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ABSTRACT
We developed and applied a novel approach for shape agnostic detection of multiscale flaws in
laser powder bed fusion (LPBF) additive manufacturing using heterogenous in-situ sensor data.
Flaws in LPBF range from porosity at the micro-scale (< 100 µm), layer related inconsistencies at
the meso-scale (100 µm to 1 mm) and geometry-related flaws at the macroscale (> 1 mm).
Existing data-driven models are primarily focused on detecting a specific type of LPBF flaw
using signals from one type of sensor. Such approaches, which are trained on data from simple
cuboid and cylindrical-shaped coupons, have met limited success when used for detecting
multiscale flaws in complex LPBF parts. The objective of this work is to develop a heterogenous
sensor data fusion approach capable of detecting multiscale flaws across different LPBF part
geometries and build conditions. Accordingly, data from an infrared camera, spatter imaging
camera, and optical powder bed imaging camera were acquired across separate builds with
differing part geometries and orientations (Inconel 718). Spectral graph-based process
signatures were extracted from this heterogeneous thermo-optical sensor data and used as
inputs to simple machine learning models. The approach detected porosity, layer-level
distortion, and geometry-related flaws with statistical fidelity exceeding 93% (F-score).
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1. Introduction

1.1. Goal and motivation

In the laser powder bed fusion (LPBF) additive manufac-
turing (AM) process, metal powder is raked or spread on
a substrate (build plate), and selectively melted using
energy from a laser, as shown in Figure 1 (Sames et al.
2016). LPBF is emerging as a process of choice for man-
ufacturing high-value, geometrically complex and high-
performance parts (Blakey-Milner et al. 2021). It is par-
ticularly favoured in industries, such as automotive,
aerospace, energy and biomedical due to its ability to
create intricate features to enhance functionality, elimin-
ate sub-components, reduce lead time and mitigate
weight (Blakey-Milner et al. 2021; Kumar et al. 2022;
Sames et al. 2016).

Despite (Mostafaei et al. 2022) its demonstrated
ability in reducing the time-to-market and cost, the
use of LPBF parts in safety-critical industries is con-
strained due to the tendency of the process to generate

flaws, such as porosity and distortion in shape, and
large part-to-part variation in critical features (Gordon
et al. 2020; Gradl et al. 2021; Mostafaei et al. 2022;
Snow, Nassar, and Reutzel 2020). Currently, LPBF parts
are inspected through cumbersome and expensive
non-destructive X-ray computed tomography (X-ray
CT) which takes hours, if not days, for examining
large parts (Blakey-Milner et al. 2021; Du Plessis et al.
2019).

To ensure the industrial-scale viability of the process
and mitigate the need for extensive post-process inspec-
tion, the goal of this work is to detect multiscale flaw for-
mation in LPBF parts as they are being printed using
data from a heterogeneous in-process sensor array
(Everton et al. 2016; Spears and Gold 2016). Data from
multiple sensors is essential for effective process moni-
toring because, as shown by some representative flaws
exemplified in Figure 2, flaw formation in LPBF is a
result of complex, multiscale phenomena (Gordon
et al. 2020; Mostafaei et al. 2022).
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Referring to Figure 2, causal phenomena leading to
flaw formation in LPBF span three length scales,
ranging from the micro-scale (< 100 µm), meso-scale
(100 µm to 1 mm) and macro-scale (> 1 mm) (DebRoy
et al. 2018). At the micro-scale level the melting of the
powder particles by the laser creates a pool of molten
material of diameter ∼100 μm, called meltpool, whose
dynamics is governed by heat and mass transfer
phenomena, such as Marangoni convection, Plateau-
Rayleigh effect, wetting and surface tension aspects
(Khairallah et al. 2016). The shape, size, temperature
and spatter created by the meltpool have a causal
impact on flaws, such as porosity formation, microstruc-
ture heterogeneity and mechanical properties (Chen
et al. 2022; Li et al. 2022).

There are six primary mechanisms in which porosity, a
primary focus of this work, is formed. These are: (i)
incomplete melting of the material due to inadequate
energy inputted by the laser, called lack-of-fusion poros-
ity. Such pores are acicular and manifest a jagged irregu-
lar shape and typically exceed 50 µm in diameter. (ii)
Vaporisation of material, and gasses, dissolved in the
meltpool to create gas porosity, or pinhole porosity.
Such pores are circular in shape and rarely exceed
30 µm in diameter. (iii) Excessive inputted energy by
the laser that causes the laser to operate in the
keyhole penetration mode. Such keyhole pores form
deep within the meltpool and is roughly circular with a
diameter less than 50 µm. (iv) Ejected spatter and
debris interfering with the laser melting the material
and the subsequent solidification. (v) Machine-related

flaws, such as soot agglomeration on the f-θ lens of
the machine affecting the amount of inputted energy.
(vi) Any form of contaminants in the powder material
that will interfere with the melting and solidification
process of the powder (Gaikwad et al. 2022; Liu and
Wen 2022; Montazeri et al. 2018; Mostafaei et al. 2022;
Nassar et al. 2019; Snow, Nassar, and Reutzel 2020;
Yakout et al. 2021).

Moving to the meso-scale (layer-level), the integrity of
a layer is influenced by the several thousand individual
laser stripes (hatches) that are fused together – in a
LPBF part measuring 1 cm3 there are typically 125,000
individual hatches over 625 layers (Polonsky and
Pollock 2020). Improper melting of a hatch, leading to
poor consolidation of a layer, will cascade across mul-
tiple layers, and is liable to cause flaws, such as layer
delamination, and inter-hatch voids among others
(Imani et al. 2018; Scime and Beuth 2018a).

Next, at the macro-scale part-level (> 1 mm) the
shape and orientation of the part impacts the spatiotem-
poral distribution of temperature within it during the
process (Yavari et al. 2021b). The temperature distri-
bution, also called the thermal history, in turn influences
residual stresses, leading to deformation, which in
extreme cases results in a build failure due to recoater
crash or macro-cracking of the part (Kobir et al. 2022;
Takezawa, Chen, and To 2021). Additionally, residual
stresses generated during the build can cause distortion
and cracking in parts post-removal from the substrate,
thereby deleteriously effecting the geometric integrity
(Yakout and Elbestawi 2020).

Further, these multiscale phenomena interact
amongst each other, and are amplified by variation
between machine-to-machine, resulting in flaws, such
as scan path errors and lens aberrations (Gaikwad et al.
2022, 2020b; Yavari et al. 2021a). Consequently, to
reliably detect flaw formation in LPBF parts it is necess-
ary to simultaneously monitor the multiscale process
phenomena ranging from the meltpool-level to the
part-level. In other words, a single type of sensor may
not be able to capture multiscale flaws with adequate
fidelity and statistical consistency.

1.2. Objective, hypothesis and approach

The objective of this work is to monitor and detect multi-
scale flaw formation in LPBF parts encompassing three
scales: porosity, warpage, and laser scanning errors as
shown in Figure 3, using data from heterogenous
sensors. The hypothesis is that flaw detection is enhanced
when heterogeneous sensing modalities and subsequent
analyses are matched to the scale of flaw formation. The
premise being – finer scale flaws, such as porosity, require

Figure 1. Schematic of the laser powder bed fusion (LPBF) addi-
tive manufacturing process. Metal material in the form of
powder is raked, or rolled, on to a substrate (build plate) and
melted layer-by-layer using energy from a laser (Gaikwad
et al. 2022).
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multiple, high-resolution sensing modalities, while larger
scale flaws, e.g. warpage and scanning errors, require
fewer, low-resolution sensing modalities.

To realise this objective, and test the foregoing
hypothesis, we installed a thermo-optical sensing array
consisting of three types of sensors in an open architec-
ture LPBF system. These three sensors are: (i) a spatter
imaging camera to measure the dynamics of the melt-
pool; (ii) a near infrared tomography camera with layer
and hatch-level fidelity and (iii) an optical camera to
image the powder bed. Shape agnostic features
(process signatures) are subsequently extracted from
the sensor data and used as inputs to machine learning

models trained to detect flaws that occur at multiple
levels.

1.3. Prior work and novelty

Recent review articles provide insights into approaches
for in-process sensing and monitoring in LPBF (Everton
et al. 2016; Grasso et al. 2021; Grasso and Colosimo
2017; Mani et al. 2017; Spears and Gold 2016). A concur-
rent research thrust area is in the analysis of the large
amount of data acquired by in-process sensors, and
the subsequent correlation of the signatures extracted
from the sensor data to specific flaws using machine

Figure 2. Schematic showing the multiscale nature of flaw formation in LPBF ranging from micro-scale (< 100 µm) flaws, such as
porosity and microstructure heterogeneity, meso-scale cracking and layer delamination flaws, to part-level (> 1 mm) flaws, e.g.
warpage and incorrect scanning.
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learning techniques (Jin et al. 2020; Mahmoud et al.
2021; Meng et al. 2020; Wang et al. 2020). Representative
literature concerning the type of sensors used, signa-
tures (features) extracted, data analytics approach devel-
oped and the type of flaw detected are summarised in
Table 1.

Gaikwad et al. (2022) monitored the meltpool using a
system of coaxial high-speed cameras. They

subsequently extracted physically intuitive shape,
spatter and temperature distribution characteristics of
the meltpool and correlated these sensor signatures to
the type and severity of pore formation. They used
simple machine learning approaches, such as k-nearest
neighbours (KNN) and support vector machine (SVM)
to make these signature-porosity correlations. They
further compared the prediction fidelity of such simple

Figure 3. Three types of flaws were observed and studied in this work: micro-sale porosity, layer-level warpage and part-level scan
errors.

Table 1. Summary of literature comparing various sensing modalities, signal analysis algorithms and various types of flaws. K-nearest
neighbours (KNN), support vector machine (SVM), neural network (NN), convolutional neural network (CNN), gaussian mixture
modelling (GMM), Decision Tree (CART), Random Forest (RF), XGBoost(XGB), Generative Adversarial Network (GAN).

Ref Sensor Used Signatures Extracted
Analytics
Methods Detected Flaws Flaw Level

Gaikwad et al.
(2022)

Two high-speed cameras Meltpool shapes &
temperature distribution

KNN, SVM, CNN Porosity type and lensing
artefacts

Micro-scale

Smoqi et al. (2022) Imaging pyrometer Meltpool shape &
temperature distribution

KNN, SVM Porosity Micro-scale

Petrich et al. (2021) Electro-optical, acoustic
emissions

Raw images, hatch angle,
contour distance

Shallow NN Porosity Micro-scale

Scime and Beuth
(2019)

High-speed camera Meltpool gradient SVM, NN Meltpool stability Micro-scale

Nguyen et al. (2023) Optical camera Raw images of powder bed Deep NN Porosity, overheating, &
warpage

Micro- &
Meso-level

Scime and Beuth
(2018b)

Optical camera Raw images of powder bed CNN Recoater effects, warpage, &
debris

Meso-scale

Xiao, Lu, and
Huang (2020)

Optical camera Raw images of powder bed CNN, SVM Warpage, part shifting, short
feed

Meso-scale

Land et al. (2015) Three optical cameras & a
digital projector

Image projection phase &
intensity

Topography
Analysis

Distortion in powder bed Meso-scale

Pandiyan et al.
(2021)

Acoustic sensor Raw signal GAN Anomalies Meso-scale

Li et al. (2018) Two cameras & projector Layer height map Topography
Analysis

Deviation in powder bed &
contour deviation

Meso- & Part-
level

Okaro et al. (2019) Two photodiodes Signal Basis GMM Poor tensile strength. Part-level
Huang and Li (2021) Pressure sensors &

thermocouples
Chamber and build
environment status

CART, RF, XGB Poor yield & tensile strength Part-level

Gaikwad et al.
(2019)

Optical camera Raw images of powder bed CNN Geometric integrity Part-level

4 B. BEVANS ET AL.



machine learning techniques to complex black-box
deep machine learning algorithms. Gaikwad et al.
(2022) reported that a set of physically intuitive
process signatures, when combined with simple
machine learning models, were found to outperform
complex deep learning models that directly used the
sensor data without decomposing the sensor signals
into process signatures. Similar results affirming the
effectiveness of leveraging low-level, yet physically inter-
pretable, process signatures with simple machine learn-
ing models are evident in recent works by other
researchers (Gaikwad et al. 2020a; Smoqi et al. 2022).

Huang and Li (2021) used global monitoring statistics,
such as: build chamber temperature and pressure,
powder flowability and part geometry features to
predict percentage elongation, yield and tensile
strength via simple supervised regression machine
learning models. No active meltpool or part level moni-
toring was performed in their work.

Petrich et al. (2021) used a sensor fusion approach
combining in-situ electro-optical images, acoustic and
multi-spectral emissions sensing to determine the sever-
ity of porosity in the samples. Petrich et al. (2021) organ-
ised the data into a 3D voxel space and correlated the
raw data in those voxels to porosity found using
neural networks.

Pandiyan et al. (2021) used an acoustic sensor to con-
tinuously collect data at 1 MHz. This data set was then
used to train semi-supervised machine learning
models, specifically a generative adversarial network
(GAN), to detect if a layer was free of any form of
anomaly (flaw). The authors’ approach detected the
presence of a flaw in a part with a fidelity of ∼96%,
however, the specific flaw generated could not be dis-
cerned from the developed models.

Scime and Beuth (2018b) used raw images acquired
after recoating of a layer to detect varying types of
recoater effects, warpage and debris on the powder
bed using a deep learning convolutional neural
network. Similarly, Li et al. (2018), used two optical
cameras and fringe projection to perform topography
analysis. This provides a height map of the powder
bed after recoating, allowing for the detection of
warpage and recoater effects.

Nguyen et al. (2023) also used an optical layer wise
imaging camera to detect the presence of flaw for-
mation. In this work, Matlab-generated deep learning
neural networks were trained to monitor the surface
morphology of each part, after the deposition of a
layer, to detect the existence of lack-of-fusion porosity,
overheating and warpage.

The following two gaps in the current literature are
revealed from this review.

(1) Most data-driven models have been demonstrated
in the context of one type of part shape, typically
a simple cube or cylinder (Imani et al. 2018; Monta-
zeri et al. 2020; Smoqi et al. 2022). Moreover, the
data originates from one build plate. Approaches
that use data from different builds, with varying
part shapes made under different locations and
orientations remains to be demonstrated. In other
words, the scalability and transferability of the
approach across different part shapes, orientations
and over multiple builds is yet to be ascertained
(Mahmoud et al. 2021).

(2) Machine learning models have been trained to
detect one type of flaw, such as porosity or distor-
tion, based on input data from one type of sensor.
Detection of multiple different types of flaws
based on data acquired from a heterogeneous
sensing array remains an open challenge (Grasso
et al. 2021; Mani et al. 2017).

This work addresses the foregoing gaps – it uses mul-
tiple heterogenous sensors to detect multiscale flaws in
different part geometries, and further, validates the
approach across different build plates, part locations
and orientations. Indeed, it is one of the first works
that detects three types of trans-scale flaws based on
data from three different types of sensors: porosity,
recoater crash and geometric variation due to scanning
errors.

The rest of this paper is organised as follows. In
Section 2 we describe the setup, sensing system and
experiments conducted. Section 3 details the signal
analysis and machine learning approach used for moni-
toring of multiscale flaws. Section 4, details the results
and the statistical fidelity of the devised approach in
detecting multiscale flaws. Finally, conclusions are sum-
marised in Section5.

2. Experiments

2.1. Apparatus and sensing setup

Parts were manufactured on the PANDA LPBF
machine by Open Additive. This system allows an
operator the freedom to change processing par-
ameters between layers of the same part and
between parts on the same build plate. In-process
data was acquired using Open Additive’s proprietary
AMSENSE™ sensor suite which includes three
thermo-optical imaging sensors. Schematic of the
sensing system are shown in Figure 4, and manufac-
turer set sensor specifications are summarised in
Table 2 (O. Additive 2021).

VIRTUAL AND PHYSICAL PROTOTYPING 5



The three sensors were installed and calibrated by the
manufacturer (Open Additive) on an optical table on the
top of the LPBF machine and are on an off-axis (staring)
configuration inclined at 83° to the build plate. The
entire build plate is captured within the field-of-view
of the sensor array. The sensing system is designed
with the intent to observe multiple phenomena across
different length scales. The three sensors are as
follows: (1) a near infrared (NIR) thermal imaging
camera with wavelengths of 700–1000 nm, also referred
to as a tomography sensor; (2) a high-speed imaging

camera to capture meltpool spatter; and (3) an optical
powder bed imaging camera.

Example data from the sensing system are shown in
Figure 4. The NIR camera observes the layer-level
surface temperature distribution. To explain further, the
NIR thermal imaging camera is set with a long 250 ms
exposure time, sampling at four frames per second, and
is used to capture the thermal intensity of the meltpool
upon laser strike. The thermal intensity of the meltpool
is subsequently consolidated for an entire layer to esti-
mate the layer-level part surface temperature.

Figure 4. Schematic of the sensor location and orientation in the Panda Open Additive LPBF machine. Three types of sensors are
installed on an optical table on top of the machine near the laser source: a near-infrared thermal imaging camera, a powder bed
imaging camera and a high-speed meltpool spatter dynamics imaging camera.

Table 2. Specifications of the three sensors used in these experiments: NIR Tomography, optical powder bed imaging and high-speed
spatter imaging.
Type of Sensor Phenomena Measured Make and Model Sampling Rate Resolution

Optical Powder Bed Imaging Meso-scale recoater and layer-
level flaws.

Basler acA4024-29um 2 images/layer
post lasing & recoat

12 megapixels

Near Infrared Tomography (NIR) Intensity at the instance of laser
strike.

Basler acA4024-29um with
NIR filter

4 Frames per Second
250 millisecond exposure

12 megapixels

High-Speed Spatter Dynamics
Imaging

Meltpool dynamics. Basler acA1920-155um 150 frames per second 500 µs
exposure

2.3 megapixels

6 B. BEVANS ET AL.



With the meltpool spatter imaging camera, images
of the meltpool were captured with a relatively high
sampling rate of 150 frames per second. This camera
thus observes the micro-scale meltpool-level phenom-
ena, specifically the spatter dynamics. The lowest res-
olution sensor is the optical imaging (recoater)
camera which captures two images per layer, one
post-recoat and one post-sintering. In this work, only
the post-recoat images from the recoater camera
were analysed to visualise flaws associated with the
recoating process.

2.2. Build plate and part geometry

Three build plates were manufactured to test the effec-
tiveness of the approach across multiple processing con-
ditions. Each build plate has four different part shapes
(geometries) for a total of 22 parts per build plate –
thus there are a total of 66 parts. The powder material
for the build is Nickel Alloy 718 (Inconel 718, UNS
N07718) and has a mean and standard deviation particle
size of 45 and 15 µm, respectively. Nickel Alloy 718 is
favoured by the aerospace engine industry for its high-
temperature properties (Sanchez et al. 2021). The build
plate (low carbon steel) measures 152 mm× 152 mm×
25 mm (thick). The builds were conducted in a Nitrogen
environment.

The build plate layout and geometries for a repre-
sentative case are shown in Figure 5. The four types
of geometries are: (i) overhang geometries (×14); (ii)
cones (×4); (iii) lattice-shapes (×2) and (iv) and thin-
wall structures (×2). This work does not analyse data
from the thin-wall parts owing to the difficulty in
obtaining the X-ray computed tomography (X-ray CT)
characterisation of these parts due to their large
volume. The build consists of 733 layers and required
∼18 h to complete.

Parts were manufactured under different process
conditions. Eleven parts near the top half of each build
plate, closer to the gas flow as shown in Figure 5, were
manufactured under fixed processing parameters.
These parameters were determined based on extensive
a priori optimisation studies. Fixed processing implies
that all processing parameters, such as laser power
and velocity, reported in Table 3, remain constant
throughout the build. The bottom half of the build
plate (Figure 5), farther from the gas flow (11 parts), is
a mirror image of the top half. The parts farther from
the gas flaw were processed under dynamic processing
conditions by varying the laser power between layers.
The aim of dynamic processing was to deliberately

induce flaw formation. The processing conditions are
summarised in Figure 6, and discussed herewith.

(a) Overhang

As shown in Figure 5, 14 total overhang geometries
are created on each build plate. These parts are 22 mm
tall and consist of 733 layers (Figure 6). These overhang
geometries are built with variation in processing par-
ameters, shape, location on the build plate, and orien-
tation with respect to the recoater direction.

Seven overhang parts located at the top of the build
plate were manufactured with fixed (nominal) proces-
sing parameters that remained constant throughout
the overhang section of the geometry (laser power).
These nominal processing parameters are reported in
Table 3.

The nominal processing parameters used in this work
are the default settings for a specific material that are
provided to the user by the machine manufacturer
(Open Additive). These parameters for Nickel Alloy 718
were obtained via an extensive parameter study which
involved building cuboid shapes under various laser
power, velocity, hatch spacing, layer height, gas flow
conditions, among others. The parameters that result
in a maximally dense part with no detectable porosity
were chosen. The efficacy of these parameter settings
is also verified in the current work via the parameter
study in this work in reference to the overhang parts
(see Figure 6).

The key nominal processing parameters provided by
the manufacturer are: laser power P = 230 W, velocity
V = 1200 mm·s−1, hatch spacing h = 70 µm and layer
height H = 30 µm. These processing parameters result
in a volumetric energy density, Ev = P/(V × H × T) = 91
J·mm−3.

Furthermore, in Figure 5(a), the cuboid-shaped base
of the fixed overhang geometries located on the top
of the build plate (fixed parameters), were processed
under varying laser power conditions to study the
effect of processing parameters and to validate the man-
ufactures recommended nominal processing par-
ameters. These laser power conditions are summarised
in Figure 6.

The seven overhang parts located at the bottom of
the build plate, farther from the gas flow, were made
under processing parameters that were varied during
the build, specifically in the overhang section of the
geometry. As summarised in Figure 6, these overhang
parts built under varying laser power setting are
termed dynamic processing. The overhang angle (θ)
was also varied at three levels from θ = 50°, 45° and

VIRTUAL AND PHYSICAL PROTOTYPING 7



30°. Six of the fourteen parts with θ = 50° are located
nearer to the recoater start position on the right-hand
side of the build plate. Next, to account for the effects
of orientation of the part relative recoater blade, the
angle of rotation (α) of these parts, with reference to
the direction of the recoater blade, is varied from α =
0°, 45° and 90°.

Three replicate overhang geometries with θ = 50°, α
= 0° and P = 230 W were printed on both sides of the
build plate, demarcated with a yellow star in Figure 5.

(b) Cone

Four cone geometries were created per build plate.
Each cone geometry is 15 mm in height and contains
500 layers. The cone parts were built with varying incli-
nation angles (θ = 35°, 40°) and processing conditions.
These severe inclination angles are liable to cause defor-
mation and recoater crashes (Diegel, Nordin, and Motte
2019; Kobir et al. 2022). Hence, a soft rubber recoater
material was used to avoid stopping the build due to
part distortion-induced recoater crashes.

Two cones were placed near to the gas flow at the top
of the build plate, built under fixed processing par-
ameters, and two cones are located on the far side of

Figure 5. Build layout and dimensions of printed parts across two build plate designs. The build plate design shown in (a) is repeated
twice; there are total of three build plates. A total of 22 parts are processed per build plate. These 22 parts encompass variation in
geometry, location and processing parameters to ensure shape agnosticism. For the build plate shown in (a) parts made under fixed
laser power condition of P = 230 W are located on the top half of the build plate. Parts on the bottom half, farther from the gas flow
vents are built with varying processing parameters, called dynamic processing. The build plate in (b) is a mirror image (180° rotation)
of (a), it is called the validation build plate and has identical parts, but different layout and processing condition.

8 B. BEVANS ET AL.



the gas flow under dynamic processing parameters, i.e.
the laser power was changed layer-by-layer, as detailed
in Figure 6.

(c) Lattice

Two lattice structures were processed per build plate.
Lattices are complex, intricate geometries that are apt
candidates for LPBF, but often fail due to scanning
errors (Ibrahim et al. 2020). The lattice geometry is
based on a body-centred cubic structure and repeats
four times in the Z direction (build height). Each lattice
is 12.5 mm in height and consists of 416 layers. As
detailed in Figure 6, one lattice shape was produced
under fixed processing parameters and the other
lattice was produced under dynamic processing con-
ditions, with laser power changes.

2.3. Validation build plate

To validate the transferability, and shape and location
agnostic characteristics of the approach, a third build
plate was manufactured (Figure 5(b)). The intent is to
quantify the Type I (false positive), and Type II (false
negative) error rates of the approach. The validation
build plate contains identical parts as the two build
plates described before in Section 2.2, however, the
locations of the samples were rotated by 180°. In the
context of Figure 5(b), in the validation build plate
parts produced under fixed processing parameters
were located farther from the gas flow, and the
dynamic-processed parts are at the top of the build
plate near the gas inlet.

Further, to rigorously test the fidelity of the detection
algorithm given changes in the process conditions, the
two dynamic-processed cones had a different laser
power change from layer-to-layer. The laser power was
maintained at a nominal level of 230 W up to 8 mm
(layer 267) build height and then reduced to 160 W to
prevent the warpage found in the fixed cone geome-
tries. The rest of the samples on the validation build
plate are identical with respect to their processing par-
ameters as summarised in Figures 5 and 6.

2.4. Post-process characterisation

The 14 overhang geometries, 4 cones, and 2 lattice struc-
tures were examined with X-ray computed tomography
(X-ray CT). The overhang and lattice geometries were
scanned at a resolution of 15 µm per voxel while the
inverted cone geometries were scanned at 25 µm per
voxel (NorthStar Imaging Model X3000). The lower
scan resolution for the inverted cone geometry is due
to the relatively larger size of the sample.

Porosity is characterised as: (i) pore severity in terms of
percent volume porosity per layer, called defect volume
ratio (DVR); and (ii) pore size (diameter) in micro-meters
(µm). These measurements were obtained using Volume
Graphics software native to the X-ray CT machine.

To characterise porosity type and size the cone-shaped
parts were examined with optical microscopy. For this
purpose, the parts were cross-sectioned using electro-dis-
charge machine and polished to Ra ∼ 50 nm surface finish
in progressive steps using an alumina abrasive-based slurry.

3. Signal analysis, data fusion and machine
learning

3.1. Overview

As summarised in Figure 7, the objective of this work is
to detect multiscale flaw formation in LPBF by combin-
ing (fusing) data from the three thermo-optical sensors
within simple machine learning models. In this work,
flaw detection is performed on a layer-by-layer basis;
this includes the porosity, warpage and geometric integ-
rity flaw detection.

There are three machine learning tasks. Task 1: (A)
detect severity and (B) size of porosity; Task 2: detect
part deformation (warpage) and Task 3: detect geome-
try-level flaws resulting from laser scanning errors.
Each of these tasks requires the following three steps
described in depth in the following sections:

(Step 1) – Data Consolidation: Representing temporal
images into a layer-wise form.

Table 3. Nominal parameters used in the Open Additive PANDA
LPBF machine.
Process Parameter [Units] Values

Laser type and wavelength. Ytterbium fibre, wavelength 1070 nm
continuous mode, 500 W max power

Nominal Laser Power (P0)
[W]

230

Scanning Speed (V)
[mm·s−1]

1200

Hatch spacing (H) [mm] 0.07
Layer thickness (T) [mm] 0.03
Volumetric global energy
density Ev [W/mm3]

91

Laser spot size [μm] 50
Scanning strategy Meander-type scanning strategy with 66-

degree rotation of scan path between
layers.

Build atmosphere Argon
Powder Material Properties
Material type Nickel Alloy 718 (Inconel 718);

corresponding to UNS N07718 (sourced
from Praxair)

Particle size range [μm] 15–45 (D10 – D90)
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(Step 2) – Dimension Reduction and Feature Extraction:
Deriving low level spectral signatures from each
layer-wise-image.

(Step 3) – Data Fusion: Synthesising data across layers
and different sensors.

3.2. Step 1 – data consolidation

In this step temporal data for a particular layer from each
sensor is consolidated as a 2D image of a layer. For each

geometry a single image of the powder bed imaging,
NIR tomography and spatter cameras were extracted
for every layer. Sample data for layer 400 is shown in
Figure 7.

For example, the NIR tomography camera in Figure 7
(a2) depicts uneven heat distribution on the edges of the
cone, indicating the causal thermal phenomena that
lead to warpage and distortion. Likewise, an individual
frame of the meltpool captured by the spatter imaging
camera is shown in Figure 7(c1). Consolidating all such

Figure 6. Processing plan for each geometry of interest and purpose for changes. The fixed overhang geometries contained a par-
ameter cube experiment in the base to validate processing parameters. However, all other geometries printed under fixed processing
parameters used the nominal processing condition.
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frames for a layer results in the relative spatter intensity
image shown in Figure 7(c2). Visual observation of the
meltpool spatter pattern captured by the spatter
camera in Figure 7(c2) reveals the presence of extreme
spatter events. Simultaneously the NIR tomography
camera detects uneven heat distribution.

3.3. Step 2 – dimension reduction and feature
extraction

In the feature extraction step, depicted in Figure 9, the
layer-by-layer data from each type of sensor image con-
solidated in Step 1, is quantified in terms of a single
feature called the graph Laplacian spectral radius (λN)
(Shi 2007). The spectral radius (λN) ranges between 1
and 2 and thus provides a means to reduce the high
dimensional information contained in an image to a
single number (Chung 1997).

The spectral radius is obtained in three phases. First in
phase 1, visualised in Figure 8, a layer image from
each type of sensor is discretised into m × n pixel
grids, herein m = 15, n = 10, resulting in a 15 × 10
matrix. The rows of this so-called patch matrix P are

subsequently reshaped to obtain a column vector �p of
size 150 × 1.

We note that each imaging sensor has a different
spatial and temporal resolution. Hence, the size of the
patch matrix P must be calibrated to the resolution of
each sensor. This was done through extensive offline
optimisation not discussed in this paper. The recoater
camera had a patch size of 30 × 20 pixels, for the
tomography and spatter images the patch size was
ideal at 3 × 5 pixels. This finer scale for the tomography
and spatter images is due to these sensors observing the
finer scale meltpool and temperature dynamics. In con-
trast, the recoater camera only observes warpage and
other powder bed flaws at a relatively low resolution.

Next in phase 2, an adjacency matrix W = [wi,j] is
created from the patch vector �p using the following
relationship.

wi,j = �pi − �pj2 (1)

Where �pi is the ith patch vector originating from the
ith patch matrix Pi in the patch-by-patch image. In
other words, the patch matrix is an area-wise restruc-
turing of the raw image in matrix form, that is then

Figure 7. Output from each type of sensor for layer 400 of the cone shaped part with θ = 35° when warpage is observed. (a1–c1) are
the raw data acquired from layer 400, (a2–c2) is data acquired for the region of interest.
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converted into a vector to calculate the adjacency
matrix W. The element wi,j of the adjacency matrix
W is the Euclidean distance (L2 norm) between the
ith and jth patch vector in the image. Thus, a relative
relationship is established between the pixel intensity
of one patch to every other patch in the image. The
size of the patch matrix Pi influences the compu-
tational time. As the size of the patch matrix decreases
the resolution of the resulting adjacency matrix W
increases at the expense of computation time.

In phase 3, the diagonal degree matrix D is derived
from the adjacency matrix as follows:

di =
∑j=N

j=1

wi,j (2)

Subsequently, the weighted Laplacian matrix (L) is
calculated using the following equation:

L = D− W (3)

The eigenvalues (l) and eigenvectors (n) of each layer-
wise consolidated image data can then be extracted
from the Laplacian matrix:

Lv = lv (4)

The largest eigenvalue, called the spectral radius (lN),
is selected as the monitoring statistic (Chung 1997). The
result of phase 3 is visualised in Figure 9. The rationale
for using the Laplacian eigenvalues as a monitoring stat-
istic has been studied extensively in our previous work
(Montazeri and Rao 2018; Tootooni et al. 2018). The
spectral radius captures the degree of inhomogeneity
in an image. The more inhomogeneous an image, the
closer the value of lN is to 1. Conversely, the more hom-
ogenous an image, lN approaches 2. Moreover, the
spectral radius is independent of image scale and size
(Shi 2007).

3.4. Step 3 – incorporation of process history and
layer-by-Layer data fusion

A drawback of the spectral radius (lN) statistic is that it
does not incorporate layer-by-layer evolution of the
process – each layer is treated independent of the pre-
ceding and subsequent layers. For example, previous
research in the literature affirms a correlation of melt-
pool behaviour across layers (Ulbricht et al. 2021). To
account for this temporal dependency, the spectral
radius from the NIR tomography (lN,T), spatter (lN,S)
and recoater (lN,R) cameras are further processed
through an exponentially weighted moving average
(EWMA) filter (Ramirez and Ramírez 2018). The filter is
mathematically expressed as follows:

LL = 1lLN + (1− 1)LL−1 (5)

Where lLN is the spectral radius at layer L. This recursive
function applies a weight (1) to the spectral radius
obtained from the previous layers. Using a weight of 1
= 0.1, implies that the previous four layers are weighted
at 65%, which corresponds to meltpool penetration
depths of 2–4 layers typically observed in LPBF
(Schwerz and Nyborg 2021).

The result of applying this exponentially weighted
moving average filter from all three sensors for the
cone geometry, that showed severe warpage (see
Figure 5), is presented in Figure 10. The function LL for
the tomography (LT

L) and spatter (LS
L) sensors show a

prominent decreasing trend which correlates to the
warpage in the sample. This is because, as heat begins
to accumulate on the edges and the meltpool
becomes unstable, the layer-wise image data becomes
less homogeneous. This leads to a decrease in connec-
tivity in the graph-based representation of the image,
and consequently, a decrease in lN.

Figure 8. Vectorised each patch in an image in order to cluster multiple pixels together. The adjacency matrix is obtained by calculat-
ing the Euclidian distance from one patch to another patch.
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However, the LL for the recoater camera (LR
L)

increases with incipient warpage. This is caused
because, unlike the tomography and spatter cameras,
the natural state (nominal condition) of the recoater
image data is inhomogeneous, leading to a low
spectral radius number. The image data collected
for the raw powder bed (no warpage state) has
relatively extreme variation in pixel values that lead
to this inhomogeneity. When the sample begins to
warp above the powder bed, the image becomes
homogeneously dark. Thus, the spectral radius
number for the powder bed optical imaging (recoater)
sensor increases in value when the sample begins to
warp.

3.5. Machine learning – model training, testing
and validation

3.5.1. Model structure
Figure 11 summarises the approach in terms of
process signatures and detection algorithms used in
this work. The aim of machine learning is to determine
multiscale flaw formation at the porosity-, warpage-
and geometry-levels. For this purpose, a total of four
features were extracted. The three EWMA-filtered spec-
tral radii from the recoater (LR

L), NIR tomography (LT
L)

and spatter (LS
L) sensors, and the mean meltpool inten-

sity (IL) for each layer (L) extracted from the NIR tomogra-
phy camera. Meltpool intensity was found to be

Figure 9. The spectral radius (lN) is extracted for each layer of data obtained from each sensor. Depending on the sensor, different
patch size & criteria were chosen.

Figure 10. Behaviour of spectral radius as a function of layers for warpage flaws. Warpage is observed after layer 350. There is a sharp
change in the spectral radius for various sensors due to the onset of warpage.
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consequential in porosity detection in our prior works
(Gaikwad et al. 2022).

The four features were used as inputs to simple
machine learning models, such as K-nearest neighbours
(KNN) and support vector machine (SVM) for detecting
porosity severity, pore size and warpage. A statistical
process control chart was used to detect the geometric
level of flaws of incorrect scan paths.

The prediction fidelity for classifications level and
type of porosity is quantified in terms of the F-score
(Smoqi et al. 2022). The level of porosity is stratified
into four levels, and the type of porosity is categorised
into three levels.

Referring to Figure 11, data from all three sensors
were used for detecting micro-scale porosity; data
from only two sensors, recoater and spatter camera,
were sufficient when detecting layer level warpage;
and data from only the tomography sensor was
needed for detecting geometric deviations. In this
work, all flaw detection was performed on a layer-by-
layer basis for each part. The specific X-Y region on a
layer in which the flaw occurred was not detected,
only that a specific layer on a part contains the detected
flaw.

To attain prediction fidelity F-score > 90%, porosity
prediction required all four features; layer-level
warpage flaw detection required two features (recoater
LR

L and spatter imaging LS
L); and geometry-level scan-

ning errors required only one feature (NIR meltpool
intensity, IL). In other words, the number and resolution
of sensors required is inversely proportional to the scale
of flaw formation to be detected.

3.5.2. Model training, testing and validation
After materials characterisation, an equal number of
each of the three types of flaws (porosity, warpage and
geometric) were selected for model training and
testing to avoid bias due to an imbalanced data set.
Machine learning models are trained to classify porosity
into four levels based on X-ray CT defect volume ratio
(DVR): nominal with < 0.1% DVR; low porosity with
0.1% < DVR < 0.5%; medium porosity with 0.5% < DVR
< 1.0%; and high porosity with DVR > 1.0%.

Likewise, pore size is classified into three levels based
on pore diameter (d): d < 150 µm; 150 µm < d < 250 µm
and d > 250 µm. The smallest pore size of 150 µm is in
accordance with the resolution of the X-ray CT per-
formed which had a voxel size of 25 µm. Warpage and
geometry-level flaws are both treated as a binary classifi-
cation problem, i.e. warpage vs. no warpage.

In this work, 267 data points per pore severity level
were randomly selected (1064 data points). Of these
data sets, 80% of the data (213 data points per level)
were used to train the machine learning models and
the remaining 20% (54 data points per level) were
used for testing. The results were subsequently validated
with data obtained from a separate build plate (Figure 5
(b)) which had identical geometries and similar laser
powers, but with part location rotated 180° to account
for potential positional affects. Results from the porosity
prediction model are described in Section 4.1.

Similarly, the warpage model was trained on the 500
layers (500 data points) of the cone geometry θ = 35°, as
this was the geometry with the most observable
warpage. The warpage model was then tested and

Figure 11. Schematic of the approached used in this work to detect micro-, layer- and geometry-level flaws. The three spectral radii
(LR

L , LT
L , LS

L ), along with the meltpool intensity (IL) are used as inputs to simple machine learning models to detect porosity,
warpage and scan-path errors.
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validated on all the cone, overhang and lattice structures
from all three build plates. Finally, the scan path error
EWMA control chart was designed on the nominal geo-
metries with no errors and then tested on all other geo-
metries. We note that only the lattice structure
contained this scan path errors. Results from the
warpage and scan path error models are described in
detail in Sections 4.2 and 4.3 respectively.

4. Results

4.1. Porosity prediction

4.1.1. Porosity measurements

(a) Cone

For cone-shaped parts processed under fixed conditions,
i.e. with a nominal laser power P = 230 W, the porosity
was less than 0.01% (defect volume ratio, DVR). The por-
osity type and distribution observed using optical
microscopy and X-ray CT for the dynamic-processed
cone-shaped parts is shown in Figure 12. In contrast to
the fixed processed cone, the dynamic-processed cone
with a θ = 35° inclination angle has a DVR greater than
1.0%.

Porosity increases substantially when the laser power
was reduced to P = 160 W. For the dynamic-processed
cone with a θ = 40° the DVR is ∼0.6%. Optical microgra-
phy reveals that porosity in the dynamic-processed cone
is of the lack-of-fusion type (Snow, Nassar, and Reutzel
2020). Lack-of-fusion porosity results from insufficient
consolidation of molten powder material owing to low
energy input.

In this work, no keyhole porosity was observed with
X-ray CT or optical microscopy in either the dynamic-
or fixed-processed geometries. Indeed, the variation
in pore diameter observed in this work is too large
to be considered keyhole porosity. It is therefore
reasonable to assume lack-of-fusion at low laser
power, and spatter-induced porosity at high laser
power (230 W).

Continuing with the analysis, the layer-by-layer
mapping of porosity for the dynamic-processed cones
is shown in Figure 13(a, b). The severity of porosity
increases significantly in excess of 0.5% DVR when the
power is reduced to 160 W, and is exacerbated when
the power is further reduced to 120 W.

From this porosity data, we stratified the severity of
porosity into four categories as follows, nominal por-
osity < 0.1% DVR per layer; low porosity 0.1%–0.5%
DVR per layer; medium porosity 0.5%–1.0% DVR per
layer; and high porosity > 1.0% DVR per layer. From
Figure 13(a, b) we observe that the pore severity is
a function of geometry as well as energy density.
The cone with θ = 35° cone has significantly more por-
osity at P = 120 W compared to the θ = 40°
counterpart.

The pore size is mapped as a function of layer
height for the dynamic cones in Figure 13(c, d) for θ
= 35° and θ = 40°, respectively. The pore diameter
increases in size when the power is decreased. This is
because, as the laser power decreases, the overall
energy density (Ev) decreases as well. At low energy
densities, Ev < 63 J·mm−3, the powder particles are
unable to fully fuse, forming the lack-of-fusion porosity
observed in these samples (Snow, Nassar, and Reutzel
2020).

Figure 12. Porosity analysis for the dynamic-processed cone parts. (middle) X-ray CT shows that porosity increases significantly when
the laser power is reduced to 160 and 130 W from the nominal 230 W. Further, optical micrographs reveal that the porosity is of the
lack-of-fusion type.
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(b) Overhang

Consistent with the observation for the cone-shaped
parts, lack-of-fusion porosity was also observed in the
overhang parts when the laser power was reduced
below P = 230 W to P = 130 W. Shown in Figure 14(a)
are the X-ray CT results for the only overhang part

with detectable levels of porosity. The porosity in this
sample occurs in the first 10 mm when P = 130 W.

The layer-by-layer analysis of the porosity is shown in
Figure 14(b) in terms of DVR. Note that relative to the
cone, low levels of porosity (DVR < 1%) were observed
in the overhang sample. Shown in Figure 14(c) is the
visualisation of pore diameter observed in the overhang

Figure 13. (a) and (b) Percent porosity (DVR) per layer observed for the two dynamic cone parts, θ = 35° and θ = 40° respectively. The
corresponding levels of classification are annotated. Note the significant increase in percent porosity (DVR) when the laser power is
reduced to P = 160 W and further to P = 120 W. Further the cone with θ = 35° has significantly more porosity at P = 120 W compared
to θ = 40°. (c) and (d) Pore diameter as a function of layer number. Porosity of the lack-of fusion type with diameter ranging from d <
100 µm to d > 300 µm are observed.

Figure 14. (a) Visual of the X-ray CT results done in this work for this overhang part. (b) Percent porosity per layer observed for the
fixed overhang geometry. The corresponding levels of classification are annotated. Note the significant increase in percent porosity in
the lower cuboid section where the laser power was set to 130 W. (c) Pore diameter as a function of layer number. Porosity of the lack-
of fusion type with diameter less than 150 µm is observed.
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sample. All pores observed were lack-of-fusion pores
with d < 150 µm.

4.1.2. Correlation of sensor signatures to porosity
severity and pore size
Next, in Figure 15, we correlated the four sensor signa-
tures to the level of porosity severity and size. The four
features are: spectral radius of the spatter camera
images (LS

L); spectral radius from the recoater camera
images (LR

L); spectral radius from the tomography
camera images (LT

L); and relative meltpool intensity
from the tomography camera (IL).

From Figure 15, it is observed that the spectral radius
for the spatter (LS

L) and tomography (LT
L) camera image

decreases as the porosity level increases. This is because
as lack-of-fusion porosity forms, the image data
becomes less homogenous, which causes the spectral
radius number to decrease. Likewise, the normalised
meltpool intensity (IL) decreases with increase in poros-
ity level (severity) as the incident energy density
decreases due to the reduction in laser power.

The interaction amongst sensor signatures for the
four levels of porosity is visualised in the form of a

scatter plot shown in Figure 16. In all plots, there is a
clear correlation between lower spectral radii and
higher levels of porosity severity. However, there is sig-
nificant overlap in the data, thus necessitating the use
of machine learning to predict the porosity severity.

The interaction amongst sensor signatures to pore
size is visualised in the form of four scatter plots
shown in Figure 17. In all scatter plots in Figure 17, pro-
minent clustering of features relative to the pore diam-
eter is evident, and the overlap is not as considerable
as that observed in the context of porosity severity
(Figure 16). Accordingly, simple logistic regression
would perform at par with machine learning for classify-
ing pore size.

4.1.3. Machine learning
Next, the four features: LT

L, LS
L, LR

L and IL were used as
inputs to a logistical regression model, and three simple
machine learning models – k-nearest neighbours (KNN),
support vector machine (SVM) and shallow artificial
neural networks (ANN). The statistical regression model
is used as a baseline as it does not involve an active
learning step (Dreiseitl and Ohno-Machado 2002).

Figure 15. The behaviour of the four process signatures as a function of porosity level. (a-c): The recoater spectral radius (LR
L ) does not

change significantly with pore level, however, the spectral radii for both the spatter camera (LS
L) and tomography camera (LT

L )
decreases significantly as the level of porosity increases. (d) Meltpool intensity (IL) decreases with increasing porosity severity.
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Figure 16. Visualisation of interaction between sensor signatures for various levels of porosity severity. In the visualisation there is a
large overlap in the high and medium levels of porosity sensor signatures.

Figure 17. Visualisation of interaction between sensor signatures for various levels of pore diameter. In the visualisation, no singular
2D scatter plot has a perfect separation of the data.
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The ANN used in this work was a shallow multi-layer
perceptron (MLP) with only two hidden layers, each layer
containing 15 neurons using the tangent sigmoid acti-
vation function. We acknowledge that performance of
the ANN could be enhanced by adding more hidden
layers, at the risk of losing model interpretability and
potential overfitting. All models were trained and
tested using the 80–20 schema described previously in
Section 3.5 with 10-fold cross validation and Bayesian
hyperparameter tuning.

The model results are reported in terms of the F-score,
false positive rates and false negative rates (Table 4). The
number in the parenthesis in Table 4 is the standard devi-
ation over the ten trials. The SVMmodel predicts the level
of porosity with ∼93% fidelity (F-score) with false positive
and false negative rates of 1.6% and 4.8% respectively
using a radial basis kernel function. In comparison the
statistical logistic regression model could only classify
the level of porosity at 77.4% fidelity, justifying the
need for machine learning. A representative confusion
matrix from the SVM model is shown in Table 5. We

note that from the total of 234 data points used for
testing there were only 13 misclassifications.

A visualisation of SVM model performance in the
context of level of porosity severity is presented in
Figure 18(a) and (b) for the overhang geometry and
cone geometry with θ = 35°. For the two different geo-
metry types, the SVM model successfully predicts the
change in level of porosity due to change in laser power.

In addition to the prediction of the level of porosity
(porosity severity), the size of pore, in terms of pore
diameter, for these samples was also performed. The
size of pore was classified between 3 different sizes, in
layers that contained porosity: small diameter (d <
150 µm), medium diameter (150 < d < 250 µm) and
large diameter (d > 250 µm). The results are summarised
in Table 4 and Table 6.

The prediction of pore diameter was performed using
the previously described 80–20 train-test strategy. The
SVM model predicted the pore size with an F-score of
98.64% (0.46%). We also note that statistical logistic
regression has an appreciable score of 92.65% (1.70%)

Table 4. The performance of the four models used in the work for prediction of porosity level and size, along with the false positive
and false negative rates. A total of 1068 data points were used for training and 234 data points were used for testing. The number in
the parenthesis is the standard deviation (STD) over 10 train/test iterations.

Model Logistic Regression KNN SVM ANN

F-Score (STD) Pore Severity 77.3% (2.48%) 92.3% (1.75%) 93.5% (1.68%) 91.4% (2.44%)
Pore Size 92.6% (1.70%) 98.8% (0.60%) 98.6% (0.46%). 99.6% (0.3%)

False Positive Rate Pore Severity 7.8% 2.6% 1.6% 2.8%
Pore Size 2.4% 0.3% 0.6% 0.3%

False Negative Rate Pore Severity 22.7% 7.8% 4.8% 8.5%
Pore Size 7.8% 0.9% 1.7% 0.9%

Table 5. The confusion matrix for pore severity classification from the SVM model resulting in F-score > 93%. Out of 234 data points
there were only 13 misclassifications.

Predicted Porosity Severity Values

Actual Severity Values
Nominal Porosity
(DVR <0.1%)

Low Porosity
(0.1< DVR < 0.5%)

Medium Porosity
(0.5< DVR < 1%)

High Porosity
(DVR >1%)

Nominal Porosity
(DVR <0.1%)

61 2 1 0

Low Porosity
(0.1< DVR < 0.5%)

1 58 3 0

Medium Porosity (0.5< DVR < 1%) 0 2 51 0
High Porosity (DVR >1%) 0 2 2 51

Table 6. The confusion matrix for pore diameter classification from the SVM model resulting in F-score > 98%. Out of the 240 data
points there was only 1 misclassification.

Predicted Porosity Severity Values

Actual Severity Values No Pores
Small Pores
(d < 150 µm)

Medium Pores
(150 < d < 250 µm)

Large Pores
(d > 250 µm)

No Pores 60 1 0 0
Small Pores
(d < 150 µm)

0 66 0 0

Medium Pores (150 < d < 250 µm) 0 0 53 0
Large Pores
(d > 250 µm)

0 0 0 60
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for predicting pore size, which implies that the classifi-
cation of pore size is a simpler problem, when using
the proposed feature set, compared to level of porosity
(pore severity). As noted in the context of Figure 17, the
four features cluster in a prominent matter contingent
on the size of pore.

Thus, simple machine learning models are capable of
linking the extracted sensor signatures, discussed in
Figures 16 and 17, to both pore size and severity. In

other words, pragmatic, physically intuitive process sig-
natures, when coupled with simple machine learning
models are capable of detecting flaw formation with
high levels of statistical fidelity (F-score > 93%).

4.2. Warpage prediction

As observed in Figure 19(a, b), respectively, both the
cone with angle of inclination θ = 35° and the

Figure 18. Visualisation of the SVM model’s porosity severity prediction for the overhang (a) and cone geometry θ = 35° (b). The
model successfully predicts the porosity in both of these samples.

Figure 19. Both an inverted cone (a) and an overhang geometry (b) had produced under constant power P-230 W depicted significant
warpage. Thermal simulation of the cone geometry at an inclination of 35° (c) and the overhang geometry at 30° (d) show heat
accumulation at the top of the part that could lead to thermal distortion.
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overhang (θ = 30°) processed under fixed laser power
of 230 W, were afflicted with significant warpage. We
note that the dynamic-processed cones did not warp.
This warpage is on account of excessive heat accumu-
lation leading to the thermal distortion of the parts
built under fixed processing parameters. Indeed, a
thermal simulation using our previously published
thermal models shown in Figure 19(c, d) predicted
heat build-up (accumulation) in these parts (Yavari
et al. 2021b).

Another SVM model using the radial basis kernel
function, similar to the one used to for the prediction
of porosity in Section 4.1, was deployed for prediction
of warpage. Noting that this is a two-fold classification
problem – warpage vs. no warpage. During analysis it
was observed that only two spectral radii, LS

L and LR
L

from the spatter and recoater cameras respectively,
were sufficient to detect warpage. Since warpage is
a considerably larger scale phenomena than porosity
formation, a few process signatures are sufficient.
These process signatures (LS

L and LR
L) are correlated

with warpage shown in Figure 20; we note that the
data encompasses both overhang and cone geome-
tries. From Figure 20, for parts with significant
warpage, the LS

L is generally below 1.45 and the LR
L

is generally greater than 1.03. However, there is con-
siderable overlap between the two monitoring fea-
tures that require simple machine learning models
to precisely ascertain the regions of warpage.

Further to test model transferability, only data from
the cone was leveraged for training the SVM model
and subsequently used as-is for predicting warpage in
the more complex overhang part, Figure 21. The SVM
model successfully captured the relatively subtle
warpage at the top few layers of the overhang part.
We note that sporadic appearance of warpage at the
top layers is due to the self-healing nature of the LPBF
process (Ulbricht et al. 2021). Further, the apparent
false detection in the first few layers is associated with
poor recoating. The recoater blade is not level with the
build plate for the first 5–10 layers – a common
problem in LPBF.

Continuing with the analysis, the warpage detec-
tion model was extended beyond the cone and over-
hang geometries to the complex lattice structure,
shown in Figure 22. The lattice structure had multiple
instances of warpage wherein warpage exceeded the
layer height (T = 30 µm) and the part surface was
raised above the freshly raked powder (super
elevation).

Figure 21. In the overhang part, white regions demarcate layers of predicted warpage. The warpage detection model trained on the
cone geometry was successfully as-is to the overhang geometry. The spectral radius signatures from the recoater (LR

L ) and spatter (L
S
L)

imaging sensors were sufficient for detection of warpage.

Figure 20. Visualisation of the warpage and non-warpage states
are interpreted by the high-speed and recoater sensor. Both
sensors are needed to see separation in the data.
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4.3. Geometry error detection

X-ray CT analysis showed that the lattice structure con-
tained flaws due to scanning errors. As depicted in
Figure 23, these scanning errors cause significant devi-
ation in the part geometry from the CAD design. Incor-
rect scanning was observed in the lattice structure
when the body-centered lattice structure was repeated
in the build direction. In practice, laser scanning errors
may occur for a variety of reasons, including improper
slicing of the CAD model resulting in poor resolution,
errors in the scan path generation software, and lens
aberrations (Gaikwad et al. 2022; Yavari et al. 2021a).

In this work, regions of improper scanning resulted in
excess melting of material that covered the gaps
between the lattice edges. These regions of scanning
errors were correlated with prominent variation in the
meltpool intensity (IL). Shown in Figure 23 is the layer-

by-layer gradient (
d
dt

IL) compared to the layers in

which improper scanning occurred.
The gradient of the mean meltpool intensity (

d
dt

IL)
was monitored in an exponentially weighted moving

Figure 22. The SVMmodel when transferred successfully detects warpage in the complex lattice structure at layers demarcated by the
white stripes.

Figure 23. Both lattice structures depicted scan path-related
errors that causes additional material to be melted that covers
the gaps in the lattice structure (overmelting). These scan
path-related errors are correlated to spikes in the gradient of

the meltpool intensity (
d
dt
IL) obtained from the tomography

sensor.
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average (EWMA) statistical control chart, described in
Section 3.4 Equation (5) (Ramirez and Ramírez 2018).
The control limits were set to ± 3 deviations obtained
from the flaw-free overhang parts.

As observed in Figure 24, when there is a geometric
related error the gradient of the meanmeltpool intensity

(
d
dt

IL) exceeds the upper control limit of the EWMA

control chart. This is affirmed in the case of both the
fixed and dynamic-processed lattice structures. Inciden-
tally, both type of lattice processing resulted in flaws on
the same layers, layer 110, 197 and 272.

This scanning errorwas traced to an inherent deficiency
in the slicing software, which could not accommodate the
computational complexity associated with a lattice struc-
ture. The slicing error further created scan path inconsis-
tencies that caused the laser to melt the powder in the

gaps in the lattice structure. The scan path errors are
observed on the layers where the base lattice structure
repeated. There are four replications of the base lattice
structure, hence there are three layers where scan path
errors were observed in the X-ray CT data.

4.4. Model transferability

A third build plate (Figure 5(b), Section 2.2) was manu-
factured to ascertain the transferability of the proposed
approach to a different build plate with varying part
locations, and further quantify the Type I (false positive
rate) error.

To test the robustness of the approach to changes in
process conditions, the dynamic-processed cone was
reduced to 160 W at 8 mm build height, instead of at

Figure 24. Detection of geometry errors due to scan path errors using the EWMA control chart. The white shaded layers indicate
points at which the sensor signatures cross the control limits due to inaccurate scan paths.

Figure 25.Model performance for the validation build. White demarcates layers of warpage found on this overhang part. The steepest
overhang sample warps for about 50 layers near the top of the part and then self-heals in the last few layers.
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5 mm in the first build plate design (Figure 6). In
addition, to affirm the robustness of the approach to
variation in part location, the part locations on the
build plate were rotated by 180°, as shown and dis-
cussed in Figure 5(b).

No perceivable flaw formation was observed in the
build plate in terms of porosity and warpage errors dis-
covered in the first two build plates. This is because the
change in the direction of the gas flaw relative to the
parts significantly influenced their cooling behaviour
(Wirth et al. 2021). In other words, even a slight
change in processing conditions may significantly
affect part quality, thus affirming the need for continu-
ous in-process monitoring.

We noted minor warpage in only one overhang
shape. The layer-level warpage model created for the
first build plate was deployed on this overhang
sample. The model successfully detected the layers at
which incipient warpage occurs in the overhang part
at layer 600. Figure 25 shows the resultant warpage pre-
diction for the overhang sample from the SVM model.
The noticeable amount of warpage in the vicinity of
layer 600 was successfully detected.

Additionally, the SVM-based porosity prediction
model (Section 4.1) was implemented on the overhang
and cone geometries on the validation build plate to
measure the Type I (false positive rate) of the trained
models. The false positive rate for the porosity predic-
tion model was less than 1.5% when the prior SVM
model was implemented on the validation build plate.
This false alarm rate, which is similar to the false alarm
rate found during training and testing on the first
build plate (1.6%), indicates that the model can be suc-
cessfully transferred to a different build plate under
different processing conditions without loss of model
fidelity. We acknowledge that the model would need
further testing under build conditions resulting in exces-
sive porosity to measure the false negative rate and F-
score.

5. Conclusions

Process monitoring in laser powder bed fusion (LPBF) is
currently limited to the detection and identification of
one type of flaw with data acquired from only one
type of sensor. For practical viability, a monitoring sol-
ution must be capable of detecting multi-level flaws
transcending micro-scale, meso-scale and macro-scale.
Furthermore, the monitoring performance of the
approach should not degrade when transferred across
builds, part shapes, orientations and locations.

Accordingly, this work extends the status quo of
process monitoring and flaw detection in LPBF to a

more practical level with an approach that can
combine (fuse) data from multiple, heterogeneous
sensing modalities to detect multiscale flaw formation.
Based on data from three builds consisting of 66 total
parts (Nickel Alloy 718) we demonstrate that the pro-
posed approach is capable of detecting multiscale
flaws ranging from porosity at the micro-scale,
warpage at the meso-scale, and geometry-related
errors at the macro-scale. Further, the approach is
agnostic to different part shapes, locations and orien-
tations (build layout).

Specific conclusions are as follows:

(1) Data from three types of thermo-optical imaging
sensors, a spatter imaging camera, near infrared
tomographic camera, and a recoater camera were
acquired during the LPBF of three build plates con-
sisting of 22 parts each (Nickel Alloy 718), encom-
passing four different types of geometries.

(2) A spectral graph signal analysis approach was devel-
oped and applied to extract signatures from the
three imaging sensors. The approach reduces the
high dimensional data from the imaging sensors
into a single scalar number called the Laplacian
graph spectral radius. As few as four process signa-
tures resulting from the signal analysis approach
were used as inputs to simple machine learning
algorithms, such as k-nearest neighbours, support
vector machine, and (shallow) artificial neural
networks.

(3) The proposed approach successfully detected flaws
across three scales – porosity, warpage and part geo-
metry in different part shapes and build layouts. For
example, the statistical fidelity of porosity detection
exceeded 93% (F-score); the false positive rate was
less than 1.6% and the false negative rate was less
than 4.8%.

(4) The number of features required for effective
process monitoring depends on the scale of flaws.
Detection of micro-scale porosity required all four
features, whereas, detection of mesoscale warpage
and geometry-related error was accomplished with
two features and one feature, respectively. In other
words, the resolution and type of sensor data is
matched to the scale of flaw formation.

This work thus takes the first step towards shape
agnostic detection of multiscale flaws in LPBF using het-
erogenous sensor data. Our future works will explore not
only detection but also closed-loop correction of flaws in
LPBF.
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