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Abstract 

Data-physics Driven Reduced Order Homogenization 

Yang Yu 

 

 A hybrid data-physics driven reduced-order homogenization (dpROH) approach aimed at 

improving the accuracy of the physics-based reduced order homogenization (pROH), but retain its 

unique characteristics, such as interpretability and extrapolation, has been developed. The salient 

feature of the dpROH is that the data generated by a high-fidelity model based on the direct 

numerical simulations with periodic boundary conditions improve markedly the accuracy of the 

physic-based model reduction. The dpROH consist of the offline and online stages. In the offline 

stage, dpROH utilized surrogate-based Bayesian Inference to extract crucial information at the 

representative volume element (RVE) level. With the inferred data, online predictions are 

performed using a data-enhanced reduced order homogenization. The proposed method combines 

the benefits of the physics-based reduced order homogenization and data-driven surrogate 

modeling, striking a balance between accuracy, computational efficiency, and physical 

interpretability. The dpROH method, as suggested, has the versatility to be utilized across different 

RVE geometries (including fibrous and woven structures) and various constitutive models, 

including elasto-plasticity and continuum damage models. Through numerical examples that 

involve comparisons between different variants of dpROH, pROH, and the reference solution, the 

method showcases enhanced accuracy and efficiency, validating its effectiveness for a wide range 

of applications. 



 

 

 A novel pseudo-nonlocal eight-node fully integrated linear hexahedral element, PN3D8, 

has been developed to accelerate the computational efficiency of multiscale modeling for complex 

material systems. This element is specifically designed to facilitate finite element analysis of 

computationally demanding material models, enabling faster and more efficient simulations within 

the scope of multiscale modeling. The salient feature of the PN3D8 is that it employs reduced 

integration for stress updates but full integration for element matrices (residual and its consistent 

tangent stiffness). This is accomplished by defining pseudo-nonlocal and local stress measures. 

Only the pseudo-nonlocal stress is updated for a given value of mean strain or mean deformation 

measure for large deformation problems. The local stress is then post processed at full integration 

points for evaluation of the internal force and consistent tangent stiffness matrices. The resulting 

tangent stiffness matrix has a symmetric canonical structure with an identical instantaneous 

constitutive matrix at all quadrature points of an element. For linear elasticity problems, the 

formulation of the PN3D8 finite element coincides with the classical eight-node fully integrated 

linear hexahedral element. The procedure is illustrated for small and large deformation two-scale 

quasistatic problems.  
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Chapter 1  

Introduction 

1.1 Overview 

The multiscale nature of many heterogeneous materials poses significant challenges for 

computational modeling. Traditional direct numerical simulations often require a high 

computational cost to resolve all scales accurately, making them infeasible for practical 

applications. To alleviate the problem, various computational homogenization methods are carried 

out. The fundamental concept in computational homogenization involves acquiring the numerical 

representation of constitutive relations for the macroscopic problem by consistently resolving a 

microstructural problem. Though its implementation is straight forward, the computational cost is 

still extensive. 

Reduced order homogenization modeling provides an alternative approach that aims to overcome 

thea aforementioned challenges by capturing the essential features of the microstructures while 

significantly reducing the computational complexity. Nevertheless, the potential presence of errors 

arising from diverse model reduction techniques poses an accuracy challenge, particularly when 

dealing with more intricate material constitutive models, microstructures, and deformation states. 

The mathematical assumptions inherent in most model reduction methods unavoidably lead to 

inaccuracies in the numerical outcomes. 

Emerging data-driven multiscale methodologies strive to improve the computational efficiency of 

online predictions for a Representative Volume Element (RVE) by training a surrogate model. 

This involves utilizing a training dataset that encompasses material parameters and deformation 

paths. While these data-driven models exhibit notable computational efficiency during online 
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predictions, their offline computational time increases significantly when dealing with three-

dimensions RVEs featuring path-dependent material models. Additionally, the physical 

interpretation of the data obtained through interpolation and extrapolation remains ambiguous. 

To address the aforementioned concerns, a data enhanced reduced order homogenization approach 

has been developed. This approach maintains the fundamental physical framework of reduced 

order models while achieving higher computational accuracy with the aid of limited data. 

The utilization of a data-physics driven framework allows for a reduction in computational 

expenses related to equilibrium problems within the Representative Volume Element (RVE). 

Furthermore, we have recognized the computational costs associated with the integration stage of 

macroscopic matrices. In order to address the demand for improved efficiency in this time-

intensive stage across various homogenization-like multiscale methods, a pseudo-nonlocal finite 

element method formulation has been developed. This approach seeks to accelerate the 

computational process and alleviate the overall computational workload while maintaining 

accuracy comparable to the conventional full integration scheme. 

 

1.2 Dissertation outline 

The dissertation is structured as follows. 

Chapter 2 focuses on presenting the formulation of the pseudo-nonlocal finite element method, 

which is designed to provide an efficient solution for computationally demanding material models. 

This method is introduced early in the dissertation as it can be utilized in subsequent numerical 

examples in chapters 3 and 4 to improve computational efficiency. 

Chapter 3 provides a comprehensive framework for data-physics driven reduced order 

homogenization. This framework is applied to fibrous and woven Representative Volume 
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Elements (RVEs), combined with the classical J2 plasticity material model. The chapter highlights 

the integration of data-driven approaches with physical principles and demonstrates their 

effectiveness in capturing the behavior of complex structures. 

In Chapter 4, the theory presented in Chapter 3 is extended to include continuum damage 

mechanics at multiple scales. This chapter explores the application of the data-physics driven 

reduced order homogenization framework to accurately model and predict the softening behavior 

of materials at both macroscopic and microscopic scale. 

Chapter 5 presents the conclusions and summary of the key findings and contributions of the 

dissertation. Additionally, it outlines potential future directions for further research. 
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Chapter 2  

A Pseudo-Nonlocal Finite Element for Efficient Solution of 

Computationally Demanding Material Models 

2.1 Introduction 

An implicit finite element simulation typically involves three main phases: (i) model development, 

which primarily focuses on geometry and meshing, (ii) element-level computations (iii) system-

level computations. In practice, phase 1 tends to be the most computationally demanding, but for 

the purposes of this discussion, we will not delve into it as it heavily relies on software, hardware, 

and human factors. 

The distribution of computational costs between the remaining two phases depends on factors such 

as the nature of the problem, its size, and the computing platform. For inelastic materials 

undergoing large deformation, the cost of element-level computations is primarily dominated by 

the stress update (integration) algorithms. However, in certain cases, the cost of system-level 

computations may be comparable or even higher. However, this scenario often differs when 

dealing with complex material systems that involve multiple scales, whether computationally 

resolved or not. In such cases, the cost distribution between element-level computations and 

system-level computations can vary significantly. 

The computational cost associated with the phenomenological simulation of complex materials 

using multi-surface plasticity models is significant due to the requirement of computing multiple 

consistency parameters. For example, when modeling wood [1], four surfaces are utilized to 

represent different failure modes, including tensile fiber failure, mixed-mode radial tension-shear 

failure, and parallel and transverse compression failures. Similarly, in concrete modeling [2], 
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multiple surfaces are often employed to capture the inelastic behavior of the material under tension, 

compression, and shear. Porous materials [3] utilize multi-surfaces to account for diffuse and 

localized yielding of coalescing bands, while ductile crystals [4] employ them to describe the yield 

function on various slip systems. In multi-physics applications [5], multi-surfaces are used to 

characterize the coupled multi-physics response. 

The computational cost of explicitly considering multiple scales in simulations is considerably 

higher compared to phenomenological material models. Depending on the chosen upscaling 

(homogenization) method, it may even dominate the overall analysis cost. This is particularly true 

when employing first [6-15] or second-order [16] computational homogenization methods. 

However, the computational cost can be significantly reduced by utilizing various reduced order 

models, such as the Voronoi cell method [17, 18], fast Fourier transforms [19, 20], mesh-free 

reproducing kernel particle method [21], methods of cells [22, 23], wavelet-based reduced order 

models [24, 25], data-driven based reduced order methods [26-29], reduced order homogenization 

methods [30-35], and nonuniform transformation field methods [36, 37]. For a recent review of 

multiscale methods, refer to [38, 39]. For applications of multiscale modeling in biology and 

engineering, refer to [40]. Furthermore, leading commercial software vendors such as ALTAIR, 

SIEMENS, SIMULIA, MSC, and NASA Glenn offer multiscale capabilities, as discussed in 

articles [41-46] published in the special issue of the International Journal for Multiscale 

Computational Engineering. 

To optimize computational efficiency at an elemental level, one effective strategy involves 

reducing the number of macroscopic integration points. While the traditional use of under-

integration aimed to mitigate artificial stiffening resulting from volumetric locking or shear 

locking, the current focus, given the computational demands of material models, is primarily on 
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reducing computational costs. A recent advancement in this regard is the adoption of a reduced 

integration approach [47] in micro-morphic computational homogenization. This approach utilizes 

a one-point integration quadrilateral element along with a standard hourglass stabilization 

procedure. For a detailed historical account of the development and implementation of one-point 

integration and hourglass stabilization, we recommend referring to the [48]. 

The widely recognized limitation of hourglass control lies in the selection of the control parameter, 

commonly referred to as either artificial viscosity or stiffness, which has historically been 

determined through numerical experiments. One way to overcome the reliance on artificial 

parameters [49] is by combining hourglass control with a selectively reduced integration scheme 

(SRI). However, implementing SRI does not enhance the computational efficiency of 

computationally intensive material models, as both full and reduced integration must be applied to 

different terms within the models. Although it might be theoretically possible to develop a reduced 

integration approach that dynamically constructs a stabilization matrix by continuously assessing 

the rank deficiency of the tangent stiffness matrix, as far as our knowledge extends, such an 

approach does not currently exist for complex material systems characterized by rapidly evolving 

deformation-dependent anisotropy. 

The main focus of this chapter is to propose a comprehensive integration scheme that combines 

full integration with reduced stress updates. To achieve this, the concept of pseudo-nonlocal and 

local stress measures is introduced. Specifically, only the pseudo-nonlocal stress is updated based 

on a given value of the mean strain or mean deformation measure. Subsequently, the local stress 

is computed at full integration points to determine the internal force and tangent stiffness matrices. 

The effectiveness of this procedure is demonstrated through examples involving both small and 

large deformation problems. 
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The subsequent sections of this chapter are structured as follows. Detailed explanations of the 

formulation are presented for small deformation problems in Section 2.2 and for large deformation 

problems in Section 2.3. In Section 2.4, we carry out numerical experiments involving quasistatic 

small deformation plasticity and large deformation hyper-elasticity. Specifically, we investigate 

both the first-order computational homogenization and reduced-order homogenization models. 

The conclusion and future research directions are given in Section 2.5. 

Throughout this chapter, a matrix notation [50] is utilized, with bold letters used to represent 

matrices. Stress and strain measures are represented by N x 1 matrices, except in cases involving 

natural boundary conditions, where the stress is expressed as a 3 x 3 matrix. The instantaneous 

constitutive tensor is denoted by an N x N matrix. In the case of symmetric stress-strain measures, 

N is equal to 6, while for non-symmetric pairs, N is equal to 9. 

 

2.2 Formulation for Small Deformation Problems  

2.2.1 Definitions 

We define a pseudo-nonlocal stress, ( )PN  =    , as a stress computed from the mean strain, 

 , defined over a characteristic volume   as 

1
d


= 
 

      (2.1) 

Given the constitutive equation ( )   where  denotes the states variables. The term pseudo-

nonlocal stress is selected to reflect the fact that the characteristic volume   is chosen to coincide 

with the finite element domain, i.e., 
e = , rather than with a characteristic material length. 

Given the definition of the pseudo-nonlocal stress, the local stress L  is defined as 
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                             ( ) ( )
PN

L PN PN
+ − = + −




      


L     (2.2) 

where L =
PN






denotes the instantaneous constitutive matrix. 

Remark 1: In the case of an inelastic material, the local stress obtained via eq. (2.2) approximates 

the classical local formulation. For linear elasticity,  =L L , NL = L , yielding  L = L . This 

means that the proposed formulation herein coincides with the classical local formulation for 

linear elasticity. Moreover, since the full integration Gauss quadrature is employed (see Section 

2.2.3) the resulting finite element formulation for linear elasticity coincides with the classical full 

integration elements. 

 

2.2.2 The strong form 

The governing quasistatic equations consist of equilibrium, kinematic and constitutive equations 

together with appropriate boundary conditions: 

( )

Equilibrium:       

Constitutive eq.:

Kinematic eq.:     

Natural BC:

Essential BC:

 on

  = on

= on

       on

     on

T L

s

PN

s

L

t

u



+ = 





= 

= 



   





b 0    

    

u    

n t     

u u    



             (2.3) 

where  , t , u  denote the problem domain and its natural and essential boundaries, 

respectively, such that t u  =   and 0t u  = ; u denotes displacements; s  

symmetric gradient; and u , t  prescribed displacements and tractions, respectively; superscript T 

denotes the transpose of a matrix. The underbar appearing in 
L denotes the 3 X 3 matrix of stress. 
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Remark 2: The local stress L may not satisfy consistency conditions, such as stress being on the 

yield surface in the plastic process. On the other hand, given the mean strain,  , and the 

constitutive equation, ( )   , the pseudo-nonlocal stress, 
PN , and its consistent tangent, L ,  

can be calculated using standard stress update (integration) procedures. For two-scale material 

models undergoing small deformations, PN  and L , can be computed using first order 

homogenization or reduced order methods.  

 

2.2.3 The weak form and the finite element discretization 

Herein, we consider lower-order iso-parametric finite elements, such as four-node quadrilateral 

elements and eight-node hexahedral elements. The discretized test w and trial u  functions are 

given by: 

 
=

=

u Nd

w Nc
 (2.4) 

where N denotes the global shape functions; d and c are global nodal values of trial and test 

functions, respectively. The discretized strains are given by: 

 
=

=





Bd

Bd
 (2.5) 

where s=B N and 

 
1

e
e

d e


=  
 B Β  (2.6) 

In some cases, the mean strain can be approximated (or even coincide) with the strain at an element 

centroid, 0x , in which case 

 ( )0 0B B x  (2.7) 

would replace B in eq. (2.5).  
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Writing the weak form for (2.3) and subsequently discretizing it yields the residual equation: 

 ( )int ext= − =r f d f 0  (2.8) 

where the internal and external force matrices are given by  

 

( ) ( )( )

t

int T L T PN

ext T T

d d

d d

 

 

=  = + − 

= + 

 

 

   f d B B L

f N b N t
 (2.9) 

The tangent stiffness matrix is obtained by consistent linearization of the internal force: 

 

int
tan

PN
T Td d

 

 
      

= = + −  =         
 

 
   


L

f
K B L B LB

d d d d
 (2.10) 

The stiffness matrix and the internal force are evaluated using full integration Gauss quadrature. 

Hereafter, we will refer to the eight-node fully integrated (2x2x2 integration points) linear 

hexahedral element based on the above formulation as PN3D8 where PN stands for Pseudo-

Nonlocal. 

Remark 3: For each finite element, given the mean element strain  , a single stress update is 

carried out to calculate PN . The local stress L  is then calculated at full quadrature points 

using eq. (2.2) followed by the evaluation of the internal force matrix in eq. (2.9a) using standard 

Gauss quadrature. Likewise, for each finite element, the instantaneous constitutive matrix L  is 

calculated only once, and then reused it all full Gauss quadrature points for the evaluation of the 

tangent stiffness matrix (2.10). In fact, the resulting symmetric canonical structure of the tangent 

stiffness matrix in eq. (2.10) was one of the prime motivations for the definition of local stress in 

eq. (2.2). 
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2.3 Extension to two-scale material models undergoing large strains 

For two-scale materials undergoing large strains, it is convenient to select the first Piola-Kirchhoff 

stress P and its conjugate deformation measure, deformation gradient, F . In addition to 

conjugacy, the coarse-scale quantities can be directly computed by averaging the corresponding 

fine-scale quantities, 
fP and 

f
F , over the undeformed unit cell domain   

 

1

1

f

f

d

d





= 


= 






P P

F F

 (2.11) 

Similarly to Eqs. (2.1), (2.2), we define the pseudo-nonlocal first Piola Kirchhoff stress, 

( )PN = P P F , as the stress computed from the mean deformation gradient F  defined over an 

element domain e   

 
1

e
e

d


= 
 F F  (2.12) 

The local first Piola Kirchhoff stress 
L

P  is then defined as: 

 ( ) ( )
PN

L PN PN

P F−


+ − = + −



P
P P F F P L F F

F
 (2.13) 

For two-scale material models, the instantaneous constitutive matrix 
P F−L can be computed by 

either forward difference approximation [34, 51] or by condensation of the constrained degrees-

of-freedom corresponding to coarse-scale deformation of the representative volume element 

(RVE) [16, 52].  

The quasistatic governing equations defined on the undeformed configuration X  are given by 
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( )

Equilibrium:

Constitutive eq.:

Kinematic eq.:    

Natural BC:

Essential BC:

       on

  on

= + on

       on

    on

L

X X X

PN

X

X X

L

X X Xt

Xu



+ = 





= 

= 

= 

P b 0    

P P F     

F I u    

P n t     

u u    



  (2.14) 

 

where subscript X denotes the undeformed configuration. Equation (2.14) together with (2.12), 

and (2.13) complete the definition of the strong form. The underbar appearing in 
L

P  denotes the 

3 X 3 matrix. 

Considering iso-parametric discretization (2.4), the deformation gradient and the gradient of the 

test function is given by  

 

-

-

X

X

X X

=

=

=

F I N d

F I N d

w N c





 

 (2.15) 

where 

 
1

Xe
X X X

Xe

d e


=  
 N N   (2.16) 

The residual equation (2.8) with the following internal and external force vectors based on the 

PN3D8 element formulation are given by  

 

( ) ( )( )
X X

X Xt

int T L T PN

X X P F

ext T T

X X

d d

d d

−

 

 

=  = + − 

= + 

 

 

f d N P N P L F F

f N b N t

 

 (2.17) 

The resulting tangent stiffness matrix is given by 

 

int
tan

X X

XP F X X

PN
T T

X P F X P F Xd d

−

− −

 

  
      

= = + −  =   
      

  

 
NL N N

f P F F F
K N L N L N

d F d d d
 

    (2.18) 
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Remark 4: The structure of the discrete equations (2.17) and (2.18) expressed in terms of the 

conjugate −P F pair is very similar to the corresponding small deformation problem. However, 

P F−L is 9 x 9 matrix requiring nine perturbations of the deformation gradient as opposed to just 

six in the case of symmetric stress and deformation measures. For details of how to reformulate 

the problem (2.14) in terms of symmetric Lagrangian (Second Piola Kirchhoff stress - right 

Cauchy–Green deformation) and Eulerian (Kirchhoff stress - right Cauchy–Green deformation) 

measures we refer to Miehe [47]. 

 

2.4 Numerical examples 

In this section, our focus is on evaluating the performance of the PN3D8 element in handling small 

and large deformation two-scale problems. Specifically, we will examine two variants of the 

PN3D8 element: one based on the mean strain (denoted as PN3D8) and the other based on the 

mid-point strain (denoted as PN3D8v). To assess their effectiveness, we will compare their 

performance against two other elements: the C3D8, an 8-node fully integrated linear hexahedral 

element with 2x2x2 integration points, and the C3D8R, an 8-node linear hexahedral element with 

1-point integration and hourglass control. 

It's important to note that the main objective is not to focus on an element's ability to alleviate 

locking, but rather to investigate whether the accuracy of the PN3D8 variants is maintained when 

compared to the fully integrated C3D8 element, while also considering the computational cost in 

comparison to the 1-point integrated element, C3D8R. The scope of our study will primarily 

revolve around examining the computational performance of PN3D8 and PN3D8v within the 

context of two-scale materials, utilizing both the first-order computational homogenization 

(FOCH) and reduced-order homogenization (ROH) approaches. However, it is important to clarify 
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that this study does not delve into the potential benefits of reducing mesh size dependence in failure 

simulations due to the nonlocal character of the PN3D8 element. This aspect will not be explored 

in the present investigation. 

For all numerical examples considered herein, the geometry of the unit cell is depicted in Figure 

2.1.  

 

 

                                            Figure 2.1. Fibrous unit cell configuration 

This unit cell consisting of two phases is discretized with 1558 eight-node hexahedral elements. 

For small deformation problems, the “matrix” phase is modeled using J2 plasticity whereas the 

“inclusion” or “fiber” phase remains linear elastic. The material constants are summarized in Table 

2.1. 

 Table 2.1. Unit cell material properties for small deformation problems 

 Matrix (J2 plasticity) Inclusion or fiber (elasticity) 

Young’s Modulus 3800 Mpa 252000 Mpa 

Poisson’s ratio 0.32 0.02 

Yield strength 28.0 Mpa N/A 

Exponent for the evolution 

law 

1.0 N/A 

Linear term for hardening 

law 

38.0 Mpa N/A 
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For large deformation problems, we consider a compressible Neo-Hookean material model for 

both phases defined as 

   ( ) ( )lnisoG dev K J= + B I    (2.19)  

where ( )dev  denotes the deviatoric part; isoB denotes the isochoric left Cauchy-Green (Finger) 

deformation matrix. G is the shear modulus and K is the bulk modulus. The shear moduli are 1.0 

Mpa and 1.5 Mpa for the two phases, respectively, and the corresponding bulk moduli are 20 Mpa 

and 30 Mpa. 

We will conduct a comparative analysis of various element formulations by examining the mean 

values and their respective L2 norms of stress and strain components. Let's denote the matrix of 

stresses or strains as s , with dimensions N x 1. The L2 norm of the mean element value over the 

element domain e  can be defined as follows: 

 
1

e

e

T

e

d




= 
 s s s  (2.20) 

For comparison of individual components, say is , the mean element value is defined as  

 
1

e

e

i i

e

s s d


= 
   (2.21) 

For simulations involving more than one element we will compare speedups of various element 

formulations in comparison to C3D8. let  denote the C3D8R, PN3D8, and PN3D8v elements. 

We define the speedup in the quantity of interest f denoted fspd  as  

 3 8

f
f C D

f

CPU
spd

CPU
=  (2.22) 

where fCPU and 
3 8

f

C DCPU denote the CPU time of corresponding element formulations in the 

quantity of interest f.   
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Figure 2.2 provides an illustration of the 8-node hexahedral element's configuration, encompassing 

its boundary conditions, tractions applied to various element faces, as well as the orientation of the 

unit cell. The surfaces efgh and adbc are fixed in the x-direction, while the surface aehb is fixed in 

the y-direction, and the surface hgcb is fixed in the z-direction. Nonzero tractions denoted  
dcgft ,

abcdt ,
adfet   are applied in the y-direction, which is orthogonal to the fiber axis. The prescribed values 

for these tractions are 70 Mpa, 50 Mpa, and 30 Mpa, respectively. 

 

 

Figure 2.2. A single macroscopic 8-node hexahedral element configuration, its boundary 

conditions, applied tractions on various element faces, and fibrous unit cell orientation. 
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Figure 2.3. The mean element stress, 
e

yy  , versus mean element strain, 
e

yy  for various element 

formulations in one-element elastoplastic composite subjected to nonuniform monotonic tensile 

loading 

 

The problem is analyzed using reduced order homogenization (ROH) approach. The mean element 

stress, 
e

yy , versus mean element strain, 
e

yy for various element formulations in one-element 

elastoplastic composite subjected to nonuniform monotonic tensile loading are depicted in Figure 

2.3. Due to nonuniformity of applied tractions the C3D8R gives rise to a bit softer response than 

the C3D8 especially in the post yield regime. In the pre-yield regime, the responses PN3D8 and 

PN3D8v elements coincide as eluded in the Remark 1.  

Next, we consider a loading-unloading test on the same one-element configuration depicted in 

Figure 2.2. The nonzero tractions dcgft , abcdt , adfet   in y direction are monotonically increased to 100 

Mpa, 50 Mpa, and 50 Mpa, respectively, and subsequently unloaded to 0. The mean element stress, 

e

yy , versus mean element strain, 
e

yy  for various element formulations in one-element 

elastoplastic composite subjected to nonuniform cyclic tensile loading are shown in Figure 2.4.  
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In the loading and unloading test, the C3D8R element still exhibits a softer behavior compared to 

all variants of the pseudo-nonlocal finite element. This observation suggests that the pseudo-

nonlocal finite element methods demonstrate improved performance in accurately capturing the 

mechanical response during the loading and unloading process. The enhanced performance can be 

attributed to the incorporation of nonlocal effects, which effectively address issues related to 

element softening. This finding further supports the suitability and effectiveness of the pseudo-

nonlocal finite element methods for simulating and analyzing material behavior under various 

loading conditions. 

 

Figure 2.4. The mean element stress, 
e

yy , versus mean element strain, 
e

yy for various element 

formulations in one-element elastoplastic composite subjected to nonuniform cyclic tensile 

loading 

 

We will now examine a plate featuring a hole that is subjected to tensile loading, as illustrated in 

Figure 2.5. Considering the symmetrical nature of the plate, only one-eighth of it is modeled. The 

plate's dimensions are specified as follows: thickness = 0.136 mm, width = 24 mm, length = 48 

mm, and the hole has a radius of 4 mm. The boundary conditions are depicted in Figure 2.5 for 
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reference. A tensile traction of 18.38 MPa is applied, oriented perpendicular to the fiber axis. The 

critical element, whose results are subjected to further analysis, is also indicated in Figure 2.5. The 

plate undergoes analysis utilizing both the FOCH and ROH models. 

 

Figure 2.5. Plate with a hole configuration including boundary conditions, applied traction, unit 

cell orientation, location of the critical element for which the results are postprocessed, distribution 

of L2 norm of the mean element strain 

Figures 2.6 (a) and (b) depict the L2 norm of the mean element stress,  
e

e


 , versus L2 norm of 

the mean element strain, 
e

e


 in the critical element (depicted in Figure 2.5) as obtained by ROH 

and FOCH, respectively. Note that the results obtained by FOCH and ROH are not identical since 

the reduced order model was not calibrated. Figures 2.6 (c) and (d) depict the speedups of various 

element formulations as obtained by ROH and FOCH, respectively. In this numerical example, the 

critical element experiences a relatively uniform field, resulting in nearly identical stress-strain 

plots at the critical element across different methods. However, despite the similar stress-strain 
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behavior, we can still observe the computational efficiency advantage of the PNC3D8 and 

PNC3D8v variants in this particular case. 

 

(a)                                                                           (b) 

 

(c)        (d)                              

Figure 2.6. Elasto-plastic composite plate with a hole in tension: (a) The L2 norm of the mean 

element stress, 
e

e


 , versus L2 norm of the mean element strain, 

e

e


 in the critical element 

as obtained by ROH; (b) The L2 norm of the mean element stress, 
e

e


 , versus L2 norm of the 

mean element strain, 
e

e


 in the critical element obtained by FOCH; (c) Speedups of various 

element formulations obtained by ROH; (d) Speedups of various element formulations as obtained 

by FOCH 
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We are now addressing a large deformation two-scale problem, where both phases involved adhere 

to Neo-Hookean material behavior. In Figure 2.7, there is an illustration of a single macroscopic 

8-node hexahedral element alongside the orientations of fibrous unit cells. The prescribed 

displacements are uniform in the z-direction on the surface abcd. Surfaces efgh and aehb are fixed 

in the x- and y-directions, respectively. Additionally, nodes h and g are constrained in the z-

direction. 

 

Figure 2.7. A single macroscopic 8-node hexahedral element configuration, its boundary 

conditions, direction of nonzero prescribed displacements abcdu  , and fibrous unit cell orientation 

It can be observed that the C3D8R element exhibits relatively softer behavior compared to the C3D8 

element. On the other hand, the PN3D8 element maintains an acceptable level of accuracy. 
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Figure 2.8. L2 norm of the mean second Piola Kirchhoff element stress, 
e

eS


, versus L2 norm of 

the mean Green-Lagrange element strain, 
e

e


 in one-element hyper-elastic composite. 

In our final study, we investigate a plate with a hole problem, as shown in Figure 2.5. Both 

phases involved in the problem follow Neo-Hookean material behavior. We impose a 

prescribed displacement xu in the negative x-direction, while keeping the remaining boundary 

conditions and the location of the critical element unchanged. 

In Figure 2.9(a), we present the L2 norm of the mean second Piola Kirchhoff element stress, 

denoted as 
e

eS


, plotted against the L2 norm of the mean Green-Lagrange element strain, 

denoted as 
e

e


 . These results are obtained using the FOCH model. Figure 2.9(b) illustrates 

the speedups achieved by various element formulations used in the analysis. Despite the small 

discrepancies observed among different methods in this particular case, we can still observe 

the advantages of PN3D8 and PN3D8v over C3D8 in this numerical example. These 

advantages could include improved accuracy, enhanced stability, or better convergence 

properties. The specific benefits may vary depending on the particular characteristics of the 

problem being analyzed. 
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(a)                                                                         (b) 

Figure 2.9. Hyperelastic composite plate with a hole in tension: (a) L2 norm of the mean second 

Piola Kirchhoff element stress, 
e

eS


, versus L2 norm of the mean Green-Lagrange element 

strain, 
e

e


 , in the critical element (see Figure 2.5), (b) speedups as obtained by various element 

formulations 

 

2.5 Conclusion 

The main objective of this chapter was to develop an efficient finite element formulation suitable 

for computationally demanding material models commonly encountered in mesoscale and 

multiscale applications. To achieve this objective, we introduced a new element called the 8-node 

fully integrated linear hexahedral element (PN3D8). This element utilizes a 2x2x2 integration 

scheme, ensuring computational efficiency while still maintaining a full rank of element matrices. 

A notable feature of the PN3D8 element is its use of one-point integration for stress updates, which 

allows for efficient computations without sacrificing the accuracy of the results. The resulting 

consistent tangent stiffness matrix exhibits a symmetric canonical structure, with the same 

instantaneous constitutive matrix appearing at all quadrature points within an element. For linear 

elastic materials, the formulation of the PN3D8 element coincides with that of the classical 8-node 

fully integrated linear hexahedral element (C3D8). This allows for a seamless transition when 
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working with linear elastic materials. The advantages and benefits of the PN3D8 element were 

demonstrated through the illustration of its application in quasistatic problems. By utilizing this 

element, computationally demanding simulations can be performed efficiently while maintaining 

accuracy, making it a valuable tool for mesoscale and multiscale applications. 

The PN3D8 element was found to exhibit accuracy very close to that of the standard C3D8 

element, both of which were stiffer compared to the C3D8R element with one-point integration 

and hourglass control. The PN3D8v variant, which utilizes mid-point strain for stress updates, 

behaves similarly to PN3D8. However, in one example, a noticeable delay in capturing the yield 

stress was observed with PN3D8v. For two-scale material models based on FOCH, the speedup 

achieved by PN3D8 over C3D8 was approximately 7 for both small and large deformation 

problems studied. This speedup was slightly lower than the speedup provided by the one-point 

integration element, C3D8R. The computational cost of PN3D8 is comparable to its variant 

PN3D8v, but PN3D8 seems to capture the overall behavior of the element more accurately, 

especially in cases of highly nonuniform deformation fields (as depicted in Figures 2.3 and 2.4). 

The effect of the macroscopic problem size was not studied, as the speedup depends on various 

factors such as the size of the fine-scale problem and the solver employed on both scales. 

For two-scale material models based on ROH, the speedup offered by PN3D8 and PN3D8v was 

slightly higher than 3. However, the speedup provided by C3D8R was almost twice as high. This 

discrepancy arises because the evaluation cost of element matrices in fully integrated elements 

(excluding stress updates) is comparable to the cost of stress updates. On the other hand, the 

evaluation cost of element matrices in one-point integrated elements (excluding stress updates) is 

significantly lower than the cost of stress updates. It is important to note that the study only 

considered a single phase (matrix) as inelastic, which requires solving six nonlinear equations for 



25 

 

the six unknown eigenstrain components at each macroscopic quadrature point. With the addition 

of additional inelastic phases, the number of unknowns increases by six, and the speed factor 

provided by C3D8R and PN3D8 is expected to become more similar. 

The current study was limited to an 8-node linear hexahedral element, but the methodology can be 

extended to encompass higher-order hexahedral elements. This extension can be achieved by 

leveraging the knowledge of a function (stress) and its derivative (constitutive tangent matrix) at 

all reduced quadrature points, allowing for a higher-order expansion to full integration points. A 

similar approach can be applied to tetrahedral elements as well. The potential advantages of the 

nonlocal character of the PN3D8 element for strain softening problems have not been investigated 

in this study. However, these generalizations are necessary for a wider implementation of the 

pseudo-nonlocal finite element formulation in practical applications involving computationally 

intensive material models. 
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Chapter 3:  

Data-physics Driven Reduced Order Homogenization 

3.1 Introduction 

Multiscale modeling is concerned with the derivation of equations, parameters, and algorithms that 

describe system behavior at a product level by accounting for the physical processes taking place 

at finer scales. The rationale for multiscale methods is that there exits a spatial and/or temporal 

scale where a mathematical model is better understood than at a much coarser product-level scale. 

Given the fine-scale mathematical model, the coarse-scale equations can be rigorously derived by 

the process known as upscaling or homogenization rather than stated directly at a product level 

scale where understanding of the mathematical model is more limited. However, the computational 

cost of upscaling methods for nonlinear history-dependent problems is often detrimental to the 

overall performance of multiscale methods hindering their broader utilization in practice (see [6-

16] for details on the first- and second-order upscaling methods). Significant advancements have 

been achieved through the implementation of the Lippmann-Schwinger reformulation of the 

representative volume problem (RVE) as an equivalent volume integral equation [20]. However, 

despite the efficient application of the fast Fourier transform (FFT) [53], the practical utilization 

of this approach has been relatively constrained so far.  

Reducing the computational cost of multiscale methods can be achieved through various reduced 

order methods, which may be based on physics, data, or a combination of the two. The success of 

these reduced order multiscale methods is attributed to the fact that although their mathematical 

model, including governing equations, is defined at a fine scale of interest, the quantities of interest 

(QoI) typically exist at a coarser scale. 
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It is worth noting that model reduction techniques for multiscale continua models maintain the 

structure of the constitutive equations of micro-constituents or micro-phases while adjusting the 

values of constitutive model parameters to fit the observed behavior at the coarse scale and other 

available information, such as failure characteristics. This adjustment process, often referred to as 

parameter identification or inverse problem, is justified by the assumption that the in-situ material 

properties differ from the virgin material properties of the micro-constituents. This discrepancy 

can be attributed to factors like processing and other influences. 

However, it is important to recognize that the calibrated properties of micro-constituents, which 

match the coarse-scale observations, differ from their virgin counterparts primarily due to errors 

introduced by the model reduction process, and to a lesser extent, processing factors. While the 

errors resulting from model reduction can be controlled by incorporating a hierarchy of reduced 

order models, the computational cost associated with achieving an adequately accurate reduced 

order multiscale model for engineering design can still be significant. 

Among popular physics-based (or model-based) reduced order multiscale methods are the Voronoi 

cell method [17, 18], the mesh-free reproducing kernel particle method [21], methods of cells [22, 

23], the wavelet-based reduced order method [24, 25], the reduced order homogenization methods 

[30-34] and the nonuniform transformation field methods [36, 37]. We also refer to [38, 39, 41] 

for recent review articles on multiscale methods with and without model reduction and their 

practical applications. For integrated reduced order multiscale methods applied to coupled process-

product design cycle, we refer to [54-58]. 

With the advancements in machine learning, data-driven multiscale methods have emerged as a 

viable alternative to traditional physics-based multiscale modeling. These approaches aim to 

enhance or replace models based on representative volume elements (RVEs) with single-scale 
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phenomenological models by leveraging data-driven techniques. Among these approaches [26, 29, 

59-71], machine learning techniques, particularly neural networks (NNs), have been successfully 

employed. One straightforward and commonly used approach is training a fully connected neural 

network to map coarse-scale strain to coarse-scale stress [59, 64, 65, 70] for path-independent 

problems. However, implementing this approach in high-dimensional spaces, such as those with a 

large set of constitutive law parameters, can pose computational challenges. In the context of 

hyper-elastic materials, a manifold-based reduced order model has been effectively applied [60]. 

This model utilizes neural networks to map coarse-scale loading parameters to a reduced space, 

addressing the computational complexity of high-dimensional problems. For path-independent 

materials effective potential has been identified in the parameter space with dimensions of up to 

ten [25]. In [77], physics-based constraints, such as objectivity, consistency, dynamic and material 

stability, have been enforced in the representation of nonlinear elasticity of woven fabrics by a 

regression artificial neural network (ANN). In recent article [78], an efficient genetic calibration 

of artificial neural networks has been developed and applied to linear elastic particle-enhanced 

composite material. 

For path-dependent materials, recurrent neural networks (RNNs) based on gated recurrent units 

have been utilized to capture history- and microstructure-dependent plasticity behavior [66]. These 

RNNs require a large dataset size to sample various random loading paths and face challenges in 

extrapolation to predict unseen deformation paths. To overcome some of the limitations of RNNs, 

long short-term memory (LSTM) architectures have been employed [69]. These architectures have 

shown promise in alleviating issues such as gradient vanishing and accuracy degradation 

commonly encountered in recurrent neural networks. 
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Neural networks are generally prone to issues such as extrapolation and overfitting. Simply 

increasing the input parameter space as a solution is limited because it exponentially increases the 

required data points. To overcome these problems, the self-consistent cluster analysis (SCA) 

multiscale modeling approach [68] has been developed. SCA divides the representative volume 

element (RVE) problem into distinct clusters with similar mechanical responses, striking a balance 

between accuracy and efficiency. Through the use of precomputed "interaction tensors," SCA can 

update the residuals of the clusters, as well as the incremental strains and stresses within each 

cluster. Additionally, Karapiperis proposed an approach that mitigates the challenges associated 

with neural networks, offering a non-neural network, data-driven solution that transforms a 

physics-based constitutive law identification problem into a distance minimization problem [71]. 

This method selectively samples and identifies sample points that minimize the distance from 

material history points while adhering to specific physical constraints, effectively addressing 

issues related to extrapolation and overfitting.  

The focus of the present study is on the development of the data-physics driven reduced order 

homogenization, dpROH hereafter, in an attempt to improve the accuracy of the physics-based 

reduced order homogenization [21-25] developed by the first author and his associates. The 

physics-based reduced order homogenization, or pROH hereafter, is a hierarchical multiscale 

model reduction approach that provides a mathematical framework for controlling model reduction 

error. Herein, we focus on a single member of the hierarchical sequence that provides the lowest 

computational cost, which makes it competitive to the phenomenological single-scale models in 

terms of the computational cost. Our primary objective is to improve the model reduction strategy 

of the multiscale model in addition to training it for the effective constitutive model parameters of 

the comprising microconstituents, rather than replacing the multiscale model by a neural network 



30 

 

equipped with hyperparameters. Retaining the multiscale structure takes advantage of the existing 

constitutive model structure of the microconstituents especially when dealing with history-

dependent material models, such as plasticity. Note that an alternative strategy based on replacing 

the multiscale model by the NN would have, for instance, required to resolve an evolving failure 

surface of a heterogeneous material with a set of hyperparameters, a daunting feat on its own [79], 

among other challenges. 

The section is organized as follows. In Section 3.2 we review the pROH approach, with the intent 

of detailing the formulation of the lowest cost member of the hierarchical sequence and identify 

its shortcomings, followed by exploring the utility of data driven methods to address these 

shortcomings and ultimately improve its performance. The structure of the data-physics driven 

reduced order homogenization (dpROH) is presented in Section 3.3. The dpROH consists of the 

offline and online stages. In the offline stage, an enhanced model reduction strategy based on the 

data-driven surrogate-based Bayesian inference (BI) modeling approach is conceived. In the online 

stage, dpROH (rather than the surrogate model employed in the BI process) is utilized for the 

component level predictions.  Numerical examples comparing the pROH and various variants of 

the dpROH to the reference solution based on the first order computational homogenization (i.e., 

without model reduction) are given in Section 3.4. For the numerical studies we will take 

advantage of the recently developed pseudo-nonlocal finite element formulation, which reduces 

the computational cost of the coarse-scale finite element computations without sacrificing on the 

solution accuracy and stability. Conclusions and future research directions are given in Section 

3.5. Details comprising the data-driven surrogate-based Bayesian inference (BI) framework are 

given in the Appendix A.   
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3.2 Identifying shortcomings of physics-based reduced order 

homogenization  

3.2.1 Review of physics-based reduced order homogenization  

We consider fine-scale equations defined over in the representative volume element (RVE) domain 
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                                 (3.1) 

where x  and y  denote the coarse- and fine- scale coordinate systems, respectively. The 

superscripts c, f, * denote the coarse-scale, the fine-scale, and fine-scale perturbation fields, 

respectively. All the fields are assumed to be periodic in y . A comma denotes the partial 

derivative, and brackets appearing in the subscripts denote the symmetric derivative. 

, , , , ,u s L   are displacements, strains, stresses, eigenstrains (plastic strain herein), state 

variables, and linear elastic constitutive tensor, respectively. The last equation in (3.1) denotes 

history-dependent constitutive (plasticity herein) model. Indicial notation with Einstein summation 

convention over repeated indices is employed throughout. Small deformation theory and perfect 

interfaces are assumed herein. 

To complete the definition of the boundary value problem (3.1), the perturbation *

ku  is subjected 

to periodic boundary conditions on the RVE boundary  together with its normalization 
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condition  * 0ku d


 = . The latter can be replaced by constraining the vertices vert  of the RVE 

domain to eliminate its rigid body motion. 

The macroscopic physical quantities are defined at each macroscopic (Gauss) point as the volume 

average of the corresponding quantities at the microscopic sample attached to that point. The 

relationship between the two scales is defined as 
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    (3.2) 

where c

ijmnL the coarse-scale linear elastic constitutive tensor and ( )mn

klE y the elastic strain influence 

function, which can be found from the relation ( )( , ) ( )f mn c

kl kl mnE =x y y x  for linear elastic 

materials. 

In the case of inelastic material behavior, but in the absence of interface discontinuities, the fine-

scale strain ( , )f

ij x y   is constructed to automatically satisfy the fine-scale equilibrium equation 

( , ) ( ) ( ) ( , ) ( , )f kl c kl f

ij ij kl ij klE p d  


= + x y y x y y x y                                 (3.3)  

where ( , )kl

ijp y y  is the so-called eigenstrain transformation function, which can be found by 

inserting (3.3) into (3.1) and accounting for (3.2b)  It is important to note that by virtue of equation 

(3.3), the governing equations are now redefined in terms of ( , ), ( , )f f

ij ij x y x y  and ( , )f

kl x y all 

of which are purely related by the fine-scale constitutive equation. 

Model reduction is introduced and controlled via the discretization of eigenstrains 

( ) ( )

1

( , ) ( ) ( )
M

f

ij ijN  



 
=

=x y y x                                   (3.4) 
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Where 
( ) ( )N  y   are shape functions, typically chosen as piece-wise constant over M partitions, 

which yields 

( ) ( ) ( )

( ) ( )
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  (3.5) 

where ( ) denotes the domain of the partition  . The discrete eigenstrain transformation 

function, ( )( )kl

ijP  y , is computed by constructing the weak form of (3.1) using 0C continuous 

periodic test function * 0w C  residing in the same space as * 0u C and inserting discretization 

(3.5) into (3.1). It is instructive to point out that the resulting RVE solution weakly satisfies 

equilibrium equation.  

By controlling discretization of eigenstrains, naturally introduces model hierarchy, where the 

highest fidelity computational model constitutes to the one-partition-per-finite-element in the RVE 

domain. In this case the number of unknowns in the nonlinear RVE problem is equal to the number 

of elements in the RVE times the number of eigenstrain components, i.e., six. On the other hand, 

in the least expensive computational model, which is the focus of the current investigation, the 

number of unknows is equal to the number of micro-phases times six. For instance, for the two-

phase material (inclusion and matrix) the number of unknowns is 12, i.e., six for each phase, 

whereas if one of the phases remains elastic, the number of unknowns reduces to six. For the one 

partition per phase model considered herein, equation (3.3) is given by 

( )( ) ( ) ( )

1

( ) ( ) ( )
M

kl c kl

ij ij kl ij klE P
  



  
=

= +x x x     (3.6) 
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;kl kl kl kl
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=  = 
 
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with Greek superscripts denote the partition (phases) count and M is the number of total partitions 

(phases). 

Remark 1: The eigenstrain transformation tensor, ( )kl

ijP   , satisfies the following compatibility 

constraint obtained by averaging the phase strains (3.6) over the RVE domain   

      ( ) ( )

1

0
M

kl

ijP  




=

=       (3.8) 

Where 
( )   is the volume fraction of phase  . 

 

3.2.2 Locking of one-partition-per-phase model 

Consider a two-phase material with a piecewise constant discretization of eigenstrains and one 

partition per phase. The undeformed finite element mesh in the RVE is illustrated in Figure 3.1a. 

The inclusion and matrix domains are denoted by (2) and (1) , respectively. To illustrate the 

cause of locking, consider an RVE consisting of a perfectly plastic matrix and elastic fiber 

subjected to the matrix-dominated mode of deformation, i.e., the coarse-scale strain increment 

c
kl
kl, 33  with 3x  denoting the fiber orientation. We denote the matrix and fiber phases by 

superscripts 1,2 =  , respectively. In an elastic fiber embedded in a perfectly plastic matrix the 

resulting fine-scale stress increment yf
ij

 should vanish for arbitrary c

mn  

( ) ( ) ( ) ( )1 1(1)0 ( ) ( ) ( ) ( )
mnf mn c

ij ijkl kl mn ijkl kl klmn mnL E L P I   =  =  + − 
 

y y y y y y  (3.9) 

Assuming elastic strains are negligible in comparison to eigenstrains we have 

c f
kl kl kl

d const(1) (1) (1)1
;      (3.10) 
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Figure 3.1b depicts the deformed configuration of the RVE. Since the eigenstrain in the matrix 

domain is assumed to be constant in the one-partition-per-phase model, the elastic inclusion phase 

is forced to evolve from the a round to an oval shape. Such a deformation of a stiff elastic inclusion 

requires considerable force, which the perfectly plastic matrix is unable to exert. This so-called 

inclusion-locking can be naturally alleviated by increasing the number of partitions per phase, 

ultimately dramatically increasing the computational cost of the model. 

 

(a)                                                                                              (b) 

Figure 3.1.  Inclusion locking in the matrix-dominated mode of deformation and uniform 

eigenstrain discretization with one partition per phase; fiber is oriented in 3x direction 

An alternative approach that has been adopted in practice is to redefine the discrete eigenstrain 

transformation function for the matrix-dominated mode of deformation, denoted as 
( ) ( )1ˆ mn

klP y , to 

satisfy equation (3.9) rather than the discretized weak form of (3.1).  

Inserting (3.10) into (3.9) yields 

( ) ( ) ( )1 (1) (1) (1) (1)ˆ0 ( ) ( )
mnf mn

ij ijkl kl klmn kl mn mnL P I E    =  = − +  
 

y y y y   (3.11) 

Due to arbitrariness of 
(1)

  and positive-definiteness of L  , equation (3.11) yields 

( ) ( ) ( )1 (1) (1)ˆ ( )
mn mn

kl klmn klP I E −y y y     (3.12) 
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For the one-partition-per-phase-model considered herein, the eigenstrain transformation tensor 

(ETT) for the matrix- ( )ˆ mn

klP


and fiber- ( )mn

klP


 dominated modes are obtained from equation (3.7). 

 

3.3 Data-physics driven reduced order homogenization (dpROH) 

The primary objective of our research is to develop a hybrid data-physics driven reduced-order 

homogenization (dpROH) approach that combines the benefits of the physics-based reduced order 

homogenization (pROH) approach, such as interpretability and extrapolation. While the various 

components comprising dpROH have been previously developed, the novelty of this approach lies 

in three key aspects: 

(1) Integration of various components into a computationally efficient data-driven surrogate-

based Bayesian Inference (BI) engine: We focus on combining different components of 

dpROH and incorporating them into a data-driven surrogate model, which enables efficient 

and accurate inference through the Bayesian framework. 

(2) Identification of critical model reduction parameters in the matrix-dominated mode of 

deformation (denoted as ETT ), in addition to inferring the fine-scale constitutive model 

parameters (denoted as MCM ). This identification process is crucial for achieving accurate 

model reduction and overall performance improvement. 

(3) Devising an efficient solution strategy to infer the two sets of parameters. 

In the following sections, we provide a detailed description of the data-driven surrogate-based 

Bayesian Inference (BI) framework and further elaborate on the structure of the data-enhanced 

eigenstrain transformation tensor in the matrix-dominated mode, which contributes to the 

advancement of the dpROH approach. 
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3.3.1 The data-driven surrogate-based Bayesian Inverse (BI) framework 

In this study, we utilize Bayesian inference (BI) to estimate the microstructural parameters, 

denoted as ,ETT MCM  , as random variables, allowing us to determine their statistical distribution 

or mean values. The use of BI provides a framework for quantifying the impact of various sources 

of uncertainty, including observation error and model uncertainty. Unlike optimization-based 

methods for parameter identification, BI requires an efficient forward simulation engine, as the 

forward problem needs to be solved numerous times in a sequential manner. While the physics-

based reduced-order homogenization (pROH) method is a highly efficient reduced-order 

multiscale solver, the computational time required for performing thousands of forward multiscale 

simulations, even with model reduction, can still be overwhelming. Hence, it is advantageous to 

employ pROH solely for training the surrogate model and then utilize the surrogate model for 

conducting a multitude of forward simulations within the Bayesian framework, resulting in 

computational efficiency. 

For constructing our surrogate model, we will utilize the Gated Recurrent Unit (GRU) neural 

network. The GRU has demonstrated efficient performance in handling interpolation problems as 

well as path-dependent problems, which are relevant to the present study. One advantage of using 

the GRU-based surrogate is that the construction of the training dataset naturally lends itself to 

parallelization, allowing for efficient utilization of computational resources. Moreover, the 

construction of the training dataset requires significantly fewer forward simulations using the 

physics-based reduced-order homogenization (pROH) method compared to the number of forward 

simulations needed within the sequential Bayesian Inference (BI) framework.  

Figure 3.2 illustrates the flowchart of the data-physics driven reduced order homogenization 

(dpROH) approach, comprising two stages: offline and online. The objective of the offline stage 
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is to construct probability density distribution functions (PDFs) for the eigenstrain transformation 

tensor and the microstructural constitutive model parameters, denoted as ( )ETTP  and ( )MCMP  , 

respectively. Alternatively, in the case of deterministic component-level predictions, the mean 

values of ETT  and MCM  are computed. The offline stage begins with the execution of uniform 

field physical experiments, which are substituted with simulations utilizing a high-fidelity 

multiscale model based on first-order computational homogenization (FOCH), capable of 

resolving microstructural details. The selection of uniform field experiments allows for conducting 

surrogate training at the Representative Volume Element (RVE) level, significantly reducing the 

computational cost of surrogate training. The Gated Recurrent Unit (GRU) neural network-based 

surrogate (Box 2 in Figure 3.2) is trained by subjecting an RVE to uniform coarse-scale strain c

histories (Box 1 in Figure 3.2) and calculating the homogenized stress ( ), ,c c ETT MCM     for 

various model parameters ,ETT MCM  . Subsequently, Bayesian Inference employing the GRU-

based surrogate (Box 3 in Figure 3.2) is carried out to infer the PDFs of the model parameters. 

The online stage (Box 4 in Figure 3.2) aims to make predictions at the component level based on 

the PDFs of model parameters ( )ETTP  and ( )MCMP  , or alternatively, their mean values ETT  

and MCM . It is important to note that the surrogate model is not expected to provide accurate 

predictions outside the training set. Therefore, the online stage employs a two-scale solver based 

on the data-physics driven reduced order homogenization (dpROH) approach (as depicted in 

Figure 3.2). The predictions at the component level can be either probabilistic or deterministic, 

depending on whether the PDFs or mean values ETT  and MCM are used. Herein, we focus on 
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deterministic component-level predictions by utilizing the mean values ETT  and MCM .

 

            Figure 3.2.  Flowchart of the data-physics driven reduced order homogenization 

Details on the training experiments for the two material systems are given in Section 3.4. 

Components of the data-driven surrogate-based Bayesian inverse modeling approach including the 

Bayesian Inference and Gated Recurrent Unit (GRU) based surrogate model, are given in 

Appendix A for self-consistency of the dissertation. 
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3.3.2 Revised eigenstrain transformation tensor for the matrix dominated mode 

As mentioned in Section 3.2 that while the eigenstrain transformation tensor for the matrix-

dominated mode ( )ˆ mn

klP


 alleviates locking neither the compatibility constraint (3.10) nor the weak 

equilibrium are satisfied in the matrix-dominated mode of deformation. In seeking to enhance the 

physics-based model reduction scheme by taking advantage of the available data we will attempt 

to answer the following key questions: 

(i) Is there a better (or nearly optimal) eigenstrain transformation tensor in the matrix 

dominated mode, denoted hereafter as ( )ˆmn

kl


 , than ( )ˆ mn

klP


 computed from (3.12)? 

(ii)  Is it possible to compute 
( ) ( )ˆ ,

mn ETT MCM

kl


   by modifying ( )ˆ mn

klP


 with a small set of 

eigenstrain transformation tensor parameters ETT ?  

(iii) How strongly does the eigenstrain transformation tensor parameters ETT  depend on the 

microstructural constitutive model MCM  parameters representing the microstructural plasticity 

model parameters in the present study?  

(iv) Should the two sets, ETT  , MCM  , be computed simultaneously or can they be computed 

sequentially, and in which order, using the data-driven surrogate-based Bayesian Inference (BI) 

framework proposed herein? 

(v) Would the inferred set of parameters, MCM   , ETT  , result in superior component level 

predictions outside the training set by the two-scale solver (rather than the surrogate employed for 

forward simulations in BI) equipped with ( )ˆmn

kl


 ? 

The eigenstrain transformation tensor in the matrix dominated mode, ( )ˆmn

kl


 , possesses minor 

symmetries, i.e., ( ) ( ) ( )ˆ ˆ ˆmn nm mn

kl kl lk

  
= = , due to the symmetry of strain and eigenstrain 

denoted by Roman indices. In total it consists of  2 2M N  terms where M is the number of matrix-
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dominated modes and N is the number of phases or microconstituents. For instance, in the fibrous 

composite RVE (Figure 3.3a), M=5 and N=2, whereas in the woven composite RVE (Figure 3.3b), 

M=4 and N=3.  As mentioned earlier, in the fibrous composite RVE, the two phases (denoted in 

Greek indices) are matrix ( 1 = ) and fiber ( 2 = ) with the matrix-dominated modes being 11, 

22, 12, 13 and 23 (see the definition of the material coordinate system in Figure 3.3). In the woven 

composite RVE, the three phases are matrix ( 1 = ) and two tows ( 2,3 = ) with the matrix 

dominated modes being 33, 12, 13 and 23. Accounting for symmetry of the RVE microstructure, 

the number of independent modes, sM  , can be further reduced, sM M  . For the fibrous 

composite RVE, 3sM = , corresponding to strain (eigenstrain) components 11 (or 22), 12, 13 (or 

23). For the woven composite RVE, 3sM = ,  corresponding to strain (eigenstrain) components 

33, 12, 13 (or 23). 

We consider phase interaction symmetries to further reduce the number of independent terms in  

( )ˆmn

kl


. For the fibrous composite RVE, the following independent phase-to-phase interactions 

(corresponding to superscripts   in ( )ˆmn

kl


) exist: 11, 12, 21, 22 where the second and first 

superscripts denote the phase of the induced eigenstrain (input) and the phase of the resulting strain 

(output), respectively. Note that the above four interactions coincide with 2N  for the two-phase 

material. For the woven composite RVE, we will take advantage of certain symmetries by 

assuming that the interaction of each of the two tows (phases 2 and 3) with the matrix phase, i.e., 

12-13 and 21-31, are identical (in the corresponding orthogonal coordinate systems) and that the 

interactions of each tow with itself, i.e., 22-33 and between the tows, 23-32 are also identical. 

Given the above considerations the number of independent phase interactions are as follows: 11, 

22, 12, 21, 23. Finally, we will take advantage of the diagonal dominance of ( )ˆmn

kl


 with respect 
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to indices kl and mn, which emanates from the fact that imposed eigenstrain mode mn by at large 

dominates the strain component mn.  This is also reminiscent of the diagonal dominance of the 

linear elastic stiffness matrix. The selected terms in ( )ˆmn

kl


 will be obtained by rescaling the 

corresponding terms in ( )ˆ mn

klP


 as follows: 

( ) ( )ˆ ˆij ij

ij I ijP no sum on repeated indices
 

=    (3.13) 

where I  is termed as the eigenstrain transformation tensor rescaling parameter, or simply 

rescaling parameter comprising the set  ETT

I = . The rescaling parameter for the two 

microstructures is defined in Table 3.1. 

We will consider two scenarios with respect to the rescaling parameters. In the first case the 

rescaling parameters depicted in Table 3.1 will be considered to be independent. In the second case 

we will impose the compatibility constraint (3.8), and consequently reduce the number of 

independent parameters. Table 3.2 depicts the independent rescaling parameters for the latter case; 

the remaining rescaling parameters are computed from the compatibility constraint (3.8). 

   

Figure 3.3.  Representative volume elements and material coordinate system considered in the 

present study. (a) fibrous composite RVE, (b) woven composite RVE (only tows are shown) 

                                      Table 3.1. Definition of rescaling parameters 

Fibrous composite RVE Woven Composite RVE 

Rescaling Transformation Tensor Rescaling Transformation Tensor 

 

 

 
(a) (b) 
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1  
( )11 11

11P̂
,

( )22 11

22P̂
 1  

( )23 11

23P̂
,

( )13 11

13P̂
 

2  
( )23 11

23P̂
,

( )13 11

13P̂
 2  

( )12 11

12P̂
 

3  
( )12 11

12P̂
 3  

( )23 21

23P̂
,

( )13 31

13P̂
 

4  
( )11 21

11P̂
,

( )22 21

22P̂
 4  

( )23 31

23P̂
,

( )13 21

13P̂
 

5  
( )23 21

23P̂
,

( )13 21

13P̂
 5  

( )12 21

12P̂
,

( )12 31

12P̂
 

6  
( )12 21

12P̂
 

  

 

Table 3.2. Definition of independent rescaling parameters; remaining parameters computed from 

(3.8) 

Fibrous composite RVE Woven Composite RVE 

Rescaling Transformation Tensor Rescaling Transformation Tensor 

1  
( )22 21

22P̂
 1  

( )23 21

23P̂
 

2  
( )13 21

13P̂
 2  

( )13 21

13P̂
 

3  
( )12 21

12P̂
 3  

( )12 21

12P̂
 

 

3.4 Numerical examples 

In this section, we study the performance of dpROH for small deformation two-scale problems. 

We consider several variants of the dpROH to answer the questions raised in Section 3.3.2. The 

variant v1 interchangeably denoted as dpROH ( )MCM , where constitutive model parameters are 

inferred from four independent deformation tests (three matrix-dominated deformation test and 

one fiber-dominated deformation test). This variant is essentially the physics-based reduced-order 

homogenization with calibrated constitutive model material parameters. The v2 variant referred to 

as dpROH ( )MCM ETT + , which infers simultaneously both constitutive model parameters and 

eigenstrain transformation tensor rescaling parameters from the above four tests. The v3 variant 

dpROH ( )MCM ETT →  fixes the inferred constitutive model material parameters from the dpROH

( )MCM  variant followed by the inference of 
ETT from three matrix-dominated tests. The v4 
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variant or dpROH ( )ETT MCM → , is a sequential process similar to v3, but is carried out in reverse 

order. The remaining three variants (v5, v6, v7) referred to as dpROH ( )MCM ETT

com + , dpROH

( )MCM ETT

comp → , and dpROH ( )ETT MCM

comp → , respectively, adopt a similar inference strategy as 

v2, v3 and v4 with only difference that the compatibility constraint (3.8) as described in the 

previous section is enforced. The above two notations identifying specific dpROH variant will be 

used interchangeably.  

 

3.4.1 Setting the bounds on model parameters 

We consider a classical J2 plasticity theory with the yield stress 0Y , and the isotropic hardening 

parameter  ,  as the microstructural constitutive model parameters MCM . For the fibrous 

composite material )( 11 2) (2 ( ))(

0 0[ ], , ,MCM Y Y  =  where the superscripts denote the two phases as 

described in the previous section. Herein, the distributions of model reduction and materials 

parameters are assumed to be uniform.  The bounds of various parameters can be adjusted given 

the BI results. The bounds for the constitutive model parameters are given in Table 3.3. The units 

of all model parameters have been normalized. The bounds for the rescaling parameters I  of the 

corresponding eigenstrain transformation tensor are given in Table 3.4. For the woven composite 

material, the corresponding bounds on 
MCM  and ETT   are given in Table 3.5 and Table 3.6, 

respectively. 

 

                            Table 3.3. Bounds on MCM for the fibrous composite RVE 

MCM  
)

0

(1Y
 

(1)  
)

0

(2Y
 

(2)  
Bounds [15~45] [20~100] [180~220] [20~150] 
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                  Table 3.4. Bounds on rescaling parameters for the fibrous composite RVE 

ETT  I  
Bounds [0.5~2.0] 

 

                          Table 3.5. Bounds on MCM for the woven composite RVE 

MCM  
)

0

(1Y
 

(1)  
)

0

(2Y
, 

)

0

(3Y
 

(2) ,
(3)  

Bounds [20~40] [40~300] [100~220] [20~200] 

 

                 Table 3.6. Bounds on rescaling parameters for the woven composite RVE 

ETT  I  
Ranges [0.5~1.5] 

 

Once the initial distribution of model parameters is selected, the training data set is generated to 

train the neural network for the individual deformation modes at the RVE level. For each 

independent mode 5000 RVE simulations are conducted using pROH. All simulations are 

displacement driven. For details on the GRU Neural Networks see Appendix A2. 

 

3.4.2 Fibrous composite 

The fibrous composite RVE consisting of two phases is discretized with 1558 four-node tetrahedral 

elements. The fiber volume fraction is 24.56%. Both phases are modeled using J2 plasticity with 

isotropic hardening. The first-order computational homogenization (FOCH) is used as the 

reference solution. The material constants employed in the FOCH are summarized in Table 3.7. 

Four independent FOCH tests at the RVE level that mimic uniform field physical experiments are 

considered. These tests are fed into the data-driven surrogate-based Bayesian Inference (BI) engine 

to infer 
MCM and ETT as discussed in the previous section.  
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                        Table 3.7. Reference material properties of fibrous composite RVE 

Material property Matrix Fiber 

Young's Modulus 3800 190000 

Poisson's ration 0.32 0.01 

Yield strength 30 200 

Ultimate strength 65 250 

Exponent for the evolution law 45 120 

Linear hardening law 0 0 

 

3.4.2.1 Inference (identification) tests 

Figure 3.4 illustrates the four first-order computational homogenization (FOCH) simulations that 

serve as the reference solutions. Additionally, the results of pROH without calibration are 

presented for comparison. Figure 3.4a demonstrates that pROH accurately predicts fiber-

dominated deformation (mode 33). However, for matrix-dominated deformation modes 22, 12, 

and 13 (Figures 3.4b, 3.4c, 3.4d), pROH exhibits a delayed inelastic behavior. In comparison, 

dpROH v1 (or dpROH( ( )MCM )), where only effective microstructural properties of plasticity are 

inferred, exhibits notable improvement in transverse tension and in-plane shear (Figures 3.4b, 

3.4c). However, it appears too stiff in transverse shear (Figure 3.4d). Similar behavior is observed 

in all other dpROH variants. The mean values of model parameters for each dpROH variant, 

inferred through Bayesian Inference (BI), are summarized in Table 3.8. Figure 3.5 displays the 

probability density distribution obtained from BI inference for the constitutive model parameters 

corresponding to the dpROH ( )MCM . It should be noted that similar distributions obtained for 

other dpROH variants are not shown for brevity. 

As expected, all dpROH variants perform equally well in reproducing the reference solution used 

for model parameter identification. Next, we aim to demonstrate that dpROH, with inferred model 
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parameters, is not only capable of accurately reproducing the calibration and training datasets but 

also exhibits predictive capabilities outside the training dataset. 

Table 3.8. Inferred mean values of model parameters ( ETT  ,  MCM ) for various dpROH 

 dpROH 
v1 

dpROH 
v2 

dpROH 
v3 

dpROH 
v4 

dpROH 
v5 

dpROH 
v6 

dpROH 
v7 

)

0

(1Y  23.901 22.95 23.901 24.9 22.774 23.901 24.488 

(1)  66.899 78.415 66.899 65.225 107.788 66.899 73.69 
)

0

(2Y  198.811 199.889 198.811 192.095 199.733 198.811 201.181 

(2)  114.618 116.757 114.618 84.483 122.434 114.618 72.377 

1  N/A 0.874 0.773 0.59 0.833 1.098 1.134 

2  N/A 0.867 0.862 0.939 0.899 0.917 1.196 

3  N/A 0.659 0.747 0.502 1.506 1.846 1.942 

4  N/A 1.139 1.077 1.112 N/A N/A N/A 

5  N/A 1.022 0.956 1.176 N/A N/A N/A 

6  N/A 1.858 1.734 1.754 N/A N/A N/A 

 

 

(a)                                                                          (b) 
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   (c)                                                                          (d) 

Figure 3.4. Comparison of ROH variants to the reference macroscopic stress-strain solution for (a) 

fiber dominated tension - 33 (b) transverse tension - 22 (c) in plane shear - 12 (d) transverse shear 

- 23. 

 

(a)                                                                               (b) 
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(c)                                                                            (d) 

Figure 3.5. The probability density functions of four material parameters )(1) (2)

0

(1) (2

0 ], , ,[Y Y   as 

obtained by Bayesian inference for dpROH ( )MCM ; The trace plots are shown as subplots. 

 

3.4.2.2 Validation for the mixed mode uniform field cyclic loading 

In this example, we investigate an eight-node hexahedral macroscopic element representing a 

fibrous composite Representative Volume Element (RVE) that is subjected to a mixed-mode (12 

and 23) cyclic loading condition. It's important to note that this specific mixed-mode loading 

scenario was not included in either the calibration or training datasets. 

Figure 3.6 presents the force-displacement curves at a single node within the RVE, as well as the 

overall transverse shear stress-strain relationships. It is evident that both pROH and dpROH v1 

fail to accurately reproduce the reference solution due to the softer inferred hardening slope. 

However, all other variants of dpROH exhibit reasonably accurate predictions. 

These results suggest that while pROH and dpROH v1 struggle to capture the complex behavior 

of the mixed-mode loading condition, the other dpROH variants perform significantly better. 
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(a)                                                (b) 

Figure 3.6. Mixed mode uniform field cyclic loading (a) Force-displacement relation (b) 

Transverse shear macroscopic stress-strain relation.  

 

3.4.2.3 Validation on the open hole quasi-isotropic plate  

For the non-uniform field validation, we consider an open hole quasi-isotropic plate subjected to 

axial tension, shear and three-point bending. The plate dimensions are as follows: thickness 1.088, 

width 24, length 96, radius of the hole 4. The laminate layup from the top to the bottom is: 0, -45, 

+45, 90, 90, +45, -45, 0. The plate consists of 5920 eight-node hexahedral macroscopic elements. 

For estimating solution quality, we track the error in the critical element (i.e., having the largest 

error) in the plate. The normalized accumulated error in the stress over the loading history is 

defined as 

2

2

(σ - σ ) dt
Error(σ )=

(σ ) dt

I

I

vref

ij ijv t
ij ref

ij
t




     (3.14) 

Where σ  denotes either the coarse-scale stress, or an overall phase (matrix or fiber) stress. In other 

words, we will report an error in both the homogenized and the overall phase stresses in the critical 
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element. σref

ij  , σ Iv

ij  denote the stresses for the reference solution and for one of the dpROH 

variants, respectively.  

The errors in the quasi-isotropic plate subjected to axial tension, shear and three-point bending are 

summarized in Tables 3.9, 3.10, 3.11 respectively. The von Mises stress distributions for the 

corresponding reference solution are shown in Figures 3.7, 3.8, 3.9. 

Not surprisingly, the axial tension problem is fiber dominated so we see little difference in the 

accuracy of various methods. As the laminate undergoes significant matrix-dominated 

deformation in the three-point bending and the in-plane shear tests (Tables 3.10 and 3.11), the 

dpROH variants (v2-v7) that infer eigenstrain transformation tensor parameters offer improved 

accuracy not only in the coarse-scale stresses but also in the individual overall phase stresses. The 

latter is somewhat surprising since the inference was based on matching the coarse-scale behavior 

to mimic the data available from physical experiments that do not typically provide individual 

phase stresses. 

 

 

Critical element 
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Figure 3.7. FOCH solution for the von Mises stress distribution in the quasi-isotropic plate (fibrous 

composite microstructure) subjected to axial tension. Boundary conditions, laminate orientations, 

and location of the critical element are shown. 

                   Table 3.9. Critical element error. Fibrous composite. Axial tension test 

Variant of ROH Homogenized Matrix Fiber 

pROH 1.8872 1.3673 2.1063 

dpROH ( )MCM  
1.0181 0.5194 1.8394 

dpROH ( )MCM ETT +  
0.401 1.0118 0.783 

dpROH ( )MCM ETT →  
1.268 1.6186 2.5003 

dpROH ( )ETT MCM →  
0.7857 1.7099 0.9128 

dpROH
( )MCM ETT

comp +
 

0.4193 1.1684 0.8795 

dpROH
( )MCM ETT

comp →
 

0.593 0.87 1.0058 

dpROH
( )ETT MCM

comp →
 

0.8352 1.0172 1.2942 

 

 

Figure 3.8. FOCH solution for the von Mises stress distribution in the quasi-isotropic plate (fibrous 

composite microstructure) subjected to in plane shear. Boundary conditions, laminate orientations, 

and location of the critical element are shown. 

 

Critical element 
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                  Table 3.10. Critical element error. Fibrous composite. In plane shear test 

Variant of ROH Homogenized Matrix Fiber 

pROH 6.7922 12.8978 9.713 

dpROH ( )MCM  2.9245 9.5631 9.1664 

dpROH ( )MCM ETT +  1.9357 4.1203 2.9931 

dpROH ( )MCM ETT →  2.5884 4.3076 4.112 

dpROH ( )ETT MCM →  2.1742 5.6002 4.6239 

dpROH
( )MCM ETT

comp +
 2.1041 5.3452 3.0753 

dpROH
( )MCM ETT

comp →
 2.3025 5.0509 3.4667 

dpROH
( )ETT MCM

comp →
 2.0372 5.071 3.8675 

 

Figure 3.9. FOCH solution for the von Mises stress distribution in the quasi-isotropic plate (fibrous 

composite microstructure) subjected to three-point bending. Boundary conditions, laminate 

orientations, and location of the critical element are shown. 

 

 

 

Critical element 
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             Table 3.11. Critical element error. Fibrous composite. Three-point bending test 

Variant of ROH Homogenized Matrix Fiber 

pROH 10.4455 8.8976 5.4456 

dpROH
( )MCM

 5.8643 3.8879 3.2607 

dpROH
( )MCM ETT +

 2.5339 3.0924 1.7032 

dpROH
( )MCM ETT →

 3.3753 3.6466 2.2665 

dpROH
( )ETT MCM →

 3.9056 4.4637 2.2059 

dpROH
( )MCM ETT

phys +
 2.7082 2.1027 1.6594 

dpROH
( )MCM ETT

phys →
 3.4616 2.9547 2.0178 

dpROH
( )ETT MCM

phys →
 4.5651 4.5891 2.5246 

 

 

3.4.3 Woven composite  

Herein, we consider an idealized woven composite material where tows are assumed to be 

isotropic, and consequently, the woven RVE is modeled as a two-scale material. The woven 

composite RVE is assumed to consists of three phases with material constants summarized in 

Table 3.12. The woven composite RVE is discretized with 1,748 four-node tetrahedral elements. 

The volume fraction of matrix is 61.88%, and of each tow 19.06%. 

               Table 3.12. Reference material properties of the woven composite RVE  

Material property Matrix Tows 

Young's Modulus 15000  30000 

Poisson's ration 0.15 0.16 

Yield strength 30  200  

Ultimate strength 65  250  

Exponent for the 

evolution law 

45 120 

linear hardening  0 0 
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3.4.3.1 Inference (identification) tests  

For model identification, we consider three sets of experiments corresponding to the in-plane 

tension (mode 11), the transverse shear (mode 23) and the in-plane shear (mode 12). Figure 3.10 

compares various ROH variant to the reference solution. Similar observations to those made for 

the fibrous composite RVE can be made here even though the differences between the methods 

are somewhat less pronounced. This is because the woven composite RVE is reinforced in both 

directions as opposed to just one direction for the fibrous composite RVE. Table 3.10 summarizes 

the mean values of model parameters for each dpROH variant inferred by BI. 

 

(a)                             (b) 
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(c) 

Figure 3.10. Comparison of ROH variants to the reference macroscopic stress-strain solution for 

(a) in plane (tow dominated) tension - 11 (b) transverse shear – 23 (c) in plane shear – 12. 

Table 3.13. Inferred mean values of model parameters ( ETT  , MCM  ) for various dpROH 

 dpROH 

v1 

dpROH 

v2 

dpROH 

v3 

dpROH 

v4 

dpROH 

v5 

dpROH 

v6 

dpROH 

v7 
)

0

(1Y
 

32.051 32.056 32.051 33.044 32.13 32.051 32.967 

(1)  194.554 191.432 194.554 121.893 184.524 194.554 135.768 
)

0

(2Y
,

)

0

(3Y
 

182.603 157.91 182.603 166.933 167.449 182.603 166.526 

(2) ,
(3)  116.055 108.353 116.055 102.322 108.144 116.055 140.459 

1  
N/A 1.197 1.07 0.914 1.367 1.381 1.137 

2  
N/A 0.774 0.767 0.738 1.407 1.421 1.255 

3  
N/A 1.313 1.372 1.17 0.958 0.959 0.787 

4  
N/A 1.315 1.003 0.988 N/A N/A N/A 

5  
N/A 0.714 0.92 0.689 N/A N/A N/A 

 

3.4.3.2 Validation for the mixed mode uniform field cyclic loading 

We consider an eight-node hexahedral macroscopic element for woven composite RVE subjected 

to a mixed-mode (12 and 23) cyclic loading condition. The force-displacement relation at a single 

node as well as the overall transverse shear stress-strain relation are shown in Figure 3.13. Similar 

to the fibrous composite, pROH fails to reproduce the reference solution. The dpROH v1 performs 

relatively better than for the fibrous composite RVE because of the dominance of the two tows in 

the overall RVE behavior. 
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(a)                        (b) 

Figure 3.11. Mixed mode uniform field cyclic loading - (a) force-displacement relation, (b) 

macroscopic transverse shear stress-strain relation. 

 

3.4.2.3 Validation on open hole quasi-isotropic plate 

We now consider a quasi-isotropic plate with a hole subjected to an axial tension, shear and three-

point bending. The plate dimensions are as follows: thickness 0.545, width 24, length 96, radius 

of the hole 4. For the three-point bending, we consider a shorter plate of length of 48 due to the 

reduced thickness. The laminate layup from the top to the bottom is: 0/90, -45/+45, -45/+45, 0/90. 

The plate consists of 2960 eight-node hexahedral macroscopic elements. The normalized 

accumulated errors in stress over the loading history as defined in the previous section for the three 

tests are summarized in Table 3.14, 3.15, 3.16. 
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Figure 3.12. FOCH solution for the von the Mises stress distribution in the quasi-isotropic plate 

(woven composite microstructure) subjected to axial tension. Boundary conditions, laminate 

orientations, and location of the critical element are shown. 

 

                  Table 3.14. Critical element error. Woven composite. Axial tension test 

Variant of ROH Homogenized Matrix Tow 1 Tow 2 

pROH 5.3687 12.6461 9.0397 12.4688 

dpROH ( )MCM  1.2759 11.5805 7.5147 9.1913 

dpROH ( )MCM ETT +  0.4017 9.6833 6.3841 7.4819 

dpROH ( )MCM ETT →  0.369 9.7472 6.3544 7.4425 

dpROH ( )ETT MCM →  0.4089 8.1056 5.9123 6.7341 

dpROH ( )MCM ETT

comp +  0.5128 8.4886 5.8671 6.9272 

dpROH ( )MCM ETT

comp →  0.4611 9.6994 5.8112 6.8066 

dpROH ( )ETT MCM

comp →  
0.294 6.5309 5.3225 6.123 

 

Critical element 
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Figure 3.13. FOCH solution for the von Mises stress distribution in the quasi-isotropic plate 

(woven composite microstructure) subjected to in plane shear. Boundary conditions, laminate 

orientations, and location of the critical element are shown. 

Table 3.15. Critical element error. Woven composite. In plane shear test 

Variant of ROH Homogenized Matrix Tow 1 Tow 2 

pROH 6.4108 12.5179 9.8195 10.9877 

dpROH ( )MCM  1.8802 11.7765 7.4422 8.3889 

dpROH ( )MCM ETT +  0.4506 8.4622 5.8738 6.5642 

dpROH ( )MCM ETT →  0.48 8.4512 5.857 6.5523 

dpROH ( )ETT MCM →  0.6429 6.1909 4.9181 5.5943 

dpROH ( )MCM ETT

comp +  0.605 6.9911 5.3944 5.9083 

dpROH ( )MCM ETT

comp →  0.5365 7.3228 5.3238 5.8403 

dpROH ( )ETT MCM

comp →  0.3437 6.4955 4.5192 4.9691 

 

Critical element 
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Figure 3.14. FOCH solution for the von Mises stress distribution in the quasi-isotropic plate 

(woven composite microstructure) subjected to three-point bending. Boundary conditions, 

laminate orientations, and location of the critical element are shown. 

            Table 3.16. Critical element error. Fibrous composite. Three-point bending test 

Variant of ROH Homogenized Matrix Tow 1 Tow 1 

pROH 8.782 8.8859 9.6618 12.0625 

dpROH ( )MCM  2.2954 3.4368 4.8899 5.8071 

dpROH ( )MCM ETT +  0.6063 2.353 4.2155 3.5777 

dpROH ( )MCM ETT →  0.5938 2.3027 4.226 3.4897 

dpROH ( )ETT MCM →  1.296 2.2496 4.0298 3.1626 

dpROH ( )MCM ETT

comp +  0.8674 2.5639 4.3435 3.1957 

dpROH ( )MCM ETT

comp →  0.9572 2.606 4.2811 3.0249 

dpROH ( )ETT MCM

comp →  
1.2851 2.4619 4.0821 2.7605 

 

3.4.4 Computational time  

Table 3.17 summarizes the computational time of the FOCH and various ROH variants for the 

plate with a hole under three-point bending. All calculations were performed using the Intel Xeon 

CPU E5-2699 v4 CPU. It can be seen that for all dpROH variants, most of the time is spent on 

offline computation. This is not surprising since the macroscopic problem is relatively small. In 

Critical element 
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case of say, one million degrees-of freedom problem, the CPU time of solving macroscopic 

problem would increase by a factor of roughly 100k (1.8<k<2.5 for sparse direct solvers) whereas 

the CPU time of the offline stage will remain constant and ultimately negligible to the 

computations at the online stage.    

 

                Table 3.17. Computational time for the FOCH and various ROH variants 

Variant of ROH Offline Online 

FOCH N/A 22.89 h 

pROH N/A 0.171 h 

dpROH ( )MCM  Dataset generation: 0.6 h 

RNN training:  0.83 h 

BI: 1.8 h 

0.163 h 

dpROH ( )MCM ETT +  Dataset generation: 0.6 h 

RNN training:  1.48 h 

BI: 4 h 

0.149 h 

dpROH ( )MCM ETT →  Dataset generation: 0.6 h 

RNN training:  1.27 h 

BI: 2.56 h 

0.202 h 

dpROH ( )ETT MCM →  Dataset generation: 0.6 h 

RNN training:  1.37 h 

BI: 2.42 h 

0.197 h 

dpROH ( )MCM ETT

comp +  Dataset generation: 0.6 h 

RNN training:  1.36 h 

BI: 2.69 h 

0.156 h 

dpROH ( )MCM ETT

comp →  Dataset generation: 0.6 h 

RNN training:  1.13 h 

BI: 2.18 h 

0.136 h 

dpROH ( )ETT MCM

comp →  

 

Dataset generation: 0.6 h 

RNN training:  1.23 h 

BI: 2.07 h 

0.158 h 

 

3.5 Conclusion 

A hybrid data-physics driven reduced-order homogenization (dpROH) approach that improves the 

accuracy of the physics-based reduced order homogenization (pROH) approach, but retains its 

unique characteristics, such as interpretability and extrapolation, has been developed. The dpROH 
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consist of the offline and online stages. In the offline stage, an enhanced model reduction strategy 

based on the Bayesian Inference (BI) that employs the Gated Recurrent Unit (GRU) neural network 

surrogate is developed. In the online stage, the dpROH (rather than the GRU surrogate employed 

in the BI process) is utilized for the component level predictions. Based on the numerical 

experiments comparing pROH and various variants of dpROH with the reference solution based 

on the first order computational homogenization (i.e., without model reduction) we make the 

following observations: 

• The dpROH has been demonstrated to improve the accuracy of the physics-based model 

reduction for variety of test problems outside the training set. 

• Among various dpROH variants sequential inference approaches incorporating 

compatibility constraint offer the lowest computational cost and comparable accuracy to 

the dpROH variants based on the simultaneous parameter training with and without 

compatibility constraint enforced. 

• A weak coupling between the mean value of predicted constitutive model parameters of 

microphases and the eigenstrain transformation tensor parameters that governs model 

reduction have been observed.  This indirect observation stems from the fact that the quality 

of predictions has been found to be little sensitive to how the two parameter sets, ETT , 

MCM , are inferred. This raises the possibility that an improved physics-based model 

reduction may exist. 

Future work will focus on  

(i) development of improved physics-based model reduction guided by the observations 

found herein  
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(ii) Study the dpROH in the context of various constitutive models of microphases, such 

as damage and combination of plasticity and damage 

(iii)  Extension of the dpROH to more than two scales. 
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Chapter 4  

Data-physics Driven Reduced Order Homogenization for 

Continuum Damage Mechanics at Multiple Scales  

4.1 Introduction 

Multiscale damage modeling is a concept used in materials science and engineering to understand 

the brittle behavior of heterogeneous materials at different scales. It involves studying the 

deformation and fracture of composite materials ranging from the microscopic to the macroscopic 

level. The multiscale approach is necessary because the properties of composite materials are 

influenced by various physical phenomena taking place at different scales. A multiscale damage 

model aims to incorporate the heterogeneity and microstructural features of its constituents, 

providing an accurate representation of their mechanical response and failure characteristics. 

The application of multiscale damage modeling has been hindered by two primary challenges. The 

first arises from the nature of multiscale modeling itself. Computational homogenization-like 

multiscale methods demand significant computational resources. Due to the tremendous 

computational complexity in multiscale modeling, alternative approaches, such as various reduced 

order multiscale methods or data-driven methods have been devised. For a detailed description of 

these methods, including those that are based on physics, data, or a combination of both, the reader 

is referred to the review articles [39, 84] among many others.  

Secondly, models that describe damage and strain softening in a continuous manner are prone to 

unstable numerical solutions due to the underlying ill-posed partial differential equation [85]. 

Consequently, finite element simulations based on such models often exhibit mesh sensitivity, 

whereby the damage zone is confined to a single element, leading to a lack of convergence in the 
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simulation as damage initiates. To address these issues, various regularization techniques have 

been proposed, such as nonlocal methods [86, 87], gradient-enhanced nonlocal methods [89, 90], 

viscous regularization methods [90], phase field methods [91], and adaptive mesh refinement [92]. 

While these methods have been mostly proven in the context of single-scale damage modeling, 

their viability has been questioned in the context of multiple scales [93]. As pointed out by Bazant 

[93], the two challenges are contradictory in nature, i.e., the higher resolution provided by 

multiscale methods may have an opposite effect to the regularization methods that attempt to smear 

out the fine-scale behavior. 

There have been several noteworthy contributions in multiscale damage modeling. Oskay [31] 

extended a physics-based reduced order homogenization (pROH) to continuum damage mechanics 

at multiple length scales based on the transformation field analysis (TFA) [94]. By this approach, 

a characteristic length scale is introduced by controlling an approximation order of eigenstrains. 

Wu [95] combined the mean field homogenization with the gradient-enhanced approach to account 

for damage evolution in a two-phase fiber-reinforced composite. Ghosh [97, 98] introduced a 

characteristic length scale by combining an asymptotic homogenization method with 

micromechanical Voronoi cell finite element method (VCFEM). Other noteworthy contributions 

in homogenization-like multiscale damage methods can be found in [98, 99, 100] among many 

other contributions. 

In the area of data-driven methods for continuum damage mechanics, Deng [101] and Logarzo 

[109] proposed a physics-informed data-driven deep learning model as an efficient surrogate to 

emulate an effective response of a heterogeneous elasto-plastic softening material. However, 

neural networks employed in these works are known to encounter limited predictive capacity, 

overfitting, and underfitting. Merely increasing the number of input parameters may not 
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necessarily resolve these issues, as it necessitates an exponential increase in the amount of 

available data points. Other data-driven multiscale approaches have been proposed [66, 69, 70], 

but few of them are applicable to simulate damage taking place at multiple length scales.  

The present work attempts to meet the challenge posed by Bazant [93] by extending the data-

physics driven reduced order homogenization (dpROH) [84] to multiscale damage modeling. The 

proposed method aims at alleviating the potential pitfalls of either data-driven or physics-based 

reduced order methods [30, 32, 33, 34]. The dpROH employs a surrogate-based Bayesian 

Inference engine to estimate the eigenstrain transformation tensor to reproduce a reference solution 

(physical experiment or direct numerical simulation (DNS) with an embedded characteristic length 

scale) at a coupon level. The proposed formulation has been validated at a subcomponent level 

against the DNS with an embedded characteristic length scale based on the nonlocal damage 

formulation [104].  

The outline of this subsection is as follows. Section 4.2.1 provides a brief review of the physics-

based reduced order homogenization (pROH) for the continuum damage model. The Bazant’s 

nonlocal continuum damage approach and its multiple scale variant are described in Section 4.2.2 

Details of the proposed dpROH for multiscale damage modeling are given in Section 4.3. 

Numerical studies on the accuracy and efficiency of dpROH are described in Section 4.4. 

Summary and conclusions are given in Section 4.5. 

 

4.2 Methodology  

In this section, we present the data-physics driven reduced order homogenization (dpROH) for 

continuum damage mechanics at two length scales starting with the review of the physics-driven 
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reduced order homogenization followed by Bazant’s nonlocal damage approach ant it’s multiscale 

variant.  

 

4.2.1 Review of the physics driven Reduced Order Homogenization (pROH) 

As a brief overview of the physics driven reduced order homogenization, we start by defining 

governing equations over a representative volume element (RVE) domain with isotropic damage 

model. 
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The focus of this study is limited to quasi-brittle materials, where damage is assumed to be 

isotropic. A single scalar quantity,  , is used to describe the damage initiation and evolution 

process. The undamaged state is represented by 0 = , while 1 =  represents complete damage.  

In the present study we adopt Mazar’s damage model [107], in which the local damage function is 

expressed as: 
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Where   is an internal state variable; 0 ,  ,   are material constants denoting damage 

threshold, final damaged state, and damage evolution rate. With the above definitions, the 

corresponding Kuhn-Tucker condition is expressed as:  

  , 0, 0, , 0, where ,( ) ( ) ( ) eqf f f     = = −    (4.3) 

where 
eq

denotes the equivalent strain. In this work, we employ a modified Von Mises [107, 108] 

as an equivalent strain. It is expressed as: 
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with   denoting the ratio of tensile and compressive strength,   poisson’s ratio and 
1I , 2J  strain 

invariants. 

 

4.2.2 Nonlocal continuum damage mechanics model 

We start with a brief overview of the classical nonlocal damage theory originated by Bazant [86], 

which produces a well-posed mathematical model.  

The nonlocal integral-type model defines a weighted average of a damage variable in a spatial 

neighborhood c . The nonlocal damage variable ̂  is defined as 

    

1

1

( , ) ( )
ˆ ( )

( , )

( , )
( )

( , )

c

c

gp

gp

i

c
i

i

c

N i j
j

N
j i j

j

x x x d
x

x x d

x x
w x

x x

 












=

=


=












    (4.5) 



69 

 

The weight function, denoted by  , can take the form of either a bell-shaped or Gaussian function. 

The variable ix  represents the coordinates of specific Gauss point being considered, while j 

represents its neighboring Gauss points located within a characteristic length cl  from the point i. 

A typical bell-shaped weight function has the following form: 

1
( , )

|| ||
(1 ( ) )

i j

i j
a b

c

x x
x x

l

 =
−

+

   (4.6) 

where || ||  denotes the L2 norm; a and b are material constants which control the shape of the 

weight function; cl  is a characteristic length that represents the size of the nonlocal region.  

We now consider a nonlocal variant of the pROH. The discretized residual derived from Eq. (3.6), 

can be expressed in matrix form as follows： 

     
( )

(( )

1

( ) ( ) )
M

c


   

 =

=  −  −r P μ E   (4.7) 

where nonlocal eigenstrain increment is defined  

      ( ) ( ) ( )ˆˆ    =        (4.8) 

The nonlocal damage parameter in phase  ,  ( )ˆ  , is computed by averaging the same phase 

damage parameters over the characteristic neighborhood c (4.5).  

For stress update procedures and consistent tangent, we refer to [34]. 
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4.3 dpROH framework for continuum damage mechanics 

4.3.1 Reference and training dataset generation 

The primary objective of this section is to utilize dpROH framework for modeling continuum 

damage mechanics of heterogeneous materials. The novelty of the present study compared to 

conventional multiscale damage methods is as follows:  

(i) It is mesh size independent at the model identification and component level stages  

(ii) Its model parameters can be inferred from a limited reference (experiment or direct 

numerical simulation (DNS)) data using Bayesian Inference  

(iii) It exhibits high computational efficiency compared to other nonlocal multiscale 

damage methods 

(iv)  It produces interpretable material responses at both the macroscopic and microscopic 

scales.  

The first stage of our research involves carrying out uniform field physical experiments. In the 

present study, instead of conducting physical experiments, a high-fidelity DNS with periodic 

boundary conditions is simulated to mimic physical experiments at the RVE level. This model is 

trained to resolve microstructural details to produce accurate data at the RVE level with no more 

than six monotonic loading tests, corresponding to six distinct strain or stress components. These 

components are denoted as the 11, 22, 33, 23, 13, and 12 deformation modes. The number of 

independent deformation modes may be further reduced based on the geometry of the RVE (see 

Figure 4.3 step 1). 

Given the reference data, we can generate a training dataset using physics-based Reduced Order 

Homogenization (pROH). The process involves conducting numerous RVE simulations, using 

pROH, under different loading conditions, and by varying constitutive law parameters d  and 
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eigenstrain transformation tensor parameters ETT . The purpose of inferring constitutive law 

parameters is to identify the difference between the manufacturer’s specified and the actual 

properties. Meanwhile, the inference of the eigenstrain transformation tensor accounts for the 

approximation error in model reduction. The iterative process involves numerous simulations that 

collect history data (denoted to be a function of pseudo time t) of the coarse-scale strain ( )c t  and 

stress ( )c tσ  at each load increment for various model parameters, ( d , ETT ). This is 

schematically depicted in Fig. 4.1. 

 

                             Figure 4.1. Dataset generation configuration with pROH 

 

4.3.2 Surrogate-based Bayesian Inference on softening material behavior 

The primary objective of the trained surrogate model is to expedite the Bayesian Inference (BI) 

process, which typically involves performing numerous forward simulations. However, 

performing high-dimensional parameter inference using DNS is computationally challenging. An 

alternative approach is to replace the forward simulations with a surrogate model. The number of 

simulations necessary to train a reliable surrogate model is typically less than the number of 

simulations required for the Monte Carlo Markov Chain (MCMC) process [85].  

In the application of the BI, there are several viable options for developing surrogate models. Some 

popular choices include Gaussian Process Regression (GPR), Support Vector Regression (SVR), 

and Neural Networks. When dealing with the history-dependent data, Recurrent Neural Networks 



72 

 

(RNN) is a preferred choice, designed specifically for sequential data analysis. However, RNNs 

rely on the quality of the training dataset to achieve accurate surrogate models. When dealing with 

a three-dimensional RVEs, it is challenging to sample various deformation paths, particularly for 

irreversible softening deformation. The salient feature of the proposed approach is that it does not 

require sampling of all deformation paths, but rather infers the eigenstrain transformation tensor 

parameters through monotonic loading paths, which has been found to be sufficient for BI. This 

leads to a significant reduction in the sampling space and dataset size without sacrificing the 

accuracy of the trained RNN outside the monotonic loading space. 

Using created training dataset, each simulation is denoted herein as { ( ), , , ( )}c d ETT c

i i i iS t t = σ , 

where i represents simulation index, [1, ]i n . The Gated Recurrent Unit (GRU) has been 

extensively utilized in the development of surrogate models for path-dependent materials. The key 

advantage of employing GRU lies in its reduced number of hyperparameters compared to other 

RNN structures. The architectural representation of the GRU employed in this study is depicted in 

Fig. 4.2 The inputs are the coarse-scale strain 
22 33 23 1311 12( ) { , , , , , }c c c c c c ct =  combined with the 

model parameter d  and ETT . The outputs are the corresponding stress 

22 33 23 1311 12( ) { , , , , , }c c c c c c ct      = . For details on the GRU cell, we refer to [85]. Various 

approaches have been proposed to incorporate history dependent and independent data within the 

GRU architecture [67]. An effective technique involves extending the history-independent data 

and matching the dimensions of the pseudo time step size (load increments), which has been 

demonstrated to yield improved results. The implementation of such a GRU architecture using the 

Keras library [39] is provided in numerical example section. Utilizing the trained Gated Recurrent 

Unit (GRU), we have successfully acquired all components of the surrogate-based Bayesian 

Inference engine [85]. 
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Figure 4.2 Architecture of the GRU in the dpROH. tX and 
tY  represent inputs and outputs at a 

pseudo time step t respectively 

 

4.3.3 Framework summary 

The multiscale damage framework based on the variant of the dpROH is detailed below: 

Offline stage: 

1. Perform DNS at the RVE level incorporating the nonlocal damage model to generate 

homogenized stress-strain reference data. 

2. Train the neural network-based surrogate model using the Gated Recurrent Unit (GRU) 

architecture utilizing the training dataset 
1

{ ( ), , , ( )}
n

c d ETT c

i i i i

i

S t t 
=

= σ . 

3. Apply the GRU-based Bayesian Inference (GRU-BI) method to the reference data obtained 

from Step 1, yielding either probability density functions ( ( )dP  , )( ETTP  ) or  its 

deterministic mean values ( d , ETT ). 

Online stage: 

Utilize the dpROH-based two-scale solver to make predictions at the component level. 
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The dpROH flowchart is given in Fig. 4.3. 

 

                         Figure 4.3. Flowchart of the dpROH for multiscale damage modeling 

 

4.4 Numerical Examples 

4.4.1 Reference solution based on nonlocal DNS model 

We consider a fibrous composite RVE depicted in Fig. 4. The RVE, comprised two distinct phases 

has been discretized using 1558 eight-node hexahedral elements. The fiber volume fraction is 

24.56%. The matrix is modeled using isotropic damage model, while the fiber is assumed to remain 

elastic. The material constants for the reference solution are summarized in Table 4.1. 
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                                            Table 4.1. Reference material properties  

 Matrix (Isotropic damage) Inclusion or fiber (Elasticity) 

Young's Modulus 2500 Mpa 125000 Mpa 

Poisson's ration 0.32 0.01 

0k
 

0.0001 N/A 

  0.85 N/A 

  250 N/A 

 

The reference solution is based on the nonlocal DNS. The characteristic length in Equation (12) is 

chosen as 0.48. Figure 5(a) depicts the reference DNS solution subjected to periodic boundary 

conditions resulting in material behavior that is independent of the mesh size. Having obtained the 

reference data, subsequent steps involve generating a corresponding training dataset. For each 

deformation mode, we perform 20,000 simulations employing pROH with 100 load increments. 

The range of damage parameters is given in Table 2. In the subsequent numerical examples, we 

denote the dpROH that solely considers the damage parameters as dpROH v1. A variant dpROH 

v2 employes both the constitutive model parameters as well as the eigenstrain transformation 

tensor parameters denoted as  ETT

I = , which rescale specific terms in 
( )kl

ijP 
. Although the 

complete 
( )kl

ijP 
 comprises of 36 terms, its independent terms can be reduced to six (see Table 

4.3) due to their symmetric and diagonal-dominated nature [85]. The range of rescaling parameters 

are specified as [0.8,1.2]I = . 

                Table 4.2. microstructural damage parameters range for fibrous RVE 

d  0k
 

    

Ranges [0.00007~0.00013] [0.5~0.99] [100~800] 
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                                Table 4.3. Independent terms 
( )kl

ijP 
  for fibrous RVE 

Fibrous composite RVE 
Rescaling 

parameters 
Transformation tensor 

components 

1  ( )11 11

11P ,
( )22 11

22P  

2  ( )23 11

23P ,
( )13 11

13P  

3  ( )12 11

12P  

4  ( )11 21

11P ,
( )22 21

22P  

5  ( )23 21

23P ,
( )13 21

13P  

6  ( )12 21

12P  

 

The architecture of the surrogate neural network comprises of a single GRU layer with a rectified 

linear unit (ReLU) activation function, succeeded by two dense layers. The last layer is a 

"TimeDistributed" layer, enabling the application of the designated dense layer to each time step 

individually. The output activation function is linear. Notably, all layers within this network 

configuration consist of 64 units.  

With the surrogate model, we now apply the GRU-BI to the three sets of DNS data to infer model 

parameters. The BI results are given in Fig. 4.5. The results of the dpROH v1 and dpROH v2 are 

compared to DNS in Fig 4.6. (b)(c)(d). The results obtained from pROH without calibration are 

included for comparison. For the matrix-dominated deformations (11, 23, 12), it is evident that 

pROH exhibits a noticeably stiffer post-damage behavior due to the approximation introduced in 

model reduction. However, these discrepancies can be rectified by employing dpROH. In this 

specific scenario, both dpROH v1 and dpROH v2 exhibit minor errors, primarily influenced by 

the substantial nonlocal behavior. Due to the large characteristic length cl  , the matrix phase 

achieves a higher degree of uniformity, resulting in minimal discrepancies between dpROH v1 

and dpROH v2 in the present example. Nonetheless, dpROH v2 is slightly more accurate 
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reproducing the desired outcomes and showcasing improved accuracy at a subcomponent level 

described in subsequent sections. 

 

 

 

 

 

 

Figure 4.4. Fibrous RVE and material coordinate system considered in the present study. 

 

   (a) (b) 

Figure 4.5. Bayesian Inference results (a) The first row represents the probability density functions 

of three damage parameters in dpROH v1. The second row refers to the corresponding MCMC 

trace plots. (b) probability density functions of d  and ETT  in dpROH v2. 
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(a)                                                                         (b) 

 

                                      (c)                                                                           (d) 

Figure 4.6. (a) mesh independent nonlocal DNS results, (b) transverse tension test mode 22, (c) 

simple shear mode 12 (d) simple shear 23. Results generated by pROH (red lines). Results 

generated by dpROH (dashed lines). 

 

4.4.2 Validation for mixed mode cyclic loading 

We consider a mixed mode cyclic loading test outside the training set. A single two-scale 

macroscopic element is subjected to mix-mode cyclic loading in modes 22 and 23, and the results 

are depicted in Fig. 4.7. It can be seen that both dpROH models are in good agreement with the 

DNS. 
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Figure 4.7. 22-component stress-strain of single element subjected to 22-23 mix-mode cyclic 

tensile loading 

4.4.3 A perforated Plate validation problem 

In this section, we evaluate the performance of dpROH in predicting subcomponent-level 

behavior. Specifically, we will conduct simulations on a plate with a hole subjected to tensile 

loadings. The dimensions of the plate are 18x18 mm, with a hole radius of 3 mm and a thickness 

of 1 mm. To discretize the plate with a hole, we utilize approximately 300 RVEs consisting of total 

384,989 tetrahedral elements for the nonlocal DNS, which serves as a reference solution. 

The results of the nonlocal DNS are compared to the dpROH v2 with either local or nonlocal 

damage formulations. We first compare the reference solution to the dpROH where the macro-

mesh is coarse consisting of 300 elements and the damage model is local. The macroscopic element 

size essentially introduces a characteristic length, which is approximately equal to the RVE size in 

the DNS. We also consider a finer macroscopic mesh (616 macroscopic elements), but in this case 

nonlocal damage model as described in Section 2.2 is employed. The mesh configurations are 

shown in Fig. 4.8. 
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The force-displacement curves are presented in Fig. 4.9, demonstrate the performance of dpROH 

for the two meshes. It is observed that the dpROH with a coarse mesh, where the macroscopic 

element size is equal to the RVE size, yields satisfactory results. However, some discrepancies 

arise near the failure point due to mesh non-uniformity. This phenomenon is mitigated with a finer 

mesh employing nonlocal method. 

This numerical example highlights the capability of dpROH to accurately predict the behavior of 

heterogeneous materials at the component level. Additionally, in terms of computation time, 

running the DNS requires approximately 40 hours of CPU time, whereas the combined offline and 

online stages for dpROH take 8 hours in total. It is worth noting that the current example consists 

only 324 RVEs for the DNS. In practical applications, the training and inference time of dpROH 

would be negligible compared to the computational time required for DNS. 

 

  (a) (b) (c) 

Figure 4.8. The finite element discretization of the perforated plate with fibrous microstructures. 

(a) Direct numerical simulation model consisting of 384,989 four-node tetrahedra elements. (b) 

dpROH model employing 324 eight-noded hexahedra elements for the macroscale domain (c) 

dpROH model with 616 eight-noded hexahedra elements for the macroscale domain. 
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Figure 4.9. Force-displacement curves for the DNS, pROH, local dpROH (coarse mesh), nonlocal 

dpROH (finer mesh) 

 

 

Figure 4.10. Damage plots for the DNS, local dpROH (coarse mesh), nonlocal dpROH (finer 

mesh) 

In Fig. 4.10, we present the damage plots for the three variant. Note that the DNS damage plot 

presents data on an element-by-element basis, with the gaps representing fibers. Conversely, the 

damage variable in dpROH represents average values over the unit cell. It can be seen that our 

dpROH approach do predict correct damage evolution. 
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4.5 Conclusion 

We developed a variant of the dpROH approach for continuum damage modeling at two scales. 

At the RVE level, the dpROH effectively reproduces phase damage evolution in comparison to 

the nonlocal DNS model. Likewise, at the component level, the nonlocal dpROH is in good 

agreement with the nonlocal DNS model.  The model reduction is essential for computational 

efficiency of dpROH at the component level. Compared to the traditional DNS approach, dpROH 

offers notable advantages in terms of computational efficiency without compromising on accuracy. 

Overall, the dpROH method presented in this study demonstrates its effectiveness in accurately 

modeling heterogeneous materials at both the microscopic and macroscopic scales, offering a 

promising approach for multiscale damage analysis. The proposed method also offers a viable 

framework to enhance the interpretability when compared to other purely data-driven damage 

modeling methods. 
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Chapter 5 

Conclusions 

5.1 Contributions 

We kick start this thesis by demonstrating the effectiveness of the pseudo-nonlocal finite element 

method within the context of linear hexahedral elements. Our findings reveal that this method 

achieves accuracy levels similar to those obtained with full integration, while significantly 

improving computational speed by approximately 8 times in multiscale material modeling. 

Through applications in FOCH, ROH, and dpROH, we observe that this method exhibits 

promising characteristics as an integration scheme for homogenization-like multiscale methods. 

Notably, its advantage over reduced integration methods lies in its elimination of the need for 

artificial stiffness, while still producing stiffer results that closely align with the outcomes of the 

full integration scheme. 

Chapters 3 and 4 of this study provide empirical evidence for the effectiveness and versatility of 

data-physics driven reduced order homogenization through various numerical examples of 

heterogeneous material modeling. This data-enhanced model reduction technique utilizes limited 

data to extract a practical eigenstrain transformation tensor, which governs the evolution of 

eigenstrain within each material partition in RVE. The proposed framework significantly enhances 

the efficiency of simulating RVE equilibrium problems without compromising accuracy. The 

proposed method makes a significant contribution to the field of data-physics driven multiscale 

modeling by preserving the physical framework of model reduction while improving accuracy 

with data. It achieves this by avoiding the replacement of any components in the multiscale finite 

element algorithm with surrogate models. This preservation of the physical reduction model 
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framework ensures that the outcomes maintain their physical meaning when dealing with unseen 

deformation paths and macroscopic component geometries. 

Furthermore, the method achieves the highest computational efficiency when focusing on 

resolving solutions at the microstructure partition level where we assume eigenstrain is a constant 

over a partition. By combining data inference to determine critical reduction parameters, the 

method strikes a balance between accuracy and efficiency, allowing for efficient simulations while 

maintaining the physical integrity of the results. 

 

5.2 Future perspective 

Considering two main topics, we list some future research directions as follows: 

• The current implementation of the pseudo-nonlocal finite element method is limited to 

linear hexahedral elements. Further research is required to investigate its performance on 

higher order hexahedral elements. In this study, the focus was primarily on evaluating its 

computational efficiency and accuracy. However, future work should address its capability 

to solve locking problems associated with full integration elements or address any potential 

hourglass phenomena that may arise in reduced integration elements. These aspects remain 

important considerations for the development and improvement of the method in future 

investigations. 

• The data-physics driven reduced order homogenization approach incorporates both 

material parameters and model parameters to enhance its performance. However, certain 

numerical examples have revealed a weakly coupled relationship between nonlinear 

material parameters and model reduction parameters. Specifically, the inferred nonlinear 

parameters predominantly account for the delayed eigen deformation, such as the yield 
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point in elasto-plasticity models or the failure point in continuum damage models. This 

delayed eigen deformation arises due to the assumption of constant eigenstrain over each 

material partition. Consequently, exploring alternative methods to solve the delayed eigen 

deformation may lead to the derivation of practical eigenstrain transformation tensors that 

are independent of material nonlinear parameters. This investigation could potentially 

provide valuable insights for future advancements in the field. Additionally, our research 

has explored the application of the data-physics driven reduced order homogenization 

approach in elasto-plasticity models and continuum damage models. However, the 

application of this approach to hybrid elasto-plasticity-damage models remains a challenge  

that requires further investigation. 

 

 

 

 

 

 

 

 

 

 

 



86 

 

References 

1. Mackenzie-Helnwein P, Eberhardsteiner J, Mang HA. A multi-surface plasticity model for 

clear wood and its application to the finite element analysis of structural details. 

Computational Mechanics. 2003 May;31(1):204-18. 

2. Karavelić E, Ibrahimbegovic A, Dolarević S. Multi-surface plasticity model for concrete 

with 3D hardening/softening failure modes for tension, compression and shear. 

Computers & Structures. 2019 Sep 1;221:74-90. 

3. Reddi D, Areej VK, Keralavarma SM. Ductile failure simulations using a multi-surface 

coupled damage-plasticity model. International Journal of Plasticity. 2019 Jul 1;118:190-

214. 

4. Cuitino AM, Ortiz M. Computational modelling of single crystals. Modelling and 

Simulation in Materials Science and Engineering. 1993 Apr 1;1(3):225. 

5. Yan H, Oskay C. Multi-yield surface modeling of viscoplastic materials. International 

Journal for Multiscale Computational Engineering. 2017;15(2). 

6. Feyel F, Chaboche JL. FE2 multiscale approach for modelling the elastoviscoplastic 

behaviour of long fibre SiC/Ti composite materials. Computer methods in applied 

mechanics and engineering. 2000 Mar 17;183(3-4):309-30. 

7. Sparks P, Oskay C. The method of failure paths for reduced-order computational 

homogenization. International Journal for Multiscale Computational Engineering. 

2016;14(5). 

8. Terada K, Hori M, Kyoya T, Kikuchi N. Simulation of the multi-scale convergence in 

computational homogenization approaches. International Journal of Solids and 

Structures. 2000 Apr 1;37(16):2285-311. 

9. Ghosh S, Lee K, Moorthy S. Two scale analysis of heterogeneous elastic-plastic materials 

with asymptotic homogenization and Voronoi cell finite element model. Computer 

methods in applied mechanics and engineering. 1996 May 15;132(1-2):63-116. 

10. Ghosh S, Dimiduk D, editors. Computational methods for microstructure-property 

relationships. New York: Springer; 2011. 

11. Yuan Z, Fish J. Toward realization of computational homogenization in practice. 

International Journal for Numerical Methods in Engineering. 2008 Jan 15;73(3):361-80. 

12. Mosby M, Matouš K. Computational homogenization at extreme scales. Extreme 

Mechanics Letters. 2016 Mar 1;6:68-74. 

13. Ilic S, Hackl K, Gilbert R. Application of the multiscale FEM to the modeling of 

cancellous bone. Biomechanics and modeling in mechanobiology. 2010 Feb;9:87-102. 



87 

 

14. Dang TS, Wessels N, Nguyen NS, Hackl K, Meschke G. A coupled computational 

approach for the simulation of soil excavation and transport in earth-pressure balance 

shield machines. International Journal for Multiscale Computational Engineering. 

2017;15(3). 

15. Zohdi TI, Wriggers P. An introduction to computational micromechanics. Springer 

Science & Business Media; 2004 Nov 18. 

16. Geers MG, Kouznetsova V, Brekelmans WA. Gradient-enhanced computational 

homogenization for the micro-macro scale transition. Le Journal de Physique IV. 2001 

Sep 1;11(PR5):Pr5-145. 

17. Ghosh S, Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with 

the Voronoi Cell finite element method[J]. Computer Methods in Applied Mechanics and 

Engineering, 1995, 121(1-4): 373-409. 

18. Ghosh S. Micromechanical analysis and multi-scale modeling using the Voronoi cell 

finite element method[M]. CRC Press, 2011. 

19. Moulinec H, Suquet P. A fast numerical method for computing the linear and nonlinear 

mechanical properties of composites[J]. Comptes rendus de l'Académie des sciences. 

Série II. Mécanique, physique, chimie, astronomie, 1994. 

20. Moulinec H, Suquet P. A numerical method for computing the overall response of 

nonlinear composites with complex microstructure[J]. Computer methods in applied 

mechanics and engineering, 1998, 157(1-2): 69-94. 

21. Chen J S, Wu C T, Yoon S, et al. A stabilized conforming nodal integration for Galerkin 

mesh‐free methods[J]. International journal for numerical methods in engineering, 2001, 

50(2): 435-466. 

22. Paley M, Aboudi J. Micromechanical analysis of composites by the generalized cells 

model[J]. Mechanics of materials, 1992, 14(2): 127-139. 

23. Aboudi J, Arnold S M, Bednarcyk B A. Micromechanics of composite materials: a 

generalized multiscale analysis approach[M]. Butterworth-Heinemann, 2013. 

24. van Tuijl, R. A., Harnish, C., Matouš, K., Remmers, J. J., & Geers, M. G. (2019). 

Wavelet based reduced order models for microstructural analyses. Computational 

Mechanics, 63, 535-554. 

25. Harnish C, Matous K, Livescu D. Adaptive wavelet algorithm for solving nonlinear 

initial–boundary value problems with error control[J]. International Journal for 

Multiscale Computational Engineering, 2018, 16(1). 

26. Le B A, Yvonnet J, He Q C. Computational homogenization of nonlinear elastic 

materials using neural networks[J]. International Journal for Numerical Methods in 

Engineering, 2015, 104(12): 1061-1084. 



88 

 

27. Bhattacharjee S, Matouš K. A nonlinear manifold-based reduced order model for 

multiscale analysis of heterogeneous hyperelastic materials[J]. Journal of Computational 

Physics, 2016, 313: 635-653. 

28. Wang Y, Cheung S W, Chung E T, et al. Deep multiscale model learning[J]. Journal of 

Computational Physics, 2020, 406: 109071. 

29. Fish J, Yuan Z, Kumar R. Computational certification under limited experiments[J]. 

International Journal for Numerical Methods in Engineering, 2018, 114(2): 172-195. 

30. Fish J, Shek K, Pandheeradi M, et al. Computational plasticity for composite structures 

based on mathematical homogenization: Theory and practice[J]. Computer methods in 

applied mechanics and engineering, 1997, 148(1-2): 53-73. 

31. Oskay C, Fish J. Eigendeformation-based reduced order homogenization for failure 

analysis of heterogeneous materials[J]. Computer Methods in Applied Mechanics and 

Engineering, 2007, 196(7): 1216-1243. 

32. Yuan Z, Fish J. Multiple scale eigendeformation-based reduced order homogenization[J]. 

Computer Methods in Applied Mechanics and Engineering, 2009, 198(21-26): 2016-

2038. 

33. Yuan Z, Fish J. Hierarchical model reduction at multiple scales[J]. International journal 

for numerical methods in engineering, 2009, 79(3): 314-339. 

34. Fish J. Practical multiscaling[M]. John Wiley & Sons, 2013. 

35. Yuan Z, Aitharaju V, Fish J. A coupled thermo‐chemo‐mechanical reduced‐order 

multiscale model for predicting process‐induced distortions, residual stresses, and 

strength[J]. International Journal for Numerical Methods in Engineering, 2020, 121(7): 

1440-1455. 

36. Michel J C, Suquet P. Nonuniform transformation field analysis[J]. International journal 

of solids and structures, 2003, 40(25): 6937-6955. 

37. Michel J C, Suquet P. Computational analysis of nonlinear composite structures using the 

nonuniform transformation field analysis[J]. Computer methods in applied mechanics and 

engineering, 2004, 193(48-51): 5477-5502. 

38. Matouš K, Geers M G D, Kouznetsova V G, et al. A review of predictive nonlinear 

theories for multiscale modeling of heterogeneous materials[J]. Journal of Computational 

Physics, 2017, 330: 192-220. 

39. Fish J, Wagner G J, Keten S. Mesoscopic and multiscale modelling in materials[J]. 

Nature materials, 2021, 20(6): 774-786. 



89 

 

40. Schlick T, Portillo-Ledesma S, Myers C G, et al. Biomolecular modeling and simulation: 

a prospering multidisciplinary field[J]. Annual review of biophysics, 2021, 50: 267-301. 

41. Schlick T, Portillo-Ledesma S, Blaszczyk M, et al. A MULTISCALE VISION− 

ILLUSTRATIVE APPLICATIONS FROM BIOLOGY TO ENGINEERING[J]. 

International journal for multiscale computational engineering, 2021, 19(2). 

42. Bi J, Hanke F, Ji H, et al. Multiscale modeling for the science and engineering of 

materials[J]. International Journal for Multiscale Computational Engineering, 2021, 

19(3). 

43. Doghri I, Lemoine G, Martiny P, et al. Multiscaling-based integrated computational 

materials engineering: from academia to industry[J]. International Journal for Multiscale 

Computational Engineering, 2021, 19(4). 

44. Wollschlager J, Yuan Z, McAuliffe C, et al. A Technical Overview of Altair Multiscale 

Designer[J]. International Journal for Multiscale Computational Engineering, 2021, 

19(4). 

45. Song N, Jackson M, Montgomery C, et al. Using Multiscale Modeling to Advance 

Industrial and Research Applications of Advanced Materials[J]. International Journal for 

Multiscale Computational Engineering, 2021, 19(4). 

46. Pineda E J, Bednarcyk B A, Ricks T M, et al. Efficient multiscale recursive 

micromechanics of composites for engineering applications[J]. International Journal for 

Multiscale Computational Engineering, 2021, 19(4). 

47. Rokoš O, Zeman J, Doškář M, et al. Reduced integration schemes in micromorphic 

computational homogenization of elastomeric mechanical metamaterials[J]. Advanced 

Modeling and Simulation in Engineering Sciences, 2020, 7: 1-17. 

48. Belytschko T, Ong J S J, Liu W K, et al. Hourglass control in linear and nonlinear 

problems[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 43(3): 

251-276. 

49. Liu W K, Ong J S J, Uras R A. Finite element stabilization matrices-a unification 

approach[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 53(1): 13-

46. 

50. Fish J, Belytschko T. A first course in finite elements[M]. New York: Wiley, 2007. 

51. Miehe C. Numerical computation of algorithmic (consistent) tangent moduli in large-

strain computational inelasticity[J]. Computer methods in applied mechanics and 

engineering, 1996, 134(3-4): 223-240. 

52. Kouznetsova V G. Computational homogenization for the multi-scale analysis of multi-

phase materials[J]. 2004. 



90 

 

53. Dalcin L, Mortensen M, Keyes D E. Fast parallel multidimensional FFT using advanced 

MPI[J]. Journal of Parallel and Distributed Computing, 2019, 128: 137-150. 

54. Zhu Q, Geubelle P H, Li M, et al. Dimensional accuracy of thermoset composites: 

simulation of process-induced residual stresses[J]. Journal of composite materials, 2001, 

35(24): 2171-2205. 

55. Cheung A, Yu Y, Pochiraju K. Three-dimensional finite element simulation of curing of 

polymer composites[J]. Finite Elements in Analysis and Design, 2004, 40(8): 895-912. 

56. Prulière E, Férec J, Chinesta F, et al. An efficient reduced simulation of residual stresses 

in composite forming processes[J]. International Journal of Material Forming, 2010, 

3(Suppl 2): 1339-1350. 

57. Yuan Z, Aitharaju V, Fish J. A coupled thermo‐chemo‐mechanical reduced‐order 

multiscale model for predicting process‐induced distortions, residual stresses, and 

strength[J]. International Journal for Numerical Methods in Engineering, 2020, 121(7): 

1440-1455. 

58. Yuan Z, Felder S, Reese S, et al. A coupled thermo-chemo-mechanical reduced-order 

multiscale model for predicting residual stresses in fibre reinforced semi-crystalline 

polymer composites[J]. International Journal for Multiscale Computational Engineering, 

2020, 18(5). 

59. Bessa M A, Bostanabad R, Liu Z, et al. A framework for data-driven analysis of 

materials under uncertainty: Countering the curse of dimensionality[J]. Computer 

Methods in Applied Mechanics and Engineering, 2017, 320: 633-667. 

60. Bhattacharjee S, Matouš K. A nonlinear manifold-based reduced order model for 

multiscale analysis of heterogeneous hyperelastic materials[J]. Journal of Computational 

Physics, 2016, 313: 635-653. 

61. Wang Y, Cheung S W, Chung E T, et al. Deep multiscale model learning[J]. Journal of 

Computational Physics, 2020, 406: 109071. 

62. Wu L, Zulueta K, Major Z, et al. Bayesian inference of non-linear multiscale model 

parameters accelerated by a deep neural network[J]. Computer Methods in Applied 

Mechanics and Engineering, 2020, 360: 112693. 

63. Gorji M B, Mozaffar M, Heidenreich J N, et al. On the potential of recurrent neural 

networks for modeling path dependent plasticity[J]. Journal of the Mechanics and Physics 

of Solids, 2020, 143: 103972. 

64. Unger J F, Könke C. Neural networks as material models within a multiscale 

approach[J]. Computers & structures, 2009, 87(19-20): 1177-1186. 

65. Unger J F, Könke C. Coupling of scales in a multiscale simulation using neural 

networks[J]. Computers & Structures, 2008, 86(21-22): 1994-2003. 



91 

 

66. Mozaffar M, Bostanabad R, Chen W, et al. Deep learning predicts path-dependent 

plasticity[J]. Proceedings of the National Academy of Sciences, 2019, 116(52): 26414-

26420. 

67. Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using 

RNN encoder-decoder for statistical machine translation[J]. arXiv preprint 

arXiv:1406.1078, 2014. 

68. Z. Liu, M.A. Bessa, W.K. Liu, "Self-consistent clustering analysis: an efficient multi-

scale scheme for inelastic heterogeneous materials," Computer Methods in Applied 

Mechanics and Engineering, vol. 306, pp. 319-341, 2016. 

69. Wang K, Sun W C. A multiscale multi-permeability poroplasticity model linked by 

recursive homogenizations and deep learning[J]. Computer Methods in Applied 

Mechanics and Engineering, 2018, 334: 337-380. 

70. J. Ghaboussi, J.H. Garret Jr., X. Wu, "Knowledge-based modeling of material behavior 

with neural networks," Journal of engineering mechanics, vol. 117(1), pp. 132-153, 1991. 

71. Karapiperis K, Stainier L, Ortiz M, et al. Data-driven multiscale modeling in 

mechanics[J]. Journal of the Mechanics and Physics of Solids, 2021, 147: 104239. 

72. Fish J, Yu Y. A Pseudo-Nonlocal Finite Element for Efficient Solution of 

Computationally Demanding Material Models[J]. International Journal for Multiscale 

Computational Engineering, 2021, 19(2). 

73. Simo J C, Hughes T J R. Computational inelasticity[M]. Springer Science & Business 

Media, 2006. 

74. Rappel H, Beex LA, Hale JS, Noels L, Bordas SP. A tutorial on Bayesian inference to 

identify material parameters in solid mechanics. Archives of Computational Methods in 

Engineering. 2020 Apr;27:361-85. 

75. Most T. Identification of the parameters of complex constitutive models: Least squares 

minimization vs. Bayesian updating. Reliability and optimization of structural systems. 

2010 Jul 28;119. 

76. Rappel H, Beex LA, Noels L, Bordas SP. Identifying elastoplastic parameters with 

Bayes’ theorem considering output error, input error and model uncertainty. Probabilistic 

Engineering Mechanics. 2019 Jan 1;55:28-41. 

77. As' ad F, Avery P, Farhat C. A mechanics‐informed artificial neural network approach in 

data‐driven constitutive modeling. International Journal for Numerical Methods in 

Engineering. 2022 Jun 30;123(12):2738-59. 

78. Zohdi TI. A note on rapid genetic calibration of artificial neural networks. Computational 

Mechanics. 2022 Oct;70(4):819-27. 



92 

 

79. G. J. Dvorak. Micromechanics of Composite Materials, ISBN: 978-94-007-4101-0, 2013. 

80. He C, Ge J, Qi D, Gao J, Chen Y, Liang J, Fang D. A multiscale elasto-plastic damage 

model for the nonlinear behavior of 3D braided composites. Composites Science and 

Technology. 2019 Feb 8;171:21-33. 

81. Liu Y, Filonova V, Hu N, Yuan Z, Fish J, Yuan Z, Belytschko T. A regularized 

phenomenological multiscale damage model. International Journal for Numerical 

Methods in Engineering. 2014 Sep;99(12):867-87. 

82. Fish J, Yu Q. Multiscale damage modelling for composite materials: theory and 

computational framework. International Journal for Numerical Methods in Engineering. 

2001 Sep 10;52(1‐2):161-91. 

83. Kanouté P, Boso DP, Chaboche JL, Schrefler B. Multiscale methods for composites: a 

review. Archives of Computational Methods in Engineering. 2009 Mar;16:31-75. 

84. Fish J, Yu Y. Data‐physics driven reduced order homogenization. International Journal 

for Numerical Methods in Engineering. 2023 Apr 15;124(7):1620-45. 

85. Bazant ZP, Belytschko TB, Chang TP. Continuum theory for strain-softening. Journal of 

Engineering Mechanics. 1984 Dec;110(12):1666-92. 

86. Bažant ZP. Nonlocal damage theory based on micromechanics of crack interactions. 

Journal of engineering mechanics. 1994 Mar;120(3):593-617. 

87. Jirásek M, Bažant ZP. Localization analysis of nonlocal model based on crack 

interactions. Journal of engineering mechanics. 1994 Jul;120(7):1521-42. 

88. Peerlings RH, de Borst R, Brekelmans WM, de Vree J. Gradient enhanced damage for 

quasi‐brittle materials. International Journal for numerical methods in engineering. 1996 

Oct 15;39(19):3391-403. 

89. Yin B, Zreid I, Lin G, Bhashyam G, Kaliske M. An anisotropic damage formulation for 

composite materials based on a gradient-enhanced approach: Formulation and 

implementation at small strain. International Journal of Solids and Structures. 2020 Oct 

1;202:631-45. 

90. Geers MG, Brekelmans WA, De Borst R. Viscous regularization of strain-localisation for 

damaging materials: viscous and rate-dependent constitutive models. In DIANA 

Computational Mechanics ‘94: Proceedings of the First International Diana Conference 

on Computational Mechanics 1994 (pp. 127-138). Springer Netherlands. 

91. Ambati M, Gerasimov T, De Lorenzis L. A review on phase-field models of brittle 

fracture and a new fast hybrid formulation. Computational Mechanics. 2015 Feb;55:383-

405. 



93 

 

92. Vaz Jr M, Owen DR. Aspects of ductile fracture and adaptive mesh refinement in 

damaged elasto‐plastic materials. International Journal for Numerical Methods in 

Engineering. 2001 Jan 10;50(1):29-54. 

93. Bazant ZP. Can multiscale-multiphysics methods predict softening damage and structural 

failure?. International Journal for Multiscale Computational Engineering. 2010;8(1). 

94. Dvorak GJ. Transformation field analysis of inelastic composite materials. Proceedings 

of the Royal Society of London. Series A: Mathematical and Physical Sciences. 1992 

May 8;437(1900):311-27. 

95. Wu L, Noels L, Adam L, Doghri I. A multiscale mean-field homogenization method for 

fiber-reinforced composites with gradient-enhanced damage models. Computer Methods 

in Applied Mechanics and Engineering. 2012 Aug 1;233:164-79. 

96. Kwon YW, Allen DH, Talreja R. Multiscale modeling and simulation of composite 

materials and structures. New York: Springer; 2008. 

97. Ghosh S, Bai J, Paquet D. Homogenization-based continuum plasticity-damage model for 

ductile failure of materials containing heterogeneities. Journal of the Mechanics and 

Physics of Solids. 2009 Jul 1;57(7):1017-44. 

98. Jain JR, Ghosh S. Damage evolution in composites with a homogenization-based 

continuum damage mechanics model. International Journal of Damage Mechanics. 2009 

Aug;18(6):533-68. 

99. Tekog C, Pardoen T. A micromechanics based damage model for composite materials. 

International Journal of plasticity. 2010 Apr 1;26(4):549-69. 

100. Khoei AR, Saadat MA. A nonlocal computational homogenization of softening quasi‐

brittle materials. International Journal for Numerical Methods in Engineering. 2019 Aug 

24;119(8):712-36. 

101. Deng S. Deep Learning for Multiscale Damage Analysis via Physics-Informed 

Recurrent Neural Network. arXiv preprint arXiv:2212.01880. 2022 Dec 4. 

102. Unger JF, Könke C. Coupling of scales in a multiscale simulation using neural 

networks. Computers & Structures. 2008 Nov 1;86(21-22):1994-2003. 

103. Geers MG, Kouznetsova VG, Brekelmans WA. Multiscale first-order and second-order 

computational homogenization of microstructures towards continua. International Journal 

for Multiscale Computational Engineering. 2003;1(4). 

104. Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E. Regularization of first 

order computational homogenization for multiscale analysis of masonry structures. 

Computational mechanics. 2016 Feb;57:257-76. 



94 

 

105. Fish J, Jiang T, Yuan Z. A staggered nonlocal multiscale model for a heterogeneous 

medium. International journal for numerical methods in engineering. 2012 Jul 

13;91(2):142-57. 

106. Mazars J, Pijaudier-Cabot G. Continuum damage theory—application to concrete. 

Journal of engineering mechanics. 1989 Feb;115(2):345-65. 

107. De Vree JH, Brekelmans WA, van Gils M. Comparison of nonlocal approaches in 

continuum damage mechanics. Computers & Structures. 1995 May 17;55(4):581-8. 

108. Chen Y, Mobasher ME, You T, Waisman H. Non-local continuum damage model for 

poro-viscoelastic porous media. International Journal of Rock Mechanics and Mining 

Sciences. 2022 Nov 1;159:105212. 

109. Logarzo HJ, Capuano G, Rimoli JJ. Smart constitutive laws: Inelastic homogenization 

through machine learning. Computer methods in applied mechanics and engineering. 

2021 Jan 1;373:113482. 

110. Ketkar N, Ketkar N. Introduction to keras. Deep learning with python: a hands-on 

introduction. 2017:97-111. 

 

 

 

  



95 

 

Appendix A Components of the data-driven surrogate-based 

Bayesian Inverse modeling 

A.1 Bayesian Inference 

The Bayesian inference approach [75-77], is based on the Bayes' theorem which states that the 

posterior distribution of a random parameter vector θ for given observations 
obs

y , denoted as 

)( | obs θ y is proportional to the prior distribution ( ) θ  multiplied by the likelihood function of 

observations (the PDF of the observed y), ( | )obs y θ . (• | •)  denotes the conditional probability 

density function (PDF). The Bayes' theorem can be expressed as: 

          

 
( ) ( | )

( | )
( )

obs
obs

obs

 



=

θ y θ
θ y

y
  (A.1) 

In the present study, 
obs

y  denotes the coarse-scale stress tensor;  ,ETT MCM =θ  the eigenstrain 

transformation tensor rescaling parameters and the microstructural constitutive parameters. 

Using the law of total probabilities, )( obs y  and ( ) θ  can be related to the conditional probability 

( | )obs y θ  in eq. (A.1) as: 

 ( ) ( ) ( | )obs obs d  = θy θ y θ θ  (A.2) 

which can be regarded as a normalization factor that ensures the integral of the posterior 

distribution ( | )obs y θ  over θ  equals 1. Consequently, eq. (A.1) can be written as: 

 ( | ) ( ) ( | )obs obs  θ y θ y θ  (A.3) 
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The prior distribution ( ) θ represents our belief of interested parameters. The contribution of the 

prior distribution to the posterior distribution decreases if the observed data increases. For N 

independent parameters, the prior distribution is given as: 

 
1 2 3( ) ( ) ( ) ( ) ( )N        =   θ  (A.4) 

In absence of experimental data the prior distribution can be assumed to be uniform. 

 

To construct the likelihood function, we need to select the noise model to represent the difference 

between measured data, 
obs

y , and the numerical model response, ( , )f x θ . The additive noise 

model can be expressed as 

 ( , )obs = +y f x θ Ω  (A.5) 

Herein, Ω  denotes the noise vector. Assuming ( , )f x θ  and Ω  are mutually independent, the 

probability density of 
obs

y for a given θ  is obtained by shifting the density of Ω  around ( , )f x θ . 

Consequently, the likelihood function can be expressed as: 

 
noise( | ) ( ( , ))obs obs = −y θ y f x θ  (A.6) 

where noise ()  denotes PDF noise. In the present study the observed data is multidimensional. We 

adopt multivariate normal distribution as the noise model. The structure of the likelihood function 

for a single sample is given as   

 
noise

1
exp( ( ( , )) ( ( , )))

2( ( , ))
(2 ) | |

obs T obs

obs

k




− − −
− =

y f x θ Σ y f x θ

y f x θ
Σ

 (A.7) 

where Σ  denotes the covariance matrix which can be computed from the observed data; k is the 

vector dimension; and | |Σ  the determinant of the covariance matrix. The probability density 

function ( | )obs y θ  provides the probability of the forward numerical simulation f  for certain 

model parameters θ . If the results of numerical model are far from observed data 
obs

y ,  ( | )obs y θ  
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will return a small probability, which means that the numerical model for the above model 

parameters is unlikely to occur. 

For a high-dimensional parameter space it is challenging to analytically evaluate the integral in eq. 

(A.2). Therefore, Markov chain Monte Carlo (MCMC) is employed to evaluate the posterior by 

drawing samples from the posterior distribution. Consequently, based on these sample one can 

obtain statistical information, such as the expected value of the target distribution, without directly 

computing the posterior. Among the different MCMC algorithms, Metropolis-Hastings (MH) is 

very effective in the context of the "black box" model. The pseudocode of Metropolis-Hastings 

algorithm is given below. 

 

                               Figure A.1:  Metropolis-Hastings algorithm pseudocode 

This algorithm will explore the sample space randomly with some rules. If  is larger than 1, we 

will always accept this sample. While it is smaller than 1, we may or may not accept it. Finally, 

the algorithm returns more samples in the high-density region of f(x). Since f(x) is proportional to 

our desired probability density function (A.2), the posterior distribution (A.2) is solved by MCMC. 
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A.2 The Gated Recurrent Unit (GRU) based surrogate model 

A neural network (NN) is a network constructed by artificial neurons. Each neuron weights and 

operates on the input with bias terms. The result is passed to an activation function. The activation 

function can be considered as adding nonlinearity to the NN. The network consisting of multiple 

layers together with an appropriate activation function maps from an input to an output provided 

sufficient training process. A loss function is usually defined as the difference between the 

predicted and given outputs. In the present study, the loss function is defined as the mean squared 

error 

     

pred true 2

1

1
MSE ( )

n

i i

in =

= − Y Y

    (A.8) 

where n is the number of samples; 
pred

Y  the predicted output; and 
true

Y  the true output. Note that 

the 
pred

Y   and 
true

Y are normalized values through "MinMaxScale". The transformation is given 

by: 

     

min
std

max min

−
=

−

Y Y
Y

Y Y      (A.9) 

     scaled std (max-min)+min=Y Y
    (A.10) 

where Y  is the feature; minY and maxY  define the minimum and maximum values of the feature Y

. “max” and “min” are the bounds of the desired range. In the present study, we rescale all the 

features to the range of (0,1). The training process of the neural network consists of updating the 

weights of the model in attempt to reduce the loss function. A smaller value of the loss function 

means that the trained model performs better on the training and validation data. The purpose of 

the validation set is to provide an unbiased evaluation of a model fit to the training dataset while 

tuning model hyperparameters. A typical network structure is depicted in Figure A.2. 
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Figure A.2:  Schematics of the fully connected neural network architecture 

where x denotes the input; y the output; and each circle represents the neuron. The depth (number 

of hidden layers) of each neural network depends on the complexity of the data set. This type of 

neural network is called a fully connected neural network (FCNN). FCNN is appropriate for 

modeling the constitutive laws of elastic and hyper-elastic materials.  

For the path-dependent models, such as plasticity or damage, where the output depends on the 

history of the input, so-called recurrent neural networks (RNN) are usually employed. Among the 

various RNNs, Gated Recurrent Units (GRUs) is known as a type of RNN capable of solving the 

vanishing gradient problem. Compared with the FCNN, GRUs have a special unit called gated 

unit. This unit can determine how much information from the past can be forgotten or be passed 

to the future. The classical GRU architecture is shown in the Figure A.2. There are four special 

units in the GRU. The first one is called update gate expressed as 

     1( )z z

t t t −= +z W x U h
    (A.11) 
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It multiplies the input x  at time t by its weight 
zW  while taking the weighted information 

1

z

t−U h  

into account from the previous time step, t-1. Their sum is passed to the sigmoid activation 

function, where 
1

( )
1 exp( )

x
x

 =
+ −

 scales the result to the range [-1,1]. 

The reset gate tr , which determines how much of the past information can be forgotten, is defined 

as.  

    1( )T t

t t tx −= +r W U h
      (A.12) 

With the above two special gates, two memory units can be computed. One is for the current unit, 

the other for the network defined as 

    t t-1h )tan ( +t t
 =h Wx r h      (A.13) 

    1 (1 )t t t t t−
= + −h z h z h

     (A.14) 

“ tanh ” denotes the hyperbolic tangent which also scales information to the range [-1,1]. “ ” 

denotes the Hadamard (element-wise) product. The neuron in the gated recurrent unit network is 

illustrated in Figure A.3. 

 

   Figure A.3:  Gated recurrent unit neuron definition 
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The loss function definition and the training process are similar to the FCNN.  In our case, all GRU 

neural networks have two hidden layers of 64 neurons. the activation function of the GRU layers 

is a "relu" function, while the activation function of the final dense layer is linear. The training 

strategy will use the classical gradient-based method: stochastic gradient descent (SGD). The batch 

size is 128 and the training epochs is 250. we also recommend the faster training strategy Genetic 

Algorithm, which is more effective when the loss function is non-smooth and non-differentiable. 

 

 

 

 

 

 

 


