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ABSTRACT: The Arctic sea ice decline and associated change in maritime accessibility have created a pressing need for
sea ice thickness (SIT) predictions. This study developed a linear Markov model for the seasonal prediction of model-
assimilated SIT. It tested the performance of physically relevant predictors by a series of sensitivity tests. As measured by
the anomaly correlation coefficient (ACC) and root-mean-square error (RMSE), the SIT prediction skill was evaluated in
different Arctic regions and across all seasons. The results show that SIT prediction has better skill in the cold season than
in the warm season. The model performs best in the Arctic basin up to 12 months in advance with ACCs of 0.7–0.8. Linear
trend contributions to model skill increase with lead months. Although monthly SIT trends contribute largely to the model
skill, the model remains skillful up to 2-month leads with ACCs of 0.6 for detrended SIT predictions in many Arctic
regions. In addition, the Markov model’s skill generally outperforms an anomaly persistence forecast even after all trends
were removed. It also shows that, apart from SIT itself, upper-ocean heat content (OHC) generally contributes more to
SIT prediction skill than other variables. Sea ice concentration (SIC) is a relatively less sensitive predictor for SIT prediction
skill than OHC. Moreover, the Markov model can capture the melt-to-growth season reemergence of SIT predictability and
does not show a spring predictability barrier, which has previously been observed in regional dynamical model forecasts of
September sea ice area, suggesting that the Markov model is an effective tool for SIT seasonal predictions.
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1. Introduction

Associated with internal climate variability and anthropo-
genic greenhouse gas emissions (England et al. 2021), Arctic
near-surface air temperatures continue to increase at 3–4 times
the rate of the global average (Ballinger et al. 2021; Chylek et al.
2022), a phenomenon known as “Arctic amplification,” caused
by various positive feedbacks (Screen and Simmonds 2010;
Pithan and Mauritsen 2014). Meanwhile, Arctic sea ice’s prop-
erties have dramatically changed during recent decades (Notz
and Stroeve 2016; Wang et al. 2019a; Cai et al. 2021; X. Wang
et al. 2022). The pan-Arctic sea ice extent (SIE) has shown a
consistent decline for all months since late 1978 (Liu et al.
2019). Sea ice thickness (SIT) has been thinning (Kwok 2018;
Meier et al. 2021), with thicker multiyear sea ice being replaced
by thinner seasonal sea ice (Tschudi et al. 2016). Sea ice volume
(SIV) was at a record low in April 2021 since 2010 (Meier et al.
2021). Climate simulations project the Arctic to be ice-free in

the summer by 2050 (Notz and SIMIP Community 2020). Other
studies put this date as early as the 2030s (Guarino et al. 2020).

Sea ice acts as a crucial component of the climate system by
regulating heat, moisture, and momentum flux exchanges be-
tween the atmosphere and the polar oceans (Peterson et al.
2017; Smith et al. 2017). Such dramatic thinning of Arctic sea
ice has profound local and remote consequences. It contrib-
utes to the penetration of solar energy into the ocean (Katlein
et al. 2019), polar temperature amplification (Kim et al. 2016;
Screen and Francis 2016; Labe et al. 2018), and a nonnegli-
gible influence on the large-scale dynamic circulation over the
Arctic Ocean and northern Eurasia (Labe et al. 2018). Sea ice
loss also possibly contributed to a weakening of the midlati-
tude jet (Francis and Vavrus 2012) and increased frequency
of extreme Northern Hemisphere winters by weakening the
stratospheric polar vortex (Meleshko et al. 2018; Cohen et al.
2020), but this point remains controversial (Blackport et al.
2019). The thinning sea ice is also associated with freshwater
transport to the south and modulates sea surface salinity,
weakening the Atlantic meridional overturning circulation
(AMOC) (Yang et al. 2016; Sévellec et al. 2017; Suo et al.
2017).

Beyond influencing the climate system, the continued dra-
matic decline in Arctic sea ice has changed maritime accessi-
bility. This has gained the attention of various industry and
community groups ranging from Arctic commercial shipping
(Chen et al. 2021; Zhou et al. 2021), natural resource extrac-
tion (Semenova 2022), fishery activities (Fauchald et al. 2021),
and indigenous communities who rely on sea ice for travel
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and subsistence (Segal et al. 2020). For example, the Northern
Sea Route extends along the northern coast of Eurasia from
Iceland to the Bering Strait, which shortens the transit distance
by approximately 5000 nautical miles (n mi; 1 n mi5 1.852 km)
relative to the southern routes through the Suez Canal (Lee
and Song 2014). Substantial reductions in distance can result in
large cost savings due to reduced fuel consumption. Therefore,
societal and economic perspectives have led to increasing ef-
forts in Arctic sea ice prediction in recent decades (Liu et al.
2019).

Substantial effort has gone toward developing prediction
approaches of sea ice properties varying from dynamical mod-
els to statistical models and deep learning. Dynamical models
numerically solve equations that govern climate system dy-
namics and thermodynamics using ice–ocean–atmosphere or
ice–ocean conditions to initialize the models for each season
(Msadek et al. 2014; Blanchard-Wrigglesworth et al. 2015;
Peterson et al. 2015; Bushuk et al. 2020; Dai et al. 2020;
Bushuk et al. 2021; Lee et al. 2022; Yang et al. 2022). Unfortu-
nately, dynamical models are imperfect, and modeling chal-
lenges still exist in many parameterization processes, including
ice thickness distribution, wave–ice interaction, rheology, melt
ponding, land-fast ice, and floe size distribution (Leppäranta
et al. 2020). Past summaries of submissions to the Sea Ice Out-
look, a community network activity led by the Sea Ice Predic-
tion Network Phase 2 (SIPN2) Project Team, Bhatt et al.
(2022) have shown that generally dynamical models do not sig-
nificantly outperform their statistical model counterparts. In
fact, physics-based dynamical models can successfully forecast
sea ice properties several weeks ahead, and they struggle to
outperform simple statistical forecasts at longer lead times
(Guemas et al. 2016a; Wayand et al. 2019). This leaves a win-
dow open to explore statistical models.

Statistical models can be constructed from relationships
among sea ice variables and oceanic and atmospheric condi-
tions. Recently, statistical methods have been used to provide
sea ice field [sea ice concentration (SIC) and SIE] predictions
using numerous techniques such as the linear Markov model
(Yuan et al. 2016; Wang et al. 2022a), vector autoregressive
model (L. Wang et al. 2016, 2019), Bayesian logistic regres-
sion (Horvath et al. 2020), multiple linear regression model
(Ionita et al. 2019), and a combination of complex networks
and Gaussian process regression model (Gregory et al. 2020).
Statistical models have, in some cases, shown promise in ex-
ploiting sources of predictability at a 4-month or longer lead
time (Lindsay et al. 2008; Stroeve et al. 2016; Yuan et al. 2016;
Ionita et al. 2019). Wang et al. (2022a) showed that a linear
Markov model has skillful SIC predictions up to 7-month lead
times in the Pacific–Arctic sector.

In addition, deep learning (DL) is a field of study in com-
puter science and a type of artificial intelligence that provides
the capability to learn representations of data or to predict
data using computational methods with multiple layers (Chi
and Kim 2017; Kim et al. 2020; Andersson et al. 2021; Liu et al.
2021). DL has been successfully applied to sea ice forecasting
and achieved remarkable results at the synoptic scale (Ren
et al. 2022). However, DL requires large volumes of datasets
for the training process and enough validation data for statistical

significance tests. The observed sea ice time series of 43 years
can hardly meet the “big data” requirement at a seasonal time
scale (Liu et al. 2021).

Although numerous studies have documented predicting
SIC, SIE, and sea ice area (SIA), few have investigated Arctic
SIT prediction. For example, Ponsoni et al. (2020) evaluated
the statistical predictability of the Arctic SIV. They found
that SIT has relatively large spatial autocorrelation and is the
best predictor apart from the SIV itself. Gao et al. (2022) pro-
posed a statistical spatiotemporal two-stage model for SIT
and used it to generate probabilistic forecasts up to 3-month
leads. Furthermore, SIT predictions have potential value for
various industry and community groups. For example, opera-
tion of icebreakers requires knowledge of SIT to ensure
safety and establish the viability of transit to northern ports
(Huntington et al. 2015). Many engineering problems require
an estimate of ice thickness. SIT also allows us to predict ice
mass budgets.

Unfortunately, unlike SIC and SIE, which have been con-
tinuously observed by satellites for more than four decades,
long records of SIT observations are lacking (Lindsay and
Schweiger 2015; Dawson et al. 2022; Fiedler et al. 2022). Al-
though altimeter-based satellite measurements have begun to
fill this gap and machine learning can now estimate summer
SIT (Landy et al. 2022), these time series are not long enough
to support statistical modeling. Nevertheless, the Pan-Arctic
Ice Ocean Modeling and Assimilation System (PIOMAS)
provides a spatially and temporally complete simulation of
Arctic SIT over the satellite era from 1979 to the present
(Zhang and Rothrock 2003). PIOMAS compares reasonably
well to available satellite, aircraft, and in situ SIT measure-
ments (Schweiger et al. 2011; Laxon et al. 2013; Ponsoni et al.
2019) and has become a reference dataset in Arctic climate
studies (Mu et al. 2018; Shamshiri et al. 2022).

In this study, we aim to develop a linear Markov model
configured for the PIOMAS SIT seasonal prediction and test
the performance of physically relevant predictors, including
SIC, atmospheric, and oceanic variables in SIT prediction.
We also check whether Arctic SIT prediction shows a spring
predictability barrier, which has previously been observed in
regional dynamical model forecasts of sea ice area (Bonan
et al. 2019; Bushuk et al. 2020) and understand unique SIT
driving processes in different seasons. We follow the frame-
work of the Markov model developed by Wang et al. (2022a),
which consists of four modules with seasonal dependent varia-
bles and isolates the dominant processes for each targeted
season. SIT predictability is assessed at grid points and over
all seasons and subsequently compared with the SIT anomaly
persistence.

2. Data and methods

a. Potential predictors

This section identifies potential predictors as input into the
Markov model for SIT seasonal prediction. Generally, sea ice
is closely coupled with the ocean and atmosphere. Sea ice pre-
dictability is mainly provided by the intrinsic memory of sea
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ice and its related variables. Thus, accurate definition of the
state of the Arctic climate is the key to sea ice prediction.
Wang et al. (2022a) showed that the ocean heat content
(OHC) and SIT provide significant skill for Arctic SIC sea-
sonal prediction. Moreover, the accurate definition of the
state of the Arctic climate requires not only SIT and OHC
but also other variables that influence sea ice through dy-
namic or thermodynamic processes (Guemas et al. 2016a;
Yuan et al. 2016; Wang et al. 2019b; Ponsoni et al. 2020;
Wang et al. 2022a,b). Here, we choose to define the ocean–
ice–atmosphere coupled Arctic climate system with nine
variables: SIT, SIC, OHC in the upper 300 m, sea surface
temperature (SST), surface air temperature (SAT), 850-hPa
geopotential height (GPH), 850-hPa wind vector, surface
net radiative flux (SNRF), and surface net turbulent heat
flux (SNTF).

Monthly SITs are from the PIOMAS model product, which
is a coupled ocean–ice model that assimilates daily SIC, sea
ice motion (SIM), and SST satellite products (Zhang and
Rothrock 2003). PIOMAS couples the Parallel Ocean Pro-
gram (POP) ocean model with a 12-category thickness and
enthalpy distribution (TED) sea ice model and an assimila-
tion system. The TED sea ice model originates from the
Thorndike thickness distribution theory (Thorndike et al.
1975) and was enhanced by the enthalpy distribution theory
(Zhang and Rothrock 2001). The system is forced by National
Centers for Environmental Prediction–National Center for
Atmospheric Research (NCEP–NCAR) reanalysis, including
2-m SAT, 10-m surface winds, cloud fraction, downwelling
longwave radiation, precipitation, etc. Compared with 14 other
reanalyses, Ponsoni et al. (2019) showed that PIOMAS SIT is
in the best agreement with the observations that the root-
mean-square error (RMSE) and anomaly correlation coeffi-
cient (ACC) between the two datasets are 0.7 m and 0.66,
respectively. However, PIOMAS appears to overestimate SIT
in the thin-ice area of the Beaufort Sea and underestimate
SIT around the north coast of Canadian Arctic Archipelago
(CAA) and Greenland compared to IceBridge (X. Wang et al.
2016). Uncertainties in PIOMAS SIT are mainly from the
model forcing, physics, and parameterizations (Chylek et al.
2022). PIOMAS provides estimates of multiple ocean and ice
variables such as SIT, SIM, surface temperature, and upper-
ocean salinity, and covers the period from 1978 onward when
satellite ice concentration data are available for assimilation.

The CS2SMOS, merged CryoSat-2/SMOS satellite SIT data
using an optimal interpolation scheme (Ricker et al. 2017), are
used to verify the PIOMAS SIT products. Actually, SMOS satel-
lite can observe thin seasonal sea ice, and CryoSat-2 is designed
to detect thicker multiyear sea ice. Thus, CS2SMOS merges
these satellite observations and provides a more complete and
accurate picture of the state of changing Arctic SIT. Compared
to airborne SIT data, CS2SMOS shows an improvement over
CryoSat-2 in the thin ice regimes and has a low bias in the mixed
seasonal and multiyear ice regimes. The CS2SMOS SIT covers
the wintertime (October–April) from November 2010 onward.

Monthly SICs, on an equal-area polar stereographic projec-
tion with a spatial resolution of 25 km, are obtained from the
National Snow and Ice Data Center (NSIDC) (Comiso 2017).

The dataset was derived from passive microwave radiometers,
including Scanning Multichannel Microwave Radiometer (SMMR)
onNimbus-7 satellite, Special SensorMicrowave Imager (SSM/I) on
satellites of the Defense Meteorological Satellite Program (DMSP),
and the Special SensorMicrowave Imager/Sounder (SSMIS) aboard
DMSP-F17. The dataset was generated using the bootstrap algo-
rithmwith daily varying tie points.

The OHC data, from the global ocean–sea ice reanalysis
(ORAS5: Ocean Reanalysis System 5), were developed by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) OCEAN5 ocean analysis–reanalysis system and
cover the period from 1979 onward (Zuo et al. 2019). SST and
atmospheric variables are obtained from the latest ECMWF
reanalysis version 5 (ERA5) with a spatial resolution of 18
(Hersbach et al. 2020). ERA5 is produced using the version
of ECMWF’s Integrated Forecast System (IFS), CY41R2,
based on a hybrid incremental 4D-Var system. These varia-
bles are used to define the state of the atmosphere and ocean
coupled system for Markov model development.

b. Markov model

Here the Markov model follows the model framework
used in an earlier study (Wang et al. 2022a), which was an
improved version of Yuan et al. (2016). In addition to add-
ing OHC and SIT as model predictors, the updated Markov
model also consists of four seasonal modules with different
sets of predictors instead of being developed with one set
of variables for all seasons. Seasons are defined as follows:
winter (December–February), spring (March–May), summer
(June–August), and autumn (September–November). The im-
proved skill of the new model is mainly attributed to the fact
that the multimonth persistence of OHC and SIT anomalies
provides a crucial source of sea ice predictability and four sea-
sonal modules enable the model to accommodate seasonally
varying driving processes.

The updated Markov model is also constructed in the multi-
variate empirical orthogonal functions (MEOF) space. The
base functions of the model’s spatial dependence consist of
the MEOF eigenvectors calculated from these nine variables,
while the temporal evolution of the model is a Markov pro-
cess. Transition functions are accordingly determined by the
corresponding principal components (PCs). In other words,
the Markov model for sea ice prediction is built on multivari-
ate models, which can capture the covariability in the ocean–
ice–atmosphere coupled system instead of linearly regressing
on individual predictors. To reduce the model space and filter
out unpredictable small-scale features, we use only a subset of
leading MEOF modes. Therefore, the dominance of leading
modes in the climate system and the model’s ability to pick up
these modes are the keys to the success of the Markov model.

We preselect the SIT, SIC, OHC, SST, SAT, 850-hPa GPH,
850-hPa wind vector, SNRF, and SNTF to define the coupled
Arctic surface climate system. To reduce model dimensions,
we remove mostly open-water and land grid cells from the
SIC and SIT fields. The mostly open-water area is defined by
the cells where SIC # 15% occurred more than 96% of the
total all-season time series. We gridded all variable fields onto
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the native NSIDC 25-km polar stereographic grid and created
anomalies from 1979 to 2020 by subtracting climatologies
from monthly time series and keeping trends. Each anomaly
variable field is normalized via being divided by the standard
deviation of the time series at each grid cell. To emphasize
the SIT variability signal in the model construction, we weight
the normalized SIT anomalies by 2 and keep the other varia-
bles unchanged. Those normalized variable fields are then
stacked into a single matrix V (n, m), where n is the number
of grid cells of all fields (6823 for each field) and m is the
length of the time series (504). We decompose V into eigen-
vectors E and their corresponding principal components (PCs,
time series) P:

V 5 EPT, (1)

where the columns of E are orthogonal and the columns of P
are orthonormal; the superscript T denotes matrix transpose.
In this work, Eq. (1) is truncated to a subset of leading modes.
The truncation is determined by how skill and error depends
on the number of EOFs retained (see section 3 and Fig. 2).
The Markov model is computed using the single-step correla-
tion matrix, which is a transition matrix A satisfying the fol-
lowing linear relation:

Pi11 5 APi 1 ei, (2)

where i is the ith calendar month and ei is the error in the model
fit. Transition matrix A is computed by multiplying Eq. (2) with
PT
i

Pi11P
T
i 5 APiP

T
i 1 eiP

T
i : (3)

For the best model fit, ei and PT
i should have no correlation.

Thus,

A 5 (PT
i i11P

T
i )(PiP

T
i )21: (4)

Transition matrix A is constructed to be seasonally dependent
because of the strong seasonality of SIT and related variables.
Thus, Eq. (4) is applied to 12 subsets of PCs to obtain corre-
sponding transition matrices for each of the 12 calendar
months. It is worth mentioning that the term “target month”
refers to the month that is being predicted throughout the
manuscript, and “lead month” refers to the number of
months prior to the target month that the forecast was
initialized.

Then, Arctic SIT seasonal prediction can be carried out
through the following five steps:

1) We create 12 variable combinations representing different
aspects of climate conditions to examine which variable
or combination of variables provides the highest SIT pre-
diction skill.

2) The PCs corresponding to each combination of variables
are computed by the MEOF Eq. (1) with different trunca-
tions of leading modes.

3) Transition matrices A corresponding to calendar months
are calculated by Eq. (4).

4) The predictions of the PCs are made by Eq. (2) one lead
month at a time, applying the corresponding transition
matrices.

5) The predicted PCs are combined with the respective ei-
genvectors to generate SIT anomaly prediction for each
variable combination.

The prediction skill is measured by the ACC, percentage of
grid points with significant ACC (PGS), and RMSE between
PIOMAS SITs and predictions. We train the Markov model
using a cross-validation scheme (Barnston and Ropelewski
1992) that builds a model with a 1-yr moving window of data
removal and then use this window of data to evaluate the
model performance. Specifically, we remove one year of time
series from a PC and use the rest of the PC to calculate the
transition matrix. Then we make a 12-month prediction of PC
for that year. We repeat the procedure for each year of PCs
and obtain the cross-validated predicted PCs from 1980 to
2020. Such a cross-validated experimental design reduces arti-
ficial skill without compromising the length of the time series.
The superior model configuration for each season thus can be
identified by testing the Markov model with different variable
combinations and different truncation of modes in the cross-
validated model experiments. The complete SIT anomaly pre-
dictions can then be generated by combining subpredictions
made by the optimal model in each season. The predicted SIT
anomalies are divided by a weight value of 2, multiplied by
the standard deviation, and the climatology is added to gener-
ate the complete SIT predictions.

To assess the ability of the Markov model to predict re-
gional SIT, the Arctic is separated into 12 subregions (Fig. 1).
The regional domains are chosen following the NSIDC defini-
tions. In addition, the SIT shows an extensive thinning through-
out the Arctic Ocean basin, especially in the East Siberian Sea,
and a narrow band along the Canadian Arctic Archipelago
(CAA) and Greenland (Fig. S1 in the online supplemental
material). The variability in SIT measured by the standard devi-
ation of anomaly is also high in these regions with large linear
trends. As the trends are essential parts of the total variability,
we retain the trends in SIT anomalies while building the Mar-
kov model and also conduct a postprediction evaluation of the
impact of trends on the model skill.

3. Prediction experiments and evaluation of predictors

To construct an optimal model for each season, we first ex-
amined the prediction skill of models with different initial cli-
mate conditions to determine which variable combinations
and number of modes should be retained in building a Mar-
kov model. As the modes are sorted based on the explained
variance in the MEOF analysis, using too few leading modes
in the model will miss some predictable signals, and too many
may lead to overfitting and contaminate the model with un-
predictable small-scale features. For this practical issue, we
tested the prediction skill and sensitivity of the model through
a series of cross-validated model experiments with different
variables and numbers of leading modes. The variable combi-
nations are listed in Table 1. Models with V2–V7 and V9–V11
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are weighted toward thermodynamic processes, while V8 and
V12 represent the integration of thermodynamic and dynamic
processes. In addition, we first evaluated the contribution of
each predictor to the model skill by using V1–V8 and further
combined better predictors into more-variable combinations
(V9–V11) to determine the optimal variable combination in
the Markov model. V1 and V12 were used as the control com-
binations in the model experiment.

The cross-validation scheme was carried out for the PCs de-
composed from each variable combination to make predic-
tions at 1–12-month leads. The PGS and mean RMSE for
each lead time in each season were calculated to test the mod-
el’s sensitivity. We retained up to 30 modes in the model to
avoid missing fundamental predictable signals and then deter-
mined the best model configuration according to model skill.
We averaged the model prediction skill at all lead times for
each season, and the results are shown in Fig. 2. In general,
models with high ACC have a smaller RMSE. Figure 2 shows
that the predictive skill decreases steeply and RMSE in-
creases after 26 modes for all seasons, especially in summer

and autumn, implying that the modes beyond mode 26 mainly
represent unpredictable small-scale features. In addition, the
model with fewer than 3 modes misses many predictable sig-
nals. Similar to the SIC prediction, the SIT prediction model
also needs more modes in winter and spring than in summer
and autumn, which is likely due to the greater regional SIT
variability and relatively weaker trends in the cold season. In
contrast, the model skill is better during the cold season, con-
trary to the Markov model for SIC prediction (Wang et al.
2022a).

The contribution of different variables to SIT prediction
skill in each season was also assessed. Undoubtedly, the
model skill comes primarily from SIT itself. The model based
on V1 (SIT only) has PGS scores above 85% in the cold sea-
son and above 80% in the warm season. It also has a relatively
low RMSE without additional information (Fig. 2). Adding
other oceanic and atmospheric variables, especially the ocean
information, the Markov model can further improve the pre-
diction skill because it can capture the covariability in the
ocean–ice–atmosphere coupled system. However, SIC cannot

FIG. 1. Arctic regions used in this study.

TABLE 1. Variable combinations in cross-validated experiments. V1 represents the no. 1 variable combination. A � denotes a variable
included in the corresponding combination.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

SIT � � � � � � � � � � � �
SIC � �
OHC � � � � �
SST � � � �
SAT � � � �
SNTF � � � �
SNRF � � � �
GPH, U, V � �
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provide much skill for SIT prediction, especially during the
cold season, because the Arctic Basin is mostly covered by
sea ice with near 100% concentration in the cold season with
little variability. At the same time, there is still significant vari-
ability in the SIT. Thus, SIC does not contribute significantly
to SIT predictability.

OHC generally contributes more to the SIT prediction skill
than other variables. At the same time, the model with SST is
more prominent in autumn (Fig. 2), suggesting that the ocean
provides a considerable source of memory for SIT prediction
skill and plays a crucial role in SIT variability. The results are
consistent with previous studies that the SST memory of
spring climate anomaly allows sea ice anomaly to reemerge in
the following ice growth season (Guemas et al. 2016b; Bushuk
et al. 2017; Dai et al. 2020; Lenetsky et al. 2021). In the cold
season, the Arctic Ocean is almost covered by sea ice resulting

in the SSTs being almost constant with no variability, which
does not correspond with the SIT variability. In the warm sea-
son, especially in autumn, sea ice coverage is minimal. There-
fore, the SST variability is the most significant over the year,
which could substantially contribute to the SIT prediction skill.
Compared with SST records, the OHC record shows a larger
signal-to-noise ratio (Cheng et al. 2018), which is beneficial for
EOF to capture the leading variability signal of OHC. The
coupled relationship between OHC and SIT can be captured
by MEOF analysis, showing that negative OHC anomalies
correspond to positive SIT anomalies and vice versa. How-
ever, minor inconsistencies occur in some modes and regions
(Fig. S3). In addition, the explained variance of the leading
MEOF modes of SIT and OHC is greater than that of SIT,
GPH, and winds (Fig. S4). This reflects that the ocean can pro-
vide more prediction skill than the atmosphere on a seasonal

FIG. 2. Mean PGS and RMSE between SIT predictions and PIOMAS data in each season. (a) Mean PGS for winter
target months is obtained by averaging prediction skill at 1–12-month leads. The x axis is the number of MEOF
modes, and the y axis is variable combinations corresponding to Table 1. (b),(e),(f) As in (a), but for spring, summer,
and autumn target months, respectively. (c),(d),(g),(h) As in (a), (b), (e), and (f), but for RMSE. PGS denotes per-
centage of grid points with significant ACC and helps us to determine the model configuration.
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scale. Therefore, the OHC plays a crucial role in sea ice vari-
ability for all seasons and provides a significant memory source
for the SIT prediction skill.

In addition, the prediction skills provided by SAT, turbu-
lent heat flux, and radiative heat flux are also not as significant
as those provided by OHC. The dynamic climatic conditions
defined by GPH and winds even have a negative impact on
SIT prediction by the Markov model, which we will further
discuss in section 6.

Based on the model skill measured by PGS and RMSE,
we primarily selected three superior model configurations
marked by black boxes in Fig. 2 for each season. To further
determine which model configuration makes the best predic-
tion in each season, we spatially averaged the prediction skill
for 1–12-month leads (Fig. 3). The prediction skill of those su-
perior models has similar magnitudes and variabilities in win-
ter, while large differences occur in autumn. It also shows that
the model skill rapidly decreases between 1 and 3 lead months
in spring. In other words, the model does not perform well in
SIT predictions during spring using the previous winter’s ini-
tial conditions. Moreover, the model skill in autumn increases
steeply at the 7-month lead, suggesting that the model per-
forms better in autumn SIT prediction using spring initial
data. This correlation feature refers to melt-season SIT anom-
alies to recur the following ice growth season. It could be re-
lated to the SST reemergence that spring SST anomalies are
stored beneath the summer mixed layer and reemerge to the
surface when the mixed layer deepens the following autumn
(Blanchard-Wrigglesworth et al. 2011; Bushuk and Giannakis
2017). Therefore, the oceanic memory could induce sea-ice
anomalies during the growth season and partially contributes
to long-lead SIT predictability.

To avoid possible overfitting, we chose the configuration
with the minimum number of variables and modes from these
superior models with roughly the same level of skill. There-
fore, we chose V3M13 and V3M14 as the best models for

winter and spring, respectively, since they show the lowest
RMSE and fewer variables and modes. We chose V3M9 for
summer since it shows the highest PGS. For autumn, we chose
V9M9 because it performs best at 1–8 lead months, although
V12M7 dominates PGS beyond the 9-month lead.

4. Prediction skill assessment

The SIT predictions made by the model built above were
evaluated at each grid cell and for all seasons using the cross-
validated model skill measured by ACC and RMSE. The
model skill is presented at 3, 6, 9, and 12 lead months (Fig. 4).
Overall, the model has higher prediction skill for cold seasons
than for warm seasons, which is contrary to Arctic SIC predic-
tion (Wang et al. 2022a). The skill of SIT predictions also
does not show regional differences between the Atlantic and
Pacific sectors, as shown by skill features of SIC predictions.
The skill in the central Arctic basin is highest in winter, and
the skill in the peripheral seas is highest in spring. The sum-
mer prediction skill shows a similar pattern as the autumn
skill but with a roughly 0.1 higher ACC. In addition, the
model skill decreases gradually with an increase in lead
months, but it is still significant even at 12-month leads for all
seasons in the Arctic basin. Spatially, high forecast skill is
concentrated in the central Arctic basin, where the SIC
predictability is very low. The Bering Sea and the Sea of
Okhotsk show moderate prediction skills during cold seasons,
whereas the skills disappear in warm seasons since sea ice
completely melts in those areas. The main controlling factors
of the spatial feature in the model skill are further discussed
in section 6.

RMSEs are consistent with ACC: low RMSEs correspond
to high correlations, and vice versa, although minor inconsis-
tencies occur in some regions (Fig. 5). The SIT prediction er-
rors are most significant along the coastlines of the Arctic
Ocean and smallest in the interior Arctic and the peripheral

FIG. 3. Prediction skill for preliminary selection of superior models in each season. (a)–(d) Prediction skill measured by mean PGS for
each target season. (e)–(h) As in (a)–(d), but for RMSE. V3M13 marked in legend represents the model constructed by the number 3 var-
iable combination with up to 13 leading modes.
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seas for all seasons, which is consistent with the results of
Tietsche et al. (2014). The magnitudes of RMSE remain at
roughly the same level from 3- to 12-month leads in most lo-
cations. In addition, the error magnitudes in summer are the
largest but still smaller than the SIT standard deviation
(Fig. S1).

To show the regional and seasonal prediction skill for Arc-
tic SIT total anomalies, we averaged the ACC in each region
for all target months and lead months (Fig. 6). The result
shows that each region displays a unique ACC feature. Skill is
high (0.7–0.8) even up to 12-month leads in the central Arctic,
East Siberian Sea, Chukchi Sea, and Beaufort Sea, which may
be partially attributed to SIT trends and the ability of the

Markov model to capture the trends and variability. The
model in other marginal seas also performed well with an
ACC of 0.5–0.6. Nevertheless, the skill is generally lower than
0.3 in peripheral seas including the Greenland Sea, Sea of
Okhotsk, and Bering Sea, especially in summer. These regions
are almost ice-free in summer, which cannot provide enough
SIT information to the model. Also, the model performance
is further evaluated against anomaly persistence (Fig. 6 and
Fig. S6). The prediction skill of the Markov model exceeds
that of an SIT persistence forecast in most regions of the Arc-
tic, especially at 2–12-month leads. The model skill does not
exceed persistence in the Canadian Archipelago and Baffin
Bay during autumn when ice disappears. Furthermore, Arctic

FIG. 4. Cross-validated model skill measured by ACC between SIT predictions and PIOMAS SIT anomalies as a function of target
seasons and lead months. Only correlations significantly above 95% confidence level based on Student’s t test are shaded.
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sea ice has experienced a well-known declining trend over the last
four decades. Specifically, September SIE (SIC) declined at
20.81 km2 yr21 (212.7% decade21) during 1979–2021 (Meier
et al. 2021). SIT has been decreasing at a rate from 23 to
24 cm yr21 in most regions of the Arctic (Fig. S1a). Figure S2
shows that dimensionless SIT trends in theArctic basin are a large
part of SIT variabilities, which could largely contribute to the SIT
prediction in the Markov model. Thus, it is worth evaluating the
contribution of long-term SIT trends to theMarkovmodel skill.

5. Contribution of SIT trends to prediction skill

To evaluate the contribution of monthly trends to the Mar-
kov model skill, we conducted a postprediction analysis in

which respective monthly trends were removed from the ini-
tial SIT anomaly and predictions in each Arctic region. The
detrended ACC thereby removes skill associated with secular
trends and focuses on interannual anomalies. Although the
model skill is significantly reduced for all seasons after a linear
detrending, they are still high in the Arctic basin including the
central Arctic, Beaufort Sea, East Siberian Sea, and Chukchi
Sea (Fig. 7). The prediction skill is higest in the Beaufort Sea.
The ACCs are above 0.6 up to 12-month leads in winter and
up to 4-month leads in summer, representing skillful predic-
tions. The ACC in the central Arctic is generally 0.1 lower
than that in the Beaufort Sea. The East Siberian Sea and
Chukchi Sea have a similar ACC pattern in which prediction
skill is significant for up to 12-month leads in the cold seasons

FIG. 5. As in Fig. 4, but for RMSEs.
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and up to 6-month leads in the warm seasons. Canadian
Archipelago and Baffin Bay also have a similar correlation
structure that reasonable prediction skill only occurs in the
cold seasons. In the Kara Sea, the model has moderate skill in
fall and spring. The ACC in the peripheral seas is lower than
0.4 in general, especially in the warm season when ice melts
away. The model skill in the cold season is generally higher
than in the warm season after trend removal. Overall, the
Markov model has the ability to capture predictable SIT in-
ternal variability in the Arctic.

The contributions of monthly SIT trends to the model skill
are described by the difference between ACCs in Figs. 6 and
7. The results show that the SIT trends contribute largely to
the model skill for all seasons in the central Arctic and most
marginal seas, especially at longer lead months (6–12). Aver-
aging the ACC reductions (Fig. 8) at all lead times and target
months, it was reduced by 40%, 55%, 49%, and 47% in the
central Arctic, Laptev Sea, East Siberian Sea, and Chukchi
Sea, respectively, after the trend was removed (Table 2). The
mean ACC was reduced by 33%, 40%, 38%, and 38% in
those regions over 1–6-month leads. Monthly trends also con-
tribute 80% of skill in Canadian Archipelago prediction in

the warm seasons and contribute 48% of skill in Kara Sea
summer predictions.

Interestingly, the SIT trends make insignificant contribu-
tions to the prediction skill in the Beaufort Sea, which con-
trasts with other marginal seas. The average trend of SIT
anomalies in the Beaufort Sea is equivalent to that of the
Chukchi Sea and smaller than that of the East Siberian Sea,
while the average standard deviation of the SIT anomalies is
the largest among all Arctic regions. In other words, the SIT
in the Beaufort Sea has the largest interannual variability,
which could contribute significantly to the SIT predictability.
Interannual variability of SIT in the Beaufort Sea is associ-
ated with Beaufort Gyre (BG) (Petty 2018; Mahoney et al.
2019). The BG is an anticyclonic ice–ocean circulation system
and is driven by the semipermanent Beaufort High. The BG
is a prominent sea ice and ocean surface circulation feature of
the Arctic Ocean and is thought to play a significant role in
regulating Arctic sea ice variability (Armitage et al. 2020).
Generally, the anticyclonic winds associated with Beaufort
high set sea ice in motion. During the anticyclonic circulation
regime, sea ice has the opportunity to thicken through ice
growth and deformation due to Ekman convergence (Petty

FIG. 6. Seasonal SIT prediction skill (ACC) in Arctic regions. Black crosses represent ACCs significantly above 95% confidence level,
and blue circles marked on crosses indicate the months in which the model’s skill exceeds the persistence forecast. The contours of 0.4,
0.6, and 0.8, are superimposed on images.
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et al. 2016). While weakening or even reverse of the anticy-
clonic circulation regime can enhance sea ice export from the
Beaufort Sea and thin the SIT. Therefore, the variability of
SIT driven by BG is relatively large in the Beaufort Sea,
which predominantly contributes to the prediction skill.

6. Discussion

Due to the lack of long records of SIT observations (Lindsay
and Schweiger 2015; Dawson et al. 2022; Fiedler et al. 2022),
here we used the model product from PIOMAS as the observed
Arctic SIT. To evaluate the reliability of the data, we further
used altimeter-based satellite observations from CS2SMOS in
wintertime for the period 2010–20 to verify the PIOMAS SIT,
although earlier works have proven that PIOMAS is reliable
(Laxon et al. 2013; Mu et al. 2018; Ponsoni et al. 2019; Chylek
et al. 2022). The results show that the spatial features of the
SIT standard deviation from the two datasets are similar
(Figs. 9a,c). Large SIT variability with a monthly standard devi-
ation greater than 0.6 m, mainly occurs in north coast of Cana-
dian Arctic Archipelago (CAA) and Greenland, while weak
variability mainly occurs in the peripheral seas. The main differ-
ences between the two are that SIT variability from PIOMAS is

relatively small in the Greenland Sea and large in north side of
islands in the Arctic Ocean such as New Siberian Island, North
Island, and Franz Josef Land.

The SIT climatologies from the two datasets are also similar
in magnitude in February when sea ice is thickest (Figs. 9b,d).
Thicker ice (.2.5 m) mainly distributes along the band north
of CAA and Greenland, where multiyear ice dominates the
thickness of sea ice. Thin ice (,1 m) is mainly composed of
seasonal ice spreads in peripheral seas including the Barents
Sea, Bering Sea, and Sea of Okhotsk. Compared with CS2SMOS,
PIOMAS sea ice is relatively thinner in the central Arctic and
Greenland Sea and thicker in other regions. In addition, the cor-
relations between the two datasets are generally high, especially
in the marginal seas and peripheral seas (Fig. 9e). RMSEs
are consistent with ACC: high correlations correspond to low
RMSEs, and vice versa, although minor inconsistencies occur
in some regions (Fig. 9f). Thus these analyses suggest that the
PIOMAS SIT captures the main characteristics of the satellite
observed SIT.

To check the robustness of our model, we further use seven-
fold cross validation to evaluate the prediction skill of the opti-
mal model that V3M13, V3M14, V3M9, and V9M9 as the best
models for winter, spring, summer, and autumn, respectively.

FIG. 7. Seasonal SIT prediction skill measured by ACC between detrended initial SIT and detrended predictions. Black crosses represent
ACCs significantly above 95% confidence level. The contours of 0.4 and 0.6, are superimposed on images.
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In sevenfold cross validation, the 42-yr time series is parti-
tioned into seven equal-sized subsamples. Of the seven sub-
samples, a single subsample (6-yr time series) is retained as
the validation data for testing the model, and the remaining

six subsamples are used as a training set. The cross-validation
process is then repeated seven times, with each of the seven
subsamples used exactly once as the validation set. Sevenfold
cross validation is equivalent to leave-6-years-out cross validation.

FIG. 8. Skill differences between Figs. 6 and 7. Black crosses indicate that ACC differences are significant above 95% confidence level.
The contours of 0.2 and 0.4, are superimposed.

TABLE 2. Mean ACCs between prediction and PIOMAS SIT when monthly SIT trends are retained or removed in each Arctic
region. Here mean ACCs are calculated from 1- to 12-month leads and from 1- to 6-month leads, respectively. “Reduction” denotes
contribution of monthly SIT trends to ACCs.

Arctic regions

1–12 lead months 1–6 lead months

ACC Detrended ACC Reduction ACC Detrended ACC Reduction

Central Arctic 0.81 0.49 40% 0.84 0.56 33%
Greenland Sea 0.3 0.18 41% 0.32 0.22 33%
Barents Sea 0.43 0.27 38% 0.46 0.33 28%
Kara Sea 0.61 0.35 43% 0.63 0.4 37%
Laptev Sea 0.52 0.23 55% 0.57 0.35 40%
East Siberian Sea 0.75 0.39 49% 0.79 0.49 38%
Chukchi Sea 0.73 0.38 47% 0.76 0.47 38%
Beaufort Sea 0.77 0.59 23% 0.8 0.66 18%
Sea of Okhotsk 0.25 0.14 45% 0.29 0.2 32%
Bering Sea 0.2 0.15 26% 0.22 0.18 21%
Canadian Archipelago 0.64 0.25 61% 0.65 0.29 55%
Baffin Bay 0.41 0.28 33% 0.44 0.32 27%
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The result shows that the prediction skill from leave-6-years-out
cross validation shows a similar pattern as the skill from leave-
1-year-out cross validation but with a roughly 0.1 lower ACC
(Figs. 10 and 4). High forecast skill are also concentrated in the
central Arctic basin. The model skill decreases continuously
with an increase in lead months, but it is still significant even at

12-month leads for all seasons in the Arctic basin. In addition,
RMSEs from the two cross validations also have similar pat-
terns, although the former has 6 cm larger (Fig. S5 and Fig. 5).
These above results support the robustness of the model.

To check if the Markov model skill is sensitive to SIT
anomaly time series weights, we calculated the seasonal SIT

FIG. 9. Comparison of winter SITs between CS2SMOS satellite observations and PIOMAS model product from 2010
to 2020. (a) Standard deviation of CS2SMOS SIT monthly mean anomalies in the cold season (November–March).
(b) CS2SMOS SIT in February averaged over the period. (c),(d) As in (a) and (b), but for PIOMAS SIT. (e) Anomaly
correlation coefficient (ACC) between two SIT monthly mean anomalies. (f) As in (e), but for RMSE.
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prediction skill (ACC) of the model, in which SIT anomaly
time series is unweighted in calculating MEOFs. The results
show that the ACC patterns and magnitudes of Fig. S7 (un-
weighted) are very similar to those of Fig. 6 (weighted) for all
Arctic regions, which reflects that the influence of weighting
the SIT anomaly time series by a factor of 2 on the model skill
is not fundamental. Since we emphasize SIT, we keep the
weight in calculating MEOFs.

We constructed a Markov model with an optimal variable
combination. However, this model is not perfect because it is
challenging for us to test all variable combinations in nature.
In other words, it does not rule out the existence of other vari-
able combinations, which can improve the SIT prediction skill
of the Markov model. In addition, we find that the contributions

of OHC to the SIT prediction skill are more significant than
those of all atmospheric variables on a seasonal scale (Fig. S4).
It may be that the atmospheric variabilities are mainly on
shorter time scales relative to changes in sea ice and ocean, and
the ocean dominates the seasonal variability of SIT with massive
heat and significant seasonal signals. Guemas et al. (2016a) also
suggested that although the atmospheric process stands as a ma-
jor driver of Arctic sea ice, its low predictability beyond 1 or
2 weeks makes the atmosphere unable to be a crucial source of
sea ice predictability. Although surface radiation flux can pro-
vide some skill for the model, the contribution is much smaller
than that of OHC. Adding GPH and winds to the Markov
model could even reduce the SIT prediction skill, implying that
the Markov model cannot well capture the SIT prediction skill

FIG. 10. As in Fig. 4, but for the case where the prediction skill (ACC) is calculated from sevenfold cross validation.
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from dynamic signals in pan-Arctic averages, even though these
dynamic factors play a vital role in Arctic SIT regional or local
changes. Blanchard-Wrigglesworth et al. (2011) also pointed out
that atmospheric circulation has little contribution to sea ice per-
sistence in the seasonal time scale.

Many studies have shown evidence for an Arctic sea ice
spring predictability barrier that forecasts of September sea
ice initialized prior to May are substantially less skillful than
forecasts initialized after May (Day et al. 2014; Bushuk et al.
2017; Bonan et al. 2019; Bushuk et al. 2020). This spring pre-
dictability barrier especially exists across the Laptev, East
Siberian, and Beaufort Seas (Bushuk et al. 2019). However,
Arctic SIT forecasts by the Markov model are capable of
breaking through this spring predictability barrier, which is
likely attributed to SIT and OHC long persistence and the
capability of the Markov model to capture the covaraibility
between SIT and OHC. Unlike the SIC prediction that the
model skill in the warm season is substantially higher than
that of in the cold season (Wang et al. 2022a), the SIT predic-
tion skill is high in the cold season. This may be mainly attrib-
uted to the large SIT variability in the cold season. In addition,
SIT persists much longer than SIC (Blanchard-Wrigglesworth
et al. 2011). The persistence time scale of SIT is approximately
1 year in the central Arctic and a few months in the seasonal
ice zone, while the persistence of nondetrended SIC anomalies
is a 1–5-month time scale. With global warming and polar am-
plification, Arctic surface air temperature will continuously in-
crease, and along with it, the OHC of the Arctic Ocean in the
coming decades. Such an Arctic climate system will lead to
thinner sea ice and shrinking SIT persistence. Thus, SIT pre-
dictability might be further reduced in the future.

7. Conclusions

In this study, we developed a linear Markov model config-
ured for Arctic SIT seasonal prediction and tested the per-
formance of physically relevant predictors. The model was
constructed in the MEOF space and captured the covariabil-
ity of the ocean–ice–atmosphere coupled Arctic climate sys-
tem with nine variables: SIT, SIC, OHC, SST, SAT, SNRF,
SNTF, GPH, and winds. Based on cross-validation experi-
ments, we chose V3M13, V3M14, V3M9, and V9M9 as the
best models for winter, spring, summer, and autumn, respec-
tively. V3 is composed of SIT and OHC, and V9 is composed
of SIT, OHC, SST, and SAT. The two variable combinations
are both weighted toward thermodynamic processes. The
cross-validation experiments also showed that the model skill
comes primarily from SIT itself. OHC generally contributes
more SIT prediction skill than other variables.

The SIT prediction skill was evaluated in each Arctic region
and for all seasons. Similar to the SIC prediction, the SIT pre-
diction by the Markov model is not sensitive to the number of
MEOF modes retained, which indicates that the performance
of this Markov model is robust and can be determined by a
small subset of leading modes. More modes were also needed
in the cold season to capture the predictable SIT signal. In ad-
dition, with an increase in the number of lead months, model
skill decreases continuously. SIT prediction has better skill in

the cold season than in the warm season, which is opposite to
SIC prediction. Spatially, each Arctic region displays a unique
ACC feature when linear trends are retained in SIT anoma-
lies and predictions. Skill measured by ACCs is high (0.7–0.8)
in the central Arctic, East Siberian Sea, Chukchi Sea, and
Beaufort Sea. The model in other marginal seas also per-
formed well with an ACC of 0.5–0.6. Nevertheless, the skill is
generally lower than 0.3 in peripheral seas, including the
Greenland Sea, Sea of Okhotsk, and the Bering Sea, espe-
cially in summer because those regions are almost ice-free in
summer, which cannot provide enough SIT variability for the
model to capture and predict.

The monthly SIT trends contribute largely to the model
skill for all seasons in the central Arctic and most marginal
seas. Trend removal from predictions and observations results
in a 40%, 55%, 49%, and 47% reduction of the mean ACC
for the central Arctic, Laptev Sea, East Siberian Sea, and
Chukchi Sea at 1–12-month lead. Trend’s contribution to the
model skill increases continuously with the number of lead
months. The mean ACC actually reduced by 33%, 40%, 38%,
and 38% in those regions over 1–6-month leads. Interestingly,
the SIT trends make a minor contribution to prediction skill
in the Beaufort Sea, which is drastically different from other
marginal seas. Although the model skill is significantly re-
duced for all seasons after linear trend removal, the model is
still skillful in many Arctic regions. The ACCs are approxi-
mately 0.6 up to 4-month leads, and 0.4 up to 12-month leads
in the Beaufort Sea where the skill is the highest among all
the Arctic regions. The ACC in the central Arctic is generally
0.1 lower than that in the Beaufort Sea. Moreover, the mod-
el’s skill is higher than the SIT persistence skill in all Arctic
regions at 2–12-month leads, revealing the Markov model’s
capability of capturing predictable SIT internal variability be-
yond linear trends.

The advantages of the SIT Markov model can be summa-
rized as follows. First, the Markov model for SIT prediction is
built on multivariate spaces, which can capture the covariabil-
ity in the ocean–ice–atmosphere coupled system instead of
linearly regressing on individual predictors. In particular, the
covariability of SIT and OHC contributes to long-lead SIT
predictability. Second, we use only the first 9–14 leading
MEOF modes to filter out unpredictable small-scale features
and pay more attention to the predictable signals. Finally, the
model consists of four seasonal modules with different sets of
predictors, accommodating seasonally varying driving pro-
cesses and avoiding weak signal seasons dominated by strong
signal seasons. Benefiting from the above advantages, the
Markov model can capture the melt-to-growth season ree-
mergence of SIT predictability, shows no spring predictability
barrier, and is an effective tool for seasonal predictions. Fur-
ther investigation is also required in order to establish a sys-
tematic physical mechanism for explaining the nonexistence
of a spring predictability barrier in our Markov model
predictions.

Combined with the previous work (Wang et al. 2022a), the
successful applications of the Markov model in SIT and SIC
predictions also reflect that spatiotemporal characteristics of
SIC and SIT predictability are distinct. These results give us
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many new insights. This study expands the prediction of SIC
and SIE to a new dimension. SIT prediction is more valuable
for navigating in polar seas, which provides information for
fuel assumption estimates of ice breakers. The knowledge of
SIT and SIC also allows us to estimate volume of sea ice. In
addition, year-round satellite SIT records from CryoSat-2
have recently been generated (Landy et al. 2022), giving us
with more advanced satellite SIT data to predict sea ice or
evaluate sea ice predictions in the future, although its time se-
ries currently is too short for an application at the seasonal
scale. The findings and products from this study will further
support us in investigation of Arctic SIV predictions in future
work.
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