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Abstract: Arthropod-borne virus (arbovirus) populations exist as mutant swarms that are main-
tained between arthropods and vertebrates. West Nile virus (WNV) population dynamics are
host-dependent. In American crows, purifying selection is weak and population diversity is high
compared to American robins, which have 100- to 1000-fold lower viremia. WNV passed in robins
leads to fitness gains, whereas that passed in crows does not. Therefore, we tested the hypothesis
that high crow viremia allows for higher genetic diversity within individual avian peripheral blood
mononuclear cells (PBMCs), reasoning that this could have produced the previously observed host-
specific differences in genetic diversity and fitness. Specifically, we infected cells and birds with
a molecularly barcoded WNV and sequenced viral RNA from single cells to quantify the number
of WNV barcodes in each. Our results demonstrate that the richness of WNV populations within
crows far exceeds that in robins. Similarly, rare WNV variants were maintained by crows more
frequently than by robins. Our results suggest that increased viremia in crows relative to robins
leads to the maintenance of defective genomes and less prevalent variants, presumably through
complementation. Our findings further suggest that weaker purifying selection in highly susceptible
crows is attributable to this higher viremia, polyinfections and complementation.

Keywords: West Nile virus; Flavivirus; RNA virus evolution

1. Introduction

The genetic diversity of RNA virus populations, including arthropod-borne viruses
(arboviruses) within hosts, is well described [1–9] and contributes to virus fitness, patho-
genesis and adaptation in response to changing environments [10–17]. West Nile virus
(WNV, Flaviviridae, Flavivirus) has adapted to local mosquitoes and birds since its intro-
duction into North America in order to maximize transmission and concomitant human
disease [18,19]. WNV population structure is shaped by alternating replication in wild birds
and mosquitoes [12,15,20–24]. Birds exhibit distinct disease phenotypes during infection
and exert species-specific impacts on WNV genetic diversity and fitness [12,15,17,25–27].
American crows (Corvus brachyrhynchos) are highly susceptible to WNV-induced mor-
tality and produce extremely high viremia during acute infection. Conversely, Amer-
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ican robins (Turdus migratorius) are relatively resistant to severe disease and produce
lower viremia [13,26]. WNV that has replicated exclusively in robins bears the signa-
ture of strong purifying selection, with few insertions, deletions and nonsynonymous
mutations detected [15]. However, a subset of mutations arising during replication in
robins reaches relatively high population frequency, resulting in fitness gains. In crows,
however, WNV achieves high levels of population richness that includes abundant in-
trahost single nucleotide variants (iSNVs) and lethal intrahost length variants (iLVs) and
fitness losses [15]. Therefore, distinct avian species that serve as enzootic hosts for WNV
in nature may have remarkably distinct impacts on virus population structure, fitness
and transmission [11,15,18,28–31].

The differences in viral load in robins compared to crows may significantly contribute
to the distinct impacts of robins compared to crows in WNV populations. WNV viremia
within crows, and viral loads within their tissues, typically vastly exceeds those present
in robins [11,15,26,32,33]. We, therefore, hypothesized that the extent of polyinfection
(infection of a single cell by multiple distinct WNV genomes) in individual crow cells vastly
exceeds that which occurs within robin cells. As a result, the ability of natural selection to
remove deleterious variants from the population could be reduced due to more frequent
complementation of defective or low-fitness genomes with those that are of high or average
fitness. In addition, higher-fitness WNV genotypes may be suppressed by the large number
of low-fitness WNV genomes generated via error-prone replication. Notably, both of these
phenomena have been documented in in vitro studies [15,27,31,34–37] and are consistent
with our prior observations of in vivo replication of WNV in wild birds [15]. Nonetheless,
whether polyinfection indeed occurs more frequently in crows compared to robins has not
been addressed. Further, the impact of host viremia on the strength of selection has not
been experimentally examined using ecologically relevant animals.

Therefore, in this study, we assessed the degree of polyinfection within individual
cells in crows and robins in and ex vivo compared to cultured avian fibroblast cells using
a newly developed barcoded version of WNV. Specifically, we examined the dynamics
of infection in PBMCs, key targets of WNV replication in mammals and birds, to explore
the relationship between multiplicity of infection (MOI)-dependent polyinfection and
complementation [38–43]. While the specific cell tropism of WNV within avian PBMCs
is not well understood, monocytes and dendritic cells are known targets in humans and
horses [18,40,44]. Single cell analysis of PBMCs from birds infected with barcoded WNV
revealed more viral genotypes simultaneously infecting crow cells than robins. Rare viral
genotypes were also more likely to be maintained during crow infections while they were
rapidly eliminated during the infection of robins. This finding suggests that the fitness of
WNV variants may be host-dependent, and this dependence may be related to viremia
and the frequency of polyinfection. These results suggest that natural selection may be
weakened within highly susceptible host species due to high viremias and MOI, leading to
frequent polyinfection of cells, increasing the likelihood of complementation. Our results
also provide support for previous observations that document slower virus divergence in
crows compared to robins and point to the significance of American crows for maintaining
virus genetic diversity under natural conditions.

2. Materials and Methods

FtC-3699 Infection of ex vivo PBMCs and DF1 cells. FtC-3699 is a wildtype WNV
isolated from Culex spp. mosquito pools collected in Fort Collins, Colorado, in 2012 and
passaged twice on Vero cells (GenBank accession KR868734). PBMCs were separated from
American crow and robin whole blood using a Histopaque-1077 (Sigma-Aldrich, Burlington,
VT, USA) gradient as previously described [39]. PBMCs and chicken dermal fibroblasts
(DF1) (ATCC® CRL-12203™) were infected with WNV strain FtC-3699 at MOIs of 0.1, 1 or
10, and they were washed and supplemented with fresh RPMI medium containing 10% FBS
as described [39]. Supernatants were harvested at the designated time points and stored at
−80 ◦C for plaque assays and RNA extraction.
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Generation of a Molecularly Barcoded WNV (BC-WNV). A barcoded WNV was gen-
erated as previously described using a previously described WNV infectious clone [45,46]. Briefly,
a region was identified in the NS4b protein for the insertion of degenerate synonymous
nucleotides at 11 consecutive third codon positions where any mutation would result in no
alteration to the amino acid. PCR amplifications were performed with Q5 DNA polymerase
(NEB, Ipswich, MA, USA) and assembly was performed using the HiFi DNA assembly
master mix (NEB Ipswich, MA, USA). The digested assembly reaction was amplified via
rolling circle amplification using the Repli-g mini kit (Qiagen, Germantown, MD, USA).
The correct assembly was confirmed by assessing the banding pattern through restriction
digestion, and the sequence was confirmed using Sanger sequencing. Infectious RNA was
generated with in vitro transcription using the ARCA 2X T7 master mix (NEB, Ipswich, MA,
USA) with subsequent transfection in 293T cells (ATCC® CRL-3216™) using Lipofectamine
3000 (Thermo Fisher Scientific, Waltham, MA, USA). Virus was harvested and aliquots
were stored at −80 ◦C.

Animals. Animal use was reviewed and approved by CSU Institutional Animal Care
and Use Committee (15-5958; 18-8080A) according to the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. Wild-caught American crows and
American robins from northern Colorado were housed in 20 m2 rooms and provided water
and a mixture of dry dog food (crows), moistened dry cat food (robins), berries (robins)
and mealworms (robins) ad libitum in addition to various enrichment activities. Birds were
tested for antibodies against WNV using a plaque-reduction neutralization test according to
standard practices. Only serologically negative animals were used in infection experiments.
Prior to infection, groups of 2–3 birds were moved to 0.5 to 1 m3 cages within CSU biosafety
level three (BSL3) facilities. After infection, birds were monitored several times daily for
clinical symptoms. Jugular venipuncture was performed for blood collection. Birds were
euthanized at 5 days post-infection.

Bird Infection. Birds were inoculated with BC-WNV via subcutaneous injection in
the pectoral region with 10,000 plaque forming units (PFUs) in 100 µL medium containing
1% FBS, MEM+ 2 mM glutamine+ 10% FBS + 1% non-essential amino acids (NEAA),
penicillin-streptomycin, sodium bicarbonate at a final concentration of 1.5–2.2 g/L and
sodium pyruvate at a final concentration of 110 mg/L.

DF1 Infection. DF1 cells were infected with BC-WNV similarly to previous infection
using FtC-3699 virus. DF1 cells were detached using TrypLE and trypsin was neutralized
before centrifugation. After supernatant was aspirated, 4% paraformaldehyde (PFA) in
PBS was added to the cell pellet and cells were used for flow cytometry and sorting.

Blood Processing. PBMCs were separated from peak infection whole blood via density
gradient centrifugation using Histopaque-1077 (Sigma-Aldrich, Burlington, VT, USA) and
utilized for flow cytometry and sorting, RNA extraction and library preparation.

PBMC and DF1 Preparation for Flow Cytometry. PBMC and DF1 cells were incu-
bated on ice, pelleted and washed with a staining buffer containing 1xPBS, 1% RNAse-free
BSA (Gemini Bio, West Sacramento, CA, USA) and 1:400 RNasin Plus (Promega, Madi-
son, WI, U&SA) before storage at −80 ◦C. Before flow cytometry, cells were washed with
PBS, then permeabilized using 1X PBS, 0.1% Triton X100 (Sigma-Aldrich, Burlington, VT,
USA), 1% RNAse-free BSA and 1:400 of RNasin Plus. Cells were pelleted, washed and
blocked with medium containing 2% FBS, and incubated with an anti-WNV capsid anti-
body (GTX-131947; diluted 1:1000) and a subsequent AlexaFluor 647-labeled secondary
antibody (diluted 1:1000).

Single Cell Sorting and RNA Extraction. Cells were sorted through a 70-micron
nozzle at the lowest speed possible using the BD FACSAria™ III sorter. We gated on and
collected WNV-positive cells. We used a modified protocol previously used to sequence
individual fixed and stained single brain radial glial cells [47]. Cells were sorted into
96-well plates containing lysis buffer with proteinase K solution in PKD buffer (1:16)
(Qiagen, Germantown, MD, USA) and were stored at −80 ◦C. Samples were incubated
for 1 h at 56 ◦C with the lid set to 66 ◦C in a thermos block for reverse crosslinking. Total
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RNA was extracted using the Mag-Bind Viral DNA/RNA 96 kit (Omega Bio-Tek, Norcross,
GA, USA) on the KingFisher Flex Magnetic Particle Processor (Thermo Fisher Scientific,
Waltham, MA, USA), according to manufacturer’s protocols, adjusted for small volumes.

Screening for Positive Cells. Only RNA derived from wells containing single WNV-
positive cells, as determined by qRT-PCR for the 18S housekeeping gene and WNV copies,
was used for library preparation, regardless of WNV cycle threshold value.

Library Preparation of Single cell RNA. Previously described methods were modi-
fied to adapt the Primer ID approach [48,49] to the Illumina MiSeq platform. Methods are
provided below, and development is provided in Supplementary Materials.

cDNA Generation and Purification. Thus, 5 µL of RNA was combined with 1 µL of
10 mM deoxynucleoside triphosphates (dNTPs), 1µL of cDNA primer (ID_cDNAWNV_7374_Rev)
(10 µM) and 3 µL of nuclease-free water. The 10 µL reaction volume was incubated for
5 min at 65 ◦C and then placed on ice for 2 min. A reverse transcription reaction mixture
containing 1µL of Superscript III RT enzyme, 1µL of RNaseOut, 2 µL dithiothreitol (DTT),
4 µL of 25 mM MgCl2 and 2 µL of 10X SSIII buffer was added to the previous reaction
volume (20 µL total reaction volume) and incubated for 50 min at 50 ◦C, followed by
5 min at 85 ◦C. Reactions were chilled on ice, spun down and incubated for 20 min at
37 ◦C after an addition of 1µL of RNaseH. cDNA was purified using Agencourt xp beads
(Beckman Coulter, Indianapolis, IN, USA) at 1X concentration with elution into 12 µL of
nuclease-free water.

PCR Amplification Step 1. Two steps were used for amplification of the target am-
plicon. First, 11 µL of cDNA was combined with 0.75 µL of 10 nM forward primer
(R1_5′_WNV_for), 0.75 µL of 10 nM forward primer (5′_ID_Primer_Rev) and 12.5 µL
of 2X KAPA HiFi HotStart mastermix (VWR, Radnor, PA, USA). PCR conditions were
95 ◦C for 3 min, 98 ◦C for 20 s, 72 ◦C for 45 s and 72 ◦C for 1 min with 35 cycles. Samples
were purified using Agencourt XP beads (Beckman Coulter, Indianapolis, IN, USA) at 0.6X
concentration and eluted in 20 µL of nuclease-free water.

PCR Amplification Step 2. The second round of PCR amplification served to add
barcodes and adapters. Thus, 2 µL of purified PCR product from PCR amplification step 1
was combined with 9 µL of nuclease-free water, 0.75µL of 10 nM forward primer (Illumina
index i5), 0.75 µL of 10 nM forward primer (Illumina index i7), 12.5 µL of 2X KAPA HiFi
HotStart mastermix (VWR, Radnor, PA, USA) and the same PCR conditions were followed
as in PCR step 1, repeated for 10 cycles. Samples were purified using AMPure XP beads at
0.6x concentration with elution into 22 µL of nuclease-free water.

Samples were pooled at a volume of 5 µL each and concentrated using AMPure
XP beads at 1.5X concentration. Pooled samples were quantified using Qubit, and size
distribution was verified via Tapestation. Additional size selection was performed using
AMPure XP beads according to manufacturer’s guidelines. Libraries were quantified using
the NEB library quantification kit.

Library Pooling and Loading. Libraries were pooled by volume and concentration
was normalized to 2 nM. Libraries were denatured and a 15% PhiX control was spiked in.
Samples were loaded at a 7 pM concentration using an Illumina MiSeq system.

Bioinformatics pipeline.
Next-generation sequencing data were processed similarly to our previous stud-

ies [50]. Briefly, we used a modified version of the “Primer_ID_Barcode Analysis” workflow
https://bitbucket.org/murrieta/primer-id-with-barcoded-virus/src/master/ (accessed
on 8 May 2023) that makes use of the template consensus sequence (TCS) pipeline [49],
bbmap https://sourceforge.net/projects/bbmap/ (accessed on 8 May 2023) and cus-
tom perl scripts to process and analyze the PrimerID-generated barcode virus sequenc-
ing data. The above workflow was modified so that the TCS pipeline used the for-
ward primer sequence and the cDNA primer sequence (Supplementary Table S2). The
PrimerID_BarcodeGenerator shell script was updated to use “GATGCTGGGGACAAGT-
CACC” for the upstream flanking sequence and “TTTTGCCACTATGCCTACAT” for the

https://bitbucket.org/murrieta/primer-id-with-barcoded-virus/src/master/
https://sourceforge.net/projects/bbmap/
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downstream flanking sequence for barcode isolation when aligning to the WNV infectious
clone (GenBank accession AF404756) barcode region (nucleotides 7188 to 7391).

Data Reporting. The data generated as part of this project are available from the
authors. Unprocessed.fastq files containing amplicon reads are available from the authors
upon request. Count matrix data that were used for the analyses in this work are available
here: https://github.com/gebel67/WNV_avian_amplicon (accessed on 10 May 2023).

3. Results
3.1. Ex Vivo WNV Replication in PBMCs Demonstrates Host-Specific Accumulation of
Non-Infectious Genomes

In preliminary studies using a wildtype WNV isolate FtC-3699, we assessed WNV
replication in DF1 cells and ex vivo American robin and American crow PBMCs. DF1 cells
demonstrated higher titers than ex vivo cultured crow and robin PBMCs (Figure S1A–C). In-
terestingly, robin PBMCs had higher peak infectious titers and RNA loads than crow PBMCs
(Figure S1B,C,E,F). Higher MOI produced higher titers in all cell types (Figure S1A–F). We
calculated genome/PFU ratios of all three cell types sampled across the 5-day infection
(Figure S1G–I). WNV from crow PBMCs had significantly more genomes per infectious unit
across the three different MOI compared to DF1 cells and robin PBMCs (2-way ANOVA,
Tukey’s Multiple Comparisons). At MOI 0.01, robin PBMCs had the lowest genome/PFU.
At MOI 10, the genome/PFU ratio from robin PBMCs and DF1 cells were similar, but both
remained approximately 100-fold lower than crow PBMCs (Figure S1I).

3.2. Establishing and Characterizing WNV Barcoded Virus (BC-WNV) Stock

To measure virus diversity within individual cells, we generated a molecularly bar-
coded WNV (BC-WNV), as previously described for ZIKV [46,51]. BC-WNV contains a
segment in the NS4b region (7237–7269 bp, Figure 1A) with 11 consecutive synonymous
degenerate nucleotides at every third codon position. BC-WNV replicates similarly to
unmodified WNV infectious clone in Vero cells (MOI = 0.1) (Figure 1B). Analysis of genetic
diversity in the barcode region of the stock virus using unique molecular identifiers (UMIs)
indicated that a total of 4835 viral sequences representing 2236 total unique barcodes
were present per 50 µL of stock solution. Three unique barcodes were sequenced over
100 times in the stock, comprising 14% of all viral sequences. Seven barcodes were detected
51–100 times (9%), 54 were detected 10–50 times (23%), 160 appeared 2–9 times (11%) and
2008 barcodes were detected 1 time and constituted 41% of the stock.

3.3. Viral Barcode RNA Abundance Varies between Cells and Different Wild Bird Hosts

We quantified WNV barcodes in PBMCs from infected crows and robins after four
days of in vivo replication and from DF1 cells inoculated at MOIs of 1 and 10 (Figure 2 and
Supplementary Materials). Using flow cytometry, cells were screened for the presence of
intracellular WNV viral protein (Supplementary Figure S2), and viral RNA was extracted
from infected cells. WNV RNA from ninety-four DF1 cells from each MOI along with
376 crow and 144 robin PBMCs were sequenced. qRT-PCR of WNV E gene copies within
cells demonstrated that individual infected cells contained between 101 and 105.5 viral
genomes/cell (Figure 3A). The mean genome load within PBMCs was 11,265 and 399 in
crows and robins, respectively. DF1 cells had mean genome loads of 8530 and 5982 when
infected at MOI of 1 and 10, respectively. There was a bimodal distribution of viral load
in crow cells, with 39% of cells containing an average of 104.5 genomes (“high” viral load)
and 61% containing 102.5 genomes (“low” viral load). Robin PBMCs had significantly
fewer WNV copies compared to DF1 cells or crows, which contained the highest mean
genome copies per cell. WNV barcode counts from individual cells (Figure 3B) supported
the qRT-PCR-based observations on viral load within individual cells; however, there was
a small number of cells without any barcodes detected despite detectable WNV vRNA
via qRT-PCR.

https://github.com/gebel67/WNV_avian_amplicon
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Figure 2. Approach to barcode quantification of infected DF1 cells and avian PBMCs via flow
cytometry and amplicon targeted library construction. (A) DF1 cells at MOI 1 and 10 and American
crows and robins at 10,000 PFU/bird were infected with BC-WNV. (B) PBMCs collected from whole
avian blood, along with DF1 cells, were separated, fixed and permeabilized. (C) Cells were stained for
WNV viral protein and cell type and sorted into a 96-well plate. (D) Cells were reverse cross-linked
and viral RNA was extracted and reverse-transcribed into cDNA. (E) Individual cells were classified
as WNV infected by qRT-PCR and avian 18S. (F) Libraries were constructed by adapting the Primer ID
approach to the Illumina MiSeq platform (Supplementary Materials). (G) Sequencing was performed
on an Illumina platform.

Analysis of unique barcodes within cells revealed that crow PBMCs contained sig-
nificantly higher barcode diversity and barcode complexity (Figure 3C,D) compared to
robin PBMCs and DF1 cells, despite a slightly lower sequencing coverage depth compared
to robins (Figure 3E). Viral load, as measured by total barcode counts, was significantly
positively correlated with barcode diversity (Figure 3F).
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Figure 3. Viral Barcode RNA Abundance and Complexity Varies Between Cells and Across Wild
Bird Hosts. (A) WNV Genome copies per cell (log10) in BC-WNV-infected DF1 cells at MOI 1 and 10
and crow and robin PBMCs, as determined by qRT-PCR for E gene. (B) Total barcode counts per cell
(log10) in BC-WNV-infected DF1 cells at MOI 1 and 10 and crow and robin PBMCs, as determined by
barcode sequencing. (C) Number of unique barcodes per cell (log10) in BC-WNV-infected DF1 cells
at MOI 1 and 10 and crow and robin PBMCs, as determined by barcode sequencing. (D) Shannon
index (complexity) in DF1 cells at MOI 1 and 10 and crow and robin PBMCs. (E) Sequencing depth
per cell (log10) in DF1 cells, crow and robin PBMCs. ((A–E), **** p < 0.0001, ANOVA) (F) Correlation
of unique to total barcodes (log10) (r2 = 0.8134).

We next examined the fate of specific barcodes during infection of DF1 cells, crows
and robins. Barcodes detected at lower frequencies in the input BC-WNV were almost
never found in DF1 cells or robin PMBCs (Figure 4A). In contrast, rare input barcodes
were detected more frequently in crow PBMCs, sometimes in greater than 50% of cells.
More common barcodes from the input tended to be maintained in DF1 cells and crow
PBMCs compared to robins, where even common input barcodes were often not detected
(Figure 4B). WNV within DF1 cells tended to contain a single dominant barcode sequence
that rose to extremely high frequency (Figure 4B, diamonds within DF1 cell panel), a distin-
guishing feature of DF1 cells compared with bird PBMCs. Finally, we used t-Distributed
Stochastic Neighbor Embedding (t-SNE) analysis to plot the data in two-dimensional space
(Supplementary Figure S3). Although we applied different perplexities to our data, cells
did not cluster into distinct groups. Nevertheless, the crow cells consistently grouped
closer to the input stock sample than other cell types, supporting our observations that
barcode sequences, including those that are quite rare in the input stock virus population,
are maintained during crow replication but not in robins or DF1 cells.
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after replication.

4. Discussion

Virus–host interactions clearly shape viral populations and evolution. We previously
demonstrated that high WNV viremias in crows, coupled with error-prone virus replication,
result in an extremely complex set of virus mutants that contain abundant nonviable virus
genomes in addition to a wide array of low-frequency virus variants [15]. This contrasts
with robins, in which lower viremia is associated with fewer genomes that contain lethal
mutations and fewer overall variants. However, in robins, the detected variants tended
to rise to a higher frequency. PBMCs are an important site for WNV replication in birds.
We hypothesized that high viremia in crows leads to a high PBMC MOI relative to robins
and, thus, higher polyinfection. We expected that this could facilitate the survival of rare
and defective genomes via complementation in accordance with prior reports from studies
conducted in vitro [33,52]. Similarly, we hypothesized that lower viremia in robins resulting
in lower systemic MOI would lead to less PBMC polyinfection. Reduced polyinfection
would then decrease the efficiency of complementation and reduce the survival of defective
and rare genomes. To test these hypotheses, we assessed WNV replication in PBMCs and
utilized a barcoded WNV to examine the replication of variably represented genotypes at
varying MOIs.

WNV replicated to modest titers in PBMCs ex vivo, consistent with previous reports
of equine and avian PBMC infections [39,40]. Despite higher viremia in crows, ex vivo
infection of robin and crow PBMCs showed that robins generated similar to slightly higher
levels of extracellular virus, suggesting that in robins, PBMCs might play a more significant
role in virus replication, and other cell types or tissues may play a greater role in virus
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replication in crows in vivo. Crow PBMCs had the highest overall GE/PFU ratios during
infection, indicating greater production of non-infectious particles. We also observed that
higher MOIs in both robin and crow PBMC infections led to greater GE/PFU ratios. This is
consistent with our previous in vivo studies that suggested high crow viremia may facilitate
the persistence of defective genomes in the virus population [15]. Defective genomes are
commonly generated in the lab and natural infections and have been demonstrated to
survive multiple rounds of transmission through complementation by intact genomes,
suggesting that their production in birds can lead to maintenance in nature [31,53–55].

We next generated barcoded WNV for use in evaluating MOI in vivo in birds to
explore the unique landscape of virus variants in single cells. This barcoded WNV (BC-
WNV), much like our previously published ZIKV barcoded virus [46], replicated similarly
in vitro compared to wildtype WNV, indicating its suitability for in vivo studies. BC-WNV
also exhibited in vivo phenotypes similar to wildtype, as demonstrated by crow and robin
viremia and organ viral loads (not shown). When we performed NGS analysis of BC-WNV,
we detected 2236 barcodes, significantly fewer than the theoretical maximum. The cause of
this is unclear; however, inefficient transfection of 293T cells seems likely to have produced
this result. Nevertheless, our data on BC-WNV replication in vitro and in birds, and our
data on the complexity of the barcode region, indicated that it was a suitable tool to address
the hypotheses we addressed in this work.

DF1 cells, crows and robins were infected with BC-WNV to determine the extent of
polyinfection within cells of different origin. DF1 cells were infected at MOIs of 1 and
10 to compare in vivo findings to an established cell culture model of the avian–WNV
interaction. DF1 cells contained up to 35,000 genome copies and had the highest mean
genome copies per cell compared to avian PBMCs. This is not particularly surprising
given that DF1 cell culture, while interferon-competent, is not affected by the influence of a
full systemic innate immune response present during the in vivo infections performed to
obtain PBMCs [42,56,57]. WNV genome copies and barcode counts within DF1 cells did
not differ significantly between MOI 1 and 10, suggesting that DF1 cells provide suitable
replication conditions that cause early saturation. Similarly, the generally higher titers in
DF1 cells compared with PBMCs isolated from WNV-infected birds may be due to the
absence of a complete innate immune response occurring in those cells in vitro or the fact
that some of the isolated PBMCs may be refractory to WNV infection. Analysis of barcode
frequencies within DF1 cells demonstrated that rare input barcodes were typically lost
during replication, and that each DF1 cell was frequently dominated by a single barcode at
a very high frequency, a trend not observed in crow- or robin-derived cells, indicating the
limitations of DF1s as a model for WNV–avian interactions.

Analysis of viral loads within crow PBMCs compared to robin PBMCs revealed striking
differences in both genome copy numbers and total barcode counts. Crow PBMCs had
higher genome copy numbers while robins contained the least, with an approximately
100-fold mean difference in viral load in cells from each species. A single crow PBMC
is capable of containing up to 388,000 genome copies, while robin PBMCs contained up
to 2,000 genome copies. This high viral load in crow PBMCs compared to robin PBMCs
is consistent with viremia patterns in these animals and supports the role of PBMCs in
generating host-specific viremia and mortality phenotypes in host animals. Moreover,
these data indicate that clinically susceptible animals that develop strikingly high viremias
contain high viral loads in circulating PBMCs.

Further, crows had higher numbers of unique barcodes within individual cells, indi-
cating more frequent polyinfection compared to robins. Comparison of changes in barcode
frequency in the input inoculum to crow PBMCs revealed that rare barcodes in the input
virus may rise in frequency in crow cells, sometimes to greater than 50% of the cell-specific
population. In contrast, rare mutations in the initial stock tended to not be detected in robin
PBMCs. We also observed more unique barcodes and higher levels of barcode diversity
and complexity in crow compared to robin PBMCs. These data permit us to conclude
that in crows, frequent polyinfection of PMBCs, and likely other cell types, facilitates the
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persistence of genetic diversity in these animals, including defective viral variants that
may reduce the average fitness of the virus population. Moreover, hosts that experience
high viremias may be key to maintaining virus genetic diversity at the population level
and decrease the strength of purifying selection. As a consequence, while low-fitness
variants may be maintained, high-fitness variants may also be prevented from rising in
frequency within the population. Conversely, infection of robins results in less frequent
polyinfection and an overall reduction in population variation that may either result in
fitness increases due to the action of purifying selection or bottlenecks that lead to fitness
declines over time. These somewhat divergent selective environments in crows and robins
lead us to hypothesize that WNV variants of reduced fitness would persist longer within
crows compared to robins, a prediction that is supported by our prior work [15]. Testing
this hypothesis directly requires additional study.

In summary, this study quantifies and characterizes the extent that ‘host susceptibility,’
which here refers to viremia level and mortality, is associated with virus evolutionary
dynamics in ecologically relevant hosts. Our work with PBMCs demonstrated that indi-
vidual cells, particularly in crows, can contain extremely high viral load and virus diver-
sity, providing an environment that permits the persistence of defective genomes, likely
via complementation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens12060767/s1, Table S1: Table of Illumina barcodes; Table S2:
Table of primers for Illumina sample multiplexing and primer ID; Figure S1: WNV replicates in DF1
cells and ex vivo crow and robin PBMCs.; Figure S2: flow cytometry histograms of uninfected and WNV
infected DF1 cells; Figure S3: T-Distributed Stochastic Neighbor Embedding (t-SNE) analysis to plot the
data in two-dimensional space. References [58–61] are cited in the Supplementary Materials.
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