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Nitrogen is an essential nutrient required for growth and development in plants. In-

sufficient nitrogen availability can reduce vegetative growth and grain yield. However,

nitrogen is a costly input for farmers, is energy intensive to manufacture, and runoff of

excess nitrogen fertilizer impacts water quality. Compared to its close relative, maize,

sorghum has much greater resilience to nitrogen and water deficit, and heat stress,

allowing sorghum to be grown with fewer inputs and on marginal land. Variation

in total biomass accumulation and grain yield between sorghum accessions, as well

as between nitrogen conditions, can be largely explained by differences in vegetative

growth and inflorescence architecture traits. Previous genome-wide association stud-

ies (GWAS) in sorghum have identified genetic markers associated with genes known

to play roles in controlling growth and development. However, these studies have

typically been conducted using field trials with “optimal” nitrogen application con-

ditions. A set of 345 diverse inbred lines from the Sorghum Association Panel (SAP)

were grown under both standard nitrogen application (N+) and no nitrogen appli-

cation (N-) treatments, and a range of biomass and inflorescence-related traits were

phenotyped, including plant height, lower and upper stem diameter, rachis length,

lower and upper rachis diameter, and primary branch number. Stem volume, an

approximation of biomass, was calculated from the directly measured traits. Stem

volume was, on average, 10.48% higher for genotypes in nitrogen fertilized blocks,



than for genetically identical plants in no nitrogen application blocks. Within indi-

vidual treatment conditions, between 58.1% and 90.7% of the total variation for the

measured and calculated traits could be explained by genetic factors. Genome-wide

association studies were conducted to identify genetic markers associated with these

traits in order to better understand the genetic factors involved in nitrogen stress

response for potential use in breeding improved sorghum varieties.
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Chapter 1

Introduction

Sorghum bicolor (L.) Moench

The global population is predicted to exceed 9.7 billion by 2050, an increase of nearly

2 billion people [167]. This brings about a significant challenge in crop production:

to produce more food using less land. Global food production will need to increase

by roughly 70% to fully meet demand [167]. There is an estimated 320-702 million

hectares of abandoned, degraded, or low-quality cropland throughout the world [23].

Furthermore, climate change could render previously productive cropland unusable for

current production standards due to adverse environmental conditions. Cultivation

geographies are predicted to shift drastically, reducing the number of acres suitable

for maize and soy production [20]. Sorghum’s resilience to nitrogen deficit, heat stress,

and drought allows it to be grown with fewer inputs and on marginal land. Cultivation

of sorghum on marginal land alleviates pressure on cropland resources and can help

enhance soil quality [63]. Sorghum (Sorghum bicolor (L.) Moench) is a member

of the Andropogoneae tribe within the Poaceae family. This group, in addition to

sorghum, includes other economically important crops, including maize and sugarcane

[58]. Despite the sizeable geographical difference in their origin of domestication,

sorghum and maize are genetically and, therefore, taxonomically closely related. Both
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maize and cultivated sorghum have a diploid genome with ten chromosomes (2n =

20). However, the sorghum genome (730 Mb) is less than one-third the size of the

maize genome (2300 Mb) and is considerably less complex [126, 148]. It is commonly

accepted that sorghum originated from the Sudanic Savannah in Africa during the

middle Holocene and was domesticated in eastern Sudan between 6000 and 4000 B.P.

[183]. However, the details of domestication are unclear, with a least two distinct

domestication events [99, 113, 104]. Sorghum has a uniquely wide variety of end uses,

including human consumption, animal feed and forage, starch and lignocellulosic

biofuel, beverage production, and broom making [63]. In developing nations in Africa

with arid or semi-arid climates, sorghum is a staple food, providing nutrition for

millions of people. In contrast, the primary uses of sorghum in developed countries

(e.g. USA, Canada, and Australia) are livestock feed and industrial applications.

The top 10 sorghum-producing countries, which together accounted for 76% of global

production, included the USA, Nigeria, Mexico, Ethiopia, India, Sudan, Argentina,

Brazil, China, and Australia [168]. In 2021, 41.46 million hectares of sorghum were

planted globally, leading to a total production of 62 million metric tons, making it

the fifth-most important cereal crop in terms of production and planted area behind

maize, rice, wheat, and barley [168].

Biomass

Sorghum is considered a model system for studying growth and development in grasses

due to its relatively simple genome, as well as its high-stress tolerance and C4 pho-

tosynthetic pathway, contributing to efficient solar energy conversion [114]. Biomass

production is a critical factor in the agronomic value of sorghum, particularly for

bioenergy and forage [44]. As the demand for renewable energy sources and sustain-
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able livestock feed increases, comprehending the genetic and molecular mechanisms

controlling biomass production in sorghum becomes increasingly essential [44, 114].

Understanding the genetic basis of biomass-related traits in sorghum not only sheds

light on the evolutionary processes shaping grass development but also helps in de-

vising strategies for crop improvement [104, 65]. Plant height in sorghum is highly

variable between accessions, contributing significantly to total biomass accumulation.

Four “dwarf” loci, Dw1, Dw2, Dw3, and Dw4, have been shown to control plant height

in sorghum by modifying internode length [77]. Dw1 encodes a putative membrane

protein with a highly conserved function in plants [66], while Dw2 encodes a pro-

tein kinase homologous to the AGCVIII protein kinase KIPK [65]. The dw1 and

dw2 alleles have been extensively exploited in sorghum breeding. Dw3, which en-

codes an ABCB1 auxin efflux transporter, was the first dwarf gene cloned in sorghum

[115]. Despite some progress in understanding Dw4, the corresponding gene remains

uncloned. Uncovering the molecular mechanisms through which dwarf genes regu-

late these traits can provide valuable insights for developing sorghum varieties with

improved inflorescence architecture [65].

Plant hormones regulate growth and development, affecting biomass accumulation

by influencing meristematic cell division and cell elongation. Traditional plant breed-

ing approaches selected for short-statured varieties with reduced levels of endogenous

hormones like gibberellin, auxin, and brassinolide [160, 170, 117]. These hormones are

essential for regulating growth at both the cellular and developmental levels. Gib-

berellin (GA) signaling pathways can be manipulated to positively impact growth

and biomass accumulation. One potential control point is the substantial increase

in GA rate-limiting enzyme GIBBERELLIN 20-OXIDASE (GA 20-OXIDASE ), in-

volved in the final stages of GA biosynthesis in the cytoplasm [33, 39, 180]. Addi-

tional key players in the GA signaling pathway include GA-INSENSITIVE DWARF1
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(GID1 ), which serves as the primary receptor for bioactive GA, and the DELLA re-

pressor gene, which inhibits GID1 transcription [144, 68, 93, 54]. Auxin, another

vital hormone involved in growth processes and cell wall architecture, also affects

biomass accumulation. Mutants related to auxin synthesis, transport, and signaling

have been shown to display dwarf phenotypes, defects in tropisms, and altered organ

morphology [170]. Key genes involved in auxin signaling include AUXIN1/LIKE-

AUX1 (AUX/LAX ), which is responsible for inflorescence development and root

gravitropism, and ROOTLESS WITH UNDETECTABLE MERISTEMS 1 (RUM1 ),

which is involved in seminal and lateral root formation in maize [70, 199]. Brassinos-

teroids (BR) are a group of steroidal hormones involved in numerous physiological

functions, including growth promotion [137, 47, 138]. Critical genes involved in BR

signaling pathways include receptor-like kinase BRASSINOSTEROID-INSENSITIVE

1 (BRI1 ), BRI1-ASSOCIATED RECEPTOR KINASE 1, SOMATIC EMBROGE-

NESIS RECEPTOR KINASE 1, and the repressor gene GSK3-like kinase BIN2

(BRASSINOSTEROID-INSENSITIVE 2) [160]. Studies have shown that mutations

in BR biosynthesis or signaling pathways result in dwarf phenotypes, compromised

male fertility, delayed flowering, altered vascular development, and impaired pho-

tomorphogenesis [43]. The complex interplay of plant hormones, particularly gib-

berellin, auxin, and brassinolide, and their associated genes, play a significant role in

determining plant growth and biomass accumulation [3].

Genomic resources, including the sorghum reference genome, have played a vital

role in advancing our understanding of the genetic basis of growth and development

in this species [106]. Though progress has been made in understanding the genetic

and molecular factors involved in the growth and development of grasses, there is

still much to learn about the complex interplay of genetic, developmental, and en-

vironmental factors [44, 114]. Further investigation into the molecular mechanisms
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and evolutionary history of key gene families can improve our understanding of the

genetic basis of biomass production in grasses [127]. Genetic, genomic, and systems

biology toolkits, such as genome editing technologies, high-throughput phenotyping

platforms, and genome-wide association study methods, have the potential to accel-

erate research efforts in this area and facilitate the identification of novel targets for

improving biomass and grain production in sorghum [44].

Inflorescence Architecture

Natural adaptation and artificial selection throughout the evolution and domestica-

tion in grasses have led to complex inflorescence architectures [81]. Early domes-

tication events involved the selection of nonshattering traits, enabling harvestable

grains to remain attached to the stem [131, 99]. Subsequently, selection favored

larger inflorescences with more or larger grains [84, 7, 112]. A deeper understanding

of inflorescence architecture evolution could contribute to future crop improvement.

During the transition from vegetative to reproductive growth stages, the vegetative

shoot apical meristem (SAM) transforms into an inflorescence meristem (IM), which

then forms branch meristems (BMs) in rice, sorghum, and maize [161]. Within the

grass inflorescence, florets develop in specialized small branches called spikelets [15].

The final spikelet number depends on the regulation of the indeterminate BM phase

in these crops [85]. The arrangement of spikelets and florets influences grain number,

with variations in their arrangement and fertility playing a crucial role in determining

crop yield [81]. The transition from SAM to IM marks the beginning of reproductive

development, with temperature and photoperiod being crucial environmental factors

affecting spikelet and grain number [56, 166]. In rice, high-yielding cultivars generally

have higher IM activity and more branches than low-yield cultivars [145]. Genes such
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as OsSPL14, Gn1a, and DST have been identified as promoting panicle branching

and higher grain yield in rice [75, 112, 7]. Conversely, loss-of-function mutations in

APO1, APO2, and ASP1 result in less branched inflorescences due to early speci-

fication of the spikelet meristem identity [71, 73, 72, 192]. These findings suggest

that these genes play a role in maintaining branch meristem identity and delaying

the transition to spikelet meristem identity, ultimately providing more opportunities

for grain production.

Maize tassel development is a complex and intricate process regulated by a va-

riety of genes and pathways involved in the initiation, development, and morpho-

genesis of the inflorescence [179, 13, 186]. The highly conserved CLAVATA (CLV )

and WUSCHEL (WUS ) pathways control stem cell differentiation and promote stem

cell proliferation, regulating meristem size [149, 52]. Mutations in the components of

the CLV-WUS pathway result in abnormal inflorescence development [149, 67]. In

maize, ZmWUS1 and ZmWUS2 are orthologs of WUS, while ZmCLE7, ZmCLE14,

and ZmFCP1 are CLV3 orthologs, and FASCIATED EAR2 (FEA2 ) and FEA3 are

maize orthologs of CLV2 [74, 118, 14]. Several genes regulate the initiation and de-

velopment of different types of meristems, such as UNBRANCHED2 (UB2 ), UB3,

TASSELSHEATH4 (TSH4 ), and LIGULELESS2 (LG2 ) [175, 31, 32, 176]. The

RAMOSA pathway, involving genes RAMOSA1 (RA1 ), RA2, and RA3, regulates

branching and fate of the spikelet pair meristem (SPM) [16, 147, 107]. Branched

silkless1 (BD1 ) influences the identity and determinacy of the spikelet meristem

[30]. Auxin biosynthesis and signaling are central to the generation of axillary meris-

tems (AMs). Genes such as VANISHING TASSEL2 (VT2 ), SPARSE INFLORES-

CENCE1 (SPI1 ), BARREN INFLORESCENCE1 (BIF1 ), and BIF4 are involved

in auxin biosynthesis and signaling pathways in maize [8, 53, 49, 129]. BARREN

STALK1 (BA1 ), BARREN STALK FASTIGIATE1 (BAF1 ), and BIF2 regulate the
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initiation of AMs, functioning in overlapping and distinct roles during inflorescence

development [51, 108, 50]. BA2, the co-ortholog of the rice gene LAX2, functions in

parallel with BAF1 and BIF2 in reproductive AM development [189].

The inflorescence architecture of sorghum is the key determinant of final grain

yield [201]. The development of sorghum inflorescences involves intricate processes

that determine floral organ differentiation and the arrangement of spikelets on the

inflorescence axis [40]. Natural variation in inflorescence architecture traits, such

as panicle morphology, has been extensively studied in sorghum to identify poten-

tial targets for crop improvement [201]. By characterizing diverse sorghum acces-

sions, researchers have been able to associate specific biomass and inflorescence traits

with genomic regions, paving the way for developing molecular markers and breeding

strategies to improve inflorescence architecture [201].

Nitrogen in Plants

Nitrogen (N) is an essential macronutrient required for plant growth and develop-

ment [42]. Though nitrogen makes up a vast majority of the atmosphere, it remains

a major limiting factor in crop production, second only to water. In recent history,

crop breeding has focused on performance in environments with optimal N condi-

tions, primarily due to the widespread availability of synthetic N fertilizers. This

has contributed to an 8-fold increase in N fertilizer application since 1961, reaching

approximately 108 million tonnes in 2013 [103]. The efficiency of N fertilizer usage

remains low, with less than 40% of applied N utilized by cereal crops such as wheat,

maize, rice, barley, and sorghum [136, 57, 80]. The excess N is lost to the environ-

ment through various processes, leading to increased production costs and pollution

of surface and groundwater [79]. Developing crop varieties that maintain yield un-
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der low N conditions could benefit farmers economically and reduce environmental

impact. Nitrate (NO3-), the primary form of N in most soils and the preferred N

source for most cereal crops, is often limited and varies based on a variety of fac-

tors, location, soil type, previous management, and time of year [80]. To capture

as much N as possible, plants must adapt to these changing nitrate concentrations

as they occur. Plants typically have two nitrate uptake systems, the Low-Affinity

Transport System (LATS) for nitrate concentrations above 0.5 mM and the High-

Affinity Transport System (HATS) for concentrations below 0.5 mM [181]. Following

uptake, nitrate is incorporated into amino acids and other molecules and stored in

source tissues during vegetative growth. As N demand increases during the reproduc-

tive phase, N is remobilized to sinks. Efficient remobilization of nitrogen-containing

compounds during senescence is crucial for high-quality yields; otherwise, N remains

trapped in dead source tissues [79]. In addition to its role in plant nutrition, nitrate

is a signaling molecule that regulates genes responsible for nitrate transport and as-

similation, lateral root development, leaf development, and flowering time [109, 26].

While the mechanisms, genes, and enzymes associated with nitrate assimilation are

well-established, our understanding of nitrate sensing and signaling processes, the

regulation of nitrate transporters, and the control of N remobilization remains in-

complete and is constantly updated by new research findings [79]. Though nitrogen

plays a vital role in crop production, its inefficient use has led to increased costs

and environmental concerns. Understanding the mechanisms behind nitrate acquisi-

tion and regulation can aid in developing crop varieties with improved nitrogen use

efficiency, providing economic and environmental benefits.
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Phenotypic Plasticity

Phenotypic plasticity refers to the capacity of a genotype to display differing pheno-

types for a particular trait in response to varied environmental conditions. Genotype-

by-environment interaction (GxE) describes differences in the degree of plasticity

between genotypes. Phenotypic variation is seen within individuals of the same geno-

type or between individuals of different genotypes in one environment or different

environments [88]. Without the ability to alter their environment, plants rely heavily

on plasticity to adapt to fluctuating conditions [17, 130]. Identifying the genes re-

sponsible for plasticity relies on quantifying the plasticity of a trait as a quantitative

trait itself [82, 122, 143]. However, the degree to which the genetic architecture of

plasticity depends on the trait’s average value remains uncertain [82, 87]. Plasticity

is not universally advantageous for all traits, and traits can be classified as robust or

plastic depending on the degree of observed variation [1]. Traits are often interdepen-

dent, in which a positive trait’s robustness is contingent on another’s plasticity. For

example, there is an observed correlation between plasticity in root architecture and

yield robustness in crops like maize and wheat [206, 119, 146]. These trade-offs are

often difficult to characterize, as both plasticity and robustness carry physiological

costs [37]. A consistent yield is desired across locations, but it has been shown that

a robust yield is not always correlated with maximum yield [195, 146]. A deeper

understanding of G×E interactions will provide a road map for developing crop va-

rieties that maintain a robustly high yield, adapting individual traits to changing

environmental conditions.
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Genome-Wide Association Study

Most agriculturally and evolutionary relevant traits are complex and influenced by

numerous genetic loci, environmental conditions, and the interaction between genetics

and environment [105]. Technological advancements in genomics, the development of

novel methodologies, and the motivation to explore variation in traits across diverse

genetic backgrounds propelled the initial wave of association mapping studies in crop

species [204]. The assembly of reference genomes and the advent of high-density geno-

typing have significantly increased the availability and density of genomic information

[111]. High-throughput phenotyping has expanded the number of traits available for

GWAS while reducing the cost and labor associated with data collection. Thanks to

a collaborative effort by the research community, shared resources, including diversity

panels, genomic datasets, and analysis pipelines, are available for many crop species

[165]. Despite a lack of genomic information, the theoretical concepts behind GWAS

were first discussed starting in the mid-1990s in the context of understanding the

genetics behind heritable diseases in humans [92, 89, 90, 140]. However, it wasn’t

until the publication of the draft human genome and the creation of SNP datasets

that these concepts could be tested [91]. The first GWAS paper, published in 2002,

reported genetic associations for myocardial infarction risk in humans. The study

was conducted on 65,000 genome-wide SNPs and 94 individuals [124]. GWAS have

since led to the detection of thousands of genetic variants significantly associated with

various diseases, allowing for the development of treatments for a wide range of dis-

eases [173]. In 2005, a GWAS of Arabidopsis thaliana confirmed previously identified

genes associated with flowering time and disease resistance. This marked the first

publication utilizing GWAS outside of human medical genetics [6]. In 2008, the first

published GWAS of a crop species identified a variant of the fad2 gene associated with



11

increased oleic acid in maize [10]. In its most basic form, GWAS can be conducted

by performing an ANOVA on each SNP in the genome with a null hypothesis that

there is no difference in phenotypic mean between AA, Aa, and aa genotypes [21]. In

practice, however, this simplistic approach results in a high number of false positives

or SNPs incorrectly determined to be associated with a trait. One reason for the high

number of false positives is that testing each SNP individually leads to thousands or

even millions of tests, depending on the size of the SNP dataset. In many statistical

tests, the significance threshold is set at alpha=0.05, meaning there is a 5% chance

of incorrectly rejecting the null hypothesis. With a test performed at each SNP, this

level of significance will lead to thousands of false positives [19, 21]. Two standard

methods used to address this include limiting the false discovery rate (FDR), the

proportion of all positive results expected to be false positives, and the Bonferroni

correction, which involves dividing your selected significance threshold (often 0.05) by

the number of tests conducted (number of SNPs) to correct the significance thresh-

old [11, 41]. Another contributing factor to the high number of false positives in

uncontrolled GWAS is the degree of relationship among individuals in a population.

Within diverse populations used for GWAS, there will inevitably be subpopulations

of individuals more closely related to each other. SNPs common to these related

individuals can cause spurious associations with analyzed traits if a common phe-

notype is observed within the subpopulation [193, 205]. Several methods have been

developed to control for population structure. The genomic control method employs

markers unlikely to be associated with the trait of interest (null markers) to estimate

the effect of population structure, adjusting the final p-value for each marker and

reducing false positives [36]. The structured association method, or STRUCTURE,

uses null markers to define subpopulations within genetic data, with subpopulation

membership functioning as a cofactor within the association model. This addition



12

of subpopulation membership for population structure control is referred to as the

general linear model (GLM) [133]. The mixed linear model (MLM) incorporates two

measures of relatedness into your association model, population structure (Q) and

kinship (K) [193]. Population structure can be defined by using STRUCTURE as

described above or by principal component analysis [133, 132]. Kinship is an esti-

mate of relatedness among individuals in the population. Several algorithms can be

used to calculate a kinship matrix using allele frequencies and identity-by-state to

estimate identity-by-descent, defining kinship coefficients [155]. Under MLM’s mixed

model framework, false positives are controlled by incorporating both a fixed effect

of population structure and a random effect of kinship [193]. This enhanced control

has led MLM to largely replace the previous methods. While these methods ad-

dress issues posed by relatedness among individuals in the population, solving MLM

equations can be computationally taxing. This led to the development of numerous

methods aimed at improving efficiency and speed. Efficient mixed-model association

(EMMA) enhances computational speed by eliminating redundancy in matrix opera-

tions during the likelihood function computation iterations [78]. Factored spectrally

transformed linear mixed models (FaST-LMM) [100] and genome-wide efficient mixed

model analysis (GEMMA) [202] are methods developed to improve the speed of ex-

actly solving MLM equations. In addition, the QK model used for MLM tends to

over-correct when true associations are correlated to population structure, leading to

false negatives. Efforts to improve GWAS power while considering potential false neg-

atives have led to methods like compressed MLM (CMLM) [200] and enriched CMLM

(ECMLM) [96], which leverage lower-rank kinship matrices. FaST-LMM-Select [101]

and settlement of MLM under progressively exclusive relationship (SUPER) [177] en-

hance power by using a reduced number of SNPs in kinship calculations, carefully

selecting SNPs associated with the trait of interest. Multi-locus GWAS methods,
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such as multi-locus mixed model (MLMM) [150], fixed and random model circulating

probability unification (FarmCPU) [102], simultaneously incorporate multiple mark-

ers as covariates, particularly benefiting complex traits with closely linked large-effect

loci [150, 97]. FarmCPU uses the reduced kinship matrix provided by the SUPER

method to increase power and efficiency and iterates between the fixed-effect model

of MLMM and the random effect models such as FaST-LMM, optimized through re-

stricted maximum likelihood (REML) [102]. This combination of power and efficiency

popularized FarmCPU among researchers. Though significant strides have been made

since GWAS was first theorized and subsequently implemented, several challenges still

require further investigation and development. The issue of addressing loci with low

minor allele frequency (MAF) in genome-wide association studies (GWAS) has been

recognized since its inception [140]. While some researchers exclude variants with

MAF below 5% [28, 178], it is important to consider that rare alleles can still be bio-

logically significant [158, 172, 185]. Various statistical models have been developed to

address this issue, including those that aggregate nearby rare variants and test their

combined effects [94]. Still, rare alleles should be excluded if their inclusion inflates

the significance threshold due to multiple testing. Another challenge, synthetic as-

sociations, occur when non-causal SNPs are identified as more significant than truly

causal variants, misleading GWAS findings [38]. Such associations can arise due to

allelic heterogeneity, where multiple independent alleles of a gene are present in a

population or when rare causal alleles are difficult to detect [99, 188]. Approaches

based on genes or regions rather than SNPs have helped address this issue, but further

development is necessary, especially regarding software implementation [188].



14

High-Throughput Phenotyping

In the past, the progress of agronomic and breeding efforts to enhance crop yield,

stress tolerance, and the rate of genetic improvement has been hindered by the

cost and labor associated with conventional phenotyping methods. Recently, high-

throughput phenotyping (HTP) has emerged as a rapidly advancing discipline that

successfully merges plant science, engineering, and computation to identify and eval-

uate targets for crop improvement, such as plant height, biomass, flowering time,

and grain yield [163]. The implementation of sensor technologies in the field has

enhanced the capacity and impact of agricultural studies by automating data collec-

tion and analysis, increasing the number of locations, replications, and crop species

tested. Further development of HTP and analysis methods will accelerate the breed-

ing process, ultimately boosting genetic gain and disease tolerance in field crops

[152]. Various phenotyping platforms enable precise and consistent monitoring of

traits at the organ, plant, plot, and entire field scale. These platforms include

greenhouse-based systems, manned and autonomous vehicles, stationary and scan-

ning field-based systems, environmental sensors, unmanned aerial vehicles (UAVs),

and satellites [5, 151, 34, 171, 98]. High-quality sensor systems can surpass the payload

capacity of UAVs, necessitating the use of ground-based platforms. High-resolution

multi-spectral satellite-based sensors can provide consistent and continual observa-

tion of field crop health [194]. In modern crop breeding, HTP methods are employed

to analyze architectural traits and detect desirable genotypes early in development.

HTP enables precise, consistent, and automated measurement of growth and develop-

ment traits, including but not limited to seedling vigor, biomass and grain yield, plant

height, and canopy structure. Additionally, HTP can be applied to screen physiolog-

ical traits, including photosynthetic rate, disease resistance, and abiotic/biotic stress
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tolerance [152]. While traditional plant disease screening relies on visual observation

and symptom recognition, HTP allows for automated early-season detection, reducing

crop yield losses. Some common HTP data collection methods include RGB imag-

ing, 3D scanning, thermal and near-infrared sensing, multi-spectral and hyperspectral

sensing, and fluorescence imaging [152]. Determining appropriate sensors and data

collection time points for traits of interest is essential for successful data collection

and analysis. RGB cameras are optical sensors designed for non-invasive phenotyp-

ing and are suitable for both controlled greenhouse conditions and in the field under

natural outdoor illumination [59]. These cameras efficiently obtain high-resolution

imagery, allowing for prompt and unbiased analysis of traits of interest [157]. How-

ever, single RGB images have limited effectiveness due to inherent size distortions in

the 2D image plane. Stereo RGB imaging can generate 3D information to increase

the precision of phenotypic data [83]. 3D laser scanning techniques such as LIDAR

develop comprehensive 3D models through light projection and scanning. Laser scan-

ners can measure genotypic variation in plant architecture, canopy traits, and growth

rates. Frequent scanning has been effective in evaluating growth changes in response

to altered environmental conditions [171, 48, 69]. Recent studies combined 3D scans

with other optical sensor data, showing a significant improvement in the accuracy of

disease detection [142]. Thermal infrared (IR) cameras visualize temperature differ-

ences to evaluate canopy temperature. Thermal imagery can be rapidly collected from

large field experiments, enabling near-simultaneous measurement of canopy tempera-

ture across all plots [35]. Thermal IR cameras have been employed to monitor disease

outbreaks and quantify plant responses to water stress in the field [12, 60]. Multi-

and hyperspectral imaging captures electromagnetic radiation reflected from vegeta-

tion in the visible (400–700 nm), near-infrared (700–1300 nm), and short-wavelength

infrared (1400–3000 nm) regions. The reflection spectra provide information about



16

plant architecture and health, enabling the evaluation of plant growth characteris-

tics, including physiological status, water content, pigmentation, and architecture.

Numerous indices have been developed to estimate leaf-related traits, nitrogen and

chlorophyll content, and radiation use efficiency (RUE) [190]. Fluorescence imaging

techniques measure the emitted light from chlorophyll, a photosynthetic pigment,

providing valuable insights into photosynthetic response under various stress condi-

tions. This approach is particularly useful for early disease and stress detection, as

fluctuations in fluorescence are often observed before the onset of visible symptoms

[27, 164, 22]. Despite its potential, fluorescence imaging is susceptible to limitations

such as inconsistent illumination and environmental disruptions in field experiments

[128]. The rapid advancements in genomics and HTP technologies offer significant

potential for crop breeding and disease monitoring. Investments from government

and private organizations have accelerated the development of HTP tools to benefit

researchers and farmers. Integrating data from automated, multifunctional, and high-

throughput phenotyping platforms will necessitate the ongoing development of novel

technologies with a focus on low-cost and high-performance HTP solutions [152].

In order to investigate the plasticity of sorghum biomass and inflorescence-related

traits in response to nitrogen application, a set of 14 traits were selected to ap-

proximate total above-ground biomass and encompass yield-determining factors of

panicle development. These traits were phenotyped under N+ and N- conditions in

346 diverse genotypes in a replicated, multi-year field study. Genome-wide association

studies have successfully identified genetic markers significantly associated with traits

of interest. Upon further functional characterization, the findings of this study have
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the potential to assist in breeding improved sorghum varieties with stable biomass

and grain yield under nitrogen-limiting conditions.
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Chapter 2

Plasticity of Sorghum Biomass Traits in Response to

Nitrogen Application

2.1 Introduction

Sorghum’s high-stress tolerance, minimal input requirements, and efficient C4 photo-

synthetic pathway allow it to be grown on marginal land unsuitable for the production

of other row crops, including maize and soy [114]. As the fifth-most important cereal

crop globally, sorghum is crucial for global food security and sustainability, especially

in the face of climate change and limited agricultural resources [168]. In addition to

grain production, sorghum is bred for increased biomass accumulation, particularly

for use in lignocellulosic ethanol production and animal forage [63]. Understanding

the genetic basis of biomass-related traits in sorghum will allow for the breeding of

high-yielding, stress-tolerant sorghum varieties[104, 65]. With its relatively simple

genome, sorghum can serve as a model for increasing nitrogen use efficiency across

significant cereal crops.

Total above-ground biomass production is determined by a number of traits, in-

cluding tiller number, plant height, leaf number, and leaf size. Plant height and

biomass in sorghum have been shown to be primarily controlled by four ”dwarf”

loci, Dw1, Dw2, Dw3, and Dw4 [77]. Variants in these genes have been shown to
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decrease plant height by shortening internode length. The molecular mechanisms

through which dwarf genes regulate these biomass-related traits can provide valu-

able insights for developing sorghum varieties with improved total biomass yield [65].

In addition, genes involved in the synthesis and regulation of the plant growth hor-

mones gibberellin, auxin, and brassinolide have been shown to play a significant role

in determining plant growth patterns and total biomass accumulation [3].

Nitrogen (N), an essential macronutrient required for plant growth and develop-

ment, remains a major limiting factor in crop production [42]. Nitrogen fertilizer use

has increased drastically in the past 60 years, allowing producers to maximize crop

yield potential. Biomass accumulation has been shown to increase with rising levels

of nitrogen fertilizer application [162]. However, overall nitrogen use efficiency across

major row crops remains low, leading to environmental pollution through runoff of

excess nitrogen affecting groundwater and aquatic ecosystems [136, 57, 80]. Under-

standing the mechanisms behind nitrate acquisition and regulation can aid in de-

veloping crop varieties with improved nitrogen use efficiency and increased biomass

production while reducing the impact of environmental stress.

Phenotypic plasticity allows plants to adapt to changing environmental conditions

[88]. The ability to respond to variations in nutrient availability, temperature, and

water availability can make crops more resilient and better suited for cultivation

under marginal conditions [116]. Elucidating the mechanisms of genetic control of

phenotypic plasticity can help breeders develop crop varieties that maintain high

yields across a variety of environmental conditions in the face of a continually evolving

climate [88]. Understanding the genes underlying these plastic responses is essential

for developing strategies to harness the potential of phenotypic plasticity in crop

improvement.

This study aims to characterize the response of sorghum biomass-related traits be-
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tween varying nitrogen conditions across a broadly diverse set of genetic backgrounds

and morphologies. Five traits were phenotyped across 346 diverse accessions under

N+ and N- treatments, including days to anthesis (flowering time), tiller number,

plant height, and lower and upper stem diameter. Stem volume was calculated from

measured traits and has previously been shown to be highly correlated with both

wet and dry biomass (r=0.96, r=0.95) [184]. Genome-wide association studies were

employed to identify trait-associated SNPs to further elucidate the genetic factors

involved in biomass accumulation in response to nitrogen.

2.2 Methods

Field Design

A large, replicated sorghum field trial was conducted at the University of Nebraska-

Lincoln Havelock Research Farm in Lincoln, NE (40.859, -96.597) during the 2020

and 2021 growing seasons. The fields were planted on June 8th and May 25th of their

respective years and received a pre-emergent herbicide application within 24 hours of

planting. The 2020 field consisted of six total blocks, including three N+ and three

N- blocks, planted in a randomized complete block design (RCBD). The N+ blocks

received an application of anhydrous ammonia fertilizer at a rate of 80lbs/acre, while

the N- blocks received no supplemental nitrogen. The field was planted following a

maize crop the previous year to minimize residual nitrogen in the soil. Each block

consisted of 390 total 7.5ft single row plots, comprised of a single replication of 346

diverse accessions, two extra replications of Tx430, and 42 randomized check plots of

BTx623. The 346 diverse inbred sorghum accessions make up 85% of the Sorghum

Association Panel (SAP) and were selected based on SNP data and seed source avail-

ability [25]. Check plots were placed by dividing each block into six subsections and
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randomizing seven check plots within each subsection. Each block was surrounded

by border seed to minimize edge effect. In addition, two rows of border seed were

planted between N+ and N- blocks. The field was maintained through hand-hoeing

and between row tillage roughly once a week, beginning at emergence until a canopy

had formed. However, due to intense weed pressure and limited labor availability, the

two right-most blocks (one N+ and one N-) were discarded, leaving two reps of N+

and two of N-.

Figure 2.1: Two adjacent border rows between nitrogen treatments. The row on
the left received a pre-emergence nitrogen application of 80 lbs/acre of anhydrous
ammonia. The row on the right received no supplemental nitrogen. This genotype
shows a distinctly plastic response to N application.

The 2021 field was designed and managed similarly to the 2020 field, with some

key differences. This field consisted of 4 total blocks, including two N+ blocks and

two N- blocks, planted in an unbalanced randomized block design. The N- blocks on
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the left and right edges of the field reflected the design of the 2020 field, with 390

total 7.5ft single row plots, comprised of a single replication of 346 diverse genotypes,

two extra replications of Tx430, and 42 randomized check plots of BTx623. The

much larger N+ blocks in the center of the field consisted of 968 plots, comprised

of 915 accessions of a larger diversity panel, two extra replications of Tx430, and 51

randomized check plots of BTx623. The 346 SAP lines were included in the larger

panel, and data was only collected on these SAP lines.

Data Collection

Three representative plants per plot were phenotyped for each trait to account for

within-plot variability. These measurements were averaged to produce a final plot

average value. Plants measured in the field were marked with flagging tape to ensure

consistency in downstream data collection. In total, four biomass-related phenotypes

were collected in the field. A fifth phenotype, stem volume, was calculated using

measured traits as described below. Four total replications of each sorghum accession

were measured for each nitrogen treatment, two in 2020 and two in 2021.

Days to anthesis (DTA) was defined as the number of days from the planting of

a plot to growth stage 6, half-bloom. A plot reaches stage 6 when 50% of the plants

in the plot have begun anthesis. Tiller number (TN) was defined as the number

of tillers emerging from the basal nodes of the sorghum plant. This excludes tillers

emerging from higher nodes that occur later in development. Plant height (PH) was

measured from the ground at the base of the stem to the collar of the flag leaf, the

terminal leaf of a sorghum plant. Lower and upper stem diameters (SDL, SDU) were

measured using digital calipers to the nearest hundredth of a millimeter [121]. As a

reference point, lower stem diameter was measured at the second internode above the

ground. Upper stem diameter was measured roughly one inch below the peduncle.
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To account for the oblong shape of the stem, two upper stem diameter measurements

were taken on a 90-degree axis and averaged. Stem volume (SV), an approximation

of total above-ground biomass, was calculated using a formula for the volume of a

truncated cone shown below, incorporating SDL, SDU, and PH measurements.

V =
1

3
π(r21 + r1r2 + r22)h

Phenotypic Data Analysis

Statistical analyses were conducted in R v.4.2.1 [134]. The meta-package tidyverse

was utilized for data processing and visualization [182]. Prior to any analysis, outliers

were removed through visual inspection of trait distributions. A two-stage approach

was used to obtain a final trait value for each accession in both N+ and N- conditions.

Using the r package lme4, a mixed model was first fit for each trait in each of the four

individual environments (year/treatment combination) with accession as a fixed effect

and replication, row, and column as random effects [9]. Best linear unbiased estimates

(BLUEs) from each environment were then used for the second stage of the analysis.

In the second stage, a mixed model was fit for each trait in each treatment, with

accession as a fixed effect and year as a random effect. Outliers were again removed

through visual inspection of BLUE distributions. Cleaned second-stage BLUEs were

then used for downstream analyses (Figure 2.2).
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Figure 2.2: Outline of BLUE calculation and genome-wide association analysis

Paired t-tests were used to obtain p-values between BLUEs in N+ and N- con-

ditions. The broad-sense heritability of each trait was calculated using the following

equation:

H2 =
σ2
g

σ2
g +

σ2
e

n

With σ2
g corresponding to genetic variance, σ2

e to residual variance, and n to the

number of replicates. Partitioning of total observed variance was performed using

methods outlined by Jong et al., 2019 [76].

For each trait, a percent response to nitrogen application was calculated using the

following formula:

Response =
BLUE(N+)−BLUE(N−)

BLUE(N−)
∗ 100
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Genome-Wide Association Studies (GWAS)

The subset of SAP accessions used in this study were genotyped by Miao et al.,

2020 by first preparing sequencing libraries using a modified tuneable-Genotyping-by-

Sequencing protocol [123]. The libraries were then sequenced using Illumina HiSeqX

technology to produce an average of 4 million paired-end reads per sample. SNPs were

called following the alignment of high-quality to the V4 sorghum reference genome

[106]. Following marker data quality control (missing data rate <0.7, minor allele

frequency >0.05, and heterozygous rate <0.05) and imputation of missing values,

a final set of 256,695 high-confidence SNPs was determined for use in association

analyses [110].

Genome-wide association studies were conducted separately on BLUEs of each

genotype under N+ and N- conditions, as well as their percent response to nitrogen

application. Association analyses were performed using the FarmCPU algorithm in

the R package rMVP v1.06, using the parameters maxLoop = 10 and method.bin

= “FaST-LMM” [102, 191, 100]. A Kinship matrix calculated by the FarmCPU

algorithm was fit as a random effect, and the first three principal components of the

marker data were used as a fixed effect. A significance threshold was determined

using Bonferroni correction of the alpha level (0.05). One hundred analyses were

conducted for each trait, withholding a random subset of 10% of accessions each run.

A resampling model inclusion probability (RMIP) value for each marker was defined

as the proportion of the 100 runs in which the SNP was determined to be significantly

associated with the trait of interest [169, 174].
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2.3 Results

Three-hundred forty-six diverse accessions were grown under two nitrogen applica-

tion conditions: 80lbs/acre anhydrous ammonia pre-emergence, and no supplemental

nitrogen application. Five biomass-related growth and development traits were phe-

notyped, including days to anthesis, tiller number, plant height, and lower and upper

stem diameter. Stem volume was calculated from measured traits as an approxi-

mation of total above-ground biomass. Following data cleaning and outlier removal,

between 319 and 337 genotypes were retained for further analysis of phenotypic vari-

ation (Table 2.1).

Table 2.1: Mean and SD of Biomass Traits Under N+ and N- Conditions

Trait Treatment n Mean SD H2

DTA N+ 335 66.2 5.66 0.77
N- 69.81 6.18 0.74

PH N+ 330 109.39 41.7 0.88
N- 104.6 38.23 0.89

TN N+ 319 0.72 0.61 0.56
N- 0.53 0.52 0.52

SDL N+ 337 21.58 3.1 0.64
N- 21.14 3.09 0.54

SDU N+ 335 10.23 1.64 0.75
N- 9.57 1.56 0.65

SV N+ 329 406.88 145.79 0.75
N- 370.12 124.48 0.61

Phenotypic Variation in Biomass Traits Across Nitrogen Conditions

All biomass traits were significantly affected by N application. Figure 2.3 displays

density plots of the distribution of Best Linear Unbiased Estimates (BLUEs) of phe-

notypes under N+ and N- conditions, as well as the distribution of percent change in

response to nitrogen application. Days to anthesis was significantly reduced under N+

conditions (p < 2.20E-16). Nitrogen application was shown to significantly increase
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all measured components of total above-ground biomass, as well as stem volume (p <

0.0001). Table 2.2 details mean differences in BLUEs of phenotypes between nitrogen

conditions and mean percent response to nitrogen application.

Table 2.2: Mean Difference Between N Treatments and % Response to N Application

Trait Mean Difference p-value Response Mean (%) Response SD (%)
DTA -3.55 2.20E-16 -5.1 3.19
PH 3.45 1.38E-06 3.36 9.23
TN 0.19 2.13E-12 12.77 27.96
SDL 0.41 8.52E-05 2.16 9.18
SDU 0.7 2.20E-16 7.77 9.56
SV 36.84 9.96E-16 10.48 20.5
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(a) Days to Anthesis

(b) Tiller Number

(c) Plant Height
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(d) Lower Stem Diameter

(e) Upper Stem Diameter

(f) Stem Volume

Figure 2.3: Left: Density plots of biomass traits measured under N+ and N- condi-
tions. All traits were significantly affected by nitrogen application (p < 0.0001, paired
t-test). Right: Density plots of percent change in response to nitrogen application.
Vertical lines indicate 0% change.

Though all measure traits were significantly affected by N application, a plastic
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response was seen across accessions, with some varieties showing little to no response,

and others following the opposite trend of the overall means. As seen in Table 2.2

and the right panels of Figure 2.3, the mean percent response to nitrogen follows

the expected trends. However, relatively large standard deviations lead to a number

of varieties deviating from expected trends. Figure 2.4 shows phenotypic differences

between individual accessions in N+ and N- conditions.
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(a) Days to Anthesis (b) Tiller Number

(c) Plant Height (d) Lower Stem Diameter
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(e) Upper Stem Diameter (f) Stem Volume

Figure 2.4: Individual Accession’s Response to N Application.

Under N+ conditions, a significant negative correlation was seen between stem

diameter (lower and upper) and tiller number (r2 = -0.35, -0.39) As the number

of tillers increased, the diameter of the stem decreased. In addition, plant height

was also negatively correlated with stem diameter (r2 = -0.31, -0.2). As expected,

lower and upper stem diameters are positively correlated, and stem diameter and

plant height are positively correlated with stem volume. A similar but less significant

correlation pattern was seen under N- conditions. Lower and upper stem diameter

and stem volume response to nitrogen application also showed a significantly positive

correlation with each other (Figure 2.5).
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Figure 2.5: Pearson correlations between biomass-related traits under N+ and N-
conditions, as well as the response to N.

Variance partitioning showed a significant proportion of the total observed vari-

ance for each trait could be attributed to differences in genotypes within each nitrogen

treatment. This indicates high heritability of all measured and calculated traits. Sim-

ilar patterns were seen between the two years of the experiment, with tiller number

showing the lowest proportion of variance explained by genetic factors.
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Figure 2.6: Percent of the total variance of each trait explained by Genotype(N+),
Genotype(N-), Nitrogen, Genotype X Nitrogen, and residual variances within each
year of the experiment.

Genome-Wide Association Studies Identify Trait-Associated SNPs

Genome-wide association studies were conducted on best linear unbiased estimates

of phenotypes under N+ and N- conditions, as well as each accession’s response to N

application. Figure 2.3 shows Manhattan plots of FarmCPU RMIP GWAS results.

Forty-seven unique, high confidence (RMIP > 0.2) trait-associated SNPs (TAS) were

identified across the 6 measured and calculated biomass-related phenotypes. Of the

identified TAS, 24 were identified under N+ conditions, 18 were identified under N-

conditions. Five TAS were identified under both N+ and N- conditions. Only 2 TAS

were associated with response to nitrogen application, both related to lower stem

diameter. TAS in high LD (r2 > 0.5) with each other and less than 1 MB apart were

subsequently defined as a single trait-associated locus (TAL). In total, 39 individual

TAL were identified. Of these 39 TAL, 3 were found to be pleiotropic, associated

with two or more phenotypes under N+ or N- conditions (Table 3.3).
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Plant Height

Lower Stem Diameter
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Upper Stem Diameter

Stem Volume

Figure 2.6: Genome-wide association studies identified SNPs significantly associated
with biomass-related traits of interest. Combined Manhattan plots displaying SNPs
associated with N+, N-, and Response phenotypes. Red threshold indicates high
confidence TAS (RMIP ge 0.2).
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Table 2.3: Genetic Markers Associated with Biomass Traits (RMIP ≥ 0.2)

Trait Treatment Chromosome SNP RMIP

SDU N+ 1 S01 74680921 0.38

SDU N+ 2 S02 11215120 0.25

TN N- 2 S02 16284591 0.63

SDL Response 2 S02 30843085 0.27

DTA N+ 2 S02 481677 0.24

SDU N+ 2 S02 53831803 0.34

SDU N+ 2 S02 58932093 0.22

SDU N- 3 S03 14881071 0.21

TN N+ 3 S03 57156016 0.24

TN N+ 4 S04 55819702 0.63

SDL N+ 4 S04 6228757 0.23

DTA N- 4 S04 6235481 0.36

TN N+ 4 S04 751136 0.29

DTA N+ 5 S05 51431790 0.29

SDU N- 5 S05 68167111 0.31

TN N+ 6 S06 12919229 0.47

PH N+ 6 S06 21873877 0.59

PH N- 6 S06 21873877 0.45

SDU N- 6 S06 2485379 0.33

PH N+ 6 S06 43810528 0.29

SV N+ 6 S06 45034727 0.88

SV N- 6 S06 45034727 0.35

Continued on next page
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Table 2.3 – continued from previous page

Trait Treatment Chromosome SNP RMIP

SV N- 6 S06 45058099 0.64

SDU N+ 6 S06 48853118 0.46

SV N+ 6 S06 60840408 0.21

SDU N- 7 S07 11255291 0.37

SDL N- 7 S07 20866397 0.30

PH N- 7 S07 59528396 0.59

PH N+ 7 S07 59814562 0.25

SV N+ 7 S07 59948565 0.29

PH N+ 7 S07 7066383 0.26

SDU N- 8 S08 22108591 0.35

SV N- 8 S08 29279074 0.22

SDL N+ 8 S08 35348801 0.51

SDL N- 8 S08 35348801 0.36

SDU N+ 8 S08 37152714 0.30

SDL Response 8 S08 51981028 0.34

SDU N- 8 S08 54836344 0.23

SDU N- 8 S08 55042904 0.31

DTA N+ 8 S08 5886412 0.23

PH N- 9 S09 56994655 0.78

PH N+ 9 S09 57005346 1

PH N- 9 S09 57005346 0.23

SV N+ 9 S09 57005346 0.89

Continued on next page
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Table 2.3 – continued from previous page

Trait Treatment Chromosome SNP RMIP

SV N- 9 S09 57005346 1

DTA N- 9 S09 58757703 0.27

SDL N+ 9 S09 915790 0.38

TN N- 10 S10 16323622 0.28

SV N+ 10 S10 40394920 0.28

DTA N+ 10 S10 46692828 0.36

TN N- 10 S10 54764102 0.28

SDU N- 10 S10 57699049 0.25

Candidate Genes Controlling Variation in Biomass Traits

Average linkage disequilibrium (LD) decay was calculated across the genome accord-

ing to methods outlined by Remington et al., 2001 [139]. LD was shown to decay

to half of its maximum value within 50 kb, and to background levels of r2 < 0.1

within 170 kb. This calculation led to defining a 350 kb window, 175 kb upstream

and downstream of a SNP, when searching for candidate genes associated with TAS.

TAS with the greatest minor allele effect in N+ and N- conditions not associated

with known genes were chosen for further investigation. Figure 2.7 shows phenotypic

differences between accessions containing the major and minor alleles. To assist in

elucidating a candidate gene affecting the trait of interest, spatiotemporal expression

patterns of transcripts within the 350 kb window were obtained from the sorghum

gene expression atlas through www.phytozome.net [153].

A highly significant SNP on chromosome nine, S09 57005346, was identified in

both N+ and N- conditions. This SNP lies approximately 33 kb upstream of the clas-
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sically defined dwarf locus DW1. This SNP was identified for stem volume and plant

height under both N+ and N- conditions. Another significant SNP on chromosome 7,

S07 59948565 was identified for stem volume under N+ conditions and plant height

under both N+ and N- conditions. This SNP is located approximately 170 kb from

DW3 within a previously identified QTL associated with plant height [199].

In addition to the classically defined plant height genes, S06 21873877 on chromo-

some 6 was found to have the largest effect on plant height under both N+ and N-

conditions. This SNP was located in a heterochromatic region, with no genes with

the 350 kb window. The closest gene, Sobic.006G040401, is located 445 kb upstream

of the SNP. The gene encodes an uncharacterized protein containing a zinc-finger do-

main with orthologs in many grass species. Another highly significant SNP for stem

volume, S06 45034727, was identified under N+ conditions. This SNP lies approx-

imately 2 Mb downstream of Dw2, within the 5’ UTR of the protein-coding gene,

Sobic.006G081600. This gene encodes an uncharacterized protein with orthologs in

many plant species, including the rice OSJNBa0084A10 protein. However, there are

35 other genes within 175 kb upstream and downstream of the SNP, making it difficult

to accurately determine a candidate gene. S08 29279074 on chromosome 8 was associ-

ated with stem volume in N- conditions. This gene is located within heterochromatin

with no genes within 350 kb around the SNP. The closest gene is 520 kb downstream

of the SNP, This gene, Sobic.008G088890, encodes an uncharacterized CCHC-type

zinc finger protein.

For days to anthesis the SNP with the largest effect under N+ conditions was

S05 51431790, located on chromosome 5. The 350 kb region around this SNP con-

tains 5 total genes. Of these, Sobic.005G116700 is the most likely candidate gene.

This gene encodes a hypothetical protein inferred from mRNA with a receptor-like

serine/threonine kinase domain. This gene was shown to be most highly expressed
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in leaves during flowering. Under N- conditions, 09 58757703 was found to have the

largest effect on flowering time. This gene is located within a gene-dense region at

the distal end of chromosome 9, with 41 total gene within the defined candidate gene

window. This SNP is most likely associated with Sobic.009G253700, encoding a phos-

phatidylinositol 4-kinase. This protein has been shown to affect floral transition in

arabidopsis [4].

Tiller number under N+ conditions was most affected by a SNP on chromosome

3, S03 57156016. This region contains 47 genes within the candidate gene window.

The most likely candidate gene affecting tiller number is Sobic.003G231100, encoding

an auxin-like protein with an 85% similar ortholog in maize. This gene is expressed

throughout development, with elevated expression in juvenile stem tissue. The SNP

identified to most affect tiller number under N- conditions was 09 58757703 on chro-

mosome 9. The SNP lies within heterochromatin, with 5 total genes within the

candidate gene window. Of these, only one gene, Sobic.010G128000, shows an ex-

pression pattern consistent with tiller formation. This gene is expressed in juvenile

plant tissues, while the others are mainly expressed in roots. This gene encodes an

aspartyl peptidase, shown to affect vegetative growth and development.

The SNP S09 915790 on chromosome 9 had the largest effect on lower stem diam-

eter under N+ conditions. There are 44 total genes within 350 kb around the SNP.

With this large number of genes located near the TAS, we were unable to identify a

candidate gene. There was no obvious connection between these genes and lower stem

diameter to confidently determine a causal gene. Under N- conditions, S08 35348801

on chromosome 8 was found to have the largest effect on lower stem diameter. This

SNP is located in heterochromatin with one gene located within the candidate gene

window. This gene encodes a laccase-25 precursor, shown to be involved in the lig-

nification of plant cell walls. This protein appears to be conserved across closely
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related grass species. Between the two SNPs associated with lower stem diameter

response to nitrogen, S08 51981028 on chromosome 8 was shown to have the larger

effect. Seventeen total candidate genes are located in the vicinity of the SNP. One

potential candidate gene, Sobic.008G112200, encodes a Myb-like transcription factor.

This class of proteins has been shown to play an important role in plant response to

environmental stress [24].

Upper stem diameter was most affected by S02 53831803 on chromosome 2 under

N+ conditions. Of 5 candidate genes near the SNP of interest, Sobic.002G170100

appears most likely to be associated with stem diameter. This gene encodes a UDP-

D-glucose epimerase, a highly conserved enzyme shown to affect stem growth and

strength in rice [197]der N- conditions, S03 14881071 on chromosome 3 had the largest

effect. Twenty-five total genes are located within the candidate gene window. So-

bic.003G146200 encodes a myb family transcription factor shown to be involved in

plant growth and development [24].

(a) (b)
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(c) (d)

(e) (f)
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Figure 2.7: Phenotypic differences between accession harboring the major and minor
allele of the largest effect SNP for each trait under N+ and N- conditions

2.4 Discussion

As the global population increases and the climate becomes less favorable, current

production standards will have to adapt to meet demand [167]. Sorghum is a hardy

crop and can be grown on marginal land with minimal inputs [63]. However, nitrogen

availability is still a limiting factor in reaching maximum biomass yield. Understand-

ing the genetic architecture of growth and development traits under nitrogen-limited

conditions could potentially lead to the breeding of high-biomass yielding, nitrogen-

use efficient sorghum varieties. To investigate the response of sorghum growth and

development traits to nitrogen application, 346 diverse accessions from the Sorghum

Association Panel were grown under N+ (80 lbs/acre anhydrous ammonia) and N-

(no supplemental nitrogen) conditions. Six biomass-related phenotypes were collected

for further analysis.

The mean difference in days to anthesis, tiller number, plant height, lower and
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upper stem diameter, and stem volume between N+ and N- conditions were found to

be significant. Genotypes grown under N+ flowered an average of 3.55 days earlier

than those under N- for a mean response to nitrogen of -5.1%. Plants were an average

of 3.45 cm taller, 0.41 mm wider at the base, and 0.7 mm wider below the peduncle,

leading to a 36 cm3 average increase in the volume of the stem. This represents a

mean increase of 10.48% in response to N application. However, a large standard

deviation of 20.5% shows a high degree of plasticity between the diverse accession

of the Sorghum Association panel. A significant proportion of the total variance

seen in each trait was attributed to genetic factors. Broad-sense heritability ranged

from 0.52 to 0.89 across measured and calculated phenotypes within N+ treatments.

This indicated that genetic factors largely control each trait, and that genetic markers

associated with these traits could likely be identified through genome-wide association

analysis.

High-confidence trait-associated SNPs (TAS) were identified for all traits under

both N+ and N- conditions (RMIP > 0.2). However, SNPs associated with response

to N were only identified in lower stem diameter. Of the 47 TAS identified across

the 6 biomass phenotypes, 24 were identified under N+ conditions and 18 under N-

conditions. Only 5 TAS were identified under both N+ and N- conditions. This

shows that a largely separate set of genes controls phenotypic variation when nitro-

gen is limited. Only 2 SNPs were associated with response to nitrogen application.

Response to nitrogen application appears to be a largely plastic trait within biomass

phenotypes. The TAS with the largest minor allele effect for each trait under both

nitrogen conditions were selected for further investigation into potential candidate

genes controlling observed variation.

Linkage disequilibrium was calculated to decay to background levels within 170

kb of a SNP of interest on average across the genome. This led to a candidate gene
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window being defined as 175 kb upstream and downstream of the SNP of interest.

This value is dependent on the size of the marker data set and the methodology

used to calculate LD. However, this distance appears to be consistent with previ-

ously reported estimates of LD decay, ranging from 150 kb to 500 kb [196, 61]. This

relatively high level of linkage disequilibrium introduces challenges in identifying can-

didate genes. In gene-dense regions of the genome, GWAS has a much low resolution

to accurately define candidate genes. The identification of the classically defined

dwarf genes Dw1 and Dw3 for plant height and stem volume is a promising sign

that high-confidence TAS identified through FarmCPU resampling are true associa-

tions. Zinc finger-containing proteins were identified as products of candidate genes

controlling plant height and stem volume. This large and diverse family of proteins

have traditionally been characterized as modulating plant response to environmen-

tal stress. However, they have recently been gaining attention for their role in the

transcriptional regulation of growth and development [62].

Under N+ conditions, a predicted gene inferred from mRNA transcripts encoding

a protein with a receptor-like serine/threonine kinase domain was identified as a

candidate gene affecting flowering time. This broad class of proteins has been shown

to play a role in organ development, and potentially inflorescence architecture through

cell proliferation [154]. Under N- conditions, a phosphatidylinositol 4-kinase was

inferred to affect days to flowering. In arabidopsis, a gene of this class was shown to

induce later flowering when over-expressed [4]. This delay would coincide with the

minor allele significantly showing an increase in days to anthesis (delay in flowering

time).

Tiller number under N+ conditions was predicted to be associated with an auxin-

like protein with increased expression in juvenile stem tissue. Auxin is a well-known

growth-regulating hormone in plants and has been shown to control tillering in grasses
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[3] [95]. Under N- conditions, an aspartyl peptidase was determined to be the product

of a candidate gene affecting tillering. This broad class of enzymes has been shown

to affect plant developmental processes and response to abiotic stress [45].

The SNP with the largest effect on lower stem diameter under N+ conditions

proved difficult to identify. The SNP was located in a gene-dense region of chromo-

some 9, with forty-four genes within the 350 kb candidate gene window. While several

transcription factors and enzymes are encoded by genes in this region, we found no

clear indication of one gene being a candidate over the others. Under N-conditions,

the identified candidate gene affecting lower stem diameter encodes a precursor to

laccase-25. Knockouts of this gene showed a drastic reduction in lignin content, as

well as large, loose xylem cells [203]. This drastic alteration of stem morphology

could lead to differences in stem diameter. The response of lower stem diameter to

nitrogen application was thought to be correlated with a gene encoding a Myb-like

transcription factor. This family of genes is one of the largest in plants, playing

diverse roles in modulating growth and development, as well as response to abiotic

stress [24]. Upper stem diameter in N- conditions was also predicted to be associ-

ated with a Myb-like transcription factor. Under N+ conditions, a gene encoding a

UDP-D-glucose epimerase was identified as a candidate gene. A mutation of a gene

in this family in rice was shown to alter cell-wall proteins leading to a fragile culm

mutation, exhibiting dwarfism and stem morphology [197]. This type of response

would be consistent with the decreased stem diameter seen with the minor allele.

While these genes appear to have relevant biological functions that could alter

their associated phenotypes, it is important to emphasize that they are only candi-

dates for controlling these traits. Further functional validation must be done in order

to definitely say these are the causal genes associated with the allelic effect. This

would typically be done through functional knockouts of the genes using CRISPR/-
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Cas9 and monitoring the effect of the edited plants. If confirmed, these identified

genes would contribute to the understanding of the complex genetics of quantita-

tive traits. They could then be developed as markers to be used in marker-assisted

selection, increasing the rate of crop improvement over traditional breeding. While

only the highest-confidence TAS with the largest effects were further analyzed in this

study, there is the potential to mine even more genetic information from this dataset.

The RMIP threshold of 0.2 used to determine a high-confidence TAS is relatively high

compared to other studies. TAS with minor allelic effect, or an RMIP of 0.05 to 0.2

could still be biologically relevant associations worth further investigation.
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Chapter 3

Plasticity of Sorghum Inflorescence Traits in Response to

Nitrogen Application

3.1 Introduction

In 2021, the total global production of sorghum grain reached 62 million metric tons,

ranking as the fifth most important cereal crop both economically and in terms of

production [168]. Though sorghum grain is primarily used for animal feed in devel-

oped nations, it is a staple food crop and a vital source of nutrition for millions of

people in Africa’s arid and semi-arid developing nations [63].

Two main factors determine sorghum grain yield: grain number per panicle and

grain size. However, many developmental and architectural traits influence the maxi-

mum number of seeds a panicle can produce. The length of the rachis determines the

branching zone of the panicle. Rachis internode length and diameter affect the density

of primary branches within the branching zone. The total length, internode length,

and magnitude of branching of primary branches influence the maximum number of

seeds per branch. The complex interaction of these traits throughout development

controls the final grain yield per panicle. Inflorescence architecture is developmentally

determined during the transition from vegetative to reproductive growth when the

shoot apical meristem transitions into an inflorescence meristem, eventually forming
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branch meristems [161]. Spikelets containing florets develop during the branch meris-

tem developmental phase [85]. In rice, several genes, including OsSPL14, Gn1a, and

DST, have been shown to promote inflorescence branching, increasing grain yield.

Loss-of-function mutations in APO1, APO2, and ASP1 decrease branching due to an

early transition from branch meristem to spikelet meristem [75, 112, 7, 96].

In sorghum, Brown et al., 2006 identified QTL associated with primary branch

number, rachis length, and branch length [18]. More recently, genome-wide associa-

tion studies have identified genetic markers significantly associated with variation in

panicle architecture and proposed candidate genes controlling this variation. Zhao

et al., 2016 identified 101 SNPs representing at least one of nine inflorescence and

biomass-related traits [201]. Zhang et al., 2015 identified numerous genetic markers

associated with 6 panicle morphology traits, including rachis length and [196]. By

characterizing diverse sorghum accessions, researchers have been able to associate spe-

cific inflorescence traits with genomic regions, paving the way for developing molecular

markers and breeding strategies to improve inflorescence architecture [201]. However,

these studies have been conducted strictly under ”optimal” nitrogen conditions.

As described in the previous chapter, this study aims to characterize the response

of sorghum inflorescence-related traits between varying nitrogen conditions across a

broadly diverse set of genetic backgrounds and morphologies. A protocol was devel-

oped to consistently phenotype a dense set of panicle developmental and architectural

traits, including an infertility rating, rachis length, lower and upper rachis diameter,

primary branch number, branch abortion ratio, branch internode length, and mag-

nitude of branching (see appendix b). Through genome-wide association analysis,

SNPs significantly associated with traits of interest were identified to further charac-

terize the genetic architecture of sorghum inflorescence development and response to

nitrogen.
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3.2 Methods

During in-season data collection of fields described in Chapter 2, measured plants

were marked with flagging tape to ensure consistent observations between biomass-

and inflorescence-related phenotypes. Once the field had reached maturity, whole

panicles of marked plants were harvested, placed in labeled paper bags, and dried for

storage. Data cleaning and analysis were performed as described in Chapter 2.

To quantify panicle infertility (IR), a 0-4 scale was developed with 0 corresponding

to 0-5% infertility, 1 to 5-25% infertility, 2 to 25-50%, 3 to 50-75%, and 4 to 75-100%.

Ratings were given based on visual estimation of the percentage of the infertile area on

each panicle. Following infertility rating, primary branches were physically removed

from the rachis and laid out in order from the lowest branches to the tip. Removing the

branches allows for the accurate determination of several panicle morphology traits.

The removed branches were counted to determine a total primary branch number

(PBN). Primary branches were also inspected for abortions of secondary and tertiary

branches. The number of primary branches on which abortions were observed was

divided by the total number of primary branches to calculate a branch abortion ratio

(BAR). Rachis length (RL) was measured from the peduncle to the tip of the rachis.

Lower and upper rachis diameter (RDL, RDU) were measured using digital calipers

to the nearest hundredth of a millimeter at the second internode above the peduncle

and the second internode below the tip, respectively. A representative primary branch

from the lower third of the panicle was selected, and the length of the first internode

(BIL) was recorded. The maximum magnitude of branching (MOB) was recorded

on the same representative lower branch. The protocol developed to consistently

and accurately phenotype diverse sorghum panicles provides specific details of trait

collection (Appendix B).
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3.3 Results

Three-hundred forty-six diverse accessions were grown under two nitrogen applica-

tion conditions: 80lbs/acre anhydrous ammonia pre-emergence, and no supplemental

nitrogen application. Eight inflorescence-related traits were phenotyped, including

inflorescence rating, rachis length, lower and upper rachis diameter, primary branch

number, branch abortion ratio, and magnitude of branching. Following data cleaning

and outlier removal, between 320 and 341 genotypes were retained for further analysis

of phenotypic variation (Table 3.1).

Table 3.1: Mean and SD of Inflorescence Traits Under N+ and N- Conditions

Trait Treatment n Mean SD H2

IR N+ 337 1.26 0.9 0.61
N- 1.55 1 0.6

RL N+ 337 20.86 5.98 0.89
N- 20.18 5.8 0.92

RDL N+ 338 7.12 1.34 0.73
N- 6.51 1.24 0.65

RDU N+ 332 2.67 0.81 0.71
N- 2.43 0.74 0.7

PBN N+ 329 59.94 16.22 0.9
N- 59.02 14.7 0.89

BAR N+ 328 0.07 0.05 0.47
N- 0.11 0.06 0.34

BIL N+ 320 2.21 0.7 0.76
N- 1.82 0.58 0.77

MOB N+ 341 2.34 0.28 0.33
N- 2.23 0.25 0.36

Phenotypic Variation in Inflorescence Traits in Varying Nitrogen Condi-

tions

As with the biomass-related traits in the previous chapter, all infloresence-related

traits were significantly affected by nitrogen application. Figure 3.1 displays density
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plots of the distribution of Best Linear Unbiased Estimates (BLUEs) of phenotypes

under N+ and N- conditions, as well as the distribution of percent change in response

to nitrogen application. Infertility rating and branch abortion ratio were significantly

reduced under N+ conditions (p < 2.20E-16). Nitrogen aaplication was shown to

significantly increase all other measured inflorescence architecture traits (p < 0.001).

Table 3.2 details mean differences in BLUEs of phenotypes between nitrogen condi-

tions and mean percent response to nitrogen application.

Table 3.2: Mean Difference Between N Treatments and % Response to N Application

Trait Mean Difference p-value Response Mean (%) Response SD (%)
IR -0.3 2.20E-16 -9.86 21.67
RL 0.73 6.31E-11 3.42 9.29
RDL 0.62 2.20E-16 10 11.06
RDU 0.26 2.20E-16 12.33 20.11
PBN 0.9 1.61E-03 1.31 7.73
BAR -0.04 2.20E-16 3.71 4.64
BIL 0.39 2.20E-16 23.21 23.05
MOB 0.1 9.36E-11 3.35 8.55
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(a) Inflorescence Rating

(b) Rachis Length

(c) Lower Rachis Diameter
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(d) Upper Rachis Diameter

(e) Primary Branch Number

(f) Branch Abortion Ratio
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(g) Branch Internode Length

(h) Magnitude of Branching

Figure 3.1: Left: Density plots of inflorescence traits measured under N+ and N-
conditions. All traits were significantly affected by nitrogen application (p < 0.001,
paired t-test). Right: Density plots of percent change in response to nitrogen appli-
cation. Vertical lines indicate 0% change.

Though all measured traits were significantly affected by N application, a plastic

response was seen across accessions, with some varieties showing little to no response,

and others following the opposite trend of the overall means. As seen in Table 2.2

and the right panels of Figure 3.3, the mean percent response to nitrogen follows

the expected trends. However, relatively large standard deviations lead to a number

of varieties deviating from expected trends. Figure 3.2 shows phenotypic differences

between individual accessions in N+ and N- conditions.
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(a) Infertility Rating (b) Rachis Length

(c) Lower Rachis Diameter (d) Upper Rachis Diameter
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(e) Primary Branch Number (f) Branch Abortion Ratio

(g) Branch Internode Length (h) Magnitude of Branching

Figure 3.2: Individual Accession’s Response to N Application.

Under N+ conditions, a significant negative correlation was seen between Rachis

diameter (lower and upper) and rachis length (r2 = -0.21, -0.58) As the length of the

rachis increased, the diameter of the rachis decreased. In addition, primary branch
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number and branch internode length were also negatively correlated with lower rachis

diameter (r2 = -0.33, -0.32). As expected, lower and upper rachis diameters are pos-

itively correlated, and rachis diameter was correlated with primary branch number.

A similar but less significant correlation pattern was seen under N- conditions. Up-

per stem diameter and rachis length response to nitrogen application also showed a

significantly negative correlation with each other (Figure 3.3).

Figure 3.3: Pearson correlations between inflorescence-related traits under N+ and
N- conditions, as well as the response to N

Variance partitioning showed a significant proportion of the total observed vari-

ance could be attributed to differences in accessions within each nitrogen treatment
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for six out of the eight measured traits. This indicates high heritability for these

six traits. The large proportion of residual variance seen with branch abortion ratio

and magnitude of branching can most likely be attributed to inconsistent data col-

lection between individuals. Similar patterns were seen between the two years of the

experiment.

Figure 3.4: Percent of the total variance of each trait explained by Genotype(N+),
Genotype(N-), Nitrogen, Genotype X Nitrogen, and residual variances with each year
of the experiment

Genome-Wide Association Studies Identify Trait-Associated SNPs

Genome-wide association studies were conducted on best linear unbiased estimates

of phenotypes under N+ and N- conditions, as well as each accession’s response to N

application. Figure 3.3 shows Manhattan plots of FarmCPU RMIP GWAS results.

Fifty-three unique, high confidence (RMIP > 0.2) trait-associated SNPs (TAS) were

identified across the 8 measured inflorescence-related phenotypes. Of the TAS, 26

were identified under N+ conditions and 25 were identified under N- conditions. Three

TAS were identified under both N+ and N- conditions. No TAS were found to be

associated with response to nitrogen application in any of the measured traits. TAS

in high LD (r2 > 0.5) with each other and less than 1 MB apart were subsequently

defined as a single trait-associated locus (TAL). In total, 45 individual TAL were
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identified. Of these 45 TAL, 8 were found to be pleiotropic, associated with two or

more phenotypes under N+ or N- conditions (Table 3.3).

Inflorescence Rating

Rachis Length
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Lower Rachis Diameter

Upper Rachis Diameter
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Primary Branch Number

Branch Abortion Ratio
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Branch Internode Length

Magnitude of Branching

Figure 3.4: Genome-wide association studies identified SNPs significantly associated
with inflorescence-related traits of interest. Combined Manhattan plots displaying
SNPs associated with N+, N-, and Response phenotypes. Red threshold indicates
high confidence TAS (RMIP ge 0.2)
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Table 3.3: Genetic Markers Associated with Inflorescence Traits (RMIP ≥ 0.2)

Trait Treatment Chromosome SNP RMIP

BIL N+ 1 S01 14369342 0.37

RDU N+ 1 S01 3080438 0.50

BIL N- 1 S01 54777923 0.53

RL N- 1 S01 55419755 0.32

RL N- 1 S01 61535181 0.22

PBN N+ 1 S01 71468216 0.31

RL N- 2 S02 5430343 0.23

PBN N+ 2 S02 59163027 0.60

PBN N- 2 S02 59163027 0.82

PBN N- 2 S02 64260113 0.38

PBN N+ 2 S02 7029387 0.30

IR N+ 3 S03 1439291 0.27

RL N+ 3 S03 16864510 0.30

BIL N- 3 S03 3638220 0.20

RL N- 3 S03 51044414 0.62

PBN N+ 3 S03 52252539 0.24

RDU N- 3 S03 53158538 0.30

RDU N- 3 S03 55218571 0.23

RL N+ 3 S03 58294621 0.62

RL N- 3 S03 58294621 0.28

RDU N+ 3 S03 58294621 0.26

RL N- 3 S03 60119777 0.20

Continued on next page
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Table 3.3 – continued from previous page

Trait Treatment Chromosome SNP RMIP

PBN N- 3 S03 8952378 0.25

RL N+ 4 S04 11652702 0.62

RL N- 4 S04 11652702 0.64

RDL N- 4 S04 15385367 0.38

IR N- 4 S04 23799154 0.33

BIL N- 4 S04 54675690 0.25

RL N+ 4 S04 59721071 0.20

BIL N+ 5 S05 57306500 0.55

RDU N- 5 S05 58110484 0.26

RL N- 5 S05 8361331 0.24

RDU N+ 5 S05 8930414 0.42

RDU N- 6 S06 38499893 0.20

RDU N+ 6 S06 38967490 0.49

RL N+ 6 S06 42215980 0.56

IR N- 6 S06 46425614 0.63

RDL N+ 6 S06 48832934 0.24

RDL N+ 6 S06 48853118 0.41

RDL N- 6 S06 49869080 0.81

RDU N+ 6 S06 58593864 0.49

PBN N+ 7 S07 11418792 0.20

IR N+ 7 S07 15386584 0.25

RDL N+ 7 S07 15468242 0.26

Continued on next page
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Table 3.3 – continued from previous page

Trait Treatment Chromosome SNP RMIP

RL N+ 7 S07 57124005 0.28

PBN N+ 7 S07 63507445 0.20

RDL N- 8 S08 30036262 0.24

RDL N- 8 S08 54822658 0.63

IR N- 9 S09 48896966 0.51

RDL N- 9 S09 49345431 0.27

RDU N+ 10 S10 14109223 0.29

RL N+ 10 S10 14477171 0.25

BIL N- 10 S10 3796379 0.24

IR N+ 10 S10 40432579 0.29

PBN N- 10 S10 46383583 0.20

RDL N+ 10 S10 6264900 0.25

BIL N+ 10 S10 7455470 0.31

Candidate Genes Controlling Variation in Inflorescence Architecture

As mentioned in the previous chapter, LD was found to decay to background levels

within 170 kb on average across the genome. This led to the selection of a 350 kb

window around each trait-associated SNP (TAS) when searching for candidate genes.

TAS with the greatest minor allele effect in N+ and N- conditions were chosen for

further investigation. Spatiotemporal expression levels of transcripts of interest were

used to assist in identifying candidate genes [153].

For infertility rating, a SNP was identified on chromosome 7, S07 15386584,

under N+ conditions. Four genes were present within the candidate gene win-
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dow. Of these, two are uncharacterized and show low levels of expression. One

gene, Sobic.007G091900, encodes a highly conserved serine-threonine receptor-like

kinase (SERK1) and is the most likely candidate in this window. Another gene,

Sobic.007G091600, encodes an RNA-binding protein highly expressed in the panicle

during anthesis. Under N- conditions, the SNP S09 48896966 was identified on chro-

mosome 9. This locus is densely populated with genes, with 29 genes within a 350

window around the SNP, many of which are highly expressed but uncharacterized. Of

these genes, Sobic.009G136000, a protein-regulator of cytokinesis 1 (PRC1-related),

shows expression limited to the panicle during floral initiation.

For rachis length under N+ conditions, S03 16864510 was identified on chromo-

some 3 within a previously reported QTL controlling with panicle length. Fifteen

total genes are located within the candidate gene window. Two genes within this

window could potentially affect rachis length. Sobic.003G154100 encodes a GIB-

BERELLIN 2-BETA-DIOXYGENASE 4 protein but shows root-specific expression.

Sobic.003G154800 encodes a protein of unknown function with panicle-specific ex-

pression. Under N- conditions, S01 61535181 is located in a gene-rich locus of chro-

mosome one with 26 genes in our defined window. This SNP is also located within a

previously identified QTL controlling panicle length. Several uncharacterized genes

in this region are highly expressed in developing panicles. No gene stood out above

others as a probable candidate gene.

The largest effect SNP for lower rachis diameter under N+ conditions was asso-

ciated with an SNP 80 kb downstream and highly linked to the SNP identified for

infertility rating under N+. S07 15468242. Four genes were located within the can-

didate gene window, including the gene encoding a highly conserved serine-threonine

receptor-like kinase (SERK1) identified for infertility. For lower rachis diameter under

N- conditions, the largest effect SNP is located in a heterochromatic region of chromo-
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some 8. There are no genes located within the 350 kb window around S08 30036262.

The closest genes are located 235 kb upstream and 657 kb downstream of the SNP.

The upstream gene encodes an uncharacterized predicted protein and lacks expres-

sion information. The downstream gene, Sobic.008G088900, encodes a transposase

expressed in the panicle and in grain at maturity.

For upper rachis diameter under N+ conditions, the largest effect SNP was lo-

cated 3 Mb from the beginning of chromosome 1, with 51 genes within the candidate

gene window. With this large number of genes linked to the SNP, it is difficult to

accurately identify a candidate gene. The gene most likely to affect this trait is So-

bic.001G038800, encoding a SCAR-like protein highly expressed in the panicle. Under

N- conditions, S03 55218571 was identified to be associated with upper stem diam-

eter. This SNP located on chromosome 3 likely refers to Sobic.003G216800, a gene

encoding a MADS-box protein expressed exclusively in the panicle.

The largest effect SNP associated with primary branch number under N+ con-

ditions is located towards the end of chromosome 1 at 71368216 bp. This SNP is

located within an exon of Sobic.001G436500, a highly conserved IRK-interacting pro-

tein expressed in panicle apices. However, with our criteria, this region contains 43

genes. Again, it is difficult to narrow down this list to a single candidate gene. Un-

der N- conditions, S10 46383583 was found to have a significant effect on primary

branch number. The candidate gene window around this SNP contains 10 genes.

The most promising gene affecting panicle branching is Sobic.010G158100, encoding

a ring-finger-contain E3 ubiquitin-protein ligase.

For branch internode length, S05 57306500 on chromosome 5 showed the largest

allelic effect. This SNP most likely relates to Sobic.005G132000, a gene encoding

an auxin response factor protein located less than 80 kb downstream of the SNP.

Under N- conditions, S01 54777923 on chromosome 1 was shown to have the largest
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effect on branch internode length. Of the 10 genes in the candidate gene window,

Sobic.001G280500, encoding an uncharacterized protein highly expressed in the pan-

icle, shows the most promise to affect branch internode length. This gene is highly

similar to KOB1 in maize, a membrane protein affecting cellulose production.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)
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(i) (j)

(k) (l)

Figure 3.5: Phenotypic differences between accession harboring the major and minor
allele of the largest effect SNP for each trait under N+ and N- conditions

3.4 Discussion

Nitrogen is a major limiting factor in global crop production. Insufficient nitrogen

availability can limit reproductive growth and development, leading to a reduction
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in grain yield. The focus of this study was to investigate the effect of nitrogen ap-

plication on individual traits that contribute to final inflorescence architecture across

diverse sorghum varieties in order to better understand how limited nitrogen availabil-

ity impacts grain yield. A pre-emergence nitrogen application of anhydrous ammonia

at a rate of 80 lbs/acre was shown to significantly decrease the infertility of sorghum

panicles by an average of 9.86%. It also significantly affected all other measured pan-

icle architecture traits. Rachis length was increased by an average of 0.73 cm. Lower

and upper rachis diameters were increased by 0.62 mm and 0.26 mm respectively.

For upper rachis diameter, this translates to a 20.11% mean response to nitrogen

application. Branch abortion ratio was decreased by 3.71%. Branch internode length

showed a mean increase of 0.39 cm or a 23.21% mean response to N application.

Magnitude of branching was only slightly increased at 3.35%. While all traits were

significantly affected by nitrogen, a plastic response to nitrogen application between

diverse sorghum accessions was observed. Six out of the eight measured phenotypes

showed relatively high broad-sense heritability, ranging from 0.6 to 0.92. Magnitude of

branching and branch abortion ratio showed a lower proportion of variance explained

by genetic factors, with heritabilities ranging from 0.33 to 0.47. This observation was

confirmed as no high-confidence significantly associated SNPs were found for these

traits under our strict criteria.

High-confidence trait-associated SNPs (TAS) were identified for the six highly

heritable traits under both N+ and N- conditions (RMIP > 0.2). However, there

were no SNPs significantly associated with response to nitrogen application in any of

the observed traits. Of the 53 TAS identified across the 6 inflorescence phenotypes,

26 were identified under N+ conditions and 25 were identified under N- conditions.

Only 3 TAS were identified under both N+ and N- conditions. The TAS with the

largest minor allele effect for each trait under both nitrogen conditions were selected
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for further investigation into potential candidate genes controlling observed variation.

As described in the previous chapter, linkage disequilibrium decayed to back-

ground levels within the 170 kb of the SNP of interest on average across the genome.

This led to a candidate gene window being defined as 175 kb upstream and down-

stream of the SNP of interest. For infertility rating under N+ conditions, a candidate

gene was identified encoding a highly conserved serine-threonine receptor-like kinase

(SERK1). A gene encoding a protein of this class was also identified as a candidate

for affecting flowering time. These proteins have been shown to play a role in organ

development by promoting cell proliferation in inflorescence architectural develop-

ment [154]. Under N- conditions infertility rating was thought to be controlled by

a gene encoding a microtubule-associated protein 5. These genes play diverse roles

in cellular development, including plant hormone signaling and the development of

morphological structures [86].

For rachis length under N+ conditions, a candidate gene encoding a gibberellin

2-beta-dioxygenase 4 protein was identified. A functional copy of this gene will de-

activate bioactive gibberellic acids in plants [29]. A non-functional minor allele could

lead to more free GAs, potentially increasing rachis length. No clear candidate gene

stood out from the rest of the 26 genes within the 350 kb window as a potential

candidate gene controlling rachis length.

The largest effect SNP for lower rachis diameter under N+ conditions was highly

linked to the SNP identified for infertility rating under N+ conditions. The can-

didate gene was determined to encode the same highly conserved serine-threonine

receptor-like kinase (SERK1). This protein affects cell proliferation and inflorescence

architecture, potentially impacting the diameter of the rachis [154]. The candidate

gene for lower rachis diameter under N- conditions was determined to encode a trans-

posase that is highly expressed in the panicle. Transposases have been shown to play
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a role in plant growth and development through the regulation of epigenetic alter-

ation, affecting gene expression, phenotypic plasticity, and response to abiotic stress

[135].

The candidate gene potentially affecting the upper rachis diameter encodes a

SCAR-like protein that is highly expressed in the panicle. This class of proteins has

been shown to affect growth and development through the modulation of actin, alter-

ing cellular structure and morphology [187]. However, this candidate gene is located

in a gene-dense region of the genome, lowering confidence that this is the causal gene.

In addition, the encoded protein does not display a clear and direct connection to

rachis diameter. Under N- conditions, a gene encoding a MADS-box protein was

found to be associated with upper rachis diameter. MADS-box genes are known to

be key regulators of almost all reproductive developmental processes in plants. These

transcription factors have been shown to shape inflorescence architecture.

The proposed candidate gene affecting primary branch number under N+ condi-

tions encodes highly IRK-interacting protein expressed in panicle apices. This class

of receptor kinases includes the well-characterized and highly conserved CLAVATA1

gene involved in meristem size, maintenance, and regulation, significantly impacting

inflorescence architecture [64]. Under N- conditions, a candidate gene affecting pri-

mary branch number encodes a ring-finger-contain E3 ubiquitin-protein ligase. This

family of proteins play a role in plant growth and stress resistance.

For branch internode length under N+ conditions, a candidate gene was identified

encoding an auxin response factor. Auxin is a key regulator of a wide range of

growth and developmental processes. Auxin response factors influence the expression

of auxin-responsive genes by binding to their promoter and translating the chemical

signal of auxin [141]. The candidate gene affecting branch internode length under N-

conditions is uncharacterized in the sorghum gene. However, its orthologs in maize
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and arabidopsis encode a membrane protein required for the synthesis of cellulose

known as KOB1. In arabidopsis, mutations in this gene lead to a dwarf inflorescence

with shortened internodes and floral organs with a miniature morphology [125].

As described in the previous chapter, these candidate genes should be function-

ally validated before use in a breeding program for crop improvement. TAS with a

smaller allelic effect or lower RMIP should be investigated for biologically meaningful

associations.
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Appendix A

Supplementary Figures

A.1 Chapter 2: Plasticity of Sorghum Biomass Traits in Re-

sponse to Nitrogen Application

(a) Days to Anthesis (b) Tiller Number

(c) Plant Height (d) Lower Stem Diameter
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(e) Upper Stem Diameter (f) Stem Volume

Figure A.1: Q-Q Plots of FarmCPU GWAS of N+, N-, and Response
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A.2 Chapter 3: Plasticity of Sorghum Inflorescence Traits in

Response to Nitrogen Application

(a) Infertility Rating (b) Rachis Length

(c) Lower Rachis Diameter (d) Upper Rachis Diameter

(e) Primary Branch Number (f) Branch Abortion Ratio
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(g) Branch Internode Length (h) Branch Abortion Ratio

Figure A.2: Q-Q Plots of FarmCPU GWAS of N+, N-, and Response
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Appendix B

Sorghum Panicle Phenotyping Protocol

General

We will be collecting 8 phenotypes from sorghum panicles harvested in 2021. The

phenotypes to be collected include: an infertility rating, rachis length, lower rachis di-

ameter, upper rachis diameter, primary branch number, number of primary branches

that show branch abortions, branch internode length, and magnitude of branching.

Definitions:

Panicle – The entire seed head of the sorghum plant, starting at the peduncle and

including the rachis and all branches.

Rachis – The “stem” of the panicle.

Peduncle – The portion of the stem that supports the rachis. This marks the begin-

ning of the panicle.

Primary Branch – A branch is directly attached to the rachis.

Branch Abortion – In sorghum, a branch abortion is typically a secondary or tertiary

branch that began development but was terminated. Branch abortions typically look

like small, twisted twigs where branches should be.

Node – An area of compressed, undifferentiated tissue on a stem (or rachis) from
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which leaves and branches are produced.

Internode – Areas between nodes.

Infertility – Infertility occurs when a flower is present, but no seed is produced. This

can be caused by many genetic and environmental factors.

Phenotypes

Infertility Rating:

Rate the infertility of the panicle on the scale shown below:

0 – 0% to 5% infertility

1 – 5% to 25% infertility
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2 – 25% to 50% infertility

3 – 50% to 75% infertility

4 – 75% to 100% infertility

Do NOT count flowers that have had seeds fall out as infertile. Flowers that

produced seeds, but the seed fell out appear open and empty. Infertile flowers are

small and underdeveloped.

Do NOT count infertility due to the panicle not fully emerging from the flag leaf.

This will be seen as a large patch of infertility on ONE side of the lower portion of

the panicle.
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After giving an infertility rating to the panicle, remove all primary branches from

the rachis and lay them out roughly in order from bottom-most to top-most branches.

Rachis Length:

After removing all primary branches from the rachis, measure the length of the rachis

in centimeters from the peduncle (base) to the tip.

Lower Rachis Diameter:

Using calipers, measure the diameter of the rachis in millimeters at roughly the second

internode up from the peduncle. Try to find a smooth spot in an internode for the

most accurate measurement. The rachis is often oblong in shape. For consistency,

use the flatter side that will give a smaller diameter measurement.
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Upper Rachis Diameter:

Using calipers, measure the diameter of the rachis in millimeters at roughly the second

internode down from the tip of the rachis. Try to find a smooth spot in an internode for

the most accurate measurement. The rachis is often oblong in shape. For consistency,

use the flatter side that will give a smaller diameter measurement.

Primary Branch Number:

At this point, all primary branches should be removed from the rachis and laid out on

the bench in front of you from lower-most to upper-most branch. Count the number

of primary branches that you removed from the rachis.
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Branch Abortion Ratio:

With the primary branches still laid out, count the number of primary branches

that show branch abortion. If present, branch abortions typically occur on the lower

third of primary branches, beginning with the lowest-most branch. However, they

may occur further up the panicle. Divide the number of branches that show branch

abortion by the total number of primary branches to obtain a ratio.
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Branch Internode Length:

With primary branches still laid out in front of you, choose ONE branch from the lower

1/3 of primary branches. The branch you choose should be the most representative

branch possible, with an approximately average internode length. In centimeters,

measure the length of the first internode of the representative primary branch from

where it met the rachis to the lowest secondary branch.

Magnitude of Branching:

On the same primary branch, report the magnitude of branching. This can be defined

as the number of “branches off of branches.” This number should be from 2-4, but 2

and 3 are the most common. Use the figure below as a reference.
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Abstract

The chlorophyll concentrations in the leaves of 84 maize hybrids derived from public

sector and expired plant variety patent inbred parents were measured under three

nitrogen fertilizer rate treatments in two contrasting environments in Nebraska. The

effect of nitrogen treatment on chlorophyll response was found to be significant (p ¡

0.05) for both locations. In Scottsbluff, chlorophyll concentrations increased signif-

icantly with increasing nitrogen rate, while no significant difference was found be-

tween medium and high nitrogen in Lincoln. Within equivalent nitrogen treatments,

chlorophyll was more abundant in Lincoln than in Scottsbluff for nearly every hybrid.

Hybrid response was not consistent between environments, with approximately 11%

of variance explained by genotype by environment interaction.

Description

The global population is projected to reach 9.7 billion by 2050, bringing a significant

challenge to crop production: to produce more food using less land [120]. Between

1985 and 2005, the total global production of cereal crops increased by 29%, while

harvested area decreased by 3.6% [46]. Despite this promising trajectory, further im-

provements must be made in order to meet the predicted demand. In the past century,

a significant portion of yield gain can be attributed to optimizing crop management.

The adoption of synthetic nitrogen fertilizer in the United States is estimated to

be responsible for a 26% increase in the production of six major non-leguminous

crops alone [156]. However, nitrogen fertilizer application has several negative conse-

quences, including increased greenhouse gas emissions, pollution of rural groundwater,

and runoff into rivers and streams, affecting both local and downstream ecosystems.

In addition, nitrogen fertilizer is an expensive input in maize production, reducing
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profit for farmers [198]. Therefore, it is of economic and environmental interest to

limit excess nitrogen application and determine precise nitrogen needs to reach full

yield potential. Maize requires sufficient nitrogen throughout the growing season in

order to reach its maximum yield potential. Understanding the genetic architecture of

maize nitrogen use efficiency will lead to the further development of nitrogen-efficient,

stress-tolerant maize hybrids. Significant increases in leaf chlorophyll content were

observed at the R1 growth stage with increasing nitrogen fertilizer rates in both ir-

rigated and non-irrigated fields [159]. Chlorophyll concentration at the R1 growth

stage is significantly correlated with both yield and seed protein content [2]. This

makes chlorophyll concentration a reliable predictor of plant productivity early in

the reproductive stage, allowing for the determination of nitrogen fertilizer needs.

However, the strength of the correlation of these measurements varied by hybrid and

year, indicating a high degree of environmental plasticity [2]. In order to investigate

the phenotypic plasticity of maize leaf chlorophyll concentration between contrasting

environments and nitrogen conditions, 84 maize hybrids derived from public sector

and expired plant variety patent inbred parents were grown under three nitrogen con-

ditions (Low Nitrogen (LN) – 75 lb/acre, Medium Nitrogen (MN) – 150 lb/acre, High

Nitrogen (HN) – 225 lb/acre) with replication in two locations: Lincoln in eastern

Nebraska and Scottsbluff in western Nebraska. Scottsbluff is approximately 2,700 ft

higher in elevation than Lincoln and receives an average of 13.25 fewer inches of pre-

cipitation per year. In Scottsbluff, iron deficiency (IDC) was observed across all three

nitrogen treatments, leading to interveinal chlorosis. In addition, the Scottsbluff field

received supplemental irrigation while Lincoln was rain-fed. These large differences

in elevation, precipitation, and soil quality across the state make Nebraska an ideal

location for studying plasticity in contrasting environments. Chlorophyll concentra-

tion measurements were taken using an Apogee MC-100 Chlorophyll Concentration
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Meter. This system emits two wavelengths of light to measure the ratio of optical

transmission of near-infrared radiation (931 nm) to red light (653 nm). Red light is

absorbed by chlorophyll while NIR is reflected, allowing for the quantification of leaf

chlorophyll content using the chlorophyll content index (CCI). CCI readings are sub-

sequently converted to absolute chlorophyll content in units of µmol/m2. Chlorophyll

concentration was higher in Lincoln than in Scottsbluff for nearly every hybrid across

all three nitrogen treatments. Interestingly, similar concentrations were obtained be-

tween Lincoln LN and Scottsbluff HN due to the highly significant location effect (Fig.

1A). Within each location, the effect of nitrogen treatment on chlorophyll concentra-

tion was statistically significant (p < 0.05). In Lincoln, the LN treatment differed

significantly from the MN and HN treatments, with a non-significant (¡1%) decrease

between HN and MN and an approximately 16% decrease between HN and LN (Fig.

1B). In Scottsbluff, all three treatments differed significantly with a 12.2% decrease

between HN and MN and a 30% decrease between HN and LN (Fig. 1C). Chlorophyll

concentration is shown to be moderately genetically controlled with broad-sense her-

itabilities within each environment (Location/Treatment combination) ranging from

0.48 to 0.74 (Fig. 1H). A mixed model considering genotype (G), environment (N

Treatment + Location, E), and genotype by environment (GxE) effects was fit to the

chlorophyll concentration data. Approximately 37% of the total variation in chloro-

phyll concentration can be explained by differences in genotype, while 52% can be

attributed to the environment. 11% of the total variance in chlorophyll concentration

can be explained by GxE, showing a plastic hybrid response to environmental factors

(Fig. 1G).
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Methods

Fields were planted in two locations at the University of Nebraska-Lincoln’s Havelock

Farm in Lincoln (40.852, -96.618), NE, and the University of Nebraska Panhandle

Research Center in Scottsbluff, NE on 5/20/22 and 5/19/22 respectively. Each field

was laid out in a randomized complete block design with three blocks at each lo-

cation corresponding to three nitrogen application treatments: Low Nitrogen (LN,

75 lbs/acre), Medium Nitrogen (MN, 150 lbs/acre), and High Nitrogen (HN, 225

lbs/acre). Eighty-four hybrids were replicated twice in each block for a total of ap-

proximately 170 plots per block and 510 plots per field. Each plot consisted of four

17.5 ft long rows of a single hybrid planted at 30-inch row spacing. The Scottsbluff

field received supplemental moisture through a center pivot irrigation system, while

the Lincoln field was non-irrigated. Data collection took place in a single day on

7/26 (67 DAS) in Lincoln and 8/1 (74 DAS) in Scottsbluff. The fields were at a

similar developmental stage, with an estimated 40-60% of plots at or past the R1

growth stage. Chlorophyll concentration was measured using an Apogee MC-100

Chlorophyll Concentration Meter on two representative plants from the middle of

each plot. Measurements were collected on the third fully developed leaf from the

top of the plant. On each left, three measurements were taken, starting at the base

and moving towards the tip, avoiding the midrib to account for in-leaf variability [55].

All six measurements from each plot were averaged to obtain a final plot of chloro-

phyll concentration in µmol/m2. Statistical analyses were conducted in R v.4.1.2

(R Core Team 2021). The meta-package tidyverse [182] was utilized for data pro-

cessing and visualization. Data distributions were visually checked for outliers, and

non-biologically meaningful outliers were removed. Between 3 and 12 plots from

each location/treatment combination were omitted from the analysis due to outlier
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determination or missing data due to plot damage. To compare the impact of the

treatment effect across hybrids and between locations, mixed models were fit to the

chlorophyll concentration data using the lmer function within the package lme4 [9].

A model was fit to chlorophyll measurements from both the Lincoln and Scottsbluff

fields containing nitrogen treatment as a fixed effect and genotype as a random effect.

Fisher’s least significant difference (LSD) was used to obtain p-values for treatment

effects, with values below 0.05 considered significant. A third model was fit to the

combined dataset, which designated each treatment/location combination as a sepa-

rate environment. The model contained environment as a fixed effect and genotype,

as well as genotype by environment interaction (GxE) as random effects. This allows

the determination of the proportion of total variance explained by these three effects.

To calculate broad-sense heritability, simplified models were fit to each environment

to obtain genetic and residual variances. Broad-sense heritabilities were estimated

using the following equation:

H2 =
σ2
g

σ2
g +

σ2
e

n

With σ2
g corresponding to genetic variance, σ2

e to residual variance, and n to the

number of replicates.
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G

H2

Lincoln Scottsbluff
LN (N-75) 0.74 0.48
MN (N-150) 0.72 0.57
HN (N-225) 0.66 0.54

H

Figure C.1: A) Boxplot comparing leaf chlorophyll concentration across treatments
and locations. B,C) Chlorophyll concentration increased significantly with increased
nitrogen fertilizer rate in Scottsbluff while HN and MN differed non-significantly in
Lincoln. Error bars indicate the least significant difference at 5% significance and
letters indicate significance groups . D,E,F) Individual hybrids show a plastic response
between treatments and locations. G) Approximately 11% of the total variance in
chlorophyll concentration can be explained by GxE interaction, showing the ability of
maize to alter its phenotype in differing environments. H) Broad-sense heritabilities
show moderately high genetic control of chlorophyll concentration.
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[9] D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects

models using lme4. Journal of Statistical Software, 67(1):1–48, 2015.
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[26] I. Castro Maŕın, I. Loef, L. Bartetzko, I. Searle, G. Coupland, M. Stitt, and

D. Osuna. Nitrate regulates floral induction in arabidopsis, acting independently

of light, gibberellin and autonomous pathways. Planta, 233(3):539–552, 2011.



106

[27] L. Chaerle, D. Hagenbeek, E. De Bruyne, R. Valcke, and D. Van

Der Straeten. Thermal and chlorophyll-fluorescence imaging distinguish

plant-pathogen interactions at an early stage. Plant and Cell Physiol-

ogy, 45(7):887–896, 2004. eprint: https://academic.oup.com/pcp/article-

pdf/45/7/887/19669308/pch097.pdf.

[28] W. Chen, W. Wang, M. Peng, L. Gong, Y. Gao, J. Wan, S. Wang, L. Shi,

B. Zhou, Z. Li, X. Peng, C. Yang, L. Qu, X. Liu, and J. Luo. Comparative and

parallel genome-wide association studies for metabolic and agronomic traits in

cereals. Nature Communications, 7(1):12767, 2016.

[29] J. Cheng, J. Ma, X. Zheng, H. Lv, M. Zhang, B. Tan, X. Ye, W.Wang, L. Zhang,

Z. Li, J. Li, and J. Feng. Functional analysis of the gibberellin 2-oxidase gene

family in peach. Frontiers in Plant Science, 12, 2021.

[30] G. Chuck, M. Muszynski, E. Kellogg, S. Hake, and R. J. Schmidt. The control

of spikelet meristem identity by the branched silkless1 gene in maize. Science,

298(5596):1238–1241, 2002. Publisher: American Association for the Advance-

ment of Science.

[31] G. Chuck, C. Whipple, D. Jackson, and S. Hake. The maize SBP-box tran-

scription factor encoded by tasselsheath4 regulates bract development and the

establishment of meristem boundaries. Development, 137(8):1243–1250, 2010.

[32] G. S. Chuck, P. J. Brown, R. Meeley, and S. Hake. Maize SBP-box transcription

factors unbranched2 and unbranched3 affect yield traits by regulating the rate

of lateral primordia initiation. Proceedings of the National Academy of Sciences,

111(52):18775–18780, 2014. Publisher: Proceedings of the National Academy

of Sciences.



107

[33] J. P. Coles, A. L. Phillips, S. J. Croker, R. Garćıa-Lepe, M. J. Lewis, and
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[160] C. Sánchez-Rodŕıguez, I. Rubio-Somoza, R. Sibout, and S. Persson. Phytohor-

mones and the cell wall in arabidopsis during seedling growth. Trends in Plant

Science, 15(5):291–301, 2010.

[161] W. Tanaka, M. Pautler, D. Jackson, and H.-Y. Hirano. Grass

meristems II: Inflorescence architecture, flower development and meris-

tem fate. Plant and Cell Physiology, 54(3):313–324, 2013. eprint:

https://academic.oup.com/pcp/article-pdf/54/3/313/17911588/pct016.pdf.

[162] C. Tang, X. Yang, X. Chen, A. Ameen, and G. Xie. Sorghum biomass and

quality and soil nitrogen balance response to nitrogen rate on semiarid marginal

land. Field Crops Research, 215:12–22, 2018.



131

[163] P. Tanger, S. Klassen, J. P. Mojica, J. T. Lovell, B. T. Moyers, M. Baraoidan,

M. E. B. Naredo, K. L. McNally, J. Poland, D. R. Bush, H. Leung, J. E. Leach,

and J. K. McKay. Field-based high throughput phenotyping rapidly identi-

fies genomic regions controlling yield components in rice. Scientific Reports,

7(1):42839, 2017.

[164] S. D. Tatagiba, F. M. DaMatta, and F. A. Rodrigues. Leaf gas exchange and

chlorophyll a fluorescence imaging of rice leaves infected with monographella

albescens. Phytopathology®, 105(2):180–188, 2015. Publisher: Scientific Soci-

eties.

[165] L. Tibbs Cortes, Z. Zhang, and J. Yu. Status and prospects of genome-wide

association studies in plants. The Plant Genome, 14(1):e20077, 2021. eprint:

https://acsess.onlinelibrary.wiley.com/doi/pdf/10.1002/tpg2.20077.

[166] B. Trevaskis. Developmental pathways are blueprints for designing successful

crops. Frontiers in Plant Science, 9, 2018.

[167] A. D. Tripathi, R. Mishra, K. K. Maurya, R. B. Singh, and D. W. Wilson.

Chapter 1 - estimates for world population and global food availability for

global health. In R. B. Singh, R. R. Watson, and T. Takahashi, editors, The

Role of Functional Food Security in Global Health, pages 3–24. Academic Press,

2019.

[168] USDA Foreign Agricultural Service. World agricultural production. World

Production, Markets, and Trade Report, Feb 2023.

[169] W. Valdar, C. C. Holmes, R. Mott, and J. Flint. Mapping

in structured populations by resample model averaging. Genetics,



132

182(4):1263–1277, 2009. eprint: https://academic.oup.com/genetics/article-

pdf/182/4/1263/42176342/genetics1263.pdf.

[170] S. Vanneste and J. Friml. Auxin: A trigger for change in plant development.

Cell, 136(6):1005–1016, 2009.

[171] N. Virlet, K. Sabermanesh, P. Sadeghi-Tehran, and M. J. Hawkesford. Field

scanalyzer: An automated robotic field phenotyping platform for detailed crop

monitoring. Functional Plant Biology, 44(1):143–153, 2016. Publisher: CSIRO

PUBLISHING.

[172] P. M. Visscher, M. A. Brown, M. I. McCarthy, and J. Yang. Five years of

GWAS discovery. The American Journal of Human Genetics, 90(1):7–24, 2012.

[173] P. M. Visscher, N. R. Wray, Q. Zhang, P. Sklar, M. I. McCarthy, M. A. Brown,

and J. Yang. 10 years of GWAS discovery: Biology, function, and transla-

tion. The American Journal of Human Genetics, 101(1):5–22, 2017. Publisher:

Elsevier.

[174] Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, and Buckler ES. Asso-

ciation mapping across numerous traits reveals patterns of functional variation

in maize. Population Genetics, 10(12):e1004845, 2014.

[175] J. Walsh and M. Freeling. The liguleless2 gene of maize func-

tions during the transition from the vegetative to the reproductive

shoot apex. The Plant Journal, 19(4):489–495, 1999. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313X.1999.00541.x.

[176] J. Walsh, C. A. Waters, and M. Freeling. The maize geneliguleless2 en-

codes a basic leucine zipper protein involved in the establishment of the leaf



133

blade–sheath boundary. Genes & Development, 12(2):208–218, 1998. Company:

Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Labo-

ratory Press Institution: Cold Spring Harbor Laboratory Press Label: Cold

Spring Harbor Laboratory Press Publisher: Cold Spring Harbor Lab.

[177] Q. Wang, F. Tian, Y. Pan, E. S. Buckler, and Z. Zhang. A SUPER powerful

method for genome wide association study. PLOS ONE, 9(9):e107684, 2014.

Publisher: Public Library of Science.

[178] X. Wang, N. R. Tucker, G. Rizki, R. Mills, P. H. Krijger, E. de Wit, V. Subra-

manian, E. Bartell, X.-X. Nguyen, J. Ye, J. Leyton-Mange, E. V. Dolmatova,

P. van der Harst, W. de Laat, P. T. Ellinor, C. Newton-Cheh, D. J. Milan,

M. Kellis, and L. A. Boyer. Discovery and validation of sub-threshold genome-

wide association study loci using epigenomic signatures. eLife, 5:e10557, 2016.

Publisher: eLife Sciences Publications, Ltd.

[179] Y. Wang, J. Bao, X. Wei, S. Wu, C. Fang, Z. Li, Y. Qi, Y. Gao, Z. Dong, and

X. Wan. Genetic structure and molecular mechanisms underlying the forma-

tion of tassel, anther, and pollen in the male inflorescence of maize (zea mays

l.). Cells, 11(11):1753, 2022. Number: 11 Publisher: Multidisciplinary Digital

Publishing Institute.

[180] Y. Wang, J. Sun, S. S. Ali, L. Gao, X. Ni, X. Li, Y. Wu, and J. Jiang. Iden-

tification and expression analysis of sorghum bicolor gibberellin oxidase genes

with varied gibberellin levels involved in regulation of stem biomass. Industrial

Crops and Products, 145:111951, 2020.

[181] Y.-Y. Wang, P.-K. Hsu, and Y.-F. Tsay. Uptake, allocation and signaling of

nitrate. Trends in Plant Science, 17(8):458–467, 2012.



134

[182] H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François,

G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen,

E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson, D. P. Seidel, V. Spinu,

K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the

tidyverse. Journal of Open Source Software, 4(43):1686, 2019.

[183] F. Winchell, C. J. Stevens, C. Murphy, L. Champion, and D. Fuller. Evidence

for sorghum domestication in fourth millennium BC eastern sudan: Spikelet

morphology from ceramic impressions of the butana group. Current Anthropol-

ogy, 58(5):673–683, 2017. eprint: https://doi.org/10.1086/693898.

[184] L. Xiang, Y. Bao, L. Tang, D. Ortiz, and M. G. Salas-Fernandez. Automated

morphological traits extraction for sorghum plants via 3d point cloud data anal-

ysis. Computers and Electronics in Agriculture, 162:951–961, 2019.

[185] Y. Xiao, H. Liu, L. Wu, M. Warburton, and J. Yan. Genome-wide association

studies in maize: Praise and stargaze. Molecular Plant, 10(3):359–374, 2017.

[186] G. Xu, X. Wang, C. Huang, D. Xu, D. Li, J. Tian, Q. Chen, C. Wang,

Y. Liang, Y. Wu, X. Yang, and F. Tian. Complex genetic architecture under-

lies maize tassel domestication. New Phytologist, 214(2):852–864, 2017. eprint:

https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/nph.14400.

[187] M. Yanagisawa, C. Zhang, and D. Szymanski. ARP2/3-dependent growth in

the plant kingdom: SCARs for life. Frontiers in Plant Science, 4, 2013.

[188] K. Yano, E. Yamamoto, K. Aya, H. Takeuchi, P.-c. Lo, L. Hu, M. Yamasaki,

S. Yoshida, H. Kitano, K. Hirano, and M. Matsuoka. Genome-wide association

study using whole-genome sequencing rapidly identifies new genes influencing

agronomic traits in rice. Nature Genetics, 48(8):927–934, 2016.



135

[189] H. Yao, A. Skirpan, B. Wardell, M. S. Matthes, N. B. Best, T. McCubbin,

A. Durbak, T. Smith, S. Malcomber, and P. McSteen. The barren stalk2

gene is required for axillary meristem development in maize. Molecular Plant,

12(3):374–389, 2019.

[190] C. R. Yendrek, T. Tomaz, C. M. Montes, Y. Cao, A. M. Morse,

P. J. Brown, L. M. McIntyre, A. D. Leakey, and E. A. Ainsworth.

High-throughput phenotyping of maize leaf physiological and bio-

chemical traits using hyperspectral reflectance. Plant Physiology,

173(1):614–626, 2016. eprint: https://academic.oup.com/plphys/article-

pdf/173/1/614/38119655/plphys v173 1 614.pdf.

[191] L. Yin, H. Zhang, Z. Tang, J. Xu, D. Yin, Z. Zhang, X. Yuan, M. Zhu, S. Zhao,

X. Li, and X. Liu. rMVP: A memory-efficient, visualization-enhanced, and

parallel-accelerated tool for genome-wide association study. Genomics, Pro-

teomics & Bioinformatics, 19(4):619–628, 2021.

[192] A. Yoshida, Y. Ohmori, H. Kitano, F. Taguchi-Shiobara, and H.-Y. Hi-

rano. ABERRANT SPIKELET AND PANICLE1, encoding a TOPLESS-

related transcriptional co-repressor, is involved in the regulation of meris-

tem fate in rice. The Plant Journal, 70(2):327–339, 2012. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-313X.2011.04872.x.

[193] J. Yu, G. Pressoir, W. H. Briggs, I. Vroh Bi, M. Yamasaki, J. F. Doebley,

M. D. McMullen, B. S. Gaut, D. M. Nielsen, J. B. Holland, S. Kresovich, and

E. S. Buckler. A unified mixed-model method for association mapping that

accounts for multiple levels of relatedness. Nature Genetics, 38(2):203–208,

2006. Number: 2 Publisher: Nature Publishing Group.



136

[194] Yuan, W., Dong, S., and Adelson, E.H. GelSight: High-resolution robot tactile

sensors for estimating geometry and force. Sensors, 17(12):2762, 2017.

[195] Y. Zhai, Y. Lv, X. Li, W. Wu, W. Bo, D. Shen, F. Xu, X. Pang, B. Zheng, and

R. Wu. A synthetic framework for modeling the genetic basis of phenotypic

plasticity and its costs. The New Phytologist, 201(1):357–365, 2014. Publisher:

[Wiley, New Phytologist Trust].

[196] D. Zhang, W. Kong, J. Robertson, V. H. Goff, E. Epps, A. Kerr, G. Mills,

J. Cromwell, Y. Lugin, C. Phillips, and A. H. Paterson. Genetic analysis of

inflorescence and plant height components in sorghum (panicoidae) and com-

parative genetics with rice (oryzoidae). BMC Plant Biology, 15(1):107, 2015.

[197] R. Zhang, H. Hu, Y. Wang, Z. Hu, S. Ren, J. Li, B. He, Y. Wang, T. Xia,

P. Chen, G. Xie, and L. Peng. A novel rice fragile culm 24 mutant encodes

a UDP-glucose epimerase that affects cell wall properties and photosynthesis.

Journal of Experimental Botany, 71(10):2956–2969, 2020.

[198] X. Zhang, E. A. Davidson, D. L. Mauzerall, T. D. Searchinger, P. Dumas, and

Y. Shen. Managing nitrogen for sustainable development. Nature, 528(7580):51–

59, 2015.

[199] Y. Zhang, I. v. Behrens, R. Zimmermann, Y. Ludwig, S. Hey, and

F. Hochholdinger. LATERAL ROOT PRIMORDIA 1 of maize acts as a

transcriptional activator in auxin signalling downstream of the aux/IAA gene

rootless with undetectable meristem 1. Journal of Experimental Botany,

66(13):3855–3863, 2015. eprint: https://academic.oup.com/jxb/article-

pdf/66/13/3855/17136008/erv187.pdf.



137

[200] Z. Zhang, E. Ersoz, C.-Q. Lai, R. J. Todhunter, H. K. Tiwari, M. A. Gore, P. J.

Bradbury, J. Yu, D. K. Arnett, J. M. Ordovas, and E. S. Buckler. Mixed linear

model approach adapted for genome-wide association studies. Nature Genetics,

42(4):355–360, 2010.

[201] J. Zhao, M. B. Mantilla Perez, J. Hu, and M. G. Salas Fernandez.

Genome-wide association study for nine plant architecture traits in

sorghum. The Plant Genome, 9(2):plantgenome2015.06.0044, 2016. eprint:

https://acsess.onlinelibrary.wiley.com/doi/pdf/10.3835/plantgenome2015.06.0044.

[202] X. Zhou and M. Stephens. Genome-wide efficient mixed-model analysis for

association studies. Nature Genetics, 44(7):821–824, 2012.

[203] Z. Zhou, Q. Li, L. Xiao, Y. Wang, J. Feng, Q. Bu, Y. Xiao, K. Hao, M. Guo,

W. Chen, and L. Zhang. Multiplexed CRISPR/cas9-mediated knockout of lac-

case genes in salvia miltiorrhiza revealed their roles in growth, development,

and metabolism. Frontiers in Plant Science, 12, 2021.

[204] C. Zhu, M. Gore, E. S. Buckler, and J. Yu. Status and prospects of

association mapping in plants. The Plant Genome, 1(1), 2008. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.3835/plantgenome2008.02.0089.

[205] C. Zhu and J. Yu. Nonmetric multidimensional scaling corrects for popula-

tion structure in association mapping with different sample types. Genetics,

182(3):875–888, 2009.

[206] J. Zhu, S. M. Kaeppler, and J. P. Lynch. Mapping of QTLs for lateral root

branching and length in maize (zea mays l.) under differential phosphorus sup-

ply. Theoretical and Applied Genetics, 111(4):688–695, 2005.


	Plasticity of Sorghum Biomass and Inflorescence Traits in Response to Nitrogen Application
	

	List of Figures
	List of Tables
	Introduction
	Plasticity of Sorghum Biomass Traits in Response to Nitrogen Application
	Introduction
	Methods
	Results
	Discussion

	Plasticity of Sorghum Inflorescence Traits in Response to Nitrogen Application
	Introduction
	Methods
	Results
	Discussion

	Supplementary Figures
	Chapter 2: Plasticity of Sorghum Biomass Traits in Response to Nitrogen Application
	Chapter 3: Plasticity of Sorghum Inflorescence Traits in Response to Nitrogen Application

	Sorghum Panicle Phenotyping Protocol
	Variation in Leaf Chlorophyll Concentration in Response to Nitrogen Application Across Maize Hybrids in Contrasting Environments
	Bibliography

