar average error. Optimizing deep neural network submodules for each data type improved model per
formance relative to optimizing the whole model for all data types at once. Examining the effect of interactions in the best-performing model 
revealed that including interactions altered the model’s sensitivity to weather and management features, including a reduction of the im
portance scores for timepoints expected to have a limited physiological basis for influencing yield—those at the extreme end of the season, 
nearly 200 days post planting. Based on these results, deep learning provides a promising avenue for the phenotypic prediction of complex 
traits in complex environments and a potential mechanism to better understand the influence of environmental and genetic factors.
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Received: July 28, 2022. Accepted: December 23, 2022
Published by Oxford University Press on behalf of the Genetics Society of America 2023. 
This work is written by (a) US Government employee(s) and is in the public domain in the US.

Introduction
Prediction of an organism’s phenotype is a key challenge for biol
ogy, especially when integrating the effects of genetics, environ
mental factors, and human intervention. For many traits, 
prediction is complicated by interactions between these factors. 
For example, within a large multisite, multigenotype maize (Zea 
mays) study, more variation in grain yield is explained by interac
tions between genetic and environmental factors than by genetic 
main effects (Rogers et al. 2021). Including interaction effects be
tween environmental and genomic data can improve predictive 

accuracy in novel environments or for new cultivars (Jarquin 
et al. 2021; Li et al. 2021).

Within agriculture, diverse methods have been applied to the 
task of predicting phenotype ranging from classical statistics 
(Jarquin et al. 2021; Rogers et al. 2021; Rogers and Holland 2021), 
machine learning (Westhues et al. 2021), physiological crop 
growth models (Technow et al. 2015), to combinations of these 
and other methods (Messina et al. 2018; Shahhosseini et al. 2021). 
Each model contains limitations such as lacking the capacity to 
model complex nonlinear responses (linear models) or interactions 
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between factors, interpretability within a biological framework 
(machine learning models), or dependence on costly, low through
put data for calibration (crop growth models). Often simplifying 
assumptions are introduced into the model (e.g. linearity), into the 
data (dimensionality reduction, feature engineering), or into the ex
perimental design (e.g. considering exclusively genetic, environmen
tal, or managerial effects to the exclusion of all others). While this 
approach creates more manageable statistical models and enables 
a sufficiently powered study to be achieved with fewer resources, 
it limits the capacity of a model to generalize to new genotypes, en
vironments, or management schemes. Furthermore, which factors 
are treated as “nuisance” variables varies between communities 
within agriculture: geneticists often restrict management regimes, 
while agronomists usually consider only a few cultivars. These ap
proaches make it difficult to investigate the interactions between 
genetic, environmental, and management factors.

Predicting an organism’s phenotype across genotypes, envir
onments, and management strategies simultaneously requires 
a dataset containing many combinations of these features. 
Collecting such a dataset requires a large multisite, multicondi
tion, experiment featuring diverse genetic backgrounds. The 
Genomes to Fields (G2F) initiative (McFarland et al. 2020) seeks 
to accomplish this. To date, it has collected measurements of 
grain yield and other phenotypic traits (plant height, days to 
silking, stalk lodging, and kernel row number) from about 
180,000 plots planted at more than 160 environments. 
Environments are characterized using a WatchDog 2700 
Weather station (Spectrum Technologies, Inc.) which collects 
continuous weather data though the season and collaborator- 
submitted soil samples. Across the initiative, over 2,500 maize 
hybrids have been tested, with Genotyping by Sequencing per
formed on inbred parental lines used. Beyond the data collec
tion, a means of effectively incorporating diverse data types 
(genomics, management, soil measurements, weather, etc.) is 
needed, particularly one that avoids simplifying assumptions 
where possible.

One method with the potential to accomplish this is that of 
deep neural networks (DNNs) which have the capacity to ap
proximate any function, provided they are sufficiently complex 
and have sufficient examples to learn from. This capability is 
present regardless of whether they are composed of dense fully 
connected (Hornik et al. 1989) or convolutional layers (Zhou 
2020). Additionally, DNNs “learn” directly from the data 
provided which enables reduced feature engineering and 
dimensionality reduction. The methodology is also flexible 
with respect to data type, allowing the combination of variables 
that are static over a growing season (e.g. genotype) and those 
that are dynamic (e.g. temperature) in a single model 
(Washburn et al. 2021). While neural networks have been applied 
to the problem of predicting yield since at least 2001 (Liu et al. 
2001) this field is rapidly developing, with advances in theory, 
software, and hardware enabling deeper and more accurate net
works. Several recent studies have applied these methods with a 
relatively large dataset either with (Washburn et al. 2021) or 
without (Khaki et al. 2020) a genetic component into the model, 
with little feature engineering performed. Both relied instead 
on DNN’s capacity to learn useful data transformations from 
the data directly.

Despite their promise, DNNs are not a panacea for prediction. 
DNNs are prone to overfitting to training data resulting in poor 
performance. Even when performing well, the complexity of these 
models can obscure what aspects of the data the model is using. 
Advances in deep learning have produced methods that reduce 

these limitations. For example, the use of convolutional layers 
minimizes the potential of overfitting because they perform well 
with fewer parameters relative to fully connected layers. Where 
fully connected layers are used, overfitting can be reduced by ran
domly removing neurons from a layer with a certain “dropout” 
percentage. While the inner workings of DNNs remain far less in
terpretable than simpler models (e.g. best linear unbiased predict
or (BLUP) or physiological models), methods have been developed 
to aid in interpretation through identifying the importance of dif
ferent features in the data which can be applied. These methods 
include salience (Simonyan et al. 2014), guided backpropagation 
(Khaki et al. 2020), and permutation-based metrics (Shahhosseini 
et al. 2021) among others (Samek et al. 2017). Here we use salience, 
which measures how much influence each input variable has on 
the predicted output by calculating the model’s gradient with re
spect to the network’s input. This results in a map of each fea
tures’ importance illuminating the operation of the DNNs 
generated in this study.

Here, we leverage DNNs’ capacity to determine feature import
ance from the data which permits us to remain agnostic as to 
which features, or combinations of features are most relevant. 
Furthermore, since DNNs are robust to lower-quality data and 
benefit from an abundance of data, we employ a strategy of min
imal feature transformation and curation and maximal inclusion 
of observations. Using a minimally transformed dataset we begin 
the search space considered in Washburn et al. (2021), expand the 
space under consideration, and detail a sequence of reproducible 
steps and objective heuristics which produced the models under 
consideration. DNNs require an abundance of data for training. 
We begin by detailing a workflow that incorporates a wider num
ber of years from the G2F Initiative than previous studies (Rogers 
et al. 2021; Rogers and Holland 2021; Washburn et al. 2021), while 
also limiting the effect of errant and absent measurements. 
Improving on past studies, we propose a new approach to model 
optimization whereby the model is broken into submodules for 
each data type and interactions between them, then each submo
dule is consecutively optimized, using a Bayesian optimization 
procedure to find a suitable structure based on the data itself. 
As far as we are aware, previous studies using deep learning for 
phenotypic prediction have instead employed simultaneous opti
mization (SO) of all model components (Washburn et al. 2021) or 
informal inductive tinkering. We compared models developed 
through consecutive and SO and tested them against a variety 
of classic machine learning and statistical methods to determine 
which performed best. To fairly assess model performance we de
tail a strategy of constructing testing, training, and validation sets 
stratified by season and location that is broadly useful to assessing 
model performance while avoiding overfitting the model to any 
location.

Materials and methods
Data preparation
We used data from the G2F initiative for the years 2014–2019 
(McFarland et al. 2020), focusing on the sites within the continen
tal United States. Each year’s data are publicly available (https:// 
www.genomes2fields.org/resources/), including weather and soil 
data for field sites, genomic data, management schedules (e.g. ap
plication of fertilizer, herbicides, irrigation), and yield (in addition 
to other phenotypic variables). We augmented this through add
itional genomic and weather data. Weather data retrieved from 
Daymet (Thornton et al. 2020) were used in quality control as dis
cussed below and to infer data for locations which lacked a 

https://www.genomes2fields.org/resources/
https://www.genomes2fields.org/resources/
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functional weather station for some or all of the season. Daymet 
data were retrieved through wget (Techtonik 2015).

Custom scripts were used to aggregate and standardize termin
ology across years. Rather than itemizing each operation, we re
strict ourselves to those which are likely to be of interest to 
those working with similar data sets and the cleaned dataset is 
available through Zenodo (10.5281/zenodo.6916775) as are the 
scripts used (10.5281/zenodo.7401113). Data cleaning scripts 
were written in Python (Van Rossum and Drake 2009, p. 3) and 
rely on scientific and general libraries (Seabold and Perktold 
2010; Pedregosa et al. 2011; fuzzywuzzy 2017; Harris et al. 2020; 
Team Pandas Development 2020; Virtanen et al. 2020; Da 
Costa-Luis et al. 2022) along with plotting libraries for exploratory 
visualizations (Hunter 2007, p. 200; Inc 2015; Kibirige et al. 2021; 
Waskom 2021). We used Anaconda (“Anaconda Software 
Distribution” 2021) to manage the virtual environment.

Data preprocessing
Starting with the G2F initiative’s single nucleotide polymorph
ism data, which was produced through genotyping-by- 
sequence for the inbreds used (McFarland et al. 2020), we filtered 
and then reduced the dimensionality of the genomic data with 
principal components analysis (PCA) using TASSEL version 
5.2.74 (Bradbury et al. 2007). Once the data were reduced, the 
genomes were PCA transformed. We find that 31% of the vari
ance is explainable by the first 8 principal components (PCs), 
50% is explainable by the first 50 PCs, and >99% of the variance 
is explainable by 1,725 PCs. Each hybrid’s coordinates in PC 
space were estimated as the average between its parent’s coor
dinates—projecting each hybrid genotype on PC axes derived 
from their parents’ genomes. This was done rather than 
creating simulated hybrids due to hardware and software 
constraints.

Environmental data required preprocessing as well. The soil 
dataset contains many missing values, having an average comple
tion rate of 47% across all site-by-year combinations. For each 
variable in the soil dataset (see below), missing values were first 
linearly interpolated across years with respect to location. 
Locations with no observations for any years were imputed using 
k-nearest neighbors (kNN) based on the nearest 5 neighbors 
(physically nearest using longitude and latitude). Within the re
ported weather data, we observed evidence of equipment mal
function and imputed or adjusted values using linear models. 
The representation of management data was refined. Fertilizer 
applications were decomposed into the quantity of nitrogen, 
phosphorus, and potassium applied. Where fertilizer applications 
were lacking an application date, we estimated the time differ
ence relative to the planting date with kNN imputation (k = 5) to 
cluster based on application quantity (e.g. a missing date of appli
cation for a nitrogen application would be imputed using the dates 
of the 5 applications most similar in the quantity applied). To de
fine the time window to be used for modeling, we found the earli
est within-season fertilizer application and the day of the latest 
harvest to bound the weather and management data. This re
sulted in a window of 75 days prior to planting and 204 days after 
(210 total including the planting day). A full discussion of data pre
processing is included in the “Data Preprocessing” section of the 
supplemental materials.

Full dataset overview
The above approach to data cleaning was designed to be permis
sive as deep learning benefits from access to an abundance of 
data. Following data cleaning 96,137 yield measurements 

remained. Fewer than half of these (41,513 measurements) were 
used in training or evaluating the model due to balancing 
observations with respect to location-year combinations through 
downsampling. In the full dataset (available at 10.5281/zeno
do.6916775) the 96,137 observations were spread over 41 sites 
across 6 years (2014–2019) (158 site-year combinations). These 
data were not balanced with respect to observations per field 
site. Observations per site ranged from 156 at “GAH2” in 2016 to 
3,589 at “MNH1” in 2018, with the median and mean site recording 
498 and 608.5 observations per year, respectively. Across all obser
vations, 3,671 unique genotypes were recorded, derived from 
1,681 female and 223 male parent genotypes. 94,996 (98.8%) of 
the observations are from hybrids; inbreds account for the other 
1,141. The number of replicates for each genotype varies widely 
from 1 to several hundred (e.g. 2369/LH123HT: 882, PHW52/ 
PHN82: 421, B37/H95: 333, PHW52/PHM49: 331, B73/PHN82: 328), 
with a median of 18 and mean of 26.2 observations. Within a loca
tion 1–2 replicates per genotype is typical (median of 2, mean of 
1.62) but ranges as high as 46 replicates (2369/LH123HT at 
“NCH1” in 2018).

In addition to genotypic data as represented by 1,725 PCs pro
duced from the genomic data, we used 40 environmental and 
management variables; 21 soil variables and 19 weather and man
agement variables. The 21 soil variables were used for modeling 
where soil pH measured using a 1:1 mixture of soil and distilled 
water. (SoilpH), Soil pH measured using the Woodruff method 
(WDRFpH), Soluable salt concentration in mmho/cm (SSalts), 
Organic matter in soil in percent (PercentOrganic), Available 
Nitrites in ppm (ppmNitrateN), Nitrogen per acre in lbs 
(NitrogenPerAcre), Available Potassium in ppm (ppmK), 
Available Sulfate in ppm (ppmSulfateS), Available Calcium in 
ppm (ppmCa), Available Magnesium in ppm (ppmMg), Available 
Sodium in ppm (ppmNa), Cation exchange capacity in meq/100g 
soil (CationExchangeCapacity), Percentage Hydrogen (PercentH), 
Percentage Potassium (PercentK), Percentage Calcium (PercentCa), 
Percentage Magnesium (PercentMg), Percentage Sodium 
(PercentNa), Phosphorus extracted using acid fluoride in ppm 
(ppmP), Percent sand composition in a sample (PercentSand), 
Percent silt composition in a sample (PercentSilt), and Percent Clay 
composition in a sample (PercentClay). For more details please con
sult the G2F documentation (https://datacommons.cyverse.org/ 
browse/iplant/home/shared/commons_repo/curated/GenomesTo 
Fields_data_2019/c._2019_soil_data). The 19 weather and manage
ment variables used for deep learning were Nitrogen applied in 
lbs/acre (N), Phosphorus applied in lbs/acre (P), Potassium 
applied in lbs/acre (K), Daily Minimum Temperature in Degrees 
Celsius (TempMin), Daily Mean Temperature in Degrees 
Celsius (TempMean), Daily Max Temperature in Degrees Celsius 
(TempMax), Daily Mean Dew Point in Degrees Celsius 
(DewPointMean), Daily Mean Relative Humidity as a Percentage 
(RelativeHumidityMean), Daily Mean Solar Radiation in Watts per 
Square Meter (SolarRadiationMean), Daily Max Wind Speed in 
Meters per Second (WindSpeedMax), Daily Mean Wind Direction 
in Degrees (WindDirectionMean), Daily Max Wind Gust in 
Meters per Second (WindGustMax), Daily Mean Soil Temp 
in Degrees Celsius (SoilTempMean), Daily Mean Soil Moisture in 
Degrees Celsius (SoilMoistureMean), Daily Mean Ultra-violet 
Radiation in Micro-moles per meter-squared seconds (UVLMean), 
Photosynthetically Active Radiation in Micro-moles per 
Meter-Squared Seconds (PARMean), Daily Mean Photoperiod as a 
Percentage (PhotoperiodMean), Daily Estimated Water Vapor 
Partial Pressure in pascals (VaporPresEst), and Total water applied 
(including irrigation and precipitation) in mm (WaterTotalInmm). 

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad006#supplementary-data
https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_data_2019/c._2019_soil_data
https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_data_2019/c._2019_soil_data
https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_data_2019/c._2019_soil_data
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For more details please consult the G2F documentation (https:// 
datacommons.cyverse.org/browse/iplant/home/shared/commons_ 
repo/curated/GenomesToFields_data_2019/b._2019_weather_data) 
and Daymet documentation (https://daymet.ornl.gov/overview).

Defining training, validation, and test sets
We generated train/test splits randomly, with the constraint that 
any location-year combination could appear in only the testing or 
training set. Nearby experimental sites were grouped for the pur
pose of generating training and testing sets. The 41 experimental 
sites were grouped into 29 experimental site groups using the 
distance between their GPS coordinates such that no 2 groups 
were within 0.5 degree from each other. While this threshold is in
consistent with respect to location it is sufficient to group nearby 
locations while excluding distant ones. To prevent over represen
tation of certain groups, all site-group-by-year combinations were 
randomly down sampled so that none had more observations 
than the smallest number in the testing set. For use in hyperpara
meter selection, the training set was split into a training and 
validation set, stratifying by site-group-by-year groups. The valid
ation set is used to assess the performance of a considered set of 
hyperparameter values without compromising the test set. This 
was repeated several times to prevent overfitting to a single valid
ation set. For further details, refer to the “Data Training, 
Validation, and Test Sets” in the supplemental materials.

Prior to hyperparameter selection and training the input data 
were centered and scaled based on the mean and standard devi
ation of each parameter in the training data. Measurement units 
were otherwise left as recorded in the data to be consistent with 
the G2F initiative. In the case of yield, these values were a mean 
of ∼147.397 bushels per acre and a standard deviation of 
∼48.169 bushels per acre, i.e. y = (yOriginal − 147.397)/48.169. This 
practice in deep learning can reduce the number of epochs re
quired for training, but if done incautiously can result in unrealis
tically high-performing models as information about the data in 
the test set “leaks” into the training set. Centering and scaling 
based on summary statistics calculated from only the training 
data and not the full data set avoids this. As data transformation 
occurs prior to determining cross-validation folds a different in
formation leak is potentially introduced within the hyperpara
meter selection process but does not create an issue for the final 
evaluation of the model’s performance because the test set data 
were not used in these calculations.

Model-specific data preparation
Linear and machine learning models required further data pro
cessing. For use in simple linear fixed effect models and in ma
chine learning models, the weather and management 
time-series data were clustered to reduce their dimensionality. 
For each variable, we used time series k-means with dynamic 
time warping implemented through the tslearn library 
(Tavenard et al. 2020). K could range from 2 to 40. The smallest va
lue of K where the silhouette score of K + 1 was less than K was 
used. Where needed clusters were represented categorically 
through one hot encoding. BLUP models required the generation 
of relationship matrices which were produced from the genomic 
PCs, soil covariates, and weather and management time series. 
We used the process applied in Washburn et al. (2021), which is 
a modification of that described in Jarquín et al. (2014), for creating 
matrices for these main effects and genomic by soil and genomic 
by weather interaction effects.

Training and test set overview
Following the training and test set definition, 41,513 observations 
remained: 37,273 in the training set and 4,240 in the test set. 
Across these sets, all 41 sites, 6 years, and 158 site-year combina
tions were represented. These data were approximately balanced 
as described above with all site-year groups in the test set having 
265 observations, and no site-year group in the training set ex
ceeding this, although some did contain fewer observations. 
This also resulted in fewer genotypes being represented (3,006 to
tal, a reduction of 665 genotypes). These hybrids resulted from 
1,238 female and 68 male parent genotypes. The number of repli
cates for each genotype varies with the top 5 most represented 
genotypes being 2369/LH123HT (503), PHW52/PHN82 (232), 
PHW52/PHM49 (184), B73/PHN82 (173), and B73/MO17 (172) and 
the median and mean genotype having 9 and 13.8 observations, 
respectively. Most site-years contain a single replicate of a geno
type (mean observations: 1.27).

The training and test sets do not overlap with respect to site-year 
combinations but share sites and genetics. 28 of the 41 total sites 
are exclusively found in the training data and account for 23,758 
observations with the shared sites accounting for 13,515 observa
tions. No sites are exclusive to the test set. Of the 3,006 genotypes 
present, 1,559 occur in both sets accounting for 27,131 observations 
in the training set and 4,221 in the test set. 1,435 genotypes (10,142 
observations) are only found in the training set whereas 12 geno
types (19 observations) are exclusive to the test set. Counts of ob
servations for each site-by-year group in the training and test set 
after downsampling are shown in Supplementary Table 1.

Model preparation
Overview
We sought to model genotype by environment by management 
interaction effects (GEM effects) in maize yield and to determine 
the utility of doing so. To this end, we optimized DNNs to predict 
yield with a single data modality (i.e. only genomic data, soil charac
teristics, or time-series data each by itself). We use one-dimensional 
convolutional layers to capture the time-dependent features of wea
ther data, which have previously been used in yield prediction for 
this task (Khaki et al. 2020; Washburn et al. 2021). We used dense, 
fully connected layers for the other submodules of the DNN.

We pursued 2 strategies for tuning and training GEM models: 
consecutive optimization (CO) and simultaneous optimization 
(SO). CO tunes the hyperparameters of networks predicting yield 
from a single data modality (genomic data, soil data, or weather 
and management time-series data). Next, the prediction neurons 
are discarded and the output of the penultimate layer of each sin
gle modality network enters a set of layers to permit interactions 
between data modalities. Hyperparameters for the interaction 
layers are then tuned. The SO strategy by contrast allows for all 
hyperparameters to be selected concurrently, both those which 
affect the processing of a single data modality and those influen
cing interactions between modalities.

Hyperparameter search and training
We selected model architecture through a hyperparameter 
search using the “BayesianOptimization” tuner provided within 
the “keras-tuner” package (O’Malley et al. 2019). Models were 
written in Keras (Chollet 2015) with Tensorflow as a backend 
(Abadi et al. 2015) and run in a Singularity container (Kurtzer 
et al. 2017; SingularityCE Developers 2021). The hyperpara
meter ranges explored for each network are listed in Table 1. 
We used a custom subclassed version of the tuner to randomly 

https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_data_2019/b._2019_weather_data
https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_data_2019/b._2019_weather_data
https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_data_2019/b._2019_weather_data
https://daymet.ornl.gov/overview
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad006#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad006#supplementary-data
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select one of the previously defined validation folds to prevent 
overfitting to a single validation set without increasing the 
computational cost. For DNNs, a maximum of 40 hyperpara
meter sets were explored. Models were trained for up to 500 
epochs with an early stopping patience of 5 epochs in models 
where convolution layers were varied (sequential optimization 
model with only weather and management data, concurrent 
optimization model) and up to 1,000 epochs with an early stop
ping patience of 7 epochs for all others. Regardless of network 
type, if the hyperparameters optimization had not concluded 
by 290 h after the script began, the process was terminated 
and the hyperparameter sets completed by that point were 
considered.

The best-performing 4 hyperparameter sets for each model 
were trained for 1,000 epochs and evaluated on 10 defined test

ing/validation set splits. Next, the validation losses over the 

duration of training were used to calculate the mean and 

standard deviation for each epoch. Then, the training duration 

was split into 10 bins and the average of the sum of validation 

loss mean and standard deviation was calculated, i.e. 

lossbin = (
􏽐n

i=1 li + si)n, where i is epoch relative to the beginning 

of the bin, li is the mean validation loss across cross-validation 

folds at the ith epoch and si is the standard deviation of the 

same. The hyperparameter set with the lowest value for the 

most bins was selected. Epoch number was set by calculating 

a rolling mean of validation loss with a window size of 20 

epochs. For each epoch, we calculated the sum of the mean 

and standard deviation of the rolling mean and the total rolling 

validation loss. Then, we found the epochs which minimized 

these 2 values (subtracting 10 from the epoch number to ac

count for the window size). The disagreement between the 

epochs which minimized these values ranged from 2 epochs 

in the case of the CO Genomic model and CO interaction model 

up to 404 epochs for the CO weather and management model. 

We used total rolling validation loss to decide on the epoch 

number for each model. With the selected hyperparameters 

and training duration we fit each model 10 times to account 

for random initialization and saved each replicate and its train

ing history.

Benchmarking models
Overview
To contextualize the performance of the generated DNNs, we use 
the same training data to fit linear fixed effects models, BLUPs, 
and classic machine learning models, each described in more de
tail below. Linear fixed effect models were the least demanding fit
ting quickly (between approximately 0.16–3 minutes). Classic 
machine learning models required a similar amount of time (ap
proximately 1–15 min) whereas BLUPs and DNNs were consider
ably more demanding. The BLUPs required considerable 
memory and were run using standard compute nodes on the 
ATLAS computing cluster at Mississippi State University, which 
provided 384 GB of RAM. BLUPs using a single data type fit in ap
proximately 1.2 days whereas the interaction model required 7.2 
days to complete. The DNNs required less RAM, but need a GPU 
to fit quickly. Using a 2 T V100-SXM2–32GB graphics cards on 
the ATLAS computing cluster at Mississippi State University, fit
ting the CO model took approximately 5.5 computer hours to fit, 
with genomic and soil subnetworks fitting quickly (on the order 
of minutes) and weather & management and interactions subnet
works requiring the bulk of the 5.5 h (1.2 and 4.2 h, respectively). 
The SO model fits in approximately 2 h. However, these values ig
nore the time required for hyperparameter tuning. For the SO 
model and each subnetwork of the CO model, some 54 models 
were trained: 40 for hyperparameter tuning, 4 for hyperparameter 
validation, and 10 to account for random initialization in the final 
model. The total time, resources, and type of resources (access to 
RAM vs GPUS), to deploy one of the above models varies widely 
based on the model type and extent of model optimization.

Linear fixed effects models
To aid in evaluating the efficacy of the models described below (best 
linear unbiased predictors, machine learning models, and DNNs) we 
constructed simple linear models to act as benchmarks. The sim
plest model was an intercept model, i.e. every predicted yield equals 
the mean yield in the training set (ŷ = y̅). Additionally, we fit 4 linear 
regression models in R (R Core Team 2021) predicting yield with 

main effects for all 1,725 genomic PCs (y =
􏽐1725

ig (xigβg) + ε), 21 soil 

measurements (y =
􏽐21

is (xisβs) + ε), 19 weather and management 

Table 1. Hyperparameter ranges: deep learning.

Category Submodels Hyperparameter Range

Architecture Genomic only Layers 1–7
Units 4–256

Dropout fraction 0–0.3
Soil only Layers 1–7

Units 4–64
Dropout fraction 0–0.3

Weather + management only Pooling type Max (1d), Ave. (1d)
Layer repeats 1–7

Convolution layers per repeat 1–4
Filter size 4–512

Interactions Layers 1–7
Units 4–256

Dropout fraction 0–0.3
Training Optimizer Learning rate 0.1, 0.01, 0.001, 0.0001

Beta 1 0.9–0.9999
Beta 2 0.9–0.9999

Other Batch size 32–256, step = 16
Epoch 1–1,000

The search space (Range column) for each component of the constructed neural networks. Optimized values for the architecture and training are provided in Tables 
2 and 3, respectively.
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clusters (y =
􏽐19

iw=1 (xiwβw) + ε), or all the above along with interaction 

effects between the first 8 genomic PCs (accounting for 30% of 

the variance) and the nongenomic variables (y =
􏽐1725

ig

􏽐21
is

􏽐19
iw 

(xigβg + xisβs + xiwβw) +
􏽐8

ig

􏽐21
is (xig xisβgs) +

􏽐8
ig

􏽐19
iw (xig xiwβgw) + ε). In 

teractions were limited to allow for model fitting on readily available 
hardware with default memory settings. This analysis was aided by 
common data wrangling and convenience libraries (Wickham et al. 
2019; Bache and Wickham 2020; Müller 2020; Izrailev 2021) and fea
ther file read/write capabilities through arrow (Richardson et al. 
2021).

Best linear unbiased predictors
For creating the best linear unbiased predictor models, we use the 
Bayesian generalized linear regression (BGLR) (Perez and de los 
Campos 2014) R package to perform reproducing kernel Hilbert 
spaces (RKHS) regression and fit for 10,000 iterations following 
5,000 burn-in iterations. Iterations were based on those used pre
viously in the literature (Pérez-Rodríguez and de los Campos 
2022). Applying previously detailed methods (Jarquín et al. 2014; 
Washburn et al. 2021) to produce K matrices representing genom
ic, soil, or weather and management relationships and genomic by 
soil or genomic by weather and management relationships. Each 
K matrix is a (n × n) matrix with each element being an evaluation 
of 2 sets of input variables. We create 3 single kernel Bayesian 

RKHS models (with a genome, soil, and weather and management 
kernel matrix, respectively) using a Gaussian kernel which are re
presented as

y = 1μ + u + ε with
p(μ,u,ε)αN(u|0,Kσ2

u)N(ε|0,Iσ2
ε )

􏼚

K(xi, xi′ ) = exp −h ×
􏽐p

k=1 (xik − xi′k)2

p

􏼨 􏼩

We also fit a multikernel RKHS model using all 3 single modality 
and both interaction K matrices which is defined as

y = 1μ +
􏽐L

l=1
ul + ϵ with

p μ,u1, . . . ,uL,ϵ
( 􏼁

α
􏽑L

l=1
N(u|0,Klσ2

ul)N ϵ|0,Iσ2
ϵ

( 􏼁

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Please refer to the BGLR (Perez and de los Campos 2014) documen
tation for further details on Bayesian RKHS.

Classical machine learning models
Additional machine learning models were implemented through 
scikit-learn (Pedregosa et al. 2011; Buitinck et al. 2013) and 

Table 2. Selected deep learning hyperparameters: architecture.

Submodel or network Hyperparameter Specific layer Consecutive optimization Simultaneous optimization

Genomic only Units 1 83 196
2 133 47

Dropout fraction 1 0.163923177 0.15214
2 0.230663142 0.06061

Soil only Units 1 38 19
2 13 27
3 45
4 29
5 4
6 4
7 4

Dropout 1 0.148724301 0.21342
2 0.276340999 0.18589
3 0.005434164
4 0.173380695
5 0
6 0
7 0

Weather + management only Pooling type N/A Max Max
Convolution layers per repeat N/A 2 2

Filter size 1 433 370
2 436 303
3 52
4 163
5 400
6 294

Interaction Units 1 152 10
2 207 25
3 206 126
4 188 204
5 44 45
6 134

Dropout 1 0.18658661 0.10201
2 0.289893588 0.14809
3 0.004841293 0.01536
4 0.198121953 0.15658
5 0.243027717 0.2428
6 0.19048

Selected hyperparameters related to the architecture of each neural network, where optimization strategies resulted in different numbers of layers, empty cells are 
used (e.g. number of units in the soil submodel’s third layer). Hyperparameters that were constrained to be identical for every layer in a submodel (e.g. Pooling type) 
have the “Specific Layer” field listed as “N/A”.
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hyperparameters for each were optimized through the hyperopt 
library (Bergstra et al. 2013) run within a Docker container. In a 
workflow similar to that of the DNN models, we generated models 
for each data modality independently, and with all data available. 
Time-series data were represented as clusters as described in 
“Data Preparation”. For each model, we allowed the following hy
perparameters to vary as described: (1) kNN: neighbors = 1–250, 
weights = ‘uniform” or “distance”; (2) radius neighbors regressor 
(RNR): radius = 0.01–2000, weights = ‘uniform” or “distance”; (3) 
random forest (RF), maximum depth = 2–200, minimum samples 
per leaf = 0–0.5; and (4) support vector machine with a linear ker
nel (SVR): Loss = ‘epsilon_insensitive” or “squared_epsilon_insen
sitive”, C = 1–5 (log uniformly distributed).

Cross-validation folds matched those as described previously 
and average loss across all folds was measured. We tested a min
imum of 115 combinations for each model and selected the best- 
performing hyperparameters for each input dataset, reported in 
Table 4. Following selection, we trained each model and produced 
predictions on the testing and training data. This was repeated 10 
times to account for randomness in model fitting.

Model evaluation
For every model described above, we calculate predicted yields 
for the test set and calculate root mean squared error 

(RMSE =
�������������������������������������������

(
􏽐n

i Predictioni − Observationi)/n
􏽱

), normalized RMSE 

percent (nRMSE = 100 ∗RMSE/
􏽐n

i Observationi/n
( 􏼁

), and r 

(r =
􏽐

(xi − x̅)(yi − y̅)
( 􏼁

/

��������������������������
􏽐

(xi − x̅)2 􏽐 (yi − y̅)2
􏽱

) using SciPy (Virtanen 

et al. 2020). Unless stated otherwise in the text RMSE and nRMSE will 
refer to the average value across replicates. Two observations 
were not predictable using the fit radius neighbors regressor and 
were predicted as the training set mean. For DNN and BLUPs using 
genomic data, we calculated RMSE and r for each site-by-year group 
using R (R Core Team 2021). For the best-performing DNN, we calcu
lated and visualized the salience of features for each data modality. 
To examine the influence of allowing interactions we contrast these 
saliences with the saliences of SO single modality DNNs. Saliences 
were calculated by Tf-keras-vis (Kubota 2021). Visualizations were 
created with the use of rjson (Couture-Beil 2018), patchwork 
(Pedersen 2020), and ggplot2 (Wickham et al. 2019).

Results
DNNs can—but do not necessarily—outperform 
competing model types
When all data sources are incorporated, the CO DNN achieves the 
second lowest average RMSE (RMSE is in standard deviations, and 
when not otherwise specified, values refer to the average across 
replicates), surpassed only slightly by the interaction-containing 
BLUP model (RMSE of 0.948 and 0.937, nRMSE 14.554 and 

14.388%, respectively). However, the standard deviation in per
formance across replicates is about 4 times higher for the BLUP 
(SD RMSE 0.058) than the CO DNN (SD RMSE 0.013) making the 
CO DNN a more consistent performer than the BLUP model. The 
simple linear fixed effects model ranked third (RMSE 0.973, 
nRMSE 14.933%) and DNN-SO ranked fourth (RMSE 1.024, nRMSE 
15.716%) followed by the machine learning models tested (Fig. 2, 
Table 5). Pearson r values for these models follow similar patterns 
to the RMSE results. (Supplementary Fig. 2, Table 5). Additionally, 
performance is not uniform with respect to site-group-by-year 
combinations (Supplementary Fig. 3, Supplementary Tables 2 
and 3).

Across available datasets, no one model outperforms all others 
(Fig. 2, Table 5). When restricted to genomic data, only the kNN mod
el outperforms a simple intercept model (RMSE 1.078 and 1.088, 
nRMSE of 16.548 and 16.701%). SVR performed particularly poorly 
on this data (RMSE 1.212, nRMSE 18.718%). However, when restricted 
to only soil data, SVR performed best (RMSE 1.059, nRMSE 16.262%) 
followed by the linear fixed effects model (RMSE 1.071, nRMSE 
16.441%). All models outperformed the intercept model. Most mod
els performed better when trained on weather/management data 
than exclusively on genomic or soil data. The RF model was a clear 
exception to this, achieving an RMSE of 0.373, nRMSE 5.729% above 
the intercept model. Using only weather and management data 
the BLUP and SVR models (RMSE 0.945 and 0.985, nRMSE 14.500 
and 15.114%) performed remarkably well.

CO resulted in a larger, more accurate final 
network
Two hyperparameter selection strategies were employed, CO and 
SO, which have the same range of possible networks (hyperpara
meter ranges are listed in Table 1), the same data driving network 
selection and both use Bayesian optimization. Despite this, the 
strategy applied resulted in notably different final architectures. 
A visual summary of the relative differences between network hy
perparameters is shown in Fig. 1, with the hyperparameter values 
listed in Tables 2 and 3. Supplementary Fig. 1 provides a visual 
overview of the network architecture. We consider the effect of 
CO vs SO on each of the 4 subnetworks (processing exclusively 
genomic, soil, or weather/management factors or interactions be
tween data modalities), listed in decreasing order of approximate 
similarity.

Genomic subnetworks resulting from CO and SO are both 2 
layers, but the CO model widens somewhat (layer 1 = 83 units, 
16% dropout, layer 2 = 133 units 23% dropout) while the SO 
model begins over twice as wide and constricts more (layer 1 = 
196 units, 15% dropout, layer 2 = 47 units 6% dropout). The out
puts of the subnetworks are flattened before entering the inter
action subnetwork. The CO and SO interaction subnetworks 
contained a similar number of layers (CO: 5 vs SO: 6), but CO re
sulted in layers with similar widths before constricting at the 

Table 3. Selected deep learning hyperparameters: training.

Optimizer Other
Network learning_rate beta1 beta2 batch_size numEpoch

CO: Genomic only 0.0001 0.953368 0.985947 96 12
CO: Soil only 0.01 0.928472 0.997516 176 199
CO: Weather + management only 0.0001 0.903649 0.929582 240 629
CO: Full network 0.01 0.98752 0.972311 112 364
SO: Full network 0.001 0.975893 0.994607 192 711

Selected hyperparameters for training each network that do not pertain to the architecture of the network itself (Training category in Table 1). Optimizer 
hyperparameters were supplied to the Adam optimizer.

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad006#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad006#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad006#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad006#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad006#supplementary-data
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last layer (units = 152, 207, 206, 188, 44, dropout percentages = 
19%, 29%, 0.5%, 20%, 24%), SO resulted in layers with very few 
units initially which are later expanded (units = 10, 25, 126, 
204, 45, 134, dropout percentages = 10%, 15%, 2%, 16%, 24%, 
19%). The soil subnetwork resulting from CO is notably deeper 
than the one from SO (7 and 2 dense layers, respectively) but 
also narrows more by the last processing layer (2 vs 27 units). 
Finally, in the weather and management subnetwork CO re
sulted in a notably deeper network (6 pairs vs 2 pairs of convo
lution layers) but used a similar number of filters in the final 
convolution layer pairs (CO 294 vs SO 303).

The performance of these networks differs as well. The CO net
work was better at predicting yield in the testing set. It achieved a 
lower mean RMSE (CO: 0.948 vs SO: 1.024) and was more consist
ently accurate across replicates (standard deviation CO: 0.013 vs 
SO: 0.035). Similar results were seen in the normalized errors 
(nRMSE CO: 14.6% SO: 15.7%, standard deviation CO: 0.197%, SO: 
0.531%). Similarly, average R2 was higher in the CO network (CO: 
0.171 vs SO: 0.032) and more consistent across replicates as well 
(standard deviation CO: 0.022 vs SO: 0.065).

Model performance differences are due, in part, to the heuristic 
used to select the number of training epochs and different 

Table 4. Machine learning hyperparameter optimization.

Model Hyperparameter Range Genomic Only Soil Only
Weather + 

Management Only Multiple

kNN Weight Metric Uniform, Distance Uniform Distance Uniform Distance
K 1–250 237 248 248 49

RNR Weight Metric Uniform, Distance Distance Distance Uniform Distance
Radius 0.01–2000 39.759518 3.406197 5.986679 40.375418

SVR Loss Epsilon Insensitive, Squared 
Epsilon Insensitive

Epsilon 
Insensitive

Epsilon 
Insensitive

Epsilon Insensitive Squared Epsilon 
Insensitive

C 1–5 (log uniform) 2.772318 5.613996 4.623351 2.787589
RF Max Depth 2–200, q = 1 (q uniform) 64 10 102 7

Min Samples/ 
Leaf

1–200, q = 1 (q uniform) 171 163 100 149

The search space (Range column) and optimized values used for each machine learning algorithm considered. Optimization was conducted separately for models 
using each data type.

Table 5. Performance across data sets.

Data set Model Mean RMSE SD RMSE Mean nRMSE SD nRMSE Mean r SD r

a. Genomic Intercept 1.088074 16.70137
LM 1.106886 16.99013 0.158382
BLUP 1.10248 0.000124 16.92249 0.001905 0.140023 0.000315
kNN 1.078049 2.10E-05 16.5475 0.000323 0.153079 9.82E-05
RNR 1.162622 0.012629 17.84564 0.193846 0.120362 0.004536
RF 1.105258 0 16.96514 0 0.153836 3.16E-17
SVR 1.219457 0.048874 18.71803 0.750191 0.059061 0.08288
DNN-CO 1.100742 0.009229 16.89582 0.141659 0.149913 0.016833

b. Soil Intercept 1.088074 16.70137
LM 1.071081 16.44054 0.243759
BLUP 1.071631 9.50E-05 16.44898 0.001458 0.239983 0.000327
kNN 1.080058 0.00203 16.57833 0.031166 0.209905 0.012433
RNR 1.078125 0.000526 16.54866 0.008073 0.211685 0.002881
RF 1.082526 0 16.61621 0 0.205633 1.07E-16
SVR 1.059478 0.00112 16.26243 0.017184 0.229315 0.009986
DNN-CO 1.082901 0.009902 16.62197 0.151988 0.214768 0.014235

c. Weather + management Intercept 1.088074 16.70137
LM 1.018394 15.63182 0.221639
BLUP 0.944645 0.038882 14.49981 0.596823 0.429585 0.079289
kNN 1.049192 0 16.10455 0 0.360063 0
RNR 1.084259 0 16.64281 0 0.144041 0
RF 1.461314 0.094823 22.43041 1.45548 0.038772 0.05441
SVR 0.984673 0.003254 15.11422 0.049949 0.36494 0.008508
DNN-CO 1.018051 0.074367 15.62656 1.14149 0.328728 0.171357

d. Multiple types Intercept 1.088074 16.70137
LM 0.972882 14.93323 0.389471
BLUP 0.937387 0.057676 14.3884 0.885301 0.461141 0.091121
kNN 1.063364 1.88E-06 16.32208 2.89E-05 0.231872 2.78E-06
RNR 1.09015 1.40E-16 16.73324 1.12E-15 0.176418 3.01E-16
RF 1.106942 0.002913 16.99099 0.044711 0.290892 0.009171
SVR 1.040812 0.041922 15.97593 0.643488 0.29396 0.066996
DNN-CO 0.948143 0.01286 14.5535 0.197387 0.426265 0.020095
DNN-SO 1.023853 0.034579 15.71561 0.53077 0.272062 0.084996

Model performance is summarized for those models displayed in Fig. 2 with respect to data type or types provided. Performance is represented as root mean squared 
error (RMSE), RMSE normalized to the center and scaled yield range (nRMSE), and r. Standard deviation (abbreviated SD) of these measures across replicate models is 
reported except for the intercept only model and fixed effects models which converge on a single model. Note that in some cases machine learning models converge 
and thus have standard deviations of 0.
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tendencies for these models to overfit. The heuristic used to select 
the number of training epochs (sum of the rolling validation loss) 
and alternate heuristic considered (mean plus standard deviation 
of the rolling validation loss) resulted in networks with compar
able performance, having on average 0.001 less RMSE. With the 
exception of the SO DNN, this also resulted in longer training 
durations. These ranged from an additional 2 epochs in the cases 
of the CO genomic and interaction models and as many as 
404 epochs in the case of the CO weather/management, as shown 
in Table 6.

These training durations were often considerably longer than the 
optimal values as seen in Fig. 1b. Furthermore, the length of over
training appears loosely proportional to the present minimum aver
age RMSE each model achieved. The SO and CO weather models had 
the largest differences between optimal and used epoch numbers— 
differences of 697 and 563 epochs respectively and achieved 121 and 
110% of the minimum possible RMSE. The CO soil model trained an 
excess of 185 epochs but only had RMSE at 102% minimum. The 2 
training durations closest to the optimum were the CO genomic 

model (2 epochs over) and the SO model (77 epochs over). These 
models performed at just 100.2 and 101% minimum.

The SO model overfits faster and to a greater extent than the full 
CO model, which does not show evidence of substantial overfitting 
(Fig. 1b, d and e). The SO model achieves a loss lower than the CO 
model, and the accuracy worsens rapidly with further training. 
The different network sizes (CO containing more layers) may ac
count for this difference. Improved heuristics for training duration 
could represent an opportunity for future refinements, which these 
results suggest could both increase the goodness of fit and reduce 
the computational resources needed to train these models.

Model performance generally improves through 
incorporating multimodal data and interactions
Incorporating multiple data sources and allowing interactions be
tween data types generally appears to improve accuracy for 
DNNs, linear fixed effects models, and BLUPs. Allowing the use 
of multiple data types in the CO DNN reduced average RMSE by 
0.070 (1.073% nRMSE) relative to the next best DNN, the CO 
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weather/management model. The SO DNN contains a different 
weather submodule and has a higher average RMSE than the wea
ther/management model (by 0.006 RMSE, 0.089% nRMSE) but per
formed more consistently with a standard deviation of RMSEs 
0.035 relative to 0.074. In linear models, the improvement relative 
to the next best model of the same type is 0.046 RMSE (0.699% 
nRMSE) for fixed effects models and 0.007 RMSE (0.111% nRMSE) 
for BLUPS.

The other methods tested do not show an improvement from 
increasing the number of data modalities used. kNN and SVR per
form best with weather and management data only with the use 
of all data reducing performance by 0.014 RMSE (0.218% nRMSE) 
and 0.056 RMSE (0.862% nRMSE) respectively. RF and RNR perform 
best with soil data only the use of all data reduces performance by 
0.024 RMSE (0.375% nRMSE) and 0.012 RMSE (0.185% nRMSE) 
respectively.

Which factors are most important to the CO DNN?
Among the genomic data we observe no major trend in salience 
with respect to PC (Supplementary Fig. 4a). The 2 most salient 
PCs are PC 26 (0.423) and PC 24 (0.402) which account for 0.350 
and 0.392% of the total genomic variance respectively. Given 
that these saliences are relative to PCs, using salience to implicate 
specific genes or gene loci is infeasible. Among the soil factors, we 
find that the 5 with the highest average salience were soil pH 
(0.488), phosphorus ppm (0.487), potassium ppm (0.485), sulfate 
ppm (0.436), and percent organic matter (0.413) (Supplementary 
Fig. 4c).

Within the weather and management data, considering the 
average salience across the season (Supplementary Fig. 4d) 5 fac
tors achieved an average salience greater than 0.140—total water 
(0.245), average solar radiation (0.198), maximum temperature 
(0.175), average wind direction (0.174), and estimated vapor pres
sure (0.173). The majority of factors had an average salience be
tween 0.140 and 0.10 with 6 falling below this threshold— 
average soil temperature (0.095), maximum wind speed (0.084), 
average soil moisture (0.076), phosphorus applied (0.052), and po
tassium applied (0.033). Additionally, we find specific time points 
which appear to be salient broadly with the most salient region of 
time being within the first few days of planting, indeed 8 of the 10 
days with the highest average salience are days 2–9 following 
planting.

How is factor importance altered by inclusion of 
interactions?
The full CO model, in addition to performing best (albeit by a small 
margin), presents an opportunity to directly compare the influ
ence of interactions between data modalities on the salience of 
factors because the single modality subnetworks are identical ex
cept for the prediction layer. The salience of genomic factors dif
fers notably between the 2 networks (Supplementary Fig. 4b). 
Salience of PCs differs by as much as 0.432 (PC 24), with the differ
ence in the salience of the first 8 PCs (31% variance explained) ran
ging from 0.200 (PC1) to 0.309 (PC7). We find comparatively small 
differences in the salience of soil factors being between −0.011 
and 0.0156 (Supplementary Fig. 4c).

In general, the salience map of the weather and management 
data features fewer broadly salient timepoints when interactions 
are included (Fig. 3a) than when they are not (Fig. 3b). The weather 
and management CO model contains a broadly salient time point 
around 25 days before planting and 6 days after planting. The SO 
model also appears to have peaks of salience around 150, 183, and 
199 days after planting. When interactions are included the T
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majority of the salient time points become less so with the excep
tion of the peak 6 days after planting as highlighted through sub
traction of the 2 salience maps (Fig. 3c).

Discussion
Assumptions, potential sources of error, and 
opportunities for improvement
The results of this study are best understood with the data used 
and assumptions made kept in mind. The sole source of biologic
al data in this study came from the G2F initiative (McFarland 
et al. 2020). The scale of this ambitious project increases the 
chances of data being absent or compromised due to equipment 
malfunction, logistical or procedural issues, and resource con
straints. For example, many sites lack measurements for 
many soil properties across the seasons considered here, and 
the timing of fertilizer applications was absent in some cases. 
Our aim was to minimally filter the dataset while preventing 
missing or distorted values (many of which are not missing at 
random) from altering model accuracy and feature salience. 
We have aimed to reproducibly infer missing or aberrant values 
with relatively simple methods (e.g. imputation using linear 
models, kNN, and so on) but more sophisticated imputation 
techniques may have improved performance.

Alternatively, constraining the dataset to reduce the required 
imputation may have been an effective strategy. We elected to 
minimally filter observations because machine learning models, 
particularly deep learning, often benefit from having an abun
dance of data from which to learn feature relationships. For mod
els where this is not the case, restriction of observations to the 
observations with the highest quality may be a preferable strat
egy. Note, however, that for distortions that are not randomly dis
tributed, filtering may bias the sample and result in a model that 
appears to perform well but generalizes poorly (e.g. to sites similar 
to those with a preponderance of observations excluded).

Beyond including as many distinct locations and seasons as we 
could, we approximately balanced site-by-year groups through 
downsampling to avoid overfitting our DNNs to sites with more 
observations or biasing the selection of hyperparameters. This re
duces the size of the dataset that can be used in training. Although 
outside the scope of this study, assessment of the sensitivity of 
DNNs to unbalanced group sizes, or exploration of alternate 
means of balancing groups (e.g. randomly up sampling small 
groups to equal the size of larger groups) would be valuable. 
Indeed, if the balance were not a concern, or if it could be effect
ively achieved without discarding observations in some groups, 
one could potentially employ more strict data filtering without 
producing a dataset too small to benefit from machine learning.

Substantial effort was devoted to producing testing, training, 
and validation sets that would not lead to overconfidence in the 
accuracy of our models. To this end, we kept observations within 
site-by-year groups in the same partition of the data. In effect, this 
prevents the model from being trained and tested on the same 
weather and management data. Furthermore, except in cases 
where soil features are static from season to season, the model 
will not be trained and tested on observations with identical soil 
features. Proceeding in this manner rather than selecting observa
tions at random for the testing set further reduces an already 
small number of weather and management conditions. 
Incorporating historical data (Washburn et al. 2021) or expanding 
the dataset to include data from other sources represents 2 pos
sible avenues to incorporate a greater diversity of weather and 
management conditions without compromising the testing set.

Depending on the intended application of a model, one may be 
able to achieve higher performance through altering some of the 
above decisions or replacing random assignments with a targeted 
approach. For example, we assume that all group-by-year combi
nations are equally likely to be of interest. However, if we assume 
that the distribution of sites collected match those of interest for 
prediction (i.e. one is interested in predicting any future observa
tion collected by G2F and the number of observations per field 
site is representative of a future number of observations) then 
downsampling can be skipped, resulting a larger dataset. 
Similarly, with a narrower aim, e.g. prediction of yield within a 
specific region, testing or validation sets could be constrained to 
better select hyperparameters for or assess the predictive accur
acy of site-by-year combinations within that region.

In summary, our decision to include as much data as possible 
and to limit the possibility of overfitting to specific sites and sea
sons represent possible opportunities for improvement. More so
phisticated data imputation or more restrictive filtering, 
alternate means of balancing groups, and the incorporation of 
other data sources have the potential to improve model perform
ance. Additionally, for more narrowly purposed models, nonran
dom testing and training sets may represent a more accurate 
metric of predictive power, and indeed may deviate substantially 
from what we show here.

Tradeoffs in mean model performance, model 
consistency, and computational resources
While the best performance was achieved with a BLUP incorporat
ing genomic, soil, weather, and management data, a DNN per
formed similarly to the BLUP model and with less variance in 
accuracy between model replicates (Fig. 2). A simple linear fixed 
effects model also performed fairly well and required substantial
ly fewer computational resources and model selection efforts. 
This is true in terms of hardware (the BLUP required over 100 GB 
of RAM to fit while the DNN required the use of GPUs) and time 
(hours to days instead of minutes to fit). Across the different data
sets considered, fixed effects models generally performed well. In 
cases where accuracy is not the sole factor under consideration, or 
where time or computational resources are limiting, simpler mod
els may be “good enough” for the desired purpose. Furthermore, 
different models may be better suited to different goals such as 
achieving good predictive performance consistently (DNN-CO, 
multiple data types) or maximizing average predictive perform
ance (BLUP, multiple data types) while potentially underperform
ing expectations due to variability in performance across model 
replicates.

Usefulness of CO in hyperparameter selection
We employed 2 strategies for hyperparameter optimization: CO 
hyperparameters for distinct “modules” of the network and SO 
for the network as a whole. CO reduces the range of possible com
binations that are explored by allowing only one module to vary at 
a time. However, if 2 features in different data sets have a strong 
interaction effect (e.g. between genotype and weather patterns) 
then this approach will not necessarily allow for optimization to 
better capture this interaction. SO represents the reverse situ
ation. With all features available, interactions between features 
in different tensors can be leveraged, but the hyperparameter 
space to explore is larger as all the hyperparameters are free to 
vary.

We find that the network resulting from CO substantially out
performs the one generated through SO. This should not be taken 
as a problem with SO per se. In other applications, or with a 
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different optimization algorithm, it may prove to be a more effi
cient means of deriving a useful architecture. Furthermore, it is 
conceivable that SO is effective but that additional trials were re
quired. The SO DNN architecture was selected based on 40 trials 
whereas the CO DNN architecture was selected based on 40 trials 
for each module (160 trials across the whole network) which con
founds the comparison. Selection of the training duration also 
warrants consideration. The SO model is capable of performing 
comparably to the CO model, but overfits more rapidly (Fig. 1b). 
Improved heuristics for selecting the training duration could in
crease the usefulness of the SO model while reducing computa
tional demands as well.

As a pragmatic matter, CO benefits from the capacity to tune 
multiple modules at once. In our hands, the total time spent tun
ing was driven more by modules with computationally intensive 
components (convolution layers) rather than the number of mod
ules to optimize. This benefit is dependent on the tuning algo
rithm used. We used a Bayesian optimization procedure that 
aims to produce useful hyperparameter combinations in fewer cy
cles than a simpler method such as grid approximation. However, 
because this method uses the performance of previously evalu
ated hyperparameters in selecting the next set, it does not permit 
parallelization in tuning a single network. If an optimization pro
cedure that is conducive to parallelization were used (e.g. hyper
band or grid approximation) with enough computational 
resources this benefit would be nonexistent.

Although we aimed to broaden the range of possible architec
tures relative to previous modeling on G2F data (Washburn et al. 
2021), we constrained the overall structure to process each tensor 
individually then allowing for interactions between the final layer 
of each module. Other options might include, for example, allow
ing an interaction module to use both the first and final layers as 
input (instead of only the final one), or allowing which layers were 
to be used to be tuned.

An additional option that we did not explore is aiming to inform 
the structure of the selected network based on known relation
ships between features. Similar to our decision to minimally 
transform and filter the data, we elected to avoid “nudging” the 
architecture of the network in any direction in order to allow the 
data to inform it instead. Informing the model architecture based 
on known relationships, analogous to incorporating a prior, re
mains an interesting and potentially fruitful avenue to pursue.

Feature importance
Similar to the results of previous modeling (Washburn et al. 2021), 
we find that no single data grouping provides sufficient informa
tion to disregard all others. We note that weather and manage
ment data does reduce error substantially relative to genetic 
and soil data, but the variation in performance is large (Fig. 2). 
Only after integration of all data types do we see a relative reduc
tion in error and consistency in this reduction in DNNs.
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Fig. 2. Model performance across methodologies and data types. a) The RMSE of the testing set is shown for each data grouping (panels a–d) and class of 
model. Lower values indicate better model performance. As the data were centered and scaled RMSE is expressed in standard deviations of yield in the 
training set, i.e. ∼48.169 bushels per acre. The horizontal line indicates the performance of an intercept model, i.e. using the mean of the training set yield 
as the prediction for all observations in the test set. For models that depend on a seed value the RMSE values for 10 trials (evaluated on the same data) are 
shown and standard Tukey box plots are provided. In deep learning models random initialization of weights at the beginning of training result in different 
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(DNN-CO) or the simultaneous optimization strategy (DNN-SO). Note that DNN-SO requires all data types and thus only appears in panel d.
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Here we focus on salience in the weather and management data 
as it provided the best average performance when used without 
other datasets. We find that the total water applied to the field 
(including irrigation and rainfall, termed “WaterTotalInmm”) is 
the most influential factor for determining yield (Fig. 3, 
Supplementary Fig. 4d). This is sensible from a biological stand
point and is in agreement with previous models. Previous DNNs de
veloped with a subset of G2F data also identified precipitation as 
substantially influencing yield (Washburn et al. 2021). Linear mod
eling results find similar results and suggest a positive association 
between precipitation early in development and yield (Rogers et al. 
2021). Additionally, in a recent study using a hybrid machine learn
ing and crop growth model prediction system, the authors found 
that water-related features (e.g. average drought stress, average 
water table in season) were important, although not as important 
as the trend in genetic and management improvements over 
time (Shahhosseini et al. 2021). The daily average of solar radiation 
(SolarRadiationMean) is the next most salient feature of this data
set, followed by the maximum temperature (TempMax) and the 
average wind direction (WindDirectionMean). A study employing 
a convolutional recurrent DNN to model county-level data likewise 
found solar radiation and maximum temperature as important 
features and note an apparent increase in the importance of tem
perature near planting time (Khaki et al. 2020). A time-dependent 
sensitivity can be observed in our model as well (Fig. 3).

The relationship driving the high average salience of the aver
age wind direction is not clear. This feature likely correlates with 
unrecorded variables. Assessment of the topology and geograph
ical surroundings of each field site to suggest what this measure 
may be linked to lies outside the scope of this study.

With respect to management interventions, although the add
ition of N, P, or K is not among the most salient weather and man
agement features, we observe that nitrogen does have a mean 
salience comparable to relative humidity and photoperiod, while 
phosphorus and potassium are far lower. As noted previously 
(Washburn et al. 2021) limited salience of fertilizers could be due 
to the quantities used being too low to exert a substantial effect, 
or alternatively application of these elements may be insufficiently 
variable to reveal the effect.

Importance of GEM interactions accuracy in 
feature salience
Incorporating interactions between genetic, environmental, and 
management factors appears to have benefitted the accuracy of 
the DNN and BLUP models. When restricted to exclusively genom
ic information these models underperform simple intercept-only 
models and only improve slightly with the use of soil data. 
Performance for these models is substantially improved with 
the use of weather and management data. These performance dif
ferences are suggestive of a substantial environmental effect, ex
acerbated by the stratifying observations from site-by-year groups 
into exclusively training or testing sets. Allowing for interactions 
further improves performance with interaction-containing 
BLUPs having a lower average error (RMSE 0.937, nRMSE 
14.388%) than the weather and management model (RMSE 
0.945, nRMSE 14.500%), albeit with a higher standard deviation 
of RMSE (0.058 vs 0.040). A similar result is seen between the CO 
DNN with interactions (RMSE 0.948, nRMSE 14.554%) and weather 
and management model (RMSE 1.018, nRMSE 15.627%), both of 
which achieve lower average error than the SO Model (RMSE 
1.024, nRMSE 15.715%). However, the 2 DNNs with interactions 
are more consistent having a far lower dispersion in RMSE, with 

standard deviations of 0.013 in the CO model and 0.035 in the 
SO model as compared with 0.074 in the CO weather model.

Interactions not only improve the accuracy of DNNs and con
sistency across replicates but also appear to be changed in the sa
lience of individual features. This is most apparent in considering 
the weather and management features’ salience (Fig. 3c). Relative 
to the submodel, incorporating interactions appears to increase 
the salience of irrigation, although it is highly salient in both mod
els (relative to other time-series factors). Additionally, several 
broadly salient points in time, 2 of which are at the extreme end 
of the season, have diminished salience with the incorporation 
of interactions. This reduction is not uniform across all highly sa
lient time points. A strong peak in salience shortly after planting is 
seen in both saliency maps which agrees with previously reported 
results (Washburn et al. 2021).

Conclusions and future directions
The consecutively optimized DNN model developed here shows 
promise for complementing existing models for crop selection 
and improvement, as it produces more consistent estimates of 
yield, despite having a slightly higher average error than the 
best BLUP model. In cases where the accuracy of these models dif
fers with respect to specific regions, genotypes, or other variables, 
their use together may be an especially valuable future direction. 
Additionally, the capacity of convolutional neural networks to in
corporate change in environmental variables over time is of po
tential use by enabling the generation of counterfactuals to 
examine the expected effect of different planting times (shifting 
the planting date of a site relative to the true value), planting in 
different sites, or planting under future possible climate scen
arios. Additionally, the ability to generate such estimates would 
enable breeders to consider not only the expected yield of an indi
vidual cultivar but the expected consistency of yield as well.

For such a strategy to be adopted in genomic selection, further 
efforts are needed to validate the predictions such a model pro
duces. This will necessitate incorporating of and validation on fu
ture data from the G2F initiative (McFarland et al. 2020) or other 
large-scale experiments. The G2F initiative and other organizations 
sponsor prediction competitions and other activities designed to 
advance this area of study. Furthermore, applying the same model 
or the approach used to develop it to other crops would be a valu
able step toward assessing its’ broad-scale usefulness. This would 
also potentially implicate groups of crops for which the same mod
el may be used through transfer learning, along with groups that 
require crop-specific models to be developed.

Additional improvements to accuracy that have the potential to 
transfer to modeling efforts for other crops include improved heur
istics for epoch selection and training set construction. The simul
taneously optimized model achieves a minimum error lower than 
our selected model (see Fig. 1b) and does so in far fewer epochs, 
but overfits much faster as well. If overfitting were preventable 
through a better heuristic for epoch selection than the one we em
ployed, SO would have produced a better-performing model that 
was simpler to generate. Training set construction is another op
portunity for improvement with transferable utility. Here we took 
an aggressive approach ensuring approximately balanced groups, 
down-sampling all groups with observations in excess of the smal
lest group in the test set. DNNs tend to perform better with an 
abundance of data, so alternate approaches that retain more obser
vations are of interest. In cases where there are few observations or 
model development is heavily constrained by computational re
sources or model development time, other models, especially 

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad006#supplementary-data
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linear regression models, may result in a model that performs near
ly as well as one which requires more resources to fit.

Deep learning models do not result in parameters which are as 
readily interpretable as those of more standard statistical proce
dures and do not incorporate the physiology of the plant as mechan
istic crop growth models do. These represent ongoing challenges and 
limit the scenarios in which a DNN may be useful. This can be par
tially addressed through how the data is represented (e.g. using 
non-PC transformed data), which has been explored for the identifi
cation of genetic loci (Liu et al. 2019). Additionally, efforts to incorp
orate known relationships into a deep learning model’s structure 
have the potential to benefit accuracy and interpretability. 
Improvements in the capacity to represent genetic or physiological 
principles could allow for these methods to apply to a wider range 
of uses and address a broader set of questions.
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