
1.  Introduction
Trichodesmium is a filamentous cyanobacteria, with Trichodesmium erythraeum and Trichodesmium thiebautii 
being the most reported species in the open ocean (Carpenter & Capone, 1992). With abundant gas vesicles, 
Trichodesmium cells can often form buoyant colonies on the surface that appear yellowish or brownish, thus 
often called sea sawdust (Walsby, 1992). Trichodesmium plays a critical role in the ocean's nitrogen cycle, as 
it is able to fix nitrogen (N2) to ammonia (𝐴𝐴 NH

+

4
 ) that can be used by itself and other phytoplankton (Capone 

et al., 1997, 2005; Carpenter & Capone, 1992). On the global scale, Trichodesmium can provide about 80 Tg of 
new nitrogen per year (Capone et al., 1997), representing ∼50% of the total new nitrogen demand in oligotrophic 
oceans (Capone et al., 2005; Karl et al., 1997). Trichodesmium has been reported in oligotrophic oceans, particu-
larly in tropical and subtropical regions where nitrate is scarce. Trichodesmium requires iron (Fe) to grow and 
fix nitrogen (Kustka et al., 2003; Rueter et al., 1992), and both laboratory and field studies showed immediate 
biomass increases with additional Fe supplies (Lenes et al., 2001; Tzubari et al., 2018).

To date, despite numerous observational and modeling studies at both local and global scales (Blondeau-Patissier 
et  al.,  2018; Capone et  al.,  1997; Davies et  al.,  2020; Delmont,  2021; M. Furnas,  1992; M. J. Furnas & 
Carpenter,  2016; Gower et  al.,  2014; Hu et  al.,  2010; Karlusich et  al.,  2021; Y. W. Luo et  al.,  2012; L. 
McKinna, 2015; Monteiro et al., 2010; Qi & Hu, 2021; Subramaniam & Carpenter, 1994; Tang & Cassar, 2019; 
Westberry & Siegel, 2006), the global distributions of Trichodesmium are still unclear. Even in waters around 
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Australia, where Trichodesmium was first reported in the 18th century (M. Furnas, 1992), a thorough knowledge 
of Trichodesmium distributions is still lacking.

There have been long-term monitoring programs to measure Trichodesmium around Australia. One such program 
is the Australia's Integrated Marine Observing System (IMOS, https://imos.org.au/; Eriksen et  al.,  2019). 
However, these programs are focused on individual sampling sites. Satellite remote sensing has also been used 
to map Trichodesmium surface scums (i.e., surface layer with high concentrations of cells and/or colonies to 
result in elevated reflectance in the near-infrared wavelengths, see Qi et al., 2018) (see summary in Table S1 and 
Figure S1 in Supporting Information S1), with the assumption that surface scums can serve as a proxy to repre-
sent abundance. Yet these remote sensing studies are either case studies or focused on selected regions (e.g., the 
Great Barrier Reef or GBR, Blondeau-Patissier et al., 2018; L. McKinna, 2015), thus not being able to provide 
information on all coastal waters around Australia, especially on where and why Trichodesmium blooms occur 
regularly there.

Here, based on the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite observations and a computer deep 
learning (DL) model, we develop monthly maps of Trichodesmium scum density for a 10-year period between 
2012 and 2021 (see Figures S2–S6 and Table S2 for methodology in Supporting Information S1). We analyze the 
spatial and temporal distributions changes of Trichodesmium as well as possible factors leading to such distribu-
tions, including atmospheric dust, black carbon (BC) aerosols, water temperature, winds, and ocean currents. We 
hypothesize that dust and BC are the two primary factors in determining the spatial distributions and seasonality 
of Trichodesmium around Australia.

2.  Data and Method
The study around Australia (8°S–40°S and 110°E−160°E, Figure 1a) was based on data collected by VIIRS, 
the Ocean and Land Color Instruments (OLCI), and the Hyperspectral Imager for the Coastal Ocean (HICO). 
VIIRS was used to develop time-series of Trichodesmium density maps, while limited OLCI and HICO data 
were used to perform spectral discrimination analysis to verify whether the observed image features were due 
to Trichodesmium or something else. Briefly, for each VIIRS image, pixels containing Trichodesmium were first 
delineated using a DL model (specifically, Res-UNet, see application of the same approach to extract Sargassum 
image features from multi-band imagery over the Atlantic Ocean in Hu et al. (2023)). The DL model relies not 
only on the reflectance spectral shapes of individual pixels, but also on the spatial context of each pixel, and can 
be re-trained to improve detection accuracy through minimizing false-positive and false-negative detections, 
therefore showing better performance over other index-based models (e.g., the alternative floating algae index 
(AFAI)-based model, Hu et  al.,  2023). Once Trichodesmium features are detected from individual images, a 
spectral unmixing scheme was used to determine the sub-pixel proportion of Trichodesmium (0%–100% within a 
pixel), and multiple images were used to compose monthly and annual maps. Here, the detected Trichodesmium 
image features refer to surface scums as opposed to cells or colonies suspended in water. The scums show distinc-
tive pigment features in their reflectance spectra (Figures S2 and S3 in Supporting Information S1), indicative of 
active nitrogen and carbon fixation as reported in the Arabian Sea from similar scums (Capone et al., 1998). More 
details on this method and its validity can be found in Supporting Information S1.

To interpret the observed spatial patterns and temporal changes of Trichodesmium, environmental data from 
different data sources were downloaded and analyzed. These include: daily sea surface temperature (SST), 
chlorophyll-a (Chl-a) concentration, wind speed, and sea surface current velocity; monthly mean dust and BC 
density in the atmosphere, mixed-layer depth (MLD); all-time averages (i.e., climatology) of sea surface nutri-
ent (nitrogen and phosphorous) concentrations. Further details on these data types can be found in Supporting 
Information S1.

3.  Results and Discussion
3.1.  Trichodesmium Around Australia: Where and When?

The distribution of average surface density of Trichodesmium between 2012 and 2021 is shown in Figure 1a, and 
more detailed climatological monthly and annual distributions can be found in Figures S7 and S8 in Support-
ing Information  S1, respectively. In the study region (8°S–40°S, 110°E−160°E), Trichodesmium scums can 
be observed almost everywhere around Australia except off the southern coast between 32°S and 40°S and 
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130°E−150°E. No scums were observed to the south of 40°S (not covered by the map). This is generally in agree-
ment with the model predictions based on field observations (Davies et al., 2020). From Figure 1a, the cumulative 
footprint of Trichodesmium, defined as the waters with a climatological average surface density of >0.001‰, is 
approximately 4.6 million km 2. This is equivalent to 60% of Australia's land area.

The distribution is uneven, with most Trichodesmium scums found north of ∼24°S, for example, in the GBR 
region, Gulf of Carpentaria, and Arafura Sea. In contrast, in the region south of ∼24°S, Trichodesmium density 
is much lower, and no Trichodesmium scums were found in the entire 10-year period for the southeast region 
bounded by 32°S–40°S and 130°E−150°E. Furthermore, the density generally decreased with increasing distance 
from shore, suggesting possibly land-based nutrient inputs. These spatial patterns are relatively stable from year 
to year (Figure S8 in Supporting Information S1). The density in this cumulative map is mostly <1‰, suggesting 
that the appearance of Trichodesmium scums is sporadic. This is particularly true for the relatively shallow and 
dynamic coastal waters such as the Van Diemen Gulf, King Sound, and Shark Bay (Figure 1a). Even though 
Trichodesmium has been reported in these waters, Trichodesmium scums were formed much less frequently than 
in the adjacent, more offshore waters. This is possibly due to the more dynamic water column mixing in these 
shallow environments (Blondeau-Patissier et al., 2017).

Figure 1.  (a) Average surface cover density (in ‰) of floating Trichodesmium (i.e., surface scums) around Australia, based 
on Visible Infrared Imaging Radiometer Suite observations (2012–2021); (b–d) histograms of sea surface temperature, 
wind speed, and chlorophyll-a (Chl-a) concentration, respectively, corresponding to occurrence locations of floating 
Trichodesmium (red dashed lines) and their background water of Tricho-niche area (i.e., the cumulative footprint area, blue 
lines). Statistics for tropical/subtropical waters (north of 23.45°S) and temperate waters (south of 23.45°S) are presented in 
Figure S10 in Supporting Information S1. No Trichodesmium scums were found between 40°S and 44°S (including waters 
around Tasmania), and this area is therefore not included in the map (a). The cumulative footprint, defined as the waters 
with an average density of >0.001‰ in (a), is ∼4.6 million km 2. Climatological monthly and annual mean distributions of 
Trichodesmium are available in Supporting Information S1.
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Similar to the uneven spatial distributions, Trichodesimum was not found equally in all months, but showed a 
clear seasonality (Figure 2a, Figure S7, and Table S3 in Supporting Information S1) and interannual variabil-
ity (Figures S8 and S9 in Supporting Information S1) regardless of whether tropical/subtropical and temperate 
waters were considered together or separately (Figure S10 in Supporting Information S1). The maximum and 
minimum bloom sizes were found in September–November and May–July, respectively, with a maximum/mini-
mum ratio of about 5. The peak months of Trichodesmium blooms can vary slightly from year to year (Figure 2b 
and Table S3 in Supporting Information S1). For example, in 2014 and 2015, the peak month was February, but 
there was also a secondary peak in October. In contrast, the months with the minimum bloom size were more 
stable in different years, mostly between May and July.

3.2.  Trichodesmium Around Australia: Why?

As per literature and findings prior to this study, Trichodesmium scums were not found uniformly in different 
environments but predominantly in waters within certain temperature and Chl-a ranges and under relatively 
calm conditions (Figures 1b–1d) regardless of whether the entire study region was split into tropical/subtropical 
(north of 23.45°S) and temperate waters (south of 23.45°S) (Figure S10 in Supporting Information S1). Here, 
the 10-year cumulative Trichodesmium footprint was used as the Tricho-niche area, serving as the background 
water where Trichodesmium scums could be found (i.e., average 10-year density of Trichodesmium >0.001‰ in 
Figure 1a). SST from Tricho-niche waters covered a relatively wide range of 10–32°C, but image pixels contain-
ing Trichodesmium scums were found in a narrower range of 20–32°C, with the most optimal temperature around 
27°C. This temperature range has been reported as the optimal range for Trichodesmium growth in the laboratory 
(Breitbarth et al., 2007). Wind speeds over the Tricho-niche waters ranged from 0 to 15 m s −1, but most image 
pixels containing Trichodesmium scums were found at <∼6 m s −1 (peak frequency ∼3.5 m s −1), a result consistent 
with the findings by Blondeau-Patissier et al. (2018). Likewise, of a relatively wide range of Chl-a found from 
the Tricho-niche waters (0.04–2 mg m −3), Trichodesmium pixels were found with a narrower Chl-a range of 
0.07–2 mg m −3 and a peak value of ∼0.2 mg m −3 (Figure 1d). This suggests that, although Trichodesmium prefers 
oligotrophic waters (Capone et al., 1997), it may not survive if the water is extremely poor in nutrients (i.e., 
Chl-a < 0.07 mg m −3). Above this Chl-a concentration, Trichodesmium may reproduce well and fertilize other 

Figure 2.  Seasonality (a) and monthly time series (b) of Trichodusmium areal coverage between 2012 and 2021. In panel (a), dust, black carbon (BC) aerosols, sea 
surface temperature, and Chl-a derived from the Tricho-niche area (i.e., total cumulative footprint area, Figure 1a) are presented. In panel (b), monthly Trichodesmium 
and its corresponding dust and BC from the Tricho-niche area are shown, overlaid with the monthly climatological Trichodesmium.
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phytoplankton through nitrogen fixation. Here, Chl-a is used in a relative sense because of the likely large uncer-
tainties of satellite data products over optically complex coastal waters (Cannizzaro et al., 2013; IOCCG, 2019).

From these results, both the spatial distribution patterns and seasonality of Trichodesmium appear to be explained 
well by the overall nutrient regime and environmental settings around Australia, with some factors playing more 
important roles than others (Figure 3).

Surrounded by the Indian Ocean and the South Pacific Ocean and being far away from other continents, Australia 
is the smallest continent on Earth, making it isolated from remote nutrient sources. Thus, local nutrient sources 
must play a major role in determining the spatial distributions and seasonality of Trichodesmium. While average 
surface nitrate concentration (<0.6 μmol/kg, Voss et al., 2013) suggests oligotrophic conditions, the sea surface 
nitrate to phosphate ratio (N:P) in surface waters around Australia is ∼2:1 (Figure 3a), much lower than the 
Redfield ratio of 16:1 required for phytoplankton growth (Lenton & Watson, 2000). Although phosphorus is 
also a critical nutrient required by Trichodesmium (Hynes et al., 2009; Sohm et al., 2008), such a low N/P ratio 
and oligotrophic condition, together with the optimal temperature range and light availability, provide favorable 
conditions for Trichodesmium to grow as long as another micronutrient, iron, is supplied by certain sources such 
as riverine input or atmospheric deposition.

With no large river discharging waters to the ocean as compared to many other continents (McMahon & 
Finlayson,  2003) and with relatively narrow river plume width as compared with shelf width (Sharples 
et  al.,  2017), riverine influence on the Trichodesmium distributions is expected to be restricted to nearshore 
waters. Furthermore, compared with other parts of Australia, riverine inputs of dissolved inorganic nitrogen and 
dissolved inorganic phosphorous to the northwest coast of Australia are lower (Sharples et al., 2017). Thus, the 
relatively high density of Trichodesmium along that part of coast must be driven by factors other than riverine 
discharge. In the south, riverine flows to the coast are greater in the austral winter (June, July, and August) than 
in the austral summer (December, January, and February), but there is virtually no Trichodesmium found in the 
south. On the east coast, there are relatively large rivers that discharge to the north and north-east. However, 
the river flows are extremely seasonal and have high interannual variability, dominated by large flood events in 
the  wet season (October to May in the north) (Warfe et al., 2011). The seasonality of Trichodesmium in these 
waters (Figure S7 in Supporting Information S1) is out of phase of river flow. Therefore, riverine inputs of local 
nutrients may be ruled out as being a major factor influencing the large-scale distributions of Trichodesmium.

The local nutrient sources appear to be from dust (Figure 3b) and BC (Figure 3c). With many large deserts on the 
Australian continent (∼18% of being permanent deserts and another ∼35% being episodic deserts, Geoscience 
Australia, 2023), Australia is a major source of dust, with mean dust pathways from the continent to northwest 
and southeast (De Deckker, 2019) (Figure 3b). Likewise, bushfires or biomass burning are widespread in the 
northern and southeastern Australia every year because of the dry climate, resulting in high concentrations of BC 
aerosols with similar southeast-northwest orientation (Figure 3c). Aerosol deposition is an important source of 
nutrient and iron input to the ocean (Jickells & Moore, 2015; Polyviou et al., 2018; Schulz et al., 2012), and both 
dust and BC can supply nutrients in the form of C, N, P, and iron to the ocean (Mallet et al., 2017), stimulating 
growth of Trichodesmium and other phytoplankton (Sohm et al., 2011). For example, on the West Florida Shelf, 
following a Saharan dust event, total dissolved iron concentrations were found to increase by 30–100 folds from 
the background levels, with Trichodesmium concentrations increased by 100 folds (Lenes et al., 2001). In the 
GBR region, pigment concentration of phytoplankton (likely Trichodesmium or other cyanobacteria) was found 
to increase by 1.5–2 folds after a dust storm event in October 2002 (Shaw et al., 2008). Furthermore, biomass 
burning may substantially enhance the solubility of mineral dust around Australia, where the soluble iron can be 
up to ∼12% in the mixed aerosols (Winton et al., 2016). The soluble iron supplies from the atmosphere may help 
stimulate Trichodesmium growth in the oligotrophic waters around Australia.

The distributions of dust and BC do not always correlate with the Trichodesmium patterns found in Figure 1a. 
For example, off southeast Australia, both dust and BC concentrations appear relatively high, yet there is little or 
no Trichodesmium found. Such a disparity may be explained by the strong ocean currents off southeast Australia 
(>0.5 m s −1, Figure 3d), which can prevent Trichodesmium accumulation on the surface and may also impede 
Trichodesmium growth in the water column. In contrast, in similar latitude but off southwest Australia, although 
wind and SST are similar to those off southeast Australia (Figures 3e and 3f), small amount of Trichodesmium 
scums can still be found due possibly to weaker currents.

 19448007, 2023, 16, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
104092 by C

ochrane C
hile, W

iley O
nline L

ibrary on [23/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

QI ET AL.

10.1029/2023GL104092

6 of 12

Figure 3.  Environmental factors that are relevant to Trichodesmium around Australia for (a) surface water nitrate (N) to phosphorus (P) ratio (data source: WOA18), (b) 
and (c) mean dust and black carbon aerosol concentrations in the atmosphere between 2012 and 2021 (source: M2T1NXAER model), (d) mean surface water velocity 
during the same period (source: Hybrid Coordinate Ocean Model), (e) and (f) mean wind speed and sea surface temperature during the same period.
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In addition to influencing the spatial distributions, dust and BC appear to play an important role in driving the 
Trichodesmium seasonality as well, as all three variables are in phase (Figure 2a) with peak months of September–
November and minimum months of May–July. A multi-variate correlation analysis showed strong and statisti-
cally significant correction between Trichodesmium and the combined variables of BC and dust (Figure S11 
in Supporting Information S1), and the regression coefficients for BC and dust are both positive, suggesting 
their positive influence on Trichodesmium growth. Such a high correlation was also found in most high-density 
locations (Figure S11c in Supporting Information S1). The question is whether this is simply a coincidence as 
opposed to causality. Because other phytoplankton (through Chl-a) shows the opposite phase from dust and BC 
(i.e., peak Chl-a is found between May and July, Figure 2a) and because iron-rich dust and BC are known to 
stimulate Trichodesmium growth, the latter appears to be a logical inference. In particular, the smaller size of 
the Tricho-niche water area between January and March, when dust concentration is nearly as high as that in 
September–November, may also be explained by the iron mechanism. This is because although dust may contain 
a greater amount of Fe, most of the Fe in dust aerosols is insoluble and cannot be utilized by phytoplankton 
(Winton et al., 2016). In contrast, BC contains a higher proportion of soluble Fe, and what's more important is 
that BC from biomass burning can enhance dusty mineral solubility (Hamilton et al., 2020; Hand et al., 2004; C. 
Luo et al., 2005; Winton et al., 2016). Thus, the relatively lower BC between January and March may be a reason 
to explain the lower Trichodesmium amount.

The opposite phase between Chl-a and dust/BC is perhaps the strongest reason to support the hypothesis that dust 
and BC can collectively control the seasonality of Trichodesmium. From long-term in situ measurements, phyto-
plankton communities around Australia are dominated by diatoms and dinoflagellates (Eriksen et  al.,  2019), 
which are driven by different environmental factors. For example, as in other subtropical oceans such as the Gulf 
of Mexico (GOM, Muller-Karger et al., 2015) and the South China Sea (SCS, Ji et al., 2018), non-Trichodesmium 
phytoplankton (and their associated Chl-a) around Australia may grow fast from nutrient enrichment due to 
deeper mixing in May–July induced by high winds (Figure S12 in Supporting Information S1). However, because 
waters around Australia are limited in Fe (Zehr & Capone, 2020), without Fe inputs from the atmosphere, the 
enhanced nutrients from deep waters would benefit diatoms and dinoflagellates as opposed to Trichodesmium. In 
contrast, Trichodesmium may benefit more than diatoms and dinoflagellates with Fe inputs from the atmosphere.

Similar to other cyanobacteria (Paerl & Huisman, 2008) and macroalgae (Qi et al., 2022), Trichodesmium also 
prefers a certain temperature range for optimal growth (Figure 1b), which may explain the overall low abun-
dance in the south than in the north (Figures 1a and 3f). However, temperature may play a less important role in 
controlling the seasonality of Trichodesmium (Figure 2a) because the annual variation of mean SST is 24–28°C, 
optimal for Trichodesmium growth.

The collective role of dust and BC in controlling both spatial distributions (Figure 1a) and seasonality of Tricho-
desmium (Figure 2a) is also reflected in the 10-year monthly time series (Figure 2b). With no significant trend 
(Mann-Kendall test, p = 0.72, Hussain & Mahmud, 2019), inter-annual variations are observed in all three vari-
ables, yet a multi-variant regression analysis indicates statistically significant correction (R = 0.70, p < 0.01) 
between Trichodesmium and combined dust and BC (Figure S11b in Supporting Information S1). In contrast, 
large-scale climate events such as El Niño and La Niña do not appear to affect the inter-annual changes in Tricho-
desmium of either tropical/subtropical waters or temperate waters, as indicated by the lack of correlation between 
them (Figure S13 in Supporting Information S1).

Overall, while temperature is an important factor to determine where and when Trichodesmium can grow, dust 
and BC appear to be the other two major factors to drive both spatial and temporal variations of Trichodesmium 
around Australia.

3.3.  Impacts of Episodic Events

The dominant roles of dust and BC, as argued above, are supported by episodic events, such as the 2019–2020 
bushfire event. This event, from June 2019 to March 2020, is one of the most extensive and long-lasting fires 
in recent years (Ward et al., 2020). It burned ∼46 million acres of land covering forests, farms, and buildings, 
leading to mortality of 173 people and >1 billion animals (Borchers Arriagada et al., 2020; Ward et al., 2020). 
About ∼715 million tons of CO2 (195 Tg C) were released into the atmosphere during the fire period (van der 
Velde et al., 2021), together with nitrogen, phosphorus, and iron depositions into the ocean. The event resulted 
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in significantly higher BC around most of Australia, and particularly to the southeast of Australia during the 
austral summer of 2019–2020 (Figure 4a) as emissions of BC were not uniform (Tang et al., 2021). If the dust/BC 
hypothesis was true, there would be increased Trichodesmium in this region. Indeed, increased Trichodesmium 
was found in this otherwise Tricho-poor region (Figure 4b). In other regions where Trichodesmium is usually high, 
increased Trichodesmium was also found. For waters off southeast Australia (blue rectangular box in Figure 4b), 
time-series analysis shows that the timing of the 2019–2020 Trichodesmium bloom event and increased Chl-a 
appeared synchronized with the positive BC anomaly (Figure 4c), suggesting a possible causality. In contrast, 
water temperature and MLD in this region did not show such a correspondence (Figure S14 in Supporting Infor-
mation S1). In this region, higher-than-usual Trichodesmium in this Tricho-poor region in three consecutive years 
after the 2019–2020 bushfire event was abnormal. Using a Mann-Kendal test, no trend in Trichodesmium areal 
coverage was found for the period of 2012–2018 before the bushfire event, yet the increasing trend was statisti-
cally significant (p < 0.05) when the post-fire years of 2019–2021 were included. To our knowledge, although 
there are no field data available to explain this pattern, these preliminary results suggest that iron recycling from 
the ash deposition could be a possible reason. However, this does not necessarily suggest that iron enrichment 
from bushfire events is the only possible cause of Trichodesmium anomalies. For example, in March 2015, an 
all-time high Trichodesmium areal coverage was found, yet there was no positive BC anomaly. The exact reason 
causing the March 2015 anomaly remains to be investigated.

4.  Concluding Remarks
Although recurrent Trichodesmium blooms around Australia are well known, especially in the GBR region, the 
knowledge of where and when blooms occurred has been incomplete until now. The improved knowledge is 
attributed to the synoptic and frequent satellite measurements to extract Tricho-specific signals using a DL tech-
nique. These observations fill the knowledge gap for previously undocumented areas along the east, west, and 

Figure 4.  Possible influence of the 2019–2020 Australia bushfire on Trichodesmium and Chl-a for (a) relative anomaly of black carbon (BC) during the 2019–2020 
austral summer season (September 2019–February 2020), (b) relative anomaly of Trichodesmium density for the same period, and (c) monthly time series of 
Trichodesmium coverage, relative anomaly of BC, and relative anomaly of Chl-a from waters off southeast Australia (blue dashed rectangle in panel (b)). Monthly 
climatological values of Trichodesmium coverage in this region are shown with a dotted dark blue line.
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southern coastlines, suggesting a broader input into the nitrogen cycle of these waters than previously appre-
ciated. Such a knowledge paves the pathway toward the understanding of why Trichodesmium around most of 
Australia is abundant and why strong seasonality is found. For example, while the lack of Trichodesmium off 
southern Australia could be explained by low water temperature, dust and BC aerosols appear to be the other 
major factors controlling both the spatial distributions and seasonality of Trichodesmium, as they collectively 
serve as a major iron source to stimulate Trichodesmium growth. However, much remains to be done to have a 
better understanding of Trichodesmium dynamics around Australia. For example, other than dust and BC aero-
sols, are there any other iron inputs from ocean circulation or upwelling? With the detailed Trichodesmium maps 
made available through this study, analysis of ocean circulation through hydrodynamic modeling and incorpora-
tion of more observational data could help address this question in the near future.

Climate change is a globally pervasive process and Australian coastal waters are not immune to its influences. 
Upper ocean warming and stratification and acidification are ongoing (Hutchins & Fu, 2017), as well as processes 
in the terrestrial realm that affect coastal waters such as desertification, changes in coastal runoff and wildfires 
expansion, in both time and space (Hoegh-Guldberg et al., 2014). How these factors will affect Trichodesmium 
populations (and other diazotrophs) is an area of ongoing research (e.g., Fu et al., 2014), where the findings 
presented here may serve as the baseline to understand future changes. For example, declining wind stress and 
increasing SST have been shown in the south and southeast regions of Australia, with the Tasman Sea being 
the fastest warming region (Duran et al., 2020). Although minimal Trichodesmium was found in these regions 
from the current study, should such wind and SST trends continue in the future, increased Trichodesmium would 
be a consequence, and, likewise, expansion of Trichodesmium to higher latitudes could also occur (Breitbarth 
et al., 2007). With the continuity missions of VIIRS and other satellite missions such as the hyperspectral Plank-
ton, Aerosol, Cloud, ocean Ecosystem (PACE) (https://pace.gsfc.nasa.gov), we expect to extend the data record 
to future years to understand how Trichodsmium around Australia responds to environmental conditions under a 
changing climate.

Data Availability Statement
The processed data used in this study can be accessed through Mendeley Data: Qi (2023).
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Data and Method 22 
 23 

1. Satellite data  24 

The Visible Infrared Imaging Radiometer Suite (VIIRS) from 2012 to 2021 were processed into 25 

Rayleigh Corrected Reflectance (Rrc(l), dimensionless) for each spectral band at 1-km resolution. 26 

The use of Rrc(l) data instead of fully-corrected surface reflectance in all subsequent analyses is 27 

because the latter would depend on the assumption of zero water-leaving reflectance contributions 28 

at the near-infrared (NIR) and/or shortwave infrared (SWIR) bands. Such assumption often fails 29 

over the Trichodesmium scums. For the entire study region of 40oN–8oS and 110oE–160oE (Fig. 30 

S1), a total of 8082 unique 6-minute granules were processed. These data were used to develop 31 

the deep-learning algorithm to extract and quantify Trichodesmium features, and to establish time-32 

series maps. 33 

The full-resolution Level-1B Ocean and Land Colour Instrument (OLCI) and Hyperspectral 34 

Imager for the Coastal Ocean (HICO) data were downloaded from the NASA OB.DAAC 35 

(https://oceancolor.gsfc.nasa.gov) and processed to generate Rrc(λ) for each spectral band at 300 36 

m and 90 m resolutions, respectively. Different from VIIRS, these data were used for spectral 37 

analysis of identified image features as both OLCI and HICO have more spectral bands than VIIRS 38 

(Qi et al., 2020; Hu, 2022).  39 

2. Environmental data  40 

Daily SST. Multi-scale Ultra-high Resolution (MUR) daily sea surface temperature (SST, oC) data 41 

(0.25o grid) for the period of 2012–2021 for the study region of 40oS–8oS and 110oE–160oE were 42 

downloaded from the NASA Jet Propulsion Laboratory 43 

(https://podaac.jpl.nasa.gov/dataset/MUR25-JPL-L4-GLOB-v04.2). These data products were 44 

derived from multi-sensor measurements with optimal interpolation (OI) schemes to fill the data 45 

gap (Chin et al., 2017). 46 

Daily Chl-a. Level-3 daily chlorophyll-a (Chl-a) concentration data (mg m-3, 9-km grid) for the 47 

period of 2012–2021 for the same study region were downloaded from the NASA OB.DAAC 48 

(https://oceancolor.gsfc.nasa.gov/l3/). These were derived from the Moderate Resolution Imaging 49 

Spectroradiometer (MODIS)/Aqua measurements using the NASA standard atmospheric 50 

correction and bio-optical inversion algorithms (see 51 
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https://oceancolor.gsfc.nasa.gov/resources/atbd/chlor_a/) after rigorous quality control. These 52 

data may be subject to large uncertainties in turbid coastal waters (Cannizzaro et al., 2013; IOCCG, 53 

2019), but they are used here as a relative index to examine changes.  54 

Daily wind speed. Wind speed data (1o grid) at 6-hour intervals from 2012 to 2021 were 55 

downloaded from the National Center for Environmental Prediction (NCEP)/National Center for 56 

Atmospheric Research (NCAR, https://www.weather.gov/ncep/). Depending on the need, all the 57 

above daily data were binned to monthly data to facilitate time-series analysis. 58 

Monthly dust and black carbon. The monthly mean column mass density of dust (dust, mg m-2) 59 

and black carbon (BC, mg m-2) (0.5° ´ 0.625° grid) for the period of 2012–2021 were calculated 60 

and downloaded from the Google Earth Engine (GEE) platform. These data were provided by 61 

NASA using the second Modern-Era Retrospective analysis for Research and Applications 62 

(M2T1NXAER) model (https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary).  63 

Sea surface velocity. Sea surface velocity (m s-1) from the global Hybrid Coordinate Ocean Model 64 

(HYCOM, https://www.hycom.org/hycom) were processed and downloaded from the GEE 65 

platform.  66 

MLD. Mixed-Layer-Depth (MLD, m) data were obtained from the Oregon State University 67 

(http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.mld125.hycom.php), estimated 68 

using a global HYCOM.  69 

Sea surface nutrient. The all-time average cumulative sea surface nutrient concentration data (1o 70 

grid), including nitrate (N) and phosphorus (P), were obtained from NOAA WOA18 71 

(https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/bin/woa18oxnu.pl). These data were 72 

used to compute the N/P distribution for the study region. 73 

3. Detect and quantify Trichodesmium surface scums using satellite data 74 

The methodology has been detailed in Qi and Hu (2021), Qi et al. (2016; 2020), and Hu et al. 75 

(2023). For completeness, it is described here. Briefly, four steps are involved. 76 

Step 1. Identify algae pixels and prepare “ground truth” images 77 

This is through visual inspection, spectral analysis, manual outlining, and objective delineation. 78 

For simplicity, here, the word “algae” is used for Trichodesmium. 79 
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First, VIIRS, OLCI, and HICO Rrc(l) data were used to compose false-color Red-Green-Blue 80 

(FRGB) images to facilitate visual inspection of image features (Qi et al., 2020). In such 81 

composites, the spectral bands 671 nm (red), 862 nm (green), and 443 nm (blue) for VIIRS, and 82 

674 nm (red), 865 nm (green), and 443 nm (blue) for OLCI are used. For HICO, the spectral bands 83 

662 nm (red), 748 nm (green), and 444 nm (blue) are used. Different from the traditional RGB 84 

composite images, the use of a NIR band as the replacement of green channel in the FRGB images 85 

makes algae scums appear greenish due to their enhanced NIR reflectance, thus making feature 86 

recognition straightforward. Such FRGB images at a global scale from VIIRS measurements are 87 

actually available through the NOAA OCView online portal (Mikelsons and Wang, 2018). Figs. 88 

S2a and S2b show examples of VIIRS AFAI and OLCI FRGB images where image features can 89 

be visualized. 90 

Once the image features are visually identified from VIIRS FRGB or AFAI images, their spectral 91 

shapes from the corresponding OLCI image features are analyzed using the same technique as 92 

described in Qi et al. (2020). Specifically, the difference spectra between the image feature and 93 

nearby water pixel, DRrc(λ), can be used for spectral diagnosis. Mathematically, we have  94 

DRrc(λ) = RTrc(λ) – RWrc(λ) 95 

= [cRA(λ) + (1 - c) RW(λ)] - RW(λ)  96 

= c(RA(λ) - RW(λ)) 97 

» cRA(λ) [assuming RW(λ) << RA(λ)].      (1) 98 

Here, the subscripts “T”, “W”, and “A” represent target pixel, water pixel, and pure-algae pixel, 99 

respectively, and c represents the subpixel algae coverage (0%–100%) within the target pixel. The 100 

transition from Rrc to surface reflectance R is because of the assumption that aerosol reflectance 101 

over the target pixel and nearby water pixel is the same, and therefore can be subtracted off. From 102 

Eq. (1), the spectral shape in DRrc(λ) is the same as in the endmember RA(λ), thus can be used to 103 

infer the algae type. Fig. S2d shows some examples of DRrc(λ) derived from randomly selected 104 

pixels with high AFAI values or in the greenish image features of Figs. S2a and S2b. To show the 105 

spectral shapes more clearly, the spectra of the 100 randomly selected pixels are plotted in log 106 

scale in Fig. S2e. In this figure, the changes in the spectral magnitude indicate changes in c of Eq. 107 

(1), but the reflectance spectral shapes from these randomly selected pixels are nearly identical 108 
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(i.e., they are parallel to each other), suggesting the same type of algae. Based on the red-edge 109 

reflectance (i.e., elevated reflectance between 700 and 900 nm) as well as elevated reflectance in 110 

the green and red bands, the algae can be inferred to be Trichodesmium.  111 

The spectral shapes of the image features can be better viewed from the HICO images because 112 

HICO is a hyperspectral sensor (Hu, 2022). Fig. S3 shows the HICO FRGB image with the spectra 113 

extracted from 100 randomly selected pixels within the image feature. The spectral “wiggling” 114 

from 400–700 nm is due to pigment absorption of Chl-a, phycourobilin (PUB), phycoerythrobilin 115 

(PEB), and phycocyanin (PC) (McKinna, 2010; Hu et al., 2010). Such reflectance spectral shapes 116 

are unique to Trichodesmium scums, therefore can be used to “fingerprint” them unambiguously. 117 

The reflectance magnitude at the NIR wavelengths, on the other hand, is a measure of c in Eq. (1) 118 

(i.e., algae density or % cover within a pixel). In this example, c from 2% to 20% within a HICO 119 

pixel. 120 

The reflectance spectral shapes shown in Figs. S2e and S3b are characteristics of Trichodesmium 121 

scums due to their diagnostic pigments. From these spectral shapes, the possibility of other algae 122 

scums (e.g., from Lyngbya majuscule) or macroalgae (e.g., Hinksia Sordida) or other 123 

cyanobacteria (e.g., Synechococcus), all reported around Australia, can be ruled out. Blooms of 124 

Synechococcus rarely form algae scums, and their reflectance peaks around 550 nm (Soja-Wozniak 125 

et al., 2018; Cannizzaro et al., 2019) as opposed to ~600 nm. Likewise, the reflectance spectral 126 

shapes of Lyngbya majuscule mats are relatively smooth in the visible wavelengths (Roelfsema et 127 

al., 2006), dramatically different from those of Trichodesmium scums. Finally, Hinksia Sordida is 128 

a benthic brown macroalgae (Sanderson, 1997) that is unlikely to have pigment composition 129 

similar to that of Trichodesmium to result in similar spectra shapes as shown in Figs. S2e and S3b. 130 

From all spectroscopy results, the greenish features in the VIIRS FRGB images must be due to 131 

Trichodesmium scums. The distinctive pigment features (Fig. S3b) suggest that the Trichodesmium 132 

cells are not dead (for otherwise they would not show these pigment features) but actively fixing 133 

nitrogen and carbon, as demonstrated in a field experiment in the Arabian Sea (Capone et al., 1998).   134 

Assisted with the spectroscopy analysis as shown in Figs. S2e and S3b, the visually identified 135 

algae features in the VIIRS images are delineated using a combination of manual outlining and 136 

objective segmentation (Hu et al., 2023). The manual outlining is used to determine where in the 137 

image to apply the segmentation technique, while the segmentation is based on the spatial gradient 138 
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of Rrc. A sample result is shown in Fig. S2c. Such images are used as the “ground truth” to train 139 

and validate the deep-learning model.  140 

Step 2. Develop and validate a Res-UNet deep-learning model to detect algae pixels from VIIRS 141 

images 142 

The deep residual U-Net (Res-UNet) model is a kind of segmentation deep learning method which 143 

was proposed by Zhang et al. (2018) to extract the road from remote sensing images. Afterwards, 144 

it has been widely used and applied to other fields, such as automatic segmentation of floating raft 145 

aquaculture, extraction of urban buildings, and so on (Gao et al., 2022; Wen et al., 2019). Recent 146 

applications to multi-band ocean color data suggest its robustness in extracting macroalgae image 147 

features from MODIS in the Atlantic Ocean (Hu et al., 2023). Here, we developed a deep learning 148 

(DL) model from the Res-UNet architecture to extract Trichodesmium image features, and then 149 

quantify Trichodesmium density using a pixel unmixing scheme. The model works as follows: 150 

Model training. In this study, the inputs of the Res-UNet model consist of 4 VIIRS bands and 151 

an alternative floating algae index (AFAI), all normalized according to their dynamic ranges. 152 

Here AFAI is defined as (Qi et al., 2016): 153 

𝐴𝐹𝐴𝐼 = 𝑅!! − '𝑅!" +
!!"!"
!#"!!

× *𝑅!# − 𝑅!"+,,     (2) 154 

where the three VIIRS wavelengths are l1 = 671 nm, l2 = 745 nm, and l3 = 862 nm. 155 

The normalization of Rrc was performed as 156 

𝑛𝑅#$ = [log(𝑅#$) − log5𝑅#$
(&'()6]/[log5𝑅#$

(&*+)6 − log5𝑅#$
(&'()6],           (3) 157 

where 𝑅#$
(&'() and 𝑅#$

(&*+) are 0.0025 and 0.3, respectively, for Rrc data of all 4 bands at 486, 551, 158 

671, and 862 nm. Likewise, AFAI was normalized as: 159 

𝑛𝐴𝐹𝐴𝐼 = (𝐴𝐹𝐴𝐼 − 𝐴𝐹𝐴𝐼,'()/(𝐴𝐹𝐴𝐼,*+ − 𝐴𝐹𝐴𝐼,'()                   (4) 160 

where AFAImin = -0.005, AFAImax = 0.02. Through the normalization, Rrc and AFAI were scaled 161 

to floating point values in the range of 0.0–1.0. 162 

The above process is repeated over a total of 10,652 sub-images, each being 128 × 128 in size and 163 

representing images collected under different observation conditions (e.g., sun glint, thin clouds, 164 

large viewing angles, shallow water). The resulting 10,625 images are called “labeled images” and 165 
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used as the “ground truth” images to train and validate the deep-learning model, as described below. 166 

Once fully trained, the application of the model only requires images with 5 channels (4 Rrc bands, 167 

1 AFAI) as the input, with the classified algae pixels as the output. 168 

Model validation. The performance of the Res-UNet model was evaluated by comparing the 169 

model output with the labeled “ground truth” images that were not used in the model training. 170 

Figs. S4 and S5 show sample model outputs, where the classified algae pixels are shown in the 171 

last row as white. These classified pixels were compared with those from the labeled images to 172 

determine the following statistical measures: 173 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = -.
-./0.

× 100%,                                                       (5) 174 

𝑅𝑒𝑐𝑎𝑙𝑙 = -.
-./01

× 100%,                                                           (6) 175 

𝐹1 = 2×.#4$'5'6(×74$*88
.#4$'5'6(/74$*88

× 100%,                                                 (7) 176 

where TP, FP, and FN stand for true positives, false positives, and false negatives, respectively.    177 

F1 is the overall accuracy measure of the classification results after accounting for both false 178 

positives and false negatives. Here, TP and FP were calculated after accounting for subpixel algae 179 

coverage (see below). The evaluation results are presented in Table S2. Note that these evaluations 180 

are not based on in situ measurements but based on carefully prepared “ground truth” images, 181 

therefore can be regarded as a measure of consistency between “ground truth” and the model.  182 

The DL model was also evaluated qualitatively using in situ data collected by the Integrated 183 

Marine Observing System (IMOS) program (Eriksen et al., 2019). Because of the difference in the 184 

sampling methods (i.e., Trichodesmium scums are detected in this study, but Trichodesmium cells 185 

in the water column were sampled from fixed locations in the IMOS program), it is difficult to 186 

have a point-to-point comparison. This is also why McKinna (2010) used “ships-of-opportunity 187 

sightings of dense Trichodesmium surface aggregations substantial in spatial extent, preferably in 188 

the order of ~10–100 m” to validate satellite observations of surface scums. For this reason, the 189 

IMOS in situ data were used to evaluate the presence/absence detection by the DL model. 190 

Specifically, from the IMOS program (Davis et al., 2020), high abundance of Trichodesmium was 191 

reported at 5 of the 7 long-term monitoring stations, and these are cases with the DL model showed 192 

frequent Trichodesmium scums (Fig. 1a). At the 2 stations (“Kangaroo Island” and “Maria Island”) 193 
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to the south of Australia where no Trichodesmium was observed from the IMOS program, the DL 194 

model did not show any Trichodesmium scums either. 195 

There are different methods to detect Trichodesmium scums using satellite observations (see 196 

review by McKinna (2015)), such as those based on the floating algae index (FAI, Hu et al., 2010), 197 

maximum chlorophyll index (MCI, Blondeau-Patissier et al., 2018), or classification based on 198 

several spectral bands with thresholds (McKinna et al., 2011). While the objective of this study is 199 

not to provide a comprehensive evaluation of different methods in detecting Trichodesmium scums, 200 

comparison of these different methods over sample images showed consistency, as shown in Fig. 201 

S6. In this example, the same VIIRS images as in Fig. S2 is used for illustration. Similar spatial 202 

patterns were found between the AFAI and MCI images, both showing more Trichodesmium (Figs. 203 

S6b & S6c) than from the classification method (Fig. S6d) because the presence/absence detection 204 

in the latter method is sensitive to the selected threshold. However, VIIRS does not have the 709-205 

nm band, making the MCI algorithm not applicable. Furthermore, the classification method only 206 

detects the presence of Trichodesmium scum without quantifying the subpixel % coverage (see 207 

below). The DL model used in this study was able to improve the performance of AFAI to avoid 208 

false-positive detections over shallow water and thin clouds (Figs. S4 and S5). This is why the DL 209 

model was used in this study. The advantage of a similar DL model in detecting Sargassum 210 

macroalgae has been fully detailed in Hu et al. (2023). 211 

Step 3. Quantify Trichodesmium areal density at the pixel level 212 

Trichodesmium scums are very patchy, and they rarely cover a kilometer-scale pixel. Therefore, 213 

for all classified algae pixels, a simple unmixing model was used to determine the subpixel 214 

coverage (or areal density), expressed as c (0–100%) (Qi and Hu, 2021). The unmixing was based 215 

on the pixel’s AFAI value, using the following equation:  216 

AFAIP = c AFAIA + (1-c) AFAIW                    (8) 217 

Here, AFAIP represents the pixel’s AFAI value, and AFAIA and AFAIW represent the AFAI values 218 

of the algae endmember and water endmember, determined to be 0.127 and -0.0005, respectively, 219 

from in situ Trichodesmium and water reflectance (McKinna et al., 2011) resampled for VIIRS 220 

bands. Note that small errors in these endmember values can lead to similar errors in the estimated 221 
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c value. But these errors are systematic across all algae pixels and all images, thus will not impact 222 

either the spatial distribution patterns or the temporal changing patterns.  223 

Step 4. Derive Trichodesmium areal density maps  224 

After pixel unmixing, Trichodesmium areal density maps were derived following the same 225 

approach outlined in Qi et al. (2016). Briefly, the study region was divided into 9-km grids. For 226 

each grid, the mean Trichodesmium density (in %) during a given period (e.g., month) was 227 

calculated as: 228 

𝑓 = 	 9
1$
∑ c'
1$
':;  ,                                                                        (9) 229 

where Nt is the number of valid pixels from all images during that period in that grid. In this process, 230 

cloud and sun glint pixels are masked as invalid, using the following criteria: 231 

𝑚𝑎𝑠𝑘 = 𝑤ℎ𝑒𝑟𝑒(𝑅#$(486) > 𝑎&𝑅#$(551) > 𝑎&𝑅#$(671) > 𝑎).                          (10) 232 

Here, the threshold a of 0.04 is higher than the NASA default threshold of Rrc(865) at 0.027 to 233 

mask clouds. This is because the AFAI index is tolerant to thin clouds, and the use of a higher 234 

threshold would lead to more valid pixels to apply the Res-UNet model. 235 

Such derived Trichodesmium density maps for the climatological months of 2012–2021 are 236 

presented in Fig. S7, and for the calendar years are presented in Fig. S8.  The total areal coverage 237 

of Trichodesmium (km2) during a month or a year is the integration of f over all grids for that 238 

period. Likewise, for the entire study period of 2012–2021, the mean density map is presented in 239 

Fig. 1a, where the total areal coverage is estimated from Fig. 1a using the same integration method. 240 

The cumulative footprint of Trichodesmium is defined as the waters (grids) where f is > 0.001‰, 241 

representing waters where Trichodesmium scums can be found regardless of their density. The size 242 

of the footprint (in km2) is much higher than the Trichodesmium areal coverage because f was used 243 

to estimate the latter. Here, a threshold of 0.001‰ was selected because (1) > 95% of the non-zero 244 

grids have their f values > 0.001‰ and (2) the non-zero grids with f < 0.001‰ were discarded in 245 

order to account for possible noise due to occasional false positive detection. 246 

Using this method, the mean annual areal coverage of Trichodesmium between 2012 and 2021 is 247 

presented in Fig. S9, together with other environmental variables (see below). 248 

 249 
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 250 

4. Quantify Trichodesmium’s water and atmospheric environments 251 

Water environment 252 

The water environment of Trichodesmium was characterized by nutrient availability, temperature, 253 

and Chl-a. Of these, the distribution of N/P ratio shows the general nutrient availability (Fig. 3a). 254 

SST and Chl-a corresponding to each algae pixel were extracted from the daily images, with 255 

statistics (i.e., histograms) presented in Figs. 1b & 1d, respectively. Furthermore, from each daily 256 

image, SST and Chl-a were extracted from the Trichodesmium niche area (i.e., the multi-year 257 

cumulative footprint in Fig. 1a), and these data served as the “background” to determine whether 258 

Trichodesmium prefers a certain SST or Chl-a range over the background environment. Such 259 

statistics are also presented in Figs. 1b and 1d, respectively. 260 

Similarly, monthly SST and Chl-a data were extracted from the multi-year cumulative 261 

Trichodesmium footprint (Fig. 1a) to calculate climatology monthly means. These data were 262 

overlaid over the seasonal changes of Trichodesmium to determine whether they are synchronized 263 

in time (Fig. 2a), and presented in Fig. 3 to show their spatial distributions. 264 

Atmospheric environment 265 

Similar to SST and Chl-a, wind speed from each algae pixel and from the Trichodesmium niche 266 

area was pulled from daily images, with statistics presented in Fig. 1c and climatological 267 

distributions presented in Fig. 3e.  268 

Monthly dust and black carbon (BC) data were extracted from the multi-year cumulative 269 

Trichodesmium footprint (Fig. 1a) to calculate climatological monthly means. These data were 270 

overlaid over the seasonal changes of Trichodesmium to determine whether they are synchronized 271 

in time (Fig. 2a). The monthly dust and BC data were also overlaid over the monthly time series 272 

of Trichodesmium (Fig. 2b) and annual time series of Trichodesmium (Fig. S9) for the same 273 

purpose.  274 

To examine whether there is a temporal correspondence between water column Chl-a and other 275 

variables, their climatological monthly means over the Trichodesmium niche area (Fig. 1a) are 276 

presented in Fig. S10. To test whether the inter-annual patterns of Trichodesmium areal coverage 277 

can be explained by large scale climate events such as El Niño and La Niña, the Multivariate ENSO 278 
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Index (MEI) was plotted together with Trichodesmium monthly anomalies (i.e., difference 279 

between calendar month and climatological month) in the areal coverage (Fig. S11). To verify 280 

whether changes in SST or MLD could be a reason of the observed increases in Trichodesemium 281 

and Chl-a after the 2019–2020 bushfire event (Fig. 4), monthly anomalies of SST and MLD in the 282 

water area where BC was found unusually high (outlined in rectangle in Fig. 4b) are presented in 283 

Fig. S12.  284 

5. Statistical method 285 

The Mann-Kendall test 286 

To test the long-term trend of Trichodesmium blooms, we used the Mann-Kendall test through an 287 

open-source python package (Hussain & Mahmud, 2019, https://pypi.org/project/pymannkendall/) 288 

to obtain the trend and p-values. 289 

 290 
Multiple linear regression 291 

An analysis of multiple linear regression model (Chatterjee and Hadi, 1986) was used to test the 292 

influence factors associated with Trichodesmium bloom changes. The format of multiple linear 293 

regression model in this study is:  294 

log(𝑌) = 𝑎; + 𝑎9𝑥9 + 𝑎2𝑥2 + 𝑎<𝑥9𝑥2,                                         (11) 295 

where Y is the area of Trichodesmium blooms estimated from VIIRS images, and x1 and x2 are dust 296 

and BC density from M2T1NXAER model. 297 

The analysis was applied to both climatological months means (Fig. S13a) and long-term monthly 298 

means (Fig. S13b) for the entire study region as well as to individual grids (Fig. S13c). 299 
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Table S1. Summary of previous studies on remote sensing of Trichodesmium blooms (surface 382 
scums) around Australia (Fig. S1). 383 

Study Coverage Duration Sensor & Method 
Subramaniam & 
Carpenter (1994) 21°S,118.5°E Sample images:  

Nov. 1980 
CZCS, classification 

from Lt 

Capone et al. (1997) 20.5°S–19°S 
117°E–120.5°E Sample images CZCS, classification 

from Lt 

Gower et al., 2008 24.5°S–18.5°S 
148°E–156°E 

Sample images:  
Aug. 2006 

MERIS, MCI from Lt 
 

McKinna et al., 2011 24°S–10°S 
142°E–153°E 

Sample images:  
Jan. 2005; Oct. 2007 

MODIS, classification 
from Rrs 

Blondeau-Patissier et 
al. (2014) 

19.5°S–15°S, 
145°E–147.5°E 

13°S–9°S, 
130°E–133°E 

Time series:  
2002–2012 MERIS, MCI from Lt 

Blondeau-Patissier et 
al. (2018) 

26°S–9°S 
142°E–155°E 

Time series:  
2002–2012 MERIS, MCI from Lt 

Bell (2021) 
19°S, 147.35°E 
20.4°S, 149°E 

22.7°S, 151.3°E 

Sample images:  
Aug. 2011; Jan. 
2005; Jul. 2008 

MODIS, classification 
from Rrs 

 384 
 385 
Table S2. Accuracy of the Res-UNet model to detect and estimate Trichodesmium surface 386 
coverage from VIIRS satellite imagery. The corresponding images are shown in Fig. S4 and Fig. 387 
S5, respectively.  388 

Date of 
image 

Tricho 
weighted 

area (km2) 
TP (km2) FP (km2) FN (km2) Precision Recall F1 

09/12/2013 1062.0 978.2 20.0 83.8 98.0% 92.1% 95.0% 
10/29/2019 357.0 337.8 10.2 19.2 97.1% 94.6% 95.8% 

*TP is true positives, FP is false positives, and FN is false negatives. Precision, Recall, and F1 were calculated using 389 
Eqs. (5)–(7). 390 
 391 
 392 
 393 
 394 
 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
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 404 
Table S3. Monthly mean areal coverage (in km2) of Trichodesmium scums around Australia from 405 
VIIRS observations between 2012 and 2021. Bold font indicates the peak month of the year. 406 
 407 

 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
  420 

Month 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 
Jan. 393.2 609.6 290.9 256.5 238.1 221.7 196.1 209.5 185.4 162.7 
Feb. 194.9 541.9 458.5 508.5 225.9 274.8 233.5 464.4 138.9 260.9 
Mar. 87.5 445.7 275.2 438.9 110.6 77.4 168.3 359.0 94.9 179.7 
Apr. 75.4 174.1 140.6 114.9 41.2 26.7 99.8 56.6 4.8 91.1 
May 9.8 21.6 29.2 58.6 87.9 12.8 10.8 27.2 13.3 30.8 
Jun. 41.9 22.8 44.5 10.2 61.3 11.5 25.0 25.0 41.1 30.6 
Jul. 37.6 83.3 54.1 25.8 58.1 69.4 78.4 75.3 194.4 109.8 
Aug. 143.2 324.4 64.8 77.7 234.2 187.9 271.2 110.9 185.4 195.6 
Sep. 647.5 731.4 366.3 214.5 401.4 491.5 444.7 995.8 507.7 389.6 
Oct. 583.7 635.4 437.8 478.3 327.4 607.5 998.8 1283.3 563.1 647.6 
Nov. 314.4 1019.8 284.9 148.6 497.5 262.6 342.5 548.1 407.0 613.2 
Dec. 793.8 608.7 287.9 150.8 151.6 304.2 184.0 347.2 274.4 154.9 
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 421 

Fig. S1. Map showing study regions of earlier remote sensing works (rectangles and dots), with 422 
references annotated in the map legend (also see Table S1). The map covers 40°S–8°S and 110°E–423 
160°E, which is the study region of the current work. The solid rectangle shows the long-term time 424 
series study, while the dashed rectangles and dots show case studies. No Trichodesmium scums 425 
were found between 40°S and 44°S (including waters around Tasmania), and this area is therefore 426 
not included in the map. 427 
 428 
 429 
  430 

Subramaniam&Carpenter, 1994

Capone et al., 1997

Gower et al., 2008

McKinna et al., 2011

Blondeau-Patissier et al., 2014

Blondeau-Patissier et al., 2018

Bell, 2021
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 452 
 453 
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 456 
 457 
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 459 
 460 
 461 
 462 
 463 
Fig. S2. Examples showing the input images for the Res-UNet model for (a) VIIRS AFAI image 464 
and (b) OLCI FRGB image on 23 July 2021 over an area of 12–14oS, 136–138oE. Color bar in (a) 465 
shows the AFAI values for each pixel, and greenish in red dash polygon in (b) indicates the 466 
Trichodesmium bloom area. The insert map in (b) with the red circle shows the location of the 467 
images taken at (13oS, 137oE); (c) white pixels were labeled as Trichodesmium as input for the 468 
Res-UNet model training and validation; (d) OLCI reflectance spectra from randomly selected 469 
algae-scum pixels from the outlined area, which show typical Trichodesmium spectral shapes (Qi 470 
et al., 2020). For clarify, the spectra of 100 randomly selected algae-scum pixels are plotted in log 471 
scale in (e), which appear parallel to each other, indicating the same algae type (i.e., 472 
Trichodesmium). The same validation has been performed using randomly selected OLCI and 473 
VIIRS image pairs, with results near identical to those of (e).  474 
  475 
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Fig. S3. (a) HICO FRGB image collected on 9 December 2012 off the southwest coast of Australia 514 
(31.3oS–32oS, 115.1oE–115.8oE) showing algae scums (greenish image features); (b) Reflectance 515 
spectra of 100 randomly selected pixels from the algae scums, with spectral features annotated, 516 
i.e., PUB: phycourobilin; PEB: phycoerythrobilin, PC: phycocyanin. These reflectance spectral 517 
shapes are nearly identical (i.e., parallel to each other in log scale), indicating the same algae type. 518 
The changes in magnitudes indicate different algae density (c) within a pixel, annotated to the 519 
right.   520 
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Fig. S4. Examples showing extraction of Trichodesmium surface scum using the Res-UNet model 521 
for (a) VIIRS AFAI image on 12 September 2013, where 4 small regions are shown in (b)–(e), 522 
respectively, with their corresponding FRGB images, AFAI images, and Res-UNet model results 523 
presented separately. In the AFAI images, black represents clouds, sun glint, extremely turbid 524 
water, or no satellite coverage, while white arrows indicate high AFAI values caused by shallow 525 
water rather than by Trichodesmium. The Res-UNet model correctly identified these pixels as non-526 
Trichodesmium, as illustrated in the bottom row.  527 
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Fig. S5. Examples showing extraction of Trichodesmium surface scum using the Res-UNet model 528 
for (a) VIIRS AFAI image on 29 October 2019, where 4 small regions are shown in (b)–(e), 529 
respectively, with their corresponding FRGB images, AFAI images, and Res-UNet model results 530 
presented separately. In the AFAI images, black represents clouds, sun glint, extremely turbid 531 
water, or no satellite coverage, while white arrows indicate high AFAI values caused by shallow 532 
water, striping noise, and cloud shadow. The Res-UNet model correctly identified these pixels as 533 
non-Trichodesmium, as illustrated in the bottom row.  534 

(b) (c) (e)(d)

FR
GB

AF
AI

UN
et

m
od

el
re
su
lts

shallow water

cloud shadow

sensor stripe cloud shadow

cloud shadow

No Tricho detected

b

c

d

e

SNPP/VIIRS
10/29/2019
04:54 (GMT)

0.00

0.01

0.02

0.03

400 500 600 700 800 900

ΔR

λ (nm)

p1
p2
p3

X X X

a



 

 21 

 535 
 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
 547 
 548 
 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
Fig. S6. Comparison between different methods in detecting Trichodesmium scums from OLCI 561 
images. (a) FRGB image showing surface features. This is the same image as in Fig. S2; (b) The 562 
corresponding AFAI image; (c) The corresponding MCI image (Blondeau-Patissier et al., 2018); 563 
(d) the corresponding classification results (McKinna et al., 2011). The DL model in this study is 564 
based on AFAI and other spectral bands.  565 
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Fig. S7. Cumulative footprint and surface coverage density of Trichodesmium in each climatological month of 2012–2021. The density 566 
is expressed as mean % coverage in a given location. 567 
 568 
 569 
 570 
 571 
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 572 
Fig. S8. Cumulative footprint and surface coverage density of Trichodesmium in each calendar year of 2012–2021, calculated from 573 
monthly maps during each year. The density is expressed as mean % cover in a given location. 574 
  575 
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 576 
Fig. S9. Annual mean area of Trichodesmium scums (km2) around Australia, together with the 577 
annual mean Chl-a, SST, BC, and dust.  578 
 579 
 580 
 581 

 582 
Fig. S10. Similar to Figs. 1b-d, but the analysis was over (a) – (c) tropical/subtropical waters (north 583 
of 23.45oS) and (d) – (f) temperate waters (south of 23.45oS). Here, “Background” water refers to 584 
waters in the Tricho-niche area, while “Trichodesmium” water refers to locations of 585 
Trichodesmium occurrence. See Fig. 1 caption for more details.  586 
 587 
 588 
 589 
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 591 

 592 
 593 
 594 
Fig. S11. Multi-variate analysis between BC, dust, and Trichodesmium on their seasonality. (a) 595 
For climatology months (X0 = 5.43´BC + 0.35´Dust - 0.41´BC´Dust + 1.91); (b) For calendar 596 
months (X0 = 3.46´BC + 0.16´Dust - 0.21´BC´Dust - 0.03); (c) Spatial distributions of the 597 
correlation after binning all data to 50-km grids. The unit of X0 in (a) and (b) is mg m-2.  598 
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Fig. S12. Seasonality of Chl-a, Wind speed, and mixed-layer depth (MLD) derived from the 613 
Trichodesmium niche area (Fig. 1a) between 2012 and 2021. 614 
 615 
 616 
  617 
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Fig. S13. (a) Multivariate ENSO Index (MEI, version2 data product) between 2012 and 2021 654 
(data obtained from NOAA, https://psl.noaa.gov/enso/mei/), with red for EI Niño phase and blue 655 
for La Niña phase; (b–d) monthly mean Trichodesmium coverage anomaly around Australia 656 
derived from VIIRS over the entire region, tropical/sub-tropical region (north of 23.45oS), and 657 
temperate region (south of 23.45oS), respectively. 658 
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 661 

Fig. S14. Monthly anomalies of SST and MLD in a region off the southeast Australia (outlined in 662 
rectangle in Fig. 4b) where BC was much higher than usual in late 2019 due to the bushfire event. 663 
SST does not show anomalies higher than interannual variability, and negative MLD anomalies 664 
(i.e., shallower mixed layer) started at the beginning of 2019 (i.e., not synchronized with other 665 
changes shown in Fig. 4c). The shallower mixed layer also suggests lower amount of nutrients 666 
from the deep ocean is available for Trichodesmium and other phytoplankton. 667 
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