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ABSTRACT

The relative polarization of the two photons emitted when a posi-
tron annihilates at rest has been re-investigated with high precision
and a different method of data analysis. An experiment using a pair of
ideal polarizatiqn analyzers to measure this relative polarization would
be a special case of the general class of thought experiments discussed
by Einstein, Podolsky, and Rosen (EPR). EPR argued from these thought
experiments that a physical system can exist in a state with definite
values for two non-commuting variables. Since quantum mechanics can not
describe such a state, EPR called quantum mechanics "incomplete'. But
EPR believed a complete theory---sometimes called a hidden variable theory--
is possible. (This argument of EPR is sometimes called the Einstein-
Podolsky-Rosen ''paradox'.)

. Our‘experiméntal results, together with a theorem due to Bell,
provide strong evidence that a local 'hidden variable' theory is not
possible. The results also rule out a hypothetical modification of quan-
tum mechanics, suggested by Bohm and Aharonov, which was motivated by

the EPR thought experiments.

Compton scattering was used to analyze the linear poiarization.
But the theorem of Bell, mentioned above, applies to relatively "ideal"
polarization measurements. Therefore, it was necessary to prove the
existence, and find the explicit form of the function { relating Compton
and ideal linear polarization measurements. The existence of { is shown
here to follow from general principles of quantum mechanics, plus parity
and angular momentum conservation; the explicit form of { is deduced from
the Klein-Nishina equation. Experimental evidence is cited against the

argument that 4 may be different in a local "hidden variable' theory.
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Chapter I
Introduction and Summary
A. Historical Introduction

Quantum mechanics had enjoyed well known success as a framework
for describing a multitude of physical phenomena. Nevertheless, some
physicists believe that in its present form quantum mechanics is only
an approximation to a more complete physical theory; among these physicists
was Albert Einstein.

It was Einstein's belief that in the more complete physical
theory, contrary to the usual interpretation of quantum mechanics,
physical variables would have definite values before they were measured.
He offered philosophical arguments for this belief, and in turn was
answered by philosophical arguments.

Then in 1957, Bohm and Aharonov (Bo 57,60) pointed out the signi-
ficance of a practical experiment which had in fact already been performed.
Wu and Shaknov (Wu 50) had in 1950 measured the relative linear polariza-
tion of the photons emitted upon positron annihilation in a metal. Bohm
and Aharonov showed that this experiment ruled out a certain hypotheti-
cal modification of quantum mechanics which was motivated by some of
Einstein's ideas.

But it was J. S. Bell (Be 64, 70) who, in 1964, showed that a
suitable experiment would rule out Einstein's complete theories--if the
experimental results agreed with the quantum predictions. It is shown in
this chapter that, if certain reasonable assumptions are permitted, then
a more extensive version of the Wu-Shaknov measurement is a suitable

experiment.



Before Bell's work was published, the Wu-Shaknov experiment had
been already repeated by Bertolini et al. (Be 55) and Langhoff (La 60).
Wu and Shaknov had analyzed the linear polarizations by Compton scattering
in aluminum. Langhoff used scatterers made of plastic scintillators to
help discriminate against background events, used detectors subtending
scattering angles much smaller than Wu and Shaknov's, and in addition
made measurements at many different azimuthal Compton scattering angles.
The results of all three experiments agreed with quantum predictions.
However, certain data needed for the analysis presented below, which
shows how Bell's theorem can be applied, was not recorded (viz., n, and
n2 in Equation 14).

The Wu-Shaknov experiment has again been repeated (Ka 70a, 70b).

All necessary data was recorded. Also, in the present experiment data were
taken simultaneously over different scattering angles--with the actual
scattering angles for each event determined by the energy of the scattered
photons.

The results of this experiment are in excellent agreement with
the quantum predictions. This constitutes strong evidence against the
possibility of the complete theories envisaged by Einstein (referred to
as local hidden variable theories by Bell). It must be born in mind
that the evidence is strong but not absolute, since additional assump-
tions have been introduced. The experiment also confirms that the Bohm-

Aharonov hypothesis may be ruled out.



B. A Summary of the Quantum Predictions for Polarization Measurements
Made on Annihilation Photons.
It follows* (Ya 50) from conservation of parity and angular
momentum that when a positron and electron which are both at rest anni-
hilate into two photons, the angular momentum and parity ¥ of the photon

state is

and therefore the state may be represented by the vector

g = RR> - |LL> (1a)

V2
where |RR>(|LL>) is a state containing two right (left) circularly polari-
zed protons with momenta along the Z axis. This may also be written

y = IXY> - IYX> (1b)

V2
where |XY> is the state containing a photon moving in the +Z direction
with linear polariaation along the X axis and a photon moving in the
-Z direction with polarization along the Y axis. |YX> is a similar state.

The implications of Equations la and 1b are as follows:
1. Suppose the linear polarization of either photon is measured. The
probability that the result will be X is 1/2, and the probability that
the result will be Y is 1/2.
2. Suppose simultancouslinear polarization measurements are made on
the two photons. Whenever the result X is obtained for one, the result
Y will be obtained for the other; and whenever the result Y is obtained
for one, the result X will be obtained for the other.

3. When circular polarization measurements are made on either photon,

*See Appendices A and B for physical and formal derivations.
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the probability of obtaining L is 1/2 and the probability of obtaining
R is 1/2.

4. Suppose simultaneous circular polarization measurements are made on
the two photons. Whenever the result R is obtained for one, the result
R will also be obtained for the other; whenever the result L is obtained

for one, the result L will also be obtained for the other.



13

C. The Einstein Podolsky Rosen Argument.
In his autobiography, Einstein described” his conception of an

individual physical system, on which a measurement was about to be

performed:

(i) The individual system (before the measurement) has a
definite value. . .for all variables of the system, and more
specifically that value which is determined by a measurement
of this variable. Proceeding from this conception.

The ¥-function is no exhaustive description of the real situa-
tion of the system but an incomplete description; it expresses
only what we know on the basis of former measurements concer-
ning the system.

He contrasted it with the following conception, held by a hypothetical
believer in the completeness of quantum mechanics.

(ii) The individual system (before the measurement) has no
definite value of [the variables]. . . . The value of the
measurement only arises in cooperation with the unique pro-
bability which is given to it in view of the Y-function only
through the act of measurement itself. Proceeding from this
conception, he will (or, at least, he may state: the Y-
function is an exhaustive description of the real situation
of the system. ., . .

Einstein believed that if conception (i) is true, then
The statistical character of the present theory [quantum
mechanics] would then have to be a necessary consequence of
the incompleteness of the description of the systems in quan-
tum mechanics, and there would no longer exist any ground for
the supposition that a future basis of physics must be based
upon statistics.
Some years earlier, in 1935, Einstein, Podolsky and Rosen (EPR)
had presented (Ei 35) an argument supporting Einstein's conception, (i)
above. Their argument is now presented in terms of the two annihilation

photons discussed in the preceding sections of this chapter. (EPR

actually considered a whole class of wavefunctioms of a pair of parti-

*The original and the English translation may be found in (Ei 49).
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cles; the two photons provide an example of that class.)
Let the photons be labeled 1 and 2. Suppose the photons are

separated by a large distance. Let CP(1) = the circular polarization of

photon 1, let LP(1) = the linear polarization of photon 1, etc.

1. After CP(1l) is measured, the result of a measurement of CP(2)

can be immediately predicted.

2. Therefore, immediately after the measurement is performed on photon

1, photon 2 has a definite CP.

Now, the crucial hypothesis of locality is used:

3. However, because 1 and 2 were separated by a large distance, the

measurement on 1 could not disturb 2 instantaneously.

4. Statement 3 implies that before 1 was measured, 2 must have had a

definite CP. That is, 2 must have a definite CP whether 1 is
measured or not. This is an assumption.

1'. Similarly, LP(1) could have been measured.

2' and 3'. (These are analogous to 2 and 3 above.)
4'., B must have a definite LP whether 2 is measured or not.

Thus, according to EPR, before any measurement, the photons have
both definite CP and definite LP; and EPR held that quantum mechanics is
incomplete in that it cannot describe” a state having definite CP and LP.
This conclusion is precisely the content of Einstein's conception (i)
of a physical system. [It is necessary to speak of CP and LP as 'variables"
which can have two possible 'values'" in order to explicitly match the

conclusion to (i).] Furthermore, EPR believed, though®' they did not

*because a state of definite LP is a superposition of two states of
opposite CP.



prove, that a 'complete' theory, which would specify in advance the

result of all measurements on the photons, could be found.

13
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D.  An Experimental Test of Einstein's Conception: Bell's Inequality

It might seem that it is solely a philosophical question whether
a physical quantity has a definite value before it is measured. However,
J. S. Bell (Be 64, 70) has shown that the answer to the question can be
verified by experiment---at least in principle. For concreteness, Bell's
result will now be described in terms of the two-photon system described
above. The discussion actually applies to any pair of widely separated
systems.

Bell's contribution was to show that Einstein's contention leads
to restrictions of the results of measurements. Consider then the 2
photon system. According to Einstein's conception, the result Mi of a
measurement on a physical quantity is equal to the value that quantity
possessed just before the measurement:

M. = ), : :
i A1 at time just before measurement

where Ai = the value of the physical quantity.

Bell hypothesized a more general measurement which contains
Einstein's as a special case: first, the result M of the measurement
may depend on more than one of the physical quantities associated with
the system; also, M may depend on the setting m of a "knob" on the instru-
ment making the measurement. This may be written

M=M(@Q, m (2)
where A = the set of values iliﬁ of the physical quantities associated
with the system. Note that A and m are hypothesized to determine the
exact value of M with certainty. In contrast, quantum mechanics only
predicts probability relations between the state of the system and the

output of a measuring instrument.
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Bell, like Einstein, made the important hypothesis of locality.
Like Einstein, he hypothesized that M could not depend on physical opera-
tions made a large distance away.

The name "local hidden variables' may be given to the set A,
because of the locality hypothesis and because if such variables exist,
they are "hidden'" from present day knowledge and measurements.

Now consider a particular type of measurement, made on photons
by an instrument with an adjustable knob and a single numerical output.
(For example, the instrument may contain a linear polarization filter, and
produce a +1 or -1 output according to whether the photon passes through
the filter or not. The knob on the instrument determines the angle which
the filter makes with some axis.)

Consider the following experiment: Let two of the instruments
just described be placed some large distance apart, and let a source S of

annihilation photons be placed between them.

A

o} S — >

The instrument on the left performs measurements on the photons
moving toward the left. Let its output be denoted by the quantity A, and
its knob setting by a. Similarly, the instrument on the right has output
B and knob position b.

Bell showed that the "hidden variable" hypothesis, Equation (2),
and the locality hypothesis [described just after Equation (2)] lead to

an inequality on the results of the measurements. Furthermore, the quantum
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predictions for certain special cases of this experiment violate the
inequality. Hence, if experimental test verifies the quantum predictions,
one or both of those hypotheses must be false.

Bell's inequality may be stated as follows: First, write

A

A(a,2)

B(b,1)

(3)
B

symbolizing the dependence of the instrument outputs A, B, on ) and
their knob settings a and b. Note that since locality requires that A
not depend on the physical operation of turning the knob on the other,
distant, instrument, A has no dependence on b. Similarly B does not
depend on a.

Imagine the photons to be emitted a large number N, of times.
Define the probability p distribution by

p (1) = NQI/N, (4)

where N()) is the number of times the physical variables have the values
collectively denoted by ).

Define P(a,b) as the average of A-B taken over many emissions;
it depends of course on the knob positions a, b, and is clearly given by

P(a,b) = A°B = £ p(A) A(a,)) B(b,)) (3)
A

For mathematical convenience assume
-1 < A(a,X) <1
(6)
-1 £ B(b,x) =1
No generality is lost by this assumption; for the meter scale on

any instrument can always be relabeled to satisfy this requirement. Let

a, b, ¢, d be any 4 knob settings. Bell showed very simply that Equations

*Changes in the notation for continuous variables will be omitted here.



17

(5) and (6) lead to the following inequality on P(ab) (Be 70):
|P(db) + P(de)| + |P(ab) - P(ac)| < 2 (7N
where a, b, ¢, and d are any four possible knob settings.

The theorem is easily generalized to include an extra set of
hidden variables which influence the reading of instrument A, and a set
influencing B, provided each set not depend on the setting of the other
instrument. If these additional hidden variables are inserted in
Equation (5) an equation of the same form as (5) results with A and B
replaced by A and B, which are defined as averages of A and B with
respect to the extra hidden variables:

P(ab) = § p (1) A(a,)) B(b,)) (8)
The inequality (7) remains vzlid.

It is important to remember that Bell's inequality is a direct
restriction on the outputs of the measuring instruments, rather than on
the physical variables the instruments measure. This implies that an
experiment designed to test Bell's inequality might be interpreted
differently than the usual physics experiment.

The usual physics experiment is designed to test some theoreti-
cal relation between various physical variables like momentum, spin, or
polarization, for example. The experimenter does not see these variables
directly, of course, Instead, he sees the outputs of his measuring
instruments, and uses the relation between those outputs and the physical
variables, to find the physical variables. The relation he uses is gener-
ally established by strong evidence accumulated over many years, so he can

be very sure the relation is correct. But strictly speaking, he can

never be absolutely positive it is correct; he assumes it is correct.

He rarely if ever explicitly states the assumption though. In other words ,
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the usual physics experiment involves implicit assumptions which are
usually not stated.

In contrast, Bell's inequality does not refer to physical varia-
bles; instead it refers directly to the outputs of the measuring instru-
ments. This raises the possibility that the inequality can be tested
without assuming (implicitly or explicitly) that the relations between
the instrumental outputs and the physical variables are correct (as must
be done in the usual physics experiments). This possibility would be
realized with a hypothetical "ideal" polarization detector. An ideal
polarization detector, by definition,” has the following outputs:

+1 for photons polarized parallel to the detector axis

-1 for photons polarized perpendicular to the detector axis

cos 2¢, for photons with polarizations making an angle ¢ with
detector axis

Now suppose we place a source of annihilation photons between two such
detectors. Define the quantities A and B in Equation (3) as the outputs
of the two detectors, and a and b as the angles the detectors' axes make
with the horizontal plane, then a simple quantum mechanical calculation
yields:

P(ab) = -cos2(a-b) (9)

If we substitute

*The existence of an ideal detector is consistent with the laws of
quantum mechanics, because the first two parts of the definition are
clearly consistant, and the third part of the definition (the cos 2¢
dependence) may be derived from the first two parts of the definition.
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28 = 0°, 2b = 135°, 2¢c = 45°, 2d = 90°
into Bell's inequality, Equation (7), we obtain
2 /2 <2
The inequality is violated. Therefore if the quantum predictions are
correct, a hidden variable theory would be ruled out.

Now suppose this ideal experiment could be performed. Quantum
mechanics is needed to design the experiment. However, no quantum
mechanics is needed to interpret the results! This is because (as
already stated) Bell's inequality applies directly to the outputs of
the instruments; i.e., to the "meter readings'" A and B. Hence if the
meter readings violate Bell's inequality, then local hidden variable
theories are ruled out immediately, without relating the meter readings
to any underlying physical variables; and therefore without assuming
that the quantum relations used to design the experiment are correct.

Unfortunately, this intriguing possibility cannot be realized
in practice. For no ideal polarization detectors® have yet been found for
annihilation photons [nor the optical photons involved in an analogous
experiment discussed by Horne (Ho69 ) and Clauser et al. (Cl 69).]
Consider, for example, Compton polarimeters. The output of a Compton
polarization measurement is either ''a photon was scattered into the gamma
detector'" or ''the photon was not scattered into the gamma detector".

In order to apply Bell's inequality directly to the polarimeter outputs,
it is necessary to assign numerical values to the possible outputs.

For example, the output A of one detector might be defined as +1 (-1)

*Actually an ideal analyzer need not exist. There could in principle
exist an "almost ideal analyzer' which would not be perfectly efficient
but would produce outputs which would violate Bell's inequality. But
no one has found such an "almost ideal' analyzer either.
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when the scattered photon hits (does not hit) the gamma detector; and the
output B of the other detector can be similarly defined. Also, the
quantities a,b in P(a,b) can be taken as the angular placements of the
gamma detectors.

But when this is done, it turns out that the P(ab) that results
does not violate Bell's inequality. Hence, for these definitions of A
and B, a direct application of Bell's inequality to the instrumental
outputs can not rule out local hidden variable theories (cf. C1 69).

One might think that some other definitions of A and B, or some
clever arrangement of many gamma detectors could circumvent this diffi-
culty. But this is not the case, for, as shall now be shown, it is possible
to construct an ad-hoc local hidden variable theory that reproduces all
the results of Compton scattering of annihilation photons. Therefore,
no direct analysis of Compton scattering could possibly violate Bell's
inequality.

The two counter examples which show that Compton scattering
experiments can not provide absolute proof against hidden variable
theories may be described as follows:

1. Bell (private communication) has produced a counter-example, described
in Appendix C, in which the correlation between the scattering events

at the two detectors arises from their dependence on a single hidden
variable. The model reproduces the quantum predictions for all momentum
measurements that could be made on the two scattered photons. So clearly
no function of momentum measurements, including any P(ab) could ever
violate Bell's inequality. Hence, no such Compton scattering experiment
can absolutely rule out a local hidden variable theory. Bell's counter-

example does not apply when the photons have energies somewhat lower
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than the masses of the particles which scatter them. For this reason
Bell suggests that it might be useful to perform the experiment on
photons of different energy. It should be noted though that another
counter-example, simpler if perhaps more artificial than Bell's, is not
subject to this restriction on the photon energy.
2. The other counter-example may be described as follows: let the
hidden parameters be vectors Kl’ ?2 associated with particles and let
the photons ultimately scatter in the directions of these vectors. Then
simply give 31, 32 the same probability distribution as that of the
momenta il’ iz of the scattered photons

o (R 3,) = FAA)) , (10)
where

F(iiﬁz) = the probability distribution of the directions of the
scattered photons.

In other words, one may picture the photons as having "decided in advance,"
at the time of annihilation, in which directions they would ultimately
scatter. The model is clearly local; for example, changing the position
of detector 1 does not affect the parameter 32. It should be clear that
the model reproduces the results of all measurements that can be made on
the scattered photons. Thus it is seen again that* a Compton scattering
experiment can not absolutely rule out a local hidden variables theory.

The reason a similar model cannot reproduce quantum predictions
for the ideal measurements is that setting the ideal analyzers to several

different angles corresponds to measuring several non-commuting observables.

Quantum theory does not supply a joint probability distribution function

like F(ﬁiiz) for non-commuting observables, so the model cannot be

constructed as above.

*This would be so even if the experimental results did not agree with quantum
theory, for then F could simply be set equal to the experimental results.
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E. Assumptions Needed to Apply Bell's Inequality to Compton Scattering
Even though a Compton experiment cannot rule out hidden variable
theories, it can provide strong evidence against them. The following

assumptions shall be made:

1. It is possible in principle to construct an ideal linear
polarization analyzer.
2. The results obtained in an experiment using ideal analyzers

and the results obtained in a Compton scattering experiment

are correctly related by quantum theory.

Assumption 2 may be clarified as follows: Suppose 1 or more pho-
tons Compton scatter. It is shown in Chapter II, below, that according
to quantum theory, the angular distribution of the scattered photons
can be computed from the results which would have been obtained in an
ideal polarization analysis of the photons and vice-versa. The computa-
tion involves only the Compton scattering results and the ideal polariza-
tion results. No specification of the photon state is necessary. Assump-
tion 2 is that this relation between the ideal measurement results and
the Compton results is correct.

This relation is possible because when the photons' polarizations
are resolved into components parallel and perpendicular to the scattering
planes, interference effects between the components vanish when the Comp-
ton scattering is computed. This was pointed out by Snyder et al. (Sn 48).
The interference terms vanish because Compton scattering is not sensitive
to the sense of circular polarization. See Chapter II. (Snyder et al.
used a different argument. The experimental evidence for the validity

of the theory of Compton scattering is discussed in Appendix E.
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With the aid of assumptions 1 and 2, Bell's inequality for ideal
polarization analyzers was used to calculate corresponding restrictions
on the angular distribution of Compton scattered photons. The result

will be given below in Equations 16-18.
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F. The Bohm Aharonov Hypothesis,

Considerations of the EPR situation have led Bohm and Aharonov
(BA) (Bo 57, 60) to consider the hypothesis that quantum theory breaks
down in a particular way for widely separated particles. An argument
motivating the hypothesis is given below. Also, Jauch (Ja 70) has
shown how considerations involving the notion of a state in axiomatic
quantum theory can also motivate the BA hypothesis.

It is shown in Appendix D that any theory obeying the BA hypo-
thesis can be put in the mathematical form of a local hidden variable
theory.

The hypothesis may be motivated as follows: consider again the
two annihilation photons 1 and 2. After a CP measurement on 1, photon
2 will be either in the state

|R> = 1X> + ifY> (11)
V2
or in the state
|L> = 153_:_31121 (12)
vZ
Thus, after the measurement on 1, CP(2) is definite and known [vdz.,
the same as the result of the CP(1) measurement]. However, photon 2 is
in a superposition of states of different LP, so LP(2) can not be

considered definite---nor even definite but unknown---because interference

effects between the states of different LP could be detected. But if
LP(1) [instead of CP(1)] had been measured, then LP(2) would have been
definite, while CP(2) could not have been considered definite---nor even
definite but unknown. In other words, the "status' of LP(2) and CP(2),

i.e., which one may and which one may not be considered to have a definite
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Value, can be instantly fixed by means of a distant measurement: a

Measurement which could not have involved any physical interactions with

Photon 2 (assuming no interaction can travel with infinite speed). Of

Course, this does not at all mean that any observational change in photon

2 was caused by the measurement on 1. Nevertheless, the change in "status"

of the variables CP(2) and LP(2) by means of the measurement on 1 seems
Somewhat peculiar, and BA sought to avoid this peculiarity.*
Thus, Bohm and Aharonov examined the following hypothesis: that
Quantum theory is valid for particles which are close together, but that
after the photons are some '"large distance' apart their state vector V
changes into a product of state vectors for the individual photons.”
Then a measurement on photon 1 would affect the state vector of 1 but not
the state vector of 2, and therefore the status of LP and CP of 2 would

No longer be changed by the measurement on 1. Jauch (private communication)

has remarked that in the case of positron annihilation the '"large distance"

involved might be much larger than the coherence length ( “7 cm) of the

annihilation process.
Bohm and Aharonov hypothesized further that the state vector

would not always change into the same product state, but rather it

would change at random into one member of an ensemble of product states.
This ensemble would possess rotational symmetry around the Z axis and

reflection symmetry in the XY plane so that the average of many measure-
ments would exhibit the expected rotational and reflective symmetries. In
Other words, the pure state would change into a symmetric mixture. But

———

*BA termed the situation "paradoxical."
of the state becomes the product

**Mo < ion operator
re precisely, the creatl P ith momentum in the +Z direction,

of a creation operator for a photon Wil . . .
and a creation gperator for a photon with momentum in the -Z direction,
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according to the Schrodinger equation a pure state must change into a pure
state.

Thus the BA hypothesis implies a new law governing the time
behavior of the two particles.

BA showed that it is impossible in practice to rule out the BA
hypothesis by means of position and momentum measurements on the annihila-
tion photons [or on the particles involved in any scattering experiment].
However, the hypothesis can be tested by measuring the linear polariza-
tions of the annihilation photons. A direct calculation (outlined in
Appendix D) shows that all mixtures obeying the BA hypothesis (with
rotational and reflective symmetry) lead to a P(ab) of the form”

P(ab) - C cos2(a-b)
(13)
with |C| <1/2.

Quantum theory, on the other hand, violates this inequality by predicting
C = -1, so quantum theory and the BA hypothesis can be distinguished
experimentally. Of course, if the linear polarization is measured by
Compton scattering, it is necessary to assume that the quantum predic-
tions are valid for the Compton scattering process before determining if
the BA hypothesis is valid. Evidence for the validity of quantum predic-

tions for Compton scattering is discussed in Appendix E.

*This form of the result is simpler than that given by Bohm and Aharonov.
A similar computation has also been performed by Jauch (Ja 70).
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G. Description of the Experiment Performed and the Definition of R.

The experimental arrangement is shown in Figures 1 and 2. Posi-
trons were emitted by a radioactive source, stopped and annihilated (in
copper) at O (Figure 1). The annihilation gamma rays were emitted in all
directions; the vertical direction was selected by a lead collimator which
is omitted in Figure 1 but is drawn in Figure 2. Events were sought in
which the annihilation photons Compton scattered on electrons in 5, and
52, and entered detectors D1 and 02 which measured their energies. Lead
slits positioned at angles $, and ¢, selected the range of azimuthal
angles ¢ and ®, which were accepted. The top slit-detector assembly
was rotated to vary the relative azimuthal angle.

Background (false) events were virtually eliminated by making
the scatterers Sl and 82 out of plastic scintillators: we required a
4-fold time coincidence among the two scatterers and the two detectors
(Sl’ 52, Dl’ D2) and also imposed a ''sum energy requirement' that the
total energy deposited in each scatterer plus detector equal the energy
of an annihilation photons.

The sensitivity of a Compton analyzer to polarization depends
mainly on three factors:

Factor A. The spread of azimuthal angles ¢1s &5 selected by the lead slits.
(See Figure la.)

Factor B. The probability for a photon to scatter more than once in the
scatterer.

Factor C. The effective efficiencies of the detectors as a function of

*
scattered photon energy.

*Since the energy of the scattered photon is a function of the polar
Compton scattering angle, the "effective' energy efficiency depends on
the geometry of the apparatus.
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These factors were taken into account as follows: The scatterer diameters
were made small so that the spread of azimuthal angles accepted was well
defined, and the effect of the spread could be accurately determined.
The small diameters also minimized the probability of photons scattering
more than once in the scatterer. To compute the efficiencies of the
detectors as a function of scattered photon energy, we compared the
measured energy spectrum with the theoretical energy spectrum, allowing
for finite detector resolution; then we computed the effect of the
efficiencies, again allowing for detector resolution. (In the actual
computations the numerical values of the efficiencies never appeared
explicitly.)

The data were analyzed by computing for each value of the

relative azimuthal angle (¢2 - ¢1) the quantity R defined by

N/N
R(e1¢2) = T7m /N (14)
1"'ss 2" 'ss
0142
were
Nss = [number of times the two photons Compton scatter].
N = [number of times the two photons Compton scatter] and both photons
are detected.
n, = [number of times the two photons Compton scatter] and only photon 1
is detected.
n, = [number of times the two photons Compton scatter] and only photon 2

is detected.

¢1,¢2 = the azimuthal angles at which the lead slits are positioned (to
be distinguished from ¢1,¢2 which refer to the photons).

For comparison of our results with theory the quantity R has a number of
useful properties:
1. If the momenta of the scattered photons were uncorrelated, R would

equal 1. Deviations of R from 1 correspond to correlations between

the momenta.



29

2. A number of instrumental effects cancel out of the expression for R;
for example, source strength and slit width (to first order).

3. Quantum theory predicts a simple relation between R and the quantity
P(ab) associated with the ideal polarization analyzers which were
described in the paragraph preceding Equation (9):

R(¢1¢2) % 1w

Byrn P (41%2) (15)

where BQTh is an instrumental factors depending mainly on factor A,
factor B, and factor C mentioned above. Equation 15 is derived and
discussed in Chapter III. It is emphasized that this relation is valid
for any polarization state of the two photons and hence for any P(ab).
For the particular case of the two photons emitted in positron annihila-
tion, Equations (9) and (15) yield

R(¢1¢2) = A-B c052(¢2 - ¢1), (16)
with

A=1
(17)

BQTh
(In addition, the 180° correlation between the annihilation photons can

change the value of A by ~ 0.05 and B by ~0.02 because of geometrical
effects.)

If experiment shows that R is given by Equation (16) with A = 1,
then reference to Equation (15) shows that P(¢1¢2) is proportional to

cos 2(¢,2 - ¢1); and it is easily seen that

B = BQTh if quantum theory is valid
B < BQTh//E if a local hidden variable theory is valid (18)
B <

BQTh/Z if the Bohm-Aharonov hypothesis is valid.

The data were divided into "energy regions' defined as follows:

Let e,,e, be the outputs of the detectors which measure the energies of
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the scattered photons. (Since the detectors have finite resolution, the
relation between €,» Say, and the energy of scattered photon 1 is not
one to one.) We computed R, including in N, n, and n, only those events
falling in specified regions in the €€, plane (shown in Figure 3).
Also, the 'whole' region was defined as containing events of all €.€5-
When R is calculated over the whole region, the statistical uncertainties
are small, but a numerical integration of the polarization correlation
over a wide range of scattered photon energies is necessary. This gives
a 'washing out'" of the correlation and leaves our results open to the
objection that perhaps the correlation was really smaller than predicted
by theory, but the numerical integration was in error. Also, there are
large systematic uncertainties in B when R is calculated for the whole
region. The values of R for the small regions in El and 22 depend only
slightly on the details of numerical integration and can be much more

accurately computed.
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H. Results and Conclusions

Figure 4 shows R for the '"whole" region as a function of relative
azimuthal angle (¢2-¢1). The points are fit well by a curve of the
form of Equation (16) with A = 1.007 + 0.004. The +0.004 represents
statistical uncertainty. This value of A is influenced by certain geome-
trical effects, and from this value we deduce that the value that would
have been obtained with ideal geometry is 1.01 + 0.05, which is consistent
with 1. Thus in the subsequent analysis the validity of Equation (16)
with A = 1 could be assumed, and the values of B were compared with the
expressions in Equation (18). The comparison is plotted in Figure 5.
The theoretical predictions are corrected for instrumental effects.
Error bars are given for systematic uncertainties in these instrumental
corrections and for statistical uncertainties in the experimental points.
The particularly large uncertainty in the theoretical values for B for the
"whole' region is due to the presence of events in which a scattered
photon did not deposit its full energy in the detector. The theoretical
values of B could be more accurately determined in regions 1, 2, 3, and
4, which contained fewer of these events. In each case, the experimental
value of B agreed with the quantum prediction and exceeded the upper
limits derived from Bell's inequality and from the BA hypothesis.

The following conclusions were drawn:
1. We find no evidence for a breakdown in the quantum predictions for
Compton scattering of annihilation protons. Our results, therefore, are
consistent with the work of Wu and Shaknov (Wu 50), who were the first
to show good quantitative agreement between quantum theory and experiment;
the work of Bertolini et al. (Be 55), and the excellent, thorough

work of Langhoff (La 60). [Also H. Muller (Mu 64) has verified the
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quantum predictions for circular polarization.]

2. Furthermore, if we make the assumption that it is possible in prin-
ciple to construct an ideal linear polarization analyzer and that quantum
theory correctly relates results obtained with ideal and Compton analyzers,
then it follows that a local hidden variable theory cannot describe the
annihilation photons. However, if the introduced assumptions were not
valid then counter-examples described in section 2a above show that this
type of experiment cannot rule out local hidden variable theories.

3. Finally, assuming that the quantum theory of Compton scattering is
correct, we conclude that the Bohm Aharonov hypothesis does not hold for

this experimental arrangement.”

*Jauch suggested however, that the BA hypothesis may still be valid when
the photons are separated by much more than twice the coherence length,
when the flight paths of the photons are unequal, or when two different
particles are involved. Twice the coherence length is about 14 cm; the
photons were separated by ~25 cm before scattering in this experiment and
by ~50 cm in Langhoff's (La 60).



33

Chapter II
The Relation Between Ideal Polarimeter Results and Compton Polarimeter
Results

Linear polarization measurements can be made on a photon with
either (1) an '"ideal" polarization analyzer, in principle or (2) a
Compton polarimeter.

An ideal polarization analyzer is defined to produce a unique
output, viz. +1 (-1), upon measuring a photon with linear polarization
parallel (perpendicular) to the analyzer axis. In contrast, a Compton
polarimeter does not give é unique output for any particular polarization
state of the photons. Instead, such a polarimeter Compton scatters the
photon, and the polarization of the incoming photon determines the pro-
bability that the scattered photon will be found with various directions
of momentum.'

There exists a functionf relating ideal and Compton polariza-
tion measurements. The existence of { shall now be shown to follow from
general principles of quantum mechanics, plus parity and angular momentum
conservation; the explicit form of f shall be deduced from the Klein-

Nishina equation.
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A. The existence of the relation
Consider a photon which Compton scatters off an electron which is

initially at rest. The initial state ¥, of the electron-photon system is

given by
¥, = |i>[ak> + i >] (1)
where
|i> = an electron with zero linear momentum and spin state i

|X>, |Y> = a photon with momentum along the z axis and linear
polarization in the x,y direction

q,r = numbers, complex in general, normalized so that

qq+rr=1 (2)
The final state Wz of the system is given by
¥, = | 3k (3)
where
k = the momentum of the scattered photon
j = the polarizations of the recoil electron and scattered
photon. These are the variables which will be summed
over to find the final result.
Also let

E, 0, ¢ = the energy, polar scattering angle, and azimuthal
scattering angle of the scattered photon.

The probability dFk for finding a scattered photon with momentum

k is given by

dF, (qr) =0 (E) 3 X |<v | slv | 2 dedgdo (4)
where !
p (E) = the density of final states
S = the scattering matrix
%-i = the average over initial electron spin states
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Substituting for Wl and WZ from Equations (1) and (3) we obtain

dF (ar) = p () > I |<jk|s|(qlX> + r|v)|i>| % arae  (5)
ij
The differential do does not appear in Equation (5) because energy and
momentum conservation relates o to E. Equation (5) may be expanded as:

dF, (qr) = 30 (E) T {qq*|<jk|s|xi>| 2

ij
+ rr* | <jk|s|vi>| 2
(6)
+qrr<jk|s|Xi><jk|s|yi>*
+ rq*<jk|s|Yi><jk|S|Xi>*}dEd®
which is of the form ;
dF, = [«]q|? + 8|r|? +2 Re(yqr*)] dEde (7)

with o and g real (and positive). y is complex in general. However, we
shall now show that, because of conservation of parity and angular
momentum, y is real.

Now,‘the electromagnetic interaction is invariant under rotation
and parity transformation. Therefore, (since the electrons are not
polarized) the scattering probability must be the same for right and
left hand circularly polarized photons. Since

q,r = 1, i for right circular polarization, and
q,r = 1, -i for left circular polarization
we have
dFk(l,i) = dFk(l,-i) (8)
Substituting Equation (8) into Equation (7) yields
o + B + 2Re(yi) = o + B +2Re(y[-i])
or

2Re(iy) = 0
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Hence y is real and may be taken outside of the '"Re' in Equation (7)

to yield:
| dF, = [alq|? + 8|x|? + 2 Re(qr*)] dEa¢ (9)
or
dFk oy q
Jeas - [a*r*] ) Bl Ll (10)

Now rotate the x and y axes along which polarization is measured, through
an angle £ about the z axis. Call the new axes x' and y'. The quantities

q' and r' are related to q and r by

\q' cos§ -sing q
Ir'l ; {sini cos&} [_r]
Since the matrix in Equation (10) is real, it follows that there exists
a & such that dFk is diagonal in q' and r'. Calling the elements of the
diagonal matrix a' and B', we have
aF (ar) = (a']q’'|? + 8'|x'| %) dEas = dF} (q'r") (11)
Note that we have introduced and defined the quantity dFﬁ Q'r').

Since dF depends only on |q'l2 and lr'lz, dF! can be related to

k

measurements made with the ideal analyzer defined above. An '"ideal
analyzer'" gives an output L' = +1 [-1] for photons polarized along [or
perpendicular to] the analyzer axis. Now let the ideal analyzer axis
be oriented parallel to the x' axis, which was defined just under Equa-
tion (10). Then clearly the mean value of L' for a photon with polariza-
tion components q' and r' is

Tia'e) = [a'l? b« ]2 e (12)
But Equation (11) may be written

aF@'r") = 5 [Car+e) (a'[P[xt [P+ (ar-6") (Jq' || x*| P dEde
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Using Equations (12) and (3) this becomes
dF} (q'r") = 3 [a'+8" + (a'-87)D"]dEA® (13)
This proves what we set out to show: that there exists a function
relating Fi (the probability of a photon Compton scattering in the
direction k) and L' (the average output of an ideal analyzer oriented

along the x' axis.)
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B. That x' must be parallel or perpendicular to the scattering plane.

The following thought experiment is designed to show that x' must
be perpendicular or parallel to the scattering plane (the scattering plane
is defined as the plane containing the momentum of the scattered photon,
k, and the momentum of the incident photon). Imagine a Compton polari-
meter consisting of a scatterer, and a detector positioned to detect
scattered photons with momentum k. Suppose a beam of photons linearly

polarized in direction €. is directed at the polarimeter in the z direc-

1
tion (perpendicular to the paper).

DETECTOR [:]
]

— MIRROR
k
+__SCATTERING
- | PLANE PERPENDICULAR
‘= i — 10
INCIDENT e
| MOMENTUM

There will be a certain count rate C1 in the detector. Now imagine a
mirror parallel to the scattering plane. By parity conservation, and
rotational invariance, a beam of photons with polarization €2, the mirror
image of the original polarization el, will produce a count rate C2 = Cl'
But the count rate is proportional to dFi. Using the normalization condi-
tion, Equation (2), [ |q'|2 + |r'|2 = 1] Equation (11) becomes

dFl(q't") = [1 + (a'-8")|q'|*dEde (14)
Therefore, letting qi and qé be the x components of q, and dps the equality

C, = C2 implies that

. = 93 (15)
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parallel

. : . . ¢ 4
The following diagram illustrates that if x' is perpendicular

to
the scattering plane, then q, =*q;, and Equation (15) is satisfied.

Clearly, this

815‘\\\u//24 €2y perpendicular to scattering plane [q2=-q1]
¥ ]
' =S

x' parallel to scattering plane [q2=+ql]

is the only way Equation (;5) can be satisfied, so x' is parallel or
perpendicular to>the scattering plane QED.
Two corrolaries immediately follow from this result:
1. Since the ideal analyzer axis is parallel to the x' axis, [see

k
of an ideal analyzer oriented parallel or perpendicular to the

just above Equation (12)] Equation (13) relates F'! to the output

scattering plane.
2. Since x' bears a fixed relation to the scattering plane, ' and
B' in Equation (13) depend only on E; they are independent of ¢.
Hence we can rewrite (13) as follows:
dFi(q'r') = f(E) [1 + m(E) L'(q'r')] dEd2 (16)
The definitions of f(E) and m(E) can be read off by comparing (6) and (8):
f(E) = %—(a' +B8"')

mE) =2 @' -8")/ @' +8")
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C. The relation between Compton and ideal polarization analysis of multi-
photon systems.
In order to proceed, it is necessary to rewrite Equation (16)
as an operator equation. Now, Fi is the average value of the observable
F', and is therefore the expectation value of an operator. Similarly, L

k
L
is the expectation value of an operator L'

FI =<F'>
B B (17)
L' = <L|>

where <> denotes an expectation value. Equation (16) relates the

expectation values of these operators. This relation holds for all q'

and r', and hence for all vectors in the Hilbert space. Therefore, the

operators themselves satisfy. the same relation

dFy
~o
This operator equation, Equation (18), can be used to compute

= f(E) [1 + m(E) k:} dEd®/ 2w (18)

the relation between Compton and ideal polarization analyzers when more
than one photon is involved. For example, consider a polarization analysis
of annihilation photons (Figure 1). The probability dF(klkz) of finding
the photons scattered in directions k1 and k2 respectively is

dF(k;k,) = <Fy By > = £(BE(E,) [1 + m(E1)<Ei? +

—~uT AL

1
+m(E2)<I:3> + m(El)m(E2)<I;iI;é>]dEldEZd¢1d¢2/4n

, (19)

where Li and Lé refer to ideal polarization measurements of photons 1 and

~o ~J

2 respectively.

By rotational symmetry about the z axis, <Li> = <L5> = 0. Further-
~y “~

more, since <LiLé> is the average product of the outputs of two hypothetical

N o

measuring instruments, we can call it P(¢1¢2), the symbol introduced just

before Equation (12) of Chapter 1:
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p(e9,) = <Lj L3> (20)
where ¢1,¢2 are the angles the axes of the ideal analyzers make with the
X-Y plane. Then Equation (19) becomes

dF(kiké) = f(El)f(Ez)[1+m(E1)m(E2)P(¢1¢2ﬂdEldEzd¢1d¢2/4n2 (21a)
This then is the relation between Compton and ideal polarimeter measure-
ments on a pair of annihilation photons.

Furthermore, according to quantum mechanics, P(¢1¢2) is given by

P(9,9,) = -cos 2(2,-%,) (21b)
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D. The explicit form of the relation.
The Klein-Nishina cross section (K1 29) for a linearly polarized
photon, summed over the possible polarization states of the scattered

electron and scattered photon (Ev 58), may be written in the following

form: 3 2 . c2 i
do(E,E,8) = —— Eez X(E,E) [1 - ;%g—o% cos20]dEde  (22)
0
where
Eo = the energy of the incident photon
E = the energy of the scattered photon
¢ = the angle between the incident photon polarization and the
scattering plane
™ the classical electron radius 2,82 x 10-13 cm
meC2 = the electron rest mass energy
® = the scattering angle, related to E by
eC2 (1/E + l/Eo) =1- cos ©
and X(EE) = E_/E + E/E_ - sin’ ©

From Equation (12) the average response of an ideal polarization
analyzer to a linearly polarized photon is
L = cos2¢® (23)
where ¢ = the angle between the photon polarization and the analyzer axis.

Inserting (23) into (16) and comparing with (22), it is seen that

2 2
T, meC
£(E) = —— 3 X(EOE)
E
g (24)
m(E) = - sin“ H / x(EoE)

The function m(E) is plotted in Figure 15 for E, = meC :
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Chapter III
DESIGN OF THE EXPERIMENT

The bracketed factor, [1 + m(El)m(EZ)P(¢1¢2)] in Equation 21 of
Chapter II expresses the polarization correlation between the scattered
photons. The data was analyzed to produce the quantity R, defined above
in section G of Chapter I, which, assuming the validity of quantum
mechanics, is just that factor in the first approximation.
A. First approximation to R

During each experimental run,

1. The lead slits that defined the azimuthal éngles o, & of the

1’ 2
scattered photons were in fixed positions ¢1, ¢2. The widths of
the slit openings, A¢1, A¢2 were constant throughout all the runs.
2. The outputs of the Nal detectors, ei, eé were recorded for each
event satisfying the '"N", "nl", or "nz" requirements defined in
Equation 14 of Chapter I and in Figure 1.*

During and after the runs, the events were sorted to yield the

numbers

N(elAe1 eer2 ¢1A¢1 ¢2A¢2) = number of '"N" events (see Equation
14 Chapter I) with:

(¢
A
(¢
A
(¢}
+
>
(¢}

1 1 (1a)

— -

1A
[}
IA
(0]
+
>
]

N -
N
[\S]

n.(e,Ae, ¢,A¢,) = number of '"n." events satisfying
151571 Y1TTl 1
(1b)
1
9 £8) £ 81 ¢ 48

*The relation of ei and e} to the actual energies E, and E, of the scattered
photons was complicated gy the finite resolution of the detector and the
escape of photons that Compton scattered and escaped from the Nal instead
of falling in the full energy peak.
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nz(eer2 ¢2A¢2) = etc. (1c)

R has already been defined (Equation 14 of Chapter I) as

N_
NSS
| TR (2)
o
N N
SS SS

where NSs = the number of scatterer-scatterer coincidences.
Five approximations were made :

Approximation 1,

The annihilation photons emerge from a point source and the

-

diameter of the scatterers is negligible.

Suppose the source is placed at the origin and the scatterers

are placed on the +Z axis, as shown in Figure 7. Let

N
N
]

” Z coordinates of points where photons scatter
1 2 P P

m
m
n

1» E, = energies of scattered photons

Ql’ ®2 = azimuthal angles of scattered photons;
note that these are all upper case symbols and refer to the scattered
photons. The lower case symbols e Ael, ¢1; . .previously defined are
parameters of the experimental apparatus.

Strictly speaking, a photon state cannot have definite Z, E, and
¢, because the energy and Z-position operators do not commute. However,
for purposes of computing effects associated with the gross dimensions
of the apparatus, we made

Approximation 2

The commutator of the energy and Z-position operators is 0, and

one can label the photon states by (ZEg).

One can, in principle, determine which particular values of (ZE¢)

of the scattered photon were realized by means of suitable measurements
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on the recoil electron; hence photon states of different E, Z, ¢ will
not interfere and a description in terms of probabilities, rather than
probability amplitudes, is possible.

Define:

u(z.z

1 2) conditional probability that the photons scattered

at Zl,Z2 given they both did indeed scatter;
U is normalized so

JIu le de =

According to Equations 2la,b of Chapter II the probability F
that the scattered photons have energies El’ 52 and azimuthal angles
¢1, ¢2 is given by

F(E E o 62) = dF(klkZ)/dEldE2d¢1d<I>2

(3)
f(El)f(EZ)[1-m(51)m(52)cosz(¢2-¢1)]/4n2

After the photons scatter they may enter the detectors.

Approximation 3

Neglect the polarization sensitivity of the Nal detectors (See

Appendix F, item 7, to see how a small polarization dependence arises).
N .

Now let
g1(21E1®1) = the probability that a photon with Z,
detected by detector D.,, set at ¢., and %he %utput
3 of the detector falls between é and e +Ae1
where the subscript 1 on g; is an abbreviation for (e1 Ael 2 A¢1).
With these definitions, the numbers N12, n,, n, in Equations (1)

and (2) are given by

N = Nss.fgl(ZIElél) g,(Z,E,0,) F(EE08,) u(Z,Z,) dZ dZ,dE dE,de de,

=
I

= Nssjfglczlﬁl¢1) F(E,E,0,0,) n(Z Z,) dz,dZ,dE dE,de,do, (4)

j=]
1]

the expression for n, with 1 ¥ 2,
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Approximation 4

H(ZyZ5) = 1 (2, (2,) (5)

This is discussed in section B.l.a. below. Let
G, (E 2)) = g1(2151<1>1)u1(zl)dz1 (6a)

Approximation 5

Approximate G by a product of a E-function and a ?-function:
_ elAel A¢1
G,(E;9)) =G (E})G (|¢1-¢1|) (6b)
with
6“1 (e) = GA%1(-¢) (6c)

Using Equations (1) through (6) one finds that R in Equation 2 is equal
to the ''correlation term" in square brackets[ ] in Equation (3),except
that m(El) and m(EZ) are replaced by certain weighted averages and the
cosine dependence is attenuated by the finite slit widths A¢1A¢2:
R=1- mm, (1—e¢) c052(¢2-¢1) (7a)
or, more explicitly
R=1- ml(elAel)mz(eerz)[1-e¢(A¢1A¢2)]c052(¢2-¢1) (7b)

where

j‘GlelAelcsl)f(El)mcﬁl)dﬁl

3|
. !
)
o>
o
g
I

e (7c]
e1le
S 6, *1°°1(E ) £(E))dE,

same expression as my

except 1 + 2, (7d)

[6*1(2,)6**2(s,) cos2(8,-0,)d0 o

1-e¢(A¢1A¢2) = (7e)

A1 Ad 2
§6%1(2)6°%2(0,)do,do,

Our method for evaluating these expressions is contained in

sections B.l.c. and B.2. below.
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B. Corrections to R

1. Geometric corrections
a. X, Y, Z correlations (eu)
When the first approximation to R was derived in Section A, it
was assumed that the probability distribution u(ZIZZ) of the Z-coordinates

Zl’ 22 of the points where the photons scattered could be expressed as
a product:

W(Z1Z5) = w (2w, (2)
Now refer to Figure 6 in which the horizontal dimensions have been
xexpanded by a factor of 20 for clarity. The {lez) distribution of
photons which leave the source parallel to AA' can indeed be expressed
as a product. The (2122) distribution of photons emitted along BB'
can also be expressed as a product. But while the 2122 distribution of

the AA' photons is non zero for

Zc < Zl < za

¥ < < 1
Zc Z2 Za

the distribution of the BB' protons is non zero for

< <
Zc Zl Zb

] 1
Zc < Z2 < Zb

Hence the total Z-distribution, which is the sum of the AA', BB'., . .etc.
distributions, is a sum of products and cannot be written as a single

product
w(z,z,) # uy(Zu,(25)
In other words, Z, and Z., are correlated. Since R depends on the corre-

1 2

lation between the scattering events, we expect it will be affected.
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Now ¥ can be written as
“(2122) = (l-eu) Hp(Z9) uy(2y) + e n'(Z,2,)
where <™\ the fraction of scattering events of the BB' type. Then it
can easily be shown that the expression for R (Equation 7 of this chap-
ter)
R =1 - Bcos2¢; [B = mlm2(1-€¢)]

becomes

R = (1-BcosZ¢)(1+€u€12)

The function 512, which depends on e Ael, €,s Aez,is difficult to compute,
and very sensitive to small misalignments of the scatters. Changing the

shape of the scatterers to cylinders would not in itself make ¢ = 0.

eu could be made zero by making the collimator hole sufficiently small
to eliminate BB' type events. (See item 5 of Appendix F.)
Correlations between the X,Y coordinates of the points the two
photons scafter will now be considered. From Figure 7 which is drawn
out of scale, it is clear that for photons emitted near the center of

the source,

Y2 n;-Yl

where (XlYl), (XZYZ) are the X and Y coordinates of the points where the
two photons scatter. That is, (XlYl) and (XZYZ) are correlated.

Since R depends on the correlation between top and bottom
scattering events, we expect it will be sensitive to these correlations,
The solid angles Ql’ 92 subtended by the detectors D1 and D2 at the points
P and P2 depend on X, and X2

tions shown). Now R depends on these solid angles as follows:

respectively (for D1 and D2 in the posi-
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e 6 - N (8
<Ql>1<92>2 Q

R «

whe?e Ca .512 indicates an average over (Xllel), (XZYZZZ) with
X2 = —X1 and Y2 = -Yl; € > is an average over (Xllel); and
<.y is an average over (XZYZZZ)' Assuming

a, = 1/L°, @, « 1/L,°
and performing the average yields:

Fq® 1-(x/L)° cos ¢ (9)
where r is the average radius of the photon beam,* L is the distance
from the axis to the detector, and ¢ is the Telative azimuthal angle
of the detectors (in Figure 7, ¢ = 0°).

The lead slits in front of the detectors (not shown in Figure 7;
cf., Figure 1) define azimuthal angles $15 9, with respect to the axis
of the collimator. However, the azimuthal angles ¢1, ¢2 appearing in
the theoretical scattering formula are defined with respect to the
momenta of the photons. Because the paths of the annihilation photons
do not lie always on the axis of the collimator, a definite $1795

corresponds to a spread of & =By of magnitude A% given by

2
[1+cos (¢2-¢1)]-z—2 (10)

[\

)% =

N =

This lowers the amplitude of the cos 2(¢2-¢1) term by Z(AQ)Z.
The net effect of Equations (9) and (10) is to change the
original form of R, viz.,

R =1 - B cos2¢; ¢ =9, - &.; B = mlmz(l-e )

2 = %1 )

*Strictly speaking, r is the root mean square radius of the intersec-
tion of the photon beam with the scatterer.
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to:
R=1- B cos2¢ + €[-cos$¢ + B(l+cos¢d)cos2¢] (11a)
where
e= (Eyin Q125 dn 42 4 609
L 1.4 in '

The steps leading up to this last equation assumed a point
source of annihilation photons. But the radius of the source is about
half the radius of the photon beam. This weakens the correlation

between the scattering points P. and P2 of the two photons. A rough

1

Monte Carlo numerical integration shows that for our geometry, Equation
(11a) should be replaced with: }
R A~1 - B(1-0.006) cos2¢ - 0.003 cos¢ (1-B cos2¢) (11b)
b. Correction for double scattering in scatterer (;m)
Figure 8a shows a false event, in which an annihilation photon

scatters twice in the scatterer (at point A and point B). Such events

have an angular distribution different from that of the true events, in

“which the photon scatters only once. However, tkese false events satisfy

all our electronic requirements, in particular the sum-energy require-
ment.

In order to imitate a true event of given energy E'", the scattered
photon in the false event must leave the scatterer with energy E'" and be
directed toward the scatterer. The probability that this will happen is
proportional to

_rcagbzédﬁ' + terms of higher order in &

where
By = the differential Compton cross section per unit E' for a
photon with energy Eo to scatter into an energy E'.
ob = the differential Compton cross section per unit E", for a

photon with energy E' to scatter into a photon with energy E".
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E = the original energy of the photon
= the length available for the scattering to take place.
§ = a solid angle factor giving the probability that the photon

with E" be directed toward the detector.

As Rigure 8a shows, the photons with energy E" leave B in a cone (deter-

mined by E' and E"). For many directions along the cone, the photons

cannot possibly reach the detector, regardless of the azimuthal angle

' of the scattering event at A.

The following approximations were made;

1. The scattered photons at A and B were assumed to be distributed
uniformly with respect to the scattering angles ¢' and o". This
assumption implies that the correlation between the final scattering
direction, and the scattering direction of the other photon, was
completely destroyed. This is conservative, because in the limit’
where either the scattering angle ©' or ©'" » 0 this correlation
is cleariy not affected at all.

2. The Compton cross sections ,» Oy were assumed flat with respect to
the energy of the scattered photon. This is already a fairly good
approximation, and since we were obtaining an upper limit, the
maximum (forward) cross section was used.

3. The scatterer was assumed to be cylindrical in shape with a diameter
equal to the average diameter of the real scatterer in the calculation
of 2; and 2 was limited to half the length of the scatterer. Then,
a rough numerical integration was performed for E" = M/2 (M = electron
mass). This energy corresponds to a real event with a scattering
angle © of 90°.

The result was a 7% contribution of false events with energy

M/2. Since these events were assumed to have no directional correlation

with the other photon, their effect would be a reduction of the cosine
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component of R by 7%. A value of 3.5% + 3.5% was used in our computations:

o®

cos 2¢ » (1 - em) cos 2¢; €n = 3,5+ 3.5
Also, one expects the spectrum of false events to generally
increase at low E'; and one expects peaks near E'" = M/4 and M/2 due to

photons which scatter through ~ 0° or ~180° at A, as shown in (b) and

(c) of Figure 8. Further discussion of this point appears in Section
IV. A.

c. Correction for finite angular resolution (e

Ad
6

a simple rectangular function

¢

, the angular part of G1 (cf., section III. A.) was assumed to be

|41 —=

GA¢1(¢1_¢1) = G * i

[ et

o - ¢1 >

0
Then, 1 - a¢(A¢1A¢2) of Equation (7e) of section III. A. becomes

sinA¢lsinA¢2
1 -e¢(A¢lA¢2) = 5,5, (1)

d. Effects of Misalignments.

Misalignment of the collimator hole, scatterers, or the slits
defining the azimuthal angles, will generally add cos ¢ and cos 3¢ term
to the cos 2¢ dependence of R. For example, in Figure 9 the slits have
been positioned to determine the angle ¢ around the '"aligned" position
of the collimator hole, but the hole is actually at the '"misaligned"

position; the error in the angle is
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- o' %sincb (A, L are defined in the figure).

so the cos 2¢ dependence changes:

2
1 -Bcos2¢ > 1 - Bcos 2¢ + 2 %5-(cos¢-c053¢) + 0 ( %2 )

Also, when the top collimator hole is misaligned, that portion of the
beam emerging from the bottom collimator hole, in coincidence with
photons emerging from the top hole, is shifted in the opposite direc-
tion.

Similar remarks apply to other types of misalignments. If one
of the slit§ is tilted, the resulting error w}ll depend on the scatter-
ing angle © of the photon, and hence on the energy of the photon.
Similarly, if the scatterer is tilted, the error will depend on the
energy of the scattered photon.

Hence we can expect errors in R of order 4BA/L= 8R from misalign-
ments . For our apparatus this is %B-= gﬁgé ; setting an upper limit

of 1 mm misalignment possible misalignment errors of 0.03 in R are

obtained.

2. Evaluation of m and correction for energy resolution (ﬁl,Aﬁl)

To evalaute m in Equation (7) of section III. A., it was necessary
Yo Find 65121 gud G°2°2,  These functions ineluded the effscts of the

finite energy resolution of the Nal detectors. ﬁl was computed as

follows (ﬁz was computed the same way):

Let h(El) = the probability, averaged over Z.,, that if the scattered
photon has energy E;, it will en%er the Nal detector and
contribute to the full energy peak.

It was assumed that the detector had a Guassian response; i.e.,

that the probability that the pulse from the detector had amplitude e
e,-E 2

was proportional to exp [-( E%E—%-) ] where g(El) is the standard devia-

1
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tion of the Gaussian. Then the resulting expression for GelAel(El) was

- e +Ae1 ei-E1 2 '

where C is some constant. Let

nl(el) = measured spectrum of triple coincidence events (SISZDIZI)

n, (elAe1 $Ad)

Ae1 = 1 channel

[The experimental values of nl(el) are plotted in Figure 15.] Then
nl(el) was written as an integral involving h(El)-f(El), using Equation
(1) above and Equation (4) of Section A. By expanding h-f in a power
serie;, h.f was solved for in terms of nl(el) and the result was sub-
stituted in the expression for ﬁl [Equation (7c) of section B] to

obtain:

= 1 2 4
ml(elAel) = T_'(Io+12° +I40 *y 5 w)

n

where ¢ = resolution of Nal detector at some convenient energy Eo, and
at other energies o(e) = oe/Eo,

e1+Ae1
I = e‘g nl(e)de = nl(elAe1¢1A¢1) (5a)
1
e.+lhe
I, = e‘jﬁ 11 n, (e)m(e)de (5b)
1
1 o et e
ez | [ny (@n"(e)enj(@)n! (] F= de - (5¢)
i

o (P
1’ 1+ The second il

term, (Iz/In)o2 = Aml, is the effect of finite detector resolution.

The first term, Io/In = m,, is the first approximation to m
In Equations 5a, b, c the integral signs J-de, represent numeri-

cal integrations which were performed by summing the integrals channel

by channel. The primes (') stand for derivatives which were also evaluated

numerically,
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C. Construction and Testing of Individual Components

1. Radioactive sources

A 200 pci Na22 positron source was used for setup and testing.
The main features of the decay scheme, Figure 10 (Le 67) are a 2.6 year
half life, a 90% 8" branching ratio, and a 1.27 MeV gamma accompanying
nearly all of the positron emissions. The source was prepared by
depositing a water solution of Na22C1 in a depression on a 1 in. diameter
0.2 inches thick lucite disc, evaporating the water, and cementing
another lucite disc on top.

Cu64 positron sources were used for the data taking runs. Their
g* activity at the beginning of the runs was ~10 mci. The main features
of the Cu64 decay scheme, Figure 10 are a 12.8 hour half life, a 19%
g* branching ratio, and ~1 MeV gamma rays accompanying very few of the
positron emissions. The sources were made of 1/8 inch diameter 1/16
inch thick natural copper discs, which were neutron irradiated. Natural

copper could be used since it contains 69% Cu63.

(The irradiation was
performed at the Industrial Reactor Laboratories.)

For energy calibration, we used the 122 keV Co57 line and the
511 keV N322 line. Two pairs of sources were made, one for each counter;
these pairs were held at standard positions with respect to the counters
during calibration runs.

2. Source holder and collimator

a. Design

The source was supported by a brass holder which slid into a
rectangular hole in the lead collimator, Figure 2. (This rectangular

hole is perpendicular to the plane of the paper.) The positrons were

stopped and annihilated in the source and in a thin layer of the surroun-
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ding holder material. Holes in the lead of 0.2 inch diameter collimated
the annihilation photons; these holes were enlarged to 0.5 inch diameter
near the source to avoid the events shown in part b of Figure 2.

b. Testing

If one of the annihilation photons underwent large angle
Compton scattering inside the collimator, its momentum would no longer
be opposite the other photons' momentum, so both photons could not
escape the collimator; hence this event would not be counted, and was
of no concern.

A photon could scatter through a small angle in the collimator,
emerge, and reach the scatterer. To set a limit on how many did so, we
examined the energy spectrum of the emerging photons, using a lithium-
drifted germanium detector. We required a coincidence between the Ge
detector and a plastic scintillator placed below the collimator as
shown in Figure 11. The spectrum was compared to the spectrum taken
without the collimator. Most photons which scattered through small enough
angles in the collimator to reach the scatterer-position [dashed line in
(aj] must have emerged with an energy in the region AE shown in part
(c) of the Figure. The height Ah of this region was the same for arrange-
ments (a) and (b). Also, the peak width was not noticeably broadened.
Therefore, these photons comprised at most a few percent of all those
reaching the scatterer position.

Furthermore, photons scattering through such small angles lose
only a few per cent of their polarization. Hence, the net effect of
small angle Compton scattering in the collimator is only (a few per cent)2

® 10_3 which is negligible in this experiment.
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3. Scatterers

The length of each scatterer was large enough, 1.5", for 33% of
the'entering photons to Compton scatter; but it was necessary to keep the
diameter small to minimize the chance of the photons scattering a second
time. (cf. section B. 1. b.).

Our first scatterer, Figure 12b, was 1/4 inch in diameter. It was
tested by taking the spectrum of photons which scattered through 90°,
leaving 255 keV in the scintillator [see part (c) of the Figure]. A
typical spectrum is shown in the same figure.

The low amplitude events were due to photons hitting the photo-
tube. The main peak is broad and asymmetric because light from scattering
events near the tip of the scintillator was not collected as efficiently
as light from scattered events further up. Therefore this design was

E rejected.
4 The next design, FRigure 12a, put the light pipe on the side of
the scintillator and had the best resolution of all designs tested: 20%
full width half maximum (FWHM) for 90° scattered photons (225 keV). How-
ever, photons Compton scattering in the light pipe would have introduced
serious errors.

We finally settled the design shown in Figure 1d: a conical
scatterer surrounded by a slightly larger conical light reflector,
coated on the inside with MgO (for efficient, diffuse reflection).
Total internal reflection in the scintillator tends to send light toward

the light pipe, and the MgO reflects most of the remaining light. The

resolution for the 90° scattered photons was 30% FWHM.
4. Azimuthal angle defining slits

Refer to Figure 13. The slits (a) were made of lead and were
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0.48 inch thick. The inside edges were "aimed" at the axis of the colli-
mator to minimize the scattering events shown in part (b) of the figure.
The top slit and the detector behind it were mounted so they could

rotate about the axis of the collimator.

It was necessary to determine the angular widths of the slits in
order to compute the correction factor (lqe¢) discussed in section B.1l.c.
The widths were measured in two ways:

i. The slit dimensions were measured with a ruler and the
following "geometric'" widths were obtained:

A¢1 = 21.8 ¢ 1.,2°

n

A¢2 19.8 + 1.2°
ii. The bottom slit was mounted on top of the collimator, with
the distance between it and the collimator axis the same as in its ori-
ginal position. [Refer to pait (c) of the figure.] A Na22 source was
mounted on fhe axis of the collimator, and NDD versus ¢ was measured
(where ¢ is the angular position of the top slit and NDD is the rate of
' detecting annihilation photons in coincidence in the two detectors).
i [See part (d) of Figure 13.]
The annihilation photons are emitted at 180°, resulting in the
NDD dependence shown in (d), and the following "effective widths"were
obtained
25.905 18.50°
neglecting the finite size of the source.
As expected these 'effective'" widths are different from the
~geometric ones because of finite source diameter (~20.25 inch when the

range of the positrons is taken into account), scattering off the sides

of the slit, and leakage through the sides of the slit. Substituting
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these widths into the expression for €,, Equation 1 of section B. 1. c.,

¢’
results in:
€
¢
€
¢

In analyzing our data, the average of these values was used

0.050 (effective slit width at 511 keV with finite source)

0.060 (geometric width),

By = 0.055 + 0.005.
Hence, 1 - 8¢ was known to * 0.5%.

5. Depectors and phototubes

The detectors were 2 inches in diameter by 2 inches long Nal
crystals made by Harshaw. The phototubes were Radio Corporation of
America (RCA) 8575 bi-alkalai 12 stage phototubes, chosen for their

high photoefficiency and fast response.

D. Electronics

1. Description

The function of the electronics was to collect an E1 spectrum
and an E2 spectrum of the 3-fold coincidence events, an E1 versus E2
two-parameter spectrum of the 4-fold coincidence events, and count the
total (S1 SZ) coincidences. The total numbers of 3-fold and 4-fold
events were also recorded on scalers.

A simplified block diagram of the electronics is shown as Figure
14, Discriminators connected to the fast outputs of the photomultipliers

generated the fast logic pulses Sl’ S, D,y D,« The fast (S1 Sz) logic

2* 71? T2

pulses were generated by a fast AND (21 nsec resolving time) and counted
by a scaler. The fast logic pulses (S1 S2 Dl) and (S1 S2 DZ) were also
generated.

The slow outputs of the photomultipliers were stretched and

amplified to form the slow analog pulses Sl’sz’dl’dZ' Because of the
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high signal rate in the scatterers, the S and S,y stretchers were gated
by the (S1 82 Dl) énd (S1 82 Dz) coincidence pulses respectively. This
made it necessary to run the inputs of these two stretchers through delay
lines.

The ) and d1 analog pulses were then summed, and the sum was fed
to a single channel analyzer (SCA). When the sum pulse was between 0.83
e and 1.17 e, the logic pulse L, was generated[bm = 1 electron mass =
energy of annihilation photon). Then the slow logic pulse (S1 82 D1 21)
was generated, and sent to a scaler and the gate of the Y ADC (analog
to digital converter) of the MCA (multi-channel analyzer). Similarly,
the slow logic pulse (Sl 82 D2 22) was generated and sent to a scaler
and the X ADC gate.

The analog pulses d1 and d2 were fed to the analog inputs of the
Y and X ADC's respectively. The ADC's digitized the signal appearing
at their inputs whenever a logic pulse appeared at their respective gates.
If one and only one of the ADC gates was opened, the corresponding d1 or
d2 pulse would be added to the appropriate l-parameter spectrum. Thus
the n, and n, events (cf. Figure 1) were recorded. If both ADC gates
were opened in coincidence (within 1.5 sec), the (dl’ d2) pulse pair
would be added to the 2-parameter spectrum. Thus, the logic requirement
on the pulses in the 2-parameter spectrum was [(S1 82 Dlel)-(S1 52 D2 22)
= (S1 S2 D1 D2) 21 22, the desired 4-fold coincidence requirement for the

N-events in Figure 1. The l-parameter spectra did not actually contain

all the pulses which satisfied the 3-fold coincidence requirements

*sl, s, are the slow outputs of the plastic scatterers; dl’ dy are the
slow outputs of the Nal detectors.
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[(8; S, D; ), (8; S, D, I,)]; the 4-fold coincidence events were
missing. The missing events were added later using the computer in the
MCA.

The scalers were gated with the '"busy' output of the MCA so
that they would only count when the MCA was accepting pulses. The
multichannel analyzer (model 50/50) was manufactured by Nuclear Data;
it contained a Digital Equipment Corp. PDP-8/L computer. The Pegram

Nuclear Physics Laboratories electronics staff built the d, and d

1 2
stretchers, SCA's, slow univibrators, slow AND gates, various delay
lines, and all the linear amplifiers. The phogotube heads were made by
the Nevis electronics staff. The fast discriminators, fast AND gates,
and the 1 and S, gated stretchers were manufactured by Lecroy.

2. Accidentals, dead time, and pulse pileup corrections.
Accidental coincidences in the various AND gates led to correc-
tions as foilows:

VConsider R for the total region, i.e., R computed using all valid events
regardless of energy. Without corrections for accidentals, R varies as

R=14+ B cos 2¢

a. Accidentals in the AND gate with inputs S S2 change B by

1’

<= [Sl SiT = -0.007 with fresh source
where [S1 SZ] = Sl-S2 coincidence rate i‘ﬁ
[Sl], [SZ] = Sl’ 52 singles rates
T {Sl, 52} = resolving time of (SISZ) AND gate = 21 nsec

b. Accidentals in the AND gate with inputs (SISZ), Dl change B by
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B -[Sl] T{(Slsz), Dl} = -0.005 with fresh source

|
]

95 nsec

with notation similar to (a). There is a similar correction

AB ;
5 '[52] T {(Slsz) Dz} = 0.005 with fresh source

T = 95 nsec

c. Accidentals in AND gate with inputs Gl’ G2

Let G S,S, D, L

1 1271 1

Gy = 848, Dy I

w161 [6)] y
==+ _-TEIE;T— T {GIGZ} = 0.013 with fresh source

T = 2 usec.
These corrections arose as follows: The accidentals (a) and (b) added
events in which the two photons came from different annihilation processes;
since the photons were uncorrelated, the effect B was lowered. The type
(c) accidentals changed the number of four-fold coincidence events N

12
without changing N N, or N2 in the expression for R [= N'NSS/(nlnz)]

§S’ 1
so they increased A.

Accidentals in the AND gate with inputs (SISZDI)’ 21 were negli-
gible because most of the time an SIS2D1 pulse is needed to generate the
I pulse, As shown in Figure 14, it is the SISZD logic pulse that opens
the gate, at the input of the stretcher, which generates the s, analog

pulse, that feeds the r amplifier, that feeds the SCA, which generates

the I, logic pulse.
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d. Dead-time and pile-up
Dead-time losses and pulse pile-up were calculated to have

negligible effect on R.
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e . Chapter IV

- .~ ) Data Reduction and Results

A. '§pectrmm of the'trip}e coincidence events (nl‘and nz)

A typical energy spectrum of the triple coincidence events (Fig. 1) is
shown'1n Figure 1§_w1th schemat1c draurngs of events assoc1ated with ‘
different parts of the spectrum (The superimposed plot of m(e) will not

be used in this dlSCUSSlOD.) /

- True events--in which the photon scatters once in the scatterer
and then enters and is fuily absorbed in the detector--have energies
between eh.and ey A typical true event, with a scattering angle 6 =
90° has an energy of 0.5 M (electron masses), see (c) in the figure.
The scatter1ng angles associated wlth“energ1es out51de the range sl
'are such that the photons cannot possibly hit the detector;‘cft ), (d).
There are two major contrihutions to the bump at ea(e=¥ 0.25 M):
@"fcfffr(a)] Events in which the photon which has scattered in the scatterer
proceeds to Cempton scatter in the detector and escape, thereby ieaving
only part of its energy in the detector, have a spectrum which would
normally extend from 0’ to «ao 25 M; except that the lower}energy events
are‘yetoed by the sum energy requlrement. (A typrcal sum energy spec-
(i -trum is shown invFigure 16) . ~In the order of 15* of the events w1th
: energy‘vo 25 M leak through becanse of the f1n1te resolution of the
detectors. ‘The common event shown, in which a photon scatters through
90° and'then bagkscatters out of the Qetector; has’an energy of eractly: -
0254 - ' . o d et
[cf. (a')] Events in whlch the photdn scatters twrce in the scatterer
before being totally absorbed by the detector have an energy spectrum

.whlch extends from 0.2 to 1.0 M. As pornted out in Chapter III Section .
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B. 1. b. the spectrum ises it ioy energies, with ﬁeaks expected near
9.25 M and 0.5 M. Thus, these events, especially the eva;t shown as!
(a ) contribute to*the 0. 25 M bump. :

In Chapter 111 Section B. 1. b. an upper limit of 7% for contri-.

bution of false events near 0.5 M was obtained.

B. Comparison of ﬁ; Experiment and Theory
g =)

1. "R for total events (total region)
Fifst R was computed ug;ngffﬂ; total numbers of 'N", "n,", and
"n,' events (defined in Equation 14 of Chapter I and Figure 1). That is,
included in N, ny and qz'ﬁere all events which satisfied the appropriate
timefcoincidence-énq sum energy requir;ments. The number§ were .obtained
from the correspbndiﬁg scalers,
In Chaptér_IiI Sections B. 1. a. and D. 2, expressions were
~ derived for corrections to the theoretical R versus ¢ curve, due to
f1n1te scatterer diameter and accldentals, respect1ve1y Each experimen-
tg& value of R was moved by an amount equal in magnitude but opposite
in sign to thercdrrection to-¢he_corresponding theoretical value of
.R.*_ These corrections were small; ~0.01, but comparable to the statis-
fical"accuracy. - The  theary developed in Chapters II and'III predicts that
Vaftér these corrections are made, R exhibits a cos 2¢ dependence. It
was, in fact, fbuhd"that.the gqurimental'vdlues of R could Be fit with
‘a curve of the.fﬁr;_ _ : - !
"R=A- B cos 2¢ g - (ay

: = ; ot
. with A= 1.0071 * 0.0036 (corrected data) and B = 0.3419 + 0.0051.

i
)

,f——-.-
*The 0.006 B term in Equation 11b. of Chapter III section B. 1 a. was
qmitted from these calculatxons. Vg & sl

o4
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[xzkdggrées of'freédbm = 0.84 (10 degrees of.freedom: (p=0.6)].
R versus ¢:i$ ﬁlotted in figure (41.* Agreement with thg expected |
cosine behiviqr is excellent, indeed, better than we would have'expec-'
ted, Since_deviatioﬂsmdue_to‘Lﬁsalignments were estimated to be a few
percent. We therefore neélected any error in B due £o misalignment.:

Next, the predictions of the theory developed in Chapters II

and III for A and B was evaluated. 'The theoretical form of R is

e R.Z A - B cos 2¢ _;///ff—aai““
with e /// ‘“xk_,)
= A=1 ffAA
and G :
= .(@+Am)) (ﬁgf-z\mz) (1-e,) (1-c ) (1-0.006)
where

AA = corrections ddq to Z correlations

A&m, am, = the finite energy resolution corrections

5 the finite angular resolution correction

¢

the correction for photons scattering more than once in
the scatterer

1 B

€
m

-
o

- (1-0.006) results’ from finite scatterer diameter (See Chapter
IIT section B, 1. a. .

&/ ml,,mz; fm, dmz wefe'fgund'by numerical integrations on-the
spectra of thé'triple coiﬁcidenée event’s, as perlthe discussion of
Chapter IIT Section B. 2. The 1ntegrat10n used to find these quant1-
ties q;n be v1ewed as flndlng the welghted average of m(E) u51ng the .

ni and n2 spectra as welghtlng_functlons.
: o

S el ¥ : ik . : :
. *Data points at/the same ¢ have been averaged to facilitate plotting.

BT D
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; : 5 | “L - 0.15 (0.60-0.00) =—-*-'1'j~:1~3n\\‘7
that is " © = : | //f#,///pﬁikiﬁ“‘xh,

Section B. 1. b. to be
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- Refer again'to Figure (15) containing a triple coincidente spec-

trum hnd a plot of m(é)" The events in and near the bump at e,, dis-

a’
cussed in part A of thls chapter, had an unknown angular distribution.
Therefbre, we used the valne of m obtalned by integrating from e = 0.33
M to E = M. m = 0.601. Since 0 <m < 0.69 and the events below 0.53

M:amounted to 15% of the total counts, the possible error caused by the

bump was { + 0.15 (0.69-0.60) = +°0.0014 *

-

0.51 <m, < 0.60

i b e
or . . my, = 0.56 + 0,04 i
similarly,” . - [m, = 0.58 £ 0.03
" ¢ & ? b
The values of Aml-and Am2 were found to both be 0.016. The

finite'angle'factof e¢ nns'already shown in Chapter III, Sections B and
i A ;

-

C to be
&

4 e¢ = 4.5 * 0.5%

‘Also, the reduction in the effect dué to the annihilation photons

-

scattering more than once in the scatterer was shown in Chapter III

= Lo = 3.5 + 3.5%

Jhe net result for the theoretical B is

B'- 0.32 .‘!‘. 0.05 o i v

According.to the discunsﬁnn'bf ChapteriIII'Section B. 1. a., the Z-corre-

. ‘lation wouid'keep B/A constant while introducing'uncertainty_in A of~0.05,

Thus, the theoretical prediction becomes : <% Ly

”
-

*The events below 0.33 M amounted to 8% in the corresponding trlple

c01nc1dené"3pectrum
F



B/A

10.32 % 0.05

~

A= 1.00 + 0.05

There is agreement'within the quoted uncertainties between the  theoreti-
cal and‘kxper1menta1 values of A and B/A

“2's R\}br energy regions £ ' -
5 : 1 sty

Four energy reglons, each representing one possibility of

(e Ael, ezﬂez) et Equatlon (la) of Chqpter III Section A] are dep1cted

-

in Figure (3). With the' technlques just described R w///;omputexxfbr

—t

“each region and corrections were applied. el

One additional, correction was needed. The limits of the energy
_regions were fixed atAFer;ain cﬁahnels in the MCA, and as the ekperiment ol
progresgfd, the acppal enérgics.cofresponding to these channels drifted

by some*séQeral percent, ITo.compensaté for this, calibration spectra were

taken before and after each run; the change in R which was caused by the
_ - .
drift was calculated using the theoretical R versus energy spectrum. The

-

data points were then moved the same amount in the opposite direction.
The theoretical and experimental values of the parameters A and B of the

'fité (Equation 1) are diéﬁlaYéd in Table 2. Region 1 was chosen at the
'maximum of m(E). Since regions 3 and 4 are symmetric when the energies

of the two scattered photons are interchanged, the R's of-thesq regions

were added. _

~ C. Compar1son with the Wu-Shaknov Experlment
' In 1950 Wu and Shaknov (Wu 50) measured the Compton scatterlng of

annihi;atlon photons using aluminum scatterers and anthracene detectors.
. : . ! y . [ J
The ratio of two-fold coincidence rates for relative azimuthal detector

"



i

angles of 90° and 0° was found to be 2.04 + 0.12", as compared with a

theoretlcal value of 2.00 (wlth no quoted error)

™

it L TE one assumés a count‘rate N dependlng on E1 2 el, ¢2,-as in
Equat1on (13) of Chapter II Section C: - .
f(El) f(Bz) [l-m(E ) m[Ez) cos 2(¢ -9 )] HAAGY)

then their results can be interpreted as yielding for B,
B = <m(E;) m(E,))> =0.34 £ 0.03

. ) : | P
where the <> indicates an average over the scattering angles of their -Mhﬁ“j

J
-

detectors, compared with a theoretical value of

=0.33 (no quoted epfor)

»

‘Wu and Shaknov did not have at their disposel triple coincidence spectra

to compute the theoretical B; instead they computed B from their geometry.

Our experiment in addition to measuring B for several energy

St regions, yerified the form of the dependence,~Equation 1%

D.I_Conelusiens :

Detailed evidence for fhe_theoretical‘R versus cos '2¢ dependence
" is best peovided by fhe excellent fit to R for the total region (Figure :
4), "because of its good Statlstlcs and freedom from eneré} versus channel
' drlft uncertainties. EV1dence that the magnitude of the cosine dependence
“isin aecordance_with the quantum mechanical predlctlon is provided by
the’excellentlagree;ent between the‘theoreticel and experimental values
‘of B/A for the.energy regidns‘(Table Z)f Inlfigurefs exﬁeriﬁental values .
of B arefgraphically_compared with the prediction of Quantum theory and
:tﬁe upper limits associated with lecal hidden variable theories and the 7

-

; Bohm—Aharonov'hxpotheeis.

_ sted a "mean prebable error" of - 0 08. We havé canverted
d dBV1atlons by dividing by 0. 675



The implications of these results have alre

by
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ady been discussed

’

in great detail in the introduction (Chapter I éspéciélly.Sbctipn G).#

.y
o
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APPENDIX A

Physical Demonstration that Relative Plane Polarizations of the

Annihilation Photons are Parallel or Perpendicular.

The consequence of conservation of parity on a system of two
annihilation photons is illustrated in Figure 18. Suppose a linear
polarization measurement is made on photon (A) with result 2. Then
the other photon (B) must have linear polarization €' either parallel
or perpendicular to €. For, if B had a definite direction of circular
polarization, (CP) that direction, together with the vector ;AB’ could
be used to define a right handed screw (See top of the figure). If

B has a linear polarization €', we could define a direction of rotation

b

as that direction needed to rotate §' so ®' = £, with the restriction

that £' be rotated through the shortest possible angle; this direction
> -

and r B define a right-handed screw. This would break down only if

A
2! is parallel or perpendicular to €, Q.E.D.
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APPENDIX B

Formal Derivation of the Relative Polarizations of Annihilation Photons

It was shown physically in Appendix A that when a positron anni-

hilates with an electron at rest the relative plane polarizations of the
two emerging photons must either be parallel or perpendicular. A formal

proof that they are perpendicular shall now be offered.

1. Since the positrons annihilate at rest, L = 0 and therefore

J=8=0or 1 (where L, J, S, = orbital, total spin angular momentum) .

Consider a final state in which the two photons have equal and opposite

momenta along the Z axis. JZ for each photon can have the value *1

(units of ﬁ) corresponding to the two possible helicity states; thus the

total J, can take on only the values 0, +2; the values *1 are excluded

because they would require one photon to have JZ = 0. Also, since the

maximum S of the electrons was 1, the values *2 are excluded. Hence,
JZ = 0 and the state vector can be written:
¥ = [a'(k,+1)a’ (-k,+1) + na'(k,-1)a’(-k,-1)]|vac> (B-1)

+ + . .
where a (k,+1) is a creation operator for a photon in a state of *1 heli-
city and momentum k; we have used the fact that photons with opposite

angular momenta and opposite linear momenta have, of course, the same

helicity.
2. It shall now be shown that annihilation from the J = 1, JZ = ()
state is also forbidden. (This step is not essential and the reader may

proceed to (3).
Let R = a 180° rotation around the X axis. Under Ry the components

of a classical electromagnetic field, with right handed circular polariza-

tion, given by
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- 1 . » ar
K(k,+1) o (Q+1§)e1kz iwt
transforms to
1 o oz s
7z [)% ()i§1et (TR 20t |z gy,
> -~
(.e.,y and 2 components are reversed). Hence if A is expanded in a

urier i i ici i izati
Fo series with coefficients o (where s = circular polarization)

aﬁ,s - a-k,s under RX'

When the field is quantized, the a's become the operators a(ﬁé), so
a(ks) » a(-Ks)
and:”
a+(§s) =k a+(-ﬁ§)
under RX'

Hence we see on inspection that the state vector remains unchanged

under RX (using [a+(ﬁs), a+(-ﬁs)]

0 as these are bosons). However, the

positron-electron state J = 1, J 0 transforms under R, like the spheri-

Z X

cal harmonic Ylo; it changes sign under RX' Since the Hamiltonian is

rotationally invariant (we assume annihilation in free space) this decay of

the J = 1, J, = 0 state into two photons is forbidden.

Z
Hence, the positrons and electrons at rest annihilate into two
photons only from the J = J, = 0 state.

3. We now consider the effect of parity transformations on

Equation (B-1). Under parity transformations,

*Since Ry is a unitary transformation = U,

- + + g, | T
afs = Uags U' + a £ Ua ¢ U

upon taking a Hermitian conjugate of each side.
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K+ =X bl Lok =Dy
X+ 1y » -x = iy = -(x + iy).
The components of a classical field R transform like this, so, reasoning
as in (B-2) we have:
a+(K,s) + -a’ (-iz,-s) under a parity transformation P
and (B-1) becomes
¥ > PY = [a'(-k-1)a" (+k-1) + na’(-K+1)a’ (+¥+1)] |vac> (B-2)
Comparing with Equation (B-1) it is seen that if ¥ is an eigenstate of

P with eigenvalue p, then

S0
n= %1 for p = %1 (B-3)
The creati'on operators for circular polarization states are related
to those for linear polarization states by’.r
+ > 1 + > . >
a (kxl) = 75 [a (kx) = ia (ky)]

+

a (-TE 1) = -‘172— [a+(—§x) re ia*(-fy)]

so we have,substituting into (B-2),

Py %{[a+(-_fx) + it (By) ][t (kx) - ia'(ky)] +
+ n[a’ (-kx) - ia+(~ky)][a+(kx) + ia" (ky)]} |vacs

2 (B-4)
{[a* (-kn)a” (kx) + a" (-Ry)a” (ky)1[(1em) /2] +

+ —i[a*(-kx)a’ (ky) - a+(-ky)a*(kx)][(1-n)/z]} |vac>
Hence, if ¥ is an eigenvector of P with eigenvalue p, equations (B-3)
and (B-4) yield
=1 ¥ ;L:. polarization

o]
n

+] ll polarization

= |
n

*As before, they are related like the coefficients of the corresponding
3

classical fields.

S
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But it will be shown below that the state of the positron plus an
electron at rest has definite)negative parity. Hence, since parity is
conserved in the annihilation process, ¥ has negative parity, so the
photons emitted in positron annihilation at rest have th polarization,

4. The parity of an electron and positron at rest shall now
be derived. The wavefunction of an electron transforms as®*

V(E,t) > By(-%,0)

In the representation where the positive énergy solution for an electron

at rest with spin (up, down) is given by

1 0

0 eimt 1 imt

0 lof ©

0 0

and the negative eﬁergy solution by

0 0

0 e-im 0 e—imt
1 0
10 1

(m= the rest energy) the matrix g has the representation:

(=

If the wave function of an electron at rest is expanded in terms of these
eigenfunctions, the coefficients a,8 of the positive and negative energy

eigenfunctions transform as follows:

(coefficient of positive energy solutions)
%0172 7 %172 (

- **
- (coefficient of negative energy solutions
Por1/2 ~ Bos1/2 WERARELR

*See any book on relativistic quantum mechanics,_eg., J; J.PSakura;§64
Invariance Principles and Quantum Mechanics, Princeton U. Press, -

**Not to be confused with the B matrix.

e
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where the subscript "0" indicates the electron is at rest, and the +1/2

refers to the spin. Hence, when these coefficients become operators

a(0,x1/2) + a(0,*1/2)
b (0,%£1/2) + -b"(0,£1/2)
2, the initial electron state, constructed to have J = 0

(a* 0+1/2)b* (0-1/2) - a*(0,-1/2)b* (0,+1/2)] |vac>

has negative parity.
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APPENDIX C

Bell's Counter-example Showing that this Experiment Cannot Rule Out

Local Hidden Variable Theories.

Let the first photon scatter with probability
oY
dﬂl[F(el)- V2 G(Ol) cos 2(¢1-A)] (C-1)
and the second with probability
da, [F(e,)+ /E'G(ez) cos 2(¢,-1)] (C-2)
where A is a hidden variable uniformly distributed between 0 and 2w, and
@, ¢, 2 are the usual polar, azimuthal, and solid scattering angles.

If further

"

F(@) [(1 - cos 6)3 * 21/(2 = €os OJS

)

G(0) = sin® 6/(2 - cos )2

and the joint distribution is obtained by multiplying expression C-1 by
C-2 and averaging over A, the quantum distribution [see e.g., Pryce
and Ward (Pr 47)] is obtained.

This model is acceptable because it happens that the expressions
C-1 and C-2 are always positive, as probabilities must be. For photons
of somewhat lower energy the required expressions are not always posi-

tive and this type of model fails. (The other counter-example in L. E;

is not subject to this restriction.)
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APPENDIX D

P(ab) Evaluated According to the Bohm Aharonov Hypothesis; and the
Relation” of the Hypothesis to Local Hidden Variable Theories.

Suppose a linear polarization analyzer gives the responses +1

and -1 for photons linearly polarized parallel and perpendicular to its

axis. The average response of the analyzer to an elliptically polarized

photon represented by the vector e|x'> + if|y's>, with e and f real, is

given by

z(a,B) = (e2-£2) [cos®(a-B) - sin’(a-B)] (0-1)

where a is the direction of the analyzer axis and B the direction of the

R axis; and the normalization e2 + f2 = 1 has been used.

Consider the following mixture of 2-photon states. Photon 1 is

characterized by e, f, g8, and photon 2 by e', f', g'; B is uniformly

distributed between 0 and 27, and B' = £. For this mixture, P(ab) is
given by
2m 1
P(ab) = J‘ d 85;- z(aB) t(bB')
9 (0-2)
- (e2-£%) (e'2-£'%) 3 cos 2(a-b)
Evidently, all ensembles possessing the rotational and reflective symmetry

i * %
hypothesized by Bohm and Aharonov must be sums of such mixtures. Also,

2 2]

|e - f

with

I shows that the expression for the re

Furthermore,

< 1. It follows that for any BA mixture

P(ab) = C cos 2(a-b)
(D-3)

|c| 5%

comparing equation D-2 with equation 5 of Chapter

sults of measurements on the BA

*Ne thank R. Friedberg for pointing out the relation.

**BA assumed B=B'.
adding a mixture with B'=8-6,

I1f g'=g+6 in (D-2), reflgctive symmetry requires adding
and (D-3) still holds.

e e R O A




79

mixture considered has been put in the same mathematical form as a local
hidden variable theory. Clearly, the general mixture can also be

written in such a form.
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APPENDIX E

Expgrimental Evidence for the Validity of the Quantum Relations Between

Compton and Ideal Polarization Analysis

It has been assumed that the quantum prediction for the function
relating Compton and ideal polarization measurements is correct. This
assumption is supported by measurements of:

A. The angular distribution of Compton scattered polarized photons.

B. Atomic energy level spacing and g factors of the electron and muon.

C. High energy electromagnetic scattering cross sections and angular
distributions.

These will now be considered in turn.

A. Angular distribution of Compton scattered polarized photons.

The methods available for producing beams of polarized photons
include Compton scattering of unpolarized photons and bombarding a
polarized laser beam with a high energy electron beam. Experiments in
which such beams of polarized photons were Compton scattered shall now

be described.

1. Suppose a beam of unpolarized photons is Compton scattered twice,

as shown.
(\i", ¢: ¢ = 0 in_plane of paper
detector D
er S
scatterer o, b, 52
E1
source

81

EO scatterer S1

The successive scattering on scatterers S1 and S2 reduces the original

beam energy E_ to E,; and then to E2 as shown. The first Compton scatter-
o

ing gives the beam a partial linear polarization (Ev 58). The beam is
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scattered again, and the dependence of the intensity as a function of
é i§ compared with the quantum prediction. It is easily seen that the
intensity is proportional to 1 + pm(Ez) cos2 ¢ where p is a measure of
the polarization produced by the first scattering and m is a quantity
defined in Chapter 1"

Hoover et al. (Ho 52) measured the SZD coincidence rate normal-

ized to the ¢ = 0 value. (They used 8, = 50 and 83°, 6, = 90°, and

2
¢ = 30,50,70, and 90°. The source was C060, giving a mixture of 1.17
MeV and 1.33 MeV gamma rays.) Discrepancies of as much as 3.6 (statis-
tical) standard deviations between theory and experiment were found.
This would correspond to as much as a 25% discrepancy in m if m were
assumed to be solely responsible. However, the authors believed the
discrepancy was probably due to instability of the electronics.

Singh et al. (Se 65) improved on the experiment several ways.
They used a thin copper scatterer for S, to minimize multiple scattering
in §,. A plastic scintillator was used for S, and Nal was used for D;
and single channel analyzers checked if the appropriate energies were
deposited in 82 and D. Rates were normalized to the ¢ = 0 rate. Measure-
ments were made at 8, = 64, 90, 120°; 6, = 90°; ¢ = 0, 30, 50, 70, 90°%;

and EO = 280, 662, and 1250 keV.
Scatterers of two different thicknesses were used and gave

results that agreed within statistics, so any effect of multiple scatter-

ing of gamma rays in the scatterer was small. The spread 48, and 44, 1n

91 and ¢1 were small enough to have a negligible effect.

*See Equation (8). m also depends on E;, of course. See Si65 (for example)

for the dependence on the angle 9.
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trast to Singh et al., they used two D's simultaneously, one at ¢ = 0

82

The spreads 48, and A, in e, and ¢, were larger, (35-55°) and

s ) . - .
there were 5" uncertainties in these spreads. It can be shown that these

8. i o
] + 5° uncertainties cause less than a 5% uncertainty of the average (over

8, and ¢,) of the theoretical value of m. Also, the 36 values of counting

rates (normalized to ¢ = 0) agreed with theory within statistical uncer-

tainties of 1-3%.

The implications of these results depend on how hypothesized varia-
tions of m from theory are parameterized. Suppose m is changed to (1 + &)m
(6 = a constant), for example. Then the statistical uncertainties alone
would imply & 5 2%; while uncertainties in A82 and A¢2 (noted above) would,
alone, imply & < 5%; therefore § < 7%. Furthermore, the agreement
between theory and experiment, with respect to the detailed Eo’ 815 95
dependence, provides confidence that the theory is accurate to better
than this 7% figure.

The experiment was also repeated by Raju et al. (Ra 68). Like
Singh et al. they looked at the energy deposited in S, and D. In con-
and the other at ¢ = 30, 60, or 90°; and tabulated the ratio r of rates
in the two D's. Also, they used Nal for S, and 1/2" x 1/2" Al for S,.
(Their single channel analyzers looked at the sum of energies deposited
in 82 and D, and the energy deposited in D. They used 6, = 45, 60, 75,

90°; 6, = 90°; and E, = 662 keV.)

2
The experimental value of r (defined in the above paragraph)

agreed with theory to within 10% at all values of &, and ¢. The authors

claimed this was consistent with 5% statistical and 5% experimental

uncertainties in r.



They failed to note, however, that the experimental r is
'gystematically smaller by ~10% in every one of the 12 conditions.
It is easy to see from the above that the average discrepancy in r is
] about 10%, with a systematic uncertainty of ~5% and a statistical uncer-
tainty of 5/ v12%. Such a discrepancy is not consistent with zero;
a systematic discrepancy of (10-5) + 5/ v12% = 5 + 1.4% is not accounted
for. This would correspond to about a 16 *+ 4.5% discrepancy in m(Ez),
assuming the polarization due to the first scattering is correctly
given by theory.

The reason for this discrepancy is probably multiple scattering
in S, which Raju et al. claimed was not excessive. According to a
rough estimate, (along the lines of the calculation in Chapter III section
B.1.6.), such multiple scattering produces an effect with the same sign

and the same order of magnitude as the discrepancy.

2. Suppose a high energy electron beam interacts with a polarized
laser beam of optical photons. In the rest frame of the electrons, this
is equivalent to a polarized X-ray beam Compton scattering on the

electrons. The laser beam polarization may be measured with optical

analyzers, which are nearly ideal. Hence a comparison of ideal and

Compton scattering measurements on single pliotons could be made.

Facilities for electron-laser beam bombardment have been con-

structed at SLAC (Si 69) CEA (Sa 69) and in Russia (Ku 67). Unfortun-

ately, the angular distribution of the scattered electrons or (equiva-

lently) the scattered photons, has not been measured.

1 spacing and g factors of the muon and electron.

B. Atomic energy leve

Compton scattering 1s computed, of course, using quantum electro-

dynamic theory (QED). Evidence for the validity of QED has been reviewed
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by Brodsky and Drell (Br 70). The g factors of the electron and muon

have been computed using the value of the fine structure constant obtained

from the A, C. Josephson effect. The theoretical values of g-2 agree
with experiment within the theoretical and experimental uncertainty,
totaling about 30 parts per million (ppm). The agreement between theo-
retical and experimental values of g-2 for the muon is about 300 ppm.
Also, the agreement for the Lamb shift is in the order of 100 ppm.
Although the agreement between theory and experiment is impres-
sive, these experiments should be supplemented by experiments which are
more closely related to Compton scattering and which involve energies
equal to or greater than those of annihilation photons. Suitable experi-

ments shall now be discussed.

C. High energy electromagnetic scattering processes.
The process
ele” > 2y
has been studied at high energies using colliding beams of electrons
and positrons. This process has the Feynman diagram of Compton scat-

tering, "'turned on its side':

e L <

.

+ -
Compton Scattering e e *2y

Bacci et al. (Ba 71) have measured the cross section for values of 8 near

33° ("small') and 90° ("large')
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and single beam energies of 0.7 to 1.2 keV. The ratio of large angle
to small angle cross sections agreed with theory to within the experi-
mental and theoretical uncertainties (of about 20% each) for 4 values
of beam energy. The ratio of the total cross section to small angle
e'e” scattering agreed with theory within 20% experimental uncertain-
ties. Balakin et al. (Bal 71) measured the (2y annihilation/elastic
scattering) ratio at ~90°, and single beam energies of 500 MeV and 510
MeV. The experimental and theoretical values of the ratio agreed to
within the corresponding experimental uncertainties (of 13% and 9%
respectively).

Other high energy scattering experiments are reviewed in Brodsky
and Drell (Br 70). In particular, the total Bethe-Heitler cross section
for pion production and bremstrahllung have been found to agree with
theory to within 1% at energies up to 3.6 GeV. These processes also

have Feynman diagrams similar to that of Compton scattering:

]
-...-.)( E 2>=nucleus
I

Bremstrahlung pair production
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Conclusion

A

| These experiments provide supporting evidence that the relation
between Compton and ideal polarization measurements is correctly given
fﬁ? Quantum mechanics. The double Compton scattering experiment of Singh
;ét al. provides evidence that theory correctly predicts m at least better
 than 7%; the agreement between theory and experiment for the detailed

~ dependence on energy and angle provides confidence that the theory is

iuﬁsn more accurate than that.

The experiments on high energy experiments and the precision
atomic experiments are much more precise, although they are less directly
related. The most direct test--using scattering of high energy elec-
trons on a laser beam--has not yet been performed.

It should be mentioned that the relation between Compton and
jdeal measurements on polarization correlations between two photons
might not be correct even if experiments--such as the above--verified
the relation for measurement on single photons. This is because of
the possibility of '"hidden variables', associated with the two photons,
which are correlated in such a way that they affect polarization corre-
lations but not measurements on single photons.

Nevertheless, these experiments taken together provide strong

evidence that quantum theory is an accurate description of the Compton

scattering process.
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APPENDIX F

Possibility of Improved Accuracy

If a more accurate and complete measurement of the Compton
scattering of annihilation radiation is necessary, the following steps
can be taken:

1. Using Na22 for the source would permit long runs at a stable counting
rate; all other factors remaining constant, a 1 month run using a
10 mci Na22 source would provide ~15 times the number of counts we
obtained with our two runs, each of which nearly exhausted a 10 mci
Cu64 source. (The half-life of Cu64 is 12.8 hours).

2. Reducing the source diameter from its present value of 0.125 in to
0.06 in would increase the counting rate by a factor of a3, because
the solid angle available for both annihilation photons to leave
the collimator decreases with the distance r' from the point the
photons leave the source to the collimator axis.

3. A detailed calculation of the effect on R, of photons which scatter
more than once in the scatterer would eliminate an uncertainty of
~%*1% in R. The size of this correction could be made smaller by
reducing the radius (r) of the scatterer, but this would reduce the
counting rate (which is proportional to rz).

4. A collimator hole in the shape of a cone, Figure 17a, (cf. with Figure
6) combined with the smaller diameter source (item 2 above) would

result in a better defined beam.

5. Choosing the minimum diameter of the scatterer larger than the beam
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diameter* would eliminate the z-correlation effect described in
Chapter III section B.l.a. Also, alignment of the scatterer would
ﬁo longer be as critical: As long as the beam remains sufficiently
inside the scatterer, any misalignment only affects the correction
factor involving photons which scatter more than once inside the
scatterer. (cf., Item 3 above.)

6. Using 2 in diameter x 5 in long Nal crystals for detectors, posi-
tioned as in Figure 17b, would greatly increase the range of scattering
angles o, and hence the range of energies, of the scattered photons
that were accepted.

7. A calculation of the polarization dependence of the detectors
would eliminate another source of uncertainty. The polarization
dependence arises from the fact that there is a comtribution to the
full energy peak from photons which enter the detector and Compton
scatter. Near a surface of the detector, the chance that the scattered
photon is absorbed depends on its direction. The direction is
related to the initial polarization; hence the detector is sensitive
to the polarization. This is an ~10% effect for 255 keV photons
moving parallel to and within ~1 cm of a detector surface. Proper

geometry could minimize this effect.

*The scatterer diameter would have to be larger than the beam diameter

by an amount at least equal to the range of the recoil Compton electrons,
because the energy of these electrons must be fully apsorbed by the
scatterer fortthe sum energy requirement to be s§t15f1ed. In Figure 6
the horizontal (X) distance between the dashed lines and the outside of

the scintillator ==this range.
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If steps 1-7 were carried out, a 1 month run with a 10 mci Na22
source would produce ~ 0.001 statistical accuracy in R for each point
in thé total region, and~0.003 statistical accuracy in each of the 9
energy regions. Systematic uncertainties in R would be £ 0.003 everywhere
assuming a calculation of the multiple scattering in the scatterer and
the polarization sensitivity of the detector could be computed to ~5%
and the apparatus were built to 0.1 mm. This would be an improvement
of a factor of ~10 over the present experiment.

Of course, only certain of steps 1-7 need be applied if a special

feature of the scattering is to be tested.

—



90

cos2¢ Run No. R, Uncorrected AR, Finite AR, Accidentals R, Corrected

Diameter AA  AB cos2¢

-1 13 1.344 + ,018 0.000 -.002 .002 1.344
3 1.355 .013 -.007 .007 1.355
-0.5 11 1.189 .014 .002 -.006 .003 1.188
12 1177 .015 -.004 .002 s 9 B 4
5 1,159 .019 -.002 .000 1.159
0 14 0.982 .017 .002 -.002 .000 0.982
1 1004 .011 -.010 .000 0.996
10 1.029 .009 -.009 000 1.022
0.5 15 0823 .019 .002 -.001 :.000° 0.824
4 0.836 .012 -.003 -,001 0.834
1 1 0.694 .001 .002 -.013 -.012 0.671
6 0.665 .014 -.002 .000 0.665
9 0.685 .010 -012 -.012 0.663

Table 1. R for total events, and corrections, AR.
Cf. section IV B.1l.




Theory

B/A

Region A
1 1.00 +.05
2 1.00 .05
3+4 1.00 .05
Table 2,

0.415 +,015
0.372 .010
0.395 .015

5
Experiment
A B/A x%/n!
1.021 £.010 0.409 +.018 1.
0.984 .019 0.392 .030
1.020 .010 0.390 ,017 : o8

(n'=degrees

Comparison of experimental A and B/A with theory.

See section IV B.2.
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Figure 1. Schematic view, to scale, of the experimental arrange-
ment. The lead collimator is omitted. (a) four fold coincidence

| event; (b), (c) three fold coincidence events; (d) detail of
| scatterers.
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Figure 2. (a) Collimator, source holder, and source. The 0.5

in diameter cavity prevents events of the type shown in (b). Note
the expanded horizontal scale in (b).
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Figure 3. The four energy regions chosen to study the amplitude
of the cosine dependence of R. The quantities ej;, e are the
energies of the scattered photons; M = 1 electron mass.
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Figure 4. Plot of experimental values of R versus relative azimu-

thal angle. R was computed from the total numbers of four-fold and
three-fold coincidence events. This data verifies the prediction
of quantum mechanics that R versus ¢ can be fit by A + B cos 23 ’
with A, B, adjustable. The best fit is shown as solid line X</
degrees of freedom = 0.84).
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Figure 5. Comparison between experimental (exp) results and
quantum (QM) predictions for B, and the upper limits on B derived
from Bell's inequality and the Bohm Aharonov hypothesis. The
error bars on the experimental points indicate uncertainties in
instrumental corrections of the various theoretical predictions.
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Figure 7. The X and Y coordinates of the points P; P2, where the
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98

——rrrerp




99

Ell
\.
Scatterer /
Detector
& ———
Eo | \__. A E'~ M/2
E'~M/4

(a) (b) (c)

Figure 8. Photons which scatter twice in the scatterer, having
energy E' between scatterings, and emerging with E''.
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Figure 10. Decay schemes of Cu and Na
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Figure 11. Testing for small angle Compton scattering in the
collimator. The spectrum in the Ge detector, gated by the plastic
scintillator, is taken with the source inside the collimator, (a)
and without the collimator, (b); the spectrum, (c), is compared for
the two cases. The results shown that small angle scattering
affected R by less than 10-3.
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Figure 12. (a), (b); Two preliminary designs for the scatterers, ; :
shown with spectra of 90° scattered 511 keV photons (c). Final }

design is shown in Figure 2.
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Figure 13. (a): Detector and azimuthal angles defining lead
slit; this design reduces the probability for events shown in the
rejected design, (b). Tha angular acceptance of the slits was
measured as in (c), using the plot of DD coincidences, (d).
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Figure 15. Spectrum of three-fold '"n,'" coincidence events n(e) and
typical events contributing to various parts of the spectrum. The
amplitude of the cos 2¢ dependence of R is proportional to the
theoretical function m(e) shown as a solid line.
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Figure 16. Typical sum energy spectrum. E = energy deposited in
scatterer and energy deposited in detector. M = energy of annihila-
tion gamma ray.
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Figure 17. Modifications which would result in greater accuracy:

(a) A small diameter source and a conical collimator hole make a
well defined beam, with a diameter smaller than the diameter of
the scatterer.

(b) A long detector would enable a wider range of scattering angles
to be accepted.
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Figure 18. If the linear polarization of one photon, £, is determined,

then conservation of parity requires that the other photon has linear
polarization, &

or &'/ 2.

' and not circular polarization. Furthermore, 2'.L %?

Otherwise a right-handed screw may be defined as shown.
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