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Abstract

Some Aspects of Noncommutativity in Polynomial Optimization

Seyyed Hamoon Mousavi Haji

Most combinatorial optimization problems from theoretical computer science have a

natural framing as optimization of polynomials in commuting variables. Noncommutativity is one

of the defining features of quantum mechanics. So it is not surprising that noncommutative

polynomial optimization plays an equally important role in quantum computer science. Our main

goal here is to understand the relative hardness of commutative versus noncommutative

polynomial optimization. At a first glance it might seem that noncommutative polynomial

optimization must be more complex. However this is not always true and this question of relative

hardness is substantially more subtle than might appear at the outset.

First in this thesis we show that the general noncommutative polynomial optimization is complete

for the class Π2; this class is in the second level of the arithmetical hierarchy and strictly contains

both the set of recursively enumerable languages and its complement. On the other hand,

commutative polynomial optimization is decidable and belongs to PSPACE. We then provide

evidence that for polynomials arising from a large class of constraint satisfaction problems the

situation is reversed: the noncommutative polynomial optimization is an easier computational

problem compared to its commutative analogue.

A second question we are interested in is about whether we could extract good commutative

solutions from noncommutative solutions? This brings us to the second theme of this thesis which

is about understanding the algebraic structure of the solutions of noncommutative polynomial



optimization. We show that this structural insight then could shed light on the optimal

commutative solutions and thereby paves the path in understanding the relationships between the

commutative and noncommutative solutions.

Here we first use the sum-of-squares framework to understand the algebraic relationships that are

present between operators in any optimal noncommutative solution of a class of polynomial

optimization problems arising from certain constraint satisfaction problems. We then show how

we can design approximation algorithms for these problems so that some algebraic structures of

our choosing is present. Finally we propose a rounding scheme for extracting good commutative

solutions from noncommutative ones.
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Introduction

This thesis studies the problem of noncommutative polynomial optimization. One reason ordi-

nary polynomials play an important role in theoretical computer science is that many combinatorial

optimization problems can be formulated as the optimization of polynomials in commuting vari-

ables. A famous example is the weighted Max-Cut problem. Framed as a polynomial optimization,

Max-Cut is essentially the problem

maximize:
∑︁

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗

subject to: 𝑥𝑖 ∈ {±1}.

(0.0.1)

Similarly many quantities in quantum information can be formulated as a noncommutative poly-

nomial optimization problem. One prominent such quantity is the entangled value of nonlocal

games, another topic of interest of this thesis. Indeed the problem of noncommutative polynomial

optimization and the problem of calculating the entangled value of nonlocal games are essentially

equivalent. That being said often times it is easier to work with one rather than the other. We see

examples where it is easier to work with nonlocal games formulation when trying to understand

noncommutative polynomial optimization better, and we will see example the other way around.

Aside from its direct importance in quantum information, noncommutative polynomial opti-

mization can reveal deep insights in the study of classical commutative problems. For example the

first step in the famous Goemans-Williamson approximation algorithm for Max-Cut is to solve the
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easier noncommutative analogue of (0.0.1)

maximize: tr
(∑︁

𝑤𝑖 𝑗𝑋𝑖𝑋 𝑗
)

subject to: 𝑋2
𝑖 = 𝑋∗𝑖 𝑋𝑖 = 𝐼 .

(0.0.2)

Here tr(·) is the dimension-normalized trace map, ∗ is the adjoint, and variables 𝑋𝑖 are allowed to be

Hermitian unitary operators of any dimension. The noncommutative problem is clearly a relaxation

of the classical problem. Whereas the commutative polynomial optimization (0.0.1) is famously

NP-hard, noncommutative polynomial optimization (0.0.2) is easy because it is a semidefinite

program in disguise.1

Intuitively, however, we expect that the general noncommutative polynomial optimization prob-

lem to be hard because variables can be operators of any dimension. At which dimension can we

stop searching for the optimal solution to our optimization problem? The answer is we can never

be sure. This is the content of the first part of the thesis. In Chapter 1, using tools from the study of

nonlocal games, we show that noncommutative polynomial optimization is not only uncomputable

but that it is strictly harder than even the halting problem. In contrast, using the existential theory

of reals, it is known that commutative polynomial optimization is in PSPACE [1].

A concept that plays a significant role in the first chapter is the notion of self-testing of non-

local games. This property that certain noncommutative polynomials have is, informally speaking,

about the presence of a unique canoncical solution. In Chapter 2, we again study self-testing in a

subclass of nonlocal games that generalizes the famous CHSH game. This time however we study

self-testing from an entirely different angle borrowing tools from noncommutative sum-of-squares

framework and representation theory.

As we indicated so far, we want to understand the relative hardness of the commutative versus

noncommutative polynomial optimization. This is a theme that derives much of this work. We just

saw that in the case of Max-Cut the noncommutative problem is easier to solve. We also mentioned

1Although Goemans-Williamson algorithm is never presented in this way in classical theoretical computer science,
this framing is very much folklore in quantum information circles through its connection to XOR nonlocal games.
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that the noncommutative optimization, in its most general form, is harder that the commutative

analogue. So the question of relative hardness is really subtle. There is a regime in which the

noncommutative problem is easier and then there is a regime in which the commutative problem is

easier. We make attempts in identifying these regimes.

After characterizing the regime where noncommutativity makes computation easier, can we

then hope to gain some information about the solutions to the commutative problem from the

noncommutative solution? The noncommutative solution consists of a bunch of operators acting

on some, possibly large-dimensional, Hilbert space. Can we extract a good classical commutative

solution from these operators? This is the second theme underlying this thesis.

Historically, when designing approximation algorithms for commutative polynomial optimiza-

tion, one relaxes the variables to take values in some vector space. The original domain of the

variables is often time a finite field. After solving the relaxation, one then must devise a rounding

scheme to obtain a good scalar solution from the vector solution. We propose a different approach:

Can we relax the scalars to operators and then round the operators back to scalars? The operator

relaxation would be closer to the original domain in two respects. First the value of the operator

relaxation is closer to the value of the original problem when compared with the vector relaxation.

Secondly the ring of operators preserve some of the algebraic structure of the original domain, in

the sense that we can still add and multiply (a property that we loose in the vector relaxation).

Could we take advantage of these? This is what we study in Chapter 3.

These all suggest that there is this beautiful twist in the story of commutative versus noncom-

mutative polynomial optimization: noncommutativity is not always a curse and it can sometimes

be viewed as a powerful resource not too different from the way randomness and entanglement are

viewed as resources when performing computational tasks.

So far we saw one example of this phenomenon: The original Max-Cut problem (0.0.1) is NP-

hard, but the noncommutative version (0.0.2) can be solved in polynomial-time. Even more in-

terestingly, the noncommutative solution reveals good classical solutions via rounding techniques.

We discuss further examples along this line in Chapter 3. However, studying the literature, we

3



are aware of at least a few other interesting examples of this phenomenon from slightly different

angles.

One example of “noncommutativity as a resource” is the self-testing property we mentioned

before. Self-testing does not have a satisfying analogue in the commutative world but it has been

a rich area of study in quantum information theory. Informally it allows an experimenter to in-

teract classically with a black box quantum system and to test that a specific entangled state was

present and a specific set of measurements were performed. Therefore some of the earliest and

most widely studied tests of quantumness rely heavily on self-testing results. This fundamental

property, present in some nonlocal games, has also led to the introduction of device-independent

cryptography among many other applications. This is the positive side of self-testing. On the other

hand, self-testing is also the reason why noncommutative polynomial optimization is hard. The

core of the argument we present in Chapter 1 for hardness of noncommutative polynomial opti-

mization is indeed based on self-testing. In fact if self-testing was featured in the commutative

world, as much as it is present in the noncommutative world, then we could have not capped the

complexity of commutative polynomial optimization to PSPACE.

Yet another elegant example of “noncommutativity as a resource” comes from the theory of

real algebraic geometry. We know from Hilbert’s 17th Problem and its resolution that positive

commutative polynomials may not be sum of squares. On the other hand, a seminal result of

Helton [2] shows that positive noncommutative polynomials are always sum of squares. This

implies that if 𝑝(𝑋1, . . . , 𝑋𝑛) is any polynomial in noncommuting variables, there is a finite sum-

of-square certificate for the value max ∥𝑝(𝑋1, . . . , 𝑋𝑛)∥ where ∥ · ∥ is the operator norm. On

the other hand if we enforce that 𝑋𝑖’s commute, no such certificate of finite size may exist. In

short, noncommutative polynomials seem to be better suited for the sum-of-squares framework

and semidefinite programming techniques.2

Guided by these observations we mentioned so far, in this thesis we look for computational

2We note that Helton’s result does not contradict the undecidability of noncommutative polynomial optimization.
The objective function in noncommutative polynomial optimization as we formulated it here involves trace rather than
operator norm, for example as in (0.0.2). Helton’s result does not extend to trace positivity of polynomials [3] and
therefore more intricate arguments are needed to deal with trace optimization.
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settings in which noncommutativity can be exploited as a resource. There are some evidence that

a noncommutative variant of Max-2-Lin constraint satisfaction problems (CSP) lie in this sweet

spot where noncommutativity actually makes things easier. Max-2-Lin are those CSPs where

constraints are linear equations and each constraint only involves two variables.

In Chapter 2, we study the effectiveness of sum-of-squares framework for solving a subclass of

noncommutative Max-2-Lin CSPs. In Chapter 3, we develop an algebraic framework for designing

approximation algorithms to noncommutative Max-2-Lin CSPs.

So far we gave a quick introduction to themes of this thesis. Let us now give a brief overview

of the results and some of the tools that are used.

In the first chapter we investigate the connection between the complexity of nonlocal games and

the arithmetical hierarchy, a classification of languages according to the complexity of arithmetical

formulas defining them. It was shown by Ji, Natarajan, Vidick, Wright and Yuen [4] that deciding

whether the (finite-dimensional) quantum value of a nonlocal game is 1 or at most 1
2 is complete for

the class Σ1 (i.e., RE). A result of Slofstra implies that deciding whether the commuting operator

value of a nonlocal game is equal to 1 is complete for the class Π1 (i.e., coRE).

We prove that deciding whether the quantum value of a two-player nonlocal game is exactly

equal to 1 is complete for Π2; this class is in the second level of the arithmetical hierarchy and cor-

responds to formulas of the form “∀𝑥 ∃𝑦 𝜙(𝑥, 𝑦)”. This shows that exactly computing the quantum

value is strictly harder than approximating it, and also strictly harder than computing the commut-

ing operator value (either exactly or approximately).

We explain how results about the complexity of nonlocal games all follow in a unified manner

from a technique known as compression. At the core of our Π2-completeness result is a new “gap-

less” compression theorem that holds for both quantum and commuting operator strategies. All

previous works only study the setting of finite-dimensional quantum strategies; ours is the first to

study compression of games in the commuting operator setting. Our compression theorem yields

as a byproduct an alternative proof of Slofstra’s result [5] that the set of quantum correlations is

not closed. We also show how a “gap-preserving” compression theorem for commuting opera-
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tor strategies would imply that approximating the commuting operator value is complete for Π1.

Eventually we show how these results prove the hardness result we advertised earlier for noncom-

mutative polynomial optimization.

In the second chapter we study self-testing which was also prominently featured in the previous

chapter. The most studied self-test is the CHSH game which features a bipartite system with

two isolated devices. This game certifies the presence of a single EPR entangled state and the

use of anti-commuting Pauli measurements. Most of the self-testing literature has focused on

extending these results to self-test for tensor products of EPR states and tensor products of Pauli

measurements.

Here, we introduce an algebraic generalization of CHSH by viewing it as a constraint satisfac-

tion problem, exhibiting self-testing properties that are qualitatively different. These provide the

first family of games that self-test non-Pauli operators. These games also provide a self-test for

states other than the maximally entangled state.

In order to obtain our results, we exploit connections between sum of squares proofs, non-

commutative ring theory, and the Gowers-Hatami theorem from approximate representation theory.

A crucial part of our analysis is to introduce a sum of squares framework that generalizes the

solution group of Cleve, Liu, and Slofstra [6]. Finally, we give a game that is not a self-test by

"gluing" together two copies of the famous Magic-Square game.

In the last chapter we study approximation algorithms for Max-2-Lin CSPs and their non-

commutative analogues. Max-Cut is the simplest example of Max-2-Lin. Goemans-Williamson’s

algorithm gives the best approximation algorithm for Max-Cut. Tsirelson’s theorem gives the best

algorithm for solving noncommutative Max-Cut. We examine these two theorems and propose a

way of extending them to Max-2-Lin problems beyond Max-Cut.

We mentioned earlier that noncommutative polynomial optimization could reveal some in-

sights in the study of classical commutative problems. In the last section of Chapter 3, we try to

understand this phenomenon better. We propose an operator rounding scheme that takes any non-

commutative solution to a CSP and produces a classical solution to the original classical CSP. We

6



study the performance of this rounding scheme on Max-2-Lin problems and compare it with the

performance of the conventional vector rounding. This seems to suggest that rounding from oper-

ators performs better, a comparison that again exhibits the phenomenon of “noncommutaitivity as

a resource.”
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Chapter 1: Hardness results

This chapter is taken verbatim from our paper “Nonlocal Games, Compression Theorems, and

the Arithmetical Hierarchy” [7]. All authors of this work contributed equally.

1.1 Introduction

A nonlocal game describes a scenario in which a (classical) verifier plays a game with two

separated, but possibly entangled, players (who we’ll call Alice and Bob). In the game, the verifier

samples a pair of questions (𝑥, 𝑦) from a question distribution `, sends 𝑥 to Alice and 𝑦 to Bob, and

then receives answers 𝑎 and 𝑏 from the players. The verifier then computes a decision procedure

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) to determine whether the players win or lose. We assume that Alice and Bob know

the question distribution and decision procedure before the game starts, and cooperatively select

an entangled strategy to maximize their probability of winning.

Recent results have shown that the optimal winning probability, called the value, of a nonlocal

game is uncomputable in general. Surprisingly, the study of the complexity of nonlocal games is

also intimately tied to questions outside of complexity theory. For example, Slofstra’s result about

the undecidability of whether a nonlocal game has a perfect quantum strategy (i.e. a strategy that

wins with probability 1) was a byproduct of his showing that the set of quantum correlations is

not closed [8, 5]. As another example, the complexity-theoretic result MIP∗ = RE [4] (which

implies that there is no algorithm to even approximate the quantum value of a nonlocal game)

yields negative answers to both Tsirelson’s Problem from quantum information theory and Connes’

Embedding Problem from operator algebras [9, 10].

These uncomputability results for nonlocal games demonstrate that the space of quantum strate-

gies is terribly complex — no algorithm can optimize over them, even approximately! This is
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already quite striking, but a closer look at these results indicates that more can be said: differ-

ent computational problems for nonlocal games can be uncomputable in incomparable ways. To

explain this we need to define two relevant models of entangled strategies.

Strategies for nonlocal games. The most general model we consider is the class of commuting

operator strategies. Let 𝐺 = (X,A, `, 𝐷) denote a nonlocal game with question alphabet X,

answer alphabetA, question distribution `, and decision procedure 𝐷 : X×X×A×A → {0, 1}.

A commuting operator strategy 𝒮 for a game 𝐺 is specified by the following data: a separable

Hilbert spaceH , a unit vector |𝜓⟩ ∈ H (called the state), and sets of measurements 𝐴 = {𝐴𝑥}𝑥∈X

and 𝐵 = {𝐵𝑦}𝑦∈X acting onH satisfying the following:

• For all 𝑥, 𝑦, the measurements 𝐴𝑥 = {𝐴𝑥𝑎}𝑎∈A and 𝐵𝑦 = {𝐵𝑦
𝑏
}𝑏∈A are sets of bounded positive

operators onH , with each set summing to the identity, and

• For all 𝑥, 𝑦, 𝑎, 𝑏, the operators 𝐴𝑥𝑎 and 𝐵𝑦
𝑏

commute.

Given questions (𝑥, 𝑦), the probability that the players respond with answers (𝑎, 𝑏) is given by

⟨𝜓 |𝐴𝑥𝑎 𝐵
𝑦

𝑏
|𝜓⟩. The two conditions on the measurement operators above ensure that this is a valid

probability distribution over A × A, and furthermore the commutation condition ensures that the

strategy is non-signaling, meaning that the marginal probability that a player responds with an

answer only depends on their question (and not the other player’s question).

The value of a commuting operator strategy 𝒮 = ( |𝜓⟩, 𝐴, 𝐵) in a game 𝐺 is given by

𝜔(𝐺,𝒮) :=
∑︁
𝑥,𝑦,𝑎,𝑏

`(𝑥, 𝑦) · ⟨𝜓 |𝐴𝑥𝑎𝐵
𝑦

𝑏
|𝜓⟩ · 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) .

The commuting operator value of a game 𝐺 is defined as

𝜔𝑐𝑜 (𝐺) := sup
commuting operator𝒮

𝜔(𝐺,𝒮).

Intuitively, the commuting operator value of a game represents the players’ maximum success
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probability allowed under quantum mechanics.

An important subclass of commuting operator strategies are the finite-dimensional ones, i.e.

where the underlying Hilbert space H is equal to C𝑑 for some integer 𝑑. We define the quantum

value1 of a game 𝐺 to be

𝜔𝑞 (𝐺) := sup
finite-dimensional𝒮

𝜔(𝐺,𝒮).

In the finite-dimensional setting, commuting operator strategies coincide with strategies in the

tensor product model: one can find two finite-dimensional Hilbert spacesH𝐴,H𝐵, a bipartite state

|𝜓⟩ ∈ H𝐴 ⊗ H𝐵, and measurements {𝐴𝑥𝑎} onH𝐴 and {𝐵𝑦
𝑏
} onH𝐵 such that

⟨𝜓 |𝐴𝑥𝑎 𝐵
𝑦

𝑏
|𝜓⟩ = ⟨𝜓 |𝐴𝑥𝑎 ⊗ 𝐵

𝑦

𝑏
|𝜓⟩ .

For a proof, see [11, Theorem 1]. Tensor product strategies give a natural way to model the

behavior of spatially separated players, and this is perhaps the most commonly studied model

of strategies for nonlocal games. General commuting operator strategies, on the other hand, do

not assume that there is an a priori tensor product decomposition of the Hilbert space, but only

that the non-signaling property is enforced via commutativity of the players’ measurements. The

commuting operator model of quantum correlations arise naturally in algebraic formulations of

quantum field theory [11, 12].

It is easy to see that 𝜔𝑞 (𝐺) ≤ 𝜔𝑐𝑜 (𝐺). Tsirelson’s Problem is essentially a question about

whether 𝜔𝑞 (𝐺) = 𝜔𝑐𝑜 (𝐺) for all games 𝐺; in other words, can all commuting operator strate-

gies (which might be infinite dimensional) be approximated arbitrarily well by finite-dimensional

ones [11]? Furthermore, it was shown that Tsirelson’s Problem is equivalent to Connes’ Embed-

ding Problem, which was a long-standing question in operator algebras about the approximability

of von Neumann algebras by finite-dimensional matrix algebras [9, 13, 12, 10]. As previously

mentioned, these questions about finite-dimensional approximability of infinite-dimensional ob-

jects are intimately connected to questions about computability of the value of nonlocal games.

1The reason for this name, as opposed to “finite-dimensional value”, is historical: the study of nonlocal games has
largely focused on the setting of finite-dimensional strategies.
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Computability of nonlocal games. We now define computational problems associated with

computing the value of nonlocal games. Fix 0 ≤ Y < 1 and a value type 𝑡 ∈ {𝑞, 𝑐𝑜}. Define

two sets of nonlocal games

𝐿
𝑦𝑒𝑠
𝑡 := {𝐺 : 𝜔𝑡 (𝐺) = 1} and 𝐿𝑛𝑜𝑡,Y := {𝐺 : 𝜔𝑡 (𝐺) < 1 − Y} .

These two sets are disjoint, and when Y = 0, the union of these two sets is all nonlocal games.

These two sets give rise to a decision problem: given a nonlocal game 𝐺 in the union 𝐿𝑦𝑒𝑠𝑡 ∪ 𝐿𝑛𝑜𝑡,Y,

decide whether 𝐺 is a “yes” instance or a “no” instance.

When Y = 0, this decision problem corresponds to exactly computing either the quantum or

commuting operator value. When Y > 0, this problem corresponds to approximating the value,

because being able to compute 𝜔𝑡 (𝐺) up to additive ± Y2 error allows one to decide whether 𝐺 ∈

𝐿
𝑦𝑒𝑠
𝑡 or 𝐺 ∈ 𝐿𝑛𝑜𝑡,Y. Thus we call deciding between 𝐿𝑦𝑒𝑠𝑡 and 𝐿𝑛𝑜

𝑡,0 the exact 𝑡-value problem, and

deciding between 𝐿𝑦𝑒𝑠𝑡 and 𝐿𝑛𝑜𝑡,Y for Y > 0 the approximate 𝑡-value problem (we usually think of Y

as 1/2, but the specific value is immaterial, as long as it is strictly positive).

We summarize the results known so far about the computability of nonlocal games:

1. In [8], Slofstra showed that the exact 𝑐𝑜-value problem is hard for the class coRE, which

is the complement of RE, the set of recursively enumerable languages. In other words,

there exists a computable reduction from Turing machines 𝑀 to nonlocal games 𝐺 such that

𝜔𝑐𝑜 (𝐺) = 1 if and only if 𝑀 does not halt.

Furthermore, the exact 𝑐𝑜-value problem is contained in coRE due to the existence of a

semidefinite programming hierarchy that converges from above to the commuting operator

value of a given nonlocal game [14, 15]. Thus the exact 𝑐𝑜-value problem is complete for

coRE.

2. In [5], Slofstra showed that the exact 𝑞-value problem is also hard for coRE. However, no

upper bound on the complexity of the exact 𝑞-value problem was given.
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3. In [4], Ji, Natarajan, Vidick, Wright and Yuen showed that the approximate 𝑞-value problem

is hard for RE. In other words, there exists a computable reduction from Turing machines

𝑀 to nonlocal games 𝐺 such that if 𝑀 halts then 𝜔𝑞 (𝐺) = 1, otherwise 𝜔𝑞 (𝐺) ≤ 1
2 .

Furthermore, the approximate 𝑞-value problem is contained in RE due to the fact that a

brute-force enumeration algorithm can find a finite-dimensional strategy that succeeds with

probability arbitrarily close to 1, provided that 𝜔𝑞 (𝐺) = 1. Thus, the approximate 𝑞-value

problem is complete for RE.

While these results show that the exact 𝑞-value, exact 𝑐𝑜-value, and approximate 𝑞-value problems

are all undecidable, they are undecidable in different ways. For example, a basic result in com-

putability theory is that the classes RE and coRE are incomparable (i.e. they do not contain each

other). Thus the approximate 𝑞-value problem cannot be reduced to the exact 𝑐𝑜-value problem

and vice versa.2 Similarly, because both RE and coRE can be reduced to it, the exact 𝑞-value

problem must be strictly harder than both the approximate 𝑞-value and exact 𝑐𝑜-value problem (in

the sense that a Turing machine equipped with the ability to compute the exact 𝑐𝑜-value of a game

provably cannot solve the exact 𝑞-value problem).

We note that (a) since the complexities of the 𝑞-value and 𝑐𝑜-value problems are different,

but (b) a positive answer to Tsirelson’s Problem implies that they are the same, it must be that

Tsirelson’s Problem (and thus Connes’ Embedding Problem) has a negative answer.

These results still leave two main open questions about the complexity of nonlocal games:

1. What is the complexity of the exact 𝑞-value problem (i.e. deciding whether 𝜔𝑞 (𝐺)
?
= 1).

2. What is the complexity of the approximate 𝑐𝑜-value problem (i.e. deciding whether𝜔𝑐𝑜 (𝐺) =

1 or 𝜔𝑐𝑜 (𝐺) < 1
2 )?

In this paper we resolve the first open question by characterizing the complexity of the exact

𝑞-value problem:

2The notion of reduction that we consider here are many-one reductions, i.e., yes instances are mapped to yes
instances, and no instances are mapped to no instances.
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Theorem 1.1. The problem of deciding whether 𝜔𝑞 (𝐺) = 1 for nonlocal games 𝐺 is complete for

Π2.

The class Π2 is in the second level of the arithmetical hierarchy, which is an infinite hi-

erarchy of complexity classes3 ⋃∞
𝑘=0 Σ𝑘 and

⋃∞
𝑘=0 Π𝑘 that characterize the complexity of lan-

guages according to arithmetical formulas that define them. The class Σ𝑘 consists of all lan-

guages reducible to deciding whether a given Σ𝑘 -sentence is true. A Σ𝑘 -sentence 𝑆 is of the form

∃𝑥1 ∀𝑥2 ∃ · · · 𝜙(𝑥1, . . . , 𝑥𝑘 ) for some computable predicate 𝜙. Similarly, the class Π𝑘 consists of

all languages reducible to deciding a given Π𝑘 -sentence is true; these are sentences of the form

∀𝑥1 ∃𝑥2 ∀ · · · 𝜙(𝑥1, . . . , 𝑥𝑘 ). 4

At the zeroth (𝑘 = 0) level, the classes Σ0 = Π0 correspond to the set of decidable languages,

and the first level classes Σ1 and Π1 are simply the well-known classes RE and coRE, respectively.

The class Π2 is in the second level of the arithmetical hierarchy, and contains both Σ1 and Π1. It

is a well-known fact from computability theory that the levels of the arithmetical hierarchy are all

distinct, and furthermore Σ𝑘 ≠ Π𝑘 for all 𝑘 ≥ 1.

Although we do not resolve the second open question, it is conjectured that the approximate

𝑐𝑜-value problem is complete for coRE = Π1. A positive resolution of this conjecture would

complete the picture of the computability landscape of nonlocal games, depicted in Figure 1.1,

and give a pleasing correspondence between different nonlocal game problems and classes in the

arithmetical hierarchy.

3In computability theory these classes are usually denoted as Σ0
𝑘

and Π0
𝑘
. For simplicity we have dropped the

superscripts.
4Although we never use it in this paper, for the benefit of the reader, we recall the equivalent definitions of these

classes using Turing machines. In this equivalent definition, Σ1 (resp. Π1) is the class of all languages 𝐿 for which
there exists a Turing machine 𝐴 such that 𝐴(𝑥) = 1 if and only if 𝑥 ∈ 𝐿 (resp. 𝑥 ∉ 𝐿). The class Σ2 (resp. Π2) is the
class of all languages 𝐿 for which there exists a Turing machine 𝐴 with oracle access to the halting problem such that
𝐴(𝑥) = 1 if and only if 𝑥 ∈ 𝐿 (resp. 𝑥 ∉ 𝐿). The 𝑘th level classes, for 𝑘 > 2, can be defined similarly. From this
definition, it is clear at once that Π𝑘 is the set of languages 𝐿 whose complement 𝐿 is in Σ𝑘 , and vice versa.
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Y = 0 Y > 0

𝜔𝑞 (𝐺) ± Y Π2 (this paper) Σ1 [4]

𝜔𝑐𝑜 (𝐺) ± Y Π1 [8] Π1 (conjectured)

Figure 1.1: A characterization of the complexity of computing the value of a nonlocal game in terms of the
arithmetical hierarchy, depending on whether the quantum or commuting operator value is being considered,
and whether the value is being computed exactly or approximately. The top left entry is the main result of
this paper, and the lower right entry is conjectured.

We mention that the approximate and exact 𝑞- and 𝑐𝑜-value problems are used in defining the

four complexity classes MIP∗, MIP∗0, MIP𝑐𝑜 and MIP𝑐𝑜0 , respectively. In particular, the above figure

corresponds to the results MIP∗ = RE = Σ1, MIP∗0 = Π2 and MIP𝑐𝑜 ⊆ MIP𝑐𝑜0 = coRE = Π1.

A priori, this tight correspondence between nonlocal games and the arithmetical hierarchy

seems quite surprising. On one hand, computing the value of a nonlocal game corresponds to

a continuous optimization problem over a space of quantum states and quantum measurements,

possibly in infinite dimensions. On the other hand, deciding whether a quantified sentence is true

is a discrete problem in symbolic logic ostensibly having nothing to do with quantum physics.

Furthermore, the reader may notice that there are several interesting asymmetries in Figure 1.1,

illustrating that this correspondence has rich and unexpected behavior: if we assume the conjecture

about the approximate 𝑐𝑜-value problem, then both exact and approximate computation of the

commuting operator value are equivalent to deciding Π1-sentences, whereas for the quantum value,

the complexity splits depending on whether we are considering exact or approximate computation.

Connections with noncommutative polynomial optimization. We also point out that the afore-

mentioned complexity results can be viewed as characterizations of the complexity of noncom-

mutative polynomial optimization, an important subject in mathematics, physics and computer

science [14, 15, 16, 17]. The general formulation of noncommutative polynomial optimization

(ncPO for short) is the following: given polynomials 𝑝, 𝑞1, . . . , 𝑞𝑚 in 𝑛-noncommutative variables
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(𝑥1, . . . , 𝑥𝑛) over R, compute the value of the following optimization program:

sup ⟨𝜙 |𝑝(𝑋) |𝜙⟩

s.t. 𝑞𝑖 (𝑋) ⪰ 0 for 𝑖 = 1, . . . , 𝑚

The supremum is taken over all choices of tuples (H , 𝑋, 𝜙) where H is a Hilbert space, 𝑋 is an

𝑛-tuple of bounded Hermitian operators acting on H , and |𝜙⟩ is a unit vector on H . The notation

𝑝(𝑋) and 𝑞𝑖 (𝑋) indicates that we evaluate each of the indeterminates 𝑥𝑖 with the operator 𝑋𝑖.

We consider two different variations of an ncPO program 𝑃; if we restrict the supremum to vary

only over finite – but unbounded – dimensional Hilbert spaces then we call the program finite-

dimensional and let 𝜔fin(𝑃) denote the value of the program. Otherwise we call the program

infinite-dimensional and let 𝜔∞(𝑃) denote the value.

The complexity results in Figure 1.1 can be recast as the following. Given an ncPO program 𝑃

and a real number 𝑐 ∈ 𝑅, deciding whether

1. 𝜔fin(𝑃) ≥ 𝑐 is complete for Π2.

2. 𝜔∞(𝑃) ≥ 𝑐 is complete for Π1.

3. 𝜔fin(𝑃) ≥ 𝑐 or 𝜔fin(𝑃) < 𝑐 − Y for fixed Y > 0 is complete for Σ1.

The reason for this is because on one hand we can encode the 𝑡-value of a nonlocal game for

𝑡 ∈ {𝑞, 𝑐𝑜} as an ncPO program that is finite-dimensional if 𝑡 = 𝑞 and infinite-dimensional if

𝑡 = 𝑐𝑜; on the other hand the complexity of solving an ncPO program is upper-bounded by Π2, Π1,

or Σ1 depending on the variant of the problem. Although this connection is fairly straightforward,

for completeness we provide the details in Section 1.8.

We note that, by comparison, the analogous problems for commutative polynomial optimization

over R are decidable; this is because deciding whether a semialgebraic set defined by polynomial

equalities/inequalities over R is empty is contained in PSPACE [18].
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The main conceptual result of our paper is that all of the complexity statements about nonlocal

games expressed in Figure 1.1 can be established in a unified manner via a technique called non-

local game compression. At the heart of the proof of MIP∗ = RE is a gap-preserving compression

theorem for the 𝑞-value of games. The centerpiece of the present paper is a gapless compression

theorem that holds for both the 𝑞- and 𝑐𝑜-value of games. First we show that this gapless com-

pression theorem directly gives an alternate proof of the Π1-completeness of the exact 𝑐𝑜-value

problem [8], as well as an alternate proof of Slofstra’s result that the set of quantum correlations

is not closed (i.e. there is a nonlocal game 𝐺 with 𝜔𝑞 (𝐺) = 1, but there is no finite-dimensional

strategy with success probability 1) [5].

We then combine our gapless compression theorem with the gap-preserving one of [4] to ob-

tain the Π2-hardness of the exact 𝑞-value problem, establishing Theorem 1.1. Finally, we also

show how a gap-preserving compression theorem for the 𝑐𝑜-value of games would imply that the

approximate 𝑐𝑜-value problem is complete for coRE = Π1.

Another goal of this paper is to give a self-contained proof of a compression theorem that (a)

illustrates the key ideas of the gap-preserving compression results of [19, 4], (b) generalizes these

ideas to the infinite-dimensional commuting operator setting, and (c) is presented in a language that

is more accessible to researchers coming from operator algebras and related areas of mathematics.

The proofs of the gap-preserving compression theorems of [19, 4] are quite involved and rely

on sophisticated results ranging from self-testing [20, 21] to the quantum soundness of the low-

degree test [22, 23] to gap amplification methods [24]. These components are needed for the

gap-preserving aspect of their compression theorem. Working in the “gapless regime” allows us to

work with much simpler versions of these components (or circumventing them entirely).

In Section 1.1.1 we give an overview of how compression of nonlocal games yields the com-

plexity characterization shown in Figure 1.1. In Section 1.1.2 we give an overview of how our

gapless compression theorem is proved. In Section 1.1.3 we explain the synchronous strategies

framework, which our results are expressed in. This framework gives an elegant way to work with

both 𝑞- and 𝑐𝑜-type strategies in a unified manner, and brings out the connection between nonlocal
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games and operator algebras.

1.1.1 The compression paradigm

Intuitively speaking, a nonlocal game compression procedure for 𝑡-type strategies (where 𝑡 ∈

{𝑞, 𝑐𝑜}) is a computable map Compress that takes an infinite sequence𝒢 = (𝐺𝑛)𝑛∈N of polynomial-

complexity nonlocal games to another infinite sequence 𝒢′ = (𝐺′𝑛)𝑛∈N such that for every 𝑛 ∈ N,

• The optimal success probability of 𝑡-strategies in 𝐺′𝑛 is related in a predictable way to the

optimal success probability of 𝑡-strategies in 𝐺𝑛, and

• The complexity of the game 𝐺′𝑛 is much smaller than that of the original game 𝐺𝑛, where we

measure the complexity of a game based on the number of time steps required by the verifier

to compute the decision procedure.

This second item is what motivates the name “compression”.

The “polynomial-complexity” condition on the input sequence 𝒢 = (𝐺𝑛)𝑛∈N of games means

that the complexity of each game 𝐺𝑛 is bounded by 𝑂 (𝑛𝑐) for some constant 𝑐 > 0, and the

compression procedure Compress will depend on this constant. Furthermore, 𝒢 and 𝒢
′ are

specified via Turing machines which play the role of the verifier for the games in the sequences.

Thus the map Compress is a map from Turing machines to Turing machines. Importantly, the

map Compress itself is also computable by a Turing machine.

Depending on which value type 𝑡 ∈ {𝑞, 𝑐𝑜} we consider, how the optimal 𝑡-strategies of 𝐺′𝑛

and 𝐺𝑛 are related to each other, and how much smaller the complexity of 𝐺′𝑛 is than of 𝐺𝑛, we

obtain different compression procedures. The different compression procedures, in turn, allow us

to establish the different entries of the correspondence outlined in Figure 1.1.

We now give a high-level sketch of this connection.

Gapped compression for 𝑞-type strategies. The MIP∗ = RE result of [4] relies on the follow-

ing gap-preserving (or gapped for short) compression procedure for 𝑞-type strategies (i.e. finite-

dimensional strategies).
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Theorem 1.2 (Gap-preserving compression, informally stated [4]). There exists a computable map

GappedCompress𝑞 that, given a sequence of games 𝒢 = (𝐺𝑛)𝑛∈N, outputs a sequence of games

𝒢
′ = (𝐺′𝑛)𝑛∈N such that the complexity of 𝒢′ is 𝑂 (log 𝑛), and furthermore if the complexity of 𝒢 is

at most poly(𝑛), then for all 𝑛 ∈ N,

• If 𝜔𝑞 (𝐺𝑛) = 1, then 𝜔𝑞 (𝐺′𝑛) = 1.

• E(𝐺′𝑛, 1
2 ) ≥ max

{
E(𝐺𝑛,

1
2 ) , 2𝑛

}
.

Here, for a nonlocal game 𝐺 and real number 0 ≤ 𝑝 ≤ 1, the quantity E(𝐺, 𝑝) is defined to be

the minimum dimension of a strategy 𝒮 such that 𝜔(𝐺,𝒮) ≥ 𝑝. If there is no finite-dimensional

strategy that achieves winning probability 𝑝, then E(𝐺, 𝑝) is defined to be∞.

The reason GappedCompress𝑞 is called “gap-preserving” is because if 𝜔𝑞 (𝐺𝑛) = 1, then

𝜔𝑞 (𝐺′𝑛) = 1, and otherwise if 𝜔𝑞 (𝐺𝑛) < 1
2 , then 𝜔𝑞 (𝐺′𝑛) ≤ 1

2 . In other words, the gap between 1

versus 1/2 in the two different possibilities for 𝜔𝑞 (𝐺𝑛) is preserved for 𝜔𝑞 (𝐺′𝑛). The second “if”

follows from the second item of Theorem 1.2: if there are no finite-dimensional strategies for 𝐺𝑛

that succeed with probability at least 1
2 , then E(𝐺𝑛,

1
2 ) = ∞, and therefore E(𝐺′𝑛, 1

2 ) = ∞, which

implies that there is no finite-dimensional strategy for 𝐺′𝑛 that has value at least 1
2 .

To show that every arithmetical sentence 𝑆 of the form ∃𝑥 𝜙(𝑥) can be transformed into an

equivalent game𝐺𝑆 (which is essentially equivalent to the statement MIP∗ = RE), the compression

procedure of Theorem 1.2 is used to construct an infinite sequence of games 𝒢 = (𝐺𝑛)𝑛∈N that

depends on the sentence 𝑆. If 𝜙(𝑥) is true for some 𝑥 ≤ 𝑛 (meaning that 𝑆 is true), then the game

𝐺𝑛 has the property that 𝜔𝑞 (𝐺𝑛) = 1; otherwise 𝐺𝑛 is designed to be equivalent to the game

𝐺′
𝑛+1, the compression of 𝐺𝑛+1 through the gap-preserving transformation GappedCompress𝑞.

In other words, the sequence of games 𝒢 is effectively a self-compressing sequence of games. By

inductively utilizing the guarantees of the gapped compression procedure, we get that in the case

that 𝑆 is true, we have 𝜔𝑞 (𝐺𝑛) = 1 for all 𝑛, and if 𝑆 is false, 𝜔𝑞 (𝐺𝑛) ≤ 1
2 for all 𝑛.5 Finally, the

game 𝐺𝑆 is then chosen to be the first member 𝐺1 of the sequence 𝒢.

5The choice of 1
2 is inconsequential here; everything stated here holds true for any constant that’s strictly less than

1.
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Where does the poly(𝑛)-complexity assumption on 𝒢 and the 𝑂 (log 𝑛)-complexity of 𝒢′ con-

sequence of Theorem 1.2 come in? We can imagine that the behavior of the verifier in the game

𝐺𝑛 is specified by the following pseudocode:

1 The verifier checks whether 𝜙(𝑥) is true for some 𝑥 ≤ 𝑛. If it is, then accept.

2 Otherwise, compute 𝒢′ by running GappedCompress𝑞 on the description of the

sequence 𝒢.

3 Play the game 𝐺′
𝑛+1, the (𝑛 + 1)-st game of the sequence 𝒢′.

Pseudocode 1: The game 𝐺𝑛 encoding Σ1-sentences.

For simplicity we assume that 𝜙(𝑛) is computable in time 𝑂 (𝑛). Then the complexity of the

game 𝐺𝑛 can be computed as 𝑂 (𝑛2) + 𝑂 (1) + 𝑂 (log 𝑛) = poly(𝑛). The 𝑂 (𝑛2) comes from evalu-

ating 𝜙 on 𝑛 different inputs; the 𝑂 (1) comes from the complexity of executing the compression

procedure; and the 𝑂 (log 𝑛) comes from the complexity of the compressed game 𝐺′
𝑛+1. So the

sequence of games 𝒢 has complexity poly(𝑛), and thus the consequences of the assumption (the

first and second items) are satisfied.

Gapless compression for 𝑞- and 𝑐𝑜-type strategies. We now turn to gapless compression pro-

cedures. As suggested by the name, these are compression procedures that do not necessarily

preserve any gap in the values of the “input” sequence of games. The main technical contribution

of this paper is the following gapless compression theorem:

Theorem 1.3 (Gapless compression, informally stated). For 𝑡 ∈ {𝑞, 𝑐𝑜} there exists a computable

map GaplessCompress𝑡 that, given a sequence of games 𝒢 = (𝐺𝑛)𝑛∈N, outputs a sequence of

games 𝒢′ = (𝐺′𝑛)𝑛∈N such that the complexity of 𝒢′ is 𝑂 (log 𝑛), and furthermore if the complexity

of 𝒢 is at most poly(𝑛), then for all 𝑛 ∈ N,

• If 𝜔𝑡 (𝐺𝑛) < 1, then 𝜔𝑡 (𝐺′𝑛) < 1.

• 𝜔𝑡 (𝐺′𝑛) ≥ 1 − 𝛼(1 − 𝜔𝑡 (𝐺𝑛)), where 0 < 𝛼 < 1 is a universal constant.
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• E(𝐺′𝑛, 1) ≥ max
{
E(𝐺𝑛, 1) , 22𝑛

}
.

Notice that the first and second items imply that 𝜔𝑡 (𝐺𝑛) = 1 if and only if 𝜔𝑡 (𝐺′𝑛) = 1. In the

case of 𝑡 = 𝑞, this gapless compression theorem appears to be a weaker version of Theorem 1.2,

except the second item makes it incomparable: whereas the gapped compression theorem only

works on games that either have value 1 or at most 1
2 , the gapless compression theorem works for

all games. In fact, the compression procedure of Theorem 1.3 is gap-shrinking: given a game 𝐺𝑛

with value 𝜔𝑡 (𝐺𝑛) < 1, the compressed game 𝐺′𝑛 has value 𝜔𝑡 (𝐺𝑛) < 𝜔𝑡 (𝐺′𝑛) < 1. Intuitively, by

repeatedly applying a gapless compress procedure to an initial game with value strictly less than

1, the sequence of compressed games obtained have value that get arbitrarily close to 1.

Gapless compression theorems allow us to show that deciding the truth of sentences 𝑆 of the

form ∀𝑥 𝜙(𝑥) (i.e. Π1-sentences) can be reduced to deciding whether the quantum (or commuting

operator) value of nonlocal games is exactly 1. Analogously to the proof sketched for MIP∗ =

RE, we construct a self-compressing sequence of games 𝒢 = (𝐺𝑛)𝑛∈N that depends on the given

sentence 𝑆 = ∀𝑥 𝜙(𝑥). In pseudocode, the games have the following behavior:

1 The verifier checks whether 𝜙(𝑥) is false for some 𝑥 ≤ 𝑛. If it is, then reject.

2 Otherwise, compute 𝒢′ by running GaplessCompress𝑡 on the description of 𝒢.

3 Play the game 𝐺′
𝑛+1, the (𝑛 + 1)-st game of the sequence 𝒢′.

Pseudocode 2: The game 𝐺𝑛 encoding Π1-sentences.

Again we assume that 𝜙(𝑛) is computable in 𝑂 (𝑛) time, implying that the games in the se-

quence 𝒢 have poly(𝑛)-complexity. The difference between this construction of 𝐺𝑛 and the previ-

ous one is that instead of checking whether 𝜙(𝑥) is true for some 𝑥 ≤ 𝑛, the verifier now checks

whether it is false for some 𝑥.

Using the gapless compression theorem, we get that if 𝜙(𝑥) is true for all 𝑥 (meaning 𝑆 is true),

then we have 𝜔𝑡 (𝐺𝑛) = 𝜔𝑡 (𝐺′𝑛+1) ≥ 1 − 𝛼 (1 − 𝜔𝑡 (𝐺𝑛+1)) for all 𝑛 ∈ N. Rearranging we get
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1 − 𝜔𝑡 (𝐺𝑛) ≤ 𝛼(1 − 𝜔𝑡 (𝐺𝑛+1)) for all 𝑛 ∈ N. So by induction it holds that

1 − 𝜔𝑡 (𝐺𝑛) ≤ 𝛼𝑘 (1 − 𝜔𝑡 (𝐺𝑛+𝑘 ))

for all 𝑘, 𝑛 ∈ N. Taking the limit as 𝑘 →∞, we conclude that 𝜔𝑡 (𝐺𝑛) = 1 for all 𝑛 ∈ N.

On the other hand, if 𝑆 is false, then there is some 𝑛 for which 𝜔𝑡 (𝐺𝑛) = 0. Let 𝑛 be the

smallest such integer. Working backwards, we deduce that 𝜔𝑡 (𝐺′𝑛) < 1 (by the first item of the

gapless compression theorem), so therefore 𝜔𝑡 (𝐺𝑛−1) < 1, which means that 𝜔𝑡 (𝐺′𝑛−1) < 1, and

so on. Thus for all 𝑘 ≤ 𝑛 we have 𝜔𝑡 (𝐺𝑘 ) < 1.

Finally, the game 𝐺𝑆 is then chosen to be the first member 𝐺1 of the sequence 𝒢.

Since deciding the truth of Π1-sentences is an undecidable problem, this gives an alternate

proof of the undecidability of determining whether 𝜔𝑡 (𝐺) = 1 for 𝑡 ∈ {𝑞, 𝑐𝑜}, first proved by Slof-

stra [8, 5]. His proof is based on very different techniques based on group theory and approximate

representation theory. As mentioned previously, the main result of Slofstra’s work is that the set

of quantum correlations 𝐶𝑞 is not closed. We can also prove this separation as a corollary of our

results in section 1.6.3.

Combining gapped and gapless compression. The main application of our gapless compres-

sion theorem is to combine it with the gapped compression theorem of [4] to prove Theorem 1.1,

which establishes the Π2-completeness of deciding whether the quantum value of a nonlocal game

is equal to 1. The two compression theorems, interleaved together, allow us to transform sentences

𝑆 of the form ∀𝑥 ∃𝑦 𝜙(𝑥, 𝑦) (i.e. Π2-sentences) to an equivalent nonlocal game 𝐺𝑆 (i.e. 𝑆 is true if

and only if 𝜔𝑞 (𝐺𝑆) = 1).

Fix a Π2-sentence 𝑆 = ∀𝑥 ∃𝑦 𝜙(𝑥, 𝑦). The key idea is that 𝑆 can be equivalently expressed as

𝑆 = ∀𝑛 𝑆𝑛 where 𝑛 ranges over the positive integers (rather than binary strings) and 𝑆𝑛 is the Σ1-

sentence ∃𝑚 𝜙(𝑛, 𝑚), where𝑚 also ranges over the positive integers. Leveraging the Σ1-sentences-

to-nonlocal games reduction from [4], we get that for all 𝑛 ∈ N there exists a nonlocal game 𝐻𝑛

(computable from 𝑆𝑛) such that 𝜔𝑞 (𝐻𝑛) = 1 if and only if 𝑆𝑛 is true. In particular 𝑆 is true if and
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only if ∀𝑛 𝜔𝑞 (𝐻𝑛) = 1.

Now we design a sequence of games 𝒢 = (𝐺𝑛)𝑛∈N encoding the sentence 𝑆 as follows.

1 Using the reduction from [4], compute the description of the game 𝐻𝑛 corresponding to

the Σ1-sentence 𝑆𝑛.

2 Compute the game sequence 𝒢′ = (𝐺′𝑛)𝑛∈N by running GaplessCompress𝑞 on the

description of 𝒢.

3 With probability 1
2 , play the game 𝐺′

𝑛+1, the (𝑛 + 1)-st game of the sequence 𝒢′.

4 With the remaining probability 1
2 , play the game 𝐻𝑛

Pseudocode 3: The game 𝐺𝑛 encoding Π2-sentences.

Since the reduction of [4] is polynomial-time computable, the game 𝐻𝑛 has poly(𝑛) complexity.

The compressed game𝐺′
𝑛+1 has𝑂 (log 𝑛) complexity, due to the guarantees of theA𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞

procedure. This implies that each game 𝐺𝑛 in the sequence 𝒢 has poly(𝑛) complexity. If 𝑆 is true

(meaning that 𝑆𝑚 is true for all𝑚) then we can establish the following relationship between𝜔𝑞 (𝐺𝑛)

and 𝜔𝑞 (𝐺𝑛+1):

𝜔𝑞 (𝐺𝑛) =
1
2
𝜔𝑞 (𝐺′𝑛+1) +

1
2
𝜔𝑞 (𝐻𝑛) (Definition of the game 𝐺𝑛)

=
1
2
𝜔𝑞 (𝐺′𝑛+1) +

1
2

(𝑆 true⇒ 𝜔𝑞 (𝐻𝑛) = 1 for all 𝑛)

≥ 1
2

(
1 − 𝛼 (1 − 𝜔𝑞 (𝐺𝑛+1))

)
+ 1

2
(Theorem 1.3)

= 1 − 𝛼
2

(
1 − 𝜔𝑞 (𝐺𝑛+1)

)
This is equivalent to 1−𝜔𝑞 (𝐺𝑛) ≤ 𝛼

2

(
1−𝜔𝑞 (𝐺𝑛+1)

)
and by induction this means that 1−𝜔𝑞 (𝐺𝑛) ≤(

𝛼
2

) 𝑘 (
1 − 𝜔𝑞 (𝐺𝑛+𝑘 )

)
for all 𝑘 ∈ N. As 𝑘 goes to infinity, this means that 𝜔𝑞 (𝐺𝑛) is arbitrarily

close to 1, and thus is equal to 1.

On the other hand, if 𝑆 is false, then there is some 𝑛 for which 𝑆𝑛 is false and consequently

𝜔𝑞 (𝐻𝑛) < 1. This means 𝜔𝑞 (𝐺𝑛) < 1. By the gapless compression theorem (Theorem 1.3) we
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deduce that 𝜔𝑞 (𝐺′𝑛) < 1, so therefore 𝜔𝑞 (𝐺𝑛−1) < 1, which means that 𝜔𝑞 (𝐺′𝑛−1) < 1, and so on.

Thus for all 𝑘 ≤ 𝑛 we have 𝜔𝑞 (𝐺𝑘 ) < 1.

Finally, the desired game 𝐺𝑆 is then chosen to be the first member 𝐺1 of the sequence 𝒢.

We observe that for this argument it did not matter that reduction from Σ1-sentences 𝑆𝑛 to

games 𝐻𝑛 is gapped (in the sense that 𝜔𝑞 (𝐻𝑛) = 1 if 𝑆𝑛 is true and 𝜔𝑞 (𝐻𝑛) ≤ 1
2 otherwise). All

that mattered was that there was some reduction from Σ1-sentences to nonlocal games such that

the game value reflects the truth of the sentence. This raises an interesting question for whether it

is possible to prove the Π2-hardness result using “just” a gapless compression theorem.

Gapped compression for commuting operator strategies? It is still unknown whether the

problem of approximating the commuting operator value is as hard as deciding Π1-sentences,

which would mean that exact and approximate computation of the commuting operator value are

equivalent in difficulty. Once again, the question boils down to the existence of a gapped compres-

sion procedure for commuting operator strategies. Suppose the following conjecture held:

Conjecture 1.4 (Gap-preserving compression for commuting operator strategies). There exists a

computable map GappedCompress𝑐𝑜 that, given a sequence of games 𝒢 = (𝐺𝑛)𝑛∈N, outputs a

sequence of games 𝒢′ = (𝐺′𝑛)𝑛∈N such that the complexity of 𝒢′ is𝑂 (log 𝑛), and furthermore if the

complexity of 𝒢 is at most poly(𝑛), then for all 𝑛 ∈ N,

• If 𝜔𝑐𝑜 (𝐺𝑛) = 1, then 𝜔𝑐𝑜 (𝐺′𝑛) = 1.

• If 𝜔𝑐𝑜 (𝐺𝑛) ≤ 1
2 , then 𝜔𝑐𝑜 (𝐺′𝑛) ≤ 1

2 .

We can then design a sequence of games 𝒢 as follows. Let 𝑀 denote a Turing machine that,

given a description of a nonlocal game 𝐹 (note that this is a single game, rather than a sequence of

games), halts if 𝜔𝑐𝑜 (𝐹) < 1 and otherwise runs forever. The semidefinite programming hierarchies

of [14, 15], or the procedure described by [25], can be used to implement 𝑀 .
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1 The verifier checks whether 𝜙(𝑥) is false for some 𝑥 ≤ 𝑛. If it is, then reject.

2 Compute the description of the nonlocal game 𝐺1, the first game of the sequence 𝒢.

3 Run 𝑀 on input 𝐺1 for 𝑛 steps. If it halts, then accept.

4 Otherwise, compute 𝒢′ by running GaplessCompress𝑐𝑜 on the description of 𝒢.

5 Play the game 𝐺′
𝑛+1, the (𝑛 + 1)-st game of the sequence 𝒢′.

Pseudocode 4: The game 𝐺𝑛 to decide Π1-sentences.

Let 𝑆 denote the sentence ∀𝑥 𝜙(𝑥) for some 𝑂 (𝑛)-time computable predicate 𝜙. Then the

complexity of 𝒢 is poly(𝑛) so the consequences of Theorem 1.4 hold. Suppose 𝑆 were true. Then

Step 1 of Pseudocode 4 would never reject. Suppose that 𝜔𝑐𝑜 (𝐺1) < 1. Then by definition, 𝑀

will halt in some number of steps 𝑇 . Thus 𝜔𝑐𝑜 (𝐺𝑛) = 1 for all 𝑛 ≥ 𝑇 . For 𝑛 < 𝑇 , we have that

𝜔𝑐𝑜 (𝐺𝑛) = 1 if and only if 𝜔𝑐𝑜 (𝐺′𝑛+1) = 1 (by design of𝐺𝑛), which is if and only if 𝜔𝑐𝑜 (𝐺𝑛+1) = 1

(by Theorem 1.4). By an inductive argument we get that 𝜔𝑐𝑜 (𝐺1) = 1, which contradicts our

assumption. Thus we get 𝜔𝑐𝑜 (𝐺1) = 1.

On the other hand, suppose that 𝑆 was false. Let 𝑚 denote the least integer such that 𝜙(𝑚)

is false. First, it cannot be the case that 𝑀 halts in fewer than 𝑚 steps. If it halted in 𝑛 steps for

𝑛 < 𝑚, then 𝜔𝑐𝑜 (𝐺𝑛) = 1 by construction. However, by construction and Theorem 1.4 this means

that 𝜔𝑐𝑜 (𝐺𝑛−1) = 1, and so on, ultimately yielding that 𝜔𝑐𝑜 (𝐺1) = 1. This is a contradiction, as

the fact that 𝑀 halts implies that 𝜔𝑐𝑜 (𝐺1) < 1.

Next, we see that 𝜔𝑐𝑜 (𝐺𝑚) = 0 because 𝜙(𝑚) is false. By Theorem 1.4, this means that

𝜔𝑐𝑜 (𝐺𝑚−1) ≤ 1
2 , and so on, ultimately yielding that 𝜔𝑐𝑜 (𝐺1) ≤ 1

2 , as desired. Letting 𝐺𝑆 = 𝐺1,

this completes the reduction from the problem of deciding Π1-sentences to approximate 𝑐𝑜-value

problem.

We discuss a plausible approach to proving Theorem 1.4 in Section 1.1.2.

Finally, we note that there is something bizarre about the use of the Turing machine 𝑀 in

this construction. Regardless of whether 𝑆 is true or false, in both cases, the verifier in the game

𝐺1 never witnesses the Turing machine 𝑀 halting! Thus, it may appear that 𝑀’s halt/non-halt

24



behavior is irrelevant to the decision procedures of the games {𝐺𝑛}. However, if we remove line

3 from 4, then it is no longer clear how to reason about the value of the game 𝐺1! In particular,

when 𝑆 is true, there is no 𝑛 for which we can definitively identify the value of 𝐺𝑛, because we

have an “infinite recursion” where 𝐺𝑛 is the same game as the compression of 𝐺𝑛+1, which in turn

is the same game as the compression of 𝐺𝑛+2, and so on. Thus, inserting 𝑀 in the description of

the games seems to force the sequence of games {𝐺𝑛} to “examine its own (commuting operator)

value,” which in turn allows us – mathematicians looking in from the outside – to pin down the

value of 𝐺𝑛 for all 𝑛. We find it a fascinating question of whether it is possible to deduce the value

of the games {𝐺𝑛} with line 3 removed.6

Are compression theorems necessary? We have just demonstrated that, equipped with the ap-

propriate compression procedures, we can characterize the complexity of the quantum and com-

muting operator value of nonlocal games. Could compression theorems be necessary? That is,

does knowing that (say) exactly computing the commuting operator value is equivalent to deciding

Π1-sentences imply the existence of a compression procedure like the one given by Theorem 1.3?

In [26], it was shown that MIP∗ = RE (i.e. the Σ1-hardness of the approximate 𝑞-value prob-

lem) implies a gap-preserving compression theorem for quantum strategies (i.e., Theorem 1.2).

We show that this equivalence between compression and complexity of nonlocal games is more

general:

• The Π1-hardness of the approximate 𝑐𝑜-value problem implies a gap-preserving compres-

sion theorem for commuting operator strategies.

• The Π1-hardness of the exact 𝑐𝑜-value problem implies a gapless compression theorem for

commuting operator strategies.

• The Π2-hardness of the exact 𝑞-value problem implies a gapless compression theorem for

quantum strategies.

6This trick of inserting the Turing machine 𝑀 into the description of the game is also used by [4] to construct an
explicit game whose commuting operator value differs from its quantum value.
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We prove these equivalences in Section 1.6.5.

Relation to previous work The idea of using compression in order to obtain complexity lower

bounds for nonlocal games was first due to Ji [27]. There, he showed that the complexity of decid-

ing between 𝜔𝑞 (𝐺) = 1 and 𝜔𝑞 (𝐺) ≤ 1 − 1/poly( |𝐺 |) where |𝐺 | denotes the description length

of the game 𝐺 is at least as hard as solving NEXP-complete problems. His result, however, only

applied to games with more than two players (in fact his result applies for games with 10 players).

The techniques used to compress games use a variety of tools from quantum information theory,

including quantum error correcting codes and the Feynman-Kitaev history state construction. This

compression technique was further developed by [28], who prove a gapless compression theorem

that can be recursively composed in order to obtain arbitrarily large complexity lower bounds for

nonlocal games. The lower bounds obtained by [28] still only apply to games with three or more

players, however. This is a fundamental limitation of the compression approach of [27, 28] be-

cause they rely on using quantum error-correcting codes to perform secret sharing, which require

3 or more parties.

Obtaining complexity lower bounds for two player games have wider implications and require

new techniques. For example, the connection between Connes’ Embedding Problem and the ap-

proximate 𝑞-value problem only hold for two player games. Compressing two-player nonlocal

games was first pioneered by [19] and then further developed by [4] to prove MIP∗ = RE. These

works use very different tools such as classical and quantum low-degree tests and probabilistically

checkable proofs (PCPs).7 The gapless compression theorem of this paper is based on a simpli-

fied version of these techniques, which allows us to obtain our Π2-hardness result for two-player

games.

In [26], we obtained Π2-hardness for the exact 𝑞-value problem for games with three or more

players. This is because we combined the gapless compression theorem of [28] with the gapped

compressed theorem of [4]. However as mentioned the requirement to have games with at least

three players is intrinsic to the work of [27, 28]. Furthermore, all previous works only study the

7View Section 2 of [19] for a more in-depth overview of the differences.
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setting of finite-dimensional (i.e. 𝑞-type) strategies; ours is the first to study compression of games

in the commuting operator setting.

1.1.2 Overview of the gapless compression theorem

We now provide an overview of the proof of Theorem 1.3, our gapless compression theorem.

The compression theorem technically is about a procedure for transforming a sequence of games

into another, but for simplicity we discuss compression as transforming individual games.

The high-level structure of the compression procedure follows the paradigm first established

by [19] and developed further by [4]. Let 𝐺 denote an “input” game where the question lengths,

answer lengths, and complexity of the decision procedure are poly(𝑛). The game 𝐺 is transformed

into a “compressed” game 𝐺′ where the complexity of the decision procedure is poly log(𝑛). This

transformation consists of two steps, the first one called Question Reduction and the second called

Answer Reduction. We describe these two steps next.

Fix an input game 𝐺 = (X,A, 𝐷). All games involved use the uniform distribution over

questions; for this reason we omit mention of the question distribution when specifying a nonlocal

game. Fix a value type 𝑡 ∈ {𝑞, 𝑐𝑜}.

Question Reduction

The Question Reduction step transforms𝐺 into the Introspection game𝐺 intro = (Xintro,Aintro, 𝐷intro)

where

log |Xintro | = 𝑂 (log log |X|)

log |Aintro | = poly(log |A|)

Complexity of 𝐷intro = poly(Complexity of 𝐷) .

The Introspection game 𝐺 intro is equivalent to 𝐺 in the sense that the value of 𝜔𝑡 (𝐺 intro) = 1 if and

only if 𝜔𝑡 (𝐺) = 1.
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At an intuitive level, the question lengths are reduced in 𝐺 intro by asking the players to “ask

themselves” – i.e., to introspect – their own questions from X. The players in 𝐺 intro are each asked

to sample a question 𝑥 ∈ X and answer with 𝑎 ∈ A as they would have answered in the original

game 𝐺. If the players’ responses are (𝑥, 𝑎) and (𝑦, 𝑏), the decision procedure in 𝐺 intro will check

that 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1.

In order for the values of 𝐺 and 𝐺 intro to be meaningfully related, we need to ensure that (a)

the players sample their introspected questions 𝑥 and 𝑦 from the uniform distribution (instead of,

say, always picking a fixed (𝑥∗, 𝑦∗) for which they have prepared winning answers), and (b) the

first player does not have any knowledge of the second player’s question 𝑦 and the second player

does not have any knowledge of the first player’s question 𝑥.

Forcing players to behave honestly according to (a) and (b) crucially relies on a property called

rigidity that holds for some nonlocal games. A nonlocal game 𝐺 is rigid if the state and measure-

ment operators of any near optimal strategy for 𝐺 satisfy very rigid constraints. For introspection,

we need a family of games, called Question Sampling games where the 𝑛th member of this fam-

ily is denoted by QS𝑛. Each game has two special questions labeled by measure-standard-basis

and measure-orthogonal-basis and players in QS𝑛 are required to respond to these questions with

strings in {0, 1}𝑛. Furthermore these games exhibit rigidity in the following sense; in any near op-

timal strategy for QS𝑛 the players must share 𝑛 EPR pairs, and the player answering the measure-

standard-basis (resp. measure-orthogonal-basis) question, must measure their share of entangled

state using a measurement that is close, in some metric, to the standard basis measurement (resp.

orthogonal basis {|+⟩, |−⟩} measurement).

For simplicity suppose that the question set for the game 𝐺 is X = {0, 1}𝑛. Then the Introspec-

tion game 𝐺 intro, at its core, is the QS𝑛 game8: to introspect the verifier just asks the player the

measure-standard-basis question. The verifier then takes advantage of the other special question,

measure-orthogonal-basis, to ensure that the properties (a) and (b) of introspection questions are

8To be more precise the game 𝐺 intro is QS𝑛 extended so that it has a small number of additional special questions.
The cross-checks between these special questions force the players to behave “honestly” (i.e., to sample (𝑥, 𝑦) from
the uniform distribution), or risk losing the game with some nonzero probability.
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satisfied. The proof of this fact is a direct consequence of the rigidity property of the Question

Sampling game as described earlier.

There are many candidate games for Question Sampling if we only cared about the rigidity

property mentioned above. One example is the parallel-repeated Magic Square game [29]. What

makes the search for a family of games QS𝑛 more challenging is the additional requirement im-

posed by the property

log |Xintro | = 𝑂 (log log |X|).

To satisfy this requirement the Question Sampling can have at most poly(𝑛) questions. So overall

QS𝑛 must be a game with poly(𝑛) questions for which any optimal strategy uses 𝑛 EPR pairs. Any

family of games satisfying this property is said to be efficiently rigid. Efficiency is referring to

the fact that games with small number of questions are certifying Hilbert spaces of large dimen-

sion (2𝑛 in the case of QS𝑛). The family of games where the 𝑛th game is the 𝑛th parallel-repeated

Magic Square game is not efficiently rigid because the number of questions grows as 2𝑂 (𝑛) . In Sec-

tion 1.3.2 we introduce a family of games called 2-out-of-𝑛Magic Square and prove it is efficiently

rigid.

Introspection first appeared in [19] followed by a more sophisticated version in the MIP∗ = RE

result. To obtain the gapped compression in that paper, the Question Reduction step must also

be gap-preserving, i.e., in addition to the above requirements for introspection, it must be that if

𝜔𝑞 (𝐺) < 1/2, then 𝜔𝑞 (𝐺 intro) < 1/2. For gapped introspection, in addition to efficient rigidity, we

need to make sure that in any strategy winning QS𝑛 with probability at least 1−Y, the measurement

for measure-standard-basis question is poly(Y, log 𝑛)-close (in operator norm) to the standard-basis

measurement. The crucial point is that the error function has logarithmic dependence on 𝑛. This

is what we call an efficiently robust rigidity result. The 2-out-of-𝑛 Magic Square game is not

highly robust because the error function has a polynomial dependence on 𝑛. The game used in

the MIP∗ = RE result that exhibits this additional robustness requirement is called the quantum

low-degree-test [21]. The proof of rigidity for this game is considerably more complicated than

the proof of rigidity for the 2-out-of-𝑛 Magic Square game. Also, in our setting we only need
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to introspect games with uniform question distributions. We believe these simplifications in the

gapless setting help illuminate the core ideas behind introspection.

Answer Reduction

The Answer Reduction step transforms 𝐺 into the game 𝐺ans = (Xans,Aans, 𝐷ans) where

log |Xans | = poly(log |X|)

log |Aans | = 𝑂 (1)

Complexity of 𝐷ans = poly(log Complexity of 𝐷) .

The game 𝐺ans is equivalent to 𝐺 in the sense that the value of 𝜔𝑡 (𝐺ans) = 1 if and only if

𝜔𝑡 (𝐺) = 1.

The idea is to delegate computing the decision procedure 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) to the players. Then have

them certify their computation using a constant sized certificate. In this paper we use the Cook-

Levin reduction: this is an efficient transformation that maps a Turing machine 𝑀 and input string

𝑤 to a 3SAT formula 𝜑𝑀 and variable assignment 𝜋𝑤 such that 𝑀 (𝑤) = 1 if and only if 𝜋𝑤 satisifes

𝜑𝑀 . Furthermore, 𝑤 is embedded in the beginning of 𝜋𝑤 . Clauses of the 3SAT formula 𝜑𝑀 can be

computed hyper-efficiently (which allows us to exponentially reduce the verifiers runtime). We use

this to reduce the Turing machine 𝐷𝑥,𝑦, that computes the decision procedure for fixed questions

(𝑥, 𝑦), and the players answers (𝑎, 𝑏) to a 3SAT formula 𝜑𝑥,𝑦 and assignment 𝜋𝑎,𝑏. The verifier

will now compute a random clause of this formula, and ask the players to provide the assignments

specified by 𝜋𝑎,𝑏 to the variables in the clause.

There are three immediate issues we must address in this scheme. First, in our current game no

individual player has access to both questions to produce the 3SAT formula 𝜑𝑥,𝑦. Secondly, if we

allow one of the players to have access to both questions, in order to compute 𝜑𝑥,𝑦, we must ensure

that the answers (𝑎, 𝑏) (and certificate 𝜋𝑎,𝑏) are produced in such way that 𝑎 only depends on 𝑥

and 𝑏 only depends on 𝑦. Lastly, we have to make sure the player in fact returns the corresponding
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assignments specified by 𝜋𝑎,𝑏 and does not change this depending on the clause we query.

Fortunately, all three issues can be addressed by oracularization. This takes our original game

and transforms it to a new game 𝐺orac where the verifier sends one player a question 𝑥 ∈ X and the

other a pair of questions (𝑥, 𝑦) ∈ X2. When a player receives a single question 𝑥 we call them an

isolated player. When a player receives a pair (𝑥, 𝑦) we call them an oracle player. The players

win if the oracle player responds with an answer pair (𝑎, 𝑏) ∈ A2 such that 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1 and

the isolated player responds with answer 𝑎 (resp. responds with answer 𝑏). Intuitively, in 𝐺orac an

oracle player must “simulate” the behavior of the two players in 𝐺, and the isolated player (who

only receives half of the oracle question) is used to check that the oracle player’s answers (𝑎, 𝑏)

are produced in a way that 𝑎 only depends on 𝑥 and 𝑏 only depends on 𝑦, solving our first two

issues.

Now we can go ahead and apply the Answer Reduction protocol on the game 𝐺orac, where the

oracle player responds with assignments for our clause queries as described before, but the isolated

player is asked a random bit of their original answer 𝑎 (resp. 𝑏). In particular we query only from

those clauses which contain at least one variable from the beginning of 𝜋𝑎,𝑏 which embeds 𝑎 (resp.

𝑏), we make sure the two players answers match on this assignment. This allows us to continue

enforcing the no communication requirement after Answer Reduction. It also ensures that the

oracle player is in fact providing assignments to the clause variables from 𝜋𝑎,𝑏. Therefore 𝐺ans

uses constant sized answers and has exponentially more efficient verifier complexity.

From gapless to gapped compression

We highlight the primary differences between our gapless compression theorem and the gapped

compression theorem of [4].

• In MIP∗ = RE, instead of using the Cook-Levin reduction, the Answer Reduction trans-

formation uses probabilistically checkable proofs (PCPs) in order to control the amount of

gap shrinkage. The soundness of the PCP construction in [4] is based on the soundness of

something called the classical low-degree test against entangled provers [23], which is a very
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technically challenging part of their analysis.

• As explained earlier, the Question Reduction step in MIP∗ = RE uses the robust rigidity of

the quantum low-degree test [21]. Contrast this with our gapless compression theorem that

does not require a robust rigidity test.

• The proof of MIP∗ = RE uses a parallel repetition theorem. Roughly speaking, parallel

repetition theorems state that if the quantum value of a game 𝐺 is less than 1, then the value

of the game 𝐺𝑛, that is obtained from 𝐺 by playing 𝑛 instances of 𝐺 in parallel, decays

exponentially with 𝑛. This is needed because both the Question Reduction and Answer

Reduction transformations shrink the gap by some amount, and parallel repetition is used to

amplify the gap back to some constant amount.

In this paper we transfer many of the ideas from [4] to the infinite dimensional setting, allowing

us to get a gapless compression theorem for commuting operator strategies. As discussed earlier

proving Theorem 1.4 requires a gapped compression theorem for the commuting operator strate-

gies. Just like in the case of 𝑞-strategies, we would also need to establish commuting-operator

analogues of the three ingredients described above: (1) soundness of the classical low-degree test,

(2) soundness of the quantum low-degree test, and (3) a parallel repetition theorem.

The first item has been resolved in a forthcoming paper [30]. The second item requires a proof

that the quantum low-degree test is sound against commuting operator strategies. Finally, parallel

repetition is well studied in the context of (finite-dimensional) quantum strategies [31, 32, 24]

but nothing is known yet in the context of commuting operator strategies (aside from the parallel

repetition result of [33], but this only holds for XOR games).

Given the commuting-operator analogues of these tools, however, the Π1-completeness of the

approximate 𝑐𝑜-value problem should then follow from the argument described in Section 1.1.1.
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1.1.3 The synchronous strategies framework

As mentioned, another goal of this paper is to present the proof of the gapless compression

theorem (Theorem 1.3) in a way that distills, into their simplest form, the techniques and concep-

tual components that go into establishing its much more sophisticated cousin, the gap-preserving

compression theorem of [4]. To that end, we express and prove all our results in the framework

of synchronous strategies, a class of strategies first studied by [34]. Working with these strategies

simplifies our arguments both notationally as well as conceptually (as compared to working with

general nonlocal games and general strategies).

A synchronous strategy 𝒮 for a game 𝐺 is specified by a separable Hilbert space H (which

could be infinite-dimensional), a von Neumann algebra 𝒜 on H , a tracial state on the algebra 𝒜,

9 and a set of projective measurements {𝑀𝑥}𝑥∈X in the algebra 𝒜 (each 𝑀𝑥 is a set of projections

{𝑀𝑥
𝑎 }𝑎∈A summing to the identity). Given questions (𝑥, 𝑦), the probability of obtaining answers

(𝑎, 𝑏) is given by 𝜏(𝑀𝑥
𝑎 𝑀

𝑦

𝑏
). Thus the probability that the strategy 𝒮 succeeds in the game 𝐺 is

given by ∑︁
𝑥,𝑦∈X

`(𝑥, 𝑦)
∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) 𝜏
(
𝑀𝑥
𝑎 𝑀

𝑦

𝑏

)
.

Readers who are not familiar with von Neumann algebras and tracial states may find the finite-

dimensional setting easier to understand. When H = C𝑟 for some dimension 𝑟 , then we can

without loss of generality take the algebra 𝒜 to be the set B(H) of all bounded operators on H

(which in finite dimensions is simply the set of all linear operators). In this case there is a unique

tracial state, which is the normalized trace 𝜏(𝑋) = 1
𝑟

tr(𝑋). In terms of strategies for nonlocal

games, this corresponds to the players using the same projective measurements for each question

and sharing the maximally entangled state |Φ⟩ = 1√
𝑟

∑𝑟
𝑒=1 |𝑒⟩|𝑒⟩. Such a strategy has the property

that if both players receive the same question 𝑥 ∈ X, they always output the same answer 𝑎 ∈ A

(this is why these strategies are called “synchronous”).

9A von Neumann algebra 𝒜 on a Hilbert spaceH is a ∗-subalgebra of B(H) (the set of bounded operators onH )
that contains the identity operator and is closed under the weak operator topology. A tracial state 𝜏 on the algebra 𝒜

is a positive, unital linear functional that satisfies the trace property: TR (𝐴𝐵) = TR (𝐵𝐴) for all 𝐴, 𝐵 ∈ 𝒜.
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In the infinite-dimensional setting, synchronous strategies give rise to commuting operator

strategies: for every synchronous strategy 𝒮 = (𝜏, {𝑀𝑥}) with Hilbert space H , there exist an-

other Hilbert space H ′, a state |𝜓⟩ ∈ H ′, and measurements {𝐴𝑥}, {𝐵𝑥} on H ′ for the players

respectively such that for all 𝑥, 𝑦 ∈ X and 𝑎, 𝑏 ∈ A, the operators 𝐴𝑥𝑎 and 𝐵𝑦
𝑏

commute and we

have

𝜏(𝑀𝑥
𝑎 𝑀

𝑦

𝑏
) = ⟨𝜓 |𝐴𝑥𝑎 𝐵

𝑦

𝑏
|𝜓⟩ .

For a proof, see [34, Theorem 5.5].

Remark 1. On the need to specify a von Neumann algebra 𝒜 as part of the strategy: unlike in the

finite-dimensional setting, we cannot without loss of generality take 𝒜 to be all of B(H); this is

because there may not necessarily be a tracial state on B(H).

Synchronous strategies arise naturally when considering synchronous games: these are games

where the players must output the same answers whenever they receive the same question (i.e.

𝐷 (𝑥, 𝑥, 𝑎, 𝑏) = 0 whenever 𝑎 ≠ 𝑏). This simple restriction on the rules of the game has the

following consequences for optimal strategies:

Theorem 1.5 (Adapted from Theorem 3.2 of [35] and Theorem 3.6 of [36]). Let𝐺 = (X,A, `, 𝐷)

be a synchronous game such that `(𝑥, 𝑥) > 0 for all 𝑥 ∈ X. Then if 𝜔𝑐𝑜 (𝐺) = 1 then there exists

a synchronous strategy 𝒮 = (𝜏, {𝑀𝑥}) for 𝐺 that achieves value 1. If furthermore 𝜔𝑞 (𝐺) = 1,

then there exists a sequence {𝒮𝑛}𝑛∈N of finite-dimensional synchronous strategies whose values

approach 1.

Many games studied in quantum information theory and theoretical computer science are syn-

chronous games; for example the games constructed in the proof of MIP∗ = RE are all syn-

chronous. In this paper, we also focus exclusively on synchronous games. For this reason, we

focus on analyzing the synchronous value of games: we define

𝜔𝑠𝑐𝑜 (𝐺) := sup
synchronous𝒮

𝜔(𝐺,𝒮) and 𝜔𝑠𝑞 (𝐺) := sup
finite-dimensional
synchronous𝒮

𝜔(𝐺,𝒮) .
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Since synchronous strategies correspond to commuting operator strategies, we have that 𝜔𝑠𝑐𝑜 (𝐺) ≤

𝜔𝑐𝑜 (𝐺) and similarly𝜔𝑠𝑞 (𝐺) ≤ 𝜔𝑞 (𝐺); Theorem 1.5 implies that𝜔𝑠𝑡 (𝐺) = 1 if and only if𝜔𝑡 (𝐺) =

1 for 𝑡 ∈ {𝑞, 𝑐𝑜}. Thus we do not lose any generality by restricting our attention to synchronous

strategies. To be more precise, for a synchronous game 𝐺, the exact (resp. approximate) 𝑡-value

problem, i.e., deciding between 𝜔𝑡 (𝐺) = 1 and 𝜔𝑡 (𝐺) < 1 (resp. deciding between 𝜔𝑡 (𝐺) = 1 and

𝜔𝑡 (𝐺) ≤ 1/2), is equivalent to the problem of deciding between 𝜔𝑠𝑡 (𝐺) = 1 and 𝜔𝑠𝑡 (𝐺) < 1 (resp.

deciding between 𝜔𝑠𝑡 (𝐺) = 1 and 𝜔𝑠𝑡 (𝐺) ≤ 1/2).

The benefits of working within the synchronous games framework is that strategies only re-

quire specifying one set of measurements for both players (instead of having to keep track of one

for Alice and one for Bob), and furthermore the state 𝜏 has the cyclic trace property. Working in the

synchronous setting significantly simplified many of our proofs, in particular those of rigidity and

introspection. Previous rigidity results needed to characterize the shared state upto isometry and

find a concrete representation of the measurement operators as matrices. In the synchronous set-

ting however we are able to completely sidestep these technical issues. We need only to show that

certain algebraic relations such as commutation or anticommutation are satisfied by any optimal

strategy, which allows for a much cleaner argument. Furthermore, working in the synchronous

games framework allows for a unified treatment of both the finite- and infinite-dimensional set-

tings.

This paper builds upon arguments and techniques from a number of previous results. There

has been great success in pinning down the algebra of optimal strategies within the synchronous

games setting. It is our hope that expressing our results in the language of synchronous games will

facilitate connecting our work to the world of functional analysis and operator algebras.
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1.2 Preliminaries

For an integer 𝑑 ∈ N we write [𝑑] to denote {1, 2, . . . , 𝑑}. For functions 𝑓 , 𝑔1, . . . , 𝑔𝑙 : N𝑘 →

N, we write 𝑓 ≤ poly(𝑔1, . . . , 𝑔𝑙) if there exists a constants 𝐶, 𝐸 ≥ 0 such that for all sufficiently

large 𝑎1, . . . , 𝑎𝑘 ,

𝑓 (𝑎1, . . . , 𝑎𝑘 ) ≤ 𝐶
ℓ∏
𝑖=1

𝑔𝑖 (𝑎1, . . . , 𝑎𝑘 )𝐸 .

Let 𝐴(𝑥1, . . . , 𝑥𝑘 ) denote a 𝑘-input Turing machine, which is a Turing machine with 𝑘 input

tapes, a single work tape, and a single output tape. Then TIME𝐴 (𝑥1, . . . , 𝑥𝑘 ) denotes the maximum

of the description length of 𝐴, and the running time of 𝐴 on input (𝑥1, . . . , 𝑥𝑘 ) (which may be ∞

if 𝐴 never halts on that input). For an integer 𝑛 ∈ N, we let TIME𝐴 (𝑛) denote the maximum of

TIME𝐴 (𝑛, 𝑥2, . . . , 𝑥𝑘 ) over all 𝑥2, . . . , 𝑥𝑘 ∈ {0, 1}∗ (where 𝑛 is provided to 𝐴 in binary).

1.2.1 Algebras, states, and norms

LetH be a separable Hilbert space and let B(H) denote the set of bounded linear operators on

H . We write 1H to denote the identity operator onH (and simply write 1 when the Hilbert space

is clear from context).

A von Neumann algebra on a Hilbert space H is a unital ∗-subalgebra of bounded operators

B(H) that is closed in the weak operator topology. Given two von Neumann algebras 𝒜 and ℬ on

Hilbert spacesH𝐴,H𝐵 respectively, the tensor product algebra 𝒜 ⊗ℬ is defined to be the closure

under the weak operator topology of the ∗-subalgebra generated by {𝐴 ⊗ 𝐵 ∈ B(H𝐴 ⊗ H𝐵) : 𝐴 ∈

𝒜, 𝐵 ∈ ℬ}.

Let 𝒜 ⊆ B(H) denote a von Neumann algebra onH . We say that a positive linear functional

𝜏 : 𝒜 → C is

• Unital if 𝜏(1) = 1 ;
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• Normal if for all families (𝑃𝑖)𝑖∈𝐼 of pairwise orthogonal projections in 𝒜, we have 𝜏
( ∑

𝑖∈𝐼 𝑃𝑖
)
=∑

𝑖∈𝐼 𝜏(𝑃𝑖) ;

• Tracial if for all 𝐴, 𝐵 ∈ 𝒜, we have 𝜏(𝐴𝐵) = 𝜏(𝐵𝐴) ;

In this paper, 𝜏 will always represent a positive linear functional that is tracial, normal, and uni-

tal. We call such functionals a normal tracial state. For brevity we often drop the “normal”

qualifier. For an in-depth reference to von Neumann algebras, we refer the reader to Blackadar’s

textbook [37].

We record some basic properties of tracial states. First, tracial states satisfy the Cauchy-

Schwarz and Hölder inequalities, i.e.

|𝜏(𝐴∗𝐵) |2 ≤ 𝜏(𝐴∗𝐴) 𝜏(𝐵∗𝐵) and |𝜏(𝐴∗𝐵) | ≤ ∥𝐴∥ · 𝜏( |𝐵 |)

where ∥ · ∥ denotes the operator norm, and |𝐵| =
√
𝐵∗𝐵. Second, tracial states give rise to a

seminorm on 𝒜: we define the 𝜏-norm of an operator 𝐴 ∈ 𝒜 to be

∥𝐴∥𝜏 =
√︁
𝜏(𝐴∗𝐴) =

√︁
𝜏(𝐴𝐴∗).

The ∥ · ∥𝜏 norm satisfies the triangle inequality: i.e., ∥𝐴 + 𝐵∥𝜏 ≤ ∥𝐴∥𝜏 + ∥𝐵∥𝜏.

If H is finite dimensional (i.e. isomorphic to C𝑑) then there is a unique tracial state on the

algebra B(H), which is the dimension-normalized trace 1
𝑑

tr(𝐴). Thus in this case the 𝜏-norm is

the normalized Frobenius norm.

Proposition 1.6. If 𝜏 and 𝜎 are tracial states on von Neumann algebras 𝒜 and ℬ respectively,

then 𝜏 ⊗ 𝜎 is a tracial state on the von Neumann algebra 𝒜 ⊗ℬ.

Proposition 1.7. Let 𝐴, 𝐵 ∈ 𝒜. Then ∥𝐴𝐵∥𝜏 ≤ ∥𝐴∥ · ∥𝐵∥𝜏.
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Proof.

∥𝐴𝐵∥𝜏 =
√︁
𝜏(𝐵𝐵∗𝐴∗𝐴)

≤
√︁
∥𝐴∗𝐴∥ · 𝜏(𝐵𝐵∗) (Hölder)

= ∥𝐴∥ · ∥𝐵∥𝜏

□

The following proposition allows us to exchange any operator 𝐴 in any expression 𝐶𝐴𝐷 with

a nearby operator 𝐵 and obtain a new expression 𝐶𝐵𝐷 close to the original expression.

Proposition 1.8. Let 𝐶, 𝐷 ∈ 𝒜 be any operators with ∥𝐶∥, ∥𝐷∥ ≤ 1. If 𝐴, 𝐵 ∈ 𝒜 and ∥𝐴−𝐵∥𝜏 ≤

Y, then ∥𝐶𝐴𝐷 − 𝐶𝐵𝐷∥𝜏 ≤ Y and |𝜏(𝐶𝐴𝐷 − 𝐶𝐵𝐷) | ≤ Y.

Proof. By Proposition 1.7

∥𝐶 (𝐴 − 𝐵)𝐷∥2𝜏 ≤ ∥𝐶∥2∥𝐷∥2∥𝐴 − 𝐵∥2𝜏 ≤ ∥𝐴 − 𝐵∥2𝜏 .

We also have

|𝜏(𝐶 (𝐴 − 𝐵)𝐷) |2 = |𝜏(𝐷𝐶 (𝐴 − 𝐵)) |2

≤ 𝜏(𝐷𝐶𝐶∗𝐷∗)𝜏((𝐴 − 𝐵)∗(𝐴 − 𝐵)) (Cauchy-Schwarz)

≤ ∥𝐴 − 𝐵∥2𝜏 .

In the last line we used that 𝜏(𝐷𝐶𝐶∗𝐷∗) ≤ 1. Indeed, if ∥𝑀 ∥ ≤ 1, then by Hölder |𝜏(𝑀) | ≤

∥𝑀∗∥𝜏(𝐼) ≤ 1. □

In applications of Proposition 1.8 we usually find ourselves in a situation where 𝐶 and 𝐷 are

products of projections and unitaries. Since the operator norm is submultiplicative, i.e., ∥𝑀𝑁 ∥ ≤

∥𝑀 ∥∥𝑁 ∥, the operator norm of any product of projections and unitaries is bounded above by 1.

Thus the assumptions of the proposition are readily verified.
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Proposition 1.9. Let𝑈 be any unitary. If |𝜏(1 −𝑈) | ≤ Y, then ∥1 −𝑈∥𝜏 ≤
√

2Y

Proof.

∥1 −𝑈∥2𝜏 = 𝜏((1 −𝑈)∗(1 −𝑈)) = 𝜏(21 −𝑈 −𝑈∗) ≤ 2|𝜏(1 −𝑈) |.

□

1.2.2 Measurements and distance measures on them

Let 𝒜 denote a von Neumann algebra with a normal tracial state 𝜏. Let 𝑀 = {𝑀𝑎}𝑎∈A and

𝑁 = {𝑁𝑎}𝑎∈A denote sets of operators in 𝒜, indexed by a finite set A. Then we measure the

distance between 𝑀 and 𝑁 , denoted by ∥𝑀 − 𝑁 ∥𝜏, as

∥𝑀 − 𝑁 ∥𝜏 =
√︄∑︁
𝑎∈A
∥𝑀𝑎 − 𝑁𝑎∥2𝜏 .

We say that 𝑀 is 𝛿-far from 𝑁 , denoted by 𝑀𝑎 ≈𝛿 𝑁𝑎, if ∥𝑀 − 𝑁 ∥𝜏 ≤ 𝛿. We also occasionally use

the notation ∥𝑀 ∥𝜏 =
√︃∑

𝑎∈A ∥𝑀𝑎∥2𝜏.

Lemma 1.10. Let 𝑀 = {𝑀𝑎}𝑎∈A and and 𝑁 = {𝑁𝑎}𝑎∈A denote sets of operators indexed by a

finite set A. Then

∥𝑀 − 𝑁 ∥𝜏 ≤ ∥𝑀 ∥𝜏 + ∥𝑁 ∥𝜏 .

Proof. We compute:

∥𝑀 − 𝑁 ∥2𝜏 =
∑︁
𝑎∈A
∥𝑀𝑎 − 𝑁𝑎∥2𝜏

≤
( ∑︁
𝑎∈A
∥𝑀𝑎∥2

)
+

( ∑︁
𝑎∈A
∥𝑁𝑎∥2

)
+ 2

( ∑︁
𝑎∈A
∥𝑀𝑎∥𝜏 · ∥𝑁𝑎∥𝜏

)
≤

( ∑︁
𝑎∈A
∥𝑀𝑎∥2

)
+

( ∑︁
𝑎∈A
∥𝑁𝑎∥2

)
+ 2

√︄∑︁
𝑎∈A
∥𝑀𝑎∥2𝜏 ·

√︄∑︁
𝑎∈A
∥𝑁𝑎∥2𝜏

=

(
∥𝑀 ∥𝜏 + ∥𝑁 ∥𝜏

)2
.
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The first inequality follows from the triangle inequality of the 𝜏-norm, and the second inequality

follows from Cauchy-Schwarz. □

A positive operator-valued measure (POVM) on H with outcomes in a finite set A is a set

of positive operators {𝑀𝑎}𝑎∈A such that
∑
𝑎∈A 𝑀𝑎 = 1. A projective measurement is a POVM

such that each element 𝑀𝑎 is a projection. For a projective measurement 𝑀 = {𝑀𝑎} it holds

that 𝑀𝑎𝑀𝑏 = 𝛿𝑎,𝑏𝑀𝑎 where 𝛿𝑎,𝑏 is Kronecker delta. So operators belonging to the same projective

measurement commute. We say two measurements 𝑀 = {𝑀𝑎} and 𝑁 = {𝑁𝑏} commute, if 𝑀𝑎𝑁𝑏 =

𝑁𝑏𝑀𝑎 for all 𝑎, 𝑏.

To denote “data processed” measurements, i.e., apply a function 𝑓 : A → B to the outcome

of a measurement, we use the following notation: 𝑀[ 𝑓 ] denotes the POVM with elements

𝑀[ 𝑓 |𝑏] =
∑︁

𝑎: 𝑓 (𝑎)=𝑏
𝑀𝑎

for all 𝑏 ∈ B. As an example, suppose A = {0, 1}𝑛 and B = {0, 1}. Then we write 𝑀[𝑎 ↦→𝑎𝑖] to

denote the processed measurement that measures a string 𝑎, and then returns the 𝑖-th bit of 𝑎. To

refer to the element of 𝑀[𝑎 ↦→𝑎𝑖] corresponding to outcome 𝑏 ∈ {0, 1}, we write 𝑀[𝑎 ↦→𝑎𝑖 |𝑏] . For a

predicate 𝑃 : A → {0, 1}, we also use the notation

𝑀[𝑎:𝑃(𝑎)] =
∑︁

𝑎:𝑃(𝑎)=1
𝑀𝑎 .

For example, the operator 𝑀[𝑎: 𝑓 (𝑎)≠𝑏] denotes the sum over all 𝑀𝑎 such that 𝑓 (𝑎) ≠ 𝑏.

We introduce two important distance measures between POVMs that will be used throughout

this paper. All operators referred to in the following are assumed to be elements of a von Neumann

algebra 𝒜 on which a tracial state 𝜏 is defined.

The first distance measure we define is called inconsistency. Let 𝑀, 𝑁 denote POVMs with

outcomes in a finite set A (called the answer set or outcome set). We say that 𝑀 and 𝑁 are
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𝛿-inconsistent if ∑︁
𝑎,𝑏∈A:
𝑎≠𝑏

𝜏(𝑀𝑎 𝑁𝑏) ≤ 𝛿

When the answer set A is clear from context, we write 𝑀𝑎 ≃𝛿 𝑁𝑎 to denote that 𝑀 and 𝑁 are

𝛿-inconsistent.

The second distance measurement we introduce is called closeness. We say that sets of POVMs

𝑀, 𝑁 are 𝛿-far if

∥𝑀 − 𝑁 ∥𝜏 ≤ 𝛿.

Similarly, when the answer set A is clear from context, we write 𝑀𝑎 ≈𝛿 𝑁𝑎 to denote that 𝑀 and

𝑁 are 𝛿-far. Observe that this notion of closeness is also well-defined when the operators 𝑀𝑎, 𝑁𝑎

are not necessarily positive. Thus we will also write 𝑀𝑎 ≈𝛿 𝑁𝑎 to denote closeness of arbitrary

operator sets that are indexed by an answer set A.

1.2.3 Utility lemmas about measurements

We now establish several utility lemmas concerning consistency, closeness, and measurements.

Lemma 1.11 (Cauchy-Schwarz for operator sets). Let 𝑀 = {𝑀𝑎}𝑎∈A and 𝑁 = {𝑁𝑎}𝑎∈A denote

sets of operators (not necessarily POVMs). Then

��� ∑︁
𝑎∈A

𝜏(𝑀𝑎 · 𝑁𝑎)
���2 ≤ ( ∑︁

𝑎∈A
∥𝑀𝑎∥2𝜏

)
·
( ∑︁
𝑎∈A
∥𝑁𝑎∥2𝜏

)
.

Proof. For every 𝑎 ∈ A, we have that |𝜏(𝑀𝑎 · 𝑁𝑎) | ≤ ∥𝑀𝑎∥𝜏 · ∥𝑁𝑎∥𝜏 by the Cauchy-Schwarz

inequality for tracial states. Applying the triangle inequality and Cauchy-Schwarz again we have

��� ∑︁
𝑎∈A

𝜏(𝑀𝑎 ·𝑁𝑎)
���2 ≤ ( ∑︁

𝑎∈A

���𝜏(𝑀𝑎 ·𝑁𝑎)
���)2
≤

( ∑︁
𝑎∈A
∥𝑀𝑎∥𝜏 · ∥𝑁𝑎∥𝜏

)2
≤

( ∑︁
𝑎∈A
∥𝑀𝑎∥2𝜏

)
·
( ∑︁
𝑎∈A
∥𝑁𝑎∥2𝜏

)
.

□

Lemma 1.12 (Data processing inequality for consistency). Let 𝑀 = {𝑀𝑎} and 𝑁 = {𝑁𝑎} be
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POVMs with outcomes in A such that 𝑀𝑎 ≃𝛿 𝑁𝑎. Let 𝑓 : A → B. Then

𝑀[ 𝑓 |𝑏] ≃𝛿 𝑁[ 𝑓 |𝑏] .

Proof.

∑︁
𝑏≠𝑏′∈B

𝜏(𝑀[ 𝑓 |𝑏]𝑁[ 𝑓 |𝑏′]) =
∑︁

𝑏≠𝑏′∈B
𝑎,𝑎′∈A

𝑓 (𝑎)=𝑏, 𝑓 (𝑎′)=𝑏′

𝜏(𝑀𝑎𝑁𝑎′) ≤
∑︁

𝑎≠𝑎′∈A
𝜏(𝑀𝑎𝑁𝑎′) ≤ 𝛿.

□

Lemma 1.13 (Consistency to closeness). Let 𝑀 = {𝑀𝑎} and 𝑁 = {𝑁𝑎} be POVMs with outcomes

in A such that 𝑀𝑎 ≃𝛿 𝑁𝑎. Then 𝑀𝑎 ≈√2𝛿 𝑁𝑎.

Proof. √︄∑︁
𝑎

∥𝑀𝑎 − 𝑁𝑎∥2𝜏 =
√︄∑︁

𝑎

𝜏((𝑀𝑎 − 𝑁𝑎)2)

≤
√︄∑︁

𝑎

𝜏(𝑀𝑎 + 𝑁𝑎 − 𝑀𝑎𝑁𝑎)

=

√︄
2 − 2

∑︁
𝑎

𝜏(𝑀𝑎𝑁𝑎)

≤
√︄

2
∑︁
𝑎

𝜏(𝑀𝑎 (1 − 𝑁𝑎))

≤
√

2𝛿.

The first inequality follows because 𝑀𝑎 − 𝑀2
𝑎 ≥ 0 as {𝑀𝑎} are POVMs. The second inequality

follows from Jensen’s inequality. □

Lemma 1.14 (Closeness to consistency). Let 𝑀 = {𝑀𝑎} be a projective POVM and let 𝑁 =

{𝑁𝑎}𝑎∈A be a POVM with outcomes in A. Suppose that 𝑀𝑎 ≈𝛿 𝑁𝑎. Then 𝑀𝑎 ≃𝛿 𝑁𝑎.
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Proof. Applying Cauchy-Schwarz twice, we get

∑︁
𝑎

𝜏(𝑀𝑎 (1 − 𝑁𝑎)) =
∑︁
𝑎

𝜏(𝑀𝑎 (𝑀𝑎 − 𝑁𝑎))

≤
√︄∑︁

𝑎

𝜏(𝑀2
𝑎 ) ·

√︄∑︁
𝑎

𝜏((𝑀𝑎 − 𝑁𝑎) (𝑀𝑎 − 𝑁𝑎)∗)

≤ 𝛿

where we used that
∑
𝑎 𝜏(𝑀2

𝑎 ) = 1. □

Lemma 1.15 (Consistency implies similar probabilities). Let 𝑀 = {𝑀𝑎} and 𝑁 = {𝑁𝑎} be POVMs

with outcomes indexed by A. Suppose that 𝑀𝑎 ≃𝛿 𝑁𝑎. Then

∑︁
𝑎∈A
|𝜏(𝑀𝑎 − 𝑁𝑎) | ≤ 2𝛿.

Proof. Let 𝑆𝑥 = {𝑎 : 𝜏(𝑀𝑎) > 𝜏(𝑁𝑎)} and 𝑇𝑥 = {𝑎 : 𝜏(𝑁𝑎) ≥ 𝜏(𝑀𝑎)}. Then

∑︁
𝑎∈A
|𝜏(𝑀𝑎 − 𝑁𝑎) | =

∑︁
𝑎∈𝑆𝑥

𝜏(𝑀𝑎 − 𝑁𝑎) +
∑︁
𝑏∈𝑇𝑥

𝜏(𝑁𝑎 − 𝑀𝑎).

Then, since 𝜏(𝑀𝑎𝑁𝑎) ≤ 𝜏(𝑁𝑎), we have

∑︁
𝑎∈𝑆𝑥

𝜏(𝑀𝑎 − 𝑁𝑎) ≤
∑︁
𝑎∈𝑆𝑥

𝜏(𝑀𝑎 (1 − 𝑁𝑎)) ≤
∑︁
𝑎∈A

𝜏(𝑀𝑎 (1 − 𝑁𝑎)) ≤ 𝛿.

Similarly
∑
𝑏∈𝑇𝑥 𝜏(𝑁𝑎 − 𝑀𝑎) ≤ 𝛿. This completes the proof. □

Lemma 1.16. Let 𝑀 = {𝑀𝑎}𝑎∈A , 𝑁 = {𝑁𝑎}𝑎∈A be sets of operators (not necessarily POVMs),

and let 𝑅 = {𝑅𝑏}𝑏∈B be a set of operators such that
∑
𝑏 𝑅
∗
𝑏
𝑅𝑏 ≤ 1. Suppose that 𝑀𝑎 ≈𝛿 𝑁𝑎. Then

𝑅𝑏𝑀𝑎 ≈𝛿 𝑅𝑏𝑁𝑎 where the answer summation is over (𝑎, 𝑏) ∈ A × B. Similarly, if
∑
𝑏 𝑅𝑏𝑅

∗
𝑏
≤ 1,

we have 𝑀𝑎𝑅𝑏 ≈𝛿 𝑁𝑎𝑅𝑏.
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Proof. We prove the approximation 𝑅𝑏𝑀𝑎 ≈𝛿 𝑅𝑏𝑁𝑎:

∑︁
𝑎∈A,𝑏∈B

∥𝑅𝑏 (𝑀𝑎 − 𝑁𝑎)∥2𝜏 =
∑︁

𝑎∈A,𝑏∈B
𝜏

(
(𝑀𝑎 − 𝑁𝑎)∗𝑅∗𝑏𝑅𝑏 (𝑀𝑎 − 𝑁𝑎)

)
=

∑︁
𝑎

𝜏

(
(𝑀𝑎 − 𝑁𝑎)∗

(∑︁
𝑏

𝑅∗𝑏𝑅𝑏
)
(𝑀𝑎 − 𝑁𝑎)

)
≤

∑︁
𝑎

𝜏

(
(𝑀𝑎 − 𝑁𝑎)∗(𝑀𝑎 − 𝑁𝑎)

)
=

∑︁
𝑎

∥𝑀𝑎 − 𝑁𝑎∥2𝜏

≤ 𝛿2.

where in the first inequality we used the assumption that
∑
𝑏 𝑅
∗
𝑏
𝑅𝑏 ≤ 1. The proof for the approxi-

mation 𝑀𝑎𝑅𝑏 ≈𝛿 𝑁𝑎𝑅𝑏 is similar. □

The following lemma states that POVMs that are almost projective (in the sense that each

POVM element is close to its square) is close to a projective maesurement. A version of this was

first proved in the finite-dimensional setting by [38], improved quantitatively in [23], and recently

extended to the setting of von Neumann algebras by de la Salle [39].

Lemma 1.17 (Projectivization of POVMs [39]). Let {𝑀𝑎} ⊂ 𝒜 be a POVM with outcomes indexed

by a finite set A. Suppose that the following holds:

∑︁
𝑎

𝜏(𝑀𝑎 − 𝑀2
𝑎 ) ≤ Y.

Then there exists a projective measurement {𝑃𝑎} ⊂ 𝒜 such that

𝑃𝑎 ≈𝛿𝑝𝑟𝑜 𝑗 𝑀𝑎

where 𝛿𝑝𝑟𝑜 𝑗 = 𝛿𝑝𝑟𝑜 𝑗 (Y) is a function that depends on Y (but independent ofA) and goes to zero as

Y → 0.
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The next lemma allows us to “paste” multiple approximately-commuting measurements to-

gether to form a joint projective measurement.

Lemma 1.18 (Pasting lemma). Let {𝑀 (1) , 𝑀 (2) , . . . , 𝑀 (𝐾)} ⊂ 𝒜 be a set of projective measure-

ments with outcomes in a finite set A. Suppose that for all 𝑖 ≠ 𝑗 , we have that

𝑀
(𝑖)
𝑎 𝑀

( 𝑗)
𝑏
≈Y 𝑀 ( 𝑗)𝑏 𝑀

(𝑖)
𝑎

where the answer summation is over (𝑎, 𝑏) ∈ A2. Then there exists a projective measurement

𝑅 = {𝑅®𝑎} ⊂ 𝒜 with outcomes in A𝐾 such that for all 𝑖 ∈ [𝐾],

𝑅[ ®𝑎 ↦→𝑎𝑖 |𝑏] ≈𝛿𝑝𝑎𝑠𝑡𝑖𝑛𝑔 𝑀
(𝑖)
𝑏

where 𝛿𝑝𝑎𝑠𝑡𝑖𝑛𝑔 = 𝛿𝑝𝑎𝑠𝑡𝑖𝑛𝑔 (𝐾, Y) is a function that goes to 0 as Y → 0.

We prove Theorem 1.18 in Section 1.7.

1.2.4 Nonlocal games, strategies, and verifiers

Nonlocal games. A nonlocal game 𝐺 is a tuple (X,A, `, 𝐷) where X is a finite question set,A

is a finite answer set, ` is a probability distribution overX×X, and 𝐷 : X×X×A×A → {0, 1} is a

function called the decision predicate. A game 𝐺 is synchronous if for all 𝑥 ∈ X, 𝐷 (𝑥, 𝑥, 𝑎, 𝑏) = 1

if and only if 𝑎 = 𝑏. We call a question pair (𝑥, 𝑦) ∈ X × X trivial if 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1 for all

(𝑎, 𝑏) ∈ A × A; otherwise we call (𝑥, 𝑦) nontrivial.

In this paper, we only consider games that are synchronous and whose question distribution is

uniform over the question set; thus we denote games 𝐺 by tuples (X,A, 𝐷).

Strategies. A tracial strategy 𝒮 for a game 𝐺 = (X,A, `, 𝐷) is a pair (𝜏, {𝑀𝑥}𝑥∈X) where there

is a separable Hilbert space H such that {𝑀𝑥} is a set of POVMs on H with outcomes in A, and

𝜏 is a normal tracial state on a von Neumann algebra 𝒜 containing the set {𝑀𝑥
𝑎 }𝑥,𝑎. The value of
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a tracial strategy 𝒮 in 𝐺 is defined as

𝜔(𝐺,𝒮) =
∑︁
𝑥,𝑦∈X

`(𝑥, 𝑦)
∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) 𝜏(𝑀𝑥
𝑎 𝑀

𝑦

𝑏
)

A tracial strategy 𝒮 is called synchronous if {𝑀𝑥} are projective measurements. A tracial strategy

𝒮 is finite dimensional ifH = C𝑑 for some 𝑑. A tracial strategy 𝒮 commutes on a set 𝐶 ⊆ X × X

if for all (𝑥, 𝑦) ∈ 𝐶 measurements 𝑀𝑥 and 𝑀 𝑦 commute, i.e., 𝑀𝑥
𝑎𝑀

𝑦

𝑏
= 𝑀

𝑦

𝑏
𝑀𝑥
𝑎 for all 𝑎, 𝑏 ∈ A.

The synchronous commuting operator value of a synchronous game 𝐺, denoted by 𝜔𝑠𝑐𝑜 (𝐺), is

defined as the supremum of 𝜔(𝐺,𝒮) over all synchronous strategies 𝒮 for 𝐺. The synchronous

quantum value of 𝐺, denoted by 𝜔𝑠𝑞 (𝐺), is defined the same except the supremum is restricted to

finite-dimensional synchronous strategies.

The entanglement requirement E
(
𝐺, 𝛼

)
for a game𝐺 and 𝛼 ∈ [0, 1] is the minimum dimension

of any finite-dimensional synchronous strategy 𝒮 for 𝐺 with quantum value at least 𝛼. If no such

strategy exists then E
(
𝐺, 𝛼

)
= ∞.

We introduce the notion of an oracularizable strategy; the significance of this notion is that the

answer reduction transformation (discussed in Section 1.5) requires games to have oracularizable

strategies. “Oracularizability” is an invariant maintained by our compression procedure (as well as

the compression procedures of [19, 4]).

Definition 1.19 (Oracularizable strategy). A synchronous strategy 𝒮 for a synchronous game 𝐺 is

oracularizable if the strategy commutes on the set of nontrivial questions of 𝐺.

Verifiers. We introduce the notion of a verifier, which gives a uniform way to describe infinite

sequences of nonlocal games.

Definition 1.20 (Verifiers). Let 𝒢 = (𝐺𝑛)𝑛∈N denote an infinite sequence of synchronous games

where 𝐺𝑛 = (X𝑛,A𝑛, 𝐷𝑛) and the sets X𝑛 = {0, 1}ℓ𝑛 ,A𝑛 ⊂ {0, 1}∗ for some polynomial-time

computable function ℓ𝑛 of 𝑛. A verifier 𝒱 for 𝒢 is a pair (𝐷,𝐶) of Turing machines where 𝐷 is a

5-input Turing machine and 𝐶 is a 3-input Turing machine, such that for all 𝑛 ∈ N, the following
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hold:

1. 𝐷 (𝑛, 𝑥, 𝑦, 𝑎, 𝑏) = 𝐷𝑛 (𝑥, 𝑦, 𝑎, 𝑏) for all (𝑥, 𝑦) ∈ X𝑛 × X𝑛 and (𝑎, 𝑏) ∈ A𝑛 × A𝑛, and

2. 𝐶 (𝑛, 𝑥, 𝑦) = 1 if and only if (𝑥, 𝑦) ∈ X𝑛 × X𝑛 is a nontrivial question pair for 𝐺𝑛.

The Turing machines 𝐶 and 𝐷 are respectively called a question checker (or simply just a checker)

and decider for𝒢. When 𝑛 is written on the first input tape of 𝐷 and𝐶, the Turing machines discard

any string that comes after the ℓ𝑛’th bit in the second and third input tapes.

Verifiers play a crucial role in the compression theorems of this paper and [4], as they allow

for an effective method (“effective” in the computability sense) for encoding infinite sequences of

nonlocal games.

Remark 2. Although we have defined the games in the sequence 𝒢 corresponding to a verifier

𝒱 to have questions and answers consisting of binary strings, we often treat the questions and

answers as sets with more structure, such as tuples. There, we implicitly assume an efficiently

computable representation of set elements as binary strings is fixed.

We note that the Turing machine 𝐷 in the definition of verifier 𝒱 for an infinite sequence

𝒢 = (𝐺𝑛)𝑛∈N of games already implicitly specifies the set of nontrivial questions for each 𝐺𝑛. For

our compression procedure, however, it will be necessary to be able to quickly compute whether a

question pair is nontrivial, and having a separate Turing machine𝐶 for this is helpful for separately

keeping track of the decision procedure complexity versus the complexity of deciding the set of

nontrivial questions.

1.2.5 Asymptotics and approximation bounds

We end the preliminaries section with a short discussion of asymptotics in the analyses of the

Rigidity, Question Reduction and Answer Reduction sections. The bounds and approximations

in this paper are functions of two quantities: one is the game index 𝑛, which indicates the 𝑛-th

element of an infinite sequence 𝒢 = (𝐺𝑛)𝑛∈N of games; we take 𝑛 to go to infinity and use 𝑛 to
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measure sizes of question/answer alphabets, as well as the time complexity of the deciders. The

other quantity is Y where 1 − Y is a lower bound on the synchronous quantum or synchronous

commuting operator value of a nonlocal game 𝐺 under consideration. We treat Y as a quantity that

goes to 0.

All of our approximations in this paper will generally depend on both 𝑛 and Y. From the

assumption that the value of the game is at least 1 − Y we will derive consequences for a pair of

measurements {𝑀𝑎}, {𝑁𝑎}. For example we may prove that 𝑀𝑎 ≈𝛿(𝑛,Y) 𝑁𝑎 where 𝛿 : N×R+ → R+

is any function that is continuous in the second argument and is such that 𝛿(𝑛, 0) = 0 for all 𝑛. We

call such functions proper error functions. We usually let the dependence on 𝑛 to be implicit and

simply write 𝛿(Y) for proper error functions.

Every instance of 𝛿 in this paper should be understood as a function that is different from all the

previous instances of 𝛿 except for the aforementioned two properties. For example if 𝑀𝑎 ≈𝛿(Y) 𝑁𝑎

and 𝑁𝑎 ≈𝛿(Y) 𝑃𝑎 by the triangle inequality we have

∑︁
𝑎

∥𝑀𝑎 − 𝑃𝑎∥2 ≤ 2
∑︁
𝑎

∥𝑀𝑎 − 𝑁𝑎∥2 + 2
∑︁
𝑎

∥𝑁𝑎 − 𝑃𝑎∥2

so we can write 𝑀𝑎 ≈𝛿(Y) 𝑃𝑎; every occurrence of 𝛿(Y) in these three approximations can be a

different proper error function.

As such in this paper we usually do not keep track of the specific approximation bounds. For

POVMs {𝑀𝑎} and {𝑁𝑎} we will often write 𝑀𝑎 ≈ 𝑁𝑎 to denote 𝑀𝑎 ≈𝛿(Y) 𝑁𝑎 for some proper

error function 𝛿(Y). We also use the notation 𝑀 ≈ 𝑁 , for any two operators 𝑀, 𝑁 , to indicate that

∥𝑀 − 𝑁 ∥𝜏 → 0 as Y → 0. Similarly we may write 𝜏(𝑀) ≈ 𝜏(𝑁) to indicate that 𝜏(𝑀 − 𝑁) → 0

as Y → 0. We recommend reading the proof of Theorem 1.21 carefully to get used to these

conventions. The proof contains techniques that are used over and over in this paper.

Averaging argument. A simple but prevailing idea in many of the proofs in this paper is the

observation that, if a strategy in a game 𝐺 has a value at least 1 − Y, then the winning probability

conditioned on any event that has a nonzero probability is at least 1− 𝛿(Y) for some error function
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𝛿 that has some dependence on the probability of the conditioning event (we usually ignore this

dependence). So for example since the probability distribution on questions is uniform in all our

games, the event that players receive a fixed question pair (𝑥, 𝑦) has probability 1/|X|2 where X

is the question set of the game. Then the probability of winning conditioned on players receiving

question pair (𝑥, 𝑦) is at least 1 − |X|2Y = 1 − 𝛿(Y). We usually abbreviate this by simply saying

“by an averaging argument, the probability of winning conditioned on players receiving question

pair (𝑥, 𝑦) is 1 − 𝛿(Y).” Since we are working in the gapless regime, we do not need to keep track

of the dependence of 𝛿 on |X| which allows us to just simply write 𝛿(Y).

The implication of cross-checks between nontrivial question pairs. We explain another proof

technique that appears repeatedly in the following sections of the paper. Suppose {𝑞, 𝑟, 𝑞𝑟} ∈ X

are three questions in a game 𝐺 (𝑞𝑟 is a single question different from 𝑞 and 𝑟). The answer

to questions 𝑞, 𝑟, 𝑞𝑟 are expected to be in three sets A,B,A × B, respectively. Furthermore

suppose that the winning condition dictates that 𝐷 (𝑞, 𝑞𝑟, 𝑎, (𝑎′, 𝑏′)) = 1 iff 𝑎 = 𝑎′ and that

𝐷 (𝑟, 𝑞𝑟, 𝑏, (𝑎′, 𝑏′)) = 1 iff 𝑏 = 𝑏′. Clearly (𝑞, 𝑞𝑟) and (𝑟, 𝑞𝑟) are nontrivial question pairs in

this game.

Now one very useful observation is that if (𝜏, {𝑁𝑥}𝑥∈X) is any strategy that wins this game with

probability at least 1 − Y, then it must be that

𝑁
𝑞
𝑎𝑁

𝑟
𝑏 ≈𝛿(Y) 𝑁

𝑟
𝑏𝑁

𝑞
𝑎 ,

or in other words the measurements 𝑁𝑞 and 𝑁𝑟 approximately commute. To see this, first note

that by an averaging argument the probability of winning conditioned on receiving question pair

(𝑞, 𝑞𝑟) is 1 − 𝛿(Y). This fact can be stated as follows

1 − 𝛿(Y) ≤
∑︁

𝑎∈A,𝑏∈B
𝜏(𝑁𝑞𝑎𝑁𝑞𝑟𝑎,𝑏) =

∑︁
𝑎∈A

𝜏(𝑁𝑞𝑎𝑁𝑞𝑟𝑎,·)
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where 𝑁𝑞𝑟𝑎,· is the marginal measurement projection
∑
𝑏∈B 𝑁

𝑞𝑟

𝑎,𝑏
. We can rewrite this as

𝑁
𝑞
𝑎 ≃𝛿(Y) 𝑁𝑞𝑟𝑎,· .

By an application of Theorem 1.13 we get

𝑁
𝑞
𝑎 ≈𝛿(Y) 𝑁𝑞𝑟𝑎,· .

By the symmetry we similarly get

𝑁𝑟𝑏 ≈𝛿(Y) 𝑁
𝑞𝑟

·,𝑏 .

where 𝑁𝑞𝑟·,𝑏 is the marginal measurement projection
∑
𝑎∈A 𝑁

𝑞𝑟

𝑎,𝑏
.

Using Theorem 1.8, we get

𝑁
𝑞
𝑎𝑁

𝑟
𝑏 ≈𝛿(Y) 𝑁

𝑞𝑟
𝑎,·𝑁

𝑟
𝑏 .

With another application of Theorem 1.8, we get

𝑁
𝑞𝑟
𝑎,·𝑁

𝑟
𝑏 ≈𝛿(Y) 𝑁

𝑞𝑟
𝑎,·𝑁

𝑞𝑟

·,𝑏 .

By the triangle inequality we can combine these to get

𝑁
𝑞
𝑎𝑁

𝑟
𝑏 ≈𝛿(Y) 𝑁

𝑞𝑟
𝑎,·𝑁

𝑞𝑟

·,𝑏 .

Since projection operators belonging to the same projective measurement commute, we have

𝑁
𝑞𝑟
𝑎,·𝑁

𝑞𝑟

·,𝑏 = 𝑁
𝑞𝑟

·,𝑏𝑁
𝑞𝑟
𝑎,· .

Finally by two more applications of Theorem 1.8 and the triangle inequality, we get the desired

result

𝑁
𝑞
𝑎𝑁

𝑟
𝑏 ≈𝛿(Y) 𝑁

𝑟
𝑏𝑁

𝑞
𝑎 .
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1.3 Nonlocal game rigidity

A fundamental component of compression theorems are the use of nonlocal games with specific

rigidity properties. Informally speaking, a nonlocal game 𝐺 is rigid if the state and measurement

operators of an optimal strategy for 𝐺 must satisfy very rigid constraints – even to the point of

being uniquely specified up to conjugation by isometries.

The most well-known example of a rigid game is the CHSH game [40], named after physicists

Clauser, Horne, Shimony and Holt. In this game Alice and Bob receive questions 𝑥, 𝑦 ∈ {0, 1} and

answer with bits 𝑎, 𝑏 ∈ {0, 1}. They win if and only if 𝑎 + 𝑏 = 𝑥𝑦 mod 2.

It is well-known that the CHSH game satisfies 𝜔𝑞 (𝐶𝐻𝑆𝐻) = 𝜔𝑐𝑜 (𝐶𝐻𝑆𝐻) = 1
2 +

1
2
√

2
, and the

optimum is achieved by a simple two-dimensional strategy (that we call the canonical strategy)

where the players share the entangled state |EPR⟩ = ( |0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)/
√

2, and Alice and

Bob’s measurement operators are defined to be the following: for all 𝑎, 𝑏 ∈ {0, 1},

1. 𝐴0
𝑎 is the projection onto the eigenspace of 𝑍 =

©«
1 0

0 −1

ª®®¬ with eigenvalue (−1)𝑎.

2. 𝐴1
𝑎 is the projection onto the eigenspace of 𝑋 =

©«
0 1

1 0

ª®®¬ with eigenvalue (−1)𝑎.

3. 𝐵0
𝑏

is the projection onto the eigenspace of (𝑍 + 𝑋)/
√

2 with eigenvalue (−1)𝑏.

4. 𝐵1
𝑏

is the projection onto the eigenspace of (𝑍 − 𝑋)/
√

2 with eigenvalue (−1)𝑏.

(The CHSH game is not a synchronous game and optimal strategies for CHSH are not synchronous,

so in general Alice and Bob will have different measurement operators for each question).

It turns out that any finite-dimensional strategy achieving the optimum value for CHSH must

be equivalent to the canonical strategy just described: if the state |𝜓⟩ belongs to H𝐴 ⊗ H𝐵 for

finite-dimensional Hilbert spaces H𝐴,H𝐵,10 then there exist isometries 𝑉𝐴, 𝑉𝐵 acting on H𝐴,H𝐵

10A standard result in the theory of nonlocal games is that any finite-dimensional strategy can be expressed as a
tensor-product strategy [11, Theorem 1].
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respectively such that (𝑉𝐴 ⊗ 𝑉𝐵) |𝜓⟩ = |𝐸𝑃𝑅⟩ ⊗ |𝜙⟩ for some auxiliary state |𝜙⟩, and furthermore

under the isometries the players’ measurement operators are equal to the canonical measurements

described above. Since we can only characterize quantum strategies up to local isometries (i.e.

applying local isometries to a strategy cannot change its success probability), this shows that the

canonical strategy is essentially the unique strategy achieving the optimum winning probability for

CHSH.

Furthermore, the rigidity of the CHSH game is robust: strategies that are approximately optimal

for CHSH must be approximately equivalent, up to local isometries, to the canonical strategy. The

rigidity of the CHSH game has been studied extensively in quantum information theory and has

found applications to quantum cryptography and quantum complexity theory; see [41] for a survey

of self-testing and its applications.

In this paper, we propose a more abstract formulation of nonlocal game rigidity: we say that

a game 𝐺 is rigid if there is a set of algebraic relations that are (approximately) satisfied by the

measurement operators in any strategy 𝒮 for 𝐺 that (approximately) attains the optimal value. We

no longer worry about characterizing the state vector or finding a concrete representation of the

measurement operators as matrices.

For example, the rigidity of the CHSH game can be formulated as follows: any quantum

strategy where their shared state is |𝜓⟩ and Alice’s and Bob’s projective measurements are {𝐴𝑥𝑎}

and {𝐵𝑦
𝑏
} respectively that achieves value 𝜔𝑐𝑜 (𝐶𝐻𝑆𝐻) in the CHSH game must generate anti-

commuting observables: defining the self-adjoint unitary operators𝑈0 = 𝐴0
0−𝐴

0
1 and𝑈1 = 𝐴1

0−𝐴
1
1,

we must have that𝑈0𝑈1 |𝜓⟩ = −𝑈1𝑈0 |𝜓⟩; the same holds with Bob’s operators. Furthermore, this

anti-commutation relation establishes that the Hilbert space must have dimension at least 2.

Establishing anti-commutation relations between the observables induced by an optimal strat-

egy is usually the first step in “traditional” proofs of CHSH rigidity; this step is key to proving that

the state and measurements are isometric to |𝐸𝑃𝑅⟩ and the Pauli 𝑍 and 𝑋 observables, respec-

tively. In this paper, however, we solely focus on the algebraic relations between the measurement

operators – these are the only properties that are needed for our applications. This allows us to
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shortcut some of the complexity of typical arguments for nonlocal game rigidity.

Aside from providing simplifications, we believe that this algebraic perspective on rigidity will

be beneficial for studying nonlocal games and their connections to subjects such as approximate

representation theory and operator algebras.

1.3.1 The Magic Square game

We illustrate how rigidity results can be formulated in the synchronous games framework using

the Mermin-Peres Magic Square game (often called Magic Square game for short) [42, 43, 44].

Rigidity of Magic Square is first proved in [45]. The Magic Square is a game where the players’

goal is to convince the verifier that they can assign values to the cells of a 3 × 3 grid such that the

sum of cells within a row or column is even, except in the last column, where the sum should be

odd. Of course, it is impossible to deterministically assign values satisfying these constraints, but

when the players use a quantum strategy it appears as if they are performing the impossible.

We can view the Magic Square game as corresponding to a system of linear equations over Z2:

let 𝑠11, . . . , 𝑠33 denote variables for the nine squares of the 3 × 3 grid, as depicted below:

𝑠11 𝑠12 𝑠13

𝑠21 𝑠22 𝑠23

𝑠31 𝑠32 𝑠33

There are three constraints for the rows and three constraints for the columns:

𝑠11 + 𝑠12 + 𝑠13 = 0 𝑠11 + 𝑠21 + 𝑠31 = 0

𝑠21 + 𝑠22 + 𝑠23 = 0 𝑠12 + 𝑠22 + 𝑠32 = 0

𝑠31 + 𝑠32 + 𝑠33 = 0 𝑠13 + 𝑠23 + 𝑠33 = 1

In the standard formulation of the Magic Square game, one player is chosen to be a constraint

player, meaning that they receive a random equation 𝑒 = {𝑠𝑖1 𝑗1 , 𝑠𝑖2 𝑗2 , 𝑠𝑖3 𝑗3} from this linear system.

The other player is chosen to be the variable player, meaning that they receive a random variable
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𝑠𝑖 𝑗 from the equation 𝑒. The constraint player is supposed to respond with an assignment from

{0, 1} to each of the variables in their received equation, and the variable player is supposed to

respond with an assignment to their variable. The players win if the constraint players’ assignment

satisfies the given equation and if the variable player’s assignment is consistent with the constraint

player’s answers (i.e. the constraint player’s assignment for the other player’s received variable

must match the variable player’s response).

We only deal with games with uniform question distributions in this paper, so the variant of the

Magic Square game (which we abbreviate as MS) that we consider is where the questions to Alice

and Bob are uniformly and independently chosen from XMS = Xeqs ∪ Xvars where

Xeqs = {𝑟1, 𝑟2, 𝑟3, 𝑐1, 𝑐2, 𝑐3},

Xvars = {𝑠11, 𝑠12, 𝑠13, 𝑠21, 𝑠22, 𝑠23, 𝑠31, 𝑠32, 𝑠33}.

Here 𝑟𝑖 (resp. 𝑐 𝑗 ) stands for the equation associated with the 𝑖th row {𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3} (resp. 𝑗 th column

{𝑠1 𝑗 , 𝑠2 𝑗 , 𝑠3 𝑗 }). For every constraint 𝑒 in the Magic Square linear system, let A𝑒 denote the set of

functions 𝑓𝑒 that map variables in 𝑒 to {0, 1}. The answer set is AMS = Aeqs ∪ Avars where

Aeqs is the the union of A𝑒 over all constraints 𝑒, and Avars = {0, 1}. The decision procedure

𝐷MS (𝑥, 𝑦, 𝑎, 𝑏) for the Magic Square game is described by the following table: if (𝑥, 𝑦) (resp.

(𝑦, 𝑥), as the game is symmetric) is one of the nontrivial question pairs listed, then the players win

if and only if the winning condition for the answers (𝑎, 𝑏) (resp. (𝑏, 𝑎)) is satisfied. Otherwise, if

the question pair is nontrivial, the players automatically win.

Nontrivial Question Pair (𝑥, 𝑦) Winning Condition on Answers (𝑎, 𝑏)

𝑥 = 𝑦 𝑎 = 𝑏

𝑥 ∈ Xeqs, 𝑦 ∈ Xvars and 𝑦 is a variable in equation 𝑥 𝑎 ∈ Aeqs satisfies equation 𝑥 and 𝑎(𝑦) = 𝑏

Table 1.1: The nontrivial question pairs and winning conditions for the Magic Square game.

We now define a value-1 synchronous strategy for the Magic Square game. LetH be a Hilbert
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space and for each variable 𝑠𝑖 𝑗 let 𝑂𝑖 𝑗 denote a self-adjoint unitary operator (called an observable)

acting onH . Suppose that by arranging them into a 3×3 grid, the observables satisfy the following

algebraic relations:

1. (R1) The product of observables in a row or column multiply to 1, except in the last column,

where they multiply to −1.

2. (R2) Two observables in the same row or column commute with each other;

3. (R3) Two observables not in the same row or column anti-commute with each other.

First, we note that it is possible to find such a set of observables satisfying these algebraic relations

(see Figure 1.2 for an example of unitary operators acting on C2 ⊗ C2).

𝑍 ⊗ 1 1 ⊗ 𝑍 𝑍 ⊗ 𝑍

1 ⊗ 𝑋 𝑋 ⊗ 1 𝑋 ⊗ 𝑋

𝑍 ⊗ 𝑋 𝑋 ⊗ 𝑍 𝑋𝑍 ⊗ 𝑍𝑋

Figure 1.2: An example of optimal observables for the Magic Square game, where the 𝑋 and 𝑍 operators
are the same as in the canonical CHSH strategy.

Second, we note that relation R3 is actually a consequence of relations R1 and R2. For example

to obtain 𝑂11𝑂22 = −𝑂22𝑂11 one could repeatedly apply R1 and R2 in the following order

(𝑂11 𝑂22)2 = (𝑂12 𝑂13) (𝑂23 𝑂21) (𝑂21 𝑂31) (𝑂32 𝑂12)

= 𝑂12(𝑂13 𝑂23) (𝑂21 𝑂21) (𝑂31 𝑂32)𝑂12

= −𝑂12 𝑂33 𝑂33 𝑂12 = −1. (1.3.1)

However we include R3 because the anti-commutation relation turns out to be the most important

one in our applications of rigidity.

Given a set O = {𝑂𝑖 𝑗 } of observables satisfying relations R1, R2, and R3, we can define

the synchronous strategy 𝒮 = (𝜏, {𝑀𝑥}) where 𝜏 is a tracial state on the von Neumann algebra
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generated by the observables O. For a variable question 𝑠𝑖 𝑗 , define the measurement operator

𝑀
𝑠𝑖 𝑗

𝑏
to be the projection onto the eigenspace of 𝑂𝑖 𝑗 with eigenvalue (−1)𝑏. To aid notation we

abbreviate 𝑀 𝑠𝑖 𝑗

𝑏
as 𝑀 𝑖 𝑗

𝑏
. The operator 𝑀𝑒

𝑎 corresponding to a constraint question 𝑒 ∈ Xeqs is the

product

∏
𝑠𝑖 𝑗∈𝑒

𝑀
𝑖 𝑗

𝑎(𝑠𝑖 𝑗 ) (1.3.2)

where the product is over variables 𝑠𝑖 𝑗 occurring in equation 𝑒, and 𝑎 is an assignment to variables

in 𝑒. Notice that because of relation R2, if 𝑠𝑖1 𝑗1 , 𝑠𝑖2 𝑗2 ∈ 𝑒 then

𝑀
𝑖1 𝑗1
𝑏1

𝑀
𝑖2 𝑗2
𝑏2

= 1/4(1 + (−1)𝑏1𝑂𝑖1 𝑗1) (1 + (−1)𝑏2𝑂𝑖2 𝑗2)

= 1/4(1 + (−1)𝑏2𝑂𝑖2 𝑗2) (1 + (−1)𝑏1𝑂𝑖1 𝑗1)

= 𝑀
𝑖2 𝑗2
𝑏2

𝑀
𝑖1 𝑗1
𝑏1

for every 𝑏1, 𝑏2 ∈ {0, 1}. So the order of the product in Equation (1.3.2) doesn’t matter, and thus

𝑀𝑒
𝑎 is also a projection.

It is easy to verify that this strategy for the Magic Square game attains winning probability 1;

this relies on the relations R1 and R2. Let us verify this in a few simple steps. Conditioned on

players receiving a trivial question pair, the players winning probability is 1 (as in this case players

win regardless of their answers). Conditioned on receiving the same question, the players respond

with the same answer with probability 1 because 𝒮 is a projective strategy. Indeed conditioned on

receiving question pair (𝑠𝑖 𝑗 , 𝑠𝑖 𝑗 ), the probability of winning is

𝜏(𝑀 𝑖 𝑗

0 𝑀
𝑖 𝑗

0 ) + 𝜏(𝑀
𝑖 𝑗

1 𝑀
𝑖 𝑗

1 ) = 𝜏(𝑀
𝑖 𝑗

0 + 𝑀
𝑖 𝑗

1 ) = 𝜏(1) = 1.

Similarly conditioned on question pair (𝑒, 𝑒) ∈ Xeqs × Xeqs, the probability of winning is

∑︁
𝑎∈A𝑒

𝜏(𝑀𝑒
𝑎𝑀

𝑒
𝑎 ) =

∑︁
𝑎∈A𝑒

𝜏(𝑀𝑒
𝑎 ) = 𝜏(1) = 1.
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Finally, conditioned on receiving question pair (𝑟𝑖, 𝑠𝑖 𝑗 ), the probability that the constraint player’s

assignment for 𝑠𝑖 𝑗 matches the variable player’s answer to 𝑠𝑖 𝑗 is

∑︁
𝑎∈A𝑟𝑖

𝜏(𝑀𝑟𝑖
𝑎 𝑀

𝑖 𝑗

𝑎(𝑠𝑖 𝑗 )) =
∑︁

𝑏∈Avars

∑︁
𝑎∈A𝑟𝑖
𝑎(𝑠𝑖 𝑗 )=𝑏

𝜏(𝑀𝑟𝑖
𝑎 𝑀

𝑖 𝑗

𝑏
)

=
∑︁

𝑏∈Avars

𝜏(𝑀 𝑖 𝑗

𝑏
𝑀
𝑖 𝑗

𝑏
) =

∑︁
𝑏∈Avars

𝜏(𝑀 𝑖 𝑗

𝑏
) = 𝜏(1) = 1

and the probability that the constraint player’s assignment satisfies equation 𝑟𝑖 is

∑︁
𝑎∈A𝑟𝑖

𝑎(𝑠𝑖1)+𝑎(𝑠𝑖2)+𝑎(𝑠𝑖3)=0

𝜏(𝑀𝑟𝑖
𝑎 ) ≥

∑︁
𝑎∈A𝑟𝑖

(−1)𝑎(𝑠𝑖1)+𝑎(𝑠𝑖2)+𝑎(𝑠𝑖3)𝜏(𝑀𝑟𝑖
𝑎 )

=
∑︁
𝑎∈A𝑟𝑖

(−1)𝑎(𝑠𝑖1)+𝑎(𝑠𝑖2)+𝑎(𝑠𝑖3)𝜏(𝑀 𝑖1
𝑎(𝑠𝑖1) 𝑀

𝑖2
𝑎(𝑠𝑖2) 𝑀

𝑖3
𝑎(𝑠𝑖3))

= 𝜏(𝑂𝑖1𝑂𝑖2𝑂𝑖3) = 𝜏(1) = 1.

A similar calculation holds for question pairs (𝑐 𝑗 , 𝑠𝑖 𝑗 ). Since conditioned on any question pair

the winning probability is 1, we conclude that 𝜔(MS,𝒮) = 1. It should also be clear that this

strategy is oracularizable, meaning that measurements corresponding to nontrivial question pairs

commute. Finally, letting𝑂𝑖 𝑗 be the Pauli observables in Figure 1.2, we obtain a finite dimensional

oracularizable perfect synchronous strategy for the Magic Square game defined over the Hilbert

space C4.

We now establish the rigidity of the Magic Square game. Let 𝒮 = (𝜏, {𝑀𝑥}) denote a syn-

chronous strategy for the Magic Square game. Each {𝑀 𝑖 𝑗

𝑏
}𝑏∈AMS is a projective measurement with

outcomes 𝑏 ∈ AMS. Without loss of generality, we assume that the measurements corresponding

to variable questions 𝑠𝑖 𝑗 only produce either 0 or 1 as answers, i.e.,

𝑀
𝑖 𝑗

0 + 𝑀
𝑖 𝑗

1 = 1 . (1.3.3)
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This is because for variable questions we can always define 𝑀 𝑖 𝑗

1 to be the orthogonal projection

1−𝑀 𝑖 𝑗

0 , and this cannot decrease the winning probability. Similarly, without loss of generality, we

assume that the projective measurement {𝑀𝑒
𝑎 }𝑎∈AMS corresponding to constraint question 𝑒 only

produces assignments in A𝑒, that is
∑
𝑎∈A𝑒 𝑀

𝑒
𝑎 = 1.

For every variable 𝑠𝑖 𝑗 ∈ Xvars, define the observable

𝑂𝑖 𝑗 = 𝑀
𝑖 𝑗

0 − 𝑀
𝑖 𝑗

1 .

Note that 𝑂𝑖 𝑗 is a self-adjoint unitary operator (because of the assumption in eq. (1.3.3)) and that

𝑀
𝑖 𝑗

𝑏
is a projection onto an eigenspace of 𝑂𝑖 𝑗 .

The rigidity of the Magic Square game is expressed in the following way: if 𝒮 is an (approx-

imately) optimal strategy for the Magic Square game, then the observables must (approximately)

satisfy the algebraic relations R1, R2, and R3.

Theorem 1.21 (Rigidity of Magic Square). Let 𝒮 = (𝜏, {𝑀𝑥}) be a synchronous strategy such that

𝜔(MS,𝒮) ≥ 1 − Y. Let {𝑂𝑖 𝑗 } denote the observables associated to the strategy. Then

1. (R1) The product of observables in a row or column approximately multiply to 1, except in

the last column, where they approximately multiply to −1:

𝑂𝑖1𝑂𝑖2𝑂𝑖3 ≈𝛿(Y) 1 for 𝑖 = 1, 2, 3,

𝑂1 𝑗 𝑂2 𝑗 𝑂3 𝑗 ≈𝛿(Y) 1 for 𝑗 = 1, 2,

𝑂13𝑂23𝑂33 ≈𝛿(Y) −1 .

2. (R2) Two observables in the same row or column approximately commute with each other,

that is for all 𝑖, 𝑗 , 𝑘 ∈ [3]

𝑂𝑖 𝑗 𝑂𝑖𝑘 ≈𝛿(Y) 𝑂𝑖𝑘 𝑂𝑖 𝑗 ,

𝑂 𝑗𝑖 𝑂𝑘𝑖 ≈𝛿(Y) 𝑂𝑘𝑖 𝑂 𝑗𝑖 .
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3. (R3) Two observables not in the same row or column anti-commute with each other, so for

example

𝑂11𝑂22 ≈𝛿(Y) −𝑂22𝑂11 , 𝑂12𝑂21 ≈𝛿(Y) −𝑂21𝑂12 ,

In all of these approximations 𝛿 is some proper error function such that 𝛿(Y) ≤ 32|XMS |
√
Y.

Proof. We saw earlier that R3 is implied by R1 and R2. This is also the main idea behind the

proof here. We first show that {𝑂𝑖 𝑗 } approximately satisfies R1 and R2, then we use a derivation

similar to (1.3.1), to conclude that R3 is approximately satisfied.

We can deduce a number of consistency conditions from the fact that the strategy 𝒮 succeeds

with probability at least 1 − Y. First, by a simple averaging argument, since every question pair

(𝑥, 𝑦) ∈ XMS × XMS is sampled uniformly at random, the winning probability conditioned on

players receiving any fixed question pair (𝑥, 𝑦) is at least 1 − |XMS |2.

As a notation aid, let 𝑅𝑖𝑎 = 𝑀
𝑟𝑖
𝑎 denote a row measurement operator and 𝐶 𝑗

𝑎 = 𝑀
𝑐 𝑗
𝑎 denote a

column measurement operator. By the winning conditions in Table 1.1, the constraint and variable

players’ answers must be consistent with high probability. In other words
∑
𝑎∈A𝑟𝑖 TR

(
𝑅𝑖𝑎 𝑀

𝑖 𝑗

𝑎(𝑠𝑖 𝑗 )

)
is at least as large as the probability of winning conditioned on players receiving question pair

(𝑟𝑖, 𝑠𝑖 𝑗 ) for every 𝑖, 𝑗 ∈ [3]. So from our remark earlier, we have

∑︁
𝑎∈A𝑟𝑖

TR
(
𝑅𝑖𝑎 𝑀

𝑖 𝑗

𝑎(𝑠𝑖 𝑗 )

)
≥ 1 − |XMS |2Y . (1.3.4)

For every row measurement operator 𝑅𝑖𝑎 we define marginal projection operators: for 𝑗 ∈ [3] and

𝑏 ∈ {0, 1} define

𝑅
𝑖 𝑗

𝑏
=

∑︁
𝑎∈A𝑟𝑖 : 𝑎(𝑠𝑖 𝑗 )=𝑏

𝑅𝑖𝑎

where the summation is over assignments 𝑎 that assigns value 𝑏 to variable 𝑠𝑖 𝑗 . This is a projection

and notice that for all assignments 𝑎 to variables in 𝑟𝑖, we have

𝑅𝑖𝑎 = 𝑅
𝑖1
𝑎(𝑠𝑖1) · 𝑅

𝑖2
𝑎(𝑠𝑖2) · 𝑅

𝑖3
𝑎(𝑠𝑖3) .
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It is also clear that {𝑅𝑖 𝑗
𝑏
}𝑏∈{0,1} forms a projective measurement. We can similarly define, for all

columns 𝑗 and variables 𝑠𝑖 𝑗 , projective measurement {𝐶 𝑗𝑖

𝑏
} consisting of operators

𝐶
𝑗𝑖

𝑏
=

∑︁
𝑎∈A𝑐 𝑗 : 𝑎(𝑠𝑖 𝑗 )=𝑏

𝐶
𝑗
𝑎 .

We can rewrite (1.3.4) in terms of projective measurements {𝑅𝑖 𝑗
𝑏
}𝑏∈{0,1} as follows

1 − |XMS |2Y ≤
∑︁
𝑎∈A𝑟𝑖

TR
(
𝑅𝑖𝑎 𝑀

𝑖 𝑗

𝑎(𝑠𝑖 𝑗 )

)
=

∑︁
𝑏∈Avars

∑︁
𝑎∈A𝑟𝑖 :
𝑎(𝑠𝑖 𝑗 )=𝑏

TR
(
𝑅𝑖𝑎 𝑀

𝑖 𝑗

𝑏

)
=

∑︁
𝑏∈Avars

TR
(
𝑅
𝑖 𝑗

𝑏
𝑀
𝑖 𝑗

𝑏

)
.

Using the notation for consistency between measurements, we can equivalently express this as

𝑅
𝑖 𝑗

𝑏
≃|XMS |2Y 𝑀

𝑖 𝑗

𝑏
,

where the answer set is Avars = {0, 1}. By Theorem 1.13, we convert consistency to closeness to

obtain

𝑅
𝑖 𝑗

𝑏
≈|XMS |

√
2Y 𝑀

𝑖 𝑗

𝑏
,

and with a similar argument for columns we get that

𝐶
𝑗𝑖

𝑏
≈|XMS |

√
2Y 𝑀

𝑖 𝑗

𝑏
.

At this point it will be more convenient for us to work with observables, rather than projection

operators. We have already defined observable𝑂𝑖 𝑗 for each variable 𝑠𝑖 𝑗 ; we now define observables

corresponding to the (marginal) constraint operators: for all 𝑖, 𝑗 ∈ [3], define

𝑅𝑖 𝑗 = 𝑅
𝑖 𝑗

0 − 𝑅
𝑖 𝑗

1 and 𝐶 𝑗𝑖 = 𝐶
𝑗𝑖

0 − 𝐶
𝑗𝑖

1 .

The closeness between constraints and variable projective measurements can be expressed also in
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terms of observables using the triangle inequality

∥𝑂𝑖 𝑗 − 𝑅𝑖 𝑗 ∥2𝜏 ≤ 2∥𝑀 𝑖 𝑗

0 − 𝑅
𝑖 𝑗

0 ∥
2
𝜏 + 2∥𝑀 𝑖 𝑗

1 − 𝑅
𝑖 𝑗

1 ∥
2
𝜏 ≤ 4|XMS |2Y.

The same holds for columns, therefore overall we have proved that

𝑂𝑖 𝑗 ≈2|XMS |
√
Y 𝑅

𝑖 𝑗 , (1.3.5)

𝑂𝑖 𝑗 ≈2|XMS |
√
Y 𝐶

𝑗𝑖 . (1.3.6)

Now using these relations, we can prove that variable observables in the same row or column

approximately commute. This follows from a few simple steps. First, by the triangle inequality,

for every 𝑖, 𝑗 , 𝑘 ∈ [3] we can write

∥𝑂𝑖 𝑗 𝑂𝑖𝑘 −𝑂𝑖𝑘 𝑂𝑖 𝑗 ∥2𝜏 ≤ 2∥𝑂𝑖 𝑗 𝑂𝑖𝑘 − 𝑅𝑖 𝑗 𝑅𝑖𝑘 ∥2𝜏 + 2∥𝑅𝑖 𝑗 𝑅𝑖𝑘 − 𝑅𝑖𝑘 𝑅𝑖 𝑗 ∥2𝜏 + 2∥𝑅𝑖𝑘 𝑅𝑖 𝑗 −𝑂𝑖𝑘 𝑂𝑖 𝑗 ∥2𝜏

= 2∥𝑂𝑖 𝑗 𝑂𝑖𝑘 − 𝑅𝑖 𝑗 𝑅𝑖𝑘 ∥2𝜏 + 2∥𝑅𝑖𝑘 𝑅𝑖 𝑗 −𝑂𝑖𝑘 𝑂𝑖 𝑗 ∥2𝜏 . (1.3.7)

where we used the equality 𝑅𝑖 𝑗 𝑅𝑖𝑘 = 𝑅𝑖𝑘 𝑅𝑖 𝑗 which follows from the fact that projections 𝑅𝑖 𝑗
𝑏

and 𝑅𝑖𝑘𝑐 are marginals of the same projective measurement {𝑅𝑖𝑎}𝑎∈A𝑟𝑖 and projections belong-

ing to the same projective measurement commute. By Theorem 1.8, from (1.3.5), we get that

𝑂𝑖 𝑗𝑂𝑖𝑘 ≈2|XMS |
√
Y 𝑅𝑖 𝑗𝑂𝑖𝑘 . Again by Theorem 1.8, from (1.3.5), we get that 𝑅𝑖 𝑗𝑂𝑖𝑘 ≈2|XMS |

√
Y

𝑅𝑖 𝑗𝑅𝑖𝑘 . So by triangle inequality we have

∥𝑂𝑖 𝑗 𝑂𝑖𝑘 − 𝑅𝑖 𝑗 𝑅𝑖𝑘 ∥2𝜏 ≤ 2∥𝑂𝑖 𝑗𝑂𝑖𝑘 − 𝑅𝑖 𝑗𝑂𝑖𝑘 ∥2𝜏 + 2∥𝑂𝑖 𝑗𝑅𝑖𝑘 − 𝑅𝑖 𝑗𝑅𝑖𝑘 ∥2𝜏 ≤ 16|XMS |2Y.

This is true for all 𝑖, 𝑗 , 𝑘 ∈ [3], so in particular it also holds that

∥𝑅𝑖𝑘 𝑅𝑖 𝑗 −𝑂𝑖𝑘 𝑂𝑖 𝑗 ∥2𝜏 ≤ 16|XMS |2Y.
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Now plugging these in (1.3.7) we get that

∥𝑂𝑖 𝑗 𝑂𝑖𝑘 −𝑂𝑖𝑘 𝑂𝑖 𝑗 ∥2𝜏 ≤ 32|XMS |2Y.

An identical argument can be applied to columns, so overall we proved

𝑂𝑖 𝑗 𝑂𝑖𝑘 ≈4|XMS |
√

2Y 𝑂
𝑖𝑘 𝑂𝑖 𝑗 , (1.3.8)

𝑂 𝑗𝑖 𝑂𝑘𝑖 ≈4|XMS |
√

2Y 𝑂
𝑘𝑖 𝑂 𝑗𝑖 , (1.3.9)

for every 𝑖, 𝑗 , 𝑘 ∈ [3].

As mentioned in Section 1.2.5, in this paper we do not need to keep track of the specific

approximation bounds. As such, instead of carrying around subscripts like 4|XMS |
√

2Y in our

approximations, we opt to instead write 𝑂𝑖 𝑗 ≈𝛿(Y) 𝑅𝑖 𝑗 where 𝛿 is some error function such that

𝛿(Y) → 0 as Y → 0. For example in the rest of this paper the argument above will be abbreviated

as follows: From 𝑂𝑖 𝑗 ≈𝛿(Y) 𝑅𝑖 𝑗 for all 𝑖, 𝑗 ∈ [3] and repeated applications of Theorem 1.8, we

obtain

𝑂𝑖 𝑗 𝑂𝑖𝑘 ≈𝛿(Y) 𝑅𝑖 𝑗 𝑅𝑖𝑘 = 𝑅𝑖𝑘 𝑅𝑖 𝑗 ≈𝛿(Y) 𝑂𝑖𝑘 𝑂𝑖 𝑗 ,

so by the triangle inequality

𝑂𝑖 𝑗 𝑂𝑖𝑘 ≈𝛿(Y) 𝑂𝑖𝑘 𝑂𝑖 𝑗 ,

where 𝛿(Y) are proper error functions. It is only in this proof that, for the benefit of the reader who

sees these approximations for the first time, we tried to give the arguments in full details and kept

track of all the error functions.

So far we obtained consequences of the fact that in a strategy with large winning probability the

constraint and variable players’ answers are consistent with high probability. There are some other

relations that must hold in any approximately optimal strategy. For instance, with high probability,

the measurement outcome of a constraint measurement {𝑀𝑒
𝑎 }𝑎∈A𝑒 must be a satisfying assignment

for the constraint 𝑒. Let us make this more precise. The probability of winning conditioned on
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players receiving question pair (𝑟𝑖, 𝑠𝑖 𝑗 ) is at least 1− |XMS |2Y. By winning conditions in Table 1.1,

if players win on question pair (𝑟𝑖, 𝑠𝑖 𝑗 ), then the assignment by the player receiving question 𝑟𝑖

must satisfy constraint 𝑟𝑖. So we can write

∑︁
𝑎∈A𝑟𝑖

𝑎(𝑠𝑖1)+𝑎(𝑠𝑖2)+𝑎(𝑠𝑖3))=0

TR
(
𝑅𝑖𝑎

)
≥ 1 − |XMS |2Y.

Now from the fact that {𝑅𝑖𝑎}𝑎∈A𝑟𝑖 is a projective measurement, we get that

∑︁
𝑎∈A𝑟𝑖

(−1)𝑎(𝑠𝑖1)+𝑎(𝑠𝑖2)+𝑎(𝑠𝑖3)TR
(
𝑅𝑖𝑎

)
≥ 1 − 2|XMS |2Y,

and in terms of observables this can be equivalently written as

TR
(
𝑅𝑖1𝑅𝑖2𝑅𝑖3

)
≥ 1 − 2|XMS |2Y .

By Theorem 1.9, we get that

𝑅𝑖1 𝑅𝑖2 𝑅𝑖3 ≈2|XMS |
√
Y 1 for 𝑖 = 1, 2, 3 . (1.3.10)

Doing the same for columns we get

𝐶 𝑗1𝐶 𝑗2𝐶 𝑗3 ≈2|XMS |
√
Y 1 for 𝑗 = 1, 2

and

𝐶31𝐶32𝐶33 ≈2|XMS |
√
Y −1

Now by (1.3.5) and (1.3.10), and repeated applications of Theorem 1.8 and the triangle inequality,
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for every 𝑖 ∈ [3], we obtain

∥𝑂𝑖1𝑂𝑖2𝑂𝑖3∥2𝜏 ≤ 2∥𝑂𝑖1𝑂𝑖2𝑂𝑖3 − 𝑅𝑖1𝑂𝑖2𝑂𝑖3∥2𝜏 + 2∥𝑅𝑖1𝑂𝑖2𝑂𝑖3 − 𝑅𝑖1 𝑅𝑖2𝑂𝑖3∥2𝜏

+ 2∥𝑅𝑖1 𝑅𝑖2𝑂𝑖3 − 𝑅𝑖1 𝑅𝑖2 𝑅𝑖3∥2𝜏 + 2∥𝑅𝑖1 𝑅𝑖2 𝑅𝑖3 − 1∥2𝜏

≤ 32|XMS |2Y.

Therefore we have

𝑂𝑖1𝑂𝑖2𝑂𝑖3 ≈4|XMS |
√

2Y 1 for 𝑖 = 1, 2, 3, (1.3.11)

and following the same argument for columns

𝑂1 𝑗 𝑂2 𝑗 𝑂3 𝑗 ≈4|XMS |
√

2Y 1 for 𝑗 = 1, 2, (1.3.12)

𝑂13𝑂23𝑂33 ≈4|XMS |
√

2Y −1 . (1.3.13)

Finally to prove the approximate anticommutation 𝑂11 𝑂22 ≈ −𝑂22𝑂11, we follow the idea in

the derivation 1.3.1: We start with (𝑂11 𝑂22)2 and step by step, using relations (1.3.11)-(1.3.13),

substitute 𝑂11 and 𝑂22 by unitaries that are nearby. By repeated applications of triangle inequality

and Theorem 1.8 and the approximate relations we established so far, we can write

(𝑂11 𝑂22)2 ≈16|XMS |
√
Y (𝑂12 𝑂13) (𝑂23 𝑂21) (𝑂21 𝑂31) (𝑂32 𝑂12)

= 𝑂12(𝑂13 𝑂23) (𝑂21 𝑂21) (𝑂31 𝑂32)𝑂12

= 𝑂12(𝑂13 𝑂23) (𝑂31 𝑂32)𝑂12

≈8|XMS |
√

2Y −𝑂
12 𝑂33 𝑂33 𝑂12

= −1,
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So altogether, with another application of triangle inequality, we obtain

∥(𝑂11𝑂22)2 + 1∥𝜏 ≤ 32|XMS |
√
Y.

Now since 𝑂11𝑂22 is a unitary and the 𝜏-norm is unitarily invariant, we conclude that

∥𝑂11𝑂22 +𝑂22𝑂11∥𝜏 ≤ 32|XMS |
√
Y.

By symmetry, an almost identical argument can be applied to prove anticommutation relations for

all other pairs of observables not in the same row or column. □

As mentioned, the rigidity of the Magic Square and CHSH games are important stepping stones

for a number of results in quantum complexity theory and quantum cryptography. A crucial com-

ponent of obtaining strong lower bounds on the complexity of approximating the value of nonlocal

games has been through developing nonlocal games with highly efficient rigidity properties.

We measure efficiency via the tradeoff between the complexity of the game versus the com-

plexity of the algebraic relations that (approximately) optimal strategies must satisfy. For example,

the Magic Square game has |XMS |2 = 152 question pairs and a similar number of answer pairs, and

(approximately) optimal strategies must give rise to two pairs of (approximately) anti-commuting

observables {𝑂11, 𝑂22} and {𝑂21, 𝑂12}, and furthermore these pairs must be independent in the

sense that they (approximately) commute with each other. This implies that when the probability

of winning is sufficiently close to 1, the dimension of the Hilbert space must be at least 4. We say

that the Magic Square game certifies the existence of two independent anti-commuting observables

and certifies a Hilbert space of dimension at least 4. This is a consequence of the following general

statement:

Proposition 1.22. Let 𝒜 denote a von Neumann algebra on a separable Hilbert space H with a

tracial state 𝜏, and let 𝐴(1) , . . . , 𝐴(𝑛) , 𝐵(1) , . . . , 𝐵(𝑛) ∈ 𝒜 denote self-adjoint unitary operators (i.e.

observables). Suppose for some Y ≥ 0 the following approximate commutation and anticommuta-
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tion relations hold:

∀ 𝑖, 𝐴(𝑖)𝐵(𝑖) ≈Y −𝐵(𝑖)𝐴(𝑖)

∀ 𝑖 ≠ 𝑗 , 𝐴(𝑖)𝐴( 𝑗) ≈Y 𝐴( 𝑗)𝐴(𝑖) , 𝐵(𝑖)𝐵( 𝑗) ≈Y 𝐵( 𝑗)𝐵(𝑖) , 𝐴(𝑖)𝐵( 𝑗) ≈Y 𝐵( 𝑗)𝐴(𝑖) .

Then, for all sufficiently small Y, it holds that dimH ≥ (1 − 𝛿(Y))2𝑛 where 𝛿(Y) is some proper

error function.

Proof. There is nothing to prove when H is infinite dimensional. So assume that H is finite

dimensional. By Theorem 4.4.1 in [46], every finite dimensional von Neumann algebra is a direct

sum of 𝐵(H 𝑖) where H 𝑖 are finite dimensional Hilbert spaces. So without loss of generality we

may assume 𝒜 = 𝐵(H) and that 𝜏(·) = tr(·)/dimH is the dimension-normalized trace.

Let Π (𝑖)
𝑏

be the projection onto (−1)𝑏-eigenspace of 𝐴(𝑖) . For every 𝑠 ∈ {0, 1}𝑛 let

𝑀𝑠 B
( 𝑛∏
𝑖=1

Π
(𝑖)
𝑠𝑖

) ( 𝑛∏
𝑖=1

Π
(𝑖)
𝑠𝑖

)∗
.

These operators are clearly positive semidefinite and a simple inductive argument shows that∑
𝑠∈{0,1}𝑛 𝑀𝑠 = 1. Therefore {𝑀𝑠}𝑠∈{0,1}𝑛 is a POVM.

From approximate commutation relations between 𝐴(𝑖)s we get that any pair Π (𝑖)𝑎 and Π
( 𝑗)
𝑏

must

approximately commute. Therefore by repeated applications of Theorem 1.8, we get that

𝑀2
𝑠 ≈𝛿(Y) 𝑀𝑠 .

By Theorem 1.8 again, we obtain that 𝜏(𝑀𝑠 − 𝑀2
𝑠 ) ≤ 𝛿(Y) for every 𝑠. So by Theorem 1.17, there

exists a projective measurement {𝑃𝑠}𝑠∈{0,1}𝑛 ⊂ 𝒜 such that 𝑃𝑠 ≈𝛿(Y) 𝑀𝑠.

By approximate anticommutation, we get 𝐵(𝑖) 𝐴(𝑖) 𝐵(𝑖) ≈𝛿(Y) −𝐴(𝑖) . We can express this in

terms of projective measurement {Π (𝑖)0 ,Π
(𝑖)
1 }

𝐵(𝑖) Π (𝑖)0 𝐵(𝑖) − 𝐵(𝑖) Π (𝑖)1 𝐵(𝑖) ≈𝛿(Y) Π (𝑖)1 − Π
(𝑖)
0 .
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Using the relation Π
(𝑖)
0 + Π

(𝑖)
1 = 1, we conclude that

𝐵(𝑖) Π (𝑖)0 𝐵(𝑖) ≈𝛿(Y) Π (𝑖)1 . (1.3.14)

Now if we define unitary operators𝑈𝑠,𝑡 B
∏𝑛
𝑖=1(𝐵(𝑖))𝑠𝑖+𝑡𝑖 , it is straightforward to show that

𝑈𝑠,𝑡 𝑀𝑠𝑈
∗
𝑠,𝑡 ≈𝛿(Y) 𝑀𝑡

for every 𝑠, 𝑡 ∈ {0, 1}𝑛 using (1.3.14) and approximate commutation and anticommutations be-

tween 𝐴 and 𝐵 operators. This immediately implies that

𝜏(𝑀𝑡) ≈𝛿(Y) 𝜏(𝑈𝑠,𝑡 𝑀𝑠𝑈
∗
𝑠,𝑡) = 𝜏(𝑀𝑠).

Now since projections {𝑃𝑠} are close to operators {𝑀𝑠} we also have 𝜏(𝑃𝑠) ≈𝛿(Y) 𝜏(𝑃𝑡) for every

𝑠, 𝑡.

From 𝜏(∑𝑠 𝑃𝑠) = 𝜏(1) = 1 and the fact that 𝜏(𝑃𝑠) ≈ 𝜏(𝑃𝑡) for every 𝑠, 𝑡 ∈ {0, 1}𝑛, we get that

𝜏(𝑃𝑠) ≈𝛿(Y) 2−𝑛. In other words we have

(1 − 𝛿(Y))2−𝑛 ≤ 𝜏(𝑃𝑠) ≤ (1 + 𝛿(Y))2−𝑛

for every 𝑠. For all Y sufficiently small, we have 𝛿(Y) < 1, and thus 𝜏(𝑃𝑠) > 0. Since 𝑃𝑠 is a

projection and it is nonzero it must be that tr(𝑃𝑠) ≥ 1 so 𝜏(𝑃𝑠) = tr(𝑃𝑠)/dimH ≥ 1/dimH . We

can write

1/dimH ≤ 𝜏(𝑃𝑠) ≤ (1 + 𝛿(Y))2−𝑛

from which we conclude that

dimH ≥ 2𝑛

1 + 𝛿(Y) ≥ (1 − 𝛿(Y))2
𝑛.
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□

It is possible to construct games that certify a larger Hilbert space. An example is the 𝑛-fold

parallel repetition of the Magic Square game, which is a nonlocal game where the verifier plays 𝑛

independent instances of the Magic Square game simultaneously with the two players. This game

is also rigid, and it certifies 2𝑛 pairs of independent anti-commuting observables and consequently,

by the proposition we just proved, certifies a Hilbert space of dimension 22𝑛. However the com-

plexity of the game also scales commensurately with the dimension: the number of questions and

answers grows as 2𝑂 (𝑛) .

Are there games that certify a 𝑑-dimensional Hilbert space using much fewer than 𝑑 ques-

tions/answer pairs? Chao, Reichardt, Sutherland and Vidick [47] and Natarajan and Vidick [21]

showed that there exist families of games {𝐺𝑛} where the 𝑛-th game 𝐺𝑛 certifies a 2𝑛-dimensional

space using poly(𝑛) question/answer pairs. The rigidity result of [21] is also highly robust, in the

sense that strategies for 𝐺𝑛 that succeed with probability 1− Y must be 𝛿(Y)-close to satisfying the

target algebraic relations, for some function 𝛿(Y) that has a mild (e.g., logarithmic) dependence on

𝑛. The existence of games with efficient and robust rigidity properties is a key component of the

gap-preserving compression theorem of [4].11

For our gapless compression result, we only need games with efficient rigidity properties (i.e.,

small game certifying a large Hilbert space), not necessarily highly robust ones. In this paper

we use a family of games that we call 2-out-of-𝑛 Magic Square, which is inspired by the family

of games introduced in [47], which we call 2-out-of-𝑛 CHSH. We describe the 2-out-of-𝑛 Magic

Square games next.

1.3.2 The 2-out-of-𝑛 Magic Square game

Fix an integer 𝑛 > 0. The basic idea behind the 2-out-of-𝑛 Magic Square game, abbreviated

2-OF-𝑛-MS, is that the players are asked to play 𝑛 simultaneous instances of the Magic Square

11In fact, the result of [4] implies that one can construct games with 𝑚 questions/answers that certify 𝑑-dimensional
Hilbert spaces, and 𝑑 can be an arbitrarily large (computable) function of 𝑚!
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game, but the verifier only asks the players for their responses for 2 instances. Define the question

set X2-OF-𝑛-MS = {(𝑖, 𝑗) ∈ [𝑛]2 : 𝑖 ≠ 𝑗} × X2
MS, and the answer set A2-OF-𝑛-MS = A2

MS. The

decision predicate 𝐷2-OF-𝑛-MS (𝑞, 𝑟, 𝑎, 𝑏) is specified as follows, via its nontrivial question pairs

and the corresponding winning conditions for the answers.

Nontrivial Question Pair (𝑞, 𝑟) Winning Condition on Answers (𝑎, 𝑏)

𝑞 = 𝑟 𝑎 = 𝑏

𝑞 = (𝑖, 𝑗 , 𝑥𝑖, 𝑥 𝑗 ), 𝑟 = (𝑘, ℓ, 𝑦𝑘 , 𝑦ℓ) 𝐷MS (𝑥𝑤, 𝑦𝑤, 𝑢𝑤, 𝑣𝑤) = 1 for all 𝑤 ∈ {𝑖, 𝑗} ∩ {𝑘, ℓ}

where {𝑖, 𝑗} ∩ {𝑘, ℓ} ≠ ∅, and for all 𝑤 in the intersection, (𝑥𝑤, 𝑦𝑤) is a nontrivial question pair for MS where 𝑎 = (𝑢𝑖, 𝑢 𝑗 ), 𝑏 = (𝑣𝑘 , 𝑣ℓ)

Table 1.2: The nontrivial question pairs and winning conditions for the 2-OF-𝑛-MS.

In other words, each player gets asked to generate answers for two instances of the Magic

Square game, but do not know what instances the other player is asked about. If there is an

instance 𝑖 that is asked to both players, then their questions and answers for instance 𝑖 must satisfy

the Magic Square decision predicate.

It is easy to see that the 2-OF-𝑛-MS has a perfect synchronous strategy: let 𝒮MS = (𝜏, {𝑀𝑥}),

where 𝜏 is a tracial state on some von Neumann algebra 𝒜 on a Hilbert space H , denote the

perfect strategy for the Magic Square game described above. Then define the synchronous strategy

𝒮2-OF-𝑛-MS = (𝜏⊗𝑛, {𝑀 𝑖, 𝑗 ,𝑥,𝑦}), where 𝑀 𝑖, 𝑗 ,𝑥,𝑦 = {𝑀 𝑖, 𝑗 ,𝑥,𝑦

𝑎,𝑏
}𝑎,𝑏∈AMS is the projective measurement

defined such that

𝑀
𝑖, 𝑗 ,𝑥,𝑦

𝑎,𝑏
B 1 ⊗ · · · ⊗ 1 ⊗ 𝑀𝑥

𝑎 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ 𝑀 𝑦

𝑏
⊗ 1 ⊗ · · · ⊗ 1 ∈ 𝒜⊗𝑛

in which 𝑀𝑥
𝑎 and 𝑀 𝑦

𝑏
are acting on the 𝑖th and 𝑗 th copy ofH , respectively. Intuitively if a player re-

ceives the question (𝑖, 𝑗 , 𝑥, 𝑦) they perform independent Magic Square measurements correspond-

ing to questions 𝑥 and 𝑦 on the 𝑖-th and 𝑗-th copy of H , respectively, and respond with their

measurement outcomes. Clearly, the players’ will win the instances that are shared between them.

The oracularizability of this strategy follows from the oracularizablity of the honest strategy of the

Magic Square game and the construction above: for example if (𝑥𝑖, 𝑦𝑖) is a nontrivial question pair

in the Magic Square game, then measurements 𝑀 𝑖, 𝑗 ,𝑥𝑖 ,𝑥 𝑗 and 𝑀 𝑖,𝑘,𝑦𝑖 ,𝑦𝑘 commute for all 𝑗 ≠ 𝑘 since
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measurements 𝑀𝑥𝑖 and 𝑀 𝑦𝑖 commute by the oracularizability of the honest Magic Square strategy

from the previous section.

The next lemma expresses the rigidity properties of the 2-OF-𝑛-MS. Let {𝑀 𝑖, 𝑗 ,𝑥,𝑦

𝑎,𝑏
}𝑎,𝑏∈AMS

denote a measurement corresponding to a question (𝑖, 𝑗 , 𝑥, 𝑦) ∈ X2-OF-𝑛-MS. Define the marginal

measurement operator

𝑀 𝑖,𝑥
𝑎 =

∑︁
𝑏

𝑀
𝑖,succ(𝑖),𝑥,𝑥
𝑎,𝑏

where the sum is over answers 𝑏 ∈ AMS and succ(𝑖) =


𝑖 + 1, 𝑖 < 𝑛,

1, 𝑖 = 𝑛.

Note that for all (𝑖, 𝑥) ∈ [𝑛] × XMS, the set {𝑀 𝑖,𝑥
𝑎 }𝑎∈AMS forms a projective measurement. Just

like with strategies for the Magic Square game, when 𝑥 is a variable question in the Magic Square

game (i.e. it is 𝑠𝑐𝑑 for some 𝑐, 𝑑 ∈ [3]), we assume without loss of generality that

𝑀
𝑖,𝑠𝑐𝑑
0 + 𝑀 𝑖,𝑠𝑐𝑑

1 = 1

for all 𝑖 ∈ [𝑛], 𝑐, 𝑑 ∈ [3]. For each variable 𝑠𝑐𝑑 define the corresponding observable

𝑂𝑖,𝑐,𝑑 = 𝑀
𝑖,𝑠𝑐𝑑
0 − 𝑀 𝑖,𝑠𝑐𝑑

1 .

Lemma 1.23 (Rigidity of the 2-OF-𝑛-MS). Let 𝒮 = (𝜏, {𝑀𝑥}) be a synchronous strategy such

that 𝜔(2-OF-𝑛-MS,𝒮) ≥ 1 − Y. For all 𝑖 ∈ [𝑛] define

𝐴(2𝑖−1) = 𝑂𝑖,1,1 , 𝐵(2𝑖−1) = 𝑂𝑖,2,2 ,

𝐴(2𝑖) = 𝑂𝑖,1,2 , 𝐵(2𝑖) = 𝑂𝑖,2,1 .
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Then

∀ 𝑘 ∈ [2𝑛], 𝐴(𝑘)𝐵(𝑘) ≈𝛿 −𝐵(𝑘)𝐴(𝑘)

∀ 𝑘, 𝑙 ∈ [2𝑛] and 𝑘 ≠ 𝑙, 𝐴(𝑘)𝐴(𝑙) ≈𝛿 𝐴(𝑙)𝐴(𝑘) , 𝐵(𝑘)𝐵(𝑙) ≈𝛿 𝐵(𝑙)𝐵(𝑘) , 𝐴(𝑘)𝐵(𝑙) ≈𝛿 𝐵(𝑙)𝐴(𝑘)

where 𝛿(𝑛, Y) = poly(𝑛) · poly(Y) is a proper error function.

Proof. Fixing 𝑖 ∈ [𝑛] and 𝑥, 𝑦 ∈ XMS, the probability of winning the instance 𝑖 Magic Square

game, conditioned on players receiving questions (𝑖, succ(𝑖), 𝑥, 𝑥) and (𝑖, succ(𝑖), 𝑦, 𝑦) is at least

1 − |X2-OF-𝑛-MS |2Y, thus

∑︁
𝑎,𝑏

𝜏(𝑀 𝑖,𝑥
𝑎 𝑀

𝑖,𝑦

𝑏
)𝐷MS (𝑥, 𝑦, 𝑎, 𝑏) ≥ 1 − |X2-OF-𝑛-MS |2Y.

So conditioned on every question pair (𝑥, 𝑦), the strategy (𝜏, {𝑀 𝑖,𝑥}𝑥∈MS) wins in the Magic Square

game with probability at least

1 − |X2-OF-𝑛-MS |2Y = 1 − poly(𝑛, Y).

Therefore by Theorem 1.21, for every 𝑖 ∈ [𝑛], we have

𝐴(2𝑖−1) 𝐵(2𝑖−1) ≈poly(𝑛,Y) −𝐵(2𝑖−1) 𝐴(2𝑖−1) , 𝐴(2𝑖) 𝐵(2𝑖) ≈poly(𝑛,Y) −𝐵(2𝑖) 𝐴(2𝑖) ,

𝐴(2𝑖−1) 𝐴(2𝑖) ≈poly(𝑛,Y) 𝐴
(2𝑖) 𝐴(2𝑖−1) , 𝐵(2𝑖−1) 𝐵(2𝑖) ≈poly(𝑛,Y) 𝐵

(2𝑖) 𝐵(2𝑖−1) ,

𝐴(2𝑖−1) 𝐵(2𝑖) ≈poly(𝑛,Y) 𝐵
(2𝑖) 𝐴(2𝑖−1) , 𝐵(2𝑖−1) 𝐴(2𝑖) ≈poly(𝑛,Y) 𝐴

(2𝑖) 𝐵(2𝑖−1) .

It is only left to prove that when 𝑘, 𝑙 ∈ [2𝑛] and |𝑘 − 𝑙 | > 1, it holds that

𝐴(𝑘)𝐴(𝑙) ≈𝛿 𝐴(𝑙)𝐴(𝑘) , 𝐵(𝑘)𝐵(𝑙) ≈𝛿 𝐵(𝑙)𝐵(𝑘) , 𝐴(𝑘)𝐵(𝑙) ≈𝛿 𝐵(𝑙)𝐴(𝑘) .

We prove the stronger statement that 𝑀 𝑖,𝑥
𝑎 𝑀

𝑗 ,𝑦

𝑏
≈𝛿 𝑀

𝑗 ,𝑥

𝑏
𝑀
𝑖,𝑦
𝑎 for all 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 , 𝑥, 𝑦 ∈
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XMS, 𝑎, 𝑏 ∈ AMS.

We give the proof for the case where 𝑗 ≠ succ(𝑖) and 𝑖 ≠ succ( 𝑗). The proof for the other

cases follow the same idea. The proof is based on the cross-check between nontrivial question

pair (𝑖, succ(𝑖), 𝑥, 𝑥) and (𝑖, 𝑗 , 𝑥, 𝑦) on one hand and the cross-check between nontrivial question

pair (𝑖, 𝑗 , 𝑥, 𝑦) and ( 𝑗 , succ( 𝑗), 𝑦, 𝑦) on the other hand. We derive consequences of the fact that,

conditioned on players receiving questions (𝑖, succ(𝑖), 𝑥, 𝑥) and (𝑖, 𝑗 , 𝑥, 𝑦), they win instance 𝑖

of the Magic Square with high probability. Similarly we derive consequences of the fact that,

conditioned on players receiving questions ( 𝑗 , succ( 𝑗), 𝑦, 𝑦) and (𝑖, 𝑗 , 𝑥, 𝑦), they win instance 𝑗

of Magic Square with high probability. The consequences we derive are then used to prove the

desired approximate commutation relations.

Recall that by the winning conditions of the Magic Square game, if players win (in the Magic

Square game) when receiving the same question, then they must have responded with the same

answer. This can be expressed as

∑︁
𝑎∈AMS

∑︁
𝑏,𝑐∈AMS

𝜏(𝑀 𝑖,succ(𝑖),𝑥,𝑥
𝑎,𝑏

𝑀
𝑖, 𝑗 ,𝑥,𝑦
𝑎,𝑐 ) ≥ 1 − |X2-OF-𝑛-MS |2Y ,

or in other words

∑︁
𝑎∈AMS

𝜏(𝑀 𝑖,𝑥
𝑎

∑︁
𝑐

𝑀
𝑖, 𝑗 ,𝑥,𝑦
𝑎,𝑐 ) ≥ 1 − |X2-OF-𝑛-MS |2Y .

In terms of consistency relations this can be expressed as 𝑀 𝑖,𝑥
𝑎 ≃𝛿

∑
𝑐 𝑀

𝑖, 𝑗 ,𝑥,𝑦
𝑎,𝑐 .

Similarly we have

∑︁
𝑏∈AMS

∑︁
𝑐,𝑑∈AMS

𝜏(𝑀 𝑗 ,succ( 𝑗),𝑦,𝑦
𝑏,𝑐

𝑀
𝑖, 𝑗 ,𝑥,𝑦

𝑑,𝑏
) ≥ 1 − |X2-OF-𝑛-MS |2Y ,
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or in other words

∑︁
𝑎∈AMS

𝜏(𝑀 𝑗 ,𝑦

𝑏

∑︁
𝑑

𝑀
𝑖, 𝑗 ,𝑥,𝑦

𝑑,𝑏
) ≥ 1 − |X2-OF-𝑛-MS |2Y .

In terms of consistency relations this can be expressed as 𝑀 𝑗 ,𝑦

𝑏
≃𝛿

∑
𝑐 𝑀

𝑖, 𝑗 ,𝑥,𝑦

𝑐,𝑏
.

Using Theorem 1.13 we turn the consistency relations to the following closeness relations

𝑀 𝑖,𝑥
𝑎 ≈𝛿

∑︁
𝑐

𝑀
𝑖, 𝑗 ,𝑥,𝑦
𝑎,𝑐 , 𝑀

𝑗 ,𝑦

𝑏
≈𝛿

∑︁
𝑑

𝑀
𝑖, 𝑗 ,𝑥,𝑦

𝑑,𝑏
,

where 𝛿 is some proper error function. Now using Theorem 1.8, we can write

𝑀 𝑖,𝑥
𝑎 𝑀

𝑗 ,𝑦

𝑏
≈

(∑︁
𝑐

𝑀
𝑖, 𝑗 ,𝑥,𝑦
𝑎,𝑐

) (∑︁
𝑑

𝑀
𝑖, 𝑗 ,𝑥,𝑦

𝑑,𝑏

)
=

(∑︁
𝑑

𝑀
𝑖, 𝑗 ,𝑥,𝑦

𝑑,𝑏

) (∑︁
𝑐

𝑀
𝑖, 𝑗 ,𝑥,𝑦
𝑎,𝑐

)
≈ 𝑀 𝑗 ,𝑦

𝑏
𝑀 𝑖,𝑥
𝑎 ,

where the equality follows from the fact that projection operators belonging to the same projective

measurement commute. □

Theorem 1.22 immediately implies that any strategy that succeeds for the 2-OF-𝑛-MS with

probability 1 − Y must be on a Hilbert space of dimension at least (1 − poly(𝑛)poly(𝛿))22𝑛, which

is nontrivial for 𝛿 < 1/poly(𝑛). Furthermore, this game is highly efficient because the number of

questions and answers grows only polynomially with 𝑛. Observe that

|X2-OF-𝑛-MS | = 𝑛2 · |XMS |2 , |A2-OF-𝑛-MS | = |AMS |2 ,

which means that the total number of question and answer pairs for the 2-OF-𝑛-MS is 𝑂 (𝑛4),

where we treat the question and answer sizes of the Magic Square game as constant.
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1.3.3 The Question Sampling game

For readers who are familiar with quantum information theory, the 2-OF-𝑛-MS can be under-

stood in the following way. In the honest strategy for 2-OF-𝑛-MS the two players share the state

|EPR⟩⊗2𝑛 (i.e. 2𝑛 maximally entangled Bell pairs), and if we assume the perfect strategy for the

Magic Square game is the one coming from Figure 1.2, the observables 𝐴(1) , . . . , 𝐴(2𝑛) , 𝐵(1) , . . . , 𝐵(2𝑛) ,

defined in Theorem 1.23, are 𝐴(𝑖) = 𝑍𝑖 and 𝐵(𝑖) = 𝑋𝑖 where 𝑍𝑖 (resp. 𝑋𝑖) represents the 2𝑛-qubit

operator with the 𝑍 (resp. 𝑋) Pauli operator acting on the 𝑖-th qubit and identity everywhere else.

Then by the rigidity of 2-OF-𝑛-MS, in any approximately optimal strategy, there are observable

that are close to these Pauli operators. These Pauli operators act nontrivially only on a single

qubit. However for the question reduction in Section 1.4, we need access to the measurements

that simultaneously measure blocks of qubits. To achieve this goal, in this section, we extend

the 2-OF-𝑛-MS by including a few additional questions. By doing so, and as it becomes clear

in a moment, we guarantee that any optimal strategy for the extended game must be using these

block-qubit measurement operators.

We now introduce a family of synchronous games called Question Sampling games, denoted

by QS = {QS𝑛}𝑛∈N. The 𝑛-th Question Sampling game QS𝑛 is an extension of the 2-OF-𝑛-MS

where there are four additional questions 𝑆𝐴, 𝑆𝐵, 𝐸𝐴, 𝐸𝐵, where 𝑆 and 𝐸 stand for sample and

erase, respectively. The answers for these additional questions are 𝑛-bit strings.

In the honest strategy for the Question Sampling game (which we formally introduce in a

moment), the 𝑆𝐴 (resp. 𝑆𝐵) measurement is supposed to correspond to measuring the first 𝑛 (resp.

second 𝑛) EPR pairs in the standard basis, whereas the 𝐸𝐴 (resp. 𝐸𝐵) measurement is supposed to

correspond to measuring the first 𝑛 (resp. second 𝑛) EPR pairs in a complementary basis.

The rigidity of the 2-OF-𝑛-MS (Theorem 1.23) implies that measurements of strategy with

high winning probability give rise to 2𝑛 pairs of (approximately) anticommuting observables

(𝐴(𝑖) , 𝐵(𝑖))𝑖∈[2𝑛] , and the observables (approximately) commute across different pairs. This rigidity

guarantee is also present for the Question Sampling game QS𝑛, but furthermore the measurements

corresponding to the additional questions also satisfy the following:
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• The measurements corresponding to 𝑆𝐴 (resp. 𝑆𝐵) are approximately consistent with “simul-

taneously measuring” the observables 𝐴(1) , . . . , 𝐴(𝑛) (resp. 𝐴(𝑛+1) , . . . , 𝐴(2𝑛)) to produce an

𝑛-bit string answer.

• The measurements corresponding to 𝐸𝐴 (resp. 𝐸𝐵) are approximately consistent with “si-

multaneously measuring” the observables 𝐵(1) , . . . , 𝐵(𝑛) (resp. 𝐵(𝑛+1) , . . . , 𝐵(2𝑛)) to produce

an 𝑛-bit string answer.

Here, “approximate consistency” is used in the sense defined in Section 1.2.2. Furthermore, since

the observables referred to in each item above only approximately commute with each other, the

notion of simultaneous measurement is only meant in an approximate sense; we formalize this

below in Theorem 1.24.

We now formally define the game QS𝑛 = (Q𝑛,X𝑛, 𝐷QS𝑛). Its question set is defined to be

Q𝑛 = X2-OF-𝑛-MS ∪ {𝑆𝐴, 𝑆𝐵, 𝐸𝐴, 𝐸𝐵}, and thus |Q𝑛 | = poly(𝑛). Its answer set is defined to be

X𝑛 = A2-OF-𝑛-MS ∪ {0, 1}𝑛, and thus |X𝑛 | = 𝑂 (2𝑛).

Remark 3. The Question Sampling game and the Introspection game, appearing in the next sec-

tion, are the only games in this paper for which we use the symbol Q (instead of X) to refer to the

question set. In fact, for the Question Sampling game the letter X is reserved for the answer set.

The reason for this convention is because, as the name suggests, the Question Sampling game is

meant to sample a question pair (𝑥, 𝑦) for another game (this should become clearer in the section

on Introspection games).

The nontrivial questions and winning conditions of the decision procedure 𝐷QS𝑛 (𝑞, 𝑟, 𝑥, 𝑦) are

specified as follows (note that the answers are now denoted (𝑥, 𝑦)). We only consider the case of

even 𝑛. The case of odd 𝑛 is slightly more tedious to write down.
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Nontrivial Question Pair (𝑞, 𝑟) Winning Condition on Answers (𝑥, 𝑦)

𝑞 = 𝑟 𝑥 = 𝑦

(𝑞, 𝑟) is a nontrivial question for 2-OF-𝑛-MS 𝐷2-OF-𝑛-MS (𝑞, 𝑟, 𝑥, 𝑦) = 1

𝑞 = (𝑖, 𝑗 , 𝑠11, .) ∈ X2-OF-𝑛-MS where 𝑖 ≤ 𝑛
2 , 𝑗 >

𝑛
2 , and 𝑟 = 𝑆𝐴 𝑥 = (𝑎𝑖, 𝑎 𝑗 ) ∈ A2

MS, 𝑦 ∈ {0, 1}𝑛, and 𝑦2𝑖−1 = 𝑎𝑖

𝑞 = (𝑖, 𝑗 , 𝑠12, .) ∈ X2-OF-𝑛-MS where 𝑖 ≤ 𝑛
2 , 𝑗 >

𝑛
2 , and 𝑟 = 𝑆𝐴 𝑥 = (𝑎𝑖, 𝑎 𝑗 ) ∈ A2

MS, 𝑦 ∈ {0, 1}𝑛, and 𝑦2𝑖 = 𝑎𝑖

𝑞 = (𝑖, 𝑗 , 𝑠11, .) ∈ X2-OF-𝑛-MS where 𝑖 > 𝑛
2 , 𝑗 ≤

𝑛
2 , and 𝑟 = 𝑆𝐵 𝑥 = (𝑎𝑖, 𝑎 𝑗 ) ∈ A2

MS, 𝑦 ∈ {0, 1}𝑛, and 𝑦2(𝑖− 𝑛2 )−1 = 𝑎𝑖

𝑞 = (𝑖, 𝑗 , 𝑠12, .) ∈ X2-OF-𝑛-MS where 𝑖 > 𝑛
2 , 𝑗 ≤

𝑛
2 , and 𝑟 = 𝑆𝐵 𝑥 = (𝑎𝑖, 𝑎 𝑗 ) ∈ A2

MS, 𝑦 ∈ {0, 1}𝑛, and 𝑦2(𝑖− 𝑛2 ) = 𝑎𝑖

𝑞 = (𝑖, 𝑗 , 𝑠22, .) ∈ X2-OF-𝑛-MS where 𝑖 ≤ 𝑛
2 , 𝑗 >

𝑛
2 , and 𝑟 = 𝐸𝐴 𝑥 = (𝑎𝑖, 𝑎 𝑗 ) ∈ A2

MS, 𝑦 ∈ {0, 1}𝑛, and 𝑦2𝑖−1 = 𝑎𝑖

𝑞 = (𝑖, 𝑗 , 𝑠21, .) ∈ X2-OF-𝑛-MS where 𝑖 ≤ 𝑛
2 , 𝑗 >

𝑛
2 , and 𝑟 = 𝐸𝐴 𝑥 = (𝑎𝑖, 𝑎 𝑗 ) ∈ A2

MS, 𝑦 ∈ {0, 1}𝑛, and 𝑦2𝑖 = 𝑎𝑖

𝑞 = (𝑖, 𝑗 , 𝑠22, .) ∈ X2-OF-𝑛-MS where 𝑖 > 𝑛
2 , 𝑗 ≤

𝑛
2 , and 𝑟 = 𝐸𝐵 𝑥 = (𝑎𝑖, 𝑎 𝑗 ) ∈ A2

MS, 𝑦 ∈ {0, 1}𝑛, and 𝑦2(𝑖− 𝑛2 )−1 = 𝑎𝑖

𝑞 = (𝑖, 𝑗 , 𝑠21, .) ∈ X2-OF-𝑛-MS where 𝑖 > 𝑛
2 , 𝑗 ≤

𝑛
2 , and 𝑟 = 𝐸𝐵 𝑥 = (𝑎𝑖, 𝑎 𝑗 ) ∈ A2

MS, 𝑦 ∈ {0, 1}𝑛, and 𝑦2(𝑖− 𝑛2 ) = 𝑎𝑖

Table 1.3: The nontrivial question pairs and winning conditions for the 𝑛-th Question Sampling game. We
used dot for example in (𝑖, 𝑗 , 𝑠11, .) ∈ X2-OF-𝑛-MS to indicate that the fourth coordinate does not matter as
long as the quadruple is a valid question in X2-OF-𝑛-MS.

We now to describe an oracularizable synchronous strategy for QS𝑛 with value 1. Let 𝒮MS =

(𝜏, {𝑀𝑞}𝑞∈XMS) be the honest strategy for the Magic Square game on the Hilbert space HMS =

C4 and let 𝒮2-OF-𝑛-MS = (𝜏⊗𝑛, {𝑀𝑞}𝑞∈X2-OF-𝑛-MS) be its extension to a perfect oracularizable syn-

chronous strategy for the 2-OF-𝑛-MS as defined in Section 1.3.2. We extend this to a perfect

finite-dimensional oracularizable synchronous strategy 𝒮QS𝑛 for QS𝑛.

For every 𝑦 ∈ {0, 1}𝑛 define

𝑀𝑆𝐴
𝑦 B 𝑀 𝑠11

𝑦1 𝑀
𝑠12
𝑦2 ⊗ 𝑀

𝑠11
𝑦3 𝑀

𝑠12
𝑦4 ⊗ · · · ⊗ 𝑀

𝑠11
𝑦𝑛−1 𝑀

𝑠12
𝑦𝑛
⊗ 1C2𝑛 ,

𝑀𝑆𝐵
𝑦 B 1C2𝑛 ⊗ 𝑀 𝑠11

𝑦1 𝑀
𝑠12
𝑦2 ⊗ 𝑀

𝑠11
𝑦3 𝑀

𝑠12
𝑦4 ⊗ · · · ⊗ 𝑀

𝑠11
𝑦𝑛−1 𝑀

𝑠12
𝑦𝑛
,

𝑀𝐸𝐴
𝑦 B 𝑀 𝑠22

𝑦1 𝑀
𝑠21
𝑦2 ⊗ 𝑀

𝑠22
𝑦3 𝑀

𝑠21
𝑦4 ⊗ · · · ⊗ 𝑀

𝑠22
𝑦𝑛−1 𝑀

𝑠21
𝑦𝑛
⊗ 1C2𝑛 ,

𝑀𝐸𝐵
𝑦 B 1C2𝑛 ⊗ 𝑀 𝑠22

𝑦1 𝑀
𝑠21
𝑦2 ⊗ 𝑀

𝑠22
𝑦3 𝑀

𝑠21
𝑦4 ⊗ · · · ⊗ 𝑀

𝑠22
𝑦𝑛−1 𝑀

𝑠21
𝑦𝑛
.

Note that measurements 𝑀 𝑠11 and 𝑀 𝑠12 (and similarly 𝑀 𝑠22 and 𝑀 𝑠21) of the honest Magic Square

strategy commute as they belong to the same row. It is easily verified that {𝑀𝑆𝐴
𝑦 }, {𝑀𝑆𝐵

𝑦 }, {𝑀𝐸𝐴
𝑦 }, {𝑀𝐸𝐵

𝑦 }
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are projective measurements and that 𝒮QS𝑛 = (𝜏⊗𝑛, {𝑀𝑞}𝑞∈QQS𝑛
) is a synchronous strategy for

QS𝑛.12

Next we show that 𝒮QS𝑛 wins with probability 1. Fix an 𝑖 ≤ 𝑛
2 , 𝑗 >

𝑛
2 , 𝑡 ∈ XMS. Conditioned

on players receiving the nontrivial question pair ((𝑖, 𝑗 , 𝑠11, 𝑡), 𝑆𝐴), which corresponds to the third

row in Table 1.3, the probability of winning is

∑︁
𝑎∈AMS

∑︁
𝑦∈{0,1}𝑛

𝜏(𝑀 𝑖, 𝑗 ,𝑠11,𝑡
𝑦2𝑖−1,𝑎 𝑀

𝑆𝐴
𝑦 ) =

∑︁
𝑦∈{0,1}𝑛

𝜏(𝑀 𝑖,𝑠11
𝑦2𝑖−1𝑀

𝑆𝐴
𝑦 ) =

∑︁
𝑦∈{0,1}𝑛

𝜏(𝑀𝑆𝐴
𝑦 ) = 1,

in which 𝑀 𝑖,𝑠11
𝑦2𝑖−1 is defined to be the marginal

𝑀 𝑖,𝑠11
𝑦2𝑖−1 B

∑︁
𝑎∈AMS

𝑀
𝑖, 𝑗 ,𝑠11,𝑡
𝑦2𝑖−1,𝑎 = 1𝑖−1

HMS
⊗ 𝑀 𝑠11

𝑦2𝑖−1 ⊗ 1𝑛−𝑖−1
HMS

.

It is similarly verified that the probability of winning conditioned on any other question pair is 1.

Since 𝒮2-OF-𝑛-MS is oracularizable in 2-OF-𝑛-MS, to verify the oracularizability of 𝒮QS𝑛 we

just need to check commutativity between measurements for 𝑆𝐴, 𝑆𝐵, 𝐸𝐴, 𝐸𝐵 on one hand and mea-

surements for (𝑖, 𝑗 , 𝑞𝑖, 𝑞 𝑗 ) on the other hand. This follows very easily from the construction of the

measurements

𝑀𝑆𝐴, 𝑀𝑆𝐵 , 𝑀𝐸𝐴, 𝑀𝐸𝐵

Finally we note that in the honest strategy 𝜏(𝑀𝑆𝐴
𝑥 𝑀

𝑆𝐵
𝑦 ) = 2−2𝑛 (and similarly 𝜏(𝑀𝐸𝐴

𝑥 𝑀
𝐸𝐵
𝑦 ) =

2−2𝑛) for all 𝑥, 𝑦 ∈ {0, 1}𝑛. We see in a moment that approximately optimal strategies approxi-

mately satisfy these relations.

Let 𝒮 = (𝜏, {𝑀𝑞}𝑞∈QQS𝑛
) be a synchronous strategy for the Question Sampling game. For

12If we take the Magic Square strategy from Figure 1.2, these formulas simplify to

𝑀𝑆𝐴
𝑦 = |𝑦⟩⟨𝑦 | ⊗ 1,

𝑀𝑆𝐵
𝑦 = 1 ⊗ |𝑦⟩⟨𝑦 |,

𝑀𝐸𝐴
𝑦 = 𝐻⊗𝑛 |𝑦⟩⟨𝑦 |𝐻⊗𝑛 ⊗ 1,

𝑀𝐸𝐵
𝑦 = 1 ⊗ 𝐻⊗𝑛 |𝑦⟩⟨𝑦 |𝐻⊗𝑛,

where 𝐻 = 1√
2

[
1 1
1 −1

]
is the Hadamard transform.
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convenience we use the notational shorthand

𝑆𝐴𝑥 = 𝑀𝑆𝐴
𝑥 and 𝑆𝐵𝑥 = 𝑀𝑆𝐵

𝑥

𝐸 𝐴𝑥 = 𝑀𝐸𝐴
𝑥 and 𝐸𝐵𝑥 = 𝑀𝐸𝐵

𝑥

for all 𝑥 ∈ {0, 1}𝑛. We also define a family of observables derived from these measurements as

follows. For all 𝑢 ∈ {0, 1}𝑛,

𝑂𝑆𝐴
𝑢 =

∑︁
𝑥∈{0,1}𝑛

(−1)𝑢·𝑥 𝑆𝐴𝑥 and 𝑂𝑆𝐵
𝑢 =

∑︁
𝑥∈{0,1}𝑛

(−1)𝑢·𝑥 𝑆𝐵𝑥

𝑂𝐸𝐴
𝑢 =

∑︁
𝑥∈{0,1}𝑛

(−1)𝑢·𝑥 𝐸 𝐴𝑥 and 𝑂𝐸𝐵
𝑢 =

∑︁
𝑥∈{0,1}𝑛

(−1)𝑢·𝑥 𝐸𝐵𝑥 .

Note that by construction these are self-adjoint unitaries, and therefore observables. We call

𝑆𝐴, 𝑆𝐵 (resp. 𝐸 𝐴, 𝐸𝐵) sampling measurements (resp. erasure measurements), and 𝑂𝑆𝐴, 𝑂𝑆𝐵 (resp.

𝑂𝐸𝐴, 𝑂𝐸𝐵) sampling observables (resp. erasure observables) . In what follows we write 𝐴 =

𝐵, 𝐵 = 𝐴.

Theorem 1.24 (Rigidity of the Question Sampling game). Let 𝒮 = (𝜏, {𝑀𝑞}𝑞∈Q𝑛) be a syn-

chronous strategy such that 𝜔(QS𝑛,𝒮) ≥ 1 − Y. Then for all𝑊 ∈ {𝐴, 𝐵},

1. The sampling (resp. erasure) measurements almost commute with one another, that is for

every 𝑥, 𝑦 ∈ {0, 1}𝑛

𝑆𝐴𝑥 𝑆
𝐵
𝑦 ≈ 𝑆𝐵𝑦 𝑆𝐴𝑥 and 𝐸 𝐴𝑥 𝐸

𝐵
𝑦 ≈ 𝐸𝐵𝑦 𝐸 𝐴𝑥 .

2. Sampling measurements 𝑆𝑊 almost commute with erasure measurements 𝐸
𝑊

, that is, for

every 𝑥, 𝑦 ∈ {0, 1}𝑛,

𝑆𝑊𝑥 𝐸
𝑊
𝑦 ≈ 𝐸𝑊𝑦 𝑆𝑊𝑥 .
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3. The erasure observables 𝑂𝐸𝑊 approximately permute the sampling measurements 𝑆𝑊 and

vice versa. That is, for every 𝑢, 𝑥 ∈ {0, 1}𝑛,

𝑂
𝐸𝑊
𝑢 𝑆𝑊𝑥 𝑂

𝐸𝑊
𝑢 ≈ 𝑆𝑊𝑥+𝑢 and 𝑂

𝑆𝑊
𝑢 𝐸𝑊𝑥 𝑂

𝑆𝑊
𝑢 ≈ 𝐸𝑊𝑥+𝑢 .

where the arithmetic in the subscript is bitwise XOR.

4. Finally, for all 𝑥, 𝑦 ∈ {0, 1}𝑛,

𝜏(𝑆𝑊𝑥 ) ≈ 2−𝑛 and 𝜏(𝑆𝑊𝑥 𝑆𝑊𝑦 ) ≈ 2−2𝑛 ,

𝜏(𝐸𝑊𝑥 ) ≈ 2−𝑛 and 𝜏(𝐸𝑊𝑥 𝐸𝑊𝑦 ) ≈ 2−2𝑛 .

We explained the usage of ≈ in Section 1.2.5. For a detailed example see the proof of Theo-

rem 1.21.

Proof. By the winning conditions of the game, for all 𝑖 ≤ 𝑛/2 and 𝑗 > 𝑛/2, we have

1 − 𝛿(Y) ≥
∑︁

𝑏,𝑐∈{0,1}

∑︁
𝑥∈{0,1}𝑛:
𝑥2𝑖−1=𝑏

TR
(
𝑆𝐴𝑥 𝑀

𝑖, 𝑗 ,𝑠11,𝑠11
𝑏,𝑐

)

=
∑︁

𝑏∈{0,1}
TR ©«𝑆𝐴[𝑥 ↦→𝑥2𝑖−1 |𝑏]

( ∑︁
𝑐∈{0,1}

𝑀
𝑖, 𝑗 ,𝑠11,𝑠11
𝑏,𝑐

)ª®¬ .
By the proof of rigidity of 2-OF-𝑛-MS we have 𝑀 𝑖,𝑠11

𝑏
≈ ∑

𝑐∈{0,1} 𝑀
𝑖, 𝑗 ,𝑠11,𝑠11
𝑏,𝑐

where 𝑀 𝑖,𝑠11
𝑏

is the

marginal
∑
𝑐∈{0,1} 𝑀

𝑖,succ(𝑖),𝑠11,𝑠11
𝑏,𝑐

as defined in the previous section. So we can rewrite our earlier

inequality as ∑︁
𝑏∈{0,1}

TR
(
𝑆𝐴[𝑥 ↦→𝑥2𝑖−1 |𝑏]𝑀

𝑖,𝑠11
𝑏

)
≥ 1 − 𝛿(Y) .

Using Theorem 1.13 we can write this as closeness relation

𝑆𝐴[𝑥 ↦→𝑥2𝑖−1 |𝑏] ≈ 𝑀
𝑖,𝑠11
𝑏

.
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With a similar argument we obtain

𝑆𝐴[𝑥 ↦→𝑥2𝑖 |𝑏] ≈ 𝑀
𝑖,𝑠12
𝑏

.

Now using the identity

𝑆𝐴𝑥 =

𝑛∏
𝑖=1

𝑆𝐴[𝑦 ↦→𝑦𝑖 |𝑥𝑖]

and repeated applications of Theorem 1.8, we obtain

𝑆𝐴𝑥 ≈
𝑛/2∏
𝑖=1

𝑀 𝑖,𝑠11
𝑥2𝑖−1𝑀

𝑖,𝑠12
𝑥2𝑖 .

With a similar argument we obtain

𝑆𝐵𝑥 ≈
𝑛/2∏
𝑖=1

𝑀
𝑖+𝑛/2,𝑠11
𝑥2𝑖−1 𝑀

𝑖+𝑛/2,𝑠12
𝑥2𝑖 ,

𝐸 𝐴𝑥 ≈
𝑛/2∏
𝑖=1

𝑀 𝑖,𝑠22
𝑥2𝑖−1𝑀

𝑖,𝑠21
𝑥2𝑖 ,

𝐸𝐵𝑥 ≈
𝑛/2∏
𝑖=1

𝑀
𝑖+𝑛/2,𝑠22
𝑥2𝑖−1 𝑀

𝑖+𝑛/2,𝑠21
𝑥2𝑖 .

Now by the definition of the sampling and erasure observables, we have

𝑂𝑆𝐴
𝑢 ≈ (𝐴(1))𝑢1 (𝐴(2))𝑢2 · · · (𝐴(𝑛))𝑢𝑛 ,

𝑂𝑆𝐴
𝑢 ≈ (𝐴(𝑛/2+1))𝑢1 (𝐴(𝑛/2+2))𝑢2 · · · (𝐴(𝑛))𝑢𝑛 ,

𝑂𝐸𝐴
𝑢 ≈ (𝐵(1))𝑢1 (𝐵(2))𝑢2 · · · (𝐵(𝑛))𝑢𝑛 ,

𝑂𝐸𝐴
𝑢 ≈ (𝐵(𝑛/2+1))𝑢1 (𝐵(𝑛/2+2))𝑢2 · · · (𝐵(𝑛))𝑢𝑛 ,

where 𝐴(𝑖) and 𝐵( 𝑗) are as defined in Theorem 1.23. Properties 1-3 now follow easily from the

rigidity of 2-OF-𝑛-MS in Theorem 1.23.

80



Finally, we prove 4 using 1-3. We have 𝑂𝐸𝑊
𝑥 𝑆𝑊𝑥 𝑂

𝐸𝑊
𝑥 ≈ 𝑆𝑊0𝑛 for every 𝑥 ∈ {0, 1}𝑛. Apply-

ing Proposition 1.8, we obtain 𝜏(𝑂𝐸𝑊
𝑥 𝑆𝑊𝑥 𝑂

𝐸𝑊
𝑥 ) ≈ 𝜏(𝑆𝑊0𝑛). By cyclicity of tracial states we have

𝜏(𝑆𝑊𝑥 ) ≈ 𝜏(𝑆𝑊0𝑛). Now

1 = 𝜏(
∑︁
𝑥

𝑆𝑊𝑥 ) ≈ 2𝑛𝜏(𝑆𝑊0𝑛),

from which we get that 𝜏(𝑀𝑆𝑊
0𝑛 ) ≈ 2−𝑛. Similarly 𝜏(𝑆𝑊𝑥 ) ≈ 2−𝑛 for 𝑥 ≠ 0𝑛.

Similar to the above line of reasoning, by repeated applications of Theorem 1.8 we have

1 =
∑︁
𝑥,𝑦

𝜏(𝑆𝑊𝑥 𝑆𝑊𝑦 )

=
∑︁
𝑥,𝑦

𝜏((𝑂𝐸𝑊
𝑥 )2(𝑂

𝐸
𝑊
𝑦 )2𝑆𝑊𝑥 𝑆𝑊𝑦 )

≈
∑︁
𝑥,𝑦

𝜏(𝑂𝐸𝑊
𝑥 𝑆𝑊𝑥 𝑂

𝐸𝑊
𝑥 𝑂

𝐸
𝑊
𝑦 𝑆𝑊𝑦 𝑂

𝐸
𝑊
𝑦 )

≈
∑︁
𝑥,𝑦

𝜏(𝑆𝑊0𝑛𝑆
𝑊
0𝑛)

= 22𝑛𝜏(𝑆𝑊0𝑛𝑆
𝑊
0𝑛).

In the first approximation we used the fact that𝑊 operators approximately commute with𝑊 oper-

ators. The proof for erasure measurements is identical. □

Corollary 1.25 (Entanglement bound for Question Sampling). Let 𝒮 = (𝜏, {𝑀𝑞}𝑞∈Q𝑛) be a syn-

chronous strategy for QS𝑛 over a von Neumann algebra 𝒜 ⊂ 𝐵(H). If 𝜔(QS𝑛,𝒮) ≥ 1 − Y for

sufficiently small Y > 0, then dim(H) > (1 − 𝛿(𝑛, Y))22𝑛.

Furthermore there exists a projection Π ∈ 𝒜 such that 𝜏(Π) ≈ 2−2𝑛 and Π ≈ 𝑆𝐴0𝑛𝑆
𝐵
0𝑛 .

Proof. The inequality dim(H) > (1 − 𝛿(𝑛, Y))2𝑛 is immediate from Theorem 1.23 and Theo-

rem 1.22. We now prove Π exists. Let 𝑀 = 𝑆𝐴0𝑛𝑆
𝐵
0𝑛𝑆

𝐴
0𝑛 and note that {𝑀, 1 − 𝑀} is a POVM.

Indeed we have 0 ⪯ 𝑆𝐴0𝑛 (1 − 𝑆
𝐵
0𝑛)𝑆

𝐴
0𝑛 ⪯ 1 − 𝑀 in positive semidefinite ordering. Since 𝑆𝐴0𝑛 and 𝑆𝐵0𝑛
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approximately commute, we can write

𝑀2 = 𝑆𝐴0𝑛𝑆
𝐵
0𝑛𝑆

𝐴
0𝑛𝑆

𝐴
0𝑛𝑆

𝐵
0𝑛𝑆

𝐴
0𝑛

≈ 𝑆𝐴0𝑛𝑆
𝐵
0𝑛𝑆

𝐴
0𝑛

= 𝑀.

Therefore we also have (1 − 𝑀)2 = 1 − 2𝑀 + 𝑀2 ≈ 1 − 𝑀 . So we can apply Lemma 1.17 to

obtain a projection Π ∈ 𝒜 such that Π ≈ 𝑆𝐴0𝑛𝑆
𝐵
0𝑛𝑆

𝐴
0𝑛 . Now again since 𝑆𝐴0𝑛 and 𝑆𝐵0𝑛 approximately

commute, we get that Π ≈ 𝑆𝐴0𝑛𝑆
𝐵
0𝑛 . An application of Proposition 1.8 gives us 𝜏(Π) ≈ 𝜏(𝑆𝐴0𝑛𝑆

𝐵
0𝑛).

The result 𝜏(Π) ≈ 2−2𝑛 now follows from item 4 in the preceding theorem.

□

We finish this section by stating a technical lemma. The lemma holds in a more general setting

but here we restricted attention only to the Question Sampling game.

Lemma 1.26. Let 𝒮 = (𝜏, {𝑀𝑞}𝑞∈Q𝑛) be a synchronous strategy for QS𝑛 over a von Neumann

algebra 𝒜 ⊂ 𝐵(H) and suppose 𝜔(QS𝑛,𝒮) ≥ 1− Y. Also let Π be the projection in the preceding

corollary and let Ĥ be the subspace Π projects onto. Then the set of operators

𝒜 = {Π𝑀Π : 𝑀 ∈ 𝒜} ⊂ 𝐵(Ĥ )

is a von Neumann algebra with unit Π. Furthermore, the functional 𝜎 : 𝐵(Ĥ ) → C defined by

𝜎(𝑁) = 𝜏(𝑁)
𝜏(Π) , for every 𝑁 ∈ 𝐵(Ĥ ), is a tracial state on 𝒜.

Proof. For a proof that 𝒜 is a von Neumann algebra see the section on “Elementary properties

of von Neumann algebras” in the notes by Vaughan Jones [46]. The functional 𝜎 is a positive

linear functional because 𝜏 is a positive linear functional. It is unital because 𝜎(1Ĥ ) = 𝜎(Π) =

𝜏(Π)/𝜏(Π) = 1. It is cyclic on 𝒜 because 𝜏 is cyclic on 𝒜 and 𝒜 ⊂ 𝒜. □
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1.4 Question Reduction

In this section we present the Question Reduction transformation, whose properties are given

by the following Theorem.

Theorem 1.27 (Question Reduction). For all 𝛼 ∈ N, there exists a polynomial-time algorithm

A𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛼 that takes as input a pair of Turing machines (𝐷,𝐶) and outputs a pair

of Turing machines (𝐷intro, 𝐶intro) such that the following holds. If 𝒱 = (𝐷,𝐶) is a verifier for a

sequence of games 𝒢𝒱 = (𝐺𝑛)𝑛∈N and 𝑛0 ∈ N is an integer such that for all 𝑛 ≥ 𝑛0,

max
{
TIME𝐶 (𝑛),TIME𝐷 (𝑛)

}
≤ 𝑛𝛼 ,

then 𝒱
intro = (𝐷intro, 𝐶intro) is a verifier corresponding to a sequence of games𝒢

𝒱intro = (𝐺 intro
𝑛 )𝑛∈N

with the following properties. There exists 𝛽 = poly(𝛼) ∈ N and 𝑛intro
0 = poly(𝛽, 𝑛0) ∈ N such that

for all 𝑛 ≥ 𝑛intro
0 ,

1. (Complexity bounds)

The questions of 𝐺 intro
𝑛 have length at most log𝛽 𝑛,

TIME𝐶intro (𝑛) ≤ log𝛽 𝑛 , and

TIME𝐷intro (𝑛) ≤ 𝑛𝛽

2. (Completeness) For all oracularizable synchronous strategies 𝒮 for𝐺𝑛, there exists an orac-

ularizable synchronous strategy 𝒮intro for 𝐺 intro
𝑛 such that

𝜔(𝐺 intro
𝑛 ,𝒮intro) ≥ 𝜔(𝐺𝑛,𝒮).

Furthermore, if 𝒮 is finite-dimensional, then so is 𝒮intro.
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3. (Soundness) For all 𝑡 ∈ {𝑞, 𝑐𝑜} we have

𝜔𝑠𝑡 (𝐺𝑛) < 1 =⇒ 𝜔𝑠𝑡 (𝐺 intro
𝑛 ) < 1 .

4. (Entanglement bound)

E(𝐺 intro
𝑛 , 1) ≥ max

{
E(𝐺𝑛, 1), 22𝑛} .

Intuitively, the Question Reduction transformation transforms a sequence of games (𝐺1, 𝐺2, . . .)

to a sequence (𝐺 intro
1 , 𝐺 intro

2 , . . .) of “Introspection games” such that the question lengths of the In-

trospection game 𝐺 intro
𝑛 is polylogarithmic in the time complexity of the “original game” 𝐺𝑛 while

the value of 𝐺 intro
𝑛 approximates the value of 𝐺𝑛. In particular, the value of 𝐺 intro

𝑛 is 1 if and

only if the value of 𝐺𝑛 is 1. Furthermore, the time complexity of the Introspection game 𝐺 intro
𝑛

is polynomial in the time complexity of the original game 𝐺𝑛. The reason this is called “Ques-

tion Reduction” is because the question lengths of the original game 𝐺𝑛 can be as large as 𝑛𝛼

(because that’s the time complexity of the decision procedure 𝐷𝑛) and the question lengths of the

Introspection games are at most log𝛽 𝑛. The core of the Question Reduction transformation is the

Introspection protocol, which is a simplification of the one developed by [19, 4]. Aside from the

fact that we work in the setting of synchronous games, the two other major simplifications are that

• we only need to introspect games with uniform question distributions, and

• the transformation does not need to be gap preserving.

The bulk of this section will be spent on analyzing the Introspection protocol, and then in Sec-

tion 1.4.5 we prove Theorem 1.27.

1.4.1 Overview

Let 𝐺 = (X,A, 𝐷) be a synchronous game with X = {0, 1}ℓ,A = {0, 1}𝑚. We present a

transformation 𝐺 ↦→ 𝐺 intro where 𝐺 intro is called the Introspection game corresponding to 𝐺. The
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question lengths of 𝐺 intro will be much smaller than those of 𝐺, but the values of the two games

will still be tightly related.

At an intuitive level, the question lengths are reduced in 𝐺 intro by asking the players to “ask

themselves” – i.e., to introspect – their own questions from X. The players in 𝐺 intro are each

asked to sample a question 𝑥 ∈ X and answer with 𝑎 ∈ A as they would have answered in the

original game 𝐺 if they have received question 𝑥. The players then each respond with a tuple

(𝑥, 𝑎). If the players’ responses are (𝑥, 𝑎) and (𝑦, 𝑏), the decision procedure in 𝐺 intro will check

that 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1.

In order for the values of 𝐺 and 𝐺 intro to be meaningfully related, we need to ensure that the

players sample their introspected questions 𝑥 and 𝑦 from the uniform distribution (instead of, say,

always picking a fixed (𝑥∗, 𝑦∗) for which they have prepared winning answers). We ensure this by

introducing a small number of special questions in the game𝐺 intro. The cross-checks between these

special questions force the players to behave “honestly” (i.e., to sample (𝑥, 𝑦) from the uniform

distribution), or risk losing the game with some nonzero probability.

The Introspection game 𝐺 intro is an extension of the Question Sampling game QSℓ from Sec-

tion 1.3.3, where ℓ is the bit length of questions in the original game 𝐺. Recall that the Question

Sampling game certifies that the players have measurements for questions 𝑆𝐴, 𝑆𝐵, 𝐸𝐴, 𝐸𝐵 satisfy-

ing the rigidity properties detailed in Theorem 1.24.

In addition to these questions, the Introspection game has an additional question 𝐼, which

stands for “introspect”. When a player receives question 𝐼, they are expected to answer with a

tuple (𝑥, 𝑎, 𝑦, 𝑏) ∈ (X × A)2, and the players win if 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1. The Introspection game

certifies the measurement corresponding to 𝐼 is consistent with the following measurement process:

performing both 𝑆𝐴, 𝑆𝐵 measurements (which commute with each other) to produce (𝑥, 𝑦) ∈ X2,

and then performing measurements 𝑁𝑥 and 𝑁 𝑦 (which commute with each other when (𝑥, 𝑦) is a

nontrivial question pair in the original game) to produce (𝑎, 𝑏) ∈ A2. Furthermore, 𝑁𝑥 commutes

with the 𝐸𝐵 measurement and 𝑁 𝑦 commutes with the 𝐸𝐴 measurement.

The fact that the 𝐼 measurement is consistent with 𝑆𝐴, 𝑆𝐵 ensures that the distribution of the
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pair (𝑥, 𝑦) is uniform over X2. The fact that the the measurements 𝑁𝑥 , 𝑁 𝑦 commute with the 𝐸𝐵

and 𝐸𝐴 measurements, respectively, ensures that the output 𝑎 of 𝑁𝑥 does not depend on 𝑦 and

similarly the output 𝑏 of 𝑁 𝑦 does not depend on 𝑥. Thus the measurements {𝑁𝑥} give rise to a

strategy for the original game 𝐺, and thus the value of 𝐺 intro is related to that of 𝐺.

There are several other questions that are used in the Introspection game 𝐺 intro to ensure these

consistency properties. Overall, the number of questions in𝐺 intro is |QSℓ | +7, and thus the question

lengths represented in binary is ⌈log( |QSℓ | + 7)⌉ = 𝑂 (log(ℓ)).

We formally define the Introspection game next.

1.4.2 Definition of Introspection game

Throughout this section, we write𝑊 to denote a value from the set {𝐴, 𝐵}, and we write

𝑊 =


𝐵 if𝑊 = 𝐴,

𝐴 if𝑊 = 𝐵.

.

The Introspection game 𝐺 intro corresponding to 𝐺 is a synchronous game (Qintro,Aintro, 𝐷intro)

with

Qintro = QQSℓ ∪ { 𝐼 } ∪ { 𝐼𝑊 , 𝐼𝑊𝑆𝑊 , 𝐼𝑊𝐸𝑊 }𝑊∈{𝐴,𝐵},

Aintro = AQSℓ ∪ X ∪ (X × A) ∪ (X × A × X) ∪ (X × A × X × A) .

The symbol 𝐼 stands for introspect, and 𝑆 and 𝐸 stand for sample and erase as in the Question

Sampling game. We emphasize that the symbols 𝐼𝑊𝑆𝑊 and 𝐼𝑊𝐸𝑊 respectively are each individual

questions; for example 𝐼𝐴𝑆𝐵 is distinct from the questions 𝐼𝐴 and 𝑆𝐵, and is also distinct from the

question 𝐼𝐵𝑆𝐴.

The decision procedure 𝐷intro is specified by Table 1.4. On question pair (𝑞, 𝑟) and answer pair

(�̂�, �̂�), the decision procedure checks if (𝑞, 𝑟) is nontrivial according to the table, and if so, checks

the corresponding winning condition. For the sake of clarity, we omit the symmetric case where
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the question pair is (𝑟, 𝑞) and the answer pair is (�̂�, �̂�).

Nontrivial Question Pair (𝑞, 𝑟) Winning Condition on Answers (�̂�, �̂�)

𝑞 = 𝑟 �̂� = �̂�

(𝑞, 𝑟) is nontrivial for QSℓ 𝐷QSℓ (𝑞, 𝑟, �̂�, �̂�) = 1

𝑞 = 𝐼

(
(𝑥𝐴, 𝑥𝐵) is trivial for 𝐺

)
or

(
𝑧 = 𝑥𝑊 ∧ 𝑐 = 𝑎𝑊 ∧ 𝐷 (𝑥𝐴, 𝑥𝐵, 𝑎𝐴, 𝑎𝐵) = 1

)
𝑟 = 𝐼𝑊 where �̂� = (𝑥𝐴, 𝑎𝐴, 𝑥𝐵, 𝑎𝐵) ∈ (X × A)2 and �̂� = (𝑧, 𝑐) ∈ X × A

𝑞 = 𝐼𝑊 𝑧 = 𝑥𝑊 ∧ 𝑐 = 𝑎𝑊

𝑟 = 𝐼𝑊𝑆𝑊 where �̂� = (𝑥𝑊 , 𝑎𝑊 ) ∈ X × A and �̂� = (𝑧, 𝑐, 𝑥
𝑊
) ∈ X × A × X

𝑞 = 𝐼𝑊 𝑧 = 𝑥𝑊

𝑟 = 𝑆𝑊 where �̂� = (𝑥𝑊 , 𝑎𝑊 ) ∈ X × A and �̂� = 𝑧 ∈ X

𝑞 = 𝐼𝑊 𝑧 = 𝑥𝑊 ∧ 𝑐 = 𝑎𝑊

𝑟 = 𝐼𝑊𝐸𝑊 where �̂� = (𝑥𝑊 , 𝑎𝑊 ) ∈ X × A and �̂� = (𝑧, 𝑐, 𝑥
𝑊
) ∈ X × A × X

𝑞 = 𝐼𝑊𝐸𝑊 𝑧 = 𝑥
𝑊

𝑟 = 𝐸
𝑊

where �̂� = (𝑥𝑊 , 𝑎𝑊 , 𝑥𝑊 ) ∈ X × A × X and �̂� = 𝑧 ∈ X

𝑞 = 𝐼𝑊𝑆𝑊 𝑧 = 𝑥
𝑊

𝑟 = 𝑆
𝑊

where �̂� = (𝑥𝑊 , 𝑎𝑊 , 𝑥𝑊 ) ∈ X × A × X and �̂� = 𝑧 ∈ X

Table 1.4: The nontrivial question pairs and winning conditions for the Introspection game 𝐺 intro.

The nontrivial question pairs of the Introspection game 𝐺 intro, apart from those in the Question

Sampling game QSℓ, are also depicted as a graph in Figure 1.3. The questions are connected via

an edge if they form a nontrivial question pair (and self-loops are not drawn for clarity).

The rationale behind the questions 𝐼𝑊𝑆𝑊 and 𝐼𝑊𝐸𝑊 is the following. A player receiving the

composite question 𝐼𝑊𝑆𝑊 , for example, is expected to answer both questions 𝐼𝑊 and 𝑆
𝑊

. By cross-

checking this player’s answers against the other player (who may have received either 𝐼𝑊 or 𝑆
𝑊

alone), the game ensures that the measurements corresponding to 𝐼𝑊 and 𝑆
𝑊

commute, and this in
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𝐼𝐴𝑆𝐵 𝑆𝐵

𝐼𝐴𝐼𝐴𝐸𝐵 𝐼 𝐼𝐵 𝐼𝐵𝐸𝐴𝐸𝐵 𝐸𝐴

𝑆𝐴 𝐼𝐵𝑆𝐴

Figure 1.3: A node indicates a special question in 𝐺 intro. A pair of questions are connected with an edge if
the pair is a nontrivial question pair as defined in Section 1.2.4. There should also be loops on every node
(which we omitted here for clarity).

turn enables the “honest” strategy in the completeness case to be oracularizable. This and more

will become clear in the next subsection.

1.4.3 Completeness of Introspection

As mentioned earlier, we need to show that the value of the original game and the introspected

game are tightly related. This has two directions. First we need to show that if 𝐺 has a perfect

strategy so does 𝐺 intro; this is called the completeness property. In fact we prove the following

stronger statement.

Proposition 1.28 (Completeness of Introspection). For all oracularizable synchronous strategies

𝒮 for 𝐺, there exists an oracularizable synchronous strategy 𝒮intro for 𝐺 intro such that

𝜔(𝐺 intro,𝒮intro) ≥ 𝜔(𝐺,𝒮) .

Furthermore, if 𝒮 is finite-dimensional then so is 𝒮intro.

Recall that a synchronous strategy 𝒮 for a synchronous game 𝐺 is oracularizable if for ev-

ery nontrivial question pair (𝑞, 𝑟), the corresponding measurement operators commute (see Theo-

rem 1.19).

Proof. Let 𝒮 = (𝜎, {𝑁𝑥}𝑥∈X) be an oracularizable synchronous strategy for 𝐺 and let 𝒮QSℓ =

(𝜏, {𝑀𝑞}𝑞∈QQSℓ
) be the “honest” perfect oracularizable strategy for the Question Sampling game

88



QSℓ as defined in Section 1.3.3. Let HQSℓ , H𝒮 and 𝒜QSℓ ⊆ B(HQSℓ ),𝒜𝒮 ⊆ B(H𝒮) denote the

Hilbert spaces and algebras of the two strategies, respectively. We define a synchronous strategy

𝒮
intro = (𝜌, {𝑃𝑞}𝑞∈Qintro), which we call the honest Introspection strategy, for𝐺 intro over the algebra

𝒜QSℓ ⊗𝒜𝒮 with the tracial state 𝜌 = 𝜏 ⊗ 𝜎. In this proof we use the shorthand notation 𝑆𝑊𝑥 , 𝐸
𝑊
𝑥 to

denote the operators 𝑀𝑆𝑊
𝑥 , 𝑀𝐸𝑊

𝑥 from the strategy 𝒮QSℓ , respectively.

The measurement operators are defined as follows. For all 𝑞 ∈ QQSℓ and 𝑥 ∈ AQSℓ , let

𝑃
𝑞
𝑥 = 𝑀

𝑞
𝑥 ⊗ 1 where the 1 denotes the identity on the Hilbert space H𝒮. Since 𝑀𝑞

𝑥 is a projection

onHQSℓ , the operators {𝑃𝑞𝑥 } are also projections and furthermore form a measurement.

For all other questions 𝑞 ∈ Qintro \ QQSℓ , we define

𝑃
𝐼𝑊
𝑥,𝑎 B 𝑆𝑊𝑥 ⊗ 𝑁𝑥𝑎 , 𝑃

𝐼𝑊𝑆𝑊
𝑥,𝑎,𝑦 B 𝑆𝑊𝑥 𝑆

𝑊
𝑦 ⊗ 𝑁𝑥𝑎 , 𝑃

𝐼𝑊𝐸𝑊
𝑥,𝑎,𝑦 B 𝑆𝑊𝑥 𝐸

𝑊
𝑦 ⊗ 𝑁𝑥𝑎

for all 𝑊 ∈ {𝐴, 𝐵}, 𝑥, 𝑦 ∈ X, and 𝑎 ∈ A. The operator 𝑃𝐼𝑊𝑥,𝑎 is clearly a projection (because

𝑆𝑊𝑥 , 𝑁
𝑥
𝑎 are projections), and forms a projective measurement. In the honest Question Sampling

strategy the operators 𝑆𝑊𝑥 and 𝑆𝑊𝑦 commute (by Theorem 1.24), therefore 𝑃
𝐼𝑊𝑆𝑊
𝑥,𝑎,𝑦 forms a projective

measurement. Similarly 𝑆𝑊𝑥 and 𝐸𝑊𝑦 commute, therefore 𝑃
𝐼𝑊𝑆𝑊
𝑥,𝑎,𝑦 forms a projective measurement.

It should be clear now why we choose the notation 𝐼𝑊𝑆𝑊 and 𝐼𝑊𝐸𝑊 : in the honest Introspection

strategy, we have that

𝑃
𝐼𝑊𝑆𝑊
𝑥,𝑎,𝑦 = 𝑃

𝐼𝑊
𝑥,𝑎 𝑆

𝑊
𝑦 = 𝑆𝑊𝑦 𝑃

𝐼𝑊
𝑥,𝑎 and 𝑃

𝐼𝑊𝐸𝑊
𝑥,𝑎,𝑦 = 𝑃

𝐼𝑊
𝑥,𝑎 𝐸

𝑊
𝑦 = 𝐸𝑊𝑦 𝑃

𝐼𝑊
𝑥,𝑎 . (1.4.1)

It remains to define the projective measurement {𝑃𝐼
𝑥,𝑎,𝑦,𝑏

} for the Introspection question 𝐼. If

(𝑥, 𝑦) ∈ X × X is a nontrivial question in 𝐺, we define

𝑃𝐼𝑥,𝑎,𝑦,𝑏 B 𝑆𝐴𝑥 𝑆
𝐵
𝑦 ⊗ 𝑁𝑥𝑎 𝑁

𝑦

𝑏
.

Since 𝑁𝑥𝑎 and 𝑁 𝑦
𝑏

commute when (𝑥, 𝑦) is nontrivial for 𝐺 (because 𝒮 is oracularizable), we see
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that 𝑃𝐼
𝑥,𝑎,𝑦,𝑏

is a projection. If on the other hand (𝑥, 𝑦) is a trivial question in 𝐺, we define

𝑃𝐼𝑥,𝑎,𝑦,𝑏 B


𝑆𝐴𝑥 𝑆

𝐵
𝑦 ⊗ 1 if (𝑎, 𝑏) = (0𝑚, 0𝑚),

0 otherwise.

This is clearly a projective measurement as well. Intuitively, when a player receives the question 𝐼,

they first perform the sampling measurements 𝑆𝐴 and 𝑆𝐵 (which can be performed simultaneously

since they commute) to obtain a pair of questions (𝑥, 𝑦) ∈ X ×X for the original game 𝐺. If (𝑥, 𝑦)

is trivial for 𝐺, then the player outputs (𝑥, 0𝑚, 𝑦, 0𝑚). Otherwise, the player then simultaneously

measures 𝑁𝑥 and 𝑁 𝑦 (which commute since (𝑥, 𝑦) is nontrivial for 𝐺) to obtain answers (𝑎, 𝑏) ∈

A × A. The player then returns (𝑥, 𝑎, 𝑦, 𝑏) as its answer.

Clearly 𝒮
intro is finite-dimensional when 𝒮 is finite-dimensional. Next we show that 𝒮intro is

oracularizable and has success probability 1 in the Introspection game 𝐺 intro.

First, if (𝑞, 𝑟) is a trivial pair of questions for 𝐺 intro then by definition the players win with

probability 1 on those questions. Assume that (𝑞, 𝑟) is a nontrivial question pair.

Suppose that (𝑞, 𝑟) ∈ QQSℓ . Since 𝒮QSℓ is oracularizable and (𝑞, 𝑟) must also be nontrivial for

QSℓ, the measurement operators {𝑃𝑞𝑥 } and {𝑃𝑟𝑥} commute. Furthermore, by design the strategy

𝒮QSℓ succeeds with probability 1 in the game QSℓ and thus succeeds with probability 1 in 𝐺 intro

conditioned on questions from QQSℓ .

It remains to check the commutativity property and success probability for all question pairs

that are connected via an edge in Figure 1.3. For self-loops (i.e, question pairs (𝑞, 𝑞)), commuta-

tivity and success probability 1 are trivially satisfied because the operators 𝑃𝑞
�̂�

are projections. We

now check the other nontrivial question pairs.

(𝐼𝑊 , 𝑆𝑊 ): Commutativity follows because

𝑃
𝐼𝑊
𝑥,𝑎 𝑃

𝑆𝑊
𝑧 = 𝑆𝑊𝑥 𝑆

𝑊
𝑧 ⊗ 𝑁𝑥𝑎 = 𝑆𝑊𝑧 𝑆𝑊𝑥 ⊗ 𝑁𝑥𝑎 = 𝑃

𝑆𝑊
𝑧 𝑃

𝐼𝑊
𝑥,𝑎 .

Here we used the fact that 𝑆𝑊𝑥 , 𝑆
𝑊
𝑧 are elements of the same projective measurement and thus
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commute. The probability of winning conditioned on this question pair is

∑︁
𝑥,𝑎

𝜌(𝑃𝐼𝑊𝑥,𝑎 𝑃𝑆𝑊𝑥 ) =
∑︁
𝑥,𝑎

𝜏(𝑆𝑊𝑥 𝑆𝑊𝑥 ) 𝜎(𝑁𝑥𝑎) =
∑︁
𝑥

𝜏(𝑆𝑊𝑥 ) = 1 .

(𝐼𝑊 , 𝐼𝑊𝑆𝑊 ): Commutativity follows because

𝑃
𝐼𝑊
𝑥,𝑎 𝑃

𝐼𝑊𝑆𝑊
𝑧,𝑐,𝑦 = 𝑆𝑊𝑥 𝑆𝑊𝑧 𝑆𝑊𝑦 ⊗ 𝑁𝑥𝑎 𝑁 𝑧𝑐 = 𝑆𝑊𝑧 𝑆𝑊𝑦 𝑆𝑊𝑥 ⊗ 𝑁 𝑧𝑐 𝑁𝑥𝑎 = 𝑃

𝐼𝑊𝑆𝑊
𝑧,𝑐,𝑦 𝑃

𝐼𝑊
𝑥,𝑎 .

The second equality holds because if 𝑥 ≠ 𝑧, then 𝑆𝑊𝑥 𝑆𝑊𝑧 = 0 and the equality holds trivially. If

on the other hand 𝑥 = 𝑧, the equality holds because 𝑆𝑊𝑥 , 𝑆
𝑊
𝑦 commute with each other and 𝑁𝑥𝑎 , 𝑁

𝑥
𝑐

commute with each other.

The probability of winning conditioned on this question pair is

∑︁
𝑥,𝑎,𝑦

𝜌(𝑃𝐼𝑊𝑥,𝑎 𝑃
𝐼𝑊𝑆𝑊
𝑥,𝑎,𝑦 ) =

∑︁
𝑥,𝑎,𝑦

𝜌(𝑃𝐼𝑊𝑥,𝑎 𝑃𝐼𝑊𝑥,𝑎 𝑆𝑊𝑦 ) =
∑︁
𝑥,𝑎

𝜌(𝑃𝐼𝑊𝑥,𝑎) = 1

where in the first equality we used (1.4.1).

(𝐼𝑊 , 𝐼𝑊𝐸𝑊 ): The argument for this is nearly identical to that for the previous question pair, except

we replace the sampling measurement 𝑆𝑊 with the erasure measurement 𝐸𝑊 .

(𝐼𝑊𝑆𝑊 , 𝑆𝑊 ): Commutativity follows because

𝑃
𝐼𝑊𝑆𝑊
𝑥,𝑎,𝑦 𝑆𝑊𝑧 = 𝑃

𝐼𝑊
𝑥,𝑎 𝑆

𝑊
𝑦 𝑆𝑊𝑧 = 𝑆𝑊𝑧 𝑃

𝐼𝑊
𝑥,𝑎 𝑆

𝑊
𝑦 = 𝑆𝑊𝑧 𝑃

𝐼𝑊𝑆𝑊
𝑥,𝑎,𝑦

where in the first equality we used (1.4.1), and then we used the fact that 𝑆𝑊𝑧 commute with 𝑃𝐼𝑊𝑥,𝑎.

The probability of winning conditioned on this question pair is

∑︁
𝑥,𝑎,𝑦

𝜌(𝑃𝐼𝑊𝑆𝑊𝑥,𝑎,𝑦 𝑆𝑊𝑦 ) =
∑︁
𝑥,𝑎,𝑦

𝜌(𝑃𝐼𝑊𝑥,𝑎 𝑆𝑊𝑦 𝑆𝑊𝑦 ) =
∑︁
𝑥,𝑎

𝜌(𝑃𝐼𝑊𝑥,𝑎) = 1

where in the first equality we used (1.4.1) and in the second equality we used the fact that 𝑆𝑊𝑦 is a
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projection and forms a measurement.

(𝐼𝑊𝐸𝑊 , 𝐸𝑊 ): The argument for this is identical to that for the previous question pair, except we

replace the sampling measurement 𝑆𝑊 with 𝐸𝑊 .

(𝐼, 𝐼𝑊 ): Assume without loss of generality that 𝑊 = 𝐴. Commutativity is due to the following.

Suppose (𝑥, 𝑦) is a trivial question pair for 𝐺. Then

𝑃𝐼𝑥,0,𝑦,0 𝑃
𝐼𝐴
𝑧,𝑐 = 𝑆

𝐴
𝑥 𝑆

𝐵
𝑦 𝑆

𝐴
𝑧 ⊗ 𝑁 𝑧𝑐 = 𝑆𝐴𝑧 𝑆𝐴𝑥 𝑆𝐵𝑦 ⊗ 𝑁 𝑧𝑐 = 𝑃𝐼𝐴𝑧,𝑐 𝑃𝐼𝑥,0,𝑦,0

where 0 is shorthand for 0𝑚, and for all (𝑎, 𝑏) ≠ (0𝑚, 0𝑚) we have

𝑃𝐼𝑥,𝑎,𝑦,𝑏 𝑃
𝐼𝐴
𝑧,𝑐 = 0 = 𝑃𝐼𝐴𝑧,𝑐 𝑃

𝐼
𝑥,𝑎,𝑦,𝑏 .

If (𝑥, 𝑦) is a nontrivial question pair for 𝐺 then

𝑃𝐼𝑥,𝑎,𝑦,𝑏 𝑃
𝐼𝐴
𝑧,𝑐 = 𝑆

𝐴
𝑥 𝑆

𝐵
𝑦 𝑆

𝐴
𝑧 ⊗ 𝑁𝑥𝑎 𝑁

𝑦

𝑏
𝑁 𝑧𝑐 = 𝑆

𝐴
𝑧 𝑆

𝐴
𝑥 𝑆

𝐵
𝑦 ⊗ 𝑁 𝑧𝑐 𝑁𝑥𝑎 𝑁

𝑦

𝑏
= 𝑃𝐼𝐴𝑧,𝑐 𝑃

𝐼
𝑥,𝑎,𝑦,𝑏

where the second equality holds because if 𝑥 ≠ 𝑧, then 𝑆𝐴𝑥 𝑆
𝐵
𝑦 𝑆

𝐴
𝑧 = 0 and the equality holds

trivially. If on the other hand 𝑥 = 𝑧, the equality holds because 𝑁𝑥𝑎 , 𝑁
𝑦

𝑏
, 𝑁𝑥𝑐 all commute (because

(𝑥, 𝑦) is a nontrivial question pair and 𝑁𝑥𝑎 , 𝑁
𝑥
𝑐 are elements of the same projective measurement).

We calculate the probability of success as follows. If (𝑥, 𝑦) is a nontrivial question pair in the

original game 𝐺 we have

𝜌(𝑃𝐼𝑥,𝑎,𝑦,𝑏 𝑃
𝐼𝐴
𝑧,𝑐) = 𝜏(𝑆𝐴𝑥 𝑆𝐵𝑦 𝑆𝐴𝑧 ) 𝜎(𝑁𝑥𝑎 𝑁

𝑦

𝑏
𝑁 𝑧𝑐) = 2−2ℓ 𝜎(𝑁𝑥𝑎 𝑁

𝑦

𝑏
) 1𝑧=𝑥,𝑐=𝑎

where we used the fact that in the honest strategy 𝒮QSℓ we have 𝜏(𝑆𝐴𝑥 𝑆𝐵𝑦 ) = 2−2ℓ. Notation 1𝑧=𝑥,𝑐=𝑎

denotes the indicator variable for the equalities 𝑧 = 𝑥, 𝑐 = 𝑎. If (𝑥, 𝑦) is trivial we have

𝜌(𝑃𝐼𝑥,𝑎,𝑦,𝑏 𝑃
𝐼𝐴
𝑧,𝑐) = 2−2ℓ 𝜎(𝑁 𝑧𝑐) 1𝑧=𝑥,𝑎=𝑏=0𝑚 .
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So the probability of winning using 𝒮
intro conditioned on players receiving question pair (𝐼, 𝐼𝐴)

is

∑︁
𝑥,𝑎,𝑦,𝑏,𝑧,𝑐

𝜌(𝑃𝐼𝑥,𝑎,𝑦,𝑏 𝑃
𝐼𝐴
𝑧,𝑐) 𝐷intro(𝐼, 𝐼𝐴, (𝑥, 𝑎, 𝑦, 𝑏), (𝑧, 𝑐))

=
1

22ℓ

∑︁
(𝑥,𝑦)

nontrivial for 𝐺

∑︁
𝑎,𝑏

𝜎(𝑁𝑥𝑎 𝑁
𝑦

𝑏
) 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) + 1

22ℓ

∑︁
(𝑥,𝑦)

trivial for 𝐺

∑︁
𝑐

𝜎(𝑁𝑥𝑐 )

=
1

22ℓ

∑︁
(𝑥,𝑦)

nontrivial for 𝐺

∑︁
𝑎,𝑏

𝜎(𝑁𝑥𝑎 𝑁
𝑦

𝑏
) 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) + 1

22ℓ

∑︁
(𝑥,𝑦)

trivial for 𝐺

1

=
1

22ℓ

∑︁
(𝑥,𝑦)

nontrivial for 𝐺

∑︁
𝑎,𝑏

𝜎(𝑁𝑥𝑎 𝑁
𝑦

𝑏
) 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) + 1

22ℓ

∑︁
(𝑥,𝑦)

trivial for 𝐺

∑︁
𝑎,𝑏

𝜎(𝑁𝑥𝑎 𝑁
𝑦

𝑏
) 𝐷 (𝑥, 𝑦, 𝑎, 𝑏)

= 𝜔(𝐺,𝒮)

where in the third line we used that {𝑁𝑥𝑐 } is a measurement, and in the fourth line we used that

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1 for all trivial (𝑥, 𝑦).

So conditioned on any pair of questions the players win with probability 1 using strategy 𝒮
intro,

except when they receive question pair (𝐼, 𝐼𝐴) or (𝐼, 𝐼𝐵) in which case they win with probability

𝜔(𝐺,𝒮). From this we conclude that 𝜔(𝐺 intro,𝒮intro) ≥ 𝜔(𝐺,𝒮). □

1.4.4 Soundness of Introspection

The second part of showing that the value of the original game and the introspected game are

tightly related is called soundness. Informally speaking the soundness property states that if the

original game has no perfect strategy, then neither does the introspected game.

In the soundness proposition below, we also prove a lower bound on the dimension of the

Hilbert space for any perfect strategy of 𝐺 intro. We show this dimension is at least as big as the

maximum of 22ℓ and the smallest dimension of a Hilbert space among all perfect strategies of 𝐺.

Recall that ℓ is the bit length of questions in 𝐺. This dimension lower bound will be used later in

the section on compression.
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Proposition 1.29 (Soundness of Introspection). For all 𝑡 ∈ {𝑞, 𝑐𝑜}

𝜔𝑠𝑡 (𝐺 intro) = 1 =⇒ 𝜔𝑠𝑡 (𝐺) = 1.

Furthermore it holds that

E(𝐺 intro, 1) ≥ max
{
E(𝐺, 1), 22ℓ} .

At a high level, the proof of Theorem 1.29 proceeds by taking a synchronous strategy 𝒮
intro =

(𝜌, {𝑃𝑞}𝑞∈Qintro) for 𝐺 intro that succeeds with probability 1 − Y, with Y sufficiently small, and “ex-

tracting” from it a strategy 𝒮 = (𝜎, {𝑁𝑥}𝑥∈X) for the original game𝐺 that has value 1−𝛿(Y) where

𝛿 is a proper error function (see Section 1.2.5 for definition of proper error function). The error

function 𝛿 also has a dependence on ℓ, but since we do not need to carry that around, we hide it in

our notation 𝛿(Y).

Note that 𝜔𝑠𝑞 (𝐺 intro) = 1 does not imply the existence of a finite-dimensional synchronous

strategy with value 1. All we can guarantee is that for every Y > 0 there exists a finite-dimensional

synchronous strategy with value at least 1 − Y. On the other hand 𝜔𝑠𝑐𝑜 (𝐺 intro) = 1 means that there

exists a perfect synchronous strategy for 𝐺 intro.

To make the notation easier to read, we use the following abbreviations for the measurements

𝑃𝑞 corresponding to the questions 𝑞 ∈ { 𝐼, 𝐼𝑊 , 𝐼𝑊𝑆𝑊 , 𝐼𝑊𝐸𝑊 , 𝑆𝑊 , 𝐸𝑊 }𝑊∈{𝐴,𝐵} ⊆ Qintro. For

all𝑊 ∈ {𝐴, 𝐵}, 𝑥, 𝑦 ∈ X and 𝑎, 𝑏 ∈ A,

𝐼𝑥,𝑎,𝑦,𝑏 = 𝑃
𝐼
𝑥,𝑎,𝑦,𝑏 , 𝐼𝑊𝑥,𝑎 = 𝑃

𝐼𝑊
𝑥,𝑎 , (𝐼𝑊𝑆𝑊 )𝑥,𝑎,𝑦 = 𝑃

𝐼𝑊𝑆𝑊
𝑥,𝑎,𝑦

(𝐼𝑊𝐸𝑊 )𝑥,𝑎,𝑦 = 𝑃
𝐼𝑊𝐸𝑊
𝑥,𝑎,𝑦 , 𝑆𝑊𝑥 = 𝑃

𝑆𝑊
𝑥 , 𝐸𝑊𝑥 = 𝑃

𝐸𝑊
𝑥 .

Furthermore, we define the erasure observables

𝑂𝑊𝑥 =
∑︁
𝑦∈X
(−1)𝑥·𝑦 𝐸𝑊𝑦
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for 𝑊 ∈ {𝐴, 𝐵}. Unlike the section on Question Sampling, we do not need to define sampling

observables for the purpose of proving the current proposition. We use · in the subscript to indicate

the data-processed measurement that ignores part of the measurement outcome, so for example

𝐼·,𝑎,𝑦,𝑏 =
∑︁
𝑥∈X

𝐼𝑥,𝑎,𝑦,𝑏,

𝐼𝑥,·,𝑦,𝑏 =
∑︁
𝑎∈A

𝐼𝑥,𝑎,𝑦,𝑏,

𝐼𝑥,𝑎,·,· =
∑︁

𝑦∈X,𝑏∈A
𝐼𝑥,𝑎,𝑦,𝑏,

etc. We may sometime drop · when there is no risk of ambiguity, for example we may write 𝐼𝑊𝑥

instead of 𝐼𝑊𝑥,·.

We first prove two key lemmas establishing that in any strategy with large value certain com-

mutation relations are approximately satisfied and that introspected questions are almost uniformly

sampled. Throughout this section, we let 𝒮intro = (𝜌, {𝑃𝑞}𝑞∈Qintro) be a fixed synchronous strategy

for 𝐺 intro with value 1 − Y.

Lemma 1.30. The following approximate relations hold

𝐼𝑊𝑥 ≈ 𝑆𝑊𝑥

𝐼𝑊𝑥,𝑎 𝑆
𝑊
𝑦 ≈ 𝑆𝑊𝑦 𝐼𝑊𝑥,𝑎

𝐼𝑊𝑥,𝑎 𝑆
𝑊
𝑦 ≈ 𝑆𝑊𝑦 𝐼𝑊𝑥,𝑎

𝐼𝑊𝑥,𝑎 𝐸
𝑊
𝑦 ≈ 𝐸𝑊𝑦 𝐼𝑊𝑥,𝑎

𝐼𝑊𝑥,𝑎 𝑂
𝑊
𝑢 ≈ 𝑂𝑊𝑢 𝐼𝑊𝑥,𝑎 .

Proof. As mentioned in Section 1.2.5, when we write 𝐼𝑊𝑥 ≈ 𝑆𝑊𝑥 we mean 𝐼𝑊𝑥 ≈𝛿(Y) 𝑆𝑊𝑥 for some

function 𝛿 such that 𝛿(Y) → 0 as Y → 0.

Since the strategy is winning with probability 1 − Y, the winning probability conditioned on

receiving question (𝐼𝑊 , 𝑆𝑊 ) is at least 1− |Qintro |2Y. The expression for the probability of winning
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conditioned on players receiving question pair (𝐼𝑊 , 𝑆𝑊 ) is

∑︁
𝑥,𝑎,𝑦

𝜌(𝐼𝑊𝑥,𝑎 𝑆𝑊𝑦 )𝐷intro(𝐼𝑊 , 𝑆𝑊 , (𝑥, 𝑎), 𝑦) =
∑︁
𝑥,𝑎

𝜌(𝐼𝑊𝑥,𝑎 𝑆𝑊𝑥 )

=
∑︁
𝑥

𝜌(𝐼𝑊𝑥 𝑆𝑊𝑥 ).

Therefore we have ∑︁
𝑥

𝜌(𝐼𝑊𝑥 𝑆𝑊𝑥 ) ≈ 1,

or equivalently that 𝐼𝑊𝑥 ≃ 𝑆𝑊𝑥 . By Lemma 1.13, we get that 𝐼𝑊𝑥 ≈ 𝑆𝑊𝑥 . By Proposition 1.8, we

obtain that 𝐼𝑊𝑥,𝑎 𝑆
𝑊
𝑦 ≈ 𝐼𝑊𝑥,𝑎 𝐼𝑊𝑦 from which we arrive at our first approximate commutation relation

𝐼𝑊𝑥,𝑎 𝑆
𝑊
𝑦 ≈ 𝐼𝑊𝑥,𝑎 𝐼𝑊𝑦 = 𝐼𝑊𝑦 𝐼

𝑊
𝑥,𝑎 ≈ 𝑆𝑊𝑦 𝐼𝑊𝑥,𝑎

where the equality in the middle follows because operators belonging to the same projective mea-

surement commute. This is the basic idea behind the proof of the remaining approximate relations.

Next we prove the approximate commutation relation 𝐼𝑊𝑥,𝑎 𝐸
𝑊
𝑦 ≈ 𝐸𝑊𝑦 𝐼𝑊𝑥,𝑎 (the relation 𝐼𝑊𝑥,𝑎 𝑆

𝑊
𝑦 ≈

𝑆𝑊𝑦 𝐼
𝑊
𝑥,𝑎 is proved nearly identically). Similar to our argument above for (𝐼𝑊 , 𝑆𝑊 ), the players

winning probability conditioned on receiving question pair (𝐸
𝑊
, 𝐼𝑊𝐸𝑊 ) is 1 − 𝛿(Y), that is

∑︁
𝑦

𝜏(𝐸𝑊𝑦 (𝐼𝑊𝐸𝑊 )𝑦) ≈ 1

from which, similar to the argument above, we arrive at 𝐸𝑊𝑦 ≈ (𝐼𝑊𝐸𝑊 )𝑦. With a similar argument,

this time starting from the winning probability conditioned on question pair (𝐼𝑊 , 𝐼𝑊𝐸𝑊 ), we get
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that 𝐼𝑊𝑥,𝑎 ≈ (𝐼𝑊𝐸𝑊 )𝑥,𝑎. Putting these together we obtain

𝐼𝑊𝑥,𝑎 𝐸
𝑊
𝑦 ≈ (𝐼𝑊𝐸𝑊 )𝑥,𝑎 (𝐼𝑊𝐸𝑊 )𝑦

= (𝐼𝑊𝐸𝑊 )𝑦 (𝐼𝑊𝐸𝑊 )𝑥,𝑎

≈ 𝐸𝑊𝑦 𝐼𝑊𝑥,𝑎 .

Finally the last approximate commutation relation follows

𝐼𝑊𝑥,𝑎 𝑂
𝑊
𝑢 =

∑︁
𝑦∈X
(−1)𝑦.𝑢 𝐼𝑊𝑥,𝑎 𝐸𝑊𝑦

≈
∑︁
𝑦∈X
(−1)𝑦.𝑢𝐸𝑊𝑦 𝐼𝑊𝑥,𝑎

= 𝑂𝑊𝑢 𝐼
𝑊
𝑥,𝑎 .

Switching the order of multiplication in 𝐼𝑊𝑥,𝑎 𝐸
𝑊
𝑦 incurs an error of 𝛿(Y) for each 𝑥, 𝑎, 𝑦. So over

all the norm of
∑
𝑦∈X (−1)𝑦.𝑢 𝐼𝑊𝑥,𝑎 𝐸𝑊𝑦 −

∑
𝑦∈X (−1)𝑦.𝑢𝐸𝑊𝑦 𝐼𝑊𝑥,𝑎 is bounded above by |X ×A ×X|𝛿(Y)

which is another error function 𝛿(Y). □

Next lemma establishes that the introspected questions are sampled almost uniformly from the

question set of the original game. We then use this to justify that 𝐼𝑥,𝑎,𝑦,𝑏 is approximately 𝐼𝐴𝑥,𝑎 𝐼
𝐵
𝑦,𝑏

when 𝑥, 𝑦 is a nontrivial question pair in the original game.

Lemma 1.31. Let 𝐼𝑥,𝑦 = 𝐼𝑥,·,𝑦,·. Then the following hold

𝐼𝑥,𝑦 ≈ 𝑆𝐴𝑥 𝑆𝐵𝑦 ,

𝜌(𝐼𝑥,𝑦) ≈
1

22ℓ .

Furthermore, if 𝑥, 𝑦 is a nontrivial question pair in the original game, then for every 𝑎, 𝑏 ∈ A

𝐼𝑥,𝑎,𝑦,𝑏 ≈ 𝐼𝐴𝑥,𝑎 𝐼𝐵𝑦,𝑏 .
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Proof. The players winning probability conditioned on receiving question pair (𝐼, 𝐼𝐴) is 1 − 𝛿(Y).

So
∑
𝑥 𝜌(𝐼𝑥,·,·,· 𝐼𝐴𝑥 ) = 1 − 𝛿(Y) where 𝐼𝐴𝑥 =

∑
𝑎 𝐼

𝐴
𝑥,𝑎. Therefore 𝐼𝑥,·,·,· ≈ 𝐼𝐴𝑥 and consequently 𝐼𝑥,·,·,· ≈

𝑆𝐴𝑥 by Theorem 1.13. Similarly 𝐼·,𝑦,·,· ≈ 𝐼𝐵𝑦 ≈ 𝑆𝐵𝑦 . Thus we have 𝐼𝑥,𝑦 = 𝐼𝑥,·,·,· 𝐼·,𝑦,·,· ≈ 𝑆𝐴𝑥 𝑆𝐵𝑦 . By

Theorem 1.24 and Theorem 1.8, we conclude that 𝜌(𝐼𝑥,𝑦) ≈ 1
22ℓ .

So far we established that any question pair (𝑥, 𝑦) in the answer to the Introspection question

𝐼 occurs almost uniformly, that is with probability approximately 1/22ℓ. Fix a nontrivial question

pair 𝑥, 𝑦 in the original game. The probability of the event that players receive question pair (𝐼, 𝐼𝐴)

and respond with (𝑥, 𝑎, 𝑦, 𝑏) and (𝑧, 𝑐), respectively, for some 𝑎, 𝑏, 𝑐 ∈ A and 𝑧 ∈ X is at least

(1−𝛿(Y))2−2ℓ/|Qintro |2. Since the overall strategy looses with probability at most Y, the probability

of loosing conditioned on this event is bonded above by

22ℓ |Qintro |2Y/(1 − 𝛿(Y)) ≤ 22ℓ |Qintro |2(1 + 𝛿(Y))Y = 𝛿(Y)

or in other words the probability of winning conditioned on this event is 1−𝛿(Y). It is now a simple

exercise in probability theory to see that conditioned on receiving question (𝐼, 𝐼𝐴), the probability

that player receiving 𝐼 answers with introspected questions (𝑥, 𝑦) and the players win is ≈ 2−2ℓ.

By the construction of the Introspection game, if the players win, then it must be that (𝑧, 𝑐) =

(𝑥, 𝑎). Therefore we have

∑︁
𝑎

𝜌(𝐼𝑥,𝑎,𝑦,· 𝐼𝐴𝑥,𝑎) =
∑︁
𝑎,𝑏

𝜌(𝐼𝑥,𝑎,𝑦,𝑏 𝐼𝐴𝑥,𝑎) ≈ 2−2ℓ .

Using the relation 𝐼𝑦 ≈ 𝑆𝐵𝑦 that we proved earlier together with the approximate commutations in

Theorem 1.30, we obtain

∑︁
𝑎

𝜌(𝐼𝑥,𝑎,𝑦,·(𝑆𝐵𝑦 𝐼𝐴𝑥,𝑎 𝑆𝐵𝑦 )) ≈
∑︁
𝑎

𝜌(𝐼𝑥,𝑎,𝑦,·(𝐼𝑦 𝐼𝐴𝑥,𝑎 𝐼𝑦)) =
∑︁
𝑎

𝜌(𝐼𝑥,𝑎,𝑦,· 𝐼𝐴𝑥,𝑎) ≈ 2−2ℓ . (1.4.2)
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Define positive semidefinite operators 𝑅𝑎 = 𝐼𝑥,𝑎,𝑦,· and 𝑆𝑎 = 𝑆𝐵𝑦 𝐼
𝐴
𝑥,𝑎𝑆

𝐵
𝑦 , and write

∑︁
𝑎

∥𝑅𝑎 − 𝑆𝑎∥2𝜌 =
∑︁
𝑎

𝜌(𝑅2
𝑎 + 𝑆2

𝑎 − 2𝑅𝑎 𝑆𝑎)

≤
∑︁
𝑎

𝜌(𝑅𝑎 + 𝑆𝑎 − 2𝑅𝑎𝑆𝑎)

=
∑︁
𝑎

𝜌(𝑅𝑎) + 𝜌(𝑆𝑎) − 2𝜌(𝑅𝑎 𝑆𝑎)

≤ 2(1 + 𝛿(Y))2−2ℓ − 2(1 − 𝛿(Y))2−2ℓ

= 𝛿(Y).

The first inequality follows from the fact that 𝑅𝑎, 𝑆𝑎 are positive semidefinite with operator norm

≤ 1. The last inequality follows from 𝜌(∑𝑎 𝑅𝑎𝑆𝑎) ≈ 2−2ℓ which we proved in (1.4.2) and the

following two calculations

𝜌(
∑︁
𝑎

𝑅𝑎) = 𝜌(𝐼𝑥,𝑦) ≈ 2−2ℓ,

𝜌(
∑︁
𝑎

𝑆𝑎) = 𝜌(𝑆𝐵𝑦 𝐼𝐴𝑥 𝑆𝐵𝑦 ) = 𝜌(𝐼𝐴𝑥 𝑆𝐵𝑦 ) ≈ 𝜌(𝑆𝐴𝑥 𝑆𝐵𝑦 ) ≈ 2−2ℓ .

We conclude that 𝐼𝑥,𝑎,𝑦,· ≈ 𝑆𝐵𝑦 𝐼𝐴𝑥,𝑎 𝑆𝐵𝑦 ≈ 𝐼𝐴𝑥,𝑎 𝑆𝐵𝑦 . By a similar argument we get that

𝐼𝑥,·,𝑦,𝑏 ≈ 𝐼𝐵𝑦,𝑏 𝑆
𝐴
𝑥 .

Putting these two together

𝐼𝑥,𝑎,𝑦,𝑏 = 𝐼𝑥,𝑎,𝑦,· 𝐼𝑥,·,𝑦,𝑏 ≈ 𝐼𝐴𝑥,𝑎 𝑆𝐵𝑦 𝐼𝐵𝑦,𝑏 𝑆
𝐴
𝑥 ≈ 𝐼𝐴𝑥,𝑎 𝑆𝐴𝑥 𝐼𝐵𝑦,𝑏 𝑆

𝐵
𝑦 = 𝐼𝐴𝑥,𝑎 𝐼

𝐴
𝑥 𝐼𝐵𝑦,𝑏 𝐼

𝐵
𝑦 = 𝐼𝐴𝑥,𝑎 𝐼

𝐵
𝑦,𝑏 .

□

We first sketch a proof of Theorem 1.29. The key step is to establish that, in any strategy that

wins with high probability in 𝐺 intro, when players 𝐴 and 𝐵 receive questions 𝐼𝐴 and 𝐼𝐵, respec-
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tively, their answers (𝑥𝐴, 𝑎𝐴) and (𝑥𝐵, 𝑎𝐵) are such that (𝑥𝐴, 𝑥𝐵) is uniformly distributed in X ×X

and 𝑎𝐴 has no dependence on 𝑥𝐵 and similarly 𝑎𝐵 has no dependence on 𝑥𝐴. In other words play-

ers introspectively asked themselves a uniformly random question (𝑥𝐴, 𝑥𝐵) and produced answers

(𝑎𝐴, 𝑎𝐵) as they would have answered if they received question (𝑥𝐴, 𝑥𝐵) in the original game.

In Theorem 1.30, we proved that 𝐼𝑊𝑥 ≈ 𝑆𝑊𝑥 . This relation implies that on question 𝐼𝑊 the player

effectively obtains 𝑥𝑊 part of the answer by measuring {𝑆𝑊𝑥 }. So, by the rigidity properties of the

Question Sampling game, we get that (𝑥𝑎, 𝑥𝑏) is sampled (almost) uniformly at random fromX×X.

We also showed in Theorem 1.31 that (𝑥𝑎, 𝑥𝑏) in answer to question 𝐼 are also distributed (almost)

uniformly. From the rigidity properties of the Question Sampling game, measurements 𝑆𝑊 and

𝐸𝑊 (approximately) anticommute while they both (approximately) commute with measurements

𝑆𝑊 and 𝐸𝑊 . Additionally we saw in Theorem 1.30 that 𝐼𝑊 commutes with both 𝑆𝑊 and 𝐸𝑊 .

These relationships intuitively imply that the Hilbert spaceH can be (approximately) divided into

a tensor product H𝐴 ⊗ H𝐵 ⊗ H𝐺 of three Hilbert spaces such that the players measurements for

special questions 𝑆𝑊 and 𝐸𝑊 are forced to act as identity on H
𝑊

. Furthermore, the commutation

of 𝐼𝑊 with 𝑆𝑊 and 𝐸𝑊 implies that operators 𝐼𝑊 act trivially on the registerH
𝑊

. Now since 𝑥
𝑊

is

obtained by a measurement onH
𝑊

we conclude that 𝑎𝑊 has no dependence on 𝑥
𝑊

.

Putting these together, we get that the player with question 𝐼𝑊 produces 𝑥𝑊 via a measurement

on H𝑊 , then produces 𝑎𝑊 with a measurement that depends on 𝑥𝑊 and has a nontrivial support

only on the game registerH𝐺 . In other words 𝐼𝑊𝑥,𝑎 = 𝑆
𝑊
𝑥 ⊗ 𝑁𝑥𝑎 for some 𝑁𝑥𝑎 that acts as identity on

H
𝑊

. We can now let {𝑁𝑥𝑎} be the measurements in a strategy in the original game 𝐺 and show that

its value is large. In what follows we make this argument precise.

Proof of Theorem 1.29. Let 𝒮intro = (𝜌, {𝑃𝑞}𝑞∈Qintro) be a synchronous strategy for 𝐺 intro that has

value at least 1 − Y. Let Ĥ ,Π,𝒜, 𝜎 be as defined in Theorem 1.26.

For every𝑊 ∈ {𝐴, 𝐵}, 𝑥 ∈ X and 𝑎 ∈ A define the operator

𝑊𝑥
𝑎 B 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑂

𝑊
𝑥 .
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Note that for every𝑊 ∈ {𝐴, 𝐵} and 𝑥 ∈ X the operators {𝑊𝑥
𝑎 }𝑎∈A are pairwise orthogonal projec-

tions. For every 𝑥 ∈ X define the leftover operator

𝑊𝑥
⊥ B 1 −

∑︁
𝑎∈A

𝑊𝑥
𝑎 .

Let Ã = A ∪ {⊥} denote the expanded answer set. Then {𝑊𝑥
𝑎 }𝑎∈Ã is a projective measurement

for every𝑊 ∈ {𝐴, 𝐵}, 𝑥 ∈ X.

Now for every 𝑥 ∈ X, 𝑎 ∈ Ã define

𝑊𝑥
𝑎 B Π 𝑊𝑥

𝑎 Π .

These are clearly positive semidefinite operators and

∑︁
𝑎∈𝐴

𝑊𝑥
𝑎 = Π

( ∑︁
𝑎∈𝐴

𝑊𝑥
𝑎

)
Π = Π2 = Π .

Since Π is projection onto Ĥ , the set of operators {𝑊𝑥
𝑎 }𝑎∈𝐴 are POVMs on Ĥ for every 𝑥.

Our first goal is to show that for every 𝑥, 𝑦 ∈ X, 𝑎, 𝑏 ∈ A it holds that

𝜌(𝐴𝑥𝑎 𝐵
𝑦

𝑏
) ≈ 𝜌(𝐼𝐴𝑥,𝑎 𝐼𝐵𝑦,𝑏). (1.4.3)

We achieve this by repeatedly applying Theorem 1.8. First recall from Theorem 1.25 that Π ≈

𝑆𝐴0 𝑆
𝐵
0 . Here we use 0 as a shorthand notation for 0ℓ. So we have

𝜌(𝐴𝑥𝑎 𝐵
𝑦

𝑏
) = 𝜌(Π 𝐴𝑥𝑎 Π 𝐵

𝑦

𝑏
Π)

≈ 𝜌(𝑆𝐴0 𝐴𝑥𝑎 𝑆
𝐴
0 𝑆𝐵0 𝐵

𝑦

𝑏
𝑆𝐵0 ),

where we used Theorem 1.24 which states that 𝑆𝐴0 and 𝑆𝐵0 approximately commute. We continue
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by expanding 𝐴𝑥𝑎 and 𝐵𝑥𝑎 to obtain

𝜌(𝑆𝐴0 𝐴𝑥𝑎 𝑆
𝐴
0 𝑆𝐵0 𝐵

𝑦

𝑏
𝑆𝐵0 ) = 𝜌(𝑆

𝐴
0 (𝑂

𝐴
𝑥 𝐼

𝐴
𝑥,𝑎 𝑂

𝐴
𝑥 ) 𝑆𝐴0 𝑆𝐵0 (𝑂

𝐵
𝑦 𝐼

𝐵
𝑦,𝑏 𝑂

𝐵
𝑦 ) 𝑆𝐵0 )

≈ 𝜌((𝑂𝐴
𝑥 𝑆

𝐴
𝑥 𝐼

𝐴
𝑥,𝑎 𝑆

𝐴
𝑥 𝑂

𝐴
𝑥 ) (𝑂𝐵

𝑦 𝑆
𝐵
𝑦 𝐼

𝐵
𝑦,𝑏 𝑆

𝐵
𝑦 𝑂

𝐵
𝑦 ))

where in the last line, we used Theorem 1.24 which states that 𝑆𝑊0 𝑂
𝑊
𝑥 ≈ 𝑂𝑊𝑥 𝑆𝑊𝑥 . By Theorem 1.30

we have 𝐼𝑊𝑥 ≈ 𝑆𝑊𝑥 so

𝜌((𝑂𝐴
𝑥 𝑆

𝐴
𝑥 𝐼

𝐴
𝑥,𝑎 𝑆

𝐴
𝑥 𝑂

𝐴
𝑥 ) (𝑂𝐵

𝑦 𝑆
𝐵
𝑦 𝐼

𝐵
𝑦,𝑏 𝑆

𝐵
𝑦 𝑂

𝐵
𝑦 )) ≈ 𝜌((𝑂𝐴

𝑥 𝐼
𝐴
𝑥 𝐼𝐴𝑥,𝑎 𝐼

𝐴
𝑥 𝑂

𝐴
𝑥 ) (𝑂𝐵

𝑦 𝐼
𝐵
𝑦 𝐼

𝐵
𝑦,𝑏 𝐼

𝐵
𝑦 𝑂

𝐵
𝑦 ))

≈ 𝜌((𝑂𝐴
𝑥 𝐼

𝐴
𝑥,𝑎 𝑂

𝐴
𝑥 ) (𝑂𝐵

𝑦 𝐼
𝐵
𝑦,𝑏 𝑂

𝐵
𝑦 ))

where in the last line we used that 𝐼𝑊𝑥 =
∑
𝑎 𝐼

𝑊
𝑥,𝑎 and that 𝐼𝑊𝑥,𝑎 are projections. Now using Theo-

rem 1.30 again, we know that erasure observables 𝑂𝑊 approximately commute with 𝐼𝑊 projec-

tions. We also know that erasure observables𝑂𝐴 and𝑂𝐵 approximately commute. So we continue

as follows

𝜌((𝑂𝐴
𝑥 𝐼

𝐴
𝑥,𝑎 𝑂

𝐴
𝑥 ) (𝑂𝐵

𝑦 𝐼
𝐵
𝑦,𝑏 𝑂

𝐵
𝑦 )) ≈ 𝜌(𝑂𝐵

𝑦 𝑂
𝐴
𝑥 𝐼

𝐴
𝑥,𝑎 𝐼

𝐵
𝑦,𝑏 𝑂

𝐴
𝑥 𝑂

𝐵
𝑦 )

≈ 𝜌((𝑂𝐵
𝑦 )2 (𝑂𝐴

𝑥 )2 𝐼𝐴𝑥,𝑎 𝐼𝐵𝑦,𝑏)

= 𝜌(𝐼𝐴𝑥,𝑎 𝐼𝐵𝑦,𝑏).

This completes the proof of Equation (1.4.3).

Our next goal is to show that POVMs {𝑊𝑥
𝑎 }𝑎 are close to being projective measurements. To

this end, we first show that for any 𝑥 ∈ X and 𝑎, 𝑏 ∈ A

𝑊𝑥
𝑎𝑊

𝑥
𝑏 ≈ 𝑊

𝑥
𝑎1𝑎=𝑏 (1.4.4)

where 1𝑎=𝑏 is the indicator variable for the equality 𝑎 = 𝑏. First expanding according to the
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definitions

𝑊𝑥
𝑎𝑊

𝑥
𝑏 = Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑂

𝑊
𝑥 Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 Π

≈ Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑂
𝑊
𝑥 (𝑆𝑊0 𝑆𝑊0 𝑆𝑊0 )𝑂

𝑊
𝑥 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 Π

where in the last line we used the fact that Π ≈ 𝑆𝑊0 𝑆𝑊0 𝑆𝑊0 by Theorem 1.25. Now sampling

projections 𝑆𝑊 commute with erasure observables 𝑂𝑊 and Introspection projections 𝐼𝑊 so

Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑂
𝑊
𝑥 (𝑆𝑊0 𝑆𝑊0 𝑆𝑊0 )𝑂

𝑊
𝑥 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 Π ≈ Π 𝑆𝑊0 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑂

𝑊
𝑥 𝑆𝑊0 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 𝑆𝑊0 Π

≈ Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑂
𝑊
𝑥 𝑆𝑊0 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 Π

where in the last line we use the fact that Π ≈ 𝑆𝑊0 𝑆𝑊0 𝑆𝑊0 , and hence Π 𝑆𝑊0 ≈ Π ≈ 𝑆𝑊0 Π. Now

moving 𝑆𝑊0 passed𝑂𝑊𝑥 using the relation𝑂𝑊𝑥 𝑆𝑊0 ≈ 𝑆
𝑊
𝑥 𝑂𝑊𝑥 , and then using the fact that (𝑂𝑊𝑥 )2 = 𝐼

(as 𝑂𝑊𝑥 is an observable), we get

Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑂
𝑊
𝑥 𝑆𝑊0 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 Π ≈ Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑆

𝑊
𝑥 (𝑂𝑊𝑥 )2 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 Π

= Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑆
𝑊
𝑥 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 Π

Now substituting 𝐼𝑊𝑥 in place of 𝑆𝑊𝑥 we get

Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝑆
𝑊
𝑥 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 Π ≈ Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝐼

𝑊
𝑥 𝐼𝑊𝑥,𝑏 𝑂

𝑊
𝑥 Π

≈ Π 𝑂𝑊𝑥 𝐼𝑊𝑥,𝑎 𝐼
𝑊
𝑥,𝑏 𝑂

𝑊
𝑥 Π

= 𝑊𝑥
𝑎 𝛿𝑎,𝑏,

where in the last line we used the fact that 𝐼𝑊𝑥,𝑎 and 𝐼𝑊
𝑥,𝑏

are orthogonal projections when 𝑎 ≠ 𝑏.

This completes the proof of Equation (1.4.4). From this, we immediately obtain that (𝑊𝑥
⊥)2 ≈ 𝑊𝑥

⊥

also. So we established that

(𝑊𝑥
𝑎 )2 ≈ 𝑊𝑥

𝑎
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for all 𝑥 ∈ X and 𝑎 ∈ Ã. Using Theorem 1.8, this in turn implies that

𝜌((𝑊𝑥
𝑎 )2) ≈ 𝜌(𝑊𝑥

𝑎 )

for all 𝑎 ∈ Ã. By definition of 𝜎 it is also true that

𝜎((𝑊𝑥
𝑎 )2) ≈ 𝜎(𝑊𝑥

𝑎 ).

So far we established that𝑊𝑥
𝑎 , as operators in 𝒜 acting on Ĥ , are close to projections. So applying

Theorem 1.17, for every𝑊 ∈ {𝐴, 𝐵} and 𝑥 ∈ X, there exists a projective measurement {𝑊𝑥
𝑎 }𝑎 ⊂ 𝒜

that is close to {𝑊𝑥
𝑎 }𝑎.

Our final goal is to build a strategy for 𝐺 using these hard-earned projective measurements

{𝐴𝑥} and {𝐵𝑦}. On our way, we first need to relate {𝐴𝑥𝑎}𝑎 and {𝐵𝑦
𝑏
}𝑏 to the original measurements

𝐼𝐴𝑥,𝑎 and 𝐼𝐵
𝑦,𝑏

. For every 𝑥, 𝑦 ∈ X, 𝑎, 𝑏 ∈ A, we can write

𝜎(𝐴𝑥𝑎𝐵
𝑦

𝑏
) ≈ 𝜎(𝐴𝑥𝑎𝐵

𝑦

𝑏
) =

𝜌(𝐴𝑥𝑎𝐵
𝑦

𝑏
)

𝜌(Π) ≈
𝜌(𝐴𝑥𝑎𝐵

𝑦

𝑏
)

2−2ℓ ≈
𝜌(𝐼𝐴𝑥,𝑎 𝐼𝐵𝑦,𝑏)

2−2ℓ .

From this and Theorem 1.31, if 𝑥, 𝑦 is nontrivial in 𝐺, it holds that

1
22ℓ𝜎(𝐴

𝑥
𝑎𝐵

𝑦

𝑏
) ≈ 𝜌(𝐼𝑥,𝑎,𝑦,𝑏).

Therefore summing over all nontrivial question pairs, we have

∑︁
𝑥,𝑦

nontrivial

1
22ℓ

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜎(𝐴𝑥𝑎𝐵
𝑦

𝑏
) ≈

∑︁
𝑥,𝑦

nontrivial

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜌(𝐼𝑥,𝑎,𝑦,𝑏).

A similar approximate identity holds when summing over trivial question pairs, that is

∑︁
𝑥,𝑦

trivial

1
22ℓ

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜎(𝐴𝑥𝑎 𝐵
𝑦

𝑏
) ≈

∑︁
𝑥,𝑦

trivial

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜌(𝐼𝑥,𝑎,𝑦,𝑏).
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Let us see why this is true. First using the fact that 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1 for all 𝑎, 𝑏 and trivial question

pair 𝑥, 𝑦, we can write

∑︁
𝑥,𝑦

trivial

1
22ℓ

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜎(𝐴𝑥𝑎 𝐵
𝑦

𝑏
) =

∑︁
𝑥,𝑦

trivial

1
22ℓ

∑︁
𝑎,𝑏∈A

𝜎(𝐴𝑥𝑎 𝐵
𝑦

𝑏
) =

∑︁
𝑥,𝑦

trivial

1
22ℓ

where in the last equality we used the fact that
∑
𝑎,𝑏 𝐴

𝑥
𝑎 𝐵

𝑦

𝑏
= 𝐼Ĥ . Luckily, we also know that

𝜌(𝐼𝑥,𝑦) ≈ 1
22ℓ by Theorem 1.31, and thus

∑︁
𝑥,𝑦

trivial

1
22ℓ ≈

∑︁
𝑥,𝑦

trivial

𝜌(𝐼𝑥,𝑦)

=
∑︁
𝑥,𝑦

trivial

∑︁
𝑎,𝑏∈A

𝜌(𝐼𝑥,𝑎,𝑦,𝑏)

=
∑︁
𝑥,𝑦

trivial

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜌(𝐼𝑥,𝑎,𝑦,𝑏)

where in the last line we again used the fact that 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1 for all 𝑎, 𝑏 and trivial question

pair 𝑥, 𝑦.

So overall we established that

∑︁
𝑥,𝑦

1
22ℓ

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜎(𝐴𝑥𝑎 𝐵
𝑦

𝑏
) ≈

∑︁
𝑥,𝑦

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜌(𝐼𝑥,𝑎,𝑦,𝑏).

The right-hand-side is an upper bound on the probability of winning of 𝒮intro conditioned on the

event that one of the players received the Introspection question 𝐼. This probability must be at least

1 − 𝛿(Y) by a simple averaging argument. So we have

∑︁
𝑥,𝑦

1
22ℓ

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜎(𝐴𝑥𝑎 𝐵
𝑦

𝑏
) = 1 − 𝛿(Y). (1.4.5)

To summarize, at a high level, we constructed a set of operators 𝐴𝑥𝑎 and 𝐵𝑦
𝑏

that together resemble

a strategy for 𝐺 albeit with two sets of measurement operators instead of one. It remains to show
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that we can turn this into a synchronous strategy. From Equation (1.4.5), for every 𝑥 ∈ X it must

be that ∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑥, 𝑎, 𝑏)𝜎(𝐴𝑥𝑎 𝐵𝑥𝑏) = 1 − 𝛿(Y).

Since 𝐺 is synchronous, we have 𝐷 (𝑥, 𝑥, 𝑎, 𝑏) = 0 whenever 𝑎 ≠ 𝑏. Therefore

∑︁
𝑎∈A

𝜎(𝐴𝑥𝑎 𝐵𝑥𝑎) = 1 − 𝛿(Y)

or equivalently that 𝐴𝑥𝑎 ≃ 𝐵𝑥𝑎 for every 𝑥 ∈ X. Therefore by Theorem 1.13, it holds that 𝐴𝑥𝑎 ≈ 𝐵𝑥𝑎
for every 𝑥 ∈ X. Therefore 𝜎(𝐴𝑥𝑎 𝐵

𝑦

𝑏
) ≈ 𝜎(𝐴𝑥𝑎 𝐴

𝑦

𝑏
). Using this approximation in (1.4.5) we

conclude that

∑︁
𝑥,𝑦∈X

1
22ℓ

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜎(𝐴𝑥𝑎 𝐴
𝑦

𝑏
) = 1 − 𝛿(Y). (1.4.6)

Now we reduced to one set of measurement operators 𝐴𝑥𝑎 that more closely resemble a synchronous

strategy for 𝐺. Unfortunately we are not quite there as the set of operators {𝐴𝑥𝑎}𝑎∈A is not a

projective measurement if 𝐴𝑥⊥ ≠ 0. We can resolve this issue by defining projective measurements

{𝑁𝑥𝑎}𝑎∈A for every 𝑥 such that 𝑁𝑥
𝑎∗ = 𝐴

𝑥
𝑎∗+𝐴𝑥⊥ for some special element 𝑎∗ ∈ A and 𝑁𝑥𝑎 = 𝐴

𝑥
𝑎 for all

𝑎 ≠ 𝑎∗. Now 𝒮 = (𝜎, {𝑁𝑥}𝑥∈X) is a synchronous strategy and is such that 𝜎(𝑁𝑥𝑎𝑁
𝑦

𝑏
) ≥ 𝜎(𝐴𝑥𝑎𝐴

𝑦

𝑏
).

So by (1.4.6), we have

𝜔(𝐺,𝒮) =
∑︁
𝑥,𝑦∈X

1
22ℓ

∑︁
𝑎,𝑏∈A

𝐷 (𝑥, 𝑦, 𝑎, 𝑏)𝜎(𝑁𝑥𝑎𝑁
𝑦

𝑏
) = 1 − 𝛿(Y).

So for all sufficiently small Y, if there exists a strategy 𝒮
intro with value at least 1 − Y, we showed

the existence of a strategy for 𝐺 with value 1 − 𝛿(Y). This in turn implies that for all 𝑡 ∈ {𝑞, 𝑐𝑜}

𝜔𝑠𝑡 (𝐺 intro) = 1 =⇒ 𝜔𝑠𝑡 (𝐺) = 1.
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Next we prove the inequality

E(𝐺 intro, 1) ≥ max
{
E(𝐺, 1), 22ℓ} .

Suppose the finite dimensional strategy 𝒮
intro = (𝜌, {𝑃𝑞}𝑞∈Qintro) defined over a Hilbert space H

has value 1. Then since the strategy restricted to the Question Sampling game also wins with

probability 1, from Theorem 1.25, we get that the dimension ofH is at least 22ℓ.

It remains to show that E(𝐺 intro, 1) ≥ E(𝐺, 1). Consider the finite-dimensional strategy 𝒮 =

(𝜎, {𝑁𝑥𝑎}) constructed above for the original game 𝐺. The inequality now follows from the fact

that the strategy 𝒮 is over the Hilbert space Ĥ defined in Theorem 1.26 which is a subspace ofH .

□

1.4.5 Proof of Theorem 1.27

From Theorem 1.20, we can let 𝐺𝑛 = (X𝑛,A𝑛, 𝐷𝑛) where X𝑛 = {0, 1}ℓ𝑛 for some polynomial-

time computable function ℓ𝑛 of 𝑛. As we indicated in Theorem 1.20, the decider and checker Turing

machines discard any string that comes after the ℓ𝑛th bit in their second and third input tapes. By

assumption, for all sufficiently large 𝑛, we have ℓ𝑛 ≤ 𝑛𝛼, so from our previous statement, we can

simply assume that ℓ𝑛 = 𝑛𝛼. We design the algorithm A𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛼 so that 𝐺 intro
𝑛 is

the Introspection game (𝐺𝑛)intro as defined in Section 1.4.2. From the definition of Introspection,

it is straightforward to see that a polynomial-time algorithm exists that computes a description

of 𝒱intro = (𝐷intro, 𝐶intro) from a description of 𝒱 = (𝐷,𝐶). The question length of 𝐺 intro
𝑛 is

poly(𝛼, log 𝑛) by the definition of the Introspection game and the assumption that ℓ𝑛 = 𝑛𝛼.

Given a pair of questions in 𝐺 intro
𝑛 , if they are both Question Sampling questions, then they are

a nontrivial question pair in the Introspection game if and only if they are a nontrivial question pair

in the Question Sampling game. If questions are both among special questions

𝑆𝐴, 𝐸𝐴, 𝐼𝐴, 𝐼𝐴𝑆𝐵, 𝐼𝐴𝐸𝐵, 𝑆𝐵, 𝐸𝐵, 𝐼𝐵, 𝐼𝐵𝑆𝐴, 𝐼𝐵𝐸𝐴,
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then the pair is nontrivial if they are connected by an edge or a self-loop in Figure 1.3. Since

this graph has constant size, this can be decided in 𝑂 (1). If one question is a Question Sampling

question that is not any of 𝑆𝐴, 𝑆𝐵, 𝐸𝐴, 𝐸𝐵 and the other is a special Introspection game question

𝐼𝐴, 𝐼𝐴𝑆𝐵, 𝐼𝐴𝐸𝐵, 𝐼𝐵, 𝐼𝐵𝑆𝐴, 𝐼𝐵𝐸𝐴,

then the pair is trivial. Therefore the complexity of deciding if a pair is trivial in 𝐺 intro
𝑛 is asymp-

totically the same as the complexity of deciding if a pair is trivial in QS𝑛𝛼 which is poly(𝛼, log 𝑛)

(see Table 1.3).

Next we bound the complexity of 𝐷intro(𝑛). The bit length of questions in the Introspec-

tion game 𝐺 intro
𝑛 is poly(𝛼, log 𝑛). The answer length of 𝐺 intro

𝑛 is 𝑛𝛼 (as the answer length of 𝐺𝑛

is bounded by TIME𝐷 (𝑛)). So the decider can compute in time poly(𝑛𝛼) whether the answer

format of 𝐺 intro
𝑛 is respected. The decider, by simulating 𝐷 (𝑛) and 𝐶 (𝑛), can compute in time

poly( |𝐷 |, |𝐶 |, 𝛼, 𝑛𝛼) whether a give quadruple (𝑞, 𝑟, �̂�, �̂�) is an accepting quadruple in 𝐺 intro
𝑛 ac-

cording to Table 1.4.

The completeness, soundness, and the dimension bound follow immediately from Propositions

1.28 and 1.29.

1.5 Answer Reduction

In this section we present the answer reduction transformation, whose properties are given by

the following Theorem.

Theorem 1.32 (Answer Reduction). For all 𝛽 ∈ N there exists a polynomial-time algorithm

A𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛽 that takes as input a pair of Turing machines (𝐷,𝐶) and outputs a pair

of Turing machines (𝐷ans, 𝐶ans) such that the following holds. If 𝒱 = (𝐷,𝐶) is a verifier for a
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sequence of games 𝒢𝒱 = (𝐺𝑛)𝑛∈N and 𝑛0 ∈ N is an integer such that for all 𝑛 ≥ 𝑛0,

The questions of 𝐺𝑛 have length at most log𝛽 (𝑛),

TIME𝐶 (𝑛) = log𝛽 𝑛 , and

TIME𝐷 (𝑛) ≤ 𝑛𝛽

then the output 𝒱ans = (𝐷ans, 𝐶ans) is a verifier for a sequence of games𝒢𝒱ans = (𝐺ans
𝑛 )𝑛∈N with the

following properties. There exists 𝛾 = poly(𝛽) and 𝑛ans
0 = poly(𝛾𝛾, 𝑛0) such that for all 𝑛 ≥ 𝑛ans

0 ,

1. (Complexity bounds)

TIME𝐷ans (𝑛) = log𝛾 𝑛

TIME𝐶ans (𝑛) = log𝛾 𝑛 .

2. (Completeness) For all oracularizable synchronous strategies 𝒮 for𝐺𝑛, there exists an orac-

ularizable synchronous strategy 𝒮ans for 𝐺ans
𝑛 such that

𝜔(𝐺ans
𝑛 ,𝒮ans) ≥ 1

2
+ 1

2
𝜔(𝐺𝑛,𝒮).

Furthermore, if 𝒮 is finite-dimensional, then so is 𝒮ans.

3. (Soundness) For all 𝑡 ∈ {𝑞, 𝑐𝑜} we have

𝜔𝑠𝑡 (𝐺𝑛) < 1 =⇒ 𝜔𝑠𝑡 (𝐺ans
𝑛 ) < 1 .

4. (Entanglement bound)

E(𝐺ans
𝑛 , 1) ≥ E(𝐺𝑛, 1) .

Intuitively, the answer reduction transformation transforms a sequence of games (𝐺1, 𝐺2, . . .)

to a sequence (𝐺ans
1 , 𝐺ans

2 , . . .) such that the time complexity of the “answer reduced” game 𝐺ans
𝑛
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(in terms of computing its decision predicate) is polylogarithmic in the time complexity 𝑇 (𝑛)

of the “original game” 𝐺𝑛, and polynomial in the question length 𝑄(𝑛) of 𝐺𝑛. The reason this

transformation is called “answer reduction” is as follows. Suppose the original game 𝐺𝑛 already

has polylogarithmic-length questions (i.e. 𝑄(𝑛) ≤ poly(log𝑇 (𝑛))), but the answer lengths are,

say, Ω(𝑇 (𝑛)); this will be the case when we apply answer reduction to the introspection games

from the previous section. The resulting game 𝐺ans
𝑛 then has time complexity poly(log𝑇 (𝑛)) and

in particular both the question and answer lengths of 𝐺ans
𝑛 are at most poly(log𝑇 (𝑛)).

We describe and analyze the answer reduction transformation 𝐺 ↦→ 𝐺ans for a single game

(rather than a sequence), and then prove Theorem 1.32 in Section 1.5.5.

1.5.1 Overview

Let 𝑄,𝑇 ∈ N be integers and let 𝐺 = (X,A, 𝐷) be a synchronous game where X = {0, 1}𝑄

and A = {0, 1}𝑇 , and TIME𝐷 ≤ 𝑇 (meaning that on all inputs 𝐷 halts within 𝑇 timesteps). We

can assume via padding that all questions have the same length, and all the answers have the same

length.

Oracularization. We first give an overview of a transformation on 𝐺 called oracularization.

This produces the following game 𝐺orac. The verifier may send a player either a question 𝑥 ∈ X

or a pair of questions (𝑥, 𝑦) ∈ X2; thus the question alphabet is X ∪ X2. When a player receives

a single question 𝑥 we call them an isolated player and its question an isolated question. When a

player receives a pair (𝑥, 𝑦) we call them an oracle player and its question an oracle question.

If both players receive the same question (either isolated or oracle), then they must return the

same answer. If one player receives an oracle question (𝑥, 𝑦) ∈ X2 that is nontrivial for the original

game 𝐺 and the other receives an isolated question 𝑥 (resp. receives 𝑦), then the players win if the

oracle player responds with an answer pair (𝑎, 𝑏) ∈ A2 such that 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1 and the isolated

player responds with answer 𝑎 (resp. responds with answer 𝑏). All other question combinations

are considered trivial for 𝐺orac, and the players automatically win in those cases.
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Intuitively, in the oracularization of 𝐺 an oracle player must “simulate” the behavior of the

two players in 𝐺, and the isolated player (who only receives half of the oracle question) is used to

check that the oracle player’s answers (𝑎, 𝑏) are produced in a way that 𝑎 only depends on 𝑥 and 𝑏

only depends on 𝑦.

Answer Reduction. We now give a high-level overview of the answer-reduced game 𝐺ans =

(Xans,Aans, 𝐷ans). The questions of 𝐺ans are of the form (𝑔, 𝑝), where 𝑔 is a game question and

𝑝 is a proof question. The game question 𝑔, intuitively, is meant to indicate a question from the

original game 𝐺. However, in the answer reduction transformation, the game questions 𝑔 come

from the oracularization 𝐺orac of 𝐺.

In the oracularized game 𝐺orac, the players are supposed to respond with either an answer from

A or from A2, depending on whether they received an isolated or oracle question. In the answer

reduced game 𝐺ans, however, the players do not respond with a “full-sized” answer in A ∪ A2.

Instead, the verifier expects that the oracle players will generate a proof 𝜋 that they can produce

answers (𝑎, 𝑏) ∈ A2 that satisfies the decision predicate of the game 𝐺, and furthermore these

answers can be produced in a way such that 𝑎 only depends on 𝑥 and 𝑏 only depends on 𝑦. The

verifier does not examine this purported proof 𝜋 in its entirety but instead uses the proof question

𝑝 to query it in a constant number of locations.

The main point is this: now the players only have to respond with a constant number of bits

corresponding to the proof locations queried, rather than with a symbol from the setA∪A2 (whose

size we think of as growing to infinity). To ensure that the players’ answers to the local queries are

consistent with a global proof string 𝜋, and that the purported answers (𝑎, 𝑏) (which are included

in 𝜋) was generated “honestly” (e.g., 𝑎 does not depend on 𝑥), the verifier performs cross-checks

between the two players. Before describing the format of the proof questions, we first explain in

detail what a proof is supposed to look like.

The starting point is the well-known Cook-Levin reduction from classical computer science:

this is an efficient transformation that maps Turing machines 𝑀 to 3SAT formulas 𝜑𝑀 such that
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there is an input 𝑤 (called the witness) where 𝑀 (𝑤) = 1 if and only if 𝜑𝑀 is satisfiable. Further-

more, it is well-known [48, Chapter 20] that the clauses of the SAT formula 𝜑𝑀 can be computed

extremely efficiently – in fact, in time that is logarithmic in the size of the entire SAT formula (if

we treat the description length of 𝑀 as a constant):

Theorem 1.33 (Cook-Levin Theorem). For all 1-input Turing machines 𝑀 and integers 𝑅,𝑇 ∈ N,

there exists a 3SAT formula 𝜑(𝑀,𝑇, 𝑅) (called a Cook-Levin SAT formula) with 𝐿 = poly( |𝑀 |, 𝑇, 𝑅)

variables, such that

• For all 𝑤 ∈ {0, 1}𝑅 such that 𝑀 (𝑤) accepts within 𝑇 time steps, there exists a unique

satisfying assignment 𝜋 for the formula 𝜑(𝑀,𝑇, 𝑅), and furthermore 𝜋≤𝑅 (the first 𝑅 bits of

𝜋) is 𝑤, and

• For all satisfying assignments 𝜋 for the formula 𝜑(𝑀,𝑇, 𝑅), the Turing machine 𝑀 accepts

𝜋≤𝑅 within 𝑇 time steps.

Furthermore, there exists a polynomial-time algorithm A𝐶𝑜𝑜𝑘𝐿𝑒𝑣𝑖𝑛 that takes as input a tuple

(𝑀,𝑇, 𝑅, 𝑖, 𝑗 , 𝑘) where 𝑅,𝑇, 𝑖, 𝑗 , 𝑘 are integers written in binary, and outputs the literals of the

clause(s) of 𝜑(𝑀,𝑇, 𝑅) that contains the 𝑖-th, 𝑗-th, and 𝑘-th variables (or outputs a null symbol if

no such clause exists).

We note that while the algorithm A𝐶𝑜𝑜𝑘𝐿𝑒𝑣𝑖𝑛 runs in polynomial time in the length of its

input, it runs in logarithmic time in the number of variables of the Cook-Levin SAT formula

𝜑(𝑀,𝑇, 𝑅). This is because the length of the input tuple (𝑀,𝑇, 𝑅, 𝑖, 𝑗 , 𝑘) is 𝑂 ( |𝑀 | + log𝑇 +

log 𝑅 + log 𝑖 + log 𝑗 + log 𝑘), and since the variable indices 𝑖, 𝑗 , 𝑘 are at most poly( |𝑀 |, 𝑇, 𝑅), the

time complexity of the algorithm A𝐶𝑜𝑜𝑘𝐿𝑒𝑣𝑖𝑛 is at most poly( |𝑀 |, log𝑇, log 𝑅).

The verifier in the answer-reduced game 𝐺ans expects an oracle player who received game

question pair 𝑔 = (𝑥, 𝑦) to compute a string 𝜋 satisfying the following:

1. 𝜋 is a satisfying assignment for the Cook-Levin SAT formula 𝜑(𝐷𝑥,𝑦, 𝑇, 2𝑇) where 𝐷𝑥,𝑦 is

the 1-input Turing machine that on input (𝑎, 𝑏) ∈ {0, 1}2𝑇 executes the Turing machine 𝐷

on input (𝑥, 𝑦, 𝑎, 𝑏), and
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2. 𝜋 is composed of three strings (𝑎, 𝑏, 𝜋′) ∈ {0, 1}𝑇 × {0, 1}𝑇 × {0, 1}𝐿 where

𝐿 = poly( |𝐷𝑥,𝑦 |, 𝑇) = poly( |𝐷 |, 𝑄, 𝑇). Here we used that the description length |𝐷𝑥,𝑦 | =

𝑂 ( |𝐷 | + |𝑥 | + |𝑦 |) = poly( |𝐷 |, 𝑄).

Henceforth we shall abbreviate the Cook-Levin formula 𝜑(𝐷𝑥,𝑦, 𝑇, 2𝑇) as 𝜑𝑥,𝑦.

The verifier asks proof questions 𝑝 in order to ascertain whether it is possible for an oracle

player to generate a proof 𝜋 satisfying these conditions. This requires the verifier to ask proof

questions to both oracle players and isolated players. Oracle players (who get game question pair

𝑔 = (𝑥, 𝑦)) can get asked to provide:

• A single bit 𝜋𝑖 of the proof 𝜋, or

• A triple of bits (𝜋𝑖, 𝜋 𝑗 , 𝜋𝑘 ) from the proof 𝜋 (which may not necessarily correspond to a

clause in 𝜑𝑥,𝑦).

An isolated player (who gets a single question 𝑥 or 𝑦) is asked to provide a pair of bits (𝑎𝑖, 𝑎 𝑗 ) of

their purported answer 𝑎 ∈ {0, 1}𝑇 .

Thus the proof questions are sampled from the set [𝐿] ∪ [𝐿]2 ∪ [𝐿]3. Thus the question and

answer sets for 𝐺ans are

Xans = Xorac × ([𝐿] ∪ [𝐿]2 ∪ [𝐿]3) Aans = {0, 1} ∪ {0, 1}2 ∪ {0, 1}3

where Xorac = X ∪ X2 is the question alphabet for the oracularized game 𝐺orac.

Since the player answers (𝑎, 𝑏) are supposed to be embedded into a proof 𝜋, we use the fol-

lowing mapping to translate between indexing into answer 𝑎 or 𝑏 versus indexing into the proof 𝜋:

given an index 𝑖 ∈ [𝑇], the 𝑖-th bit of the first answer 𝑎 (corresponding to the first question 𝑥) is

mapped to index [(𝑖) = 𝑖 of the proof 𝜋, and the 𝑖-th bit of the second answer 𝑏 (corresponding to

the second question 𝑦) is mapped to index _(𝑖) = 𝑇 + 𝑖 of 𝜋.
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1.5.2 The answer-reduced decision procedure

We now formally specify the decision procedure 𝐷ans. On input (�̂�, �̂�, �̂�, �̂�), it checks if (�̂�, �̂�)

(resp. ( �̂�, �̂�)) is one of the nontrivial question pairs of 𝐺ans, which are presented in Table 1.5. If

so, then it accepts if and only if the answers (�̂�, �̂�) (resp. (�̂�, �̂�)) satisfy the corresponding winning

condition. Otherwise, if (�̂�, �̂�) is a trivial question, the verifier automatically accepts.

Nontrivial Question Pair (�̂�, �̂�) Winning Condition on Answers (�̂�, �̂�)

�̂� = �̂� �̂� = �̂�

�̂� = ((𝑥, 𝑦), 𝑖) where (𝑥, 𝑦) is nontrivial for 𝐺 (𝑠 𝑗 , 𝑠𝑘 , 𝑠ℓ) satisfies clause(s) specified by

�̂� = ((𝑥, 𝑦), ( 𝑗 , 𝑘, ℓ)) where 𝑖 ∈ { 𝑗 , 𝑘, ℓ} A𝐶𝑜𝑜𝑘𝐿𝑒𝑣𝑖𝑛(𝐷𝑥,𝑦, 𝑇, 2𝑇, 𝑗 , 𝑘, ℓ) and 𝑟𝑖 = 𝑠𝑖, where

�̂� = 𝑟𝑖 ∈ {0, 1}, �̂� = (𝑠 𝑗 , 𝑠𝑘 , 𝑠ℓ) ∈ {0, 1}3

�̂� = ((𝑥, 𝑦), 𝑖) where (𝑥, 𝑦) is nontrivial for 𝐺 𝑟𝑖 = 𝑎[−1 (𝑖)

�̂� = (𝑥, ( 𝑗 , 𝑘)) where 𝑖 ∈ {[( 𝑗), [(𝑘)} where �̂� = 𝑟𝑖 ∈ {0, 1}, �̂� = (𝑎 𝑗 , 𝑎𝑘 ) ∈ {0, 1}2

�̂� = ((𝑥, 𝑦), 𝑖) where (𝑥, 𝑦) is nontrivial for 𝐺 𝑟𝑖 = 𝑏_−1 (𝑖)

�̂� = (𝑦, ( 𝑗 , 𝑘)) where 𝑖 ∈ {_( 𝑗), _(𝑘)} where �̂� = 𝑟𝑖 ∈ {0, 1}, �̂� = (𝑏 𝑗 , 𝑏𝑘 ) ∈ {0, 1}2

Table 1.5: The nontrivial question pairs and winning conditions for the game 𝐺ans.

Table 1.5 should be read as follows. In the second row, for example, the nontrivial question

pair is where �̂� = (𝑔1, 𝑝1) where 𝑔1 = 𝑔2 = (𝑥, 𝑦) ∈ X2 where (𝑥, 𝑦) is nontrivial for 𝐺, 𝑝1 = 𝑖

for some 𝑖 ∈ [𝐿], and 𝑝2 = ( 𝑗 , 𝑘, ℓ) ∈ [𝐿]3 such that 𝑖 ∈ { 𝑗 , 𝑘, ℓ}. The answer �̂� is expected to

be a single bit 𝑟𝑖 and �̂� is expected to be a triple of bits (𝑠 𝑗 , 𝑠𝑘 , 𝑠ℓ); otherwise the verifier rejects.

The verifier then checks that 𝑟𝑖 = 𝑠𝑖 (i.e. the first player’s assignment to the 𝑖-th variable of the

proof is the same as the second player’s assignment to the 𝑖-th variable), and the second player’s

assignment (𝑠 𝑗 , 𝑠𝑘 , 𝑠ℓ) satisfies the clause of 𝜑𝑥,𝑦 that involves the triple of variables ( 𝑗 , 𝑘, ℓ). If

there is no clause, then the verifier accepts any assignment to those variables.
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1.5.3 Completeness of answer reduction

We now prove the completeness property of the answer reduction transformation. Similarly to

Section 1.4, the completeness property implies that the value of𝐺ans is lower bounded by the value

of 𝐺.

Proposition 1.34. For all oracularizable synchronous strategies 𝒮 for 𝐺, there exists an oracular-

izable synchronous strategy 𝒮ans for 𝐺ans such that

𝜔(𝐺ans
𝑛 ,𝒮ans) ≥ 1

2
+ 1

2
𝜔(𝐺𝑛,𝒮) .

Furthermore, if 𝒮 is finite-dimensional then so is 𝒮ans.

Proof. Let 𝒮 = (𝜏, {𝑀𝑥}) be a tracial synchronous strategy for 𝐺 that commutes on the set of

nontrivial questions of 𝐺. We now define a tracial strategy 𝒮
ans = (𝜏, {𝑁𝑥}) for 𝐺ans. Before

doing so, we define some intermediate measurements. Let X and A denote the question and

answer sets of 𝐺, respectively. For all 𝑥, 𝑦 ∈ X, 𝑎, 𝑏 ∈ A:

• 𝑁𝑥,𝑦
𝑎,𝑏

=


𝑀𝑥
𝑎 𝑀

𝑦

𝑏
if (𝑥, 𝑦) is a nontrivial question for 𝐺

1 if (𝑥, 𝑦) is a trivial question for 𝐺 and 𝑎 = 𝑏 = 0

0 otherwise

• 𝑁𝑥𝑎 = 𝑀
𝑥
𝑎 .

The POVM 𝑁𝑥 is projective because 𝑀𝑥 is projective. Note that whenever (𝑥, 𝑦) is a nontrivial

question of 𝐺, the projectors 𝑀𝑥
𝑎 and 𝑀 𝑦

𝑏
commute, so 𝑁𝑥,𝑦 is always projective.

Now we define the measurements for 𝒮ans:

1. 𝑁𝑥, 𝑗 ,𝑘 = 𝑁𝑥[𝑎 ↦→(𝑎 𝑗 ,𝑎𝑘)]

2. 𝑁𝑥,𝑦,𝑖 = 𝑁𝑥,𝑦[(𝑎,𝑏) ↦→𝜋𝑖]

3. 𝑁𝑥,𝑦,𝑖, 𝑗 ,𝑘 = 𝑁𝑥,𝑦[(𝑎,𝑏) ↦→(𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘)]
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where here 𝜋 denotes the unique satisfying assignment to the Cook-Levin SAT formula 𝜑𝑥,𝑦 such

that 𝜋 = (𝑎, 𝑏, 𝑤) for some string 𝑤.

We now verify that the strategy 𝒮
ans satisfies the desired properties: it is synchronous because

the measurements are all projective. It commutes on the nontrivial questions of 𝐺ans, as seen by

the following case analysis: letting �̂� = (𝑔1, 𝑝1) and �̂� = (𝑔2, 𝑝2),

1. If �̂� = �̂�, then clearly the measurements 𝑁 �̂� and 𝑁 �̂� commute with each other because they

are the same measurement.

2. If 𝑔1 = 𝑔2 = (𝑥, 𝑦), 𝑝1 = 𝑖, and 𝑝2 = ( 𝑗 , 𝑘, ℓ), then 𝑁 �̂� and 𝑁 �̂� are marginalizations of the

same projective measurement {𝑁𝑥,𝑦}, and thus 𝑁 �̂� , 𝑁 �̂� commute with each other.

3. If 𝑔1 = (𝑥, 𝑦), 𝑝1 = 𝑖, 𝑔2 = 𝑥 (or 𝑔2 = 𝑦) and 𝑝2 = ( 𝑗 , 𝑘), then either (𝑥, 𝑦) is a trivial question

for 𝐺 (in which case 𝑁 �̂� is the identity measurement, which commutes with everything), or

(𝑥, 𝑦) is a nontrivial question, in which case 𝑁 �̂� is a marginalization of the product 𝑀𝑥
𝑎𝑀

𝑦

𝑏
,

whereas 𝑁 �̂� is a marginalization of 𝑀𝑥
𝑎 (resp. 𝑀 𝑦

𝑏
), which commutes with 𝑀 𝑦

𝑏
(resp. 𝑀𝑥

𝑎 ).

Clearly, the dimensionality of 𝒮ans is the same as the dimension of 𝒮.

Finally, we can evaluate the winning probability of 𝒮ans as follows: let 𝛾 denote the probability

that at least one of the players that receives a question (𝑔, 𝑝) where 𝑔 = (𝑥, 𝑦) with (𝑥, 𝑦) nontrivial

for𝐺. If neither player receives such a game question, then either their question pair (�̂�, �̂�) is trivial

for 𝐺ans (in which case the players win automatically), or �̂� = �̂� (in which case the players win

because their strategy is synchronous).

Suppose one of the players (say, the first player) receiving such question pair �̂� = (𝑔, 𝑝).

Intuitively, this oracle player will simultaneously measure 𝑀𝑥 and 𝑀 𝑦 to obtain answers (𝑎, 𝑏).

Since 𝑥 an 𝑦 are drawn uniformly at random, the probability that 𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1 is exactly

𝜔(𝐺,𝒮). Suppose (𝑎, 𝑏) are winning answers. Then the oracle player can compute a satisfying

assignment 𝜋 = (𝑎, 𝑏, 𝑤) for the Cook-Levin formula 𝜑𝑥,𝑦 – this uses the assumption that TIME𝐷 ≤

𝑇 . Furthermore, the second player, no matter what question �̂� they receive, they will be able to

obtain perfectly consistent answers (if they receive game question (𝑥, 𝑦), then they can obtain the
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same proof 𝜋 = (𝑎, 𝑏, 𝑤); if they receive game questions 𝑥 or 𝑦, they will obtain the same answers

𝑎 or 𝑏, respectively). Thus the success probability of the strategy 𝒮
ans overall is at least

𝜔(𝐺ans,𝒮ans) ≥ (1 − 𝛾) + 𝛾 𝜔(𝐺,𝒮) .

Since 𝛾 ≤ 1/2, the Proposition follows. □

1.5.4 Soundness of answer reduction

Proposition 1.35. For all 𝑡 ∈ {𝑞, 𝑐𝑜}, 𝜔𝑠𝑡 (𝐺) < 1 =⇒ 𝜔𝑠𝑡 (𝐺ans) < 1.

Proof. Let𝒮ans = (𝜏, {𝑁 �̂�}) be a tracial synchronous strategy for𝐺ans that has value 1−Y. Our goal

will be to construct measurements {𝑀𝑥
𝑎 } and {𝑀𝑥,𝑦

𝜋 } that produce entire answer strings and entire

proof strings, respectively. They will be constructed from the 𝑁𝑥,𝑦,𝑖 and 𝑁𝑥, 𝑗 ,𝑘 measurements which

only provide “local” views of purported answer and purported proof strings. In order to “paste”

these “local” views together into consistent “global” views, we will need to establish pairwise

consistency conditions between the measurement operators of the strategy 𝒮
ans.

From the condition that the strategy 𝒮
ans has value 1 − Y, we obtain the following consistency

conditions pointwise over all 𝑥, 𝑦 ∈ X and 𝑖, 𝑗 , 𝑘, ℓ ∈ [𝐿]:

• 𝑁𝑥,𝑦,𝑖𝑟 ≃ 𝑁𝑥,𝑦, 𝑗 ,𝑘,ℓ[(𝑠 𝑗 ,𝑠𝑘 ,𝑠ℓ ) ↦→𝑠𝑖 |𝑟] whenever 𝑖 ∈ { 𝑗 , 𝑘, ℓ},

• 𝑁𝑥,𝑦,[( 𝑗)𝑟 ≃ 𝑁𝑥, 𝑗 ,𝑘[(𝑎 𝑗 ,𝑎𝑘) ↦→𝑎 𝑗 |𝑟] and 𝑁𝑥,𝑦,[(𝑘)𝑟 ≃ 𝑁𝑥, 𝑗 ,𝑘[(𝑎 𝑗 ,𝑎𝑘) ↦→𝑎𝑘 |𝑟]

• 𝑁𝑥,𝑦,_( 𝑗)𝑟 ≃ 𝑁 𝑦, 𝑗 ,𝑘[(𝑎 𝑗 ,𝑎𝑘) ↦→𝑎 𝑗 |𝑟] and 𝑁𝑥,𝑦,_(𝑘)𝑟 ≃ 𝑁 𝑦, 𝑗 ,𝑘[(𝑎 𝑗 ,𝑎𝑘) ↦→𝑎𝑘 |𝑟]

In other words, the assignments to variables that are in common to both players’ questions are

approximately consistent. Here and throughout this proof, all approximations “≃” and “≈” implic-

itly hide some error function 𝛿(Y) that goes to 0 as Y → 0. Furthermore, the error function will

generally be different each time the “≃” or “≈” notation is used. (See Section 1.2.5 for a more

in-depth discussion of approximations and asymptotics).
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We first prove a utility lemma, which will be used repeatedly throughout the analysis of sound-

ness:

Lemma 1.36. Let 𝑡 ∈ N and let 𝐴 = {𝐴𝑟} denote a projective measurement with outcomes in R𝑡 .

For 𝑖 ∈ [𝑡], let 𝐵𝑖 = {𝐵𝑖𝑟} be a POVM with outcomes in R. Suppose that for all 𝑖 ∈ [𝑡],

𝐴[𝑟 ↦→𝑟𝑖 |𝑐] ≃𝛿 𝐵𝑖𝑐

where the answer summation is over 𝑐 ∈ R. Then for all permutations 𝜎 ∈ 𝑆𝑡 , we have that

𝐴𝑟 ≈𝑡√2𝛿 𝐵
𝜎(1)
𝑟𝜎 (1) · 𝐵

𝜎(2)
𝑟𝜎 (2) · · · 𝐵

𝜎(𝑡)
𝑟𝜎 (𝑡 ) .

In other words, the measurement {𝐴𝑟} is 𝑡
√

2𝛿-close to the product of the {𝐵𝑖𝑟𝑖 }, in any order.

Furthermore,

𝐵
𝜎(1)
𝑟𝜎 (1) · 𝐵

𝜎(2)
𝑟𝜎 (2) · · · 𝐵

𝜎(𝑡)
𝑟𝜎 (𝑡 ) ≈2𝑡

√
2𝛿 𝐵

𝜌(1)
𝑟𝜌(1) · 𝐵

𝜌(2)
𝑟𝜌(2) · · · 𝐵

𝜌(𝑡)
𝑟𝜌(𝑡 )

for all permutations 𝜌, 𝜎 ∈ 𝑆𝑡 .

Proof. We first argue that

𝐴𝑟 ≈𝑡√2𝛿 𝐵
1
𝑟1 · 𝐵

2
𝑟2 · · · 𝐵

𝑡
𝑟𝑡
.

Using Theorem 1.13 we get that for all 𝑖 ∈ [𝑡],

𝐴[𝑟 ↦→𝑟𝑖 |𝑐] ≈√2𝛿 𝐵
𝑖
𝑟 . (1.5.1)

Using Theorem 1.16 we can right-multiply Equation (1.5.1) for 𝑖 = 1 by the measurement 𝐴[𝑟 ↦→𝑟2:𝑑]

to deduce

𝐴[𝑟 ↦→𝑟1] · 𝐴[𝑟 ↦→𝑟2] ≈√2𝛿 𝐵
1
𝑟1 · 𝐴[𝑟 ↦→𝑟2] (1.5.2)

Using using Theorem 1.16 again we get that the right hand side of Equation (1.5.2) is
√

2𝛿-close
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to 𝐵1
𝑟1 · 𝐵

2
𝑟2 , and therefore via the triangle inequality we get

𝐴[𝑟 ↦→𝑟1] · 𝐴[𝑟 ↦→𝑟2] ≈2
√

2𝛿 𝐵
1
𝑟1 · 𝐵

2
𝑟2 .

Notice that since 𝐴 is projective, we have

𝐴[𝑟 ↦→𝑟1] · 𝐴[𝑟 ↦→𝑟2] = 𝐴[𝑟 ↦→(𝑟1,𝑟2)]

Thus 𝐴[𝑟 ↦→(𝑟1,𝑟2)] ≈2
√

2𝛿 𝐵
1
𝑟1 · 𝐵

2
𝑟2 . By repeatedly using Theorem 1.16, we deduce that

𝐴𝑟 ≈𝑡√2𝛿 𝐵
1
𝑟1 · 𝐵

2
𝑟2 · · · 𝐵

𝑡
𝑟𝑡

as desired. The same argument holds with any other ordering of the 𝐵𝑖’s.

The “Furthermore” part of the lemma then follows from the triangle inequality. □

Constructing the 𝑀𝑥
𝑎 measurements. The first step is to show that, for fixed 𝑥, 𝑦, the {𝑁𝑥,𝑦,𝑖}

measurements approximately commute.

Fix 𝑖, 𝑗 ∈ [𝑇]. Using Theorem 1.36 with 𝐴 = 𝑁𝑥,𝑖, 𝑗 , 𝐵1 = 𝑁𝑥,𝑦,[(𝑖) and 𝐵2 = 𝑁𝑥,𝑦,[( 𝑗) , we get

𝑁
𝑥,𝑦,[( 𝑗)
𝑠 · 𝑁𝑥,𝑦,[(𝑖)𝑟 ≈ 𝑁𝑥,𝑦,[(𝑖)𝑟 · 𝑁𝑥,𝑦,[( 𝑗)𝑠 . (1.5.3)

The next step is to deduce that the marginalizations of the 𝑁𝑥,𝑖, 𝑗 measurements commute. Since

𝑁
𝑥,𝑦,[(𝑖)
𝑟 ≈ 𝑁𝑥,𝑖,𝑘[(𝑎𝑖 ,𝑎𝑘) ↦→𝑎𝑖 |𝑟] and 𝑁𝑥,𝑦,[( 𝑗)𝑠 ≈ 𝑁𝑥, 𝑗 ,𝑘[(𝑎 𝑗 ,𝑎𝑘) ↦→𝑎 𝑗 |𝑠] for all 𝑘 ∈ [𝑇]. Thus, using Theorem 1.16

twice we get

𝑁
𝑥,𝑦,[( 𝑗)
𝑠 · 𝑁𝑥,𝑦,[(𝑖)𝑟 ≈ 𝑁𝑥,𝑦,[( 𝑗)𝑠 · 𝑁𝑥,𝑖,𝑘[(𝑎𝑖 ,𝑎𝑘) ↦→𝑎𝑖 |𝑟] ≈ 𝑁

𝑥, 𝑗 ,𝑘

[(𝑎 𝑗 ,𝑎𝑘) ↦→𝑎 𝑗 |𝑠] · 𝑁
𝑥,𝑖,𝑘

[(𝑎𝑖 ,𝑎𝑘) ↦→𝑎𝑖 |𝑟]
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and similarly we get

𝑁
𝑥,𝑦,[(𝑖)
𝑟 · 𝑁𝑥,𝑦,[( 𝑗)𝑠 ≈ 𝑁𝑥,𝑖,𝑘[(𝑎𝑖 ,𝑎𝑘) ↦→𝑎𝑖 |𝑟] · 𝑁

𝑥, 𝑗 ,𝑘

[(𝑎 𝑗 ,𝑎𝑘) ↦→𝑎 𝑗 |𝑠] .

Using the triangle inequality and Equation (1.5.3), we get for all 𝑥 ∈ X and 𝑖, 𝑗 , 𝑘 ∈ [𝑇],

𝑁
𝑥, 𝑗 ,𝑘

[(𝑎 𝑗 ,𝑎𝑘) ↦→𝑎 𝑗 |𝑠] · 𝑁
𝑥,𝑖,𝑘

[(𝑎𝑖 ,𝑎𝑘) ↦→𝑎𝑖 |𝑟] ≈ 𝑁
𝑥,𝑖,𝑘

[(𝑎𝑖 ,𝑎𝑘) ↦→𝑎𝑖 |𝑟] · 𝑁
𝑥, 𝑗 ,𝑘

[(𝑎 𝑗 ,𝑎𝑘) ↦→𝑎 𝑗 |𝑠]

Fix an arbitrary 𝑘 ∈ [𝑇] and define

𝑁𝑥,𝑖𝑟 = 𝑁
𝑥,𝑖,𝑘

[(𝑎𝑖 ,𝑎𝑘) ↦→𝑎𝑖 |𝑟] .

Fix an 𝑥 ∈ X. We invoke the Pasting Lemma (Theorem 1.18) on the set of measurements

{𝑁𝑥,𝑖}𝑖∈[𝑇] , and obtain a projective measurement 𝑀𝑥 = {𝑀𝑥
𝑎 } with outcomes in {0, 1}𝑇 such that

for all 𝑖 ∈ [𝑇],

𝑀𝑥
[𝑎 ↦→𝑎𝑖 |𝑟] ≈ 𝑁

𝑥,𝑖
𝑟 .

Furthermore, by the triangle inequality, for all 𝑦 ∈ X we have that

𝑀𝑥
[𝑎 ↦→𝑎𝑖 |𝑟] ≈ 𝑁

𝑥,𝑦,[(𝑖)
𝑟 . (1.5.4)

Via the same arguments as above we have that 𝑁𝑥,𝑖𝑟 ≈ 𝑁 𝑦,𝑥,_(𝑖)𝑟 , which means that

𝑀𝑥
[𝑎 ↦→𝑎𝑖 |𝑟] ≈ 𝑁

𝑦,𝑥,_(𝑖)
𝑟 .

Constructing the 𝑀𝑥,𝑦
𝜋 measurements. Fix 𝑥, 𝑦 ∈ X and 𝑖, 𝑗 , 𝑘 ∈ [𝐿]. Using Theorem 1.36

with 𝐴 = 𝑁𝑥,𝑦,𝑖, 𝑗 ,𝑘 , 𝐵1 = 𝑁𝑥,𝑦,𝑖, 𝐵2 = 𝑁𝑥,𝑦, 𝑗 , and 𝐵3 = 𝑁𝑥,𝑦,𝑘 we get that the product of 𝑁𝑥,𝑦,𝑖𝑟 ,

𝑁
𝑥,𝑦, 𝑗
𝑠 , and 𝑁𝑥,𝑦,𝑘𝑡 (using any ordering) is close to 𝑁𝑥,𝑦,𝑖, 𝑗 ,𝑘 .

120



In particular, we have

𝑁
𝑥,𝑦,𝑖
𝑟 · 𝑁𝑥,𝑦, 𝑗𝑠 ≈ 𝑁𝑥,𝑦, 𝑗𝑠 · 𝑁𝑥,𝑦,𝑖𝑟 .

Using the Pasting Lemma on the set of measurements {𝑁𝑥,𝑦,𝑖}, we obtain a projective measurement

𝑀𝑥,𝑦 = {𝑀𝑥,𝑦
𝜋 } with outcomes in {0, 1}𝑅 (i.e. proof strings) such that

𝑀
𝑥,𝑦

[𝜋 ↦→𝜋𝑖 |𝑟] ≈ 𝑁
𝑥,𝑦,𝑖
𝑟 .

Using Theorem 1.16 repeatedly, we get that for all 𝑖, 𝑗 , 𝑘 ∈ [𝐿],

𝑀
𝑥,𝑦

[𝜋 ↦→𝜋𝑖 |𝑟] · 𝑀
𝑥,𝑦

[𝜋 ↦→𝜋 𝑗 |𝑠] · 𝑀
𝑥,𝑦

[𝜋 ↦→𝜋𝑘 |𝑡] ≈ 𝑁
𝑥,𝑦,𝑖
𝑟 · 𝑀𝑥,𝑦

[𝜋 ↦→𝜋 𝑗 |𝑠] · 𝑀
𝑥,𝑦

[𝜋 ↦→𝜋𝑘 |𝑡]

≈ 𝑁𝑥,𝑦,𝑖𝑟 · 𝑁𝑥,𝑦, 𝑗𝑠 · 𝑀𝑥,𝑦

[𝜋 ↦→𝜋𝑘 |𝑡]

≈ 𝑁𝑥,𝑦,𝑖𝑟 · 𝑁𝑥,𝑦, 𝑗𝑠 · 𝑁𝑥,𝑦,𝑘𝑡

≈ 𝑁𝑥,𝑦,𝑖, 𝑗 ,𝑘𝑟,𝑠,𝑡

where the last approximation follows from our earlier application of Theorem 1.36. Since 𝑀𝑥,𝑦
𝜋 is

projective, we have that

𝑀
𝑥,𝑦

[𝜋 ↦→(𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘) | (𝑟,𝑠,𝑡)] ≈ 𝑁
𝑥,𝑦,𝑖, 𝑗 ,𝑘
𝑟,𝑠,𝑡 . (1.5.5)

We now relate the 𝑀𝑥,𝑦 measurements to the 𝑀𝑥 measurements constructed previously. Using

the triangle inequality with Equation (1.5.4) we get for all 𝑥, 𝑦 ∈ X and 𝑗 ∈ [𝑇],

𝑀
𝑥,𝑦

[𝜋 ↦→𝜋[ ( 𝑗 ) |𝑟]
≈ 𝑀𝑥

[𝑎 ↦→𝑎 𝑗 |𝑟] (1.5.6)

and similarly

𝑀
𝑥,𝑦

[𝜋 ↦→𝜋_( 𝑗 ) |𝑟]
≈ 𝑀 𝑦

[𝑎 ↦→𝑎 𝑗 |𝑟] . (1.5.7)

Before proceeding we prove a utility lemma that allows us to argue that if all the marginaliza-

tions of projective measurements are close, then the original measurements must be close.
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Lemma 1.37. Let 𝐴 and 𝐵 be projective measurements with outcomes in {0, 1}𝐾 such that for all

𝑖 ∈ [𝐾], we have 𝐴[𝑟 ↦→𝑟𝑖] ≈^ 𝐵[𝑟 ↦→𝑟𝑖] . Then

𝐴𝑟 ≈𝐾^ 𝐵𝑟 .

Proof. We prove this inductively on the prefix length of 𝑟. For the base case 𝑡 = 1, we have

that 𝐴[𝑟 ↦→𝑟1] ≈^ 𝐵[𝑟 ↦→𝑟1] by assumption. Let the inductive hypothesis be that for some 𝑡 ≥ 1,

𝐴[𝑟 ↦→𝑟≤𝑡 ] ≈𝑡^ 𝐵[𝑟 ↦→𝑟≤𝑡 ] where 𝑟≤𝑡 denotes the first 𝑡 bits of 𝑟. Then using Theorem 1.16 twice, we

get that

𝐴[𝑟 ↦→𝑟≤𝑡 ] · 𝐴[𝑟 ↦→𝑟𝑡+1] ≈𝑡^ 𝐵[𝑟 ↦→𝑟≤𝑡 ] · 𝐴[𝑟 ↦→𝑟𝑡+1] ≈^ 𝐵[𝑟 ↦→𝑟≤𝑡 ] · 𝐵[𝑟 ↦→𝑟𝑡+1]

which, via the triangle inequality, implies that

𝐴[𝑟 ↦→𝑟≤𝑡+1] ≈𝑡^ 𝐵[𝑟 ↦→𝑟≤𝑡+1]

where we used the fact that the 𝐴 and 𝐵 measurements are projective. By induction, this statement

is true for all 𝑡, and since 𝐴[𝑟 ↦→𝑟≤𝐾 ] = 𝐴𝑟 and 𝐵[𝑟 ↦→𝑟≤𝐾 ] = 𝐵𝑟 , we conclude the proof. □

Applying Theorem 1.37 to Equations (1.5.6) and (1.5.7) and interpreting the outcome of the

𝑀𝑥,𝑦 measurement as a triple (𝑎, 𝑏, 𝑤) ∈ {0, 1}𝑇 × {0, 1}𝑇 × {0, 1}𝐿 , we get

𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→𝑎] ≈ 𝑀
𝑥
𝑎 (1.5.8)

𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→𝑏] ≈ 𝑀
𝑦

𝑏
. (1.5.9)

Using Theorem 1.16 several times with Equations (1.5.8) and (1.5.9) we get

𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→𝑎] · 𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→𝑏] · 𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→𝑎] ≈ 𝑀
𝑥
𝑎 · 𝑀

𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→𝑏] · 𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→𝑎]

≈ 𝑀𝑥
𝑎 · 𝑀

𝑦

𝑏
· 𝑀𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→𝑎]

≈ 𝑀𝑥
𝑎 · 𝑀

𝑦

𝑏
· 𝑀𝑥

𝑎
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and thus

𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→(𝑎,𝑏)] ≈ 𝑀
𝑥
𝑎 · 𝑀

𝑦

𝑏
· 𝑀𝑥

𝑎 . (1.5.10)

Evaluating the probability of success of the 𝑀𝑥 measurements. Define the tracial synchronous

strategy 𝒮 = (𝜏, {𝑀𝑥}) for game 𝐺. Its success probability can be lower-bounded as follows:

𝜔(𝐺,𝒮) = E
𝑥,𝑦

∑︁
𝑎,𝑏

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) · 𝜏(𝑀𝑥
𝑎 𝑀

𝑦

𝑏
)

= E
𝑥,𝑦

∑︁
𝑎,𝑏

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) · 𝜏(𝑀𝑥
𝑎 · 𝑀

𝑦

𝑏
· 𝑀𝑥

𝑎 )

= E
𝑥,𝑦

∑︁
𝑎,𝑏

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) ·
(
𝜏

(
𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→(𝑎,𝑏)]

)
+ 𝜏

(
𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→(𝑎,𝑏)] − 𝑀
𝑥
𝑎 𝑀

𝑦

𝑏
𝑀𝑥
𝑎

))
≥ E
𝑥,𝑦

∑︁
𝑎,𝑏

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) · 𝜏
(
𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→(𝑎,𝑏)]

)
− E
𝑥,𝑦

∑︁
𝑎,𝑏

���𝜏 (𝑀𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→(𝑎,𝑏)] − 𝑀
𝑥
𝑎 𝑀

𝑦

𝑏
𝑀𝑥
𝑎

)���
We bound the second term first. From Theorem 1.13 applied to Equation (1.5.10) we get

that 𝑀𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→(𝑎,𝑏)] ≃𝛿 𝑀
𝑥
𝑎 · 𝑀

𝑦

𝑏
· 𝑀𝑥

𝑎 for some proper error function 𝛿 = 𝛿(Y). We then apply

Theorem 1.15 to get that

E
𝑥,𝑦

∑︁
𝑎,𝑏

���𝜏 (𝑀𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→(𝑎,𝑏)] − 𝑀
𝑥
𝑎 𝑀

𝑦

𝑏
𝑀𝑥
𝑎

)��� ≤ 2𝛿 .

Next, we evaluate

E
𝑥,𝑦

∑︁
𝑎,𝑏

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) · 𝜏
(
𝑀
𝑥,𝑦

[(𝑎,𝑏,𝑤) ↦→(𝑎,𝑏)]

)
= E
𝑥,𝑦

∑︁
𝑎,𝑏,𝑤

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) · 𝜏
(
𝑀
𝑥,𝑦

𝑎,𝑏,𝑤

)
= E
𝑥,𝑦

∑︁
𝑎,𝑏,𝑤

1[∃𝑤′ : (𝑎, 𝑏, 𝑤′) satisfies 𝜑𝑥,𝑦] · 𝜏
(
𝑀
𝑥,𝑦

𝑎,𝑏,𝑤

)
≥ E
𝑥,𝑦

∑︁
𝑎,𝑏,𝑤

1[(𝑎, 𝑏, 𝑤) satisfies 𝜑𝑥,𝑦] · 𝜏
(
𝑀
𝑥,𝑦

𝑎,𝑏,𝑤

)
= 1 − E

𝑥,𝑦

∑︁
𝑎,𝑏,𝑤

1[(𝑎, 𝑏, 𝑤) does not satisfy 𝜑𝑥,𝑦] · 𝜏
(
𝑀
𝑥,𝑦

𝑎,𝑏,𝑤

)
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where in the second line we use the conclusion of Theorem 1.33 that since TIME𝐷 ≤ 𝑇 , we have

𝐷 (𝑥, 𝑦, 𝑎, 𝑏) = 1 if and only if there exists a satisfying assignment (𝑎, 𝑏, 𝑤′) for the Cook-Levin

formula 𝜑𝑥,𝑦.

Via the union bound, the probability that 𝜋 = (𝑎, 𝑏, 𝑤) does not satisfy 𝜑𝑥,𝑦 is at most the sum,

over all 𝑖, 𝑗 , 𝑘 ∈ [𝐿], that (𝜋𝑖, 𝜋 𝑗 , 𝜋𝑘 ) does not satisfy a clause in 𝜑𝑥,𝑦 (if there exists such a clause).

Thus we have

E
𝑥,𝑦

∑︁
𝑎,𝑏,𝑤

1[(𝑎, 𝑏, 𝑤) unsat. 𝜑𝑥,𝑦] · 𝜏
(
𝑀
𝑥,𝑦

𝑎,𝑏,𝑤

)
≤ E
𝑥,𝑦

∑︁
𝑖, 𝑗 ,𝑘

∑︁
𝜋

1[(𝜋𝑖, 𝜋 𝑗 , 𝜋𝑘 ) unsat. 𝜑𝑥,𝑦] · 𝜏
(
𝑀
𝑥,𝑦
𝜋

)
We can now relate this quantity to the success probability of 𝒮ans in the answer-reduced game

𝐺ans. Let \ denote the probability that one of the players receives a question �̂� = (𝑔, 𝑝) of the form

𝑔 = (𝑥, 𝑦) and 𝑝 = (𝑖, 𝑗 , 𝑘), and the other player receives a question �̂� = (𝑔′, 𝑝′) of the form 𝑔′ = 𝑥

and 𝑝 ∈ {𝑖, 𝑗 , 𝑘}. In this situation, by the design of the decider (see Section 1.5.2), the verifier

checks whether the player who got question �̂� responds with proof bits (𝜋𝑖, 𝜋 𝑗 , 𝜋𝑘 ) that satisfy a

corresponding clause in 𝜑𝑥,𝑦. Thus, since the overall success probability of the strategy 𝒮
ans in the

game 𝐺ans is at least 1 − Y, it must be that conditioned on a player receiving question of the form

�̂� = (𝑥, 𝑦, 𝑖, 𝑗 , 𝑘), their answer does not satisfies a corresponding clause in the formula 𝜑𝑥,𝑦 (if one

exists) with probability at most Y/\. In other words:

E
𝑥,𝑦,𝑖, 𝑗 ,𝑘

∑︁
𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘

1[(𝜋𝑖, 𝜋 𝑗 , 𝜋𝑘 ) unsat. 𝜑𝑥,𝑦] · 𝜏(𝑁𝑥,𝑦,𝑖, 𝑗 ,𝑘𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘 ) ≤ Y/\.

Multiplying both sides by 𝐿3, we get that

E
𝑥,𝑦

∑︁
𝑖, 𝑗 ,𝑘

∑︁
𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘

1[(𝜋𝑖, 𝜋 𝑗 , 𝜋𝑘 ) unsat. 𝜑𝑥,𝑦] · 𝜏(𝑁𝑥,𝑦,𝑖, 𝑗 ,𝑘𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘 ) ≤ 𝐿
3Y/\ .

Using Theorem 1.13 with Equation (1.5.5), we get that for every 𝑖, 𝑗 , 𝑘 ∈ [𝐿] and on average over

𝑥, 𝑦,

𝑀
𝑥,𝑦

[𝜋 ↦→(𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘) |𝑟,𝑠,𝑡] ≃a 𝑁
𝑥,𝑦,𝑖, 𝑗 ,𝑘
𝑟,𝑠,𝑡
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for some proper error function a = a(Y). Then using Theorem 1.15 we get that

E
𝑥,𝑦

∑︁
𝑟,𝑠,𝑡

���𝜏 (𝑀𝑥,𝑦

[𝜋 ↦→(𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘) |𝑟,𝑠,𝑡] − 𝑁
𝑥,𝑦,𝑖, 𝑗 ,𝑘
𝑟,𝑠,𝑡

)��� ≤ 2a

for every 𝑖, 𝑗 , 𝑘 ∈ [𝐿]. Putting everything together, we find that

E
𝑥,𝑦

∑︁
𝑖, 𝑗 ,𝑘

∑︁
𝜋

1[(𝜋𝑖, 𝜋 𝑗 , 𝜋𝑘 ) unsat. 𝜑𝑥,𝑦] · 𝜏
(
𝑀
𝑥,𝑦
𝜋

)
≤ E
𝑥,𝑦

∑︁
𝑖, 𝑗 ,𝑘

∑︁
𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘

1[(𝜋𝑖, 𝜋 𝑗 , 𝜋𝑘 ) unsat. 𝜑𝑥,𝑦] · 𝜏(𝑁𝑥,𝑦,𝑖, 𝑗 ,𝑘𝜋𝑖 ,𝜋 𝑗 ,𝜋𝑘 ) + 2a

≤ 𝐿3
(Y
\
+ 2a

)
.

Let Z = 𝐿3
(
Y
\
+ 2a

)
+ 2𝛿. Then we deduce that

𝜔(𝐺,𝒮) ≥ 1 − Z .

Since 𝛿, a are proper error functions of Y, so is Z . Thus Z → 0 as Y → 0. Furthermore, the strategy

𝒮 is finite-dimensional if and only if 𝒮ans is finite-dimensional. Thus, suppose that 𝜔𝑠𝑡 (𝐺ans) = 1

for 𝑡 = 𝑞 (resp. for 𝑡 = 𝑐𝑜). This implies that there is a sequence of finite-dimensional (resp.

commuting operator) strategies 𝒮ans such that 𝜔(𝐺ans,𝒮ans) approaches 1. This in turn implies the

existence of a sequence of finite-dimensional (resp. commuting operator) strategies 𝒮 such that

𝜔(𝐺,𝒮) approaches 1, and thus 𝜔𝑠𝑡 (𝐺) = 1. Taking the contrapositive, we conclude that

𝜔𝑠𝑡 (𝐺) < 1 =⇒ 𝜔𝑠𝑡 (𝐺ans) < 1 .

This finishes the proof of the Proposition. □
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1.5.5 Proof of Theorem 1.32

We now prove the main result of this section, Theorem 1.32. Fix 𝛽 ∈ N. The algorithm

A𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛽, on input (𝐷,𝐶) where 𝐷 is a 5-input Turing machine and 𝐶 is a 3-input

Turing machine, computes the descriptions of 5-input and 3-input Turing machines 𝐷ans, 𝐶ans

respectively as follows. Let 𝑄(𝑛) = log𝛽 𝑛 and 𝑇 (𝑛) = 𝑛𝛽.

Question checker 𝐶ans. At a high level, the Turing machine 𝐶ans, on input (𝑛, �̂�, �̂�) checks whether

the question pair (�̂�, �̂�) is nontrivial according to Table 1.5, where “𝐺” in the table is supposed to

be the 𝑛-th game 𝐺𝑛 of the sequence specified by the verifier 𝒱 = (𝐷,𝐶), “𝐷𝑥,𝑦” in the table is

supposed to be the Turing machine 𝐷𝑛,𝑥,𝑦 which on input (𝑎, 𝑏) outputs 𝐷 (𝑛, 𝑥, 𝑦, 𝑎, 𝑏), and “𝑇”

in the table is supposed to be 𝑇 (𝑛).

In order to compute whether (�̂�, �̂�) (or ( �̂�, �̂�)) is one of the question pairs specified by Table 1.5,

the Turing machine 𝐶ans has to compute the question lengths of the 𝑛-th answer-reduced game

𝐺ans: it computes 𝐿𝑛, the number of variables of a Cook-Levin formula corresponding to a Turing

machine with description length |𝐷 | +𝑂 (log 𝑛) +2𝑄(𝑛). (This is the description length of a Turing

machine 𝐷𝑛,𝑥,𝑦, which is 𝐷 with (𝑛, 𝑥, 𝑦) “hardwired” into it.) It then checks whether �̂�, �̂� are

(binary encodings of) elements of ({0, 1}𝑄(𝑛) ∪ {0, 1}2𝑄(𝑛)) × ([𝐿𝑛] ∪ [𝐿𝑛]2 ∪ [𝐿𝑛]3), which is

the question alphabet of 𝐺ans
𝑛 . It not, then it outputs 0. At this point, the Turing machine 𝐶ans has

ensured that (�̂�, �̂�) is a properly-formatted question pair in the 𝑛-th answer-reduced game 𝐺ans
𝑛 .

The Turing machine 𝐶ans then attempts to parse (�̂�, �̂�) or ( �̂�, �̂�) as one of the combinations

specified in Table 1.5 and outputs 1 if there is a match; otherwise it outputs 0. To determine

whether (𝑥, 𝑦) ∈ ({0, 1}𝑄(𝑛))2 is nontrivial for 𝐺𝑛, it computes whether 𝐶 (𝑛, 𝑥, 𝑦) = 1. This

concludes the description of 𝐶ans.

Decider 𝐷ans. The Turing machine 𝐷ans on input (𝑛, �̂�, �̂�, �̂�, �̂�) first computes 𝐶ans(𝑛, �̂�, �̂�). If

the output is 0 (i.e. the question pair (�̂�, �̂�) is trivial), then the Turing machine 𝐷ans accepts (i.e.

outputs 1). Otherwise, it continues. It computes 𝐿𝑛 just like with 𝐶ans, and then matches (�̂�, �̂�)

(resp. ( �̂�, �̂�)) to one of the entries of the table. Since 𝐶ans(𝑛, �̂�, �̂�) = 1, there must be a match.

126



The Turing machine 𝐷ans then evaluates whether the winning conditions (�̂�, �̂�) (resp. (�̂�, �̂�))

are satisfied according to Table 1.5. If the winning conditions are satisfied, then 𝐷ans outputs 1

(accepts), otherwise it outputs 0 (rejects).

Now assume the conditions of Theorem 1.32; i.e., that 𝒱 = (𝐷,𝐶) is a verifier for a sequence

of games 𝒢𝒱 = (𝐺𝑛)𝑛∈N and

1. The questions of 𝐺𝑛 have length at most 𝑄(𝑛),

2. TIME𝐶 (𝑛) ≤ 𝑄(𝑛), and

3. TIME𝐷 (𝑛) ≤ 𝑇 (𝑛).

Now we argue that the output 𝒱ans = (𝐷ans, 𝐶ans) is a verifier for a sequence of games 𝒢𝒱ans =

(𝐺ans
𝑛 )𝑛∈N satisfying the conclusions of Theorem 1.32.

Complexity of the question checker 𝐶ans. The question checker 𝐶ans for the answer-reduced

game first has to compute 𝐿𝑛, the number of variables in the Cook-Levin formula corresponding

to 𝐷𝑛,𝑥,𝑦. This requires computing the description length of 𝐷𝑛,𝑥,𝑦, where 𝑥, 𝑦 are questions in the

original game 𝐺𝑛, which by assumption has length at most 𝑄(𝑛). It then has to check that the

questions (�̂�, �̂�) are properly formatted questions from the question alphabet of 𝐺ans
𝑛 , which takes

time poly(𝑄(𝑛), log 𝐿𝑛). Then, it has to determine whether (�̂�, �̂�) matches one of the question

pairs in Table 1.5, which includes running the question checker 𝐶 for the original verifier 𝒱. Thus

overall we have TIME𝐶ans (𝑛) ≤ poly( |𝐷 |, |𝐶 |, 𝑄(𝑛), log𝑇 (𝑛), log 𝑛) = poly( |𝐷 |, |𝐶 |, 𝛽, log𝛽 𝑛).

Complexity of the decider 𝐷ans. The time complexity of the answer-reduced verifier 𝐷ans in-

cludes the complexity of computing the question checker 𝐶ans(𝑛, 𝑥, 𝑦) and computing the number

of variables 𝐿𝑛. It also includes the complexity of computing a clause of the Cook-Levin formula

𝜑𝑛,𝑥,𝑦, which involves invoking the algorithmA𝐶𝑜𝑜𝑘𝐿𝑒𝑣𝑖𝑛 on the input (𝐷𝑛,𝑥,𝑦, 𝑇 (𝑛), 2𝑇 (𝑛), 𝑖, 𝑗 , 𝑘)

for some variable indices 𝑖, 𝑗 , 𝑘 ∈ [𝐿𝑛], where (𝑥, 𝑦) are questions for the original game𝐺𝑛 (which

have length𝑄(𝑛) by assumption). Computing the description of 𝐷𝑛,𝑥,𝑦 takes time poly( |𝐷 |, |𝑥 |, |𝑦 |, log 𝑛)
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because it involves “hard-wiring” the integer 𝑛 and strings 𝑥, 𝑦 into the description of 𝐷. Thus

it takes at most poly( |𝐷 |, 𝑄(𝑛), log𝑇 (𝑛), log 𝑛) to compute a clause. Computing the [(·) and

_(·) maps also take time at most poly(log𝑇 (𝑛)) (because it requires computing 𝑇 (𝑛)). Thus,

in total, the complexity of the answer-reduced verifier is poly( |𝐷 |, |𝐶 |, 𝑄(𝑛), log𝑇 (𝑛), log 𝑛) =

poly( |𝐷 |, |𝐶 |, 𝛽, log𝛽 𝑛).

Completeness and Soundness. Completeness follows from Theorem 1.34. Soundness follows

from Theorem 1.35.

This completes the proof of Theorem 1.32.

1.6 Compressions of nonlocal games and their applications

In this section we describe the compression theorems and some of their applications.

1.6.1 Gapless compression

First we present the main technical result of this paper, which is a gapless compression theorem

for both the quantum and commuting operator value of nonlocal games. This theorem statement is

a formalization of Theorem 1.3 from the introduction.

Theorem 1.38 (Gapless compression of nonlocal games). For all 𝛼 ∈ N there is a polynomial

time algorithm A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝛼 that takes as input a pair of Turing machines (𝐷,𝐶) and

outputs a pair of Turing machines (𝐷′, 𝐶′) such that the following holds. If 𝒱 = (𝐷,𝐶) is a

verifier for a sequence of games 𝒢𝒱 = (𝐺𝑛)𝑛∈N and 𝑛0 ∈ N is an integer such that for all 𝑛 ≥ 𝑛0,

max
{
TIME𝐶 (𝑛),TIME𝐷 (𝑛)

}
≤ 𝑛𝛼 , (1.6.1)

then 𝒱
′ = (𝐷′, 𝐶′) is a verifier for a sequence of games 𝒢𝒱′ = (𝐺′𝑛)𝑛∈N with the following

properties. There exist an integer 𝛾 = poly(𝛼) and 𝑛′0 = poly(𝛾𝛾, 𝑛0) such that for all 𝑛 ≥ 𝑛′0,
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1. (Complexity bounds)

max {TIME𝐶′ (𝑛),TIME𝐷′ (𝑛)} ≤ log𝛾 𝑛 .

2. (Completeness) For all oracularizable synchronous strategies 𝒮 for𝐺𝑛, there exists an orac-

ularizable synchronous strategy 𝒮′ for 𝐺′𝑛 such that

𝜔(𝐺′𝑛,𝒮′) ≥
1
2
+ 1

2
𝜔(𝐺𝑛,𝒮) .

Furthermore, if 𝒮 is finite dimensional, so is 𝒮′.

3. (Soundness) For all 𝑡 ∈ {𝑞, 𝑐𝑜} we have

𝜔𝑠𝑡 (𝐺𝑛) < 1 =⇒ 𝜔𝑠𝑡 (𝐺′𝑛) < 1 .

4. (Entanglement bound)

E(𝐺′𝑛, 1) ≥ max
{
E(𝐺𝑛, 1), 22𝑛} .

We prove this by combining the question reduction and answer reduction transformations of

Sections 1.4 and 1.5. The algorithm A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝛼 is presented below. The parameter 𝛽

in Algorithm 5 is defined to be the same 𝛽 = poly(𝛼) from Theorem 1.27.

1 Input: 𝐷,𝐶.

2 Compute (𝐷intro, 𝐶intro) = A𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛼 (𝐷,𝐶).

3 Compute (𝐷′, 𝐶′) = A𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛽 (𝐷intro, 𝐶intro).

4 Return (𝐷′, 𝐶′).

Pseudocode 5: A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝛼

Proof. First, it is clear that A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝛼 runs in polynomial time in the description

length of the input (𝐷,𝐶), because the algorithmA𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛼 runs in time poly( |𝐷 |, |𝐶 |)
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and the algorithm A𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛽 runs in time poly( |𝐷intro |, |𝐶intro |) = poly( |𝐷 |, |𝐶 |).

This last equality uses that max{|𝐷intro |, |𝐶intro |} ≤ poly( |𝐷 |, |𝐶 |) because the running time of

A𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛼 is an upper bound on the length of the descriptions of 𝐷intro and 𝐶intro.

Next, suppose that 𝒱 = (𝐷,𝐶) is such that the time bound of (1.6.1) is satisfied. Then, the

complexity bounds on (𝐷intro, 𝐶intro) given by the conclusion of Theorem 1.27 are exactly those

that satisfy the conditions of Theorem 1.32. Thus, the output (𝐷′, 𝐶′) ofA𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝛽 (𝐷intro, 𝐶intro)

satisfy the conclusions of Theorem 1.32 (with 𝛾 = poly(𝛽) = poly(𝛼)) and thus this establishes

the desired complexity bounds on the output verifier 𝒱′.

Define the integers 𝛽 = poly(𝛼),𝑛intro
0 = poly(𝛽, 𝑛0) as given by Theorem 1.27. Then, define

the integers 𝛾 = poly(𝛽), 𝑛ans
0 = poly(𝛾𝛾, 𝑛intro

0 ) = poly(𝛾𝛾, 𝑛0) as given by Theorem 1.32. Define

𝑛′0 = max{𝑛0, 𝑛
intro
0 , 𝑛ans

0 }.

We now establish the completeness property of 𝒱′. Fix an integer 𝑛 not less than 𝑛′0. Let 𝒮 be

an oracularizable synchronous strategy for 𝐺𝑛. By the completeness of Question Reduction, this

implies there is an oracularizable synchronous strategy 𝒮
𝑖𝑛𝑡𝑟𝑜 for 𝐺 intro

𝑛 such that

𝜔(𝐺 intro
𝑛 ,𝒮𝑖𝑛𝑡𝑟𝑜) ≥ 𝜔(𝐺𝑛,𝒮) .

Then, by the completeness of Answer Reduction, there is an oracularizable synchronous strategy

𝒮
′ for 𝐺′𝑛 such that

𝜔(𝐺′𝑛,𝒮′) ≥
1
2
+ 1

2
𝜔(𝐺 intro

𝑛 ,𝒮𝑖𝑛𝑡𝑟𝑜) ≥ 1
2
+ 1

2
𝜔(𝐺𝑛,𝒮) .

Furthermore, if 𝒮 is finite-dimensional, then so are 𝒮intro and 𝒮
′.

We establish the soundness property of 𝒱′ by combining the soundness guarantees of Question

Reduction and Answer Reduction:

𝜔𝑠𝑡 (𝐺𝑛) < 1 =⇒ 𝜔𝑠𝑡 (𝐺 intro
𝑛 ) < 1 =⇒ 𝜔𝑠𝑡 (𝐺′𝑛) < 1.
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Finally, we establish the entanglement bound property by combining the entanglement bounds

from Question Reduction and Answer Reduction

E(𝐺′𝑛, 1) ≥ E(𝐺𝑖𝑛𝑡𝑟𝑜𝑛 , 1) ≥ max
{
E(𝐺𝑛, 1), 22𝑛} .

□

1.6.2 Super compression

The gapless compression procedure of Theorem 1.38 transforms uniform sequences of games

(𝐺1, 𝐺2, . . .) to another uniform sequence (𝐺′1, 𝐺
′
2, . . .) that is, in a sense, exponentially more

efficient. Using this we prove a super compression procedure, which transforms a sequence of

games (𝐺1, 𝐺2, . . .) into a single game 𝐺′ such that 𝜔𝑠𝑡 (𝐺′) = 1 if and only if 𝜔𝑠𝑡 (𝐺𝑛) = 1 for all

sufficiently large 𝑛 and 𝑡 ∈ {𝑞, 𝑐𝑜}.

Theorem 1.39 (Super compression of nonlocal games). For all 𝛼 ∈ N there is a polynomial time

algorithm A𝑆𝑢𝑝𝑒𝑟𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝛼 that takes as input a pair of Turing machines (𝐷,𝐶) and outputs

a pair of Turing machines (𝐷super, 𝐶super) such that the following holds. If 𝒱 = (𝐷,𝐶) is a verifier

for a sequence of games 𝒢𝒱 = (𝐺𝑛)𝑛∈N and 𝑛0 ∈ N is an integer such that for all 𝑛 ≥ 𝑛0,

max
{
TIME𝐶 (𝑛),TIME𝐷 (𝑛)

}
≤ 𝑛𝛼 , (1.6.2)

then 𝒱
super = (𝐷super, 𝐶super) is a verifier for a sequence of games 𝒢𝒱super = (𝐺super

𝑛 )𝑛∈N such

that there exist integers _ = 𝑂 (𝛼) and ^ = poly( |𝐷 |, |𝐶 |, 𝛼, 𝑛0, _
poly(_)) and the ^-th game in the

sequence, 𝐺super
^ , satisfies the following properties:

1. (Complexity bounds)

max {TIME𝐶super (^),TIME𝐷super (^)} ≤ ^_ .
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2. (Completeness for 𝑡 = 𝑞) If for all 𝑛 ≥ ^ we have

sup
finite-dim osync 𝒮𝑛

𝜔(𝐺𝑛,𝒮𝑛) = 1

where the supremum is over finite-dimensional oracularizable synchronous strategies 𝒮𝑛,

then 𝜔𝑠𝑞 (𝐺
super
^ ) = 1.

3. (Completeness for 𝑡 = 𝑐𝑜) If for all 𝑛 ≥ ^, there exists an oracularizable synchronous

strategy 𝒮𝑛 for 𝐺𝑛 such that 𝜔(𝐺𝑛,𝒮𝑛) = 1, then 𝜔𝑠𝑐𝑜 (𝐺
super
^ ) = 1.

4. (Soundness) For all 𝑡 ∈ {𝑞, 𝑐𝑜}, if there exists an 𝑛 ≥ ^ such that 𝜔𝑠𝑡 (𝐺𝑛) < 1, then

𝜔𝑠𝑡 (𝐺
super
^ ) < 1.

5. (Entanglement lower bound) There is no finite-dimensional strategy𝒮super
^ such that𝜔(𝐺super

^ ,𝒮
super
^ ) =

1.

Note that, unlike Theorem 1.38, the conclusions of Theorem 1.39 pertain to a single game in

the output sequence 𝒢𝒱super = (𝐺super
𝑛 )𝑛 of games, namely, 𝐺super

^ .

At a high level, the games (𝐺super
𝑛 )𝑛 has the following structure: with probability 1

2 , the veri-

fier in the game 𝐺super
𝑛 plays the game 𝐺𝑛. With the remaining probability the verifier plays the

game 𝐺′
𝑛+1 where (𝐺′𝑛)𝑛 is the compression of (𝐺super

𝑛 )𝑛 using A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 from Theo-

rem 1.38. Note the self-referentiality! We now proceed with the proof.

Proof. Let (𝐷,𝐶) be a pair of Turing machines and let 𝛼 be such that eq. (1.6.1) is satisfied. We

first define, for every integer _ ∈ N, a pair of Turing machines (𝐷super
_

, 𝐶
super
_
) whose descriptions

are given below in Algorithms ??. We will then identify a special _∗ and define the algorithm

A𝑆𝑢𝑝𝑒𝑟𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝛼 to output the descriptions of (𝐷super
_∗ , 𝐶

super
_∗ ).

Note that the descriptions of 𝐷super
_

, 𝐶
super
_

are self-referential: they perform computations on

their own descriptions. It is possible to define Turing machines in this manner; one can appeal to

either Kleene’s Recursion Theorem/Roger’s Fixed Point Theorem to argue that these descriptions
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are well-defined (see, e.g. [49, Chapter 14] for a modern explanation). The description lengths of

these Turing machines satisfy

max{|𝐷super
_
|, |𝐶super

_
|} ≤ poly(_, |𝐷 |, |𝐶 |) .

1 Input: 𝑛, 𝑥, 𝑦, 𝑎, 𝑏

2 If the following takes more than 𝑛_ steps, then automatically reject.

3 Parse 𝑥 = (𝑡𝑥 , �̂�) and 𝑦 = (𝑡𝑦, �̂�), where 𝑡𝑥 , 𝑡𝑦 ∈ {0, 1}.

4 if 𝑡𝑥 = 𝑡𝑦 = 0 then

5 If 𝐷 (𝑛, �̂�, �̂�, 𝑎, 𝑏) accepts, then accept. Otherwise, reject.

6 end

7 else if 𝑡𝑥 = 𝑡𝑦 = 1 then

8 Compute (𝐷′, 𝐶′) = A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠_ (𝐷
super
_

, 𝐶
super
_
).

9 If 𝐷′(𝑛 + 1, �̂�, �̂�, 𝑎, 𝑏) accepts, then accept. Otherwise, reject.

10 end

11 On all other inputs, accept.

Pseudocode 6: Specification of Turing machine 𝐷super
_

.
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1 Input: 𝑛, 𝑥, 𝑦

2 If the following takes more than 𝑛_ steps, then automatically reject.

3 Parse 𝑥 = (𝑡𝑥 , �̂�) and 𝑦 = (𝑡𝑦, �̂�), where 𝑡𝑥 , 𝑡𝑦 ∈ {0, 1}.

4 if 𝑡𝑥 = 𝑡𝑦 = 0 then

5 Output 𝐶 (𝑛, �̂�, �̂�).

6 end

7 else if 𝑡𝑥 = 𝑡𝑦 = 1 then

8 Compute (𝐷′, 𝐶′) = A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠_ (𝐷
super
_

, 𝐶
super
_
).

9 Output 𝐶′(𝑛 + 1, �̂�, �̂�).

10 end

11 On all other inputs, output 1.

Pseudocode 7: Specification of Turing machine 𝐶super
_

.

First, observe that by construction both 𝐷
super
_

and 𝐶super
_

, when given index 𝑛, run in time

at most 𝑛_. Thus, (𝐷super
_

, 𝐶
super
_
) satisfy the complexity conditions of Theorem 1.38 for the algo-

rithmA𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠_, and thus the output Turing machines (𝐷′, 𝐶′) satisfy the complexity

bounds in the conclusion of A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠_, namely, that there exists 𝛾 = poly(_) such

that for all 𝑛 ∈ N,

max{TIME𝐷′ (𝑛),TIME𝐶′ (𝑛)} ≤ log𝛾 𝑛 .

The next claim shows that we can find an integer _∗ such that for sufficiently large 𝑛, the Turing

machines 𝐷super
_∗ , 𝐶

super
_∗ never encounter the time-out.

Claim 1. There exist integers _∗ = 𝑂 (𝛼), ^ = poly( |𝐷 |, |𝐶 |, 𝛼, 𝑛0, _
poly(_)) such that for all 𝑛 ≥ ^,

the Turing machines 𝐷super
_∗ , 𝐶

super
_∗ when given index 𝑛 never reject due to exceeding the 𝑛_

∗
time-

out.

Proof. Next, the time complexity of 𝐷super
_

(resp. 𝐶super
_

) without the automatic 𝑛_ timeout is poly-

nomial in the complexity of running the decider 𝐷/checker 𝐶, computingA𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠_,

134



and running the decider 𝐷′ (resp. checker 𝐶′). By our assumptions on (𝐷,𝐶), when 𝑛 ≥

𝑛0 we have the bounds from eq. (1.6.1). The algorithm A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠_ runs in time

poly( |𝐷super
_
|, |𝐶super

_
|, _) = poly( |𝐷 |, |𝐶 |, _). Putting this together with the complexity bounds

on 𝐷′ (resp. 𝐶′), we have that the complexity of 𝐷super
_

(resp. 𝐶
super
_

), without the automatic

timeout, is at most

𝜎(𝑛𝛼 · |𝐷 | · |𝐶 | · _ · log𝛾 𝑛)𝜎 (1.6.3)

for all 𝑛 ≥ 𝑛0, where 𝜎 ∈ N is some universal constant.

We can find integers _∗, ^ ∈ N such that each component of the expression in (1.6.3) is at most

𝑛_
∗

for all 𝑛 ≥ ^. Namely:

• By taking _∗ ≥ 𝜎 · 𝛼 and ^ ≥ 𝜎, we have that 𝜎𝑛𝛼·𝜎 ≤ 𝑛_∗ for all 𝑛 ≥ ^.

• By taking _∗ ≥ 𝜎 and ^ ≥ |𝐷 | · |𝐶 | · _∗, we have that ( |𝐷 | · |𝐶 | · _∗)𝜎 ≤ 𝑛_∗ for all 𝑛 ≥ ^.

• By taking _∗ ≥ 2 and ^ ≥ (𝛾 · 𝜎)𝛾·𝜎 where 𝛾 = poly(_∗), we have that log𝛾·𝜎 (𝑛) ≤ 𝑛_∗ for

all 𝑛 ≥ ^.

Putting everything together, by setting _∗ = 2𝜎𝛼 and ^ = 𝜎 · 𝛼 · |𝐷 | · |𝐶 | · _∗ · (𝛾 · 𝜎)𝛾·𝜎 · 𝑛0, we

get that the Turing machines 𝐷super
_∗ and 𝐶super

_∗ run in time that is less than 𝑛_
∗

for all 𝑛 ≥ ^.

□

We define the algorithm A𝑆𝑢𝑝𝑒𝑟𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝛼, on input (𝐷,𝐶), to compute _∗ = 𝑂 (𝛼) and

output the descriptions of (𝐷super
_∗ , 𝐶

super
_∗ ). The algorithm clearly runs in polynomial time.

By construction the Turing machines (𝐷super
_∗ , 𝐶

super
_∗ ) satisfy the desired time complexity bound

on index 𝑛 = ^. What remains is to argue completeness and soundness. For notational simplicity

we fix _∗ and let (𝐷super, 𝐶super) = (𝐷super
_∗ , 𝐶

super
_∗ ).

Fix 𝑡 ∈ {𝑞, 𝑐𝑜}. Since the Turing machines 𝐷super, 𝐶super never reject due to the time-out, we

have that the verifier in the game 𝐺super
𝑛 automatically accepts with probability 1

2 (when 𝑡𝑥 ≠ 𝑡𝑦),

plays the game 𝐺𝑛 with probability 1
4 (when 𝑡𝑥 = 𝑡𝑦 = 0), and plays the game 𝐺′

𝑛+1 with probability
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1
4 (when 𝑡𝑥 = 𝑡𝑦 = 1) where 𝐺′

𝑛+1 is the (𝑛 + 1)-st game in the sequence of games output by

A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 on input (𝐷super, 𝐶super).

We first prove completeness for 𝑡 = 𝑞. Suppose for all 𝑛 ≥ ^ we have

sup
finite-dim osync 𝒮𝑛

𝜔(𝐺𝑛,𝒮𝑛) = 1. (1.6.4)

Define

𝑐𝑛 = sup
finite-dim osync 𝒮super

𝑛

𝜔(𝐺super
𝑛 ,𝒮

super
𝑛 )

and define 𝑐 = inf𝑛≥^ 𝑐𝑛. We aim to prove that 𝑐 = 1; this would imply that 𝜔𝑠𝑞 (𝐺
super
𝑛 ) = 1 for

all 𝑛 ≥ ^. Suppose this were not true, so that 0 ≤ 𝑐 < 1. We now show that 𝑐𝑛 ≥ 7+𝑐
8 > 𝑐 for all

𝑛 ≥ ^, which would contradict the fact that 𝑐 is the infimum of the sequence (𝑐𝑛)𝑛≥^.

For all 𝑚 ≥ ^, let: (a) 𝒮𝑚 be a finite-dimensional oracularizable synchronous (“finite-dim

osync”) strategy for 𝐺𝑚, (b) let 𝒮super
𝑚 denote a finite-dim osync strategy for 𝐺super

𝑚 whose value is

at least 𝑐, and (c) let 𝒮′𝑚 denote the finite-dim osync strategy for 𝐺′𝑚, given by the completeness

property of Theorem 1.38, whose value satisfies

𝜔(𝐺′𝑚,𝒮′𝑚) ≥
1
2
+ 1

2
𝜔(𝐺super

𝑚 ,𝒮
super
𝑚 ) ≥ 1 + 𝑐

2
. (1.6.5)

We now construct, for all 𝑛 ≥ ^, a finite-dim osync strategy 𝒯𝑛 for 𝐺super
𝑛 that has value at least

𝜔(𝐺super
𝑛 ,𝒯𝑛) ≥

1
2
+ 1

4
𝜔(𝐺𝑛,𝒮𝑛) +

1
4
𝜔(𝐺′𝑛+1,𝒮

′
𝑛+1) ≥

5 + 𝑐
8
+ 1

4
𝜔(𝐺𝑛,𝒮𝑛) (1.6.6)

where the second inequality follows from eq. (1.6.5). The strategy 𝒯𝑛 is constructed as follows.

Its tracial state is the tensor product of the tracial states from 𝒮𝑛 and 𝒮
′
𝑛+1; since both of these

strategies are finite-dimensional so is the strategy 𝒯𝑛. When a player gets question 𝑥 = (0, �̂�), they

perform the measurement corresponding to question �̂� from the strategy 𝒮𝑛. When a player gets

question 𝑥 = (1, �̂�), they perform the measurement corresponding to question �̂� from the strategy

𝒮
′
𝑛. Thus when both players get questions whose first bit is 0, they are essentially playing the game
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𝐺𝑛, and when they both get questions whose first bit is 1, they are essentially playing the game

𝐺′
𝑛+1. Taking the supremum of the right-hand side of eq. (1.6.6) over finite-dim osync strategies

𝒮𝑛 for 𝐺𝑛 and using eq. (1.6.4), we get that 𝑐𝑛 ≥ 7+𝑐
8 , which yields a contradiction as desired.

The proof of completeness for 𝑡 = 𝑐𝑜 is virutally identical, except we consider all oracularizable

synchronous strategies, not just finite-dimensional ones.

We now prove the soundness property. Let 𝑡 ∈ {𝑞, 𝑐𝑜}. Let 𝑛∗ ≥ ^ be such that 𝜔𝑠𝑡 (𝐺𝑛∗) < 1.

For all 𝑚 ≥ ^, by construction of the game 𝐺super
𝑚 we have

𝜔𝑠𝑡 (𝐺
super
𝑚 ) = 1

2
+ 1

4
𝜔𝑠𝑡 (𝐺𝑚) +

1
4
𝜔𝑠𝑡 (𝐺′𝑚+1) ,

so therefore𝜔𝑠𝑡 (𝐺
super
𝑛∗ ) < 1. By the soundness property of Theorem 1.38, this means that𝜔𝑠𝑡 (𝐺′𝑛∗) <

1, and therefore𝜔𝑠𝑡 (𝐺
super
𝑛∗−1 ) < 1. This in turn implies that𝜔𝑠𝑡 (𝐺

super
𝑛∗−2 ) < 1, and so on, until we obtain

𝜔𝑠𝑡 (𝐺
super
^ ) < 1, the desired conclusion.

Finally, we prove that there is no finite-dimensional perfect strategy for 𝐺super
^ . Suppose for

contradiction that there a 𝑑-dimensional strategy 𝒮
super
^ such that 𝜔(𝐺super

^ ,𝒮
super
^ ) = 1. Then in

particular it must give rise to a 𝑑-dimensional strategy 𝒮
′
^+1 such that 𝜔(𝐺′

^+1,𝒮
′
^+1) = 1 (simply

by taking the measurement operators corresponding to questions 𝑥 = (1, �̂�)). By the entanglement

bound of Theorem 1.38, it must be that the dimension 𝑑 is at least E(𝐺super
^+1 , 1). If this quantity

is infinite, then we arrive at a contradiction and are done. Otherwise, there is a 𝑑-dimensional

perfect strategy 𝒮
super
^+1 for 𝐺super

^+1 . Again, this must imply a 𝑑-dimensional perfect strategy for

𝐺′
^+2. Continuing in this fashion, we either obtain a contradiction or deduce the existence of a

𝑑-dimensional perfect strategy for 𝐺′𝑚 for all 𝑚 ≥ ^. On the other hand, the entanglement bound

of Theorem 1.38 also implies that E(𝐺′𝑚, 1) ≥ 22𝑚. Thus, 𝑑 ≥ 22𝑚 for all 𝑚 ≥ ^, contradicting the

assumption that 𝑑 is finite. □
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1.6.3 Π1-completeness of the exact 𝑐𝑜-value problem

As a warmup, we present an application of the super compression procedure to show that the

exact 𝑐𝑜-value problem (i.e. determining whether 𝜔𝑐𝑜 (𝐺) = 1) is complete for Π1, also known as

coRE. This was first shown by Slofstra [8] using very different techniques based on group theory.

Theorem 1.40. The exact 𝑐𝑜-value problem is complete for Π1.

Proof. The easy direction is that the exact 𝑐𝑜-value problem is contained in Π1 because one can

express it as a Π1 sentence: for all nonlocal games 𝐺, 𝜔𝑐𝑜 (𝐺) = 1 if and only if ∀𝑥 𝜙(𝑥) where

𝜙(𝑥) is a computable predicate that is true when the 𝑥-th level of the semidefinite programming

hierarchy of [14, 15] computes an upper bound of 1 on 𝜔𝑐𝑜 (𝐺). In other words, the best upper

bound on the commuting operator value of 𝐺 computed by the 𝑥-th level of the hierarchy is 1. If

this is true for all 𝑥, then this implies that 𝜔𝑐𝑜 (𝐺) = 1. On the other hand, if 𝜔𝑐𝑜 (𝐺) < 1, then

there exists a level 𝑥 such that 𝜙(𝑥) is false.

Now we turn to the other direction. To prove Π1-hardness, we reduce an arbitrary Π1 sentence

𝑆 = ∀𝑥 𝜙(𝑥) to a nonlocal game 𝐺 such that 𝑆 is true if and only if 𝜔𝑐𝑜 (𝐺) = 1.

Define the Turing machine 𝑇𝜙 that halts on the empty input if and only if the sentence 𝑆 is false:

1 for 𝑥 ∈ {0, 1}∗ do

2 If 𝜙(𝑥) is false then halt.

3 end

Pseudocode 8: Specification of 𝑇𝜙.

Next, define the sequence of games𝒢𝜙 = (𝐺𝑛)𝑛∈N with verifier 𝒱 = (𝐷,𝐶), where𝐶 (𝑥, 𝑦) = 1

if and only if 𝑥 = 𝑦, and where the decider 𝐷 is defined as follows:
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1 Input: 𝑛, 𝑥, 𝑦, 𝑎, 𝑏

2 If 𝑇𝜙 halts in 𝑛 steps, reject.

3 If any of 𝑥, 𝑦, 𝑎, 𝑏 exceed 𝑛 bits, reject.

4 If 𝑥 = 𝑦 but 𝑎 ≠ 𝑏, reject.

5 Otherwise, accept.

Pseudocode 9: Specification of Turing machine 𝐷.

Notice that max{TIME𝐷 (𝑛),TIME𝑐 (𝑛)} ≤ 𝑂 (𝑛), which is at most 𝑛2 for sufficiently large 𝑛.

Furthermore, 𝜔𝑐𝑜 (𝐺𝑛) = 1 if and only if the Turing machine 𝑇𝜙 does not halt in 𝑛 steps. Fur-

thermore, if 𝑇𝜙 does not halt in 𝑛 steps, then there exists an oracularizable synchronous (“osync”)

strategy 𝒮𝑛 such that 𝜔(𝐺𝑛,𝒮𝑛) = 1: the strategy is to output a fixed answer no matter what the

question is.

We apply super compression to the family of games𝒢𝜙: the output ofA𝑆𝑢𝑝𝑒𝑟𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝛼 (𝐷,𝐶)

where 𝛼 = 2 is a verifier (𝐷super, 𝐶super) for a sequence of games 𝒢super = (𝐺super
𝑛 )𝑛∈N such that

𝜔𝑠𝑐𝑜 (𝐺
super
^ ) = 1 if and only if there exists an osync value-1 strategy 𝒮𝑛 for 𝐺𝑛, where ^ is defined

as in Theorem 1.39.

Thus if 𝑆 is true, then𝑇𝜙 never halts, and there exists an osync strategy𝒮𝑛 such that𝜔(𝐺𝑛,𝒮𝑛) =

1 for all 𝑛 ∈ N, and thus 𝜔𝑠𝑐𝑜 (𝐺
super
^ ) = 1. On the other hand, if 𝑆 is false and 𝑇𝜙 does halt in some

time 𝑡, then 𝜔𝑠𝑐𝑜 (𝐺𝑛) < 1 for all 𝑛 ≥ 𝑡, which implies that 𝜔𝑠𝑐𝑜 (𝐺
super
^ ) < 1.

By [34], since 𝐺super
^ is a synchronous game, we have that 𝜔𝑠𝑐𝑜 (𝐺

super
^ ) = 1 if and only if

𝜔𝑐𝑜 (𝐺super
^ ) = 1. This, combined with the fact that the mapping from the Π1 sentence 𝑆 to the

game 𝐺super
^ is computable, implies that the exact 𝑐𝑜-value problem is Π1-hard.

□

Note that the exact same proof, considering 𝑞-type strategies rather than 𝑐𝑜-type strategies,

shows that the exact 𝑞-value problem is hard for Π1. While we improve this lower bound to Π2

in the next section, we note that this directly implies that the set of quantum correlations is not
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closed, a result that was also established by Slofstra in [5].13 Again, the proof approaches are

quite different: his proof uses techniques from approximate representation theory as well as group

theory.

Corollary 1.41 ([5]). The set of quantum correlations is not closed.

Proof. Let 𝑆 be a true Π1 sentence. The construction of the game 𝐺super
^ from 𝑆 in Theorem 1.40,

by Theorem 1.39, has the property that 𝜔𝑞 (𝐺super
^ ) = 1 but there is no finite-dimensional strategy

𝒮 that actually achieves value 1 in the game.

□

1.6.4 Π2-completeness of the exact 𝑞-value problem

We now prove the main result of this paper, which is the Π2-completeness of the exact 𝑞-value

problem. As explained in Section 1.1.1, we combine our gapless compression theorem with a

consequence of the MIP∗ = RE theorem from [4], which we state in the following theorem. In the

theorem, nonlocal games 𝐺 are represented via an integer 𝑛 ∈ N, and a pair of Turing machines

(𝐷,𝐶) where 𝐷 represents the decider for 𝐺 (so is a 4-input Turing machine) and 𝐶 represents

the checker (so is a 2-input Turing machine). The game 𝐺 is then defined to be (X,A, 𝐷) where

X = A = {0, 1}𝑛. The checker 𝐶, on input (𝑥, 𝑦) ∈ X ×X, indicates whether (𝑥, 𝑦) is trivial for 𝐺.

Theorem 1.42 ([4]). There is a universal constant _Halt ∈ N and algorithmA𝐻𝑎𝑙𝑡𝑖𝑛𝑔𝐺𝑎𝑚𝑒 that

takes as input the description of a Σ1 sentence 𝑆 and outputs a tuple (𝐷,𝐶) for a nonlocal game

𝐺 such that

1. (Completeness) If 𝑆 is true, then

sup
finite-dim osync 𝒮

𝜔(𝐺,𝒮) = 1.

13Briefly, the set of quantum correlations on 𝑛 inputs and 𝑘 outputs, denoted by 𝐶𝑞 (𝑛, 𝑘), is the (convex) set of all
vectors 𝑝𝑥𝑦𝑎𝑏 ∈ R𝑛×𝑛×𝑘×𝑘 such that

𝑝𝑥𝑦𝑎𝑏 = ⟨𝜓 |𝐴𝑥𝑎 ⊗ 𝐵
𝑦

𝑏
|𝜓⟩

for some dimension 𝑑, some quantum state |𝜓⟩ ∈ C𝑑 ⊗ C𝑑 , and some POVMs {𝐴𝑥𝑎}, {𝐵
𝑦

𝑏
}.
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2. (Soundness) If 𝑆 is false, then

𝜔𝑠𝑞 (𝐺) < 1.

3. (Complexity bounds) Letting |𝑆 | denote the description length of the sentence 𝑆, we have

max
{
TIME𝐶 ,TIME𝐷 ,TIMEA𝐻𝑎𝑙𝑡𝑖𝑛𝑔𝐺𝑎𝑚𝑒(𝑆)

}
≤ 𝑂 ( |𝑆 |_Halt)

where TIME𝐶 ,TIME𝐷 denote the time complexities of𝐶, 𝐷 (on any input), and TIMEA𝐻𝑎𝑙𝑡𝑖𝑛𝑔𝐺𝑎𝑚𝑒(𝑆)

denotes the time complexity of A𝐻𝑎𝑙𝑡𝑖𝑛𝑔𝐺𝑎𝑚𝑒 on input 𝑆.

Proof. This is a corollary of [4, Theorem 12.7] which reduces the Halting problem to deciding

whether the 𝑞-value of a nonlocal game is equal to 1 or at most 1/2. To obtain the present theorem,

we first observe that every Σ1 sentence 𝑆 = ∃𝑥 𝜙(𝑥) can be expressed as an equivalent instance of

the Halting problem: define the Turing machine 𝑀𝑆 that on the empty input, starts looping over all

𝑥 and evaluates 𝜙(𝑥). If it finds an 𝑥 such that 𝜙(𝑥) is true, then it halts. Clearly 𝑆 is true if and

only if 𝑀𝑆 halts.

The game 𝐻 corresponding to 𝑀𝑆 from [4, Theorem 12.7] is synchronous and the decider

complexity is at most some polynomial in the description length of 𝑆. However, the question

distribution ` of the game 𝐻 is not uniform. Without loss of generality, assume that the question

and answer sets of 𝐻 are represented by 𝑛-bit strings. Because the reduction from 𝑀𝑆 to 𝐻 is

efficient, we have that 𝑛 = poly( |𝑆 |).

The game 𝐺 that we construct will be 𝐻 but with a uniform distribution over all 𝑛-bit question

pairs (𝑥, 𝑦). Whenever a sampled question pair (𝑥, 𝑦) is not in the support of `, the decider 𝐷 of

𝐺 will automatically accept (and thus (𝑥, 𝑦) is a trivial question). Otherwise, the decider from the

game 𝐻 is invoked. The key thing to note is that𝜔𝑞 (𝐻) = 1 if and only if𝜔𝑞 (𝐺) = 1. Furthermore,

since 𝐺 is a synchronous game (since 𝐻 is a synchronous game), it holds that 𝜔𝑠𝑞 (𝐺) = 1 if and

only if 𝜔𝑞 (𝐺) = 1.

Finally, since determining the support of the question distribution of 𝐻 can be done in poly( |𝑆 |)

time, we obtain a checker 𝐶 for the game 𝐺 that runs in poly( |𝑆 |) time. Thus, on input 𝑆, the
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algorithm A𝐻𝑎𝑙𝑡𝑖𝑛𝑔𝐺𝑎𝑚𝑒 can output the tuple (𝐷,𝐶) which satisfies the conclusions of the

theorem. □

We break up the proof of the Π2 completeness of the exact 𝑞-value problem into two parts.

First we show hardness.

Lemma 1.43. The exact 𝑞-value problem is hard for Π2.

Proof. Fix a Π2 sentence 𝑆 = ∀𝑥∃𝑦 𝜙(𝑥, 𝑦) where 𝜙 is a computable predicate. For every 𝑛 ∈ N

define the Σ1 sentence

𝑆𝑛 = ∃𝑦1, . . . , 𝑦𝑛

𝑛∧
𝑖=1

𝜙(𝑖, 𝑦𝑖).

Thus the sentence 𝑆 is true if and only if the sentences 𝑆𝑛 are true for all 𝑛 ∈ N. Note that if 𝑆𝑛 is

true then 𝑆𝑖 is true for all 𝑖 ≤ 𝑛 .

Using A𝐻𝑎𝑙𝑡𝑖𝑛𝑔𝐺𝑎𝑚𝑒 we construct the sequence of games 𝒢𝜙 = (𝐺𝑛)𝑛∈N with verifier 𝒱 =

(𝐷,𝐶). Let

𝑐𝑛 = sup
finite-dim osync 𝒮𝑛

𝜔(𝐺𝑛,𝒮𝑛),

then these games have the property that 𝑐𝑛 = 1 if and only if the sentence 𝑆𝑛 is true.

1 Input: 𝑛, 𝑥, 𝑦, 𝑎, 𝑏

2 Compute the game decider and checker (𝐷𝑛, 𝐶𝑛) for A𝐻𝑎𝑙𝑡𝑖𝑛𝑔𝐺𝑎𝑚𝑒(𝑆𝑛).

3 If 𝐷𝑛 (𝑥, 𝑦, 𝑎, 𝑏) accepts, then accept.

4 Otherwise, reject.

Pseudocode 10: Specification of Turing machine 𝐷.

1 Input: 𝑛, 𝑥, 𝑦

2 Compute the game decider and checker (𝐷𝑛, 𝐶𝑛) for A𝐻𝑎𝑙𝑡𝑖𝑛𝑔𝐺𝑎𝑚𝑒(𝑆𝑛).

3 Output 𝐶𝑛 (𝑥, 𝑦).

Pseudocode 11: Specification of Turing machine 𝐶.
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For large enough 𝑛 the verifier is bounded by

max
{
TIME𝐶 (𝑛),TIME𝐷 (𝑛)

}
≤ 𝑛_Halt+1

since

max
{
TIME𝐶𝑛 ,TIME𝐷𝑛 ,TIMEA𝐻𝑎𝑙𝑡𝑖𝑛𝑔𝐺𝑎𝑚𝑒(𝑆𝑛)

}
≤ (𝑛|𝑆 |)_Halt .

We apply super compression to the family of games𝒢𝜙: the output ofA𝑆𝑢𝑝𝑒𝑟𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝛼 (𝐷,𝐶)

where 𝛼 = _Halt+1 is a verifier (𝐷super, 𝐶super) for a sequence of games 𝒢super = (𝐺super
𝑛 )𝑛∈N such

that 𝜔𝑠𝑞 (𝐺
super
^ ) = 1 if and only if 𝑐𝑛 = 1 for all 𝑛 ≥ ^, where ^ is defined as in Theorem 1.39.

Therefore, 𝜔𝑠𝑞 (𝐺
super
^ ) = 1 if and only if the sentences 𝑆𝑛 are true for 𝑛 ≥ ^, which is equivalent

to the Π2 sentence 𝑆 being true. We have therefore reduced the problem of deciding an arbitrary

Π2 sentence to deciding the exact 𝑞-value problem. □

Finally, we argue that the exact 𝑞-value problem is contained in Π2.

Lemma 1.44. The exact 𝑞-value problem is in Π2.

Proof. We will state the exact 𝑞-value problem as a Π2 sentence. Fix a nonlocal game 𝐺 then we

would like to decide if

sup
finite-dim 𝒮

𝜔(𝐺,𝒮) = 1.

Let S𝑑Y be an Y-net for quantum strategies of dimension 𝑑 ∈ N. This is a finite set, since strate-

gies of a fixed dimension form a compact set [50]. Let SY =
⋃
𝑑∈N S𝑑Y . Then we can equivalently

formulate the decision problem as

∀Y ∈ (0, 1] ∃𝒮 ∈ SY such that 𝜔(𝐺,𝒮) > 1 − 2Y.
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This in turn is equivalent to the Π2 sentence

∀𝑛 ∈ N ∃𝒮 ∈ S 1
𝑛

such that 𝜔(𝐺,𝒮) > 1 − 2
𝑛
.

□

Putting the two together, we get:

Theorem 1.45. The exact 𝑞-value problem is complete for Π2.

1.6.5 Necessity of compression

We will show how to compress nonlocal games given many-one reductions from arithmetical

hierarchy classes to the corresponding 𝑡-value problems for 𝑡 ∈ {𝑞, 𝑐𝑜}. This shows that, in

a certain sense, compression theorems are necessary for proving the complexity lower bounds

indicated in Figure 1.1. In particular we construct super compression procedures (procedures that

map families of games to a single equivalent game).

The following theorem was proved in [26]:

Theorem 1.46. Assume that the approximate 𝑞-value problem is Σ1-hard. Then there exists a

computable map A𝐺𝑎𝑝𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞 that takes in as input a description of a sequence of games

𝒢 = (𝐺𝑛)𝑛∈N and outputs the description of a single game 𝐺′ such that

1. 𝜔𝑞 (𝐺′) = 1 if 𝜔𝑞 (𝐺𝑛) = 1 for some game 𝐺𝑛 ∈ 𝒢.

2. 𝜔𝑞 (𝐺′) < 1
2 if 𝜔𝑞 (𝐺𝑛) < 1

2 for every game 𝐺𝑛 ∈ 𝒢.

Now we show that if the approximate 𝑐𝑜-value problem is Π1-hard, then there exists a gap-

preserving compression procedure for the commuting operator value of games.

Theorem 1.47. Assume that the approximate 𝑐𝑜-value problem is Π1-hard. Then there exists a

computable map A𝐺𝑎𝑝𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑐𝑜 that takes in as input a description of a sequence of games

𝒢 = (𝐺𝑛)𝑛∈N and outputs the description of a single game 𝐺′ such that
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1. 𝜔𝑐𝑜 (𝐺′) = 1 if 𝜔𝑐𝑜 (𝐺𝑛) = 1 for every game 𝐺𝑛 ∈ 𝒢,

2. 𝜔𝑐𝑜 (𝐺′) < 1
2 , otherwise.

Proof. Consider the following Turing machine 𝑇 𝑐𝑜
𝒢

: it interleaves running some number of levels

of the NPA semidefinite programming hierarchy [14] on each game 𝐺𝑚 in the sequence, trying to

find a game 𝑚 for which 𝜔𝑐𝑜 (𝐺𝑚) < 1. The completeness of the NPA hierarchy implies that if

𝜔𝑐𝑜 (𝐺𝑚) < 1 for some 𝑚, then eventually a certificate will be found. Thus the Turing machine

halts only if there exists 𝑚 such that 𝜔𝑐𝑜 (𝐺𝑚) < 1.

1 for 𝑛 ∈ N do

2 for 𝑚 ∈ {1, ..., 𝑛} do

3 Run the first 𝑛 levels of the NPA hierarchy for the game 𝐺𝑚 ∈ 𝒢.

4 If there is a certificate that 𝜔𝑐𝑜 (𝐺𝑚) < 1 then halt.

5 end

6 end

Pseudocode 12: Specification of 𝑇𝑐𝑜
𝒢

Consider the sentence 𝑆 defined as “∀𝑛 ∈ N, 𝑇 𝑐𝑜
𝒢

does not halt in 𝑛 steps”. Note that 𝑆 is

a Π1 sentence, and since the approximate 𝑐𝑜-value problem is Π1-hard, this means there is a

corresponding game 𝐺′ computable from 𝑆 such that such that 𝜔𝑐𝑜 (𝐺′) = 1 if 𝑇 𝑐𝑜
𝒢

never halts (i.e.

𝜔𝑐𝑜 (𝐺𝑚) = 1 for all 𝑚), otherwise 𝜔𝑐𝑜 (𝐺′) < 1
2 . □

Next we show that Π1-hardness of the exact 𝑐𝑜-value problem implies a gapless compression

theorem for the commuting operator value of nonlocal games.

Theorem 1.48. Assume that the exact 𝑐𝑜-value problem is Π1-hard. Then there exists a computable

map A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑐𝑜 that takes in as input a description of a sequence of games 𝒢 =

(𝐺𝑛)𝑛∈N and outputs the description of a single game 𝐺′ such that 𝜔𝑐𝑜 (𝐺′) = 1 if and only if

𝜔𝑐𝑜 (𝐺𝑛) = 1 for all 𝑛 ∈ N.
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Proof. This follows exactly the same proof as above, except the reduction from the sentence 𝑆 to

the game 𝐺′ is such that 𝜔𝑐𝑜 (𝐺𝑚) = 1 for all 𝑚 if and only if 𝑆 is true if and only if 𝜔𝑐𝑜 (𝐺′) =

1. □

Finally we prove that Π2-hardness of the exact 𝑞-value problem implies a gapless compression

theorem for the quantum value of nonlocal games.

Theorem 1.49. Assume that the exact 𝑞-value problem is Π2-hard. Then there exists a computable

map A𝐺𝑎𝑝𝑙𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞 that takes in as input a description of a sequence of games 𝒢 =

(𝐺𝑛)𝑛∈N and outputs the description of a single game 𝐺′ such that 𝜔𝑞 (𝐺′) = 1 if and only if

𝜔𝑞 (𝐺𝑛) = 1 for all 𝑛 ∈ N.

Proof. Consider the following Turing machine 𝑇𝑞
𝒢

: it takes in as input a precision parameter Y and

an integer 𝑚, and it searches for a finite-dimensional strategy 𝒮 (specified with precision Y) such

that the game 𝐺𝑚 in the sequence 𝒢 has 𝜔(𝐺𝑚,𝒮) ≥ 1 − 2Y. This can be done because given a

dimension 𝑑 ∈ N and a precision parameter Y, there is an algorithm to exhaustively search over an

Y-net over 𝑑-dimensional quantum strategies.

1 Input: Y, 𝑚

2 for 𝑑 ∈ N do

3 If there exists a strategy 𝒮 over an Y-net of quantum strategies of dimension 𝑑, such

that 𝜔(𝐺𝑚,𝒮) > 1 − 2Y, then halt.

4 end

Pseudocode 13: Specification of 𝑇𝑞
𝒢

Note that if 𝜔𝑞 (𝐺𝑚) = 1, then for all Y > 0 there exists a finite-dimensional strategy that

achieves value at least 1 − 2Y. On the other hand, if 𝜔𝑞 (𝐺𝑚) < 1, then there exists an Y for which

all finite dimensional strategies have value at most 1 − 2Y. Thus 𝜔𝑞 (𝐺𝑚) = 1 for all 𝑚 ∈ N if and

only if the following sentence 𝑆 is true: “∀𝑘, 𝑚 ∃𝑛𝑇𝑞
𝒢

halts on input
(

1
𝑘
, 𝑚

)
in 𝑛 steps”. Note that

𝑆 is a Π2 sentence, and by our assumption there exists a nonlocal game 𝐺′ that is computable from

𝑆 such that 𝜔𝑞 (𝐺′) = 1 if and only if 𝜔𝑞 (𝐺𝑚) = 1 for all 𝑚 ∈ N.
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□

1.7 Appendix A: The pasting lemma

We now prove Theorem 1.18, which is reproduced below for convenience. Recall that 𝒜 is a

von Neumann algebra with a normal tracial state 𝜏.

Lemma 1.50 (Pasting lemma). Let {𝑀 (1) , 𝑀 (2) , . . . , 𝑀 (𝐾)} ⊂ 𝒜 be a set of projective measure-

ments with outcomes in a finite set A. Suppose that for all 𝑖 ≠ 𝑗 , we have that

𝑀
(𝑖)
𝑎 𝑀

( 𝑗)
𝑏
≈Y 𝑀 ( 𝑗)𝑏 𝑀

(𝑖)
𝑎

where the answer summation is over (𝑎, 𝑏) ∈ A2. Then there exists a projective measurement

𝑅 = {𝑅®𝑎} ⊂ 𝒜 with outcomes in A𝐾 such that for all 𝑖 ∈ [𝐾],

𝑅[ ®𝑎 ↦→𝑎𝑖 |𝑏] ≈𝛿𝑝𝑎𝑠𝑡𝑖𝑛𝑔 𝑀
(𝑖)
𝑏

where 𝛿𝑝𝑎𝑠𝑡𝑖𝑛𝑔 = 𝛿𝑝𝑎𝑠𝑡𝑖𝑛𝑔 (𝐾, Y) is a function that goes to 0 as Y → 0.

We introduce some notation. For every integer 𝑘 ≥ 1, vector ®𝑎 ∈ A𝑘 , and operator index

sequence 𝑠 ∈ [𝑀]𝑘 , define the operator

𝑃𝑠®𝑎 = 𝐴
(𝑠1)
®𝑎1
· 𝐴(𝑠2)
®𝑎2
· · · 𝐴(𝑠𝑘)®𝑎𝑘 .

Note that 𝑃𝑠 = {𝑃𝑠®𝑎}𝑎∈A𝑘 is a general set of operators (not necessarily a POVM, because the

operators are not positive).

We first prove the following utility Lemma. We use the following notational convention: given

two operator sets 𝐶 = {𝐶𝑎}𝑎∈A and 𝐷 = {𝐷𝑏}𝑏∈B , we write 𝐶 · 𝐷 to denote the operator set

{𝐶𝑎 · 𝐷𝑏}𝑎∈A,𝑏∈B .
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Lemma 1.51. For integers 𝑘 ≥ 1, for all all sequences 𝑠 ∈ [𝑀]𝑘 , for all 𝑖 ∈ [𝑀], we have

∥𝑃𝑠 · 𝐴(𝑖) − 𝐴(𝑖) · 𝑃𝑠∥𝜏 ≤ 𝑘Y

Proof. We prove this via induction on 𝑘 . The base case for 𝑘 = 1 follows from the assumption

of the approximate commutativity of the 𝐴(𝑖) measurements. Assuming the inductive hypothesis

holds for some 𝑘 ≥ 1, we now prove it for 𝑘 + 1: let 𝑠 ∈ [𝑀]𝑘 , 𝑡 ∈ [𝑀]. We can treat (𝑠, 𝑡) as an

operator index sequence of length 𝑘 + 1. Then for all 𝑖 ∈ [𝑀], we have

∥𝑃𝑠,𝑡 · 𝐴(𝑖) − 𝐴(𝑖) · 𝑃𝑠,𝑡 ∥𝜏 = ∥𝑃𝑠 · 𝐴(𝑡) · 𝐴(𝑖) − 𝐴(𝑖) · 𝑃𝑠 · 𝐴(𝑡) ∥𝜏

≤
𝑃𝑠 · (𝐴(𝑡) · 𝐴(𝑖) − 𝐴(𝑖) · 𝐴(𝑡))

𝜏
+

(𝑃𝑠 · 𝐴(𝑖) − 𝐴(𝑖) · 𝑃𝑠) · 𝐴(𝑡)
𝜏

(1.7.1)

where the inequality follows from the triangle inequality of the 𝜏-norm on operator sets (Theo-

rem 1.10).

We can bound the first term as

𝑃𝑠 · (𝐴(𝑡) · 𝐴(𝑖) − 𝐴(𝑖) · 𝐴(𝑡))
𝜏
=

𝐴(𝑡) · 𝐴(𝑖) − 𝐴(𝑖) · 𝐴(𝑡)
𝜏
≤ Y .

The inequality follows from the almost-commutativity of the 𝐴’s, and the first equality is because

=
∑︁
®𝑎∈A𝑘
𝑏,𝑐∈A

TR
((
𝐴
(𝑡)
𝑏
· 𝐴(𝑖)𝑐 − 𝐴(𝑖)𝑐 · 𝐴(𝑡)𝑏

)∗
(𝑃𝑠®𝑎)

∗𝑃𝑠®𝑎

(
𝐴
(𝑡)
𝑏
· 𝐴(𝑖)𝑐 − 𝐴(𝑖)𝑐 · 𝐴(𝑡)𝑏

))
=

∑︁
𝑏,𝑐∈A

TR
((
𝐴
(𝑡)
𝑏
· 𝐴(𝑖)𝑐 − 𝐴(𝑖)𝑐 · 𝐴(𝑡)𝑏

)∗ (
𝐴
(𝑡)
𝑏
· 𝐴(𝑖)𝑐 − 𝐴(𝑖)𝑐 · 𝐴(𝑡)𝑏

))
where we used the fact that

∑
®𝑎∈A𝑘 (𝑃𝑠®𝑎)

∗𝑃𝑠®𝑎 = 1.

The second term in (1.7.1) can be similarly bounded as

(𝑃𝑠 · 𝐴(𝑖) − 𝐴(𝑖) · 𝑃𝑠) · 𝐴(𝑡)
𝜏
=

𝑃𝑠 · 𝐴(𝑖) − 𝐴(𝑖) · 𝑃𝑠
𝜏
≤ 𝑘Y
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by the inductive hypothesis. Thus we can bound (1.7.1) by (𝑘 + 1)Y, completing the induction. □

For the remainder of the proof let 𝑘 = 𝑀 . Let 𝑠 = (1, 2, . . . , 𝑀) ∈ [𝑀]𝑘 denote an operator

index sequence. For all ®𝑎 ∈ A𝑘 , define

𝑄 ®𝑎 = 𝑃
𝑠
®𝑎 (𝑃

𝑠
®𝑎)
∗ .

Note that 𝑄 ®𝑎 is positive and furthermore {𝑄 ®𝑎} forms a POVM with outcomes in A𝑘 (this uses the

fact that the 𝐴(𝑖)𝑎 operators are projections).

We now calculate the closeness of 𝑄 [ ®𝑎 ↦→®𝑎𝑖 |𝑏] to the individual 𝐴(𝑖)
𝑏

’s:

∑︁
𝑏∈A
∥𝑄 [ ®𝑎 ↦→®𝑎𝑖 |𝑏] − 𝐴

(𝑖)
𝑏
∥2𝜏 =

∑︁
𝑏∈A

𝜏

((
𝑄 [ ®𝑎 ↦→®𝑎𝑖 |𝑏] − 𝐴

(𝑖)
𝑏

)2)
≤ 2 − 2

∑︁
𝑏∈A

𝜏

(
𝑄 [ ®𝑎 ↦→®𝑎𝑖 |𝑏]𝐴

(𝑖)
𝑏

)
= 2 − 2

∑︁
®𝑎
𝜏

(
𝑄 ®𝑎𝐴

(𝑖)
®𝑎𝑖

)
We give a lower bound on the magnitude of the second term. Spliting the index sequence

𝑠 = (𝑠<𝑖, 𝑖, 𝑠>𝑖) and answer tuples ®𝑎 = ( ®𝑎<𝑖, ®𝑎𝑖, ®𝑎>𝑖), we get

∑︁
®𝑎
𝜏

(
𝑄 ®𝑎𝐴

(𝑖)
®𝑎𝑖

)
=

∑︁
®𝑎
𝜏

(
𝑃
𝑠<𝑖
®𝑎<𝑖
· 𝐴(𝑖)®𝑎𝑖 · 𝑃

𝑠>𝑖
®𝑎>𝑖
· (𝑃𝑠>𝑖®𝑎>𝑖 )

∗ · 𝐴(𝑖)®𝑎𝑖 · (𝑃
𝑠<𝑖
®𝑎<𝑖
)∗ · 𝐴(𝑖)®𝑎𝑖

)
=

∑︁
®𝑎<𝑖 ,®𝑎𝑖

𝜏

(
𝑃
𝑠<𝑖
®𝑎<𝑖
· 𝐴(𝑖)®𝑎𝑖 · (𝑃

𝑠<𝑖
®𝑎<𝑖
)∗ · 𝐴(𝑖)®𝑎𝑖

)
=

∑︁
®𝑎<𝑖 ,®𝑎𝑖

𝜏

(
𝑃
𝑠<𝑖
®𝑎<𝑖
· 𝐴(𝑖)®𝑎𝑖 · (𝑃

𝑠<𝑖
®𝑎<𝑖
)∗

)
+ 𝜏

(
𝑃
𝑠<𝑖
®𝑎<𝑖
· 𝐴(𝑖)®𝑎𝑖 ·

(
(𝑃𝑠<𝑖®𝑎<𝑖 )

∗ · 𝐴(𝑖)®𝑎𝑖 − 𝐴
(𝑖)
®𝑎𝑖
· (𝑃𝑠<𝑖®𝑎<𝑖 )

∗
))

= 1 +
∑︁
®𝑎<𝑖 ,®𝑎𝑖

𝜏

(
𝑃
𝑠<𝑖
®𝑎<𝑖
· 𝐴(𝑖)®𝑎𝑖 ·

(
(𝑃𝑠<𝑖®𝑎<𝑖 )

∗ · 𝐴(𝑖)®𝑎𝑖 − 𝐴
(𝑖)
®𝑎𝑖
· (𝑃𝑠<𝑖®𝑎<𝑖 )

∗
))
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We can bound the magnitude of the second term using Cauchy-Schwarz:������ ∑︁®𝑎<𝑖 ,®𝑎𝑖 𝜏
(
𝑃
𝑠<𝑖
®𝑎<𝑖
· 𝐴(𝑖)®𝑎𝑖 ·

(
(𝑃𝑠<𝑖®𝑎<𝑖 )

∗ · 𝐴(𝑖)®𝑎𝑖 − 𝐴
(𝑖)
®𝑎𝑖
· (𝑃𝑠<𝑖®𝑎<𝑖 )

∗
))������

≤
√︄ ∑︁
®𝑎<𝑖 ,®𝑎𝑖

𝜏

((
𝑃
𝑠<𝑖
®𝑎<𝑖
· 𝐴(𝑖)®𝑎𝑖 − 𝐴

(𝑖)
®𝑎𝑖
· 𝑃𝑠<𝑖®𝑎<𝑖

)∗ (
𝑃
𝑠<𝑖
®𝑎<𝑖
· 𝐴(𝑖)®𝑎𝑖 − 𝐴

(𝑖)
®𝑎𝑖
· 𝑃𝑠<𝑖®𝑎<𝑖

))
·
√︄ ∑︁
®𝑎<𝑖 ,®𝑎𝑖

𝜏

(
𝑃
𝑠<𝑖
®𝑎<𝑖
· 𝐴(𝑖)®𝑎𝑖 · (𝑃

𝑠<𝑖
®𝑎<𝑖
)∗

)
≤

√√ ∑︁
®𝑎<𝑖 ,®𝑎𝑖

𝑃𝑠<𝑖®𝑎<𝑖 · 𝐴(𝑖)®𝑎𝑖 − 𝐴(𝑖)®𝑎𝑖 · 𝑃𝑠<𝑖®𝑎<𝑖2

𝜏

≤ 𝑀Y

where the last inequality follows from Theorem 1.51. Thus we deduce that

√︄∑︁
𝑏∈A
∥𝑄 [ ®𝑎 ↦→®𝑎𝑖 |𝑏] − 𝐴

(𝑖)
𝑏
∥2𝜏 ≤

√
2𝑀Y . (1.7.2)

Next we argue that the 𝑄 ®𝑎 is “almost projective”. Using that
∑
®𝑎 𝜏(𝑄 ®𝑎) =

∑
®𝑎 𝜏(𝑃𝑠®𝑎) = 1, we

get

∑︁
®𝑎
𝜏

(
𝑄 ®𝑎 −𝑄2

®𝑎

)
=

∑︁
®𝑎
𝜏

(
𝑃𝑠®𝑎 −𝑄

2
®𝑎

)
=

∑︁
®𝑎
𝜏

(
𝑃𝑠®𝑎 − 𝑃

𝑠
®𝑎 · 𝑄 ®𝑎

)
+ 𝜏((𝑃𝑠®𝑎 −𝑄 ®𝑎) · 𝑄 ®𝑎)

=
∑︁
®𝑎
𝜏

(
𝑃𝑠®𝑎 − 𝑃

𝑠
®𝑎 · (𝑃

𝑠
®𝑎)
∗
)
+ 𝜏((𝑃𝑠®𝑎 −𝑄 ®𝑎) · 𝑄 ®𝑎) + 𝜏(((𝑃

𝑠
®𝑎)
∗ −𝑄 ®𝑎) · 𝑃𝑠®𝑎)

=
∑︁
®𝑎
𝜏((𝑃𝑠®𝑎 −𝑄 ®𝑎) · 𝑄 ®𝑎) + 𝜏(((𝑃

𝑠
®𝑎)
∗ −𝑄 ®𝑎) · 𝑃𝑠®𝑎)

where in the last line we used that 𝑃𝑠®𝑎 · (𝑃
𝑠
®𝑎)
∗ = 𝑄 ®𝑎 and

∑
®𝑎 𝜏(𝑄 ®𝑎) =

∑
®𝑎 𝜏(𝑃𝑠®𝑎) = 1. Using

Cauchy-Schwarz and the fact that
∑
®𝑎 ∥𝑃𝑠®𝑎∥

2
𝜏 and

∑
®𝑎 ∥𝑄 ®𝑎∥2𝜏 are most 1, this last line is at most

2
√︃∑

®𝑎 ∥𝑃𝑠®𝑎 −𝑄 ®𝑎∥
2
𝜏. To bound this, we note that we can express 𝑃𝑠®𝑎 and 𝑄 ®𝑎 as longer products

𝑃𝑡®𝑏
= 𝑃

(𝑠1)
®𝑎1
· 𝑃(𝑠1)
®𝑎1
· · · 𝑃(𝑠𝑘)®𝑎𝑘 · 𝑃

(𝑠𝑘)
®𝑎𝑘

, 𝑃𝑢®𝑐 = 𝑃
(𝑠1)
®𝑎1
· · · 𝑃(𝑠𝑘)®𝑎𝑘 · · · · 𝑃

(𝑠1)
®𝑎1
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where 𝑡 = (𝑠1, 𝑠1, . . . , 𝑠𝑘 , 𝑠𝑘 ) ∈ [𝑀]2𝑘 and 𝑢 = (𝑠1, . . . , 𝑠𝑘 , 𝑠𝑘 , . . . , 𝑠1), and ®𝑏 = ( ®𝑎1, ®𝑎1, . . . , ®𝑎𝑘 , ®𝑎𝑘 )

and ®𝑐 = ( ®𝑎1, . . . , ®𝑎𝑘 , ®𝑎𝑘 , . . . , ®𝑎1). In particular, let 𝜋 denote a permutation on 2𝑘 elements such

that 𝜋(®𝑏) = ®𝑐. Thus

√︄ ∑︁
®𝑎∈A𝑘
∥𝑃𝑠®𝑎 −𝑄 ®𝑎∥

2
𝜏 =

√︄ ∑︁
®𝑎∈A𝑘

𝑃𝑡®𝑏 − 𝑃𝑢®𝑐2

𝜏
≤

√√ ∑︁
®𝑏∈A2𝑘

𝑃𝑡®𝑏 − 𝑃𝑢𝜋(®𝑏)2

𝜏

Let 𝜋′ be a permutation that differs from 𝜋 by a swap of adjacent elements. Then√√ ∑︁
®𝑏∈A2𝑘

𝑃𝑡®𝑏 − 𝑃𝑢𝜋(®𝑏)2

𝜏
≤ Y

by our assumption on the almost-commutativity of the 𝐴’s. Since 𝜋 can be formed from the identity

permutation by swapping at most (2𝑘)2 adjacent elements, by the triangle inequality we have that√√ ∑︁
®𝑏∈A2𝑘

𝑃𝑡®𝑏 − 𝑃𝑢𝜋(®𝑏)2

𝜏
≤ 4𝑘2Y

and therefore
∑
®𝑎 𝜏

(
𝑄 ®𝑎 −𝑄2

®𝑎

)
≤ 8𝑀2Y.

Thus we can apply the Projectivization Lemma (Theorem 1.17) to the POVM {𝑄 ®𝑎} to obtain a

projective measurement 𝑅 = {𝑅®𝑎} such that

𝑅®𝑎 ≈[ 𝑄 ®𝑎

where [ = 𝛿𝑝𝑟𝑜 𝑗 (8𝑀2Y) where 𝛿𝑝𝑟𝑜 𝑗 (·) is the error function from the Projectivization Lemma.

Using the fact that 𝑅 is projective, we get from Theorem 1.14 that

𝑅®𝑎 ≃[ 𝑄 ®𝑎 .
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Using the Data Processing Lemma for consistency (Theorem 1.12), we get that

𝑅[ ®𝑎 ↦→®𝑎𝑖 |𝑏] ≃[ 𝑄 [ ®𝑎 ↦→®𝑎𝑖 |𝑏] .

Converting from consistency to closeness (Theorem 1.13) we get

𝑅[ ®𝑎 ↦→®𝑎𝑖 |𝑏] ≈√2[ 𝑄 [ ®𝑎 ↦→®𝑎𝑖 |𝑏]

Finally, we get

∥𝑅[ ®𝑎 ↦→®𝑎𝑖] − 𝐴
(𝑖) ∥𝜏 ≤

𝑅[ ®𝑎 ↦→®𝑎𝑖] −𝑄 [ ®𝑎 ↦→®𝑎𝑖]𝜏 + 𝑄 [ ®𝑎 ↦→®𝑎𝑖] − 𝐴(𝑖)
𝜏

≤
√︁

2[ +
√

2𝑀Y .

Thus we get

𝑅[ ®𝑎 ↦→®𝑎𝑖 |𝑏] ≈√2[+
√

2𝑀Y 𝐴
(𝑖)
𝑏
.

Setting 𝛿𝑝𝑎𝑠𝑡𝑖𝑛𝑔 (𝑀,A, Y) =
√︁

2[ +
√

2𝑀Y proves the Lemma.
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1.8 Appendix B: Complexity of noncommutative polynomial optimization

Recall the (commutative) polynomial optimization problem: given polynomials 𝑝, 𝑞1, . . . , 𝑞𝑚

in 𝑛-real variables (𝑥1, . . . , 𝑥𝑛) with coefficients over R, compute the value of the following opti-

mization program

sup 𝑝(𝑥1, . . . , 𝑥𝑛)

s.t. 𝑞𝑖 (𝑥1, . . . , 𝑥𝑛) ≥ 0 for 𝑖 = 1, . . . , 𝑚

Given a commutative polynomial optimization program 𝑃 and a real number 𝑐 deciding if its

value, denoted by 𝜔(𝑃), is at least 𝑐 is NP-hard. In terms of upper bounds, we know that this

problem belongs to PSPACE. This is a simple corollary of the following theorem that states that

the existential theory of reals is in PSPACE [18].

Theorem 1.52. There is an algorithm in PSPACE such that given any polynomials 𝑞1, . . . , 𝑞𝑚 ∈

R[𝑥1, . . . , 𝑥𝑛] decides if ∃𝑥1, . . . , 𝑥𝑛 ∈ R 𝑞1 ≥ 0, . . . , 𝑞𝑚 ≥ 0.

We now recall the general formulation of noncommutative polynomial optimization (ncPO for

short) over Hermitian variables: given polynomials 𝑝, 𝑞1, . . . , 𝑞𝑚 in 𝑛-noncommutative variables

(𝑥1, . . . , 𝑥𝑛) with coefficients over R, compute the value of the following optimization program:

sup ⟨𝜙 |𝑝(𝑋) |𝜙⟩

s.t. 𝑞𝑖 (𝑋) ⪰ 0 for 𝑖 = 1, . . . , 𝑚

The supremum is taken over all choices of tuples (H , 𝑋, 𝜙) where H is a Hilbert space, 𝑋 is an

𝑛-tuple of bounded Hermitian operators acting on H , and |𝜙⟩ is a unit vector on H . The notation

𝑝(𝑋) and 𝑞𝑖 (𝑋) indicates that we evaluate each of the indeterminates 𝑥𝑖 with the Hermitian oper-

ator 𝑋𝑖. We consider two different variations of a ncPO program 𝑃; if we restrict the supremum

to vary only over finite – but unbounded – dimensional Hilbert spaces then we call the program
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finite-dimensional and let 𝜔fin(𝑃) denote the value of the program. Otherwise we call the program

infinite-dimensional and let 𝜔∞(𝑃) denote its value.

Proposition 1.53. Given a nonlocal game𝐺 = (X,A, `, 𝐷) there exists a ncPO program 𝑃 where

𝜔fin(𝑃) = 𝜔𝑞 (𝐺) and 𝜔∞(𝑃) = 𝜔𝑐𝑜 (𝐺).

Proof. Define the following optimization problem 𝑃 over 2|X||A| variables {𝐴𝑥𝑎}, {𝐵
𝑦

𝑏
}. The

objective polynomial 𝑝 to be optimized is

𝑝 =
∑︁
𝑥,𝑦∈X

∑︁
𝑎,𝑏∈A

`(𝑥, 𝑦) 𝐴𝑥𝑎𝐵
𝑦

𝑏
𝐷 (𝑥, 𝑦, 𝑎, 𝑏) .

To enforce that the operators {𝐴𝑥𝑎}, {𝐵
𝑦

𝑏
} correspond to POVMs, we add the constraints

1. 𝐴𝑥𝑎, 𝐵
𝑦

𝑏
⪰ 0 (i.e. operators are positive);

2.
∑
𝑎 𝐴

𝑥
𝑎 =

∑
𝑏 𝐵

𝑦

𝑏
= 1 for all 𝑥, 𝑦 (i.e. operators form POVMs);

3. [𝐴𝑥𝑎, 𝐵
𝑦

𝑏
] = 0 (i.e. Alice’s and Bob’s operators commute) .

It is easy to see that all these constraints can be expressed as polynomial inequalities. The value

of this optimization problem corresponds exactly to the definition of 𝜔𝑞 (in the finite-dimensional

case) and 𝜔𝑐𝑜 (in the infinite-dimensional case). □

Theorem 1.54. Deciding if 𝜔fin(𝑃) ≥ 𝑐 or 𝜔fin(𝑃) ≤ 𝑐 − Y for fixed Y > 0 is complete for Σ1.

proof of Theorem 1.54. Σ1-hardness follows from Proposition 1.53 and the Σ1-hardness of approx-

imating 𝜔𝑞 [4].

To show that the problem is contained in Σ1, we first argue that, when restricting the Hilbert

space to have a fixed dimension 𝑑, a ncPO program 𝑃 can be recast as a commutative polynomial

optimization problem 𝑃𝑑 over C. Let 𝑝 denote the objective polynomial and let 𝑞1, . . . , 𝑞𝑚 denote

the constraint polynomials. Let 𝑥1, . . . , 𝑥𝑛 denote the indeterminates of the program.

The optimization problem 𝑃𝑑 is defined as follows. To every noncommutative indeterminate

𝑥𝑖 we associate 𝑑2 commutative indeterminates 𝑥𝑎𝑏
𝑖

for 1 ≤ 𝑎, 𝑏 ≤ 𝑑 over C. Intuitively these
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indeterminates correspond to the entries of the 𝑑 × 𝑑 Hermitian matrix that is supposed to be

substituted in for 𝑥𝑖. We also introduce 𝑑 indeterminates 𝑦1, . . . , 𝑦𝑑 to represent the unit vector

|𝜙⟩ ∈ C𝑑 .

The objective polynomial of 𝑃𝑑 is a polynomial 𝑝𝑑 that expresses the quantity

⟨𝜙 |𝑝(𝑥1, . . . , 𝑥𝑛) |𝜙⟩ when |𝜙⟩ and the indeterminates 𝑥𝑖 are substituted with the corresponding

complex numbers. There are constraint polynomials in 𝑃𝑑 that encode the fact that the 𝑥𝑖 matrices

are self-adjoint, and furthermore the vector (𝑦1, . . . , 𝑦𝑑) is a unit vector. To check the positivity

constraints 𝑞𝑖 ⪰ 0 in 𝑃 we can instead check that all the leading principal minors of 𝑞𝑖 are positive.

The order 𝑘 leading principal minor of a 𝑑 × 𝑑 matrix is the determinant of the submatrix obtained

from deleting the last 𝑑 − 𝑘 rows and columns of the matrix.

Thus, by construction, the value of 𝑃𝑑 is the value of 𝑃 when restricted to 𝑑-dimensional

Hilbert spaces. We thus have 𝜔fin(𝑃) = lim𝑑→∞ 𝜔(𝑃𝑑). Therefore 𝜔fin(𝑃) ≥ 𝑐 if and only if there

exists 𝑑 ∈ N such that 𝑐 − 𝜔(𝑃𝑑) < Y.

Therefore we have reduced the problem to deciding whether there exists a dimension 𝑑 such

that 𝑐−𝜔(𝑃𝑑) < Y. This corresponds to deciding the Σ1-sentence ∃𝑑 𝑐−𝜔(𝑃𝑑) < Y. This sentence

is in Σ1 because determining whether 𝑐 − 𝜔(𝑃𝑑) ≤ Y is in PSPACE (and hence is decidable) by

Theorem 1.52.

□

Theorem 1.55. Deciding if 𝜔fin(𝑃) ≥ 𝑐 is complete for Π2.

Proof. Π2-hardness follows from Proposition 1.53 and Theorem 1.45.

Furthermore, deciding if 𝜔fin(𝑃) ≥ 𝑐 is equivalent to deciding if for all 𝑛 ∈ N there exists

𝑑 ∈ N such that 𝑐 − 𝜔(𝑃𝑑) < 1
𝑛

where 𝑃𝑑 is as defined in the proof of the previous theorem. Thus

we can state the decision problem 𝜔fin(𝑃) ≥ 𝑐 as a Π2-sentence. □

Theorem 1.56. Deciding if 𝜔∞(𝑃) ≥ 𝑐 is complete for Π1.

Proof. Π1-hardness follows from Proposition 1.53 and Theorem 1.40. The inclusion is due to

the NPA-hierarchy of [51]. More precisely [51] constructs an infinite sequence of commutative
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polynomial optimization relaxations {𝑃𝑖}𝑖∈N where their values converge, from above, to the value

of a given ncPO. Then we can decide if 𝜔∞(𝑃) ≥ 𝑐 by the Π1-sentence

∀𝑖 ∈ N, 𝜔(𝑃𝑖) ≥ 𝑐

where the 𝜔(𝑃𝑖)’s converge from above to the the value of 𝜔∞(𝑃). □
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Chapter 2: Sum-of-squares approach to noncommutative polynomial

optimization

This chapter is taken verbatim from our paper “A generalization of CHSH and the algebraic

structure of optimal strategies” [52]. All authors of this work contributed equally.

2.1 Introduction

In 1964, Bell showed that local hidden-variable theories, which are classical in nature, cannot

explain all quantum mechanical phenomena [53]. This is obtained by exhibiting a violation of

a Bell inequality by correlations arising from local measurements on an entangled state. Further-

more, in some instances, it is known that only certain measurements can produce these correlations.

So through local measurements not only is it possible to verify that nature is not solely governed

by classical theories, it is also possible to obtain conclusive statistical evidence that a specific

quantum state was present and specific measurements were performed. Results of this nature are

often referred to as self-testing (also known as rigidity), first formalized by Mayers and Yao in [54].

Self-testing has wide reaching applications in areas of theoretical computer science including com-

plexity theory [55, 56, 57], certifiable randomness [58], device independent quantum cryptography

[59, 60], and delegated quantum computation [61]. See [62] for a comprehensive review. Below

we visit five natural questions on the topic of self-testing that we answer in this paper.

The CHSH game [63] is the prototypical example of a non-local game. In CHSH, two separated

players, Alice and Bob, are each provided with a single classical bit, 𝑠 and 𝑡, respectively, chosen

uniformly at random by a referee; the players reply with single classical bits 𝑎 and 𝑏 to the referee;

and win the game if and only if 𝑎 ⊕ 𝑏 = 𝑠 ∧ 𝑡. Classically, the players can win the CHSH game

with probability at most 75%. Remarkably, if we allow Alice and Bob to share an entangled state
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and employ a quantum strategy, then the optimal winning probability is approximately 85%. For

an introduction to non-local games, see [64].

CHSH is also a canonical example of a self-testing game. Prior to the formalization of self-

testing by Mayers and Yao it was already known [65, 66] that any optimal quantum strategy for

CHSH must be, up to application of local isometries, using the Einstein-Podolsky-Rosen (EPR)

state

|𝜓⟩ = 1
√

2
( |00⟩ + |11⟩) .

Self-testing can be framed either as an statement about non-local games, Bell inequalities, or

more generally correlations. CHSH is an instance of a non-pseudo-telepathic game. A pseudo-

telepathic game is one that exhibits quantum advantage (i.e, its quantum value is strictly larger

than that of its classical value) and its quantum value is 1. CHSH can also be viewed as a linear

constraint system (LCS) game over Z2 [67]. LCS games are non-local games in which Alice and

Bob cooperate to convince the referee that they have a solution to a system of linear equations. We

introduce a new generalization of CHSH to a family of non-pseudo-telepathic LCS games over Z𝑛

for all 𝑛 ≥ 2. These games resolve the following questions.

Question 2.1. Are there states other than the maximally entangled state that can be self-tested by

a non-local game?

To date much has been discovered about self-testing the maximally entangled state, 1√
𝑑

∑𝑑−1
𝑗=0 | 𝑗 ⟩| 𝑗 ⟩.

Mermin’s magic square game [68] can be used to self-test two copies of the EPR state and the

parallel-repeated magic square game can be used to self-test 2𝑛 copies of the EPR state [69].

The sum of squares (SOS) decomposition technique in [70] shows that the tilted CHSH is a

self-test for any pure state of two entangled qubits. This self-testing is stated in terms of violation

of Bell inequalities. It is an open problem if the same applies for non-local games. The case

for self-testing in higher dimensions has proven more difficult to analyze. Remarkably, it is still

possible to self-test any bipartite entangled state, in any dimension [71]. However, these self-test

results are presented in terms of violations of correlations, unlike the CHSH game which arises
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from a non-local game (with binary payoff). Our games also resolve in the negative the question

“Can every LCS game be played optimally using the maximally entangled state?” posed in [67].

Question 2.2. Are there non-local games that provide a self-test for measurements that are not

constructed from qubit Pauli operators?

The protocols in all of the above examples also provide a self-test for the measurement opera-

tors. That is if the players are playing optimally then they must, up to application of local isome-

tries, have performed certain measurements. Self-testing proofs rely on first showing that operators

in optimal strategies must satisfy certain algebraic relations. These relations help identify optimal

operators as representations of some group. This is then used to determine the measurements and

state up to local isometries. In the case of CHSH, one can verify that Alice and Bob’s measure-

ments must anti-commute if they are to play optimally. These relations are then enough to conclude

that operators of optimal strategies generate the dihedral group of degree 4 (i.e., the Pauli group).

Thus CHSH is a self-test for the well-known Pauli matrices 𝜎𝑋 and 𝜎𝑍 [72].

Self-tests for measurements in higher dimensions have been primarily focused on self-testing

𝑛-fold tensor-products of 𝜎𝑋 and 𝜎𝑍 [73, 74, 75]. It is natural to ask if there are self-tests for

operators that are different than ones constructed from qubit Pauli operators. Self-testing Clifford

observables has also been shown in [76]. Our games provides another example that is neither

Pauli nor Clifford. Since our games are LCS this resolves the question, first posed by [77], in the

affirmative.

Question 2.3. Can we extend the solution group formalism for pseudo-telepathic LCS games to a

framework for proving self-testing for all LCS games?

The solution group introduced in [6] is an indispensable tool for studying pseudo-telepathic

LCS games. To each such game there corresponds a group known as the solution group. Optimal

strategies for these games are characterized by their solution group in the sense that any perfect

quantum strategy must induce certain representations of this group. Additionally, the work in [77]

takes this further by demonstrating a streamlined method to prove self-testing certain LCS games.
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It is natural to ask whether these methods can be extended to cover all LCS games. In this paper

we make partial progress in answering this question by introducing a SOS framework, and use it

to prove self-testing for our games. At its core, this framework utilizes the interplay between sum

of squares proofs, non-commutative ring theory, and the Gowers-Hatami theorem [78, 79] from

approximate representation theory.

Question 2.4. Is there a systematic approach to design self-tests for arbitrary finite groups?

Informally a game is a self-test for a group if every optimal strategy induces a state depen-

dent representation of the group. In every example that we are aware of, the self-tested solution

group for pseudo-telepathic LCS games is the Pauli group. Slofstra, in [80], introduced an embed-

ding theorem that embeds (almost) any finite group into the solution group of some LCS game.

With the embedding theorem, the problem of designing games with certain properties reduces to

finding groups with specific properties. Slofstra uses this connection to design games that exhibit

separations between correlation sets resolving the ‘middle’ Tsirelson’s Problem.

However, there are three shortcomings to this approach. Firstly, the resulting game is very

complex. Secondly, not all properties of the original group are necessarily preserved. Finally, the

game is not a self-test for the original group. Our games self-test an infinite family of groups,

non of which are the Paulis. One such example is the alternating group of degree 4. The SOS

framework makes partial progress towards a general theory for self-testing arbitrary groups.

Question 2.5. Is there a non-local game that is not a self-test?

In addition to the infinite family of games, we introduce an LCS game that is obtained from

“gluing” together two copies of the magic square game. This glued magic square provides an

example of a game that is not a self-test [68].
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2.1.1 Main Results

We introduce a family of non-local games G𝑛 defined using the following system of equations

over Z𝑛

𝑥0𝑥1 = 1,

𝑥0𝑥1 = 𝜔𝑛.

We are identifying Z𝑛 as a multiplicative group and 𝜔𝑛 as the primitive 𝑛th root of unity. Note that

the equations are inconsistent, but this does not prevent the game from being interesting. Alice and

Bob try to convince a referee that they have a solution to this system of equations. Each player

receives a single bit, specifying an equation for Alice and a variable for Bob, and subsequently

each player returns a single number in Z𝑛. Alice’s response should be interpreted as an assignment

to variable 𝑥0 in the context of the equation she received, and Bob’s response is interpreted as an

assignment to the variable he received. The referee accepts their response iff their assignments

are consistent and satisfy the corresponding equation. The case 𝑛 = 2 is the CHSH game. The

classical value of these games is 3
4 . In Section 2.4, we give a lower-bound on the quantum value of

this family of games. Specifically in Theorem 2.4.9, we show that the quantum value is bounded

below by
1
2
+ 1

2𝑛 sin
(
𝜋
2𝑛

) > 3
4
.

We show that the lower-bound is tight in the case of 𝑛 ≤ 5. We have numerical evidence that these

lower-bounds are tight for all 𝑛. Specifically, we can find an upper-bound on the quantum value of

a non-local game using the well-known hierarchy of semi-definite programs due to [81]. It is of

interest to note that the upper-bound is not obtained using the first level of the NPA hierarchy, as is

the case with the CHSH game. Instead, the second level of this hierarchy was needed for 𝑛 ≥ 3.
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The optimal quantum strategy for these games uses the entangled state

|𝜓𝑛⟩ =
1
𝛾𝑛

𝑛−1∑︁
𝑖=0
(1 − 𝑧𝑛+2𝑖+1) |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩ ∈ H𝐴 ⊗ H𝐵,

where 𝛾𝑛 is the normalization factor, 𝜎𝑛 = (0, 1, . . . , 𝑛 − 1) is a permutation, and 𝑧𝑛 is a 4𝑛’th

root of unity. Observe that the state |𝜓𝑛⟩ has full Schmidt rank. Despite this, in all cases except

𝑛 = 2, the state |𝜓𝑛⟩ is not the maximally entangled state. For 𝑛 > 2, the entropy of our state is not

maximal, but approaches the maximal entropy of log(𝑛) in the limit.

In Section 2.5, we show that the group generated by the optimal strategy has the following

presentation

𝐺𝑛 =

〈
𝑃0, 𝑃1, 𝐽 | 𝑃𝑛0, 𝑃

𝑛
1, 𝐽

𝑛, [𝐽, 𝑃0], [𝐽, 𝑃1], 𝐽𝑖
(
𝑃𝑖0𝑃

−𝑖
1
)2 for 𝑖 = 1, 2, . . . , ⌊𝑛/2⌋

〉
.

For example 𝐺3 = Z3 × 𝐴4 where 𝐴4 is the alternating group of degree 4. We show that our games

are a self-test for these groups, for 𝑛 ≤ 5, in the sense that every optimal play of this game induces

a representation of this group. We conjecture that this is true for all 𝑛. This partially resolves

Question 2.4.

In section 2.7, we analyze our game in the case 𝑛 = 3 and show that it can be used as a robust

self-test for the following state

1
√

10

(
(1 − 𝑧4) |00⟩ + 2|12⟩ + (1 + 𝑧2) |21⟩

)
∈ C3 ⊗ C3,

where 𝑧 := 𝑒𝑖𝜋/6 is the primitive 12th root of unity. Since this state is not the maximally entangled

state, we have thus provided an answer to Question 2.1. This game also answers Question 2.2 since
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it provides a robust self-test for the following operators

𝐴0 =

©«
0 0 1

1 0 0

0 1 0

ª®®®®®¬
, 𝐴1 =

©«
0 0 −𝑧2

𝑧2 0 0

0 𝑧2 0

ª®®®®®¬
,

𝐵0 =

©«
0 0 1

1 0 0

0 1 0

ª®®®®®¬
, 𝐵1 =

©«
0 −𝑧2 0

0 0 𝑧2

𝑧2 0 0

ª®®®®®¬
,

which do not generate the Pauli group of dimension 3.

In Section 2.6, we introduce the sum of squares framework, using an important lemma proven

in Section 2.2.4, that gives a streamlined method for proving self-testing. We then use this frame-

work to prove self-testing for our games. Furthermore, in Section 2.8, we show that when restricted

to pseudo-telepathic games, the SOS framework reduces to the solution group formalism of Cleve,

Liu, and Slofstra [6].

In section 2.9, we construct an LCS game that is obtained from “gluing” two copies of the

magic square game together. This game is summarized in Figure 2.1. We exhibit two inequivalent

perfect strategies and thus provide an answer to Question 2.5.
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𝑒1 — 𝑒2 — 𝑒3

| | | |

𝑒4 — 𝑒5 — 𝑒6

| | | |

𝑒7 — 𝑒8 — 𝑒9

| |

𝑒10 — 𝑒11 — 𝑒12

| | | |

𝑒13 — 𝑒14 — 𝑒15

| | | |

𝑒16 — 𝑒17 — 𝑒18

Figure 2.1: This describes an LCS game with 18 variables 𝑒1, 𝑒2, . . . , 𝑒18. Each single-line indicates that the
variables along the line multiply to 1, and the double-line indicates that the variables along the line multiply
to −1.

2.1.2 Proof techniques

We prove self-testing in this paper following a recipe that we refer to as the SOS framework. At

its core it applies the Gowers-Hatami (GH) theorem which is a result in approximate-representation

theory. GH has been used previously in proving self-testing, but some of the details have been

overlooked in the literature. In this paper, we prove Lemma 2.2.4 that encapsulates the use of

GH in proving self-testing. In Section 2.2.4, we define approximate representations, irreducible

strategies, the Gowers-Hatami theorem and present the proof of the following lemma.

Lemma (informal). Let 𝐺𝐴, 𝐺𝐵 be groups. Suppose every optimal strategy of the game G induces

a pair of approximate representations of 𝐺𝐴 and 𝐺𝐵. Further suppose that there is a unique

optimal irreducible strategy (𝜌, 𝜎, |𝜓⟩) where 𝜌, 𝜎 are irreps of 𝐺𝐴, 𝐺𝐵, respectively. Then G is

a self-test.

Applying this lemma requires us to ascertain two properties of the game:
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1. Every optimal strategy induces approximate representations of some groups 𝐺𝐴 and 𝐺𝐵.

2. There is a unique irreducible strategy (𝜌, 𝜎, |𝜓⟩) for the game G.

The first step is to obtain the bias expression for the game G that allows for a simple calculation

of the wining probability of any startegyS = ({𝐴𝑖}, {𝐵 𝑗 }, |𝜓⟩) (here 𝐴𝑖 and 𝐵 𝑗 are Alice and Bob’s

measurement observables, respectively, and |𝜓⟩ is the shared state). The bias expression for G𝑛 is

given by

B𝑛 (𝐴0, 𝐴1, 𝐵0, 𝐵1) =
𝑛−1∑︁
𝑖=1

𝐴𝑖0𝐵
−𝑖
0 + 𝐴

𝑖
0𝐵

𝑖
1 + 𝐴

𝑖
1𝐵
−𝑖
0 + 𝜔

−𝑖𝐴𝑖1𝐵
𝑖
1.

Then the winning probability of S is given by a(G,S) = ⟨𝜓 | ( 1
4𝑛B𝑛 (𝐴0, 𝐴1, 𝐵0, 𝐵1) + 1

𝑛
) |𝜓⟩. For

any real _ for which there exist some polynomials 𝑇𝑘 giving a sum of squares decomposition such

as

_𝐼 − B𝑛 (𝐴0, 𝐴1, 𝐵0, 𝐵1) =
∑︁
𝑘

𝑇∗𝑘 (𝐴0, 𝐴1, 𝐵0, 𝐵1)𝑇𝑘 (𝐴0, 𝐴1, 𝐵0, 𝐵1),

provides an upper bound of _
4𝑛 +

1
𝑛

on the optimal value of the game (which we denote by a∗(G𝑛)).

This follows since expressing _𝐼 − B𝑛 as an SOS proves that it is a positive semidefinite operator

and consequently ⟨𝜓 |B𝑛 |𝜓⟩ ≤ _ for all states |𝜓⟩.

Now if we have an SOS for _ = 4𝑛a∗(G) − 4, then we can obtain some algebraic relations

that every optimal strategy must satisfy. This follows since every optimal strategy must satisfy

⟨𝜓 | (_𝐼 − 𝐵𝑛) |𝜓⟩ = 0, from which it follows 𝑇𝑘 |𝜓⟩ = 0 for all 𝑘 .

Let (𝑀 𝑗 (𝐴0, 𝐴1) − 𝐼) |𝜓⟩ = 0 be all the relations derived from the SOS relations 𝑇𝑘 |𝜓⟩ = 0 such

that 𝑀𝑖 are monomials only in Alice’s operators, and let 𝐺𝐴 be the group with the presentation

𝐺𝐴 = ⟨𝑃0, 𝑃1 : 𝑀𝑖 (𝑃0, 𝑃1)⟩

We similarly obtain a group 𝐺𝐵 for Bob. These are the group referred in the above lemma. For

the first assumption one must show that any optimal strategy gives approximate representations of

these groups.

The next step is to prove the second assumption. We need to show that among all the pairs
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of irreps of 𝐺𝐴 and 𝐺𝐵 only one could give rise to an optimal strategy. To this end, we let

𝑅𝑖 (𝐴0, 𝐴1) |𝜓⟩ = 0 be all the relations derived from relations 𝑇𝑘 |𝜓⟩ = 0. These 𝑅𝑖 are allowed

to be arbitrary polynomials (as opposed to monomials in the case of group relations). So any opti-

mal irrep must satisfy all these polynomial relations. In some special cases, e.g., games G𝑛, there

is one polynomial relation that is enough to identify the optimal irreps.

2.1.3 Relation to prior work

Much work has been done to generalize CHSH to games over Z𝑛. The first generalization

appeared in Buhrman and Massar [82], which was then investigated also by Bavarian and Shor [83]

and later extended in [84]. The game we present in section 2.3 provides a different generalization

by viewing CHSH as an LCS game. The classical value of our games is found to be 3
4 from casual

observation. Furthermore, we showcase quantum advantage by providing a lower bound on the

quantum value for all 𝑛.

In contrast the generalization of CHSH discussed in Kaniewski et al. is so difficult to analyze

that even the classical value is not known except in the cases of 𝑛 = 3, 5, 7. Additionally the

quantum value of their Bell inequality is only determined after multiplying by choices of “phase”

coefficients. Self-testing for this generalization is examined by Kaniewski et al., where they prove

self-testing for 𝑛 = 3 and show a weaker form of self-testing in the cases of 𝑛 = 5, 7. For the games

we introduce, we have self-testing for 𝑛 = 3, 4, 5 and we conjecture that they are self-tests, in the

strict sense, for all 𝑛.

Furthermore, in [85], Slofstra exhibits a game whose correlations are not extreme point, which

suggests that it is also not a self-test, his result is not formulated in the language of self-testing and

it would be interesting to rigorously show this to be the case. Independently of our work, in [86],

a family of Bell inequalities, which includes the 𝐼3322 game, is shown to self-test the maximally

entangled state but no measurement operators.
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2.1.4 Further work

This paper leaves many open problems and avenues for further investigation. The most impor-

tant of these follow.

1. We conjecture that the class of games G𝑛 are rigid for all 𝑛. The step missing from resolving

this conjecture is an SOS decomposition a(G𝑛,S𝑛)𝐼 −B𝑛 =
∑
𝑘 𝛼𝑛,𝑘𝑇

∗
𝑛,𝑘
𝑇𝑛,𝑘 for 𝑛 > 5 where

polynomials 𝑇𝑛,𝑘 viewed as vectors have unit norms and 𝛼𝑛,𝑘 are positive real numbers.

If this conjecture is true, then we have a simple family of games with 1 bit question and log 𝑛

bit answer sizes that are self-testing full-Schmidt rank entangled states of any dimension. In

fact, we show that the amount of entanglement in these self-tested states rapidly approaches

the maximum amount of entanglement. To the best of our knowledge this is the first example

of a family of games with such parameters.

2. In Section 2.5, we give efficient explicit presentations for 𝐺𝑛 and its multiplication table.

Can we go further and characterize these groups in terms of direct and semidirect products

of small well-known groups? The first few cases are as follows

𝐺3 � Z3 × 𝐴4, 𝐺4 � (Z3
2 ⋊ Z4) ⋊ Z4, 𝐺5 � (Z4

2 ⋊ Z5) × Z5,

𝐺6 � Z3 ×
(
(((Z4 × Z3

2) ⋊ Z2) ⋊ Z2) ⋊ Z3

)
.

3. The third problem is to characterize all mod 𝑛 games over two variables and two equations.

Let (Z𝑛, 𝑚1, 𝑚2) be the LCS game mod 𝑛 based on the system of equations

𝑥0𝑥1 = 𝜔𝑚1
𝑛

𝑥0𝑥1 = 𝜔𝑚2
𝑛 .

So for example (Z𝑛, 0, 1) = G𝑛. A full characterization includes explicit construction of

optimal strategies, a proof of self-testing, and a characterization of the group generated by
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optimal strategies (i.e., the self-tested group). Interesting observations can be made about

these games. For example (Z4, 0, 2) self-tests the same strategy as CHSH. Another inter-

esting observation is that the self-tested group of (Z3, 0, 1) and (Z3, 0, 2) is 𝐺3 � Z3 × 𝐴4,

whereas the self-tested group of (Z3, 1, 2) is 𝐴4.

These games have similar bias expressions to those of G𝑛. It is likely that the same kind

of methods can be used to find optimal strategies and establish self-testing for these games.

For example (Z𝑛, 0, 𝑚) for all 𝑚 ∈ [𝑛] \ {0} self-test the same group 𝐺𝑛. Just like G𝑛, the

representation theory of 𝐺𝑛 dictates the optimal strategies of all these games: the optimal

irreducible strategies of (Z𝑛, 0, 𝑚) for all 𝑚 ∈ [𝑛] \ {0} are distinct irreps of 𝐺𝑛 of degree 𝑛.

For example optimal strategies for all games (Z5, 0, 𝑚), where 𝑚 ∈ [5] \ {0}, generate 𝐺5.

This group has 15 irreps of degree five. For each 𝑚 ∈ [5], there are three irreps sending

𝐽 → 𝜔𝑚5 𝐼5. For each 𝑚 ∈ [5] \ {0}, the unique optimal irrep strategy of (Z5, 0, 𝑚) is one of

these three irreps.

These games are a rich source of examples for self-testing of groups. A full characterization

is a major step toward resolving Question 2.4.

4. One drawback of mod 𝑛 games is that the size of the self-tested groups grows exponentially,

|𝐺𝑛 | = 2𝑛−1𝑛2. Where are the games that self-test smaller groups for example the dihedral

group of degree 5, 𝐷5? It seems that to test more groups, we need to widen our search space.

In a similar fashion to mod 𝑛 games, define games (𝐺, 𝑔1, 𝑔2) where 𝐺 is a finite group and

𝑔1, 𝑔2 ∈ 𝐺, based on the system of equations

𝑥0𝑥1 = 𝑔1

𝑥0𝑥1 = 𝑔2.

Understanding the map that sends (𝐺, 𝑔1, 𝑔2) to the self-tested group helps us develop a

richer landscape of group self-testing.
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5. How far can the SOS framework be pushed to prove self-testing? The first step in answer-

ing this question is perhaps a characterization of games (𝐺, 𝑔1, 𝑔2) (and their variants, e.g.,

system of equations with more variables and equations) using this framework.

6. Glued magic square, as presented in Section 2.9, is not a self-test for any operator solution,

but both inequivalent strategies that we present use the maximally entangled state. Is the

glued magic square a self-test for the maximally entangled state? If true, this would give

another example of a non-local game that only self-tests the state and not the measurement

operators.

After the publication of our work, Mančinska et al. [87] showed that this is indeed the

case; specifically they showed that the glued magic square self-tests convex combinations of

the two inequivalent strategies we presented in our work. Along with [86], these positively

resolve a question asked in [62] in the context of non-local games.

2.1.5 Organization of paper

In section 2.2, we fix the nomenclature and give basic definitions for non-local games, winning

strategies, self-testing, LCS games, approximate representation, and the Gowers-Hatami theorem.

In section 2.3, we give the generalization of CHSH and derive the bias operator of these games,

that is used in the rest of the paper. In Section 2.4, we establish lower-bounds on the quantum value

for these games by presenting explicit strategies. In this section we also analyse the entanglement

entropy of the shared states in these explicit strategies. In Section 2.5, we give a presentation for the

groups generated by Alice and Bob’s observables. In Section 2.6, we present the SOS framework

and give a basic example of its application in proving self-testing. In section 2.7, we use the SOS

framework to show that our lower-bound is tight in the case of 𝑛 = 3, and answer the questions we

posed about self-testing. In section 2.8, we show that the SOS framework reduces to the solution

group formalism in the case of pseudo-telepathic LCS games. Finally, in Section 2.9 we provide

an example of a non-rigid game.
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2.2 Preliminaries

We assume the reader has a working understanding of basic concepts from the field of quantum

information theory. For an overview of quantum information, refer to [88, 89, 90].

2.2.1 Notation

We use 𝐺 to refer to a group, while G is reserved for a non-local game. Let [𝑛, 𝑚] denote the

set {𝑛, 𝑛 + 1, . . . , 𝑚} for integers 𝑛 ≤ 𝑚, and the shorthand [𝑛] = [0, 𝑛 − 1]. This should not be

confused with [𝑋,𝑌 ], which is used to denote the commutator 𝑋𝑌 − 𝑌𝑋 . We let 𝐼𝑛 denote the

𝑛 × 𝑛 identity matrix and 𝑒𝑖, for 𝑖 ∈ [𝑛], be the ith standard basis vector. The pauli observables are

denoted 𝜎𝑥 , 𝜎𝑦, and 𝜎𝑧. The Kronecker delta is denoted by 𝛿𝑖, 𝑗 .

We will let H denote a finite dimensional Hilbert space and use the notation |𝜓⟩ ∈ H to

refer to vectors in H . We use L(H) to denote the set of linear operators in the Hilbert space H .

We use U𝑛 (C) to denote the set of unitary operators acting on the Hilbert space C𝑛. The set of

projection operators acting on H are denoted by Proj(H). Given a linear operator 𝐴 ∈ L(H),

we let 𝐴∗ ∈ L(H) denote the adjoint operator. For 𝑋,𝑌 ∈ L(H), the Hilber-Schmidt inner

product is given by ⟨𝑋,𝑌⟩ = TR(𝑋∗𝑌 ). We also use the following shorthands TR𝜌 (𝑋) = TR(𝑋𝜌)

and ⟨𝑋,𝑌⟩𝜌 = TR𝜌 (𝑋∗𝑌 ) where 𝑋,𝑌 ∈ L(H) and 𝜌 is a density operator acting on H (i.e.,

positive semidefinite with trace 1). The von Neumann entropy of a density matrix 𝜌 is given by

𝑆(𝜌) = −TR(𝜌 log 𝜌).

We useℜ(𝛼) to denote the real part of a complex number 𝛼. We let 𝜔𝑛 = 𝑒2𝑖𝜋/𝑛 be the 𝑛th root

of unity. The Dirichlet kernel is D𝑚 (𝑥) = 1
2𝜋

∑𝑚
𝑘=−𝑚 𝑒

𝑖𝑘𝑥 which by a well known identity is equal

to
sin((𝑚+ 1

2 )𝑥)
2𝜋 sin( 𝑥2 )

.

The maximally entangled state with local dimension 𝑛 is given by |Φ𝑛⟩ = 1√
𝑛

∑𝑛−1
𝑖=0 |𝑖⟩|𝑖⟩ ∈

C𝑛 ⊗ C𝑛.

Let H𝐴,H𝐵 be Hilbert spaces of dimension 𝑛 and |𝜓⟩ ∈ H𝐴 ⊗ H𝐵 be a bipartite state. Then

there exists orthonormal bases {|𝑖𝐴⟩}𝑛−1
𝑖=0 for H𝐴 and {|𝑖𝐵⟩}𝑛−1

𝑖=0 for H𝐵 and unique non-negative
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real numbers {_𝑖}𝑛−1
𝑖=0 such that |𝜓⟩ = ∑𝑛−1

𝑖=0 _𝑖 |𝑖𝐴⟩|𝑖𝐵⟩. The _𝑖’s are known as Schmidt coefficients.

The Schmidt rank of a state is the number of non-zero Schmidt coefficients _𝑖. The Schmidt

rank is a rough measure of entanglement. In particular, a pure state |𝜓⟩ is entangled if and only if

it has Schmidt rank greater than one.

Another measure of entanglement is the entanglement entropy. Given the Schmidt decomposi-

tion of a state |𝜓⟩ = ∑𝑛−1
𝑖=0 _𝑖 |𝑖𝐴⟩|𝑖𝐵⟩, the entanglement entropy 𝑆𝜓 is given by −∑𝑛−1

𝑖=0 _
2
𝑖

log(_2
𝑖
).

The maximum entanglement entropy is log(𝑛). A pure state is separable (i.e. not entangled)

when the entanglement entropy is zero. If the entanglement entropy of a state |𝜓⟩ is maximum,

then the state is the maximally entangled state up to local unitaries, i.e., there exist unitaries

𝑈𝐴,𝑈𝐵 ∈ U𝑛 (C), such that |𝜓⟩ = 𝑈𝐴 ⊗ 𝑈𝐵 |Φ𝑛⟩.

2.2.2 Non-local games

A non-local game is played between a referee and two cooperating players Alice and Bob who

cannot communicate once the game starts. The referee provides each player with a question (input),

and the players each respond with an answer (output). The referee determines whether the players

win with respect to fixed conditions known to all parties. Alice does not know Bob’s question and

vice-versa as they are not allowed to communicate once the game starts. However, before the game

starts, the players could agree upon a strategy that maximizes their success probability. Below we

present the formal definition and some accompanying concepts.

Definition 2.2.1. A non-local game G is a tuple (I𝐴,I𝐵,O𝐴,O𝐵, 𝜋,𝑉) where I𝐴 and I𝐵 are finite

question sets, O𝐴 and O𝐵 are finite answer sets, 𝜋 denotes the probability distribution on the set

I𝐴 × I𝐵 and 𝑉 : I𝐴 × I𝐵 × O𝐴 × O𝐵 → {0, 1} defines the winning conditions of the game.

When the game begins, the referee chooses a pair (𝑖, 𝑗) ∈ I𝐴 ×I𝐵 according to the distribution

𝜋. The referee sends 𝑖 to Alice and 𝑗 to Bob. Alice then responds with 𝑎 ∈ O𝐴 and Bob with

𝑏 ∈ O𝐵. The players win if and only if 𝑉 (𝑖, 𝑗 , 𝑎, 𝑏) = 1.

A classical strategy is defined by a pair of functions 𝑓𝐴 : I𝐴 → O𝐴 for Alice and 𝑓𝐵 : I𝐵 → O𝐵
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for Bob. The winning probability of this strategy is

∑︁
𝑖, 𝑗

𝜋(𝑖, 𝑗)𝑉 (𝑖, 𝑗 , 𝑓𝐴 (𝑖), 𝑓𝐵 ( 𝑗)).

The classical value, a(G), of a game is the supremum of this quantity over all classical strategies

( 𝑓𝐴, 𝑓𝐵).

A quantum strategy S for G is given by Hilbert spaces H𝐴, H𝐵, a state |𝜓⟩ ∈ H𝐴 ⊗ H𝐵, and

projective measurements {𝐸𝑖,𝑎}𝑎∈O𝐴 ⊂ Proj(H𝐴) and {𝐹𝑗 ,𝑏}𝑏∈O𝐵 ⊂ Proj(H𝐵) for all 𝑖 ∈ I𝐴 and

𝑗 ∈ I𝐵.

Alice and Bob each have access to Hilbert spaces H𝐴 and H𝐵 respectively. On input (𝑖, 𝑗),

Alice and Bob measure their share of the state |𝜓⟩ according to {𝐸𝑖,𝑎}𝑎∈O𝐴 and {𝐹𝑗 ,𝑏}𝑏∈O𝐵 . The

probability of obtaining outcome 𝑎, 𝑏 is given by ⟨𝜓 |𝐸𝑖,𝑎 ⊗ 𝐹𝑗 ,𝑏 |𝜓⟩. The winning probability of

strategy S, denoted by a(G,S) is therefore

a(G,S) =
∑︁
𝑖, 𝑗 ,𝑎,𝑏

𝜋(𝑖, 𝑗)⟨𝜓 |𝐸𝑖,𝑎 ⊗ 𝐹𝑗 ,𝑏 |𝜓⟩𝑉 (𝑖, 𝑗 , 𝑎, 𝑏).

The quantum value of a game, written a∗(G), is the supremum of the winning probability over all

quantum strategies.

The famous CHSH game [63] is the tuple (I𝐴,I𝐵,O𝐴,O𝐵, 𝜋,𝑉) where I𝐴 = I𝐵 = O𝐴 = O𝐵 =

{0, 1}, 𝜋 is the uniform distribution on I𝐴 × I𝐵, and 𝑉 (𝑖, 𝑗 , 𝑎, 𝑏) = 1 if and only if

𝑎 + 𝑏 ≡ 𝑖 𝑗 mod 2.

The CHSH game has a classical value of 0.75 and a quantum value of 1
2 +

√
2

4 ≈ 0.85 [63].

A strategy S is optimal if a(G,S) = a∗(G). When a game’s quantum value is larger than the

classical value we say that the game exhibits quantum advantage. A game is pseudo-telepathic if

it exhibits quantum advantage and its quantum value is 1.

An order-𝑛 generalized observable is a unitary 𝑈 for which 𝑈𝑛 = 𝐼. It is customary to assign
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an order-𝑛 generalized observable to a projective measurement system {𝐸0, . . . , 𝐸𝑛−1} as

𝐴 =

𝑛−1∑︁
𝑖=0

𝜔𝑖𝑛𝐸𝑖 .

Conversely, if 𝐴 is an order-𝑛 generalized observable, then we can recover a projective measure-

ment system {𝐸0, . . . , 𝐸𝑛−1} where

𝐸𝑖 =
1
𝑛

𝑛−1∑︁
𝑘=0

(
𝜔−𝑖𝑛 𝐴

) 𝑘
.

In this paper, present strategies in terms of generalized observables.

Consider the strategy S consisting of the shared state |𝜓⟩ ∈ H𝐴 ⊗H𝐵 and observables {𝐴𝑖}𝑖∈I𝐴
and {𝐵 𝑗 } 𝑗∈I𝐵 for Alice and Bob. We say the game G is a self-test for the strategy S if there exist

Y0 ≥ 0 and 𝛿 : real+ → real+ a continuous function with 𝛿(0) = 0, such that the following hold

1. S is optimal for G.

2. For any 0 ≤ Y ≤ Y0 and any strategy S̃ = ({𝐴𝑖}𝑖∈I𝐴, {�̃� 𝑗 } 𝑗∈I𝐵 , |𝜓⟩) where |𝜓⟩ ∈ H̃𝐴 ⊗ H̃𝐵

and a(G, S̃) ≥ a∗(G) − Y, there exist local isometries 𝑉𝐴 and 𝑉𝐵, and a state |junk⟩ such that

the following hold

•
𝑉𝐴 ⊗ 𝑉𝐵 |𝜓⟩ − |𝜓⟩|junk⟩

 ≤ 𝛿(Y),
•

𝑉𝐴𝐴𝑖 ⊗ 𝑉𝐵 |𝜓⟩ − (𝐴𝑖 ⊗ 𝐼 |𝜓⟩) |junk⟩
 ≤ 𝛿(Y) for all 𝑖 ∈ I𝐴,

•
𝑉𝐴 ⊗ 𝑉𝐵 �̃� 𝑗 |𝜓⟩ − (𝐼 ⊗ 𝐵 𝑗 |𝜓⟩) |junk⟩

 ≤ 𝛿(Y) for all 𝑗 ∈ I𝐵.

We use the terminology rigidity and self-testing interchangeably. Exact rigidity is a weaker notion

in which, we only require the second condition to hold for Y = 0. In Section 2.6, we give as an

example the proof of exact rigidity of the CHSH game.
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2.2.3 Linear constraint system games

A linear constraint system (LCS) game is a non-local game in which Alice and Bob cooperate

to convince the referee that they have a solution to a system of linear equations over Z𝑛. The referee

sends Alice an equation and Bob a variable in that equation, uniformly at random. In response,

Alice specifies an assignment to the variables in her equation and Bob specifies an assignment to

his variable. The players win exactly when Alice’s assignment satisfies her equation and Bob’s

assignment agrees with Alice. It follows that an LCS game has a perfect classical strategy if and

only if the system of equations has a solution over Z𝑛. Similarly the game has a perfect quantum

strategy if and only if the system of equations, when viewed in the multiplicative form, has an

operator solution [67].

To each LCS game there corresponds a group referred to as the solution group. The represen-

tation theory of solution group is an indispensable tool in studying pseudo-telepathic LCS games

[6, 77]. In what follows we define these terms formally, but the interested reader is encouraged to

consult the references to appreciate the motivations. In this paper, we are interested in extending

solution group formalism to general LCS games using the sum of squares approach. We explore

this extension in Section 2.7. When restriced to psuedo-telepathic LCS games, our SOS approach

is identical to the solution group formalism. We present this in section 2.8 for completeness.

Consider a system of linear equations 𝐴𝑥 = 𝑏 where 𝐴 ∈ Z𝑟×𝑠𝑛 , 𝑏 ∈ Z𝑟𝑛. We let 𝑉𝑖 denote the set

of variables occurring in equation 𝑖

𝑉𝑖 = { 𝑗 ∈ [𝑠] : 𝑎𝑖, 𝑗 ≠ 0}.

To view this system of linear equations in multiplicative form, we identify Z𝑛 multiplicatively as

{1, 𝜔𝑛, . . . , 𝜔𝑛−1
𝑛 }. Then express the 𝑖th equation as

∏
𝑗∈𝑉𝑖

𝑥
𝑎𝑖 𝑗

𝑗
= 𝜔𝑏𝑖𝑛 .
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In this paper we only use this multiplicative form. We let 𝑆𝑖 denote the set of satisfying assignments

to equation 𝑖. In the LCS game G𝐴,𝑏, Alice receives an equation 𝑖 ∈ [𝑟] and Bob receives a variable

𝑗 ∈ 𝑉𝑖, uniformly at random. Alice responds with an assignment 𝑥 to variables in 𝑉𝑖 and Bob with

an assignment 𝑦 to his variable 𝑗 . They win if 𝑥 ∈ 𝑆𝑖 and 𝑥 𝑗 = 𝑦.

The solution group 𝐺𝐴,𝑏 associated with G𝐴,𝑏, is the group generated by 𝑔1, . . . , 𝑔𝑠, 𝐽, satisfy-

ing the relations

1. 𝑔𝑛
𝑗
= 𝐽𝑛 = 1 for all 𝑗 ,

2. 𝑔 𝑗 𝐽 = 𝐽𝑔 𝑗 for all 𝑗 ,

3. 𝑔 𝑗𝑔𝑘 = 𝑔𝑘𝑔 𝑗 for 𝑗 , 𝑘 ∈ 𝑉𝑖 for all 𝑖, and

4.
∏

𝑗∈𝑉𝑖 𝑔
𝐴𝑖 𝑗

𝑗
= 𝐽𝑏𝑖 .

2.2.4 Gowers-Hatami theorem and its application to self-testing

In order to precisely state our results about self-testing in Section 2.7, we recall the Gowers-

Hatami theorem and (Y, |𝜓⟩)-representation [78, 77, 79].

Definition 2.2.2. Let 𝐺 be a finite group, 𝑛 an integer, Hilbert spacesH𝐴,H𝐵 of dimension 𝑛, and

|𝜓⟩ ∈ H𝐴 ⊗H𝐵 a state with the reduced density matrix 𝜎 ∈ L(H𝐴). An (Y, |𝜓⟩)-representation of

𝐺, for Y ≥ 0, is a function 𝑓 : 𝐺 → 𝑈𝑛 (C) such that

E𝑥,𝑦ℜ
(
⟨ 𝑓 (𝑥)∗ 𝑓 (𝑦), 𝑓 (𝑥−1𝑦)⟩𝜎

)
≥ 1 − Y. (2.2.1)

In the case of Y = 0, we abbreviate and call such a map a |𝜓⟩-representation, in which case the

condition 2.2.1 simplifies to

⟨ 𝑓 (𝑥)∗ 𝑓 (𝑦), 𝑓 (𝑥−1𝑦)⟩𝜎 = 1,
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or equivalently

𝑓 (𝑦)∗ 𝑓 (𝑥) 𝑓 (𝑥−1𝑦) |𝜓⟩ = |𝜓⟩, (2.2.2)

for all 𝑥, 𝑦 ∈ 𝐺. In Condition (2.2.2), we are implicitly dropping the tensor with identity on H𝐵.

Note that a |𝜓⟩-representation 𝑓 is just a group representation when restricted to the Hilbert space

H0 = span{ 𝑓 (𝑔) |𝜓⟩ : 𝑔 ∈ 𝐺}, i.e., the Hilbert space generated by the image of 𝑓 acting on |𝜓⟩.

To see this, we first rewrite (2.2.2) as

𝑓 (𝑥−1𝑦) |𝜓⟩ = 𝑓 (𝑥)∗ 𝑓 (𝑦) |𝜓⟩.

Thus for any 𝑥, 𝑦 ∈ 𝐺 we have

𝑓 (𝑥−1)∗ 𝑓 (𝑥−1𝑦) |𝜓⟩ = 𝑓 (𝑥𝑥−1𝑦) |𝜓⟩ = 𝑓 (𝑦) |𝜓⟩.

We can multiply both sides by 𝑓 (𝑥−1) to obtain 𝑓 (𝑥−1𝑦) |𝜓⟩ = 𝑓 (𝑥−1) 𝑓 (𝑦) |𝜓⟩ for all 𝑥, 𝑦 ∈ 𝐺 or

equivalently

𝑓 (𝑥) 𝑓 (𝑦) |𝜓⟩ = 𝑓 (𝑥𝑦) |𝜓⟩ for all 𝑥, 𝑦 ∈ 𝐺. (2.2.3)

This shows that for all 𝑥 ∈ 𝐺, the operator 𝑓 (𝑥) leaves the subspace 𝐻0 invariant. Thus we can

view 𝑓 (𝑥) |𝐻0 , the restriction of 𝑓 (𝑥) to this subspace, as an element of L(𝐻0). Furthermore, by

(2.2.3), the map 𝑥 ↦→ 𝑓 (𝑥) |𝐻0 is a homormorphism and thus a representation of 𝐺 on 𝐻0.

We need the following special case of the Gowers-Hatami (GH) theorem as presented in [79].

The analysis of the robust rigidity of these games uses the general statement of GH, using (Y, |𝜓⟩)-

representation. Although skipped in this paper, the tools are in place to analyse the robust case.

Theorem 2.2.3 (Gowers-Hatami). Let 𝑑 be an integer, |𝜓⟩ ∈ C𝑑 ⊗ C𝑑 a bipartite state, 𝐺 a finite

group, and 𝑓 : 𝐺 → U𝑑 (C) a |𝜓⟩-representation. Then there exist 𝑑′ ≥ 𝑑, a representation
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𝑔 : 𝐺 → U𝑑′ (C), and an isometry 𝑉 : C𝑑 → C𝑑′ such that 𝑓 (𝑥) ⊗ 𝐼 |𝜓⟩ = 𝑉∗𝑔(𝑥)𝑉 ⊗ 𝐼 |𝜓⟩.

From the proof of this theorem in [79], we can take 𝑔 = ⊕𝜌 𝐼𝑑 ⊗ 𝐼𝑑𝜌 ⊗ 𝜌 where 𝜌 ranges over

irreducible representations of 𝐺 and 𝑑𝜌 is the dimension of 𝜌. Additionally, in the same bases,

we can factorize 𝑉 into a direct sum over irreps such that 𝑉𝑢 = ⊕𝜌 (𝑉𝜌𝑢), for all 𝑢 ∈ C𝑑 where

𝑉𝜌 ∈ L(C𝑑 ,C𝑑 ⊗ C𝑑𝜌 ⊗ C𝑑𝜌) are some linear operators. It holds that
∑
𝜌 𝑉
∗
𝜌𝑉𝜌 = 𝑉

∗𝑉 = 𝐼𝑑 .

In some special cases, such as in our paper, we can restrict 𝑔 to be a single irreducible rep-

resentation of 𝐺. In such cases we have a streamlined proof of self-testing. Lemma 2.2.4 below

captures how GH is applied in proving self-testing in these cases.

Let G = (I𝐴,I𝐵,O𝐴,O𝐵, 𝜋,𝑉) be a game, 𝐺𝐴 and 𝐺𝐵 be groups with generators {𝑃𝑖}𝑖∈𝐼𝐴 and

{𝑄 𝑗 } 𝑗∈𝐼𝐵 , 𝐺𝐴 and 𝐺𝐵 be free groups over {𝑃𝑖}𝑖∈𝐼𝐴 and {𝑄 𝑗 } 𝑗∈𝐼𝐵 , and S = ({𝐴𝑖}, {𝐵 𝑗 }, |𝜓⟩) be a

strategy where |𝜓⟩ ∈ C𝑑𝐴⊗C𝑑𝐵 . We define two functions 𝑓 S
𝐴

: 𝐺𝐴 → U𝑑𝐴 (C), 𝑓 S𝐵 : 𝐺𝐵 → U𝑑𝐵 (C)

where 𝑓 S
𝐴
(𝑃𝑖) = 𝐴𝑖 and 𝑓 S

𝐵
(𝑄 𝑗 ) = 𝐵 𝑗 and they are extended homomorphically to all of 𝐺𝐴

and 𝐺𝐵, respectively. Suppose that the game G has the property that for every optimal strategy

S̃ = ({𝐴𝑖}, {𝐵 𝑗 }, |𝜓⟩), 𝑓 S̃𝐴 and 𝑓 S̃
𝐵

are |𝜓⟩-representations for 𝐺𝐴 and 𝐺𝐵, respectively.

Now applying GH, for every optimal strategy S̃, there exist representations 𝑔𝐴, 𝑔𝐵 of 𝐺𝐴, 𝐺𝐵,

respectively, and isometries 𝑉𝐴, 𝑉𝐵 such that

𝑓 S̃
𝐴
(𝑥) ⊗ 𝐼 |𝜓⟩ = 𝑉∗𝐴𝑔𝐴 (𝑥)𝑉𝐴 ⊗ 𝐼 |𝜓⟩ for all 𝑥 ∈ 𝐺𝐴,

𝐼 ⊗ 𝑓 S̃𝐵 (𝑦) |𝜓⟩ = 𝐼 ⊗ 𝑉
∗
𝐵𝑔𝐵 (𝑦)𝑉𝐵 |𝜓⟩ for all 𝑦 ∈ 𝐺𝐵.

Unfortunately this is not enough to establish rigidity for G as defined in Section 2.2.2. To do this,

we need and extra assumption on G that we deal with in the following lemma.

For any pair of representations 𝜌, 𝜎 of 𝐺𝐴, 𝐺𝐵 respectively, and state |𝜓⟩ ∈ C𝑑𝜎 ⊗ C𝑑𝜌 , let

S𝜌,𝜎,|𝜓⟩ = ({𝜌(𝑃𝑖)}𝑖∈I𝐴, {𝜎(𝑄 𝑗 )} 𝑗∈I𝐵 , |𝜓⟩) be the strategy induced by the pair of representations

(𝜌, 𝜎). Also let a(G, 𝜌, 𝜎) = max|𝜓⟩ a(G,S𝜌,𝜎,|𝜓⟩).

Lemma 2.2.4. Suppose that there is only one pair of irreps �̄�, �̄� for which a(G, �̄�, �̄�) = a∗(G).

Additionally assume that |𝜓⟩ is the unique state (up to global phase) for which S�̄�,�̄�,|𝜓⟩ is an
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optimal strategy. Let S̃ = ({𝐴𝑖}, {𝐵 𝑗 }, |𝜓⟩) be an optimal strategy of G such that |𝜓⟩ ∈ C𝑑𝐴 ⊗C𝑑𝐵 ,

𝑓 S̃
𝐴

and 𝑓 S̃
𝐵

are |𝜓⟩-representations for 𝐺𝐴 and 𝐺𝐵, respectively. Then there exist isometries 𝑉𝐴 :

C𝑑𝐴 → C𝑑𝐴 |𝐺𝐴 |, 𝑉𝐵 : C𝑑𝐵 → C𝑑𝐵 |𝐺𝐵 |, and a state |junk⟩ such that

𝑉𝐴 ⊗ 𝑉𝐵 |𝜓⟩ = |junk⟩|𝜓⟩,

𝑉𝐴𝐴𝑖 ⊗ 𝑉𝐵 |𝜓⟩ = |junk⟩ �̄�(𝑃𝑖) ⊗ 𝐼𝑑 �̄� |𝜓⟩,

𝑉𝐴 ⊗ 𝑉𝐵𝐵 𝑗 |𝜓⟩ = |junk⟩𝐼𝑑�̄� ⊗ �̄�(𝑄 𝑗 ) |𝜓⟩,

for all 𝑖 ∈ 𝐼𝐴, 𝑗 ∈ 𝐼𝐵.

Proof. For simplicity, we only prove the case of binary games, i.e., we assume |O𝐴 | = |O𝐵 | = 2.

The general case follows similarly. For binary games we only need to consider strategies comprised

of binary observables (𝐴 is a binary observable if it is Hermitian and 𝐴2 = 𝐼). Without loss of

generality, we can assume that there exist some complex numbers _𝑖 𝑗 , _𝑖, _ 𝑗 , _ such that for any

strategy S = ({𝐴𝑖}, {𝐵 𝑗 }, |𝜓⟩)

a(G,S) = ⟨𝜓 |
( ∑︁
𝑖∈𝐼𝐴, 𝑗∈𝐼𝐵

_𝑖 𝑗 𝐴𝑖 ⊗ 𝐵 𝑗 +
∑︁
𝑖∈𝐼𝐴

_𝑖𝐴𝑖 ⊗ 𝐼 +
∑︁
𝑗∈𝐼𝐵

_ 𝑗 𝐼 ⊗ 𝐵 𝑗 + _𝐼 ⊗ 𝐼
)
|𝜓⟩. (2.2.4)

As argued earlier, by GH, we have

𝑓 S̃
𝐴
(𝑥) ⊗ 𝐼 |𝜓⟩ = 𝑉∗𝐴𝑔𝐴 (𝑥)𝑉𝐴 ⊗ 𝐼 |𝜓⟩, (2.2.5)

𝐼 ⊗ 𝑓 S̃𝐵 (𝑥) |𝜓⟩ = 𝐼 ⊗ 𝑉
∗
𝐵𝑔𝐵 (𝑥)𝑉𝐵 |𝜓⟩, (2.2.6)

where 𝑔𝐴 = ⊕𝜌 𝐼𝑑𝐴𝑑𝜌 ⊗ 𝜌, 𝑔𝐵 = ⊕𝜎 𝐼𝑑𝐵𝑑𝜎 ⊗𝜎, where 𝜌 and 𝜎 range over irreducible representations

of 𝐺𝐴 and 𝐺𝐵, respectively. We also have the factorization 𝑉𝐴𝑢 = ⊕𝜌 (𝑉𝐴,𝜌𝑢), for all 𝑢 ∈ C𝑑𝐴

as well as 𝑉𝐵𝑢 = ⊕𝜎 (𝑉𝐵,𝜎𝑢), for all 𝑢 ∈ C𝑑𝐵 . As mentioned above in the discussion that fol-

lowed Theorem 2.2.3, 𝑉𝐴,𝜌 and 𝑉𝐵,𝜎 are some linear operators for which
∑
𝜌 𝑉
∗
𝐴,𝜌
𝑉𝐴,𝜌 = 𝐼𝑑𝐴 and∑

𝜎 𝑉
∗
𝐵,𝜎
𝑉𝐵,𝜎 = 𝐼𝑑𝐵 .
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We want to write the winning probability of S̃ in terms of the winning probabilities of irrep

strategies. To this end, let

𝑝𝜌,𝜎 = ∥𝑉𝐴,𝜌 ⊗ 𝑉𝐵,𝜎 |𝜓⟩∥2,

|𝜓𝜌,𝜎⟩ =


1√
𝑝𝜌,𝜎

𝑉𝐴,𝜌 ⊗ 𝑉𝐵,𝜎 |𝜓⟩ 𝑝𝜌,𝜎 > 0,

0 𝑝𝜌,𝜎 = 0,

and consider strategies

S𝐼⊗𝜌,𝐼⊗𝜎,|𝜓𝜌,𝜎 ⟩ = ({𝐼𝑑𝐴𝑑𝜌 ⊗ 𝜌(𝑃𝑖)}, {𝐼𝑑𝐵𝑑𝜎 ⊗ 𝜎(𝑄 𝑗 )}, |𝜓𝜌,𝜎⟩).

Using (2.2.4), we can write

a(G, S̃) = ⟨𝜓 |
( ∑︁
𝑖∈𝐼𝐴, 𝑗∈𝐼𝐵

_𝑖 𝑗 𝐴𝑖 ⊗ 𝐵 𝑗 +
∑︁
𝑖∈𝐼𝐴

_𝑖𝐴𝑖 ⊗ 𝐼 +
∑︁
𝑗∈𝐼𝐵

_ 𝑗 𝐼 ⊗ 𝐵 𝑗 + _𝐼 ⊗ 𝐼
)
|𝜓⟩

=
∑︁
𝜌,𝜎

⟨𝜓 |𝑉∗𝐴,𝜌 ⊗ 𝑉
∗
𝐵,𝜎

( ∑︁
𝑖∈𝐼𝐴, 𝑗∈𝐼𝐵

_𝑖 𝑗 (𝐼𝑑𝐴𝑑𝜌 ⊗ 𝜌(𝑃𝑖)) ⊗ (𝐼𝑑𝐵𝑑𝜎 ⊗ 𝜎(𝑄 𝑗 )) +
∑︁
𝑖∈𝐼𝐴

_𝑖 (𝐼𝑑𝐴𝑑𝜌 ⊗ 𝜌(𝑃𝑖)) ⊗ 𝐼

+
∑︁
𝑗∈𝐼𝐵

_ 𝑗 𝐼 ⊗ (𝐼𝑑𝐵𝑑𝜎 ⊗ 𝜎(𝑄 𝑗 )) + _𝐼 ⊗ 𝐼
)
𝑉𝐴,𝜌 ⊗ 𝑉𝐵,𝜎 |𝜓⟩

=
∑︁
𝜌,𝜎

𝑝𝜌,𝜎a(G,S𝐼⊗𝜌,𝐼⊗𝜎,|𝜓𝜌,𝜎 ⟩).

Note that
∑
𝜌,𝜎 𝑝𝜌,𝜎 = 1. In other words, the winning probability of S̃ is a convex combina-

tion of the winning probabilities of irreducible strategies S𝐼⊗𝜌,𝐼⊗𝜎,|𝜓𝜌,𝜎 ⟩. It is easily verified that

a(G,S𝐼⊗𝜌,𝐼⊗𝜎,|𝜓𝜌,𝜎 ⟩) ≤ a(G, 𝜌, 𝜎). By assumption of the lemma a(G, 𝜌, 𝜎) < a∗(G) except when

(𝜌, 𝜎) = ( �̄�, �̄�). Now since S̃ is an optimal strategy, we have

𝑝𝜌,𝜎 =


1 (𝜌, 𝜎) = ( �̄�, �̄�),

0 otherwise.
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Therefore a(G, S̃) = a(G,S𝐼⊗𝜌,𝐼⊗𝜎,|𝜓𝜌,𝜎 ⟩) and hence S𝐼⊗ �̄�,𝐼⊗�̄�,|𝜓�̄�, �̄� ⟩ is an optimal strategy. From

the assumption of the lemma ,|𝜓⟩ is the unique state optimizing the strategy induced by ( �̄�, �̄�).

Therefore |𝜓 �̄�,�̄�⟩ = |junk′⟩|𝜓⟩ where both |junk′⟩ and |𝜓⟩ are shared between Alice and Bob such

that |junk′⟩ is the state of the register upon which the identities of Alice and Bob in the operators

(𝐼 ⊗ 𝜌)𝐴 ⊗ (𝐼 ⊗ 𝜎)𝐵 are applied. In summary

|𝜓𝜌,𝜎⟩ =


|junk′⟩|𝜓⟩ (𝜌, 𝜎) = ( �̄�, �̄�),

0 otherwise.
(2.2.7)

Now using (2.2.5), it follows that

𝐴𝑖 ⊗ 𝑉𝐵 |𝜓⟩ = 𝑉∗𝐴𝑔𝐴 (𝑃𝑖)𝑉𝐴 ⊗ 𝑉𝐵 |𝜓⟩,

from which

𝑉𝐴𝐴𝑖 ⊗ 𝑉𝐵 |𝜓⟩ = 𝑉𝐴𝑉∗𝐴𝑔𝐴 (𝑃𝑖)𝑉𝐴 ⊗ 𝑉𝐵 |𝜓⟩.

Since 𝑉𝐴𝑉∗𝐴 is a projection and 𝑉𝐴𝐴𝑖 ⊗𝑉𝐵 |𝜓⟩ and 𝑔𝐴 (𝑃𝑖)𝑉𝐴 ⊗𝑉𝐵 |𝜓⟩ are both unit vectors, it holds

that

𝑉𝐴𝐴𝑖 ⊗ 𝑉𝐵 |𝜓⟩ = 𝑔𝐴 (𝑃𝑖)𝑉𝐴 ⊗ 𝑉𝐵 |𝜓⟩

=
⊕
𝜌,𝜎

(𝐼𝑑𝐴𝑑𝜌 ⊗ 𝜌(𝑃𝑖)) ⊗ 𝐼𝑑𝐵𝑑2
𝜎
|𝜓𝜌,𝜎⟩

=
(
|junk′⟩ �̄�(𝑃𝑖) ⊗ 𝐼𝑑 �̄� |𝜓⟩

)
⊕(𝜌,𝜎)≠( �̄�,�̄�) 0𝑑𝐴𝑑2

𝜌𝑑𝐵𝑑
2
𝜎

= |junk⟩ �̄�(𝑃𝑖) ⊗ 𝐼𝑑 �̄� |𝜓⟩,

where the third equality follows from (2.2.7), and in the fourth equality |junk⟩ = |junk′⟩ ⊕ 0 where

0 ∈ C𝑑𝐴𝑑𝐵 (
|𝐺𝐴 | |𝐺𝐵 |
𝑑�̄�𝑑�̄�

−𝑑�̄�𝑑 �̄�) . Note that 𝑑𝐴𝑑𝐵 ( |𝐺𝐴 | |𝐺𝐵 |𝑑�̄�𝑑 �̄�
− 𝑑 �̄�𝑑�̄�) is a positive integer because the degree

of an irreducible representation divides the order of the group. □
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Corollary 2.2.5. If in addition to the assumptions of Lemma 2.2.4, it holds that for every optimal

strategy S̃ = ({𝐴𝑖}, {𝐵 𝑗 }, |𝜓⟩), 𝑓 S̃𝐴 and 𝑓 S̃
𝐵

are |𝜓⟩-representations, then G is a self-test for the

strategy S�̄�,�̄�,|𝜓⟩.

Note that all these results can be stated robustly using the notion of (Y, |𝜓⟩)-representation, but

in this paper we focus our attention on exact rigidity. In this paper we use SOS to obtain the extra

assumption of Corollary 2.2.5 as seen in Sections 2.6 and 2.7.

2.3 A generalization of CHSH

The CHSH game can also be viewed as an LCS game where the linear system, over multiplica-

tive Z2, is given by

𝑥0𝑥1 = 1,

𝑥0𝑥1 = −1.

The CHSH viewed as an LCS is first considered in [67]. We generalize this to a game G𝑛 over Z𝑛

for each 𝑛 ≥ 2

𝑥0𝑥1 = 1,

𝑥0𝑥1 = 𝜔𝑛.

As is the case for G2 = 𝐶𝐻𝑆𝐻, the classical value of G𝑛 is easily seen to be 0.75. In Section 2.4,

we exhibit quantum advantage by presenting a strategy S𝑛 showing that a∗(G𝑛) ≥ a(G𝑛,S𝑛) =
1
2 +

1
2𝑛 sin( 𝜋2𝑛 )

> 1
2 +

1
𝜋
≈ 0.81. In Section 2.5, we present the group 𝐺𝑛 generated by the operators

in S𝑛. In Section 2.7, we show that G3 is a self-test, and conjecture that this is true for all 𝑛 ≥ 2.

As defined in the preliminaries, conventionally, in an LCS game, Alice has to respond with an

assignment to all variables in her equation. It is in Alice’s best interest to always respond with

a satisfying assignment. Therefore, the referee could always determine Alice’s assignment to 𝑥1
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from her assignment to 𝑥0. Hence, without loss of generality, in our games, Alice only responds

with an assignment to 𝑥0.

Formally G𝑛 = ( [2], [2],Z𝑛,Z𝑛, 𝜋,𝑉) where Z𝑛 = {1, 𝜔𝑛, . . . , 𝜔𝑛−1
𝑛 }, 𝜋 is the uniform distri-

bution on [2] × [2], and

𝑉 (0, 0, 𝑎, 𝑏) = 1 ⇐⇒ 𝑎 = 𝑏,

𝑉 (0, 1, 𝑎, 𝑏) = 1 ⇐⇒ 𝑎𝑏 = 1,

𝑉 (1, 0, 𝑎, 𝑏) = 1 ⇐⇒ 𝑎 = 𝑏,

𝑉 (1, 1, 𝑎, 𝑏) = 1 ⇐⇒ 𝑎𝑏 = 𝜔𝑛.

Consider the quantum strategyS given by the state |𝜓⟩, and projective measurements {𝐸0,𝑎}𝑎∈[𝑛]

and {𝐸1,𝑎}𝑎∈[𝑛] for Alice, and {𝐹0,𝑏}𝑏∈[𝑛] and {𝐹1,𝑏}𝑏∈[𝑛] for Bob. Note that in our measurement

systems, we identify outcome 𝑎 ∈ [𝑛] with answer 𝜔𝑎𝑛 ∈ Z𝑛. As done in the preliminaries, de-

fine the generalized observables 𝐴0 =
∑𝑛−1
𝑖=0 𝜔

𝑖
𝑛𝐸0,𝑖, 𝐴1 =

∑𝑛−1
𝑖=0 𝜔

𝑖
𝑛𝐸1,𝑖, 𝐵0 =

∑𝑛−1
𝑖=0 𝜔

𝑖
𝑛𝐹0,𝑖, 𝐵1 =∑𝑛−1

𝑖=0 𝜔
𝑖
𝑛𝐹1,𝑖. We derive an expression for the winning probability of this strategy in terms of the

these generalized observables. We do so by introducing the bias operator

B𝑛 = B𝑛 (𝐴0, 𝐴1, 𝐵0, 𝐵1) =
𝑛−1∑︁
𝑖=1

𝐴𝑖0𝐵
−𝑖
0 + 𝐴

𝑖
0𝐵

𝑖
1 + 𝐴

𝑖
1𝐵
−𝑖
0 + 𝜔

−𝑖
𝑛 𝐴

𝑖
1𝐵

𝑖
1,

in which we dropped the tensor product symbol between Alice and Bob’s operators.

Proposition 2.3.1. Given the strategy S above, it holds that a (G𝑛,S) = 1
4𝑛 ⟨𝜓 |B𝑛 |𝜓⟩ +

1
𝑛
.
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Proof.

B𝑛 + 4𝐼 =
𝑛−1∑︁
𝑖=0

𝐴𝑖0𝐵
−𝑖
0 + 𝐴

𝑖
0𝐵

𝑖
1 + 𝐴

𝑖
1𝐵
−𝑖
0 + 𝜔

−𝑖
𝑛 𝐴

𝑖
1𝐵

𝑖
1

=

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑎,𝑏=0

𝜔
𝑖(𝑎−𝑏)
𝑛 𝐸0,𝑎𝐹0,𝑏 + 𝜔𝑖(𝑎+𝑏)𝑛 𝐸0,𝑎𝐹1,𝑏 + 𝜔𝑖(𝑎−𝑏)𝑛 𝐸1,𝑎𝐹0,𝑏 + 𝜔𝑖(𝑎+𝑏−1)

𝑛 𝐸1,𝑎𝐹1,𝑏

=

𝑛−1∑︁
𝑎,𝑏=0

𝑛−1∑︁
𝑖=0

𝜔
𝑖(𝑎−𝑏)
𝑛 𝐸0,𝑎𝐹0,𝑏 + 𝜔𝑖(𝑎+𝑏)𝑛 𝐸0,𝑎𝐹1,𝑏 + 𝜔𝑖(𝑎−𝑏)𝑛 𝐸1,𝑎𝐹0,𝑏 + 𝜔𝑖(𝑎+𝑏−1)

𝑛 𝐸1,𝑎𝐹1,𝑏

= 𝑛

𝑛−1∑︁
𝑎=0

𝐸0,𝑎𝐹0,𝑎 + 𝐸0,𝑎𝐹1,−𝑎 + 𝐸1,𝑎𝐹0,𝑎 + 𝐸1,𝑎𝐹1,1−𝑎

in which in the last equality we used the identity 1 + 𝜔𝑛 + . . . + 𝜔𝑛−1
𝑛 = 0. Also note that in 𝐹1,−𝑎

and 𝐹1,1−𝑎 second indices should be read mod 𝑛. Finally notice that

a(G,S) = 1
4
⟨𝜓 |

(
𝑛−1∑︁
𝑎=0

𝐸0,𝑎𝐹0,𝑎 + 𝐸0,𝑎𝐹1,−𝑎 + 𝐸1,𝑎𝐹0,𝑎 + 𝐸1,𝑎𝐹1,1−𝑎

)
|𝜓⟩.

□

2.4 Strategies for G𝑛

In this section, we present quantum strategies S𝑛 for G𝑛 games. In Section 2.4.2, we show that

a(G𝑛,S𝑛) = 1
2+

1
2𝑛 sin( 𝜋2𝑛 )

and that this value approaches 1
2+

1
𝜋

from above as 𝑛 tends to infinity. This

lower bounds the quantum value a∗(G𝑛), and proves that these games exhibit quantum advantage

with a constant gap > 1
𝜋
− 1

4 . We also show that the states in these strategies have full-Schmidt

rank. Furthermore the states tend to the maximally entangled state as 𝑛→∞.

We conjecture that S𝑛 are optimal and that the games G𝑛 are self-tests for S𝑛. In Section 2.7,

we prove this for 𝑛 = 3. Using the NPA hierarchy, we verify the optimality numerically up to

𝑛 = 7. If the self-testing conjecture is true, we have a family of games with one bit questions and

log(𝑛) bits answers, that self-test entangled states of local dimension 𝑛 for any 𝑛.
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2.4.1 Definition of the strategy

Let 𝜎𝑛 = (0 1 2 . . . 𝑛 − 1) ∈ 𝑆𝑛 denote the cycle permutation that sends 𝑖 to 𝑖 + 1 mod 𝑛. Let

𝑧𝑛 = 𝜔
1/4
𝑛 = 𝑒𝑖𝜋/2𝑛. Let 𝐷𝑛, 𝑗 = 𝐼𝑛 − 2𝑒 𝑗𝑒∗𝑗 be the diagonal matrix with −1 in the ( 𝑗 , 𝑗) entry, and

1 everywhere else in the diagonal. Then let 𝐷𝑛,𝑆 :=
∏

𝑗∈𝑆 𝐷𝑛, 𝑗 , where 𝑆 ⊂ [𝑛]. Finally, let 𝑋𝑛

be the shift operator (also known as the generalized Pauli 𝑋), i.e., 𝑋𝑛𝑒𝑖 = 𝑒𝜎𝑛 (𝑖) . For convenience,

we shall often drop the 𝑛 subscript when the dimension is clear from context, and so just refer to

𝑧𝑛, 𝐷𝑛, 𝑗 , 𝐷𝑛,𝑆, 𝑋𝑛 as 𝑧, 𝐷 𝑗 , 𝐷𝑆, 𝑋 , respectively.

LetH𝐴 = H𝐵 = C𝑛. Then Alice and Bob’s shared state in S𝑛 is defined to be

|𝜓𝑛⟩ =
1
𝛾𝑛

𝑛−1∑︁
𝑖=0
(1 − 𝑧𝑛+2𝑖+1) |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩ ∈ H𝐴 ⊗ H𝐵,

where 𝛾𝑛 =
√︃

2𝑛 + 2
sin( 𝜋2𝑛 )

is the normalization factor. The generalized observables in S𝑛 are

𝐴0 = 𝑋

𝐴1 = 𝑧2𝐷0𝑋

𝐵0 = 𝑋

𝐵1 = 𝑧2𝐷0𝑋
∗.

Example 2.4.1. In S2, Alice and Bob’s observables are

𝐴0 = 𝜎𝑥 =
©«
0 1

1 0

ª®®¬ , 𝐴1 = 𝜎𝑦 =
©«
0 −𝑖

𝑖 0

ª®®¬ ,
𝐵0 = 𝜎𝑥 =

©«
0 1

1 0

ª®®¬ , 𝐵1 = 𝜎𝑦 =
©«
0 −𝑖

𝑖 0

ª®®¬ ,
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and their entangled state is

|𝜓2⟩ =
1√︁

4 + 2
√

2

((
1 + 1 − 𝑖
√

2

)
|00⟩ −

(
1 + 1 + 𝑖
√

2

)
|11⟩

)
.

One can verify that this indeed give us the quantum value for CHSH 1
2 +

√
2

4 .

Example 2.4.2. In S3, Alice and Bob’s observables are

𝐴0 =

©«
0 0 1

1 0 0

0 1 0

ª®®®®®¬
, 𝐴1 =

©«
0 0 −𝑧2

𝑧2 0 0

0 𝑧2 0

ª®®®®®¬
,

𝐵0 =

©«
0 0 1

1 0 0

0 1 0

ª®®®®®¬
, 𝐵1 =

©«
0 −𝑧2 0

0 0 𝑧2

𝑧2 0 0

ª®®®®®¬
,

with the entangled state

|𝜓3⟩ =
1
√

10

(
(1 − 𝑧4) |00⟩ + 2|12⟩ + (1 + 𝑧2) |21⟩

)
.

One can compute that ⟨𝜓 |B3 |𝜓⟩ = 6. Hence, by Proposition 2.3.1, we have a∗(G3) ≥ 5
6 .

2.4.2 Analysis of the strategy

In this section, we prove that S𝑛 is a quantum strategy and calculate its winning probability.

We then prove that the entanglement entropy of |𝜓𝑛⟩ approaches the maximum entropy as 𝑛 tends

to infinity.

Proposition 2.4.3. For 𝑛 ∈ N, it holds that
∑𝑛−1
𝑗=0 𝑧

2 𝑗+𝑛+1
𝑛 =

∑𝑛−1
𝑗=0 𝑧

−(2 𝑗+𝑛+1)
𝑛 .

Proof. A direct computation gives

𝑛−1∑︁
𝑗=0

𝑧2 𝑗+𝑛+1 =
2𝑧𝑛+1

1 − 𝑧2 =
2𝑧−𝑛−1

1 − 𝑧−2 =

𝑛−1∑︁
𝑗=0

𝑧−(2 𝑗+𝑛+1) ,
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where we have used the fact that 𝑧2𝑛 = −1. □

Proposition 2.4.4. For 𝑛 ∈ N, it holds that
∑𝑛−1
𝑗=0 𝑧

2 𝑗+𝑛+1
𝑛 = − 1

sin( 𝜋2𝑛 )
.

Proof. We handle the even and odd case separately, and in both cases we use the well-known

identity for the Dirichlet kernel mentioned in preliminaries. For odd 𝑛

−
𝑛−1∑︁
𝑗=0

𝑧2 𝑗+𝑛+1 =

𝑛−1∑︁
𝑗=0

𝑧2 𝑗−(𝑛−1) =

𝑛−1
2∑︁

𝑗=− 𝑛−1
2

𝑧2 𝑗 =

𝑛−1
2∑︁

𝑗=− 𝑛−1
2

𝑒
𝜋𝑖 𝑗

𝑛

= 2𝜋D 𝑛−1
2

(𝜋
𝑛

)
=

sin
((
𝑛−1

2 +
1
2

)
𝜋
𝑛

)
sin

(
𝜋
2𝑛

) =
1

sin
(
𝜋
2𝑛

) .
For even 𝑛

−
𝑛−1∑︁
𝑗=0

𝑧2 𝑗+𝑛+1 = 𝑧

𝑛∑︁
𝑗=0

𝑧2 𝑗−𝑛 − 𝑧𝑛+1 = 𝑧

𝑛
2∑︁

𝑗=− 𝑛2

𝑧2 𝑗 − 𝑧𝑛+1 = 2𝜋𝑧D 𝑛
2

(𝜋
𝑛

)
− 𝑧𝑛+1

=

(
cos

( 𝜋
2𝑛

)
+ 𝑖 sin

( 𝜋
2𝑛

)) sin
((
𝑛
2 +

1
2

)
𝜋
𝑛

)
sin

(
𝜋
2𝑛

) − 𝑖
(
cos

( 𝜋
2𝑛

)
+ 𝑖 sin

( 𝜋
2𝑛

))
=

cos2 (
𝜋
2𝑛

)
+ sin2 (

𝜋
2𝑛

)
sin

(
𝜋
2𝑛

) =
1

sin
(
𝜋
2𝑛

) .
□

Now let’s observe a commutation relation between 𝐷 𝑗 and 𝑋 𝑘 .

Proposition 2.4.5. 𝑋 𝑖𝐷 𝑗 = 𝐷𝜎𝑖 ( 𝑗)𝑋
𝑖, for all 𝑖, 𝑗 ∈ [𝑛].

Proof. It suffices to prove 𝑋𝐷 𝑗 = 𝐷𝜎( 𝑗)𝑋 . We show this by verifying 𝑋𝐷 𝑗𝑒𝑘 = 𝐷𝜎( 𝑗)𝑋𝑒𝑘 for all

𝑘 ∈ [𝑛].

𝑋𝐷 𝑗𝑒𝑘 = (−1)𝛿 𝑗 ,𝑘𝑒𝜎(𝑘) = (−1)𝛿𝜎 ( 𝑗 ) ,𝜎 (𝑘 ) 𝑒𝜎(𝑘) = 𝐷𝜎( 𝑗)𝑋𝑒𝑘

□
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Now we prove the strategy defined in section 2.4.1 is a valid quantum strategy.

Proposition 2.4.6. 𝐴0, 𝐴1, 𝐵0, 𝐵1 are order-𝑛 generalized observables and |𝜓𝑛⟩ is a unit vector.

Proof. Observe that

𝐴𝑛0 = 𝐵𝑛0 = 𝑋𝑛 = 𝐼,

also

𝐴𝑛1 = (𝑧2𝐷0𝑋)𝑛 = 𝑧2𝑛𝐷{0,𝜎1 (0),...,𝜎𝑛−1 (0)}𝑋
𝑛 = (−1) (−𝐼)𝐼 = 𝐼 .

Similarly,

𝐵𝑛1 = (𝑧2𝐷0𝑋
∗)𝑛 = 𝑧2𝑛 (𝑋∗)𝑛𝐷{0,𝜎1 (0),...,𝜎𝑛−1 (0)} = (−1)𝐼 (−𝐼) = 𝐼 .

It is an easy observation that these operators are also unitary. To see that |𝜓𝑛⟩ is a unit vector

write

𝑛−1∑︁
𝑖=0
|1 − 𝑧𝑛+2𝑖+1 |2 =

𝑛−1∑︁
𝑖=0

(
1 − cos

(
𝜋(𝑛 + 2𝑖 + 1)

2𝑛

))2
+ sin

(
𝜋(𝑛 + 2𝑖 + 1)

2𝑛

)2

=

𝑛−1∑︁
𝑖=0

2
(
1 − cos

(
𝜋(𝑛 + 2𝑖 + 1)

2𝑛

))
= 2𝑛 −

𝑛−1∑︁
𝑖=0
ℜ(𝑧𝑛+2𝑖+1)

= 2𝑛 + 2
sin(𝜋/2𝑛)

= 𝛾2
𝑛,

where we have used Proposition 2.4.4 in the third equality.

□

Lemma 2.4.7. The entangled state |𝜓⟩ is an eigenvector for the bias B =
∑𝑛−1
𝑗=1 𝐴

𝑗

0𝐵
− 𝑗
0 + 𝐴

𝑗

0𝐵
𝑗

1 +

𝐴
𝑗

1𝐵
− 𝑗
0 + 𝑧

−4 𝑗 𝐴
𝑗

1𝐵
𝑗

1 with eigenvalue 2𝑛 − 4 + 2
sin( 𝜋2𝑛 )

.

Proof. For the sake of brevity, we drop the normalization factor 𝛾𝑛 in the derivation below, and let

|𝜑⟩ = 𝛾𝑛 |𝜓𝑛⟩. We write
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B|𝜑⟩ = ©«
𝑛−1∑︁
𝑗=1

𝐴
𝑗

0 ⊗ 𝐵
− 𝑗
0 + 𝐴

𝑗

0 ⊗ 𝐵
𝑗

1 + 𝐴
𝑗

1 ⊗ 𝐵
− 𝑗
0 + 𝑧

−4 𝑗 𝐴
𝑗

1 ⊗ 𝐵
𝑗

1
ª®¬ |𝜑⟩

=
©«
𝑛−1∑︁
𝑗=1
(𝑋 ⊗ 𝑋∗) 𝑗 + 𝑧2 𝑗 (𝑋 ⊗ 𝐷0𝑋

∗) 𝑗 + 𝑧2 𝑗 (𝐷0𝑋 ⊗ 𝑋∗) 𝑗 + (𝐷0𝑋 ⊗ 𝐷0𝑋
∗) 𝑗ª®¬ |𝜑⟩.

Lemma 2.4.8. (𝑋 ⊗ 𝐷0𝑋
∗) 𝑗 |𝜑⟩ = (𝐷0𝑋 ⊗ 𝑋∗) 𝑗 |𝜑⟩ and (𝑋 ⊗ 𝑋∗) 𝑗 |𝜑⟩ = (𝐷0𝑋 ⊗ 𝐷0𝑋

∗) 𝑗 |𝜑⟩.

Proof. It suffices to show these identities for 𝑗 = 1 on states |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩, for all 𝑖, in place of

|𝜑⟩. The result then follows by simple induction. In other words, we prove

(𝑋 ⊗ 𝐷0𝑋
∗) |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩ = (𝐷0𝑋 ⊗ 𝑋∗) |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩,

(𝑋 ⊗ 𝑋∗) |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩ = (𝐷0𝑋 ⊗ 𝐷0𝑋
∗) |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩.

Note that 𝐼 ⊗ 𝐷0 |𝜎𝑖+1(0), 𝜎−𝑖−1(0)⟩ = 𝐷0 ⊗ 𝐼 |𝜎𝑖+1(0), 𝜎−𝑖−1(0)⟩ since −𝑖 − 1 = 0 mod 𝑛 iff

𝑖 + 1 = 0 mod 𝑛. Therefore

(𝑋 ⊗ 𝐷0𝑋
∗) |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩ = (𝐼 ⊗ 𝐷0) |𝜎𝑖+1(0), 𝜎−𝑖−1(0)⟩

= (𝐷0 ⊗ 𝐼) |𝜎𝑖+1(0), 𝜎−𝑖−1(0)⟩

= (𝐷0𝑋 ⊗ 𝑋∗) |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩.

The other identity follows similarly. □
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Now we write

B|𝜑⟩ = 2 ©«
𝑛−1∑︁
𝑗=1
(𝑋 ⊗ 𝑋∗) 𝑗 + 𝑧2 𝑗 (𝐷0𝑋 ⊗ 𝑋∗) 𝑗ª®¬ |𝜑⟩

= 2
𝑛−1∑︁
𝑗=1

(
1 + 𝑧2 𝑗 (𝐷 [ 𝑗] ⊗ 𝐼)

)
(𝑋 ⊗ 𝑋∗) 𝑗 |𝜑⟩

= 2
𝑛−1∑︁
𝑗=1

𝑛−1∑︁
𝑖=0

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2 𝑗 (𝐷 [ 𝑗] ⊗ 𝐼)

)
(𝑋 ⊗ 𝑋∗) 𝑗 |𝜎𝑖 (0), 𝜎−𝑖 (0)⟩

= 2
𝑛−1∑︁
𝑗=1

𝑛−1∑︁
𝑖=0

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2 𝑗 (𝐷 [ 𝑗] ⊗ 𝐼)

)
|𝜎𝑖+ 𝑗 (0), 𝜎−(𝑖+ 𝑗) (0)⟩,

where in the second equality we use Proposition 2.4.5, and in the third equality we just expanded

|𝜑⟩. Note that

(𝐷 [ 𝑗] ⊗ 𝐼) |𝜎𝑖+ 𝑗 (0), 𝜎−(𝑖+ 𝑗) (0)⟩ =


−|𝜎𝑖+ 𝑗 (0), 𝜎−(𝑖+ 𝑗) (0)⟩ 𝑖 ∈ [𝑛 − 𝑗 , 𝑛 − 1],

|𝜎𝑖+ 𝑗 (0), 𝜎−(𝑖+ 𝑗) (0)⟩ 𝑖 ∈ [0, 𝑛 − 𝑗 − 1],

and we use this to split the sum

B|𝜑⟩ = 2
𝑛−1∑︁
𝑗=1

(
𝑛− 𝑗−1∑︁
𝑖=0

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2 𝑗

)
|𝜎𝑖+ 𝑗 (0), 𝜎−(𝑖+ 𝑗) (0)⟩

+
𝑛−1∑︁
𝑖=𝑛− 𝑗

(
1 − 𝑧2𝑖+𝑛+1

) (
1 − 𝑧2 𝑗

)
|𝜎𝑖+ 𝑗 (0), 𝜎−(𝑖+ 𝑗) (0)⟩

)
= 2

𝑛−1∑︁
𝑖=0

(
𝑛−𝑖−1∑︁
𝑗=1

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2 𝑗

)
|𝜎𝑖+ 𝑗 (0), 𝜎−(𝑖+ 𝑗) (0)⟩

+
𝑛−1∑︁
𝑗=𝑛−𝑖

(
1 − 𝑧2𝑖+𝑛+1

) (
1 − 𝑧2 𝑗

)
|𝜎𝑖+ 𝑗 (0), 𝜎−(𝑖+ 𝑗) (0)⟩

)
,
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and make a change of variable 𝑟 = 𝑖 + 𝑗 to get

B|𝜑⟩ = 2
𝑛−1∑︁
𝑖=0

(
𝑛−1∑︁
𝑟=𝑖+1

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2(𝑟−𝑖)

)
|𝜎𝑟 (0), 𝜎−𝑟 (0)⟩

+
𝑛+𝑖−1∑︁
𝑟=𝑛

(
1 − 𝑧2𝑖+𝑛+1

) (
1 − 𝑧2(𝑟−𝑖)

)
|𝜎𝑟 (0), 𝜎−𝑟 (0)⟩

)
.

We have 𝑧2(𝑟−𝑖) = 𝑧2(𝑟−𝑛+𝑛−𝑖) = 𝑧2𝑛𝑧2(𝑟−𝑛−𝑖) = −𝑧2(𝑟−𝑛−𝑖) and 𝜎𝑟 (0) = 𝜎𝑟+𝑛 (0), so by another

change of variable in the second sum where we are summing over 𝑟 = [𝑛, 𝑛 + 𝑖 − 1] we obtain

B|𝜑⟩ = 2
𝑛−1∑︁
𝑖=0

(
𝑛−1∑︁
𝑟=𝑖+1

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2(𝑟−𝑖)

)
|𝜎𝑟 (0), 𝜎−𝑟 (0)⟩

+
𝑖−1∑︁
𝑟=0

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2(𝑟−𝑖)

)
|𝜎𝑟 (0), 𝜎−𝑟 (0)⟩

)
= 2

𝑛−1∑︁
𝑖=0

(
𝑛−1∑︁
𝑟=0

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2(𝑟−𝑖)

)
|𝜎𝑟 (0)𝜎−𝑟 (0)⟩ − 2

(
1 − 𝑧2𝑖+𝑛+1

)
|𝜎𝑖 (0)𝜎−𝑖 (0)⟩

)
= 2

𝑛−1∑︁
𝑖=0

(
𝑛−1∑︁
𝑟=0

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2(𝑟−𝑖)

)
|𝜎𝑟 (0)𝜎−𝑟 (0)⟩

)
− 4|𝜑⟩

= 2
𝑛−1∑︁
𝑟=0
|𝜎𝑟 (0)𝜎−𝑟 (0)⟩

(
𝑛−1∑︁
𝑖=0

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2(𝑟−𝑖)

))
− 4|𝜑⟩.

We also have

𝑛−1∑︁
𝑖=0

(
1 − 𝑧2𝑖+𝑛+1

) (
1 + 𝑧2(𝑟−𝑖)

)
=

𝑛−1∑︁
𝑖=0

1 − 𝑧2𝑟+𝑛+1 + 𝑧2(𝑟−𝑖) − 𝑧2𝑖+𝑛+1

=

𝑛−1∑︁
𝑖=0

1 − 𝑧2𝑟+𝑛+1 + 𝑧2(𝑟−𝑖) − 𝑧−(2𝑖+𝑛+1)

= (1 − 𝑧2𝑟+𝑛+1)
𝑛−1∑︁
𝑖=0

1 − 𝑧−(2𝑖+𝑛+1)

=

(
𝑛 + 1

sin( 𝜋2𝑛 )

)
(1 − 𝑧2𝑟+𝑛+1),

where in the second and last equality we used Propositions 2.4.3 and 2.4.4, respectively. Putting
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these together, we obtain

B|𝜑⟩ = 2
(
𝑛 + 1

sin( 𝜋2𝑛 )

) 𝑛−1∑︁
𝑟=0
(1 − 𝑧2𝑟+𝑛+1) |𝜎𝑟 (0)𝜎−𝑟 (0)⟩ − 4|𝜑⟩

=

(
2𝑛 − 4 + 2

sin( 𝜋2𝑛 )

)
|𝜑⟩.

□
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Figure 2.2: The figure on the left illustrates the fast convergence rate of the winning probabilities as they
approach the limit 1/2 + 1/𝜋. The figure on the right illustrates the ratio of the entanglement entropy to the
maximum entanglement entropy of the states for 𝑛 ≤ 40.

Next we calculate a(G𝑛,S𝑛), its limit as 𝑛 grows and the entanglement entropy of states |𝜓𝑛⟩.
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See Figure 2.2.

Theorem 2.4.9. a(G𝑛,S𝑛) = 1
2 +

1
2𝑛 sin( 𝜋2𝑛 )

.

Proof.

a(G𝑛,S𝑛) =
1

4𝑛
⟨𝜓 |B|𝜓⟩ + 1

𝑛

=
1

4𝑛
⟨𝜓 |

(
2𝑛 − 4 + 2

sin
(
𝜋
2𝑛

) ) |𝜓⟩ + 1
𝑛

=
1

4𝑛

(
2𝑛 − 4 + 2

sin
(
𝜋
2𝑛

) ) + 1
𝑛

=
1
2
+ 1

2𝑛 sin
(
𝜋
2𝑛

) .
□

Theorem 2.4.10. The following hold

1. lim𝑛→∞ a(G𝑛,S𝑛) = 1/2 + 1/𝜋.

2. a(G𝑛,S𝑛) is a strictly decreasing function.

3. The games G𝑛 exhibit quantum advantage, i.e., for 𝑛 > 1

a∗(G𝑛) > 1/2 + 1/𝜋 > 3/4 = a(G𝑛).

Proof. For the first statement, it suffices to see that

lim
𝑥→∞

1
2𝑥 sin

(
𝜋
2𝑥

) = lim
𝑥→∞

1
2𝑥

sin
(
𝜋
2𝑥

) = lim
𝑥→∞

−1
2𝑥2

− 𝜋 cos( 𝜋2𝑥 )
2𝑥2

=
1
𝜋
.

For the second statement, we show that the function 𝑓 (𝑥) = 2𝑥 sin(𝜋/2𝑥) is strictly increasing

for 𝑥 ≥ 1. We have 𝑓 ′(𝑥) = 2 sin(𝜋/2𝑥) − 𝜋 cos(𝜋/2𝑥)/𝑥. Then 𝑓 ′(𝑥) > 0 is equivalent to

tan(𝜋/2𝑥) ≥ 𝜋/2𝑥. This latter statement is true for all 𝑥 ≥ 1. The third statement follows from the

first two. □
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Theorem 2.4.11. States |𝜓𝑛⟩ have full Schmidt rank and the ratio of entanglement entropy to

maximum entangled entropy, i.e., 𝑆𝜓𝑛/log(𝑛) approaches 1 as 𝑛→∞.

Proof. Recall that

|𝜓𝑛⟩ =
1
𝛾𝑛

𝑛−1∑︁
𝑖=0

(
1 − 𝑧2𝑖+𝑛+1

)
|𝜎𝑖 (0), 𝜎−𝑖 (0)⟩ ∈ H𝐴 ⊗ H𝐵.

Let |𝑖𝐴⟩ = 1−𝑧2𝑖+𝑛+1

∥1−𝑧2𝑖+𝑛+1∥ |𝜎
𝑖 (0)⟩ and |𝑖𝐵⟩ = |𝜎−𝑖 (0)⟩. Clearly {𝑖𝐴}𝑖 and {𝑖𝐵}𝑖 are orthonormal bases

forH𝐴 andH𝐵, respectively. The Schmidt decomposition is now given by

|𝜓𝑛⟩ =
1
𝛾𝑛

𝑛−1∑︁
𝑖=0

1 − 𝑧2𝑖+𝑛+1 |𝑖𝐴𝑖𝐵⟩.
To calculate the limit of 𝑆𝜓𝑛/log(𝑛) first note that

𝑆𝜓𝑛

log(𝑛) = −
∑𝑛−1
𝑖=0

1 − 𝑧2𝑖+𝑛+12 log ∥1−𝑧
2𝑖+𝑛+1∥2

𝛾2
𝑛

𝛾2
𝑛 log(𝑛)

= −

∑𝑛−1
𝑖=0

1 − 𝑧2𝑖+𝑛+12
(
log

1 − 𝑧2𝑖+𝑛+12 − log 𝛾2
𝑛

)
𝛾2
𝑛 log(𝑛)

≥ −
log(4)∑𝑛−1

𝑖=0
1 − 𝑧2𝑖+𝑛+12

𝛾2
𝑛 log(𝑛)

+
log 𝛾2

𝑛

∑𝑛−1
𝑖=0

1 − 𝑧2𝑖+𝑛+12

𝛾2
𝑛 log(𝑛)

= − log(4)
log(𝑛) +

log 𝛾2
𝑛

log(𝑛)

where for the inequality we used the fact that
1 − 𝑧2𝑖+𝑛+1 ≤ 2, and for the last equality we used

the identity 𝛾2
𝑛 =

∑𝑛−1
𝑖=0

1 − 𝑧2𝑖+𝑛+12. So it holds that

− log(4)
log(𝑛) +

log 𝛾2
𝑛

log(𝑛) ≤
𝑆𝜓𝑛

log(𝑛) ≤ 1.

By simple calculus lim𝑛→∞
log 𝛾2

𝑛

log(𝑛) −
log(4)
log(𝑛) = 1. Therefore by squeeze theorem lim𝑛→∞

𝑆𝜓𝑛
log(𝑛) = 1.

□
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2.5 Group structure of S𝑛

Let 𝐻𝑛 = ⟨𝐴0, 𝐴1⟩ be the group generated by Alice’s observables in S𝑛. Note that since

(𝐴1𝐴
∗
0)

2 = 𝑧4
𝑛𝐼, we could equivalently define 𝐻𝑛 = ⟨𝐴0, 𝐴1, 𝑧

4
𝑛𝐼⟩. Also let

𝐺𝑛 =

〈
𝑃0, 𝑃1, 𝐽 | 𝑃𝑛0, 𝑃

𝑛
1, 𝐽

𝑛, [𝐽, 𝑃0], [𝐽, 𝑃1], 𝐽𝑖
(
𝑃𝑖0𝑃

−𝑖
1
)2 for 𝑖 = 1, 2, . . . , ⌊𝑛/2⌋

〉
.

In this section we show that 𝐻𝑛 � 𝐺𝑛. So it also holds that 𝐻𝑛 is a representation of 𝐺𝑛.

We conjecture that G𝑛 is a self-test for 𝐺𝑛, in the sense that every optimal strategy of G𝑛 is a

|𝜓⟩-representation of 𝐺𝑛. In Section 2.7, we prove this for 𝑛 = 3.

Remark 2.5.1. Note that the relations 𝐽𝑖
(
𝑃𝑖0𝑃

−𝑖
1

)2
holds in 𝐺𝑛 for all 𝑖.

The following lemma helps us develop a normal form for elements of 𝐺𝑛.

Lemma 2.5.2. For all 𝑖, 𝑗 , the elements 𝑃𝑖0𝑃
−𝑖
1 and 𝑃 𝑗0𝑃

− 𝑗
1 commute.

Proof.

(
𝑃𝑖0𝑃

−𝑖
1
) (
𝑃
𝑗

0𝑃
− 𝑗
1

)
= 𝐽−𝑖𝑃𝑖1𝑃

−𝑖
0 𝑃

𝑗

0𝑃
− 𝑗
1

= 𝐽−𝑖𝑃𝑖1𝑃
𝑗−𝑖
0 𝑃

− 𝑗
1

= 𝐽−𝑖𝑃𝑖1
(
𝑃
𝑗−𝑖
0 𝑃

−( 𝑗−𝑖)
1

)
𝑃−𝑖1

= 𝐽−𝑖−( 𝑗−𝑖)𝑃𝑖1𝑃
𝑗−𝑖
1 𝑃

−( 𝑗−𝑖)
0 𝑃−𝑖1

= 𝐽− 𝑗
(
𝑃
𝑗

1𝑃
− 𝑗
0

) (
𝑃𝑖0𝑃

−𝑖
1
)

= 𝐽− 𝑗
(
𝐽 𝑗𝑃

𝑗

0𝑃
− 𝑗
1

) (
𝑃𝑖0𝑃

−𝑖
1
)

=
(
𝑃
𝑗

0𝑃
− 𝑗
1

) (
𝑃𝑖0𝑃

−𝑖
1
)
.

□

Lemma 2.5.3. For every 𝑔 ∈ 𝐺𝑛 there exist 𝑖, 𝑗 ∈ [𝑛] and 𝑞𝑘 ∈ {0, 1} for 𝑘 = 1, 2, . . . , 𝑛 − 1 such

that

𝑔 = 𝐽𝑖𝑃
𝑗

0
(
𝑃0𝑃

−1
1

)𝑞1 (𝑃2
0𝑃
−2
1

)𝑞2 · · ·
(
𝑃𝑛−1

0 𝑃
−(𝑛−1)
1

)𝑞𝑛−1 .
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Proof. First note that 𝐽 is central, therefore we can write 𝑔 in 𝐺𝑛 as

𝑔 = 𝐽𝑖𝑃
𝑗1
0 𝑃

𝑗2
1 𝑃

𝑗3
0 · · · 𝑃

𝑗𝑘
1 ,

for some 𝑘 ∈ N, 𝑖 ∈ [𝑛], 𝑗𝑙 ∈ [𝑛] where 𝑙 = 1, 2, . . . , 𝑘 . Without loss of generality, let 𝑘 be even.

We perform the following sequence of manipulations

𝑔 = 𝐽𝑖𝑃
𝑗1
0 𝑃

𝑗2
1 𝑃

𝑗3
0 · · · 𝑃

𝑗𝑘−2
1 𝑃

𝑗𝑘−1
0 𝑃

𝑗𝑘
1

= 𝐽𝑖𝑃
𝑗1
0 𝑃

𝑗2
1 𝑃

𝑗3
0 · · · 𝑃

𝑗𝑘−2
1 𝑃

𝑗𝑘−1
0 𝑃

𝑗𝑘
0

(
𝑃
− 𝑗𝑘
0 𝑃

𝑗𝑘
1

)
= 𝐽𝑖𝑃

𝑗1
0 𝑃

𝑗2
1 𝑃

𝑗3
0 · · · 𝑃

𝑗𝑘−2
1 𝑃

𝑗𝑘−1+ 𝑗𝑘
1

(
𝑃
−( 𝑗𝑘−1+ 𝑗𝑘)
1 𝑃

𝑗𝑘−1+ 𝑗𝑘
0

) (
𝑃
− 𝑗𝑘
0 𝑃

𝑗𝑘
1

)
= 𝐽𝑖−( 𝑗𝑘−1+ 𝑗𝑘)𝑃 𝑗10 𝑃

𝑗2
1 𝑃

𝑗3
0 · · · 𝑃

𝑗𝑘−2+ 𝑗𝑘−1+ 𝑗𝑘
1

(
𝑃
−( 𝑗𝑘−1+ 𝑗𝑘)
0 𝑃

𝑗𝑘−1+ 𝑗𝑘
1

) (
𝑃
− 𝑗𝑘
0 𝑃

𝑗𝑘
1

)
= · · ·

= 𝐽𝑖−𝑠𝑃−𝑠1
0

(
𝑃
𝑠2
0 𝑃
−𝑠2
1

)
· · ·

(
𝑃
𝑠𝑘−1
0 𝑃

−𝑠𝑘−1
1

) (
𝑃
𝑠𝑘
0 𝑃
−𝑠𝑘
1

)
,

where 𝑠𝑙 = −
∑𝑘
𝑡=𝑙 𝑗𝑡 and 𝑠 = −∑(𝑘−2)/2

𝑡=1 𝑠2𝑡+1. Then we use the commutation relationship from

lemma 2.5.2 to group the terms with the same 𝑃0 and 𝑃1 exponents, and use the relation 𝐽𝑖 (𝑃𝑖0𝑃
−𝑖
1 )

2

to reduce each term to have an exponent of less than 1, introducing extra 𝐽 terms as needed. Finally

after reducing the exponents of 𝐽 and 𝑃0, knowing that they are all order 𝑛, we arrive at the desired

form. □

Corollary 2.5.4. |𝐺𝑛 | ≤ 𝑛22𝑛−1 for all 𝑛 ∈ N.

Proof. Follows from lemma 2.5.3. □

Lemma 2.5.5. |𝐻𝑛 | ≥ 𝑛22𝑛−1 for all 𝑛 ∈ N.

Proof. We lower bound the order of the group 𝐻𝑛 by exhibiting 𝑛22𝑛−1 distinct elements in the

group. We divide the proof into cases depending on the parity of 𝑛.

First note that 𝑧2𝐷𝑖 ∈ 𝐻𝑛 for all 𝑖 ∈ [𝑛] since

𝑧−4𝑖𝐴𝑖1𝐴
−𝑖
0 𝐴

𝑖+1
1 𝐴

−(𝑖+1)
0 = 𝑧−4𝑖𝑧2𝑖𝐷 [𝑖]𝑋

𝑖𝑋−𝑖𝑧2(𝑖+1)𝐷 [𝑖+1]𝑋
𝑖+1𝑋−(𝑖+1) = 𝑧2𝐷𝑖,
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where in the first equality we use Proposition 2.4.5. This allows us to generate 𝑧2𝐷𝑖0𝐷𝑖1 · · ·𝐷𝑖𝑘−1

if 𝑘 is odd via

𝑧−4(𝑘−1)/2(𝑧2𝐷𝑖0) (𝑧2𝐷𝑖1) · · · (𝑧2𝐷𝑖𝑘−1) = 𝑧2𝐷𝑖0𝐷𝑖1 · · ·𝐷𝑖𝑘−1 , (1)

and 𝐷𝑖0𝐷𝑖1 · · ·𝐷𝑖𝑘−1 if 𝑘 is even by

𝑧−4(𝑘/2) (𝑧2𝐷𝑖0) (𝑧2𝐷𝑖1) · · · (𝑧2𝐷𝑖𝑘−1) = 𝐷𝑖0𝐷𝑖1 · · ·𝐷𝑖𝑘−1 . (2)

Let 𝑛 be odd. From (2) we will be able to generate elements of the form 𝑧4𝑖𝐷
𝑞0
0 𝐷

𝑞1
1 · · ·𝐷

𝑞𝑛−1
𝑛−1 𝑋

𝑗

where there are an even number of nonzero 𝑞𝑘 for 𝑖, 𝑗 ∈ [𝑛]. It should be clear that the elements

with 𝑖 ≠ 𝑖′ ∈ {0, 1, . . . , (𝑛 − 1)/2} will be distinct. For 𝑖 > (𝑛 − 1)/2, we simply note that we can

factor out a 𝑧2𝑛 = −1 and so we get elements of the form 𝑧4𝑖′+2𝐷𝑞0
0 𝐷

𝑞1
1 · · ·𝐷

𝑞𝑛−1
𝑛−1 𝑋

𝑗 , where there

are an odd number of nonzero 𝑞𝑘 for 𝑖′ ∈ {0, 1, . . . , (𝑛 − 3)/2}, 𝑗 ∈ [𝑛]. Each of these will be

distinct from each other as, again, the powers of the 𝑛th root of unity will be distinct, and distinct

from the previous case by the parity of the sign matrices. Therefore we are able to lower-bound

|𝐶𝑛 | by 𝑛22𝑛−1.

If 𝑛 is even, we will still be able to generate elements of the form 𝑧4𝑖𝐷
𝑞0
0 𝐷

𝑞1
1 · · ·𝐷

𝑞𝑛−1
𝑛−1 𝑋

𝑗

where there are an even number of nonzero 𝑞𝑘 for 𝑖, 𝑗 ∈ [𝑛]. However, note that for 𝑖 >

(𝑛 − 2)/2, we begin to generate duplicates. So from (1) we can generate elements of the form

𝑧4𝑖+2𝐷𝑞0
0 𝐷

𝑞1
1 · · ·𝐷

𝑞𝑛−1
𝑛−1 𝑋

𝑗 for 𝑖, 𝑗 ∈ [𝑛] and an odd number of nonzero 𝑞𝑘 . These will be distinct

from the previous elements by the parity of the sign matrices but again will begin to generate du-

plicates after 𝑖 > (𝑛 − 2)/2. Therefore we have the lower-bound of 𝑛
2𝑛2𝑛−1 + 𝑛

2𝑛2𝑛−1 = 𝑛22𝑛−1

elements. □

Lemma 2.5.6. There exists a surjective homomorphism 𝑓 : 𝐺𝑛 → 𝐻𝑛.

Proof. Let us define 𝑓 : {𝐽, 𝑃0, 𝑃1} → 𝐻𝑛 by 𝑓 (𝐽) = 𝑧4𝐼, 𝑓 (𝑃0) = 𝐴0, 𝑓 (𝑃1) = 𝐴1. We show

that 𝑓 can be extended to a homomorphism from 𝐺𝑛 to 𝐻𝑛. Consider the formal extension �̃� of 𝑓

to the free group generated by {𝐽, 𝑃0, 𝑃1}. We know from the theory of group presentations that 𝑓

can be extended to a homomorphism if and only if �̃� (𝑟) = 𝐼 for all relation 𝑟 in the presentation of
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𝐺𝑛.

It is clear that �̃� respects the first five relations of𝐺𝑛. Now we check the last family of relations:

�̃� (𝐽𝑖 (𝑃𝑖0𝑃
−𝑖
1 )

2) = 𝑧4𝑖 (𝐴𝑖0𝐴
−𝑖
1 )

2

= 𝑧4𝑖 (𝑋 𝑖𝑧−2𝑖 (𝐷0𝑋)−𝑖)2

= (𝑋 𝑖𝑋−𝑖𝐷 [𝑖])2

= 𝐷2
[𝑖]

= 𝐼 .

The homomorphism 𝑓 is surjective because 𝐴0, 𝐴1 generate the group 𝐻𝑛. □

Theorem 2.5.7. 𝐻𝑛 � 𝐺𝑛 for all 𝑛 ∈ N.

Proof. Since 𝑓 is surjective, then 𝑛22𝑛−1 ≤ |𝐻𝑛 | ≤ |𝐺𝑛 | ≤ 𝑛22𝑛−1. Thus |𝐻𝑛 | = |𝐺𝑛 |, so the

homomorphism is also injective. □

Remark 2.5.8. What about the group generated by Bob’s operators in S𝑛? We can define

𝐺′𝑛 =
〈
𝑄0, 𝑄1, 𝐽 | 𝑄𝑛0, 𝑄

𝑛
1, 𝐽

𝑛, [𝐽, 𝑄0], [𝐽, 𝑄1], 𝐽𝑖
(
𝑄−𝑖0 𝑄

−𝑖
1
)2 for 𝑖 = 1, 2, . . . , ⌊𝑛/2⌋

〉
.

and with a similar argument as in Theorem 2.5.7 show that ⟨𝐵0, 𝐵1, 𝑧
4
𝑛𝐼⟩ � 𝐺′𝑛. It is now easily

verified that the mapping 𝑃0 ↦→ 𝑄−1
0 , 𝑃1 ↦→ 𝑄1, 𝐽 ↦→ 𝐽 is an isomorphism between 𝐺𝑛 and 𝐺′𝑛. So

Alice and Bob’s operator generate the same group, that is ⟨𝐴0, 𝐴1, 𝑧
4
𝑛𝐼⟩ = ⟨𝐵0, 𝐵1, 𝑧

4
𝑛𝐼⟩. The latter

fact could also be verified directly.

2.6 Sum of squares framework

In this paper, the sum of squares (SOS) proofs are used to demonstrate that certain non-

commutative polynomials are positive semidefinite. We use this approach to upper bound the

quantum value of non-local games and to establish rigidity. This approach has been used previ-
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ously in the literature, e.g., [81, 70]. We illustrate the basics of this framework by going over the

proof of optimality and rigidity of CHSH. At the end of this section, we extend this method to deal

with the complexities of G𝑛 and similar games.

By Proposition 2.3.1, the probability of winning G2 using a strategy consisting of a state |𝜓⟩

and observables 𝐴0, 𝐴1 for Alice and 𝐵0, 𝐵1 for Bob is given by the expression

1
2
+ 1

8
⟨𝜓 | (𝐴0𝐵0 + 𝐴0𝐵1 + 𝐴1𝐵0 − 𝐴1𝐵1) |𝜓⟩.

To prove a∗(G2) = 1
2 +

√
2

4 , we just need to show that

2
√

2𝐼 − (𝐴0𝐵0 + 𝐴0𝐵1 + 𝐴1𝐵0 − 𝐴1𝐵1) ⪰ 0,

for any observables 𝐴0, 𝐴1, 𝐵0, 𝐵1. This immediately follows from the following SOS decomposi-

tion

2
√

2𝐼 − (𝐴0𝐵0 + 𝐴0𝐵1 + 𝐴1𝐵0 − 𝐴1𝐵1) =
√

2
4
(𝐴0 + 𝐴1 −

√
2𝐵0)2 +

√
2

4
(𝐴0 − 𝐴1 −

√
2𝐵1)2.

(2.6.1)

Next we use this SOS and the Gowers-Hatami theorem to establish that CHSH is a self-test for the

strategyS2 given in Example 2.4.1. We learned in Section 2.5 that 𝐴0 = 𝐵0 = 𝜎𝑥 and 𝐴1 = 𝐵1 = 𝜎𝑦

generate

𝐺2 =
〈
𝑃0, 𝑃1, 𝐽 | 𝑃2

0, 𝑃
2
1, 𝐽

2, [𝐽, 𝑃0], [𝐽, 𝑃1], 𝐽 (𝑃0𝑃1)2
〉
,

which is in fact the dihedral group 𝐷4 (also known as the Weyl-Heisenberg group).

The strategy S2 gives a representation of 𝐷4 as seen by the homomorphism 𝐽 ↦→ −𝐼, 𝑃0 ↦→ 𝐴0,

and 𝑃1 ↦→ 𝐴1. Our first step in proving rigidity is to show that a weaker statement holds for any

optimal strategy ({𝐴0, 𝐴1}, {𝐵0, 𝐵1}, |𝜓⟩) where |𝜓⟩ ∈ H𝐴 ⊗H𝐵 andH𝐴 = C𝑑𝐴,H𝐵 = C𝑑𝐵 . More
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precisely, we show that any optimal strategy gives rise to a |𝜓⟩-representation. By optimality

⟨𝜓 | (2
√

2𝐼 − (𝐴0𝐵0 + 𝐴0𝐵1 + 𝐴1𝐵0 − 𝐴1𝐵1)) |𝜓⟩ = 0.

Then by (2.6.1)

𝐵0 |𝜓⟩ =
1
√

2
(𝐴0 + 𝐴1) |𝜓⟩,

𝐵1 |𝜓⟩ =
1
√

2
(𝐴0 − 𝐴1) |𝜓⟩.

These then let us derive the state-dependent anti-commutation relation

(𝐵0𝐵1 + 𝐵1𝐵0) |𝜓⟩ =
1
√

2
(𝐵0(𝐴0 − 𝐴1) + 𝐵1(𝐴0 + 𝐴1)) |𝜓⟩

=
1
√

2
((𝐴0 − 𝐴1)𝐵0 + (𝐴0 + 𝐴1)𝐵1) |𝜓⟩

=
1
2
((𝐴0 − 𝐴1) (𝐴0 + 𝐴1) + (𝐴0 + 𝐴1) (𝐴0 − 𝐴1)) |𝜓⟩

= 0,

where in the second equality we used the fact that Alice and Bob’s operators commute. Similarly

we have that

(𝐴0𝐴1 + 𝐴1𝐴0) |𝜓⟩ = 0.

Define the functions 𝑓𝐴 : 𝐷4 → U𝑑𝐴 (C), 𝑓𝐵 : 𝐷4 → U𝑑𝐵 by

𝑓𝐴 (𝐽𝑖𝑃 𝑗0𝑃
𝑘
1 ) = (−1)𝑖𝐴 𝑗0𝐴

𝑘
1 ,

𝑓𝐵 (𝐽𝑖𝑃 𝑗0𝑃
𝑘
1 ) = (−1)𝑖𝐵 𝑗0𝐵

𝑘
1 ,

for all 𝑖, 𝑗 , 𝑘 ∈ [2]. This is well-defined because every element of 𝐷4 can be written uniquely as
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𝐽𝑖𝑃
𝑗

0𝑃
𝑘
1 (See Section 2.5). Next we show that 𝑓𝐴 is a |𝜓⟩-representation, and a similar argument

holds for 𝑓𝐵. We show that for all 𝑖1, 𝑗1, 𝑘1, 𝑖2, 𝑗2, 𝑘2 ∈ [2]

𝑓𝐴 (𝐽𝑖1𝑃 𝑗10 𝑃
𝑘1
1 ) 𝑓𝐴 (𝐽

𝑖2𝑃
𝑗2
0 𝑃

𝑘2
1 ) |𝜓⟩ = 𝑓𝐴 ((𝐽𝑖1𝑃 𝑗10 𝑃

𝑘1
1 ) (𝐽

𝑖2𝑃
𝑗2
0 𝑃

𝑘2
1 )) |𝜓⟩

= 𝑓𝐴 (𝐽𝑖1+𝑖2+𝑘1 𝑗2𝑃
𝑗1+ 𝑗2
0 𝑃

𝑘1+𝑘2
1 ) |𝜓⟩.

We prove this as follows

𝑓𝐴 (𝐽𝑖1𝑃 𝑗10 𝑃
𝑘1
1 ) 𝑓𝐴 (𝐽

𝑖2𝑃
𝑗2
0 𝑃

𝑘2
1 ) |𝜓⟩ = ((−1)𝑖1𝐴 𝑗10 𝐴

𝑘1
1 ) ((−1)𝑖2𝐴 𝑗20 𝐴

𝑘2
1 ) |𝜓⟩

= (−1)𝑖1+𝑖2+𝑘2 𝑗2𝐴
𝑗1
0 𝐴

𝑘1+𝑘2
1 𝐴

𝑗2
0 |𝜓⟩

= (−1)𝑖1+𝑖2+𝑘1 𝑗2𝐴
𝑗1+ 𝑗2
0 𝐴

𝑘1+𝑘2
1 |𝜓⟩

= 𝑓𝐴 (𝐽𝑖1+𝑖2+𝑘1 𝑗2𝑃
𝑗1+ 𝑗2
0 𝑃

𝑘1+𝑘2
1 ) |𝜓⟩,

where in lines 2 and 3, we make essential use of the fact that the exponents are modulo 2.

The representation theory of 𝐷4 is simple. There are four irreducible representations of dimen-

sion one: These are given by 𝑃0 ↦→ (−1)𝑖, 𝑃1 ↦→ (−1) 𝑗 , 𝐽 ↦→ 1 for 𝑖, 𝑗 ∈ [2]. The only irreducible

representation of dimension larger than one is given by

𝜌(𝑃0) = 𝜎𝑥 , 𝜌(𝑃1) = 𝜎𝑦, 𝜌(𝐽) = −𝐼 .

Among these, 𝜌 is the only irreducible representation that gives rise to an optimal strategy for

CHSH. In addition |𝜓2⟩ is the unique state that maximizes a(CHSH,S𝜌,𝜌,|𝜓⟩). This follows since

|𝜓2⟩ is the unique eigenvector associated with the largest eigenvalue of B2(𝜎𝑥 , 𝜎𝑦, 𝜎𝑥 , 𝜎𝑦). The

rigidity of CHSH follows from Corollary 2.2.5.

Now we propose a general framework for proving rigidity of G𝑛 and similar games. This

framework extends the methods demonstrated in the CHSH example to deal with more complex

games. For concreteness, we focus on G𝑛. We use Corollary 2.2.5 to prove rigidity. This requires

us to ascertain two facts about the game G:
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1. Every optimal strategy induces |𝜓⟩-representations of some groups 𝐺𝐴 and 𝐺𝐵.

2. There is a unique pair of irreducible representations 𝜌, 𝜎 of 𝐺𝐴, 𝐺𝐵, respectively, such that

a(G, 𝜌, 𝜎) = a∗(G).

The first step is to obtain algebraic relations (i.e., groups 𝐺𝐴 and 𝐺𝐵) between the observables of

optimal strategies. Suppose we found some SOS decomposition

_𝑛𝐼 − B𝑛 (𝑎0, 𝑎1, 𝑏0, 𝑏1) =
∑︁
𝑘

𝑇𝑘 (𝑎0, 𝑎1, 𝑏0, 𝑏1)∗𝑇𝑘 (𝑎0, 𝑎1, 𝑏0, 𝑏1),

where B𝑛 is the bias polynomial for G𝑛 and _𝑛 = 4𝑛a∗(G𝑛) − 4. This equality is over

C∗⟨𝑎0, 𝑎1, 𝑏0, 𝑏1⟩/⟨𝑎𝑛𝑖 − 1, 𝑏𝑛𝑗 − 1, 𝑎𝑖𝑏 𝑗 − 𝑎 𝑗𝑏𝑖 : ∀𝑖, 𝑗 ∈ {0, 1}⟩

where C∗⟨𝑎0, 𝑎1, 𝑏0, 𝑏1⟩ is the ring of noncommutative polynomials equipped with adjoint, and

⟨𝑎𝑛
𝑖
− 1, 𝑏𝑛

𝑗
− 1, 𝑎𝑖𝑏 𝑗 − 𝑎 𝑗𝑏𝑖 : ∀𝑖, 𝑗 ∈ {0, 1}⟩ is the ideal that forces Alice and Bob’s operators to

form a valid strategy.

For any optimal strategy ({𝐴0, 𝐴1}, {𝐵0, 𝐵1}, |𝜓⟩), it holds that

(
_𝑛𝐼 − B𝑛 (𝐴0, 𝐴1, 𝐵0, 𝐵1)

)
|𝜓⟩ = 0.

So it must also hold that 𝑇𝑘 (𝐴0, 𝐴1, 𝐵0, 𝐵1) |𝜓⟩ = 0. Let (𝑀 𝑗 (𝐴0, 𝐴1) − 𝐼) |𝜓⟩ = 0 be all the

relations derived from 𝑇𝑘 such that 𝑀𝑖 are monomials only in Alice’s operators. Similarly let

(𝑁 𝑗 (𝐴0, 𝐴1) − 𝐼) |𝜓⟩ = 0 be all the monomial relations involving only Bob’s operators. We call

𝑀𝑖, 𝑁 𝑗 the group relations. Define groups

𝐺𝐴 = ⟨𝑃0, 𝑃1 : 𝑀𝑖 (𝑃0, 𝑃1)⟩, 𝐺𝐵 = ⟨𝑄0, 𝑄1 : 𝑁 𝑗 (𝑄0, 𝑄1)⟩.

In the case of G𝑛, we in fact have 𝐺𝐴 = 𝐺𝐵 = 𝐺𝑛.1 Next, prove that, for all optimal strategies,
1In Section 2.5, we gave a presentation for 𝐺𝑛 using three generators, but in fact one could obtain a presentation

using only two generators.
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the functions 𝑓𝐴, 𝑓𝐵 defined by 𝑓𝐴 (𝑃𝑖) = 𝐴𝑖 and 𝑓𝐵 (𝑄 𝑗 ) = 𝐵 𝑗 (as in the preliminaries) are |𝜓⟩-

representations of 𝐺𝐴, 𝐺𝐵, respectively.

To prove the second assumption, one approach is the brute force enumeration of irreducible

representation pairs. A more practical approach, when dealing with families of games, is to

demonstrate uniqueness of the pair of optimal irreducible representations using ring relations. Let

𝑅𝑖 (𝐴0, 𝐴1) |𝜓⟩ = 0 be all the relations derived from 𝑇𝑘 . We call 𝑅𝑖 (𝐴0, 𝐴1) |𝜓⟩ = 0 ring relations.

They are allowed to be arbitrary polynomials (as opposed to monomials in the case of group rela-

tions). Similarly let 𝑆 𝑗 (𝐵0, 𝐵1) |𝜓⟩ = 0 be all the relations derived from 𝑇𝑘 involving only Bob’s

operators. Then show that there is a unique irreducible representation 𝜌 of 𝐺𝐴 (resp. 𝜎 of 𝐺𝐵) sat-

isfying the ring relations, i.e., 𝑅𝑖 (𝜌(𝑃0), 𝜌(𝑃1)) = 0 (resp. 𝑆𝑖 (𝜎(𝑄0), 𝜎(𝑄1)) = 0). Note that here

we require the stronger constraint 𝑅𝑖 (𝜌(𝑃0), 𝜌(𝑃1)) = 0 as opposed to 𝑅𝑖 (𝜌(𝑃0), 𝜌(𝑃1)) |𝜓⟩ = 0.2

In some special cases, e.g., games G𝑛, there is one ring relation that rules them all. For G𝑛 there

is a unique irreducible representation of𝐺𝑛 satisfying the ring relation (𝐻𝑛+(𝑛−2)𝐼) |𝜓⟩ = 0 where

𝐻𝑛 = 𝐻𝑛 (𝐴0, 𝐴1) = 𝜔
𝑛−1∑︁
𝑖=0

𝐴𝑖0𝐴1𝐴
(𝑛−𝑖−1)
0 . (2.6.2)

For example in the case of 𝐺5, there are 25 degree one irreducible representations given by

𝑃0 ↦→ 𝜔𝑖5, 𝑃1 ↦→ 𝜔
𝑗

5, 𝐽 ↦→ 𝜔2( 𝑗−𝑖) for all 𝑖, 𝑗 ∈ [5]. There are also 15 irreducible representations

of degree five: For each 𝑖 ∈ [5], there are three irreducible representations sending 𝐽 → 𝜔𝑖5𝐼5.

Among these 40 irreducible representations only one satisfies the ring relation (𝐻5 + 3𝐼) |𝜓⟩ = 0.

This unique irreducible representation is one of the three irreducible representations mapping 𝐽 ↦→

𝜔5𝐼5.3

In section 2.8, we show that in the special case of pseudo-telepathic games, this framework

reduces to the solution group formalism of Cleve, Liu, and Slofstra [6]. The group derived from

2The intuition behind this step is the one-to-one correspondence between the group representations of 𝐺𝐴 and the
ring representations of the group ring C[𝐺𝐴]. The optimal pair of irreducible representations are in fact irreducible
representations of rings C[𝐺𝐴]/⟨𝑅𝑖 (𝑃0, 𝑃1)⟩ and C[𝐺𝐵]/⟨𝑆 𝑗 (𝑄0, 𝑄1)⟩.

3Interestingly, cousin games of G5, defined using systems of equation 𝑥0𝑥1 = 1, 𝑥0, 𝑥1 = 𝜔𝑖 for 𝑖 ∈ [5], generate
the same group 𝐺5. For every 𝑖, the unique optimal irreducible representation strategy is one of the three irreducible
representations mapping 𝐽 ↦→ 𝜔𝑖5𝐼5.
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the SOS is the solution group, and the analogue of the ring relation that hones in on the optimal

irreducible representation 𝜌 is the requirement that 𝜌(𝐽) ≠ 𝐼.

In the next section, we use the SOS framework to give a full proof of the rigidity of G3. While

omitted, the cases of G4,G5 follow similarly. The SOS decompositions ofB4,B5 are comparatively

long and tedious.

2.7 Optimality and rigidity for G3

In this section, we show that S3 is optimal, and therefore a∗(G3) = 5/6. We also show that G3

is a self-test for the strategy S3. We obtain these results by obtaining algebraic relations between

operators in any optimal strategy using an SOS decomposition for B3.

2.7.1 Optimality of S3

For every operator 𝐴𝑖, 𝐵 𝑗 for which 𝐴3
𝑖
= 𝐵3

𝑗
= 𝐼 and [𝐴𝑖, 𝐵 𝑗 ] = 0, we have the following SOS

decomposition:

6𝐼 − 𝐴0𝐵
∗
0 − 𝐴

∗
0𝐵0 − 𝐴0𝐵1 − 𝐴∗0𝐵

∗
1 − 𝐴1𝐵

∗
0 − 𝐴

∗
1𝐵0 − 𝜔∗𝐴1𝐵1 − 𝜔𝐴∗1𝐵

∗
1

= _1(𝑆∗1𝑆1 + 𝑆∗2𝑆2) + _2(𝑇∗1𝑇1 + 𝑇∗2𝑇2) + _3(𝑇∗3𝑇3 + 𝑇∗4𝑇4) + _4(𝑇∗5𝑇5 + 𝑇∗6𝑇6), (2.7.1)
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where

𝑆1 = 𝐴0 + 𝜔𝐴1 + 𝜔∗𝐵0 + 𝜔𝐵∗1,

𝑆2 = 𝐴∗0 + 𝜔
∗𝐴∗1 + 𝜔𝐵

∗
0 + 𝜔

∗𝐵1,

𝑇1 = 𝐴0𝐵
∗
0 + 𝑎𝑖𝐴

∗
0𝐵0 − 𝑎𝐴0𝐵1 + 𝑖𝐴∗0𝐵

∗
1 + 𝑎𝐴1𝐵

∗
0 − 𝑖𝐴

∗
1𝐵0 − 𝜔∗𝐴1𝐵1 − 𝑎𝑖𝜔𝐴∗1𝐵

∗
1,

𝑇2 = 𝐴0𝐵
∗
0 + 𝑎𝑖𝐴

∗
0𝐵0 + 𝑎𝐴0𝐵1 − 𝑖𝐴∗0𝐵

∗
1 − 𝑎𝐴1𝐵

∗
0 + 𝑖𝐴

∗
1𝐵0 − 𝜔∗𝐴1𝐵1 − 𝑎𝑖𝜔𝐴∗1𝐵

∗
1,

𝑇3 = 𝐴0𝐵
∗
0 − 𝑎𝑖𝐴

∗
0𝐵0 − 𝑎𝐴0𝐵1 − 𝑖𝐴∗0𝐵

∗
1 + 𝑎𝐴1𝐵

∗
0 + 𝑖𝐴

∗
1𝐵0 − 𝜔∗𝐴1𝐵1 + 𝑎𝑖𝜔𝐴∗1𝐵

∗
1,

𝑇4 = 𝐴0𝐵
∗
0 − 𝑎𝑖𝐴

∗
0𝐵0 + 𝑎𝐴0𝐵1 + 𝑖𝐴∗0𝐵

∗
1 − 𝑎𝐴1𝐵

∗
0 − 𝑖𝐴

∗
1𝐵0 − 𝜔∗𝐴1𝐵1 + 𝑎𝑖𝜔𝐴∗1𝐵

∗
1,

𝑇5 = 𝐴0𝐵
∗
0 + 𝑏𝐴

∗
0𝐵0 − 𝑏𝐴0𝐵1 − 𝐴∗0𝐵

∗
1 − 𝑏𝐴1𝐵

∗
0 − 𝐴

∗
1𝐵0 + 𝜔∗𝐴1𝐵1 + 𝑏𝜔𝐴∗1𝐵

∗
1,

𝑇6 = 6𝐼 − 𝐴0𝐵
∗
0 − 𝐴

∗
0𝐵0 − 𝐴0𝐵1 − 𝐴∗0𝐵

∗
1 − 𝐴1𝐵

∗
0 − 𝐴

∗
1𝐵0 − 𝜔∗𝐴1𝐵1 − 𝜔𝐴∗1𝐵

∗
1,

and

_1 =
5

86
, _2 =

14 +
√

21
4 · 86

, _3 =
14 −

√
21

4 · 86
, _4 =

7
86
,

𝑎 =
2𝜔 + 3𝜔∗
√

7
, 𝑏 =

3𝜔 + 8𝜔∗

7
, 𝜔 = 𝜔3.

This SOS decomposition tells us that B3 ⪯ 6𝐼 in positive semidefinite order. So from Theorem

2.3.1, it holds that a∗(G3) ≤ 5/6. Combined with Theorem 2.4.9, we have a∗(G3) = 5/6.

This SOS is obtained from the dual semidefinite program associated with the second level of

the NPA hierarchy. Surprisingly, the first level of NPA is not enough to obtain this upper bound, as

was the case with CHSH.

2.7.2 Algebraic relations

As in Section 2.6, we derive group and ring relations for optimal strategies of G3 from the

SOS (2.7.1). For the rest of this section, let (𝐴0, 𝐴1, 𝐵0, 𝐵1, |𝜓⟩) be an optimal strategy. Then

⟨𝜓 | (6𝐼 − B3) |𝜓⟩ = 0. So it also holds that 𝑆𝑖 |𝜓⟩ = 0 and 𝑇𝑗 |𝜓⟩ = 0 for all 𝑖 ∈ [2] and 𝑗 ∈ [6].
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Therefore

(𝑇1 + 𝑇2 + 𝑇3 + 𝑇4) |𝜓⟩ = 0, (𝑇1 + 𝑇2 − 𝑇3 − 𝑇4) |𝜓⟩ = 0,

(𝑇1 − 𝑇2 + 𝑇3 − 𝑇4) |𝜓⟩ = 0, (𝑇1 − 𝑇2 − 𝑇3 + 𝑇4) |𝜓⟩ = 0.

From which by simplification we obtain the four relations

𝐴0𝐵
∗
0 |𝜓⟩ = 𝜔

∗𝐴1𝐵1 |𝜓⟩, 𝐴∗0𝐵0 |𝜓⟩ = 𝜔𝐴∗1𝐵
∗
1 |𝜓⟩,

𝐴0𝐵1 |𝜓⟩ = 𝐴1𝐵
∗
0 |𝜓⟩, 𝐴∗0𝐵

∗
1 |𝜓⟩ = 𝐴

∗
1𝐵0 |𝜓⟩. (2.7.2)

Now from these four relations and the fact that 𝐴𝑖, 𝐵 𝑗 are generalized observables satisfying

[𝐴𝑖, 𝐵 𝑗 ] = 0, we obtain

𝜔∗𝐴∗0𝐴1 |𝜓⟩ = 𝐵∗1𝐵
∗
0 |𝜓⟩ (2.7.3)

𝜔𝐴0𝐴
∗
1 |𝜓⟩ = 𝐵1𝐵0 |𝜓⟩ (2.7.4)

𝐴∗0𝐴1 |𝜓⟩ = 𝐵0𝐵1 |𝜓⟩ (2.7.5)

𝐴0𝐴
∗
1 |𝜓⟩ = 𝐵

∗
0𝐵
∗
1 |𝜓⟩ (2.7.6)

𝐴∗1𝐴0 |𝜓⟩ = 𝜔∗𝐵0𝐵1 |𝜓⟩ (2.7.7)

𝐴1𝐴
∗
0 |𝜓⟩ = 𝜔𝐵

∗
0𝐵
∗
1 |𝜓⟩ (2.7.8)

𝐴∗1𝐴0 |𝜓⟩ = 𝐵∗1𝐵
∗
0 |𝜓⟩ (2.7.9)

𝐴1𝐴
∗
0 |𝜓⟩ = 𝐵1𝐵0 |𝜓⟩. (2.7.10)

From the pair of relations (2.7.3) and (2.7.9) as well as the pair of relations (2.7.4) and (2.7.10),

we obtain the following relations between Alice’s observables acting on the state |𝜓⟩:

𝐴∗0𝐴1 |𝜓⟩ = 𝜔𝐴∗1𝐴0 |𝜓⟩, (2.7.11)

𝐴1𝐴
∗
0 |𝜓⟩ = 𝜔𝐴0𝐴

∗
1 |𝜓⟩. (2.7.12)
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Next we prove two propositions regarding 𝐻 = 𝐻3 = 𝜔𝐴0𝐴1𝐴0 + 𝜔𝐴∗0𝐴1 + 𝜔𝐴1𝐴
∗
0 defined in

(2.6.2).

Proposition 2.7.1. (𝐻 + 𝐻∗) |𝜓⟩ = −2|𝜓⟩

Proof. We start by writing

(𝜔𝐵∗0 + 𝜔
∗𝐵1 + 𝐵0𝐵

∗
1 + 𝐵

∗
1𝐵0) |𝜓⟩ = (𝜔∗𝐵0 + 𝜔𝐵∗1) (𝜔

∗𝐵0 + 𝜔𝐵∗1) |𝜓⟩

= −(𝜔∗𝐵0 + 𝜔𝐵∗1) (𝐴0 + 𝜔𝐴1) |𝜓⟩

= −(𝐴0 + 𝜔𝐴1) (𝜔∗𝐵0 + 𝜔𝐵∗1) |𝜓⟩

= (𝐴0 + 𝜔𝐴1) (𝐴0 + 𝜔𝐴1) |𝜓⟩

= (𝐴∗0 + 𝜔
∗𝐴∗1 + 𝜔𝐴0𝐴1 + 𝜔𝐴1𝐴0) |𝜓⟩,

where for the second and fourth equality, we used the relation 𝑆1 |𝜓⟩ = 0, and for the third equality

we used the fact that Alice and Bob’s operators commute. Now using 𝑆2 |𝜓⟩ = 0, we obtain

(𝐵0𝐵
∗
1 + 𝐵

∗
1𝐵0) |𝜓⟩ = (2𝐴∗0 + 2𝜔∗𝐴∗1 + 𝜔𝐴0𝐴1 + 𝜔𝐴1𝐴0) |𝜓⟩. (2.7.13)

Similarly we have

(𝐵1𝐵
∗
0 + 𝐵

∗
0𝐵1) |𝜓⟩ = (2𝐴0 + 2𝜔𝐴1 + 𝜔∗𝐴∗0𝐴

∗
1 + 𝜔

∗𝐴∗1𝐴
∗
0) |𝜓⟩. (2.7.14)

We proceed by simplifying 𝑇6 |𝜓⟩ = 0 using relations (2.7.2) to obtain

(3𝐼 − 𝐴0𝐵
∗
0 − 𝐴

∗
0𝐵0 − 𝐴0𝐵1 − 𝐴∗0𝐵

∗
1) |𝜓⟩ = 0.
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Let 𝑃 = 𝐴0𝐵
∗
0 + 𝐴

∗
0𝐵0 + 𝐴0𝐵1 + 𝐴∗0𝐵

∗
1, and write

0 =
(
3𝐼 − 𝐴0𝐵

∗
0 − 𝐴

∗
0𝐵0 − 𝐴0𝐵1 − 𝐴∗0𝐵

∗
1
)∗ (3𝐼 − 𝐴0𝐵

∗
0 − 𝐴

∗
0𝐵0 − 𝐴0𝐵1 − 𝐴∗0𝐵

∗
1
)
|𝜓⟩

=
(
13𝐼 − 5𝑃 + 𝐴∗0(𝐵1𝐵

∗
0 + 𝐵

∗
0𝐵1) + 𝐴0(𝐵0𝐵

∗
1 + 𝐵

∗
1𝐵0) + 𝐵∗0𝐵

∗
1 + 𝐵0𝐵1 + 𝐵1𝐵0 + 𝐵∗1𝐵

∗
0
)
|𝜓⟩

= (−2𝐼 + 𝐴∗0(𝐵1𝐵
∗
0 + 𝐵

∗
0𝐵1) + 𝐴0(𝐵0𝐵

∗
1 + 𝐵

∗
1𝐵0) + 𝐵∗0𝐵

∗
1 + 𝐵0𝐵1 + 𝐵1𝐵0 + 𝐵∗1𝐵

∗
0) |𝜓⟩, (2.7.15)

where in the last line, we used (3𝐼 − 𝑃) |𝜓⟩ = 0. Using identities (2.7.13) and (2.7.14)

(
𝐴∗0(𝐵1𝐵

∗
0 + 𝐵

∗
0𝐵1) + 𝐴0(𝐵0𝐵

∗
1 + 𝐵

∗
1𝐵0)

)
|𝜓⟩

=
(
4𝐼 + 𝜔𝐴0𝐴1𝐴0 + 𝜔∗𝐴∗0𝐴

∗
1𝐴
∗
0 + 2𝜔𝐴∗0𝐴1 + 𝜔∗𝐴0𝐴

∗
1 + 2𝜔∗𝐴0𝐴

∗
1 + 𝜔𝐴

∗
0𝐴1

)
|𝜓⟩.

Transferring Bob’s operators to Alice using identities (2.7.3-2.7.6)

(
𝐵∗0𝐵

∗
1 + 𝐵0𝐵1 + 𝐵1𝐵0 + 𝐵∗1𝐵

∗
0
)
|𝜓⟩ =

(
𝐴0𝐴

∗
1 + 𝐴

∗
0𝐴1 + 𝜔𝐴0𝐴

∗
1 + 𝜔

∗𝐴∗0𝐴1
)
|𝜓⟩.

Plugging these back in (2.7.15)

0 = (2𝐼 + 𝜔𝐴0𝐴1𝐴0 + 𝜔∗𝐴∗0𝐴
∗
1𝐴
∗
0 + (3𝜔 + 𝜔

∗ + 1)𝐴∗0𝐴1 + (3𝜔∗ + 𝜔 + 1)𝐴0𝐴
∗
1) |𝜓⟩

= (2𝐼 + 𝜔𝐴0𝐴1𝐴0 + 𝜔∗𝐴∗0𝐴
∗
1𝐴
∗
0 + 2𝜔𝐴∗0𝐴1 + 2𝜔∗𝐴0𝐴

∗
1) |𝜓⟩

= (2𝐼 + 𝜔𝐴0𝐴1𝐴0 + 𝜔∗𝐴∗0𝐴
∗
1𝐴
∗
0 + 𝜔𝐴

∗
0𝐴1 + 𝜔∗𝐴∗1𝐴0 + 𝜔∗𝐴0𝐴

∗
1 + 𝜔𝐴1𝐴

∗
0) |𝜓⟩.

= (2𝐼 + 𝐻 + 𝐻∗) |𝜓⟩,

where in the first line we used 1 + 𝜔 + 𝜔∗ = 0, and in the second line we used identities (2.7.11)

and (2.7.12). □

Proposition 2.7.2. (𝐻 + 𝐼) |𝜓⟩ = (𝐻∗ + 𝐼) |𝜓⟩ = 0.
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Proof. First note

⟨𝜓 |𝐻∗𝐻 |𝜓⟩ = ⟨𝜓 | (3𝐼 + 𝐴∗0𝐴
∗
1𝐴0𝐴1 + 𝐴∗1𝐴

∗
0𝐴1𝐴0 + 𝐴∗1𝐴0𝐴1𝐴

∗
0 + 𝐴0𝐴

∗
1𝐴
∗
0𝐴1

+ 𝐴∗0𝐴
∗
1𝐴
∗
0𝐴1𝐴

∗
0 + 𝐴0𝐴

∗
1𝐴0𝐴1𝐴0) |𝜓⟩. (2.7.16)

Using (2.7.11) and (2.7.12), we have

⟨𝜓 |𝐴0𝐴
∗
1𝐴
∗
0𝐴1 |𝜓⟩ = 𝜔⟨𝜓 |𝐴0𝐴

∗
1𝐴
∗
1𝐴0 |𝜓⟩ = 𝜔⟨𝜓 |𝐴0𝐴1𝐴0 |𝜓⟩,

⟨𝜓 |𝐴∗0𝐴
∗
1𝐴
∗
0𝐴1𝐴

∗
0 |𝜓⟩ = 𝜔⟨𝜓 |𝐴

∗
0𝐴
∗
1𝐴
∗
0𝐴0𝐴

∗
1 |𝜓⟩ = 𝜔⟨𝜓 |𝐴

∗
0𝐴1 |𝜓⟩,

and using (2.7.5) and (2.7.7)

⟨𝜓 |𝐴∗0𝐴
∗
1𝐴0𝐴1 |𝜓⟩ = ⟨𝜓 |𝐴∗0𝐴1𝐴1𝐴

∗
0𝐴
∗
0𝐴1 |𝜓⟩ = 𝜔⟨𝜓 |𝐵∗1𝐵

∗
0𝐴1𝐴

∗
0𝐵0𝐵1 |𝜓⟩ = 𝜔⟨𝜓 |𝐴1𝐴

∗
0 |𝜓⟩,

and taking conjugate transpose of these three we obtain

⟨𝜓 |𝐴∗1𝐴0𝐴1𝐴
∗
0 |𝜓⟩ = 𝜔

∗⟨𝜓 |𝐴∗0𝐴
∗
1𝐴
∗
0 |𝜓⟩,

⟨𝜓 |𝐴0𝐴
∗
1𝐴0𝐴1𝐴0 |𝜓⟩ = 𝜔∗⟨𝜓 |𝐴∗1𝐴0 |𝜓⟩,

⟨𝜓 |𝐴∗1𝐴
∗
0𝐴1𝐴0 |𝜓⟩ = 𝜔∗⟨𝜓 |𝐴0𝐴

∗
1 |𝜓⟩.

Plugging these back in (2.7.16), we obtain

∥𝐻 |𝜓⟩∥2 = ⟨𝜓 |𝐻∗𝐻 |𝜓⟩

= ⟨𝜓 | (3𝐼 + 𝜔𝐴0𝐴1𝐴0 + 𝜔𝐴∗0𝐴1 + 𝜔𝐴1𝐴
∗
0 + 𝜔

∗𝐴∗0𝐴
∗
1𝐴
∗
0 + 𝜔

∗𝐴∗1𝐴0 + 𝜔∗𝐴0𝐴
∗
1) |𝜓⟩

= ⟨𝜓 | (3𝐼 + 𝐻 + 𝐻∗) |𝜓⟩

= ⟨𝜓 |𝐼 |𝜓⟩

= 1,
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where in fourth equality we used Proposition 2.7.1. Similarly ∥𝐻∗ |𝜓⟩∥ = 1. From (𝐻 + 𝐻∗) |𝜓⟩ =

−2|𝜓⟩ and the fact that 𝐻 |𝜓⟩ and 𝐻∗ |𝜓⟩ are unit vectors, we get that 𝐻 |𝜓⟩ = 𝐻∗ |𝜓⟩ = −|𝜓⟩. □

Proposition 2.7.3. 𝐴0𝐴1𝐴0 |𝜓⟩ = 𝜔𝐴∗0𝐴
∗
1𝐴
∗
0 |𝜓⟩.

Proof. By Proposition 2.7.2, 𝐻 |𝜓⟩ = 𝐻∗ |𝜓⟩, and by identities (2.7.11), (2.7.12), (𝜔𝐴∗0𝐴1 +

𝜔𝐴1𝐴
∗
0) |𝜓⟩ = (𝜔

∗𝐴∗1𝐴0+𝜔∗𝐴0𝐴
∗
1) |𝜓⟩. Putting these together, we obtain 𝐴0𝐴1𝐴0 |𝜓⟩ = 𝜔𝐴∗0𝐴

∗
1𝐴
∗
0 |𝜓⟩.

□

Proposition 2.7.4. 𝐴0𝐴
∗
1𝐴
∗
0𝐴1 |𝜓⟩ = 𝐴∗0𝐴1𝐴0𝐴

∗
1 |𝜓⟩ in other words 𝐴0𝐴

∗
1 and 𝐴∗0𝐴1 commute on

|𝜓⟩

Proof. To see this write

𝐴0𝐴
∗
1𝐴
∗
0𝐴1 |𝜓⟩ = 𝜔𝐴0𝐴

∗
1𝐴
∗
1𝐴0 |𝜓⟩

= 𝜔𝐴0𝐴1𝐴0 |𝜓⟩

= 𝜔∗𝐴∗0𝐴
∗
1𝐴
∗
0 |𝜓⟩

= 𝜔∗𝐴∗0𝐴1𝐴1𝐴
∗
0 |𝜓⟩

= 𝐴∗0𝐴1𝐴0𝐴
∗
1 |𝜓⟩,

where in the first line we used 2.7.11, in the third line we used 2.7.3, and in the fifth line we used

2.7.12.

□

2.7.3 Rigidity of G3

Suppose ({𝐴0, 𝐴1}, {𝐵0, 𝐵1}, |𝜓⟩) is an optimal strategy for G3. By Theorem 2.5.7, we know

that the optimal operators of Alice defined in section 2.4.1 generate the group

𝐺3 =
〈
𝐽, 𝑃0, 𝑃1 : 𝐽3, 𝑃3

0, 𝑃
3
1, [𝐽, 𝑃0], [𝐽, 𝑃1], 𝐽 (𝑃0𝑃

−1
1 )

2〉 ,
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The same group is generated by Bob’s operators as in Remark 2.5.8. We apply Corollary 2.2.5

with 𝐺𝐴 = 𝐺𝐵 = 𝐺3. In order to do this, we first prove the following lemma stating that every

optimal strategy is a |𝜓⟩-representation of 𝐺.

Lemma 2.7.5. Let ({𝐴0, 𝐴1}, {𝐵0, 𝐵1}, |𝜓⟩) be an optimal strategy for G3. Define maps 𝑓𝐴, 𝑓𝐵 :

𝐺3 → U𝑑 (C) by

𝑓𝐴 (𝐽) = 𝜔3𝐼, 𝑓𝐴 (𝑃0) = 𝐴0, 𝑓𝐴 (𝑃0𝑃
−1
1 ) = 𝐴0𝐴

∗
1, 𝑓𝐴 (𝑃

−1
0 𝑃1) = 𝐴∗0𝐴1

𝑓𝐵 (𝐽) = 𝜔3𝐼, 𝑓𝐵 (𝑃0) = 𝐵∗0, 𝑓𝐵 (𝑃0𝑃
−1
1 ) = 𝐵

∗
0𝐵
∗
1, 𝑓𝐵 (𝑃

−1
0 𝑃1) = 𝐵0𝐵1

and extend it to all of𝐺3 using the normal form from Lemma 2.5.3. Then 𝑓𝐴, 𝑓𝐵 are |𝜓⟩-representations

of 𝐺3.

Proof. These maps are well defined since every element of 𝐺3 can be written uniquly as

𝐽𝑖𝑃
𝑗

0
(
𝑃0𝑃

−1
1

)𝑞1 (𝑃−1
0 𝑃1

)𝑞2

for 𝑖, 𝑗 ∈ [3], 𝑞1, 𝑞2 ∈ [2]. All we need is that 𝑓𝐴 (𝑔) 𝑓𝐴 (𝑔′) |𝜓⟩ = 𝑓𝐴 (𝑔𝑔′) |𝜓⟩ for all 𝑔, 𝑔′ ∈ 𝐺3.

The proof is reminiscent of the proof that 𝑔𝑔′ can be written in normal form for every 𝑔, 𝑔′ ∈ 𝐺3.

Except that we need to be more careful here, since we are dealing with Alice’s operators 𝐴0, 𝐴1,

and not the abstract group elements 𝑃0, 𝑃1. Therefore we can only use the state-dependent relations

derived in the previous section. We must show that

𝑓𝐴 (𝐽𝑖𝑃 𝑗0 (𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2) 𝑓𝐴 (𝐽𝑖

′
𝑃
𝑗 ′

0 (𝑃0𝑃
−1
1 )

𝑞′1 (𝑃−1
0 𝑃1)𝑞

′
2) |𝜓⟩

= 𝑓𝐴 (𝐽𝑖𝑃 𝑗0 (𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2𝐽𝑖

′
𝑃
𝑗 ′

0 (𝑃0𝑃
−1
1 )

𝑞′1 (𝑃−1
0 𝑃1)𝑞

′
2) |𝜓⟩ (2.7.17)

for all 𝑖, 𝑗 , 𝑖′, 𝑗 ′ ∈ [3] and 𝑞1, 𝑞2, 𝑞
′
1, 𝑞
′
2 ∈ [2].

Claim 2. Without loss of generality, we can assume 𝑖 = 𝑗 = 𝑖′ = 𝑞′1 = 𝑞′2 = 0.

Proof. Fix 𝑖, 𝑗 , 𝑞1, 𝑞2, 𝑖
′, 𝑗 ′, 𝑞′1, 𝑞

′
2. We first show that without loss of generality we can assume
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𝑞′1 = 𝑞′2 = 0. By Lemma 2.5.3, there exist 𝑖′′, 𝑗 ′′ ∈ [3], 𝑞′′1 , 𝑞
′′
2 ∈ [2] such that

(
𝐽𝑖𝑃

𝑗

0 (𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2

) (
𝐽𝑖
′
𝑃
𝑗 ′

0
)
= 𝐽𝑖

′′
𝑃
𝑗 ′′

0 (𝑃0𝑃
−1
1 )

𝑞′′1 (𝑃−1
0 𝑃1)𝑞

′′
2 .

So it also holds that

(
𝐽𝑖𝑃

𝑗

0 (𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2

) (
𝐽𝑖
′
𝑃
𝑗 ′

0 (𝑃0𝑃
−1
1 )

𝑞′1 (𝑃−1
0 𝑃1)𝑞

′
2
)
= 𝐽𝑖

′′
𝑃
𝑗 ′′

0 (𝑃0𝑃
−1
1 )

𝑞′′1 +𝑞
′
1 (𝑃−1

0 𝑃1)𝑞
′′
2 +𝑞

′
2

since by Lemma 2.5.2, 𝑃0𝑃
−1
1 and 𝑃−1

0 𝑃1 commute. So the right-hand-side of (2.7.17) can be

written

𝑓𝐴 (𝐽𝑖𝑃 𝑗0 (𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2𝐽𝑖

′
𝑃
𝑗 ′

0 (𝑃0𝑃
−1
1 )

𝑞′1 (𝑃−1
0 𝑃1)𝑞

′
2) |𝜓⟩

= 𝑓𝐴 (𝐽𝑖
′′
𝑃
𝑗 ′′

0 (𝑃0𝑃
−1
1 )

𝑞′′1 +𝑞
′
1 (𝑃−1

0 𝑃1)𝑞
′′
2 +𝑞

′
2) |𝜓⟩

= 𝜔𝑖
′′
𝐴
𝑗 ′′

0 (𝐴0𝐴
−1
1 )

𝑞′′1 +𝑞
′
1 (𝐴−1

0 𝐴1)𝑞
′′
2 +𝑞

′
2 |𝜓⟩

= (𝐵0𝐵1)𝑞
′
2 (𝐵∗0𝐵

∗
1)
𝑞′1𝜔𝑖

′′
𝐴
𝑗 ′′

0 (𝐴0𝐴
−1
1 )

𝑞′′1 (𝐴−1
0 𝐴1)𝑞

′′
2 |𝜓⟩

= (𝐵0𝐵1)𝑞
′
2 (𝐵∗0𝐵

∗
1)
𝑞′1 𝑓𝐴 (𝐽𝑖

′′
𝑃
𝑗 ′′

0 (𝑃0𝑃
−1
1 )

𝑞′′1 (𝑃−1
0 𝑃1)𝑞

′′
2 ) |𝜓⟩

= (𝐵0𝐵1)𝑞
′
2 (𝐵∗0𝐵

∗
1)
𝑞′1 𝑓𝐴 ((𝐽𝑖𝑃 𝑗0 (𝑃0𝑃

−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2) (𝐽𝑖′𝑃 𝑗

′

0 )) |𝜓⟩,

where in the fourth equality, we used (2.7.5) and (2.7.6) and the fact that Alice and Bob’s operators

commute.

Also since Alice and Bob’s operators commute

𝑓𝐴 (𝐽𝑖
′
𝑃
𝑗 ′

0 (𝑃0𝑃
−1
1 )

𝑞′1 (𝑃−1
0 𝑃1)𝑞

′
2) |𝜓⟩ = 𝜔𝑖′𝐴 𝑗

′

0 (𝐴0𝐴
∗
1)
𝑞′1 (𝐴∗0𝐴1)𝑞

′
2 |𝜓⟩

= (𝐵0𝐵1)𝑞
′
2𝜔𝑖

′
𝐴
𝑗 ′

0 (𝐴0𝐴
∗
1)
𝑞′1 |𝜓⟩

= (𝐵0𝐵1)𝑞
′
2 (𝐵∗0𝐵

∗
1)
𝑞′1𝜔𝑖

′
𝐴
𝑗 ′

0 |𝜓⟩

= (𝐵0𝐵1)𝑞
′
2 (𝐵∗0𝐵

∗
1)
𝑞′1 𝑓𝐴 (𝐽𝑖

′
𝑃
𝑗 ′

0 ) |𝜓⟩.
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Therefore the left-hand-side of (2.7.17) can be written as

𝑓𝐴 (𝐽𝑖𝑃 𝑗0 (𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2) 𝑓𝐴 (𝐽𝑖

′
𝑃
𝑗 ′

0 (𝑃0𝑃
−1
1 )

𝑞′1 (𝑃−1
0 𝑃1)𝑞

′
2) |𝜓⟩

= (𝐵0𝐵1)𝑞
′
2 (𝐵∗0𝐵

∗
1)
𝑞′1 𝑓𝐴 (𝐽𝑖𝑃 𝑗0 (𝑃0𝑃

−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2) 𝑓𝐴 (𝐽𝑖

′
𝑃
𝑗 ′

0 ) |𝜓⟩

Since 𝐵0, 𝐵1 are unitaries, (2.7.17) is equivalent to the following identity

𝑓𝐴 (𝐽𝑖𝑃 𝑗0 (𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2) 𝑓𝐴 (𝐽𝑖

′
𝑃
𝑗 ′

0 ) |𝜓⟩ = 𝑓𝐴 ((𝐽𝑖𝑃 𝑗0 (𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2) (𝐽𝑖′𝑃 𝑗

′

0 )) |𝜓⟩,

in other words we can assume without loss of generality 𝑞′1 = 𝑞′2 = 0. The case of 𝑖 = 𝑗 = 0 is

handled similarly. Also since 𝐽 and 𝑓 (𝐽) are both central, we can assume 𝑖′ = 0. □

By this claim, we just need to verify

𝑓𝐴 ((𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2) 𝑓𝐴 (𝑃 𝑗

′

0 ) |𝜓⟩ = 𝑓𝐴 ((𝑃0𝑃
−1
1 )

𝑞1 (𝑃−1
0 𝑃1)𝑞2𝑃

𝑗 ′

0 ) |𝜓⟩ (2.7.18)

There are 12 cases to consider: 𝑞1, 𝑞2 ∈ [2], 𝑗 ′ ∈ [3]. The case of 𝑗 ′ = 0 is trivial, and the case of

𝑗 ′ = 2 is handled similar to the case of 𝑗 ′ = 1. So we only consider the case of 𝑗 ′ = 1. The case of

𝑞1 = 𝑞2 = 0 is trivial. We analyse the remaining three cases one-by-one:

• 𝑞1 = 0, 𝑞2 = 1: First note that

(𝑃−1
0 𝑃1)𝑃0 = 𝑃0𝑃0𝑃

−1
1 𝑃−1

1 𝑃0 = 𝐽2𝑃0(𝑃0𝑃
−1
1 ) (𝑃

−1
0 𝑃1),
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which allows us to write

𝑓𝐴 ((𝑃−1
0 𝑃1)) 𝑓𝐴 (𝑃0) |𝜓⟩ = 𝐴∗0𝐴1𝐴0 |𝜓⟩

= 𝐴∗0𝐴
∗
1𝐴
∗
1𝐴0 |𝜓⟩

= 𝜔∗𝐴∗0𝐴
∗
1𝐴
∗
0𝐴1 |𝜓⟩

= 𝜔∗𝐴0(𝐴0𝐴
∗
1) (𝐴

∗
0𝐴1) |𝜓⟩

= 𝑓𝐴 (𝐽2𝑃0(𝑃0𝑃
−1
1 ) (𝑃

−1
0 𝑃1)) |𝜓⟩

= 𝑓𝐴 ((𝑃−1
0 𝑃1)𝑃0) |𝜓⟩,

where in the third line we used (2.7.11).

• 𝑞1 = 1, 𝑞2 = 0:

(𝑃0𝑃
−1
1 )𝑃0 = 𝐽2𝑃0(𝑃−1

0 𝑃1)

which allows us to write

𝑓𝐴 (𝑃0𝑃
−1
1 ) 𝑓𝐴 (𝑃0) |𝜓⟩ = (𝐴0𝐴

∗
1)𝐴0 |𝜓⟩

= 𝐴0(𝐴∗1𝐴0) |𝜓⟩

= 𝜔∗𝐴0(𝐴∗0𝐴1) |𝜓⟩

= 𝑓𝐴 (𝐽2𝑃0(𝑃−1
0 𝑃1)) |𝜓⟩

= 𝑓𝐴 ((𝑃0𝑃
−1
1 )𝑃0) |𝜓⟩,

where in the third line we used (2.7.11).

• 𝑞1 = 𝑞2 = 1:

(𝑃0𝑃
−1
1 ) (𝑃

−1
0 𝑃1)𝑃0 = 𝐽 (𝑃0𝑃

−1
1 ) (𝑃

−1
1 𝑃0)𝑃0 = 𝐽𝑃0(𝑃1𝑃

−1
0 ) = 𝐽

2𝑃0(𝑃0𝑃
−1
1 ).
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Now write

𝑓𝐴 ((𝑃0𝑃
−1
1 ) (𝑃

−1
0 𝑃1)) 𝑓𝐴 (𝑃0) |𝜓⟩ = 𝐴0𝐴

∗
1𝐴
∗
0𝐴1𝐴0 |𝜓⟩

= 𝐴0𝐴
∗
1𝐴0𝐴0𝐴1𝐴0 |𝜓⟩

= 𝜔𝐴0𝐴
∗
1𝐴0𝐴

∗
0𝐴
∗
1𝐴
∗
0 |𝜓⟩

= 𝜔𝐴0(𝐴1𝐴
∗
0) |𝜓⟩

= 𝜔∗𝐴0(𝐴0𝐴
∗
1) |𝜓⟩

= 𝑓𝐴 (𝐽2𝑃0(𝑃0𝑃
−1
1 )) |𝜓⟩

= 𝑓𝐴 ((𝑃0𝑃
−1
1 ) (𝑃

−1
0 𝑃1)𝑃0) |𝜓⟩,

where in the third line we used Proposition 2.7.3 and in the second last line we used (2.7.12).

The proof that 𝑓𝐵 is a |𝜓⟩-representation follows similarly. □

Theorem 2.7.6. G3 is rigid.

Proof. The representation theory of 𝐺3 is simple. There are nine irreducible representation of

dimension one: These are given by 𝑃0 ↦→ 𝜔𝑖, 𝑃1 ↦→ 𝜔 𝑗 , 𝐽 ↦→ 𝜔2( 𝑗−𝑖) for 𝑖, 𝑗 ∈ [3]. It also has

three irreducible representations 𝑔1, 𝑔2, 𝑔3 of dimension three defined by

𝑔1(𝑃0) =
©«
0 0 1

1 0 0

0 1 0

ª®®®®®¬
, 𝑔1(𝑃1) =

©«
0 0 𝜔∗

−𝜔∗ 0 0

0 −𝜔∗ 0

ª®®®®®¬
, 𝑔1(𝐽) =

©«
𝜔 0 0

0 𝜔 0

0 0 𝜔

ª®®®®®¬
,

𝑔2(𝑃0) =
©«
0 0 1

1 0 0

0 1 0

ª®®®®®¬
, 𝑔2(𝑃1) =

©«
0 0 −1

−1 0 0

0 1 0

ª®®®®®¬
, 𝑔2(𝐽) =

©«
1 0 0

0 1 0

0 0 1

ª®®®®®¬
,

𝑔3(𝑃0) =
©«
0 1 0

0 0 1

1 0 0

ª®®®®®¬
, 𝑔3(𝑃1) =

©«
0 𝜔 0

0 0 −𝜔

−𝜔 0 0

ª®®®®®¬
, 𝑔3(𝐽) =

©«
𝜔∗ 0 0

0 𝜔∗ 0

0 0 𝜔∗

ª®®®®®¬
.
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Among these 𝑔1, is the only representation that gives rise to an optimal strategy. This follows

from a simple enumeration of these 12 irreducible representations. However we could also im-

mediately see this, since 𝑔1 is the only irreducible representation that satisfies the ring relation

𝐻3 + 𝐼 = 0.

Define a unitarily equivalent irreducible representation 𝑔′1 = 𝑈𝑔1𝑈
∗ where 𝑈 =

©«
0 1 0

1 0 0

0 0 1

ª®®®®®¬
.

Now 𝐴0 = 𝑔1(𝑃0), 𝐴1 = 𝑔1(𝑃1), 𝐵0 = 𝑔′1(𝑃0)∗, 𝐵1 B 𝑔′1(𝑃1) is the same strategy defined in

example 2.4.2.

In addition

|𝜓3⟩ =
1
√

10

(
(1 − 𝑧4) |00⟩ + 2|12⟩ + (1 + 𝑧2) |21⟩

)
is the unique state that maximizes a(G3,S𝑔1,𝑔

′
1,|𝜓⟩). This follows since |𝜓3⟩ is the unique eigenvec-

tor associated with the largest eigenvalue of B3(𝐴0, 𝐴1, 𝐵0, 𝐵1). The rigidity of G3 follows from

Corollary 2.2.5.

□

Remark 2.7.7. The game G3 is in fact a robust self-test. We omit the proof, but at a high-level, if a

strategy ({𝐴0, 𝐴1}, {𝐵0, 𝐵1}, |𝜓⟩) is Y-optimal for G3, then

⟨𝜓 | (6𝐼 − B3) |𝜓⟩ ≤ 𝑂 (Y).

Consequently, ∥𝑆𝑖 |𝜓⟩∥ ≤ 𝑂 (
√
Y), ∥𝑇𝑗 |𝜓⟩∥ ≤ 𝑂 (

√
Y) for all 𝑖 ∈ [2], 𝑗 ∈ [6]. From which one

obtains a robust version of every relation in this section.

2.8 SOS approach to solution group

In this section we show that the connection between an LCS game over Z2 and its solution

group shown in [6] can be determined using sum of squares techniques.

We will suppress the tensor product notation and simply represent a strategy for an LCS game
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G𝐴,𝑏 by a state |𝜓⟩ ∈ H and a collection of commuting measurement systems {𝐸𝑖,𝑥} and {𝐹𝑗 ,𝑦}.

Using the notation outlined in section 2.2.3 we define the following sets of observables

• Alice’s Observables: 𝐴(𝑖)
𝑗

=
∑
𝑥:𝑥 𝑗=1 𝐸𝑖,𝑥 −

∑
𝑥:𝑥 𝑗=−1 𝐸𝑖,𝑥 , for each 𝑖 ∈ [𝑟] and 𝑗 ∈ 𝑉𝑖

• Bob’s Observables: 𝐵 𝑗 = 𝐹𝑗 ,1 − 𝐹𝑗 ,−1 for each 𝑗 ∈ [𝑠].

Note 𝐴(𝑖)
𝑗

commutes with 𝐴(𝑖)
𝑗 ′ for all 𝑖 ∈ [𝑟] and 𝑗 , 𝑗 ′ ∈ 𝑉𝑖 and 𝐵 𝑗 commutes with 𝐴(𝑖)

𝑗
for all 𝑖, 𝑗 .

These observables will satisfy the following identities:

∑︁
𝑥:𝑥∈𝑆𝑖

𝐸𝑖,𝑥 =
1
2

(
𝐼 + (−1)𝑏𝑖

∏
𝑘∈𝑉𝑖

𝐴
(𝑖)
𝑘

)
(2.8.1)∑︁

𝑥:𝑦=𝑥 𝑗

𝐸𝑖,𝑥 =
1
2

(
𝐼 + 𝑦𝐴(𝑖)

𝑗

)
(2.8.2)

The probability of Alice and Bob winning the game is given by evaluating ⟨𝜓 |𝑣 |𝜓⟩ where

𝑣 =
∑︁
𝑖∈[𝑟]
𝑗∈𝑉𝑖

1
𝑟 |𝑉𝑖 |

©«
∑︁
𝑥,𝑦:
𝑥∈𝑆𝑖
𝑦=𝑥 𝑗

𝐸𝑖,𝑥𝐹𝑗 ,𝑦

ª®®®®®¬
=

∑︁
𝑖, 𝑗

1
2𝑟 |𝑉𝑖 |

©«
1 −

∑︁
𝑥,𝑦:
𝑥∈𝑆𝑖
𝑦=𝑥 𝑗

𝐸𝑖,𝑥𝐹𝑗 ,𝑦

ª®®®®®¬

2

.

Observe using identities 2.8.1 and 2.8.2 we have
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©«
1 −

∑︁
𝑥,𝑦:
𝑥∈𝑆𝑖
𝑦=𝑥 𝑗

𝐸𝑖,𝑥𝐹𝑗 ,𝑦

ª®®®®®¬
= 𝐼 −

∑︁
𝑦

𝐹𝑗 ,𝑦

∑︁
𝑥:
𝑥∈𝑆𝑖
𝑦=𝑥 𝑗

𝐸𝑖,𝑥

= 𝐼 − 1
4

∑︁
𝑦

𝐹𝑗 ,𝑦

(
(𝐼 + 𝑦𝐴(𝑖)

𝑗
) (𝐼 + (−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
)
)

= 𝐼 − 1
4

∑︁
𝑦

𝐹𝑗 ,𝑦

(
𝐼 + 𝑦𝐴(𝑖)

𝑗
+ (−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
+ 𝑦(−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
𝐴
(𝑖)
𝑗

)
= 𝐼 − 1

4
𝐹𝑗 ,1

(
𝐼 + 𝐴(𝑖)

𝑗
+ (−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
+ (−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
𝐴
(𝑖)
𝑗

)
− 1

4
𝐹𝑗 ,−1

(
𝐼 − 𝐴(𝑖)

𝑗
+ (−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
+ −(−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
𝐴
(𝑖)
𝑗

)
= 𝐼 − 1

4
𝐼 − 1

4
𝐵 𝑗 𝐴

(𝑖)
𝑗
− 1

4
(−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
− 1

4
𝐵 𝑗 (−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
𝐴
(𝑖)
𝑗

=
1
8

(
(𝐼 − 𝐵 𝑗 𝐴(𝑖)𝑗 )

2 + (𝐼 − (−1)𝑏𝑖
∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
)2 + (𝐼 − (−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
𝐴
(𝑖)
𝑗
𝐵 𝑗 )2

)
.

Thus Alice and Bob are using a perfect strategy if and only if

0 = (𝐼 − 𝐵 𝑗 𝐴(𝑖)𝑗 ) |𝜓⟩ = (𝐼 − (−1)𝑏𝑖
∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
) |𝜓⟩ = (𝐼 − (−1)𝑏𝑖

∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
𝐴
(𝑖)
𝑗
𝐵 𝑗 ) |𝜓⟩.

The above equalities will hold exactly when the following two identities hold for all 𝑖 and 𝑗 ∈ 𝑉𝑖,

𝐵 𝑗 |𝜓⟩ = 𝐴(𝑖)𝑗 |𝜓⟩ (2.8.3)

|𝜓⟩ = (−1)𝑏𝑖
∏
𝑘∈𝑣𝑖

𝐴
(𝑖)
𝑘
|𝜓⟩ (2.8.4)

Using identities 2.8.3 and 2.8.4 it is possible to define a |𝜓⟩-representation for the solution group

𝐺𝐴,𝑏.
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2.9 A non-rigid pseudo-telepathic LCS game

The canonical example of a pseudo-telepathic LCS games is the Mermin-Peres magic square

game [68] defined in the following figure.

𝑒1 — 𝑒2 — 𝑒3

| | | |

𝑒4 — 𝑒5 — 𝑒6

| | | |

𝑒7 — 𝑒8 — 𝑒9

Figure 2.3: This describes the Mermin-Peres magic square game. Each single-line indicates that the vari-
ables along the line multiply to 1, and the double-line indicates that the variables along the line multiply to
−1.

It is well-known that the Mermin-Peres magic square game has the following operator solution

for which the corresponding quantum strategy is rigid [91].

𝐴1 = 𝐼 ⊗ 𝜎𝑍 , 𝐴2 = 𝜎𝑍 ⊗ 𝐼, 𝐴3 = 𝜎𝑍 ⊗ 𝜎𝑍

𝐴4 = 𝜎𝑋 ⊗ 𝐼, 𝐴5 = 𝐼 ⊗ 𝜎𝑋 , 𝐴6 = 𝜎𝑋 ⊗ 𝜎𝑋

𝐴7 = 𝜎𝑋 ⊗ 𝜎𝑍 , 𝐴8 = 𝜎𝑍 ⊗ 𝜎𝑋 , 𝐴9 = 𝜎𝑌 ⊗ 𝜎𝑌 ,

In this section, we provide an example of a non-local game whose perfect solutions must obey

particular group relations but is not a self-test. This game, glued magic square, is described in

Figure 2.4.
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𝑒1 — 𝑒2 — 𝑒3

| | | |

𝑒4 — 𝑒5 — 𝑒6

| | | |

𝑒7 — 𝑒8 — 𝑒9

| |

𝑒10 — 𝑒11 — 𝑒12

| | | |

𝑒13 — 𝑒14 — 𝑒15

| | | |

𝑒16 — 𝑒17 — 𝑒18

Figure 2.4: This describes a LCS game with 18 variables 𝑒1, 𝑒2, . . . , 𝑒18. Each single-line indicates that the
variables along the line multiply to 1, and the double-line indicates that the variables along the line multiply
to −1.

In order to show that this game is not a self-test, we first define two operator solutions, that

give rise to perfect strategies. Let E = {𝐸1, 𝐸2, . . . , 𝐸18} be defined as

𝐸𝑖 =



©«
𝐼4 0

0 𝐴𝑖

ª®®®¬ for 𝑖 = 1, 2, . . . , 9

©«
𝐴𝑖−9 0

0 𝐼4

ª®®®¬ for 𝑖 = 10, 11, . . . , 18

and F = {𝐹1, 𝐹2, . . . , 𝐹18} as

𝐹𝑖 =


𝐴𝑖 for 𝑖 = 1, 2 . . . , 9

𝐼4 for 𝑖 = 10, 11 . . . , 18
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These two operators solutions E and F give rise to two quantum strategies with the entangled

states |𝜓1⟩ = 1√
8

∑7
𝑖=0 |𝑖⟩|𝑖⟩ and |𝜓2⟩ = 1

2
∑3
𝑖=0 |𝑖⟩|𝑖⟩.

Theorem 2.9.1. The glued magic square game is not a self-test for any quantum strategy.

Proof. Suppose, for the sake of contradiction, there is a quantum strategy
(
{𝐴𝑖}𝑖, {𝐵 𝑗 } 𝑗 |𝜓⟩

)
that

is rigid. Then there exist local isometries𝑈𝐴,𝑈𝐵 and 𝑉𝐴, 𝑉𝐵 such that

(𝑈𝐴𝐸1 ⊗ 𝑈𝐵) |𝜓1⟩ = ((𝐴1 ⊗ 𝐼) |𝜓⟩) |junk1⟩ (2.9.1)

(𝑈𝐴𝐸5 ⊗ 𝑈𝐵) |𝜓1⟩ = ((𝐴5 ⊗ 𝐼) |𝜓⟩) |junk1⟩ (2.9.2)

(𝑉𝐴𝐹1 ⊗ 𝑉𝐵) |𝜓2⟩ = ((𝐴1 ⊗ 𝐼) |𝜓⟩) |junk2⟩ (2.9.3)

(𝑉𝐴𝐹5 ⊗ 𝑉𝐵) |𝜓2⟩ = ((𝐴5 ⊗ 𝐼) |𝜓⟩) |junk2⟩. (2.9.4)

From relation (2.9.2), we obtain

⟨𝜓1 | (𝐸5𝑈
∗
𝐴 ⊗ 𝑈

∗
𝐵) = ⟨junk1 | (⟨𝜓 | (𝐴∗5 ⊗ 𝐼)),

and hence together with relation (2.9.1), we obtain the following relation between 𝐸5𝐸1 and 𝐴∗5𝐴1

⟨𝜓1 | (𝐸5𝐸1 ⊗ 𝐼) |𝜓1⟩ = ⟨𝜓 | (𝐴∗5𝐴1 ⊗ 𝐼) |𝜓⟩.

Similarly, we also obtain

⟨𝜓2 | (𝐹5𝐹1 ⊗ 𝐼) |𝜓2⟩ = ⟨𝜓 | (𝐴∗5𝐴1 ⊗ 𝐼) |𝜓⟩,

and hence

⟨𝜓1 | (𝐸5𝐸1 ⊗ 𝐼) |𝜓1⟩ = ⟨𝜓2 | (𝐹5𝐹1 ⊗ 𝐼) |𝜓2⟩.
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By first applying the adjoint to relation (2.9.1) and (2.9.3), we obtain

⟨𝜓1 | (𝐸1𝐸5 ⊗ 𝐼) |𝜓1⟩ = ⟨𝜓2 | (𝐹1𝐹5 ⊗ 𝐼) |𝜓2⟩.

Now, since 𝐹1 and 𝐹5 anti-commute, we get the following relation between 𝐸5𝐸1 and 𝐸1𝐸5

⟨𝜓1 | (𝐸5𝐸1 ⊗ 𝐼) |𝜓1⟩ = −⟨𝜓1 | (𝐸1𝐸5 ⊗ 𝐼) |𝜓1⟩.

However, a direct computation of ⟨𝜓1 | (𝐸5𝐸1 ⊗ 𝐼) |𝜓1⟩ shows that

⟨𝜓1 | (𝐸5𝐸1 ⊗ 𝐼) |𝜓1⟩ =
1
8

7∑︁
𝑖=0
⟨𝑖 |𝐸5𝐸1 |𝑖⟩ =

1
8

TR(𝐸5𝐸1) =
1
8

TR(𝐸1𝐸5) = ⟨𝜓1 | (𝐸1𝐸5 ⊗ 𝐼) |𝜓1⟩,

and TR(𝐸1𝐸5) = TR(𝐼4) + TR(𝐼 ⊗ 𝜎𝑍𝜎𝑋) = 4 ≠ 0. Hence, the glued magic square game is not

rigid. □

Although this game is not a self-test, we know from Section 2.8 Alice’s operators must provide

a |𝜓⟩-representation for the solution group of glued magic square, and thus must satisfy particular

group relations.
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Chapter 3: Noncommutativity and constraint satisfaction problems

A general recipe for designing approximation algorithms for CSPs is to relax variables in the

CSP so that they can take vector values rather than scalars. Then solve the vector problem which is

often efficiently solvable. Finally round back the vector solution to a good solution of the original

CSP. We introduce noncommutative CSPs in this chapter. When trying to come up with a frame-

work for designing approximation algorithms for noncommutative CSPs, such as the one above,

we immediately face a few choices. First, one has to make a decision about the underlying al-

gebraic structure of the solutions. There could be multiple choices of algebras here. This choice

will then determine the best overall strategy for a rounding scheme (which also involves multiple

choices). This is very different from the world of classical CSPs where we already know the best

approximation algorithm (assuming unique games conjecture). We explore our proposed frame-

work in the first section. We then design deterministic and randomized approximation algorithms

for a famous class of noncommutative CSPs.

In the second section, we shift the focus back to commutative CSPs and ask whether we could

extract a good commutative solution from a given noncommutative solution. We propose a general

rounding scheme that takes any noncommutative solution and produces a commutative solution.

We introduce noncommutative Goemans-Williamson constants that describe how good this ex-

tracted commutative solution is. We state a conjecture regarding these constants, that if resolved,

establishes that for a number of CSPs, one can always extract a good classical solution from any

given noncommutative solution. The quality of this solution will be better than then the ones ob-

tained by the best approximation algorithms in the literature. However, at this stage, we make no

claims that the operator rounding technique can be executed efficiently. In particular, this does not

refute the unique games conjecture.
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3.1 Approximation algorithms for noncommutative CSPs

3.1.1 Noncommutative CSPs

Our goal in this section is to study a noncommutative variant of classical constraint satisfaction

problems where we allow variables to take values in the ring of operators rather than the original

commutative ring the classical CSP was defined over. This noncommutative analogue is of interest

in quantum information as becomes clear shortly, but for now let us justify study of noncommuta-

tive CSPs quickly by recalling the example of the Magic-Square game that we saw in the earlier

sections of this thesis. Magic-Square is a constraint satisfaction problem with nine variables tak-

ing values in the set {±1} and six equations as constraints. We saw that over this commutative

domain these set of equations were inconsistent (we could not satisfy them all at the same time).

However these set of equations are perfectly satisfiable when we considered instead of classical

domain {±1} the set of unitaries with eigenvalues that are {±1}. We saw that Magic-Square has

important applications in the field of quantum information and this change of domain was not a

mere mathematical curiosity.

In the classical theory of combinatorial optimization, we are often interested in constraint sat-

isfaction problems in which we are given a number of variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 taking values in a

finite commutative ring (usually the ring of integers modulo 𝑚) and a number of linear equations

𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 = 𝑏

or inequations

𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 ≠ 𝑏

and our goal is to find the largest number of these constraints that can be satisfied simultaneously.

In our discussion here we limit ourselves to the simplest class of these CSPs known as Max-2-

Lin. These are CSPs where each equation or inequation involves exactly two variables. This class

of CSPs include many interesting problems such as Max-𝑘-Cuts and linear unique games. Max-
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𝑘-Cuts are those instances where we only have inequations as our constraints and linear unique

games are those instances where we only have equations as our constraints.

In this section our focus is on CSPs with variables 𝑥1, . . . , 𝑥𝑛 taking values in the ring of integers

mod 𝑚 with constraints of the form

𝑥𝑖 − 𝑥 𝑗 = 𝑐𝑖 𝑗 ,

or

𝑥𝑖 − 𝑥 𝑗 ≠ 𝑐𝑖 𝑗 ,

for all 𝑖 > 𝑗 . Let us also further imagine that each constraint (𝑖, 𝑗) has a weight 𝑤𝑖 𝑗 ≥ 0 associated

to it. Let us refer to the problem of maximizing the sum of weights of satisfied constraints as Max-

2-Lin-𝑚. We let E be the set of all pairs (𝑖, 𝑗) such that the associated constraint is an equality

constraint 𝑥𝑖−𝑥 𝑗 = 𝑐𝑖 𝑗 , and let E𝑐 denote the complement, i.e, all pairs (𝑖, 𝑗) such that the associated

constraint is an inequation constraint 𝑥𝑖 − 𝑥 𝑗 ≠ 𝑐𝑖 𝑗 .

In order to make the transition to a noncommutative analogue a bit easier to state let us rewrite

the constraints multiplicatively. With a transformation 𝑥𝑖 ← 𝜔𝑥𝑖 where 𝜔 = exp(2𝜋𝑖/𝑚) is an 𝑚th

root of unity, we can rewrite the constraints multiplicatively as

𝑥𝑖𝑥
∗
𝑗 = 𝜔

𝑐𝑖 𝑗 ,

if (𝑖, 𝑗) ∈ E or otherwise

𝑥𝑖𝑥
∗
𝑗 ≠ 𝜔

𝑐𝑖 𝑗 ,

where ∗ denotes complex conjugate.

Now a moment’s thought shows that Max-2-Lin-𝑚 can be equivalently formulated as a poly-
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nomial optimization problem

maximize:
1
𝑚

∑︁
(𝑖, 𝑗)∈E

𝑤𝑖 𝑗

𝑚−1∑︁
𝑘=0

𝜔−𝑐𝑖 𝑗 𝑘𝑥𝑘𝑖 𝑥
−𝑘
𝑗 +

1
𝑚

∑︁
(𝑖, 𝑗)∈E𝑐

𝑤𝑖 𝑗

𝑚−1∑︁
𝑘=1

1 − 𝜔−𝑐𝑖 𝑗 𝑘𝑥𝑘𝑖 𝑥−𝑘𝑗

subject to: 𝑥𝑖 ∈ {1, 𝜔, . . . , 𝜔𝑚−1}.

(3.1.1)

We are now ready to introduce the noncommutative analogue very easily. This is the problem

of optimizing the above polynomial after relaxing the constraint that variables 𝑥𝑖s must commute.

Just like in the case of Magic-Square, the noncommutative analogue of the above CSP changes the

domain of variables from𝑚th roots of unity to unitary operators with eigenvalues that are𝑚th roots

of unity. To be precise, NC-Max-2-Lin-𝑚 asks what is the largest trace of all operators obtained

by plugging in for 𝑥𝑖s in the polynomial above, unitary operators with eigenvalues that are in the

set {1, 𝜔, . . . , 𝜔𝑚−1}:

maximize:
1
𝑚

tr
∑︁
(𝑖, 𝑗)∈E

𝑤𝑖 𝑗

𝑚−1∑︁
𝑘=0

𝜔−𝑐𝑖 𝑗 𝑘𝑋 𝑘𝑖 𝑋
−𝑘
𝑗 +

1
𝑚

tr
∑︁
(𝑖, 𝑗)∈E𝑐

𝑤𝑖 𝑗

𝑚−1∑︁
𝑘=1

1 − 𝜔−𝑐𝑖 𝑗 𝑘𝑋 𝑘𝑖 𝑋−𝑘𝑗

subject to: 𝑋𝑚𝑖 = 𝑋∗𝑖 𝑋𝑖 = 1.

(3.1.2)

Everywhere in this section tr denotes the dimension-normalized trace.

Connection with nonlocal games

In the earlier parts of the thesis, we studied two-player nonlocal games extensively. Max-2-

Lin problems can easily be formulated as a 2-player nonlocal game. In the game formulation, the

referee samples two variables and sends one to Alice and the other to Bob. The winning condition

is that Alice and Bob must be consistent if they received the same variable. Otherwise, if they

received distinct variables their assignments must satisfy the corresponding constraint involving

the two variables. It is very easy to see that the synchronous value of this game is proportional

to the value of the Max-2-Lin instance, i.e., the largest number of constraints that can be satisfied

simultaneously. Similarly, the synchronous quantum value is proportional to the value of the NC-
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Max-2-Lin instance.1

3.1.2 A framework for designing approximation algorithms for noncommutative CSPs

We understand the theory of approximation algorithms for classical CSPs very well. In this

section, we take the first step in developing a theory of approximation algorithms for NC-Max-2-

Lin-𝑚.

What is special about Max-2-Lin?

First, we explain why we are focusing on NC-Max-2-Lin CSPs. The general noncommutative

CSPs reduce to general noncommutative polynomial optimization and as we elaborated in the

previous sections this is a very hard undecidable problem. However, there is some evidence that

NC-Max-2-Lin CSPs are easy, even easier than their classical counterpart. This phenomenon is

extremely interesting and these last sections of the thesis are our attempts in trying to understand

the phenomenon better.

Let us recount some of the evidence for this phenomenon. One piece of evidence is of course

the fact that Max-Cut is NP-hard but NC-Max-Cut is in polynomial-time as we will see in a mo-

ment.

A second piece of evidence is that the UGC states that for every Y, 𝛿 > 0 it is NP-hard to

distinguish if the value of a unique game is larger than 1 − Y or at most 𝛿. On the other hand

1We chose to work in the synchronous framework in this section because of the ease of exposition. Everything we
develop here can be translated into the non-synchronous regime. There the form of the noncommutative polynomial
that is being optimized is as follows: we have two sets of variables 𝑋𝑖 (for Alice) and 𝑌 𝑗 (for Bob). There is a com-
mutation relation that must hold between Alice’s variables and Bob’s variables. Furthermore, in the non-synchronous
regime, the optimization is over all states rather than tracial states. Putting all these together the non-synchronous
version of (3.1.2) is

maximize: 𝜙∗ ( 1
𝑚

∑︁
(𝑖, 𝑗 ) ∈E

𝑤𝑖 𝑗

𝑚−1∑︁
𝑘=0

𝜔−𝑐𝑖 𝑗 𝑘𝑋 𝑘𝑖 𝑌
−𝑘
𝑗 +

1
𝑚

tr
∑︁

(𝑖, 𝑗 ) ∈E𝑐
𝑤𝑖 𝑗

𝑚−1∑︁
𝑘=1

1 − 𝜔−𝑐𝑖 𝑗 𝑘𝑋 𝑘𝑖 𝑌−𝑘𝑗 )𝜙

subject to: 𝑋𝑚𝑖 = 𝑋∗𝑖 𝑋𝑖 = 1,

𝑌𝑚𝑗 = 𝑌 ∗𝑗𝑌 𝑗 = 1,

𝑋𝑖𝑌 𝑗 = 𝑌 𝑗𝑋𝑖 .

where the optimization is over all Hilbert spacesH , and operators 𝑋𝑖 , 𝑌 𝑗 and states 𝜙 overH .
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[92] gave an approximation algorithm for noncommutative unique games that flies in the face of

UGC. Their algorithm guarantees that if the optimal solution of a noncommutative unique game

has value 1 − Y then their algorithm produces a solution with value 1 − 4Y.

What kind of approximation algorithm?

The rest of this section outlines the first steps towards developing a theory of approximation

algorithms for NC-Max-2-Lin. In particular, we are interested in knowing the best approximation

ratio of any approximation algorithm based on the basic SDP for NC-Max-2-Lin problems. This

is in contrast with the approximation algorithm of [92] for noncommutative unique games because

it does not yield an approximation ratio (although it is still based on the basic SDP). For example,

one drawback of [92] is that in the regime where the value of the unique game is 1− Y for Y ≥ 1/4

their algorithm may not produce any interesting solution.

Review of Max-Cut

The simplest of all Max-2-Lin problems is the famous Max-Cut problem where an instance is

a simple graph 𝐺 = (𝑉, 𝐸) with variables 𝑥𝑖 associated to every vertex 𝑖 ∈ 𝑉 . These variables are

taking values in the set {±1}. Our goal is to find an assignment such that the inequations 𝑥𝑖 ≠ 𝑥 𝑗 are

satisfied for as many edges (𝑖, 𝑗) as possible. When additionally considering weighted graphs with

weights 𝑤𝑖 𝑗 ≥ 0 over the edges, Max-Cut can be phrased as the following polynomial optimization

problem

maximize:
∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗
1 − 𝑥𝑖𝑥 𝑗

2

subject to: 𝑥𝑖 ∈ {±1}.

(3.1.3)

We observe that 1−𝑥𝑖𝑥 𝑗
2 = 1 if 𝑥𝑖 ≠ 𝑥 𝑗 and 1−𝑥𝑖𝑥 𝑗

2 = 0 otherwise. Therefore
∑
(𝑖, 𝑗) an edge 𝑤𝑖 𝑗

1−𝑥𝑖𝑥 𝑗
2 is

the sum of weights of all edges that cross the cut (𝐶,𝑉 \ 𝐶) where 𝐶 = {𝑖 : 𝑥𝑖 = 1}.
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Approximation algorithms for classical CSPs and review of Goemans-Williamson

There is a framework of approximation algorithms for classical constraint satisfaction problems

that involves first relaxing the domain of variables from the finite ring to a finite-dimensional vector

space. The problem over this domain is now a semidefinite program and hence can be solved

efficiently. The second step is then to round the vectors back to the true labels in the finite ring.

There is a very beautiful theory that explains the effectiveness of this framework. For example

by a celebrated result of Raghavendra [93], we know that for any CSP, the basic SDP (which we

introduce shortly) achieves the best approximation ratio of any approximation algorithm as long as

the unique games conjecture (UGC) holds.

For example the basic SDP for (3.1.3) is

maximize:
∑︁

𝑤𝑖 𝑗
1 − 𝑋𝑖 𝑗

2

subject to: 𝑋𝑖𝑖 = 1, for all 𝑖,

𝑋 ≥ 0.

(3.1.4)

Let us refer to this as the SDP-Max-Cut. This program can equivalently be written as

maximize:
∑︁

𝑤𝑖 𝑗
1 − ⟨𝑣𝑖, 𝑣 𝑗 ⟩

2

subject to: ∥𝑣𝑖∥2 = 1, for all 𝑖,

(3.1.5)

where 𝑣𝑖’s are vectors in R𝑛 (where 𝑛 is the number of vertices). Let us call this the vector-MAX-

CUT problem. It should be clear that these two programs are the same and it should also be clear

that they provide an upper-bound on (3.1.3). The celebrated Goemans-Williamson algorithm for

Max-Cut starts by solving this SDP and obtaining vectors 𝑣𝑖. To round these vectors back to true

binary labels 𝑥𝑖, they proposed the hyperplane rounding algorithm: Sample a unit vector 𝑟 from

the Haar measure and let 𝑥𝑖 = sign⟨𝑟, 𝑥𝑖⟩. They then showed that random variables 𝑥𝑖 have the
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property that

E
1 − 𝑥𝑖𝑥 𝑗

2
= Pr(𝑥𝑖 ≠ 𝑥 𝑗 ) =

arccos⟨𝑥𝑖, 𝑥 𝑗 ⟩
𝜋

≥ 0.878
1 − ⟨𝑣𝑖, 𝑣 𝑗 ⟩

2
. (3.1.6)

Therefore 𝑥𝑖’s in (3.1.3) achieve a value that, in expectation, is at least 0.878 times the SDP value.

Noncommutative Max-Cut

Now let us switch the noncommutative analogue. The NC-Max-Cut is the problem

maximize:
∑︁

𝑤𝑖 𝑗
1 − ⟨𝑋𝑖, 𝑋 𝑗 ⟩

2

subject to: 𝑋∗𝑖 𝑋𝑖 = 𝑋
2
𝑖 = 1,

(3.1.7)

where the variables, instead of taking binary values {±1} in the original Max-Cut, are now taking

values in the set of all unitaries with eigenvalues {±1} and in the objective function we replaced

quadratic terms 𝑥𝑖𝑥 𝑗 with the dimension-normalized Hilbert-Schmidt inner products ⟨𝑋𝑖, 𝑋 𝑗 ⟩ =

tr(𝑋∗
𝑖
𝑋 𝑗 ). Everywhere in this note ∗ denotes Hermitian conjugate when on an operator.2

Review of Tsirelson’s theorem

We know a lot about NC-Max-Cut in the quantum information literature, since they are essen-

tially equivalent to XOR nonlocal games. Tsirleson [94] showed that this problem can be solved

efficiently by just solving the basic SDP (3.1.4) which was also the SDP used in the Goemans-

Williamson algorithm for solving Max-Cut. It should be clear that the basic SDP (3.1.4) is still a

relaxation of the NC-Max-Cut. Tsirelson showed that in fact SDP-Max-Cut has the same value as

NC-Max-Cut. Next we quickly review the theorem of Tsirelson.

Suppose we obtained optimal solution 𝑣1, . . . , 𝑣𝑛 for the vector-Max-Cut. We want to construct

order-2 unitary operators 𝑋𝑖 that achieve an objective value equal to the optimal value of the vector-

2NC-Max-Cut should not be confused with its cousin quantum-Max-Cut which is an instance of the local Hamil-
tonian problem.
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Max-Cut. For this we first need to introduce Weyl-Brauer operators which generate what is known

as Clifford algebras. This is the algebra with generators 𝜎1, . . . , 𝜎𝑛 and relations 𝜎2
𝑖

= 1 and

𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖 for 𝑖 ≠ 𝑗 . Now we construct operators 𝑋𝑖 =
∑𝑛
𝑗=1 𝑣𝑖 𝑗𝜎𝑗 . Following the properties

of Clifford algebra, it is easy to verify that 𝑋𝑖 are a feasible solution of (3.1.7), i.e., 𝑋𝑖 are unitary

and are of order 2 (i.e., 𝑋∗
𝑖
𝑋𝑖 = 1 and 𝑋2

𝑖
= 1). Furthermore the objective value of this solution in

(3.1.7) is the same as the optimal value of (3.1.4), since ⟨𝑋𝑖, 𝑋 𝑗 ⟩ = ⟨𝑣𝑖, 𝑣 𝑗 ⟩ = 𝑋𝑖 𝑗 .

The algebraic framework for designing approximation algorithms for noncommutative CSPs

Unfortunately the moment we move on to Max-2-Lin problems with nonbinary variables this

argument no longer goes through fully intact. The main reason for this unlucky situation is that

there does not exist a proper generalization of the Clifford algebra to the nonbinary setting that has

all the properties that we need. So all our attempts here would center around generalizing Clifford

algebras to keep some desired properties and sacrifice some others. The less we sacrifice the better

approximation ratio we recover in the end. Let us make this more clear.

Max-3-Cut To be concrete we first introduce the ternary analogue of Max-Cut called Max-3-

Cut. Here the goal is to partition the vertices of the graph into at most three sets such that the

number of edges crossing between partitions is maximized. So just like Max-Cut the instance is

a graph with variable 𝑥𝑖 associated to vertex 𝑖. Variables take value in the ternary set {1, 𝜔, 𝜔2},

where 𝜔 = 𝑒𝑥𝑝(2𝜋𝑖/3) is a third root of unity. The constraints are 𝑥𝑖 ≠ 𝑥 𝑗 for every edge (𝑖, 𝑗). It

is easily seen that Max-3-Cut is equivalent to the polynomial optimization

maximize:
∑︁

𝑤𝑖 𝑗
2 − 𝑥∗

𝑖
𝑥 𝑗 − 𝑥∗𝑗𝑥𝑖
3

subject to: 𝑥𝑖 ∈ {1, 𝜔, 𝜔2}.

(3.1.8)
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The NC-Max-3-Cut is similarly defined to be

maximize:
∑︁

𝑤𝑖 𝑗
2 − ⟨𝑋𝑖, 𝑋 𝑗 ⟩ − ⟨𝑋 𝑗 , 𝑋𝑖⟩

3

subject to: 𝑋∗𝑖 𝑋𝑖 = 𝑋
3
𝑖 = 1,

(3.1.9)

and where the domain is the set of unitaries with eigenvalues that are {1, 𝜔, 𝜔2}.

The reason we had success in the case of binary Max-Cut was the existence of the Weyl-Brauer

operators 𝜎1, . . . , 𝜎𝑛 that allowed us to construct feasible solution of the noncommutative problem

from the vectors feasible in the SDP problem. The properties of these operators gave us

1. that 𝐴 =
∑
𝑖 𝑎𝑖𝜎𝑖 is an order-2 unitary whenever 𝑎 ∈ R𝑛 and ∥𝑎∥2 = 1,

2. and that the inner product of two operators 𝐴 =
∑
𝑖 𝑎𝑖𝜎𝑖 and 𝐵 =

∑
𝑗 𝑏 𝑗𝜎𝑗 is exactly the inner

product ⟨𝑎, 𝑏⟩ of the vectors of coefficients.

Generalized Weyl-Brauer Now for this program to carry over to the case of NC-Max-3-Cut, we

must seek out a number of generalized Weyl-Brauer operators 𝜎1, 𝜎2, . . . , 𝜎𝑛 such that 𝐴 =
∑
𝑖 𝑎𝑖𝜎𝑖

is an order-3 unitary whenever some simple criterion on 𝑎 ∈ R𝑛 with ∥𝑎∥2 = 1 is satisfied. First

one immediately observes that 𝜎𝑖’s themselves must be order-3 unitaries (consider the case where

the vector 𝑎 is 1 at entry 𝑖 and 0 everywhere else). Now for 𝐴 to be a unitary we need

𝜎∗𝑖 𝜎𝑗 = −𝜎∗𝑗𝜎𝑖 (3.1.10)

for all 𝑖 ≠ 𝑗 . For 𝐴 to be order 3 we need

𝜎𝑖𝜎𝑗 = 𝜔𝜎𝑗𝜎𝑖 (3.1.11)

for all 𝑗 > 𝑖 and that ∥𝑎∥3 = 1. The exotic anticommutation relations (3.1.10) and (3.1.11) each can

be satisfied separately but not simultaneously. Even when 𝑛 = 2, imposing these sets of relations

results in an algebra where 1 = 0, i.e., the 0-algebra (the algebra consisting only of 0). Therefore
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the criteria for unitariness 𝐴∗𝐴 = 1 and order-3-ness 𝐴3 = 1 are not compatible with one another.3

So at the stage of relaxation, there are two possibilities for designing an approximation algo-

rithm for NC-Max-3-Cut. If we sacrifice order-3-ness of 𝐴 =
∑
𝑖 𝑎𝑖𝜎𝑖 we get the algebra with

relations

𝜎3
𝑖 = 𝜎∗𝑖 𝜎𝑖 = 1, 𝜎∗𝑖 𝜎𝑗 = −𝜎∗𝑗𝜎𝑖 for 𝑖 ≠ 𝑗 (3.1.12)

in which case 𝐴 =
∑
𝑖 𝑎𝑖𝜎𝑖 is a unitary for free whenever 𝑎 ∈ R𝑛 and ∥𝑎∥2 = 1. If we proceed

with this choice then the rounding scheme involves obtaining an operator 𝐴 from 𝐴 that is unitary

and order-3. For example, from linear algebra we know that for any unitary 𝐴 with spectral de-

composition𝑈𝐷𝑈∗, the closest order-3 unitary to 𝐴 in Frobenious norm is 𝐴 = 𝑈𝐷𝑈∗ where 𝐷 is

obtained from 𝐷 by replacing each diagonal entry _ with the closest third root of unity _̃ to _. This

is one possible rounding scheme. However, in this section, we propose a better rounding scheme.

Alternatively we could sacrifice unitariness of 𝐴 =
∑
𝑖 𝑎𝑖𝜎𝑖, and get the algebra with relations

𝜎3
𝑖 = 𝜎∗𝑖 𝜎𝑖 = 1, 𝜎𝑖𝜎𝑗 = 𝜔𝜎𝑗𝜎𝑖 for 𝑖 ≠ 𝑗 (3.1.13)

in which case 𝐴 =
∑
𝑖 𝑎𝑖𝜎𝑖 is such that 𝐴3 is a scalar operator whenever 𝑎 ∈ R𝑛 and ∥𝑎∥2 = 1. If

we proceed with this choice then the rounding scheme involves obtaining an operator 𝐴 from 𝐴

that is unitary and order-3. For example, from linear algebra, we know that for any operator 𝐴 with

singular value decomposition𝑈𝐷𝑉∗ the closest unitary to 𝐴 in Frobenius norm is 𝐴 = 𝑈𝑉∗.

Each of these two relaxation and rounding schemes leads to qualitatively different approxima-

tion algorithm with different approximation ratios. This makes the task of designing approximation

algorithms for NC CSPs so much more flavourful and interesting. Here we only considered the

extreme case of choosing one property over another property. One could also imagine relaxation

to algebras that preserves both properties (of unitariness and order-3-ness) to some degree.

It turns out that sacrificing any of the two properties of unitary or order-3, the operator 𝐴 we

3The exotic anticommutation (3.1.11) is a sufficient condition for 𝐴 to be order-3. The necessary condition is the
more general relation of 𝜎2

𝑖
𝜎𝑗 + 𝜎𝑖𝜎𝑗𝜎𝑖 + 𝜎𝑗 ∗ 𝜎2

𝑖
= _𝐼 where _ could be any complex number and 𝐼 is the identity

matrix. One can also show that the only algebra with this relation and (3.1.10) is the 0-algebra.
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obtain at the end is going to satisfy the sacrificed property almost exactly. Therefore each of these

approaches would lead to good approximation algorithms. Let us see an example now.

Representations of generalized Weyl-Brauer We study the case of (3.1.10), i.e., sacrificing

order-3-ness. For every 𝑛, there exist operators 𝜎1, 𝜎2, . . . , 𝜎𝑛 such that 𝜎∗
𝑖
𝜎𝑖 = 1, 𝜎3

𝑖
= 1, and

𝜎∗
𝑖
𝜎𝑗 = −𝜎∗𝑗𝜎𝑖 for all 𝑖 ≠ 𝑗 . One needs to work a little to prove this existence. Here we are going

to establish the existence only in high level terms. First consider the group with presentation

𝐺𝑛 = ⟨𝜎1, . . . , 𝜎𝑛, 𝐽 : 𝜎3
𝑖 , 𝐽

2, [𝐽, 𝜎𝑖], 𝐽 (𝜎−1
𝑖 𝜎𝑗 )2 : for all 𝑖 ≠ 𝑗⟩

where we have 𝑛 + 1 generators, the special generator 𝐽 commutes with every other generators and

is of order 2, and we have this exotic relation 𝜎−1
𝑖
𝜎𝑗 = 𝐽𝜎

−1
𝑗
𝜎𝑖. Generator 𝐽 is clearly playing the

role of −1. Now consider the subgroup 𝑃𝑛 generated by 𝜎−1
𝑖
𝜎𝑗 for all 𝑖, 𝑗 . With a little work one

can show that 𝑃𝑛 is indeed isomorphic to the Pauli group (the defining property of the Pauli group

is that every pair of element either commutes or anticommutes and this is clearly the case with

𝑃𝑛 by construction). Furthermore one immediately observes that conjugation by 𝜎𝑖 preserves 𝑃𝑛.

Therefore 𝜎𝑖 belongs to the Clifford group (Clifford group is the group of automorphisms of the

Pauli group and should not be confused with Clifford algebras that appeared earlier in this note).

Now resorting to the simple representation theory of Pauli and Clifford groups, one can show that

for every 𝑛, 𝐺𝑛 has an irreducible that sends 𝐽 ↦→ −1. This proves the existence of the operators

with our desired exotic anticommutation.

A deterministic approximation algorithm for NC-Max-3-Cut

We now have everything to design an approximation algorithm for NC-Max-3-Cut. With the

exotic anticommutation of type (3.1.10), it is a matter of simple calculations to observe that 𝐴 =∑
𝑎𝑖𝜎𝑖 for 𝑎 ∈ R𝑛 is a unitary if and only if ∥𝑎∥2 = 1. How do we use this algebra to solve
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NC-Max-3-Cut? Well just like before we have a basic SDP relaxation. The basic SDP is:

maximize:
∑︁

𝑤𝑖 𝑗
2 − 𝑋𝑖 𝑗 − 𝑋 𝑗𝑖

3

subject to: 𝑋𝑖𝑖 = 1, for all 𝑖,

𝑋 ≥ 0.

(3.1.14)

We can always assume without loss of generality that the optimal solution 𝑋 of this SDP is real,

because (𝑋 + 𝑋∗)/2 is also a feasible solution with the same objective value as 𝑋 . So we can

rewrite the above SDP as

maximize:
∑︁

𝑤𝑖 𝑗
2 − 𝑋𝑖 𝑗 − 𝑋 𝑗𝑖

3

subject to: 𝑋 ∈ R𝑛×𝑛,

𝑋𝑖𝑖 = 1, for all 𝑖,

𝑋 ≥ 0.

(3.1.15)

Furthermore, we can always assume that 𝑋𝑖 𝑗 ≥ −1/2. To prove this one needs to go to the

second-level SDP relaxation of NC-Max-3-Cut. First observe that for any pair of order-3 unitary

operators 𝑋𝑖 and 𝑋 𝑗 , the 3-by-3 matrix


1 ⟨𝑋𝑖, 𝑋 𝑗 ⟩ ⟨𝑋 𝑗 , 𝑋𝑖⟩

⟨𝑋 𝑗 , 𝑋𝑖⟩ 1 ⟨𝑋𝑖, 𝑋 𝑗 ⟩

⟨𝑋𝑖, 𝑋 𝑗 ⟩ ⟨𝑋 𝑗 , 𝑋𝑖⟩ 1


must be positive semidefinite. This is because if we let 𝑀 = 𝑥𝑖, 𝑁 = 𝑥 𝑗 , 𝑃 = 𝑋−1

𝑗
𝑋−1
𝑖

, then


1 ⟨𝑋𝑖, 𝑋 𝑗 ⟩ ⟨𝑋 𝑗 , 𝑋𝑖⟩

⟨𝑋 𝑗 , 𝑋𝑖⟩ 1 ⟨𝑋𝑖, 𝑋 𝑗 ⟩

⟨𝑋𝑖, 𝑋 𝑗 ⟩ ⟨𝑋 𝑗 , 𝑋𝑖⟩ 1


=


1 ⟨𝑀, 𝑁⟩ ⟨𝑀, 𝑃⟩

⟨𝑁, 𝑀⟩ 1 ⟨𝑁, 𝑃⟩

⟨𝑃, 𝑀⟩ ⟨𝑃, 𝑁⟩ 1


⪰ 0.
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For this to be true it is not too difficult to show that it must hold that ⟨𝑋𝑖, 𝑋 𝑗 ⟩ + ⟨𝑋 𝑗 , 𝑋𝑖⟩ ≥ 1. Now

since we can assume these inner products are real we conclude that ⟨𝑋𝑖, 𝑋 𝑗 ⟩ is at least −1/2. This

is enough to show that the following SDP is a relaxation of the NC-Max-3-Cut

maximize:
∑︁

𝑤𝑖 𝑗
2 − 𝑋𝑖 𝑗 − 𝑋 𝑗𝑖

3

subject to: 𝑋 ∈ R𝑛×𝑛

𝑋𝑖𝑖 = 1,

𝑋𝑖 𝑗 ≥ −1/2,

𝑋 ≥ 0.

(3.1.16)

We call this the basic SDP for Max-3-Cut.

Now let 𝑋 be a feasible solution in this SDP and let 𝑣𝑖 be vectors such that ⟨𝑣𝑖, 𝑣 𝑗 ⟩ = 𝑋𝑖 𝑗 . If

we now construct operators 𝑋𝑖 =
∑
𝑗 𝑣𝑖 𝑗𝜎𝑗 (where 𝜎𝑗 are the generalized Weyl-Brauer operators),

we immediately get that 𝑋𝑖 are unitary. Unfortunately however they are not a feasible solution

to NC-Max-3-Cut because they are not order-3. However we are lucky in that 𝑋𝑖 are not too

far from being order-3. Let us make this precise. First note that just like before we have the

inner product property that ⟨𝑋𝑖, 𝑋 𝑗 ⟩ = ⟨𝑣𝑖, 𝑣 𝑗 ⟩. This follows from the representation theory of

the Pauli group 𝑃𝑛 that states that in the unique nontrivial irreducible of the Pauli group every

representing matrix is traceless except for the identity operator. Finally since 𝜎∗
𝑖
𝜎𝑗 ∈ 𝑃𝑛 we have

⟨𝜎𝑖, 𝜎𝑗 ⟩ = tr(𝜎∗
𝑖
𝜎𝑗 ) = 0.

Now if 𝑋𝑖 and 𝑋 𝑗 were order-3, then we would have had

⟨𝑋2
𝑖 , 𝑋

2
𝑗 ⟩ = ⟨𝑋∗𝑖 , 𝑋∗𝑗 ⟩ = ⟨𝑋 𝑗 , 𝑋𝑖⟩ = ⟨𝑣 𝑗 , 𝑣𝑖⟩ = ⟨𝑣𝑖, 𝑣 𝑗 ⟩ = ⟨𝑋𝑖, 𝑋 𝑗 ⟩. (3.1.17)

Even though 𝑋𝑖 and 𝑋 𝑗 are not generally order-3, something close to the identity (3.1.17) holds:

⟨𝑋2
𝑖 , 𝑋

2
𝑗 ⟩ = ⟨𝑋𝑖, 𝑋 𝑗 ⟩2. (3.1.18)
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This equality, which states that the inner product of squares is the square of the inner product,

follows again from the representation theory of 𝐺𝑛 (in particular it relies on the Pauli subgroup 𝑃𝑛

of 𝐺𝑛 and the fact that the unique nontrivial irreducible of the Pauli group has the property that all

the representing matrices are traceless).

The final step is a rounding scheme to produce order-3 unitaries 𝑋𝑖 from 𝑋𝑖. We use the

following simple construction. We let

𝑋𝑖 =


0 𝑋𝑖 0

0 0 𝑋𝑖

𝑋−2
𝑖

0 0


.

These operators are now unitary and order-3. Furthermore using the square law (3.1.18), we can

write

⟨𝑋𝑖, 𝑋 𝑗 ⟩ =
2
3
⟨𝑋𝑖, 𝑋 𝑗 ⟩ +

1
3
⟨𝑋𝑖, 𝑋 𝑗 ⟩2 =

2
3
𝑋𝑖 𝑗 +

1
3
𝑋2
𝑖 𝑗 ,

and putting all these together

2 − ⟨𝑋𝑖, 𝑋 𝑗 ⟩ − ⟨𝑋 𝑗 , 𝑋𝑖⟩
3

= (1 + 1
3
𝑋𝑖 𝑗 ) (

2 − 𝑋𝑖 𝑗 − 𝑋 𝑗𝑖
3

) ≥ 5
6
(
2 − 𝑋𝑖 𝑗 − 𝑋 𝑗𝑖

3
),

in which we used the fact that 𝑋𝑖 𝑗 ≥ −1/2. So the objective value of the 𝑋𝑖 in NC-Max-3-Cut is at

least 5
6 times the SDP value. This gives a 5

6 -approximation algorithm for NC-Max-3-Cut.

This approach can be easily modified (by modifying the group 𝐺𝑛) to all NC-Max-𝑘-Cuts.

For example the approximation ratio of our deterministic rounding method for 𝑘 = 3, 4, 5 is

0.83333, 0.85185, 0.86718, respectively. The paper [95] achieves an approximation ratio (with

respect to the same SDP but using randomized rounding method) for the original Max-𝑘-Cut that

is slightly better than our approximation ratios. However the analysis of this algorithm is much

more complicated. In fact it took about seven years since the publication of [95] and the work

of many authors culminating in [96], that achieved expected ratios that are larger than our simple

deterministic algorithm. In the next section we suggest a randomized rounding algorithm that may
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achieve approximation ratios that are much larger than the work of [95], although at this point this

is still conjectural. For example we think our randomized rounding algorithm achieves an expected

approximation ratio of 13/15 = 0.86666 for NC-Max-3-Cut problem.

Randomized rounding

In the previous sections, we analysed a deterministic approximation algorithm for NC-Max-𝑘-

Cut problems. Here we outline how we may improve the approximation ratios using randomized

rounding. We again focus on the case of Max-3-Cut.

We saw earlier that operators that are constructed from linear combinations of generalized

Weyl-Brauer 𝜎𝑖, though not order 3, are close to being order 3. The closeness property we used

was that ⟨𝐴2, 𝐵2⟩ is close to ⟨𝐴, 𝐵⟩ whenever 𝐴, 𝐵 are linear combinations of generalized Weyl-

Brauer operators (indeed if 𝐴, 𝐵 were order-3 then ⟨𝐴2, 𝐵2⟩ = ⟨𝐴, 𝐵⟩). We were able to then take

advantage of this property and design a deterministic approximation algorithm that achieved a ratio

of 5/6. In this section we observe another metric under which these operators 𝐴, 𝐵 are close to

being order 3. We then use this metric to design a randomized approximation algorithm that does

better than the algorithm in the previous section. So when designing and analysing approximation

algorithms for NC-Max-𝑘-Cut, together with the choice of algebra, one also has to make a decision

on a proper metric. This metric dictates how closely the operators obtained from SDP are satisfying

the sacrificed property, in this case order-3-ness.

For _ a complex number with modulus 1, we let _̃ denote the closest third root of unity to _.

Suppose _ = 𝑒𝑖\𝜔𝑘 for some |\ | < 𝜋/3 and 𝑘 ∈ {0, 1, 2}. Then _̃ = 𝜔𝑘 and thus __̃∗ = 𝑒𝑖\ . The

closer _ is to a third root of unity, the larger the real part of __̃∗. So real(__̃∗) is a sort of fidelity

measure for how close _ is to a third root of unity. To get a sense for this quantity note that if

we sample _ uniformly from the unit circle in the complex plane then the fidelity real(__̃∗) is on

average cos(𝜋/6)
𝜋/3 = 3

√
3

2𝜋 ≈ 0.82699.

Similarly given a unitary operator 𝑈 we can always find the closest order-3 unitary 𝑈. In fact

if the spectral decomposition is 𝑈 =
∑
_𝑖𝜙𝑖𝜙

∗
𝑖

with eigenvalues _𝑖, then by Hoffman-Wielandt
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theorem [97], we have 𝑈 =
∑
_̃𝑖𝜙𝑖𝜙

∗
𝑖
. The closeness is in the sense that ∥𝑈 −𝑈∥ ≤ ∥𝑈 − 𝑉 ∥ for

all order-3 unitary 𝑉 and where ∥ · ∥ is the Frobenius norm. Now inspired by the scalar case we

define the fidelity of 𝑈 to be ⟨𝑈,𝑈⟩ = 1
dim(𝑈)

∑
_𝑖_̃
∗
𝑖
. If we sample 𝑈 from the Haar measure, the

marginal distribution of every eigenvalue _𝑖 is uniform over the unit circle. So on expectation the

fidelity of a Haar random unitary is also 3
√

3
2𝜋 .

What is the fidelity for our special operators 𝐴 =
∑
𝑎𝑖𝜎𝑖? Well we have strong numerical

evidence that when 𝑎 ∈ R𝑛 is sampled from the Haar measure on the unit sphere of the 2-norm,

the fidelity ⟨𝐴, 𝐴⟩ on expectation is at least 0.84 > 3
√

3
2𝜋 . If one can prove this numerical obser-

vation, this then leads to a proof that the following randomized approximation algorithm has an

approximation ratio of 13
15 = 0.86̄ on expectation:

1. Solve the SDP (3.1.16) to obtain optimal solution 𝑋

2. Obtain vectors 𝑢𝑖 ∈ R𝑛 such that ⟨𝑢𝑖, 𝑢 𝑗 ⟩ = 𝑋𝑖 𝑗

3. Sample orthogonal matrix 𝑄 acting on R𝑛 from the Haar measure and let 𝑣𝑖 = 𝑄𝑢𝑖

4. Construct operators 𝑋𝑖 =
∑
𝑗 𝑣𝑖 𝑗𝜎𝑗

5. Output operators 𝑋𝑖

This is much better than the approximation ratio of 5/6 = 0.83̄ we gave in the previous section

using a deterministic algorithm.

Earlier we mentioned two types of exotic anticommutations (3.1.10) and (3.1.11). We so far

used the algebra generated by relation (3.1.10) to obtain the above approximation algorithms. One

could similarly design approximation algorithms using the algebra generated by relation (3.1.11).

Also, everything we said carries over to the case of noncommutative Max-𝑘-cut for larger 𝑘 . For

any given noncommutative combinatorial optimization problem there could be many choices for a

natural algebra that fit the problem best. Each of these algebras and their representations, following

the basic recipe that we outlined here, give rise to approximation algorithms (although each one

will achieve different ratios and require its own analysis).
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Open problems

We close this section with a few open problems:

1. What is the integrality gap of the basic SDP for NC-Max-𝑘-Cut problems?

2. Is basic SDP the best for designing approximation algorithms for noncommutative CSPs?

For example could we hope to have a theory similar to Raghavendra’s result [93], that shows

that the best approximation ratio of any approximation algorithm for any NC-Max-2-Lin

problem is the same as the integrality gap of the basic SDP for that NC-Max-2-Lin problem

(assuming of course UGC)?

3. Does the approximation ratio for our randomized rounding algorithm for NC-Max-𝑘-Cut

achieve the integrality gap of the basic SDP?

We know that assuming UGC, for classical Max-𝑘-Cut the algorithm of [95] is asymptot-

ically optimal (that is as 𝑘 → ∞) and achieves the integrality gap of the basic SDP. This

is first proved in [98]. However for small values, for example when 𝑘 = 3, 4, 5, the best

hardness of approximation results are far from the guarantees of the algorithm in [95].

4. (Finite-dimensionality of optimal solutions) All the indications are that NC-Max-3-Cut are

the simplest noncommutative CSPs that are still harder than the NC-Max-Cut. However for

all we know there could exist instances of NC-Max-3-Cut such that the optimal solution

could only be attained over infinite-dimensional Hilbert spaces. Could this be exhibited

by an example or else refuted by showing that the optimal solution of all NC-Max-3-Cut

instances are finite-dimensional? It is quite fascinating to us that we do not have tools that

could prove finite-dimensionality for any class of non-local games aside from the case of

NC-Max-Cut.

5. Crucial to the design of our approximation algorithm using the generalized Weyl-Brauer

operators satisfying relations (3.1.12) was that the basic SDP for Max-𝑘-Cut (for example

(3.1.15) in the case of Max-3-Cut) could be assumed is real without loss of generality. This
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was essential because 𝐴 =
∑
𝑖 𝑎𝑖𝜎𝑖 is a unitary whenever 𝑎 is a real vector and ∥𝑎∥2 = 1. The

criterion for unitariness of 𝐴 is more complicated when 𝑎 is a complex vector.

However for Max-2-Lin problems with equations in the constraints (as opposed to inequa-

tions which was the case with Max-𝑘-Cuts), we cannot assume that the basic SDP is real.

For example consider ternary linear unique games. An instance of this problem is a set of

variables 𝑥1, . . . , 𝑥𝑛 taking values in {1, 𝜔, 𝜔2} and constraints are equations 𝑥𝑖𝑥∗𝑗 = 𝜔
𝑐𝑖 𝑗 for

every 𝑖 > 𝑗 . Then we can immediately phrase this CSP as

maximize:
∑︁

𝑤𝑖 𝑗
1 + 𝜔𝑐𝑖 𝑗𝑥∗

𝑖
𝑥 𝑗 + 𝜔−𝑐𝑖 𝑗𝑥∗𝑗𝑥𝑖

3

subject to: 𝑥𝑖 ∈ {1, 𝜔, 𝜔2}.

(3.1.19)

The noncommutative analogue is now the problem

maximize:
∑︁

𝑤𝑖 𝑗
1 + 𝜔𝑐𝑖 𝑗 ⟨𝑋𝑖, 𝑋 𝑗 ⟩ + 𝜔−𝑐𝑖 𝑗 ⟨𝑋 𝑗 , 𝑋𝑖⟩

3

subject to: 𝑋3
𝑖 = 𝑋∗𝑖 𝑋𝑖 = 1.

(3.1.20)

Finally the basic SDP is

maximize:
∑︁

𝑤𝑖 𝑗
1 + 𝜔𝑐𝑖 𝑗𝑋𝑖 𝑗 + 𝜔−𝑐𝑖 𝑗𝑋 𝑗𝑖

3

subject to: 𝑋 ∈ C𝑛×𝑛,

𝑋𝑖𝑖 = 1,

𝑋𝑖 𝑗 + 𝑋 𝑗𝑖 ≥ −1,

𝑋 ≥ 0.

(3.1.21)

What algebra is best suited for designing approximation algorithms for this problem?
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3.2 Classical solutions from noncommutative ones

In the last section we saw how we may solve noncommutative CSPs. Of course the noncom-

mutative problem could be considered a relaxation of the original classical problem. For example

when the variables take values ±1 in the orignal problem, the noncommutative problem allows the

variables to be the higher dimensional generalization of ±1: Unitaries with eigenvalues ±1.

Is there a sense in which the noncommutative problem is more general than the classical prob-

lem? Could we for example always recover a good classical solution from any noncommutative

solution? What is the best rounding scheme for that? We investigate these questions in this section.

The idea of relaxing a constraint satisfaction problem so that variables, rather than assuming

values in a finite set, say ±1, can now be higher dimensional analogues of {±1}, say unit normed

vectors, has a beautiful history that (at least when combined with semidefinite programming tech-

niques) started with the celebrated Goemans-Williamson algorithm for Max-Cut [99]. In [99] and

the revolution that ensued, the higher-dimensional analogues are always vectors. Even if in the

original problem the finite set had the structure of a ring (for example integers mod 𝑚), in the

higher dimensional analogues studied in the literature we would have always lost this structure

(we cannot multiply the vectors). The noncommutative relaxation on the other hand preserves the

ring structure. In the rest of this note we argue that the noncommutative route is superior: more

information about the classical problem is preserved in the noncommutative solution.

In the previous section we saw the vector relaxation approach to Max-Cut, the Goemans-

Williamson algorithm, and its analysis. How much of this story extends to Max-𝑘-Cut? In Max-

𝑘-Cut even the random assignment to 𝑥𝑖 ∈ {1, 𝜔, . . . , 𝜔𝑘−1} achieves a cut that is on expectation

of size 𝑘−1
𝑘

times the number of edges. The best approximation ratio for Max-3-Cut, to this day,

is also given by Goemans-Williamson [100] and is 0.836008. This is obtained by an algorithm

that is very similar to the one they gave for Max-Cut. The staring point is to solve the basic SDP

relaxation (3.1.16) (remember this was also the starting point of our algorithm for noncommutative

Max-3-Cut). After obtaining the optimal solution 𝑋 they obtain vectors 𝑣𝑖 such that ⟨𝑣𝑖, 𝑣 𝑗 ⟩ = 𝑋𝑖 𝑗 .
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Finally the rounding procedure samples three vectors 𝑟0, 𝑟1, 𝑟2 independently and uniformly at ran-

dom. Now if ⟨𝑟𝑘 , 𝑣𝑖⟩ = max(⟨𝑟0, 𝑣𝑖⟩, ⟨𝑟1, 𝑣𝑖⟩, ⟨𝑟2, 𝑣𝑖⟩), let 𝑥𝑖 = 𝜔𝑘 . Unlike Max-Cut the analysis of

this rounding procedure and proof of the approximation ratio of 0.836 is much more complicated.

Also unlike Max-Cut where we know that the 0.878 approximation ratio of Goemans-Williamson

is optimal up to the unique games conjecture, no such result is known for Max-3-Cut. We only

know we cannot do better than 0.944 unless P = NP [101].

We propose a rounding scheme to round noncommutative solutions to commutative ones.4

Suppose 𝑋,𝑌 are given order-𝑚 unitaries. We want to obtain scalars 𝑥, 𝑦 ∈ {1, 𝜔, . . . , 𝜔𝑚−1}

such that some objective polynomial 𝑓 (𝑥, 𝑦) (or rather its expectation if the rounding procedure

is randomized) is as close as possible to tr( 𝑓 (𝑋,𝑌 )). For example for Max-Cut the objective

polynomial of interest is 𝑓 (𝑥, 𝑦) = 1−𝑥𝑦
2 . The effectiveness of the rounding procedure depends

on the polynomial 𝑓 . The rounding scheme we propose here seem to work well with Max-𝑘-Cut

problems at least when evaluated numerically. This will become clear shortly.

For the remainder of this section we further assume that operators 𝑋,𝑌 are traceless. This is

justified because for all Max-2-Lin instances if 𝑋1, . . . , 𝑋𝑛 is a noncommutative solution then so

are the 𝑚-by-𝑚 block matrices

𝑋𝑖 =



0 𝑋𝑖 0 · · · 0

0 0 𝑋𝑖 · · · 0
...

...
...

. . .
...

0 0 0 · · · 𝑋𝑖

𝑋𝑖 0 0 · · · 0


.

Furthermore the objective value of 𝑋𝑖 and 𝑋𝑖 are the same and 𝑋𝑖 are traceless.

Now we explain the rounding scheme. Sample a traceless order-𝑘 unitary 𝑅 from Haar mea-

sure.5 Now consider the 𝑚-simplex on the complex plane inscribed in the unit circle with the

4At this moment we do not worry about the efficiency of this rounding scheme.
5To be precise the distribution is over all matrices 𝑈𝐷𝑈∗ where the unitary 𝑈 is sampled from Haar measure and

the traceless diagonal matrix 𝐷 with {1, 𝜔, . . . , 𝜔𝑚−1} on its diagonal entries is sampled uniformly at random.
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𝑚-roots of unity {1, 𝜔, . . . , 𝜔𝑚−1} as its vertices. It is straightforward to verify that the inner prod-

uct ⟨𝑅, 𝑋⟩ falls in this simplex. We let 𝑥 (resp. 𝑦) be the closest root of unity (i.e., the closest

vertex of the simplex) to ⟨𝑅, 𝑋⟩ (resp. ⟨𝑅,𝑌⟩).

Let us go back to Max-Cut and discuss the effectiveness of this rounding procedure. For this

we need to calculate the largest 𝜌 such that E(1− 𝑥𝑦) ≥ 𝜌(1− ⟨𝑋,𝑌⟩). This quantity could depend

on the dimension 𝑘 of operators 𝑋,𝑌 . So we want to know the largest nonnegative real number 𝜌𝑘

for which E(1 − 𝑥𝑦) ≥ 𝜌𝑘 (1 − ⟨𝑋,𝑌⟩) for all traceless order-2 unitaries 𝑋,𝑌 acting on a Hilbert

space of dimension 𝑘 .

If 𝑘 = 2 then we can immediately show that 𝜌𝑘 is exactly the Goemans-Williamson constant

0.878.6 At dimension four this quantity provably drops to about 0.85. From there on as we increase

the dimension this quantity rapidly increases back again to the Goemans-Williamson constant as

we observed from extensive numerical analysis. In other words it seems that 𝜌𝑘 → 𝜌2 = 0.878,

from below, as 𝑘 → ∞. We state this as a conjecture in a moment. We then propose one way of

proving this conjecture in the next section.

For every 𝑚 and 𝑘 ≥ 𝑚 we can define a noncommutative Goemans-Williamson constant 𝜌𝑚,𝑘 :

This is the largest nonnegative real number for which

E
𝑚−1∑︁
𝑖=1

1 − 𝑥−𝑖𝑦𝑖 ≥ 𝜌𝑚,𝑘
𝑚−1∑︁
𝑖=1

1 − ⟨𝑋 𝑖, 𝑌 𝑖⟩

for all traceless order-𝑚 unitary 𝑋,𝑌 acting on a 𝑘-dimensional Hilbert space and where 𝑥, 𝑦 are

random variables obtained from the randomized rounding scheme we proposed above.

Conjecture 3.1. It holds that 𝜌𝑚,𝑘 → 𝜌𝑚,𝑚 as 𝑘 →∞.

Since every noncommutative solution can be trivially embedded into a larger dimensional so-

lution, assuming this conjecture, we can always recover a classical solution to Max-Cut from a

noncommutative solution in such a way that the objective value of the rounded classical solution is

6We can also show that if 𝑋,𝑌 are linear combinations of the generators of the Weyl-Brauer operators of any
dimension then E(1 − 𝑥𝑦) ≥ 0.878(1 − ⟨𝑋,𝑌⟩).
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at least 0.878 times the objective value of the noncommutative solution. So in the case of Max-Cut

this operator rounding scheme cannot do better than the vector rounding of Goemans-Williamson.

However this story becomes much more interesting in the case of Max-𝑘-Cut for 𝑘 ≥ 3. We

mentioned that the approximation algorithm of Goemans-Williamson based on vector rounding

achieved a ratio of 0.836 in Max-3-Cut. However assuming the above conjecture, the classical

solution obtained from rounding a noncommutative solution achieves a value of 𝜌3,3 times the

value of the noncommutative solution. The constant 𝜌3,3 is something we can estimate very well

by estimating a simple integral. This value is at least 0.89 which is much larger that the ratio of

0.836 obtained from vector relaxation.

3.2.1 The geometric picture

In this section, we focus on the conjecture for when 𝑚 = 2. We first need to study the quantity

E
1 − 𝑥𝑦

2
= PR(sign⟨𝑅, 𝑋⟩ ≠ sign⟨𝑅,𝑌⟩)

a little more carefully. Recall that in the Goemans-Williamson algorithm for Max-Cut this quantity

was exactly \
𝜋

where the \ was the angle between the vector relaxations. It turns out that this

geometric picture in the form of angles plays a significant role in the noncommutative story as

well. Next, we present this geometric picture in the noncommutative case.

Suppose 𝑋,𝑌 are traceless order-2 unitaries of dimension 2𝑘 . Then 𝑃 = (1 + 𝑋)/2 and 𝑄 =

(1 + 𝑌 )/2 are projections onto two 𝑘-dimensional subspaces X,Y respectively. From the work of

Jordan [102] we can associate 𝑘 canonical angles 0 ≤ \1 ≤ · · · ≤ \𝑘 ≤ 𝜋/2 between these two

subspaces. These angles are exactly the arccos of the singular values of the operator 𝑃𝑄. This all

means that there are orthonormal bases 𝑥1, . . . , 𝑥𝑘 and 𝑦1, . . . , 𝑦𝑘 for X,Y such that \𝑖 is the angle

between 𝑥𝑖 and 𝑦𝑖 and 𝑃𝑄 =
∑
𝑖 cos(\𝑖)𝑥𝑖𝑦∗𝑖 .

Now by CS-decomposition [103] (also known as Jordan’s lemma in quantum information com-

munity), we know there is a change of basis such that 𝑋,𝑌 are block diagonal matrices with 2-by-2
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block matrices

𝑋𝑖 =


1 0

0 −1

 , 𝑌𝑖 =

cos(2\𝑖) sin(2\𝑖)

sin(2\𝑖) − cos(2\𝑖)


on the diagonal. Read more on canonical angles and CS-decomposition in Chapter 7 of Matrix

Analysis [104].

Since our rounding scheme is independent of change of basis we see that the quantity E1−𝑥𝑦
2 is

only a function of the canonical angles. We can prove that when canonical angles are all the same

\1 = · · · = \𝑘 = \, then

E
1 − 𝑥𝑦

2
=

2\
𝜋

=
arccos⟨𝑋,𝑌⟩

𝜋
.

This is exactly the same quantity as in the vector relaxation, so in this case the noncommutative

setting recovers the vector setting.

In general this quantity E1−𝑥𝑦
2 is rather tough to precisely calculate, but there is always a good

approximation of this quantity by simple trigonometric functions. For example when 𝑘 = 2, we

get that E1−𝑥𝑦
2 ≈ 1

2 (1 − cos(\1) + sin(\2)).

Finally numerical evidence strongly suggests the following conjecture

Conjecture 3.2. The quantity E1−𝑥𝑦
2 approaches

2\1 + · · · + 2\𝑘
𝑘𝜋

from below as 𝑘 →∞.

If one proves this conjecture, this immediately proves our previous conjecture that 𝜌2,2𝑘 →

𝜌2,2 = 0.878 as 𝑘 → ∞. This is because we already know from Goemans-Williamson that 2\
𝜋
≥

0.8781−cos(2\)
2 for all \ ∈ [0, 𝜋/2], and thus

2\1 + · · · + 2\𝑘
𝑘𝜋

≥ 0.878
1 − ⟨𝑋,𝑌⟩

2
.

More work is needed to fully understand this quantity and the noncommutative Goemans-
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Williamson constant.

3.2.2 Back to the algebraic picture

We saw that when the angles between subspaces are the same we recover the vector setting. So

when is it that the canonical angles are all the same? To answer this first note the anticommutator

of the blocks satisfy

𝑋𝑖𝑌𝑖 + 𝑌𝑖𝑋𝑖 =

2 cos(2\𝑖) 0

0 2 cos(2\𝑖)

 = 2 cos(2\𝑖)𝐼 .

So we get that the canonical angles are all the same \1 = · · · = \𝑛 = \ if and only if 𝑋𝑌 + 𝑌𝑋 is a

scalar matrix.

This relation is something we know a lot about. We know that operators 𝑋1, . . . , 𝑋𝑛 for which

pariwise anticommutators 𝑋𝑖𝑋 𝑗 + 𝑋 𝑗𝑋𝑖 are scalars generate the Clifford algebra. As we saw earlier

in this note, the noncommutative solution that Tsirelson’s theorem gives us for the NC-Max-Cut are

also elements of the Clifford algebra (Weyl-Brauer operators generate the Clifford algebra). There-

fore together with the remarks we made in the previous section, our operator rounding scheme for

noncommutative solutions recovers the Goemans-Williamson ratio of 0.878.

In fact in the case of Clifford solutions we can replace our rounding scheme by a scheme that is

far more efficient. Suppose 𝑋 = 𝑎1𝜎1 + . . . + 𝑎𝑛𝜎𝑛, 𝑌 = 𝑏1𝜎1 + . . . + 𝑏𝑛𝜎𝑛 are linear combinations

of the Weyl-Brauer operators 𝜎1, . . . , 𝜎𝑛. Sample vector 𝑟 ∈ R𝑛 from the unit sphere of 2-norm

and let 𝑅 = 𝑟1𝜎1+ · · ·+𝑟𝑛𝜎𝑛. Also let 𝑥 = sign⟨𝑅, 𝑋⟩ = sign⟨𝑟, 𝑎⟩ and 𝑦 = sign⟨𝑅,𝑌⟩ = sign⟨𝑟, 𝑏⟩.

Then on expectation 1 − 𝑥𝑦 is at least 0.878(1 − ⟨𝑋,𝑌⟩) = 0.878(1 − ⟨𝑎, 𝑏⟩). This is exactly the

hyperplane rounding algorithm of Goemans-Williamson restated in the language of operators.

It seems that this connection between angles and the Weyl-Brauer operators is preserved when

we move to generalizations of Weyl-Brauer operators to order-𝑘 operators by means of the exotic

anticommutation relations (3.1.10) and (3.1.11). More work is needed to understand this connec-

tion better.
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