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Abstract

Algorithm Design and Localization Analysis in Sequential and Statistical Learning

Yunbei Xu

Learning theory is a dynamic and rapidly evolving field that aims to provide mathematical foun-

dations for designing and understanding the behavior of algorithms and procedures that can learn

from data automatically. At the heart of this field lies the interplay between algorithm design and

statistical complexity analysis, with sharp statistical complexity characterizations often requiring

localization analysis. This dissertation aims to advance the fields of machine learning and decision

making by contributing to two key directions: principled algorithm design and localized statisti-

cal complexity. Our research develops novel algorithmic techniques and analytical frameworks

to build more effective and robust learning systems. Specifically, we focus on studying uniform

convergence and localization in statistical learning theory, developing efficient algorithms using

the optimism principle for contextual bandits, and creating Bayesian design principles for bandit

and reinforcement learning problems. The thesis comprises three parts with the following main

contents:

In Chapter 1, we study problem-dependent rates, i.e., generalization errors that scale near-

optimally with the variance, the effective loss, or the gradient norms evaluated at the “best hypoth-

esis.” We introduce a principled framework dubbed “uniform localized convergence,” and char-

acterize sharp problem-dependent rates for central statistical learning problems. From a method-

ological viewpoint, our framework resolves several fundamental limitations of existing uniform

convergence and localization analysis approaches. It also provides improvements and some level



of unification in the study of localized complexities, one-sided uniform inequalities, and sample-

based iterative algorithms. In the so-called “slow rate” regime, we provides the first (moment-

penalized) estimator that achieves the optimal variance-dependent rate for general “rich” classes;

we also establish improved loss-dependent rate for standard empirical risk minimization. In the

“fast rate” regime, we establish finite-sample problem-dependent bounds that are comparable to

precise asymptotics. In addition, we show that iterative algorithms like gradient descent and first-

order Expectation-Maximization can achieve optimal generalization error in several representative

problems across the areas of non-convex learning, stochastic optimization, and learning with miss-

ing data.

In Chapter 2, we propose a simple and generic principle to design optimistic algorithms for con-

textual bandits, dubbed “Upper Counterfactual Confidence Bounds” (UCCB). While existing opti-

mistic algorithms (primarily UCB and its variants) are widely used and successful in multi-armed

bandits and reinforcement learning, they often struggle with large context spaces. We demonstrate

that our proposed algorithms based on the UCCB principle are provably optimal and efficient in

the presence of large context spaces. Key components of UCCB include: 1) a systematic analysis

of confidence bounds in policy space rather than in action space; and 2) the potential function per-

spective that is used to express the power of optimism in the contextual setting. We further show

how the UCCB principle can be extended to infinite action spaces, by constructing confidence

bounds via the newly introduced notion of “counterfactual action divergence.”

In Chapter 3, we develop a general theory to optimize the frequentist regret for sequential

learning problems, where efficient bandit and reinforcement learning algorithms can be derived

from unified Bayesian principles. We propose a novel optimization approach to create “algorithmic

beliefs” at each round, and use Bayesian posteriors to make decisions. This is the first approach to

make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and

optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major

application, we present a novel algorithm for multi-armed bandits that achieves the “best-of-all-

worlds” empirical performance in stochastic, adversarial, and non-stationary environments. And



we illustrate how these principles can be used in linear bandits, bandit convex optimization, and

reinforcement learning.
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Chapter 1: Towards Optimal Problem Dependent Generalization Error

Bounds in Statistical Learning Theory

We study problem-dependent rates, i.e., generalization errors that scale near-optimally with

the variance, the effective loss, or the gradient norms evaluated at the “best hypothesis.” We in-

troduce a principled framework dubbed “uniform localized convergence,” and characterize sharp

problem-dependent rates for central statistical learning problems. From a methodological view-

point, our framework resolves several fundamental limitations of existing uniform convergence

and localization analysis approaches. It also provides improvements and some level of unification

in the study of localized complexities, one-sided uniform inequalities, and sample-based iterative

algorithms. In the so-called “slow rate” regime, we provides the first (moment-penalized) estima-

tor that achieves the optimal variance-dependent rate for general “rich” classes; we also establish

improved loss-dependent rate for standard empirical risk minimization. In the “fast rate” regime,

we establish finite-sample problem-dependent bounds that are comparable to precise asymptotics.

In addition, we show that iterative algorithms like gradient descent and first-order Expectation-

Maximization can achieve optimal generalization error in several representative problems across

the areas of non-convex learning, stochastic optimization, and learning with missing data.

1.1 Introduction

1.1.1 Background

Problem statement. Consider the following statistical learning setting. Assume that a random

sample 𝑧 follows an unknown distribution P with support Z. For each realization of 𝑧, let ℓ(·; 𝑧)

be a real-valued loss function, defined over the hypothesis class H . Let ℎ∗ ∈ H be the optimal

1



hypothesis that minimizes the population risk

Pℓ(ℎ; 𝑧) := E[ℓ(ℎ; 𝑧)] .

Given 𝑛 i.i.d. samples {𝑧𝑖}𝑛𝑖=1 drawn from P, our goal, roughly speaking, is to “learn” a hypothesis

ℎ̂ ∈ H that makes the generalization error

E( ℎ̂) := Pℓ( ℎ̂; 𝑧) − Pℓ(ℎ∗; 𝑧)

as small as possible. This pursuit is ubiquitous in machine learning, statistics and stochastic opti-

mization.

We study problem-dependent rates, i.e., finite-sample generalization errors that scale tightly

with problem-dependent parameters, such as the variance, the effective loss, or the gradient norms

at the optimal hypothesis ℎ∗. While the direct dependence of E( ℎ̂) on the sample size 𝑛 is often

well-understood, it typically only reflects an “asymptotic” perspective, placing less emphasis on

the scale of problem-dependent parameters. Existing literature leaves several outstanding chal-

lenges in deriving problem-dependent rates. These can be broadly categorized into the so-called

“slow rate” and “fast rate” regimes, as described below.

Main challenges in the “slow rate” regime. In the absence of strong convexity and margin con-

ditions, the direct dependence of E( ℎ̂) on the sample size (𝑛) is typically no faster than 𝑂 (𝑛− 1
2 ).

These settings are referred to as the “slow rate” regime. Here, the central challenge is to simultane-

ously achieve optimal dependence on problem-dependent parameters (the variance or the effective

loss at the optimal ℎ∗) and the sample size (𝑛). To the best of our knowledge, this has not been

achieved in previous literature for “rich” classes (to be explained shortly).

Perhaps the most widely used framework to study problem-dependent rates is the traditional

“local Rademacher complexity” analysis [1, 2, 3], which has become a standard tool in learn-

ing theory. However, as we will discuss later, this analysis leads to a dependence on the sample

2



size (𝑛) which is sub-optimal for essentially all “rich” classes (with the exception of parametric

classes). The absence of more precise localization analysis also challenges the design of more

refined estimation procedures. For example, designing estimators to achieve variance-dependent

rates requires penalizing the empirical second moment to achieve the “right” bias-variance trade-

off. Most antecedent work is predicated on either the traditional “local Rademacher complexity”

analysis [4, 5] or coarser approaches [6, 7]. Thus, to the best of our knowledge, the question of

optimal problem-dependent rates for general rich classes is still open.

Main challenges in the “fast rate” regime. When assuming suitable curvature or so-called mar-

gin conditions, the direct dependence of E( ℎ̂) on 𝑛 is typically faster than 𝑂 (𝑛− 1
2 ); for that reason

we refer to this as the “fast rate” regime. Here, the traditional localization analysis often provides

correct dependence on the sample size (𝑛), but the complexity parameters (e.g., norms of gradients,

Lipchitz constants, etc.) characterizing these generalization errors are not localized and hence are

not problem-dependent.

Much progress on problem-dependent rates has been made under particular formulations, such

as regression with structured strongly convex cost (e.g., square cost, Huber cost) [8, 9, 10], and

binary classification under margin conditions [11, 12]. In particular, [8, 9] point out that the tra-

ditional “local Rademacher complexity” analysis fails to provide parameter localization for un-

bounded regression problems, and propose the so-called “learning without concentration” method-

ology to obtain problem-dependent rates that do not scale with the worst-case parameters. We are

able to recover these results using a more direct concentration-based analysis and remove certain

restrictions.

We will also focus on parametric models in the “fast rate” regime, which covers more “modern”

non-convex learning problems whose analysis is not aligned with traditional generalization error

analysis. For example, in non-convex learning problems one wants generalization error bounds for

iterative optimization algorithms; and traditional localization frameworks (which mostly focus on

supervised learning) do not cover general stochastic optimization and missing data problems. For
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many representative non-convex learning, stochastic optimization and missing data problems, it

remains open to provide algorithmic solutions and problem-dependent generalization error bounds

that are comparable to optimal asymptotic results.

1.1.2 Contributions and organization of the paper

The paper provides contributions both in the framework it develops, as well as its application

to improving existing results in several problem areas. In particular, it suggests guidelines for de-

signing estimators and learning algorithms and provides analysis tools to study them. In addition,

it provides some level of unification across problem areas. Specifically, the main contributions are

as follows.

(1) We introduce a principled framework to study localization in statistical learning, dubbed

the “uniform localized convergence” procedure, which simultaneously provides optimal “direct

dependence” on the sample size, correct scaling with problem-dependent parameters, and flexi-

bility to unify various problem settings. Section 1.2 provides a description of the framework, and

explains how it addresses several fundamental challenges.

(2) In the “slow rate” regime, we employ the above ideas to design the first estimator that

achieves optimal variance-dependent rates for general function classes. The derivation is based

on a novel procedure that optimally penalizes the empirical (centered) second moment. We also

establish improved loss-dependent rates for standard empirical risk minimization, which has com-

putational advantages. Section 1.3 presents these theoretical results (see Section 1.3.2 for the loss-

dependent rate and Section 1.3.3 for the variance-dependent rate); and Section 1.4 will illustrate

our improvements in non-parametric classes and VC classes.

(3) In the “fast rate” regime, we establish a “uniform localized convergence of gradient” frame-

work for parametrized models, and characterize optimal problem-dependent rates for approximate

stationary points and iterative optimization algorithms such as gradient descent and first-order

Expectation-Maximization. Our results scale tightly with the gradient norms at the optimal param-

eter, and improve previous guarantees in non-convex learning, stochastic optimization and missing
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data problems. See Section 1.5 for the theoretical results and Sections 1.6-1.7 for illustrations of

improvements over previous results.

(4) In the “fast rate” regime, we also study supervised learning with structured convex cost,

where the hypothesis class can be non-parametric and heavy-tailed. This part of the work has direct

relationship to a stream of literature known as “learning without concentration.” Our contributions

in this setting lie in technical refinements of the generalization error bounds and some unification

between one-sided uniform inequalities and concentration of truncated functions; for this reason

we defer its treatment to Appendix A.1.

Most formal proofs in the paper are deferred to Appendix A.2 and Appendix A.3. We provide a

guide for reading them in the beginning of the appendix, highlighting the core messages and steps

of each technical proof.

1.2 The “uniform localized convergence” procedure

1.2.1 The current blueprint

Denote the empirical risk

P𝑛ℓ(ℎ; 𝑧) :=
1
𝑛

𝑛∑︁
𝑖=1

ℓ(ℎ; 𝑧𝑖),

and consider the following straightforward decomposition of the generalization error

E( ℎ̂) = (P − P𝑛)ℓ( ℎ̂; 𝑧) +
(
P𝑛ℓ( ℎ̂; 𝑧) − P𝑛ℓ(ℎ∗; 𝑧)

)
+ (P𝑛 − P)ℓ(ℎ∗; 𝑧). (1.2.1)

The main difficulty in studying E( ℎ̂) comes from bounding the first term (P − P𝑛)ℓ( ℎ̂; 𝑧), since

ℎ̂ depends on the 𝑛 samples. The simplest approach, which does not achieve problem-dependent

rates, is to bound the uniform error

sup
ℎ∈H

(P − P𝑛)ℓ(ℎ; 𝑧)
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over the entire hypothesis class H . In order to obtain problem-dependent rates, a natural modifi-

cation is to consider uniform convergence over localized subsets of H .

We first give an overview of the traditional “local Rademacher complexity” analysis [1, 13,

3]. Consider a generic function class F that we wish to concentrate, which consists of real-valued

functions defined on Z (e.g., one can set 𝑓 (𝑧) = ℓ(ℎ; 𝑧)). Denote

P 𝑓 := E[ 𝑓 (𝑧)], P𝑛 𝑓 :=
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑧𝑖).

The notation 𝑟 > 0 will serve as a localization parameter, and 𝛿 > 0 will serve for high probability

arguments. Let 𝜓(𝑟; 𝛿) denote a surrogate function that upper bounds the uniform error within a

localized region { 𝑓 ∈ F : 𝑇 ( 𝑓 ) ≤ 𝑟}, where we call 𝑇 : F → R+ the “measurement functional.”

Formally, let 𝜓 be a function that maps [0,∞) × (0, 1) to [0,∞), which possibly depends on the

observed samples {𝑧𝑖}𝑛𝑖=1. Assume 𝜓 satisfies for arbitrary fixed 𝛿, 𝑟, with probability at least 1− 𝛿,

sup
𝑓 ∈F :𝑇 ( 𝑓 )≤𝑟

(P − P𝑛) 𝑓 ≤ 𝜓(𝑟; 𝛿). (1.2.2)

By default we ask 𝜓(𝑟; 𝛿) to be a non-decreasing and non-negative function.1 The main result of

the traditional localization analysis can be summarized as follows. (The statement is obtained by

adapting the proof from Section 3.2 in [1]; itself more general than the traditional meta-results [1,

13, 3].)

Statement 1 (current blueprint) Assume that 𝜓 is a sub-root function, i.e., 𝜓(𝑟; 𝛿)/
√
𝑟 is non-

increasing with respect to 𝑟 ∈ R+. Assume the Bernstein condition 𝑇 ( 𝑓 ) ≤ 𝐵𝑒P 𝑓 , 𝐵𝑒 > 0,

∀ 𝑓 ∈ F . Then with probability at least 1 − 𝛿, for all 𝑓 ∈ F and 𝐾 > 1,

(P − P𝑛) 𝑓 ≤
1
𝐾
P 𝑓 + 100(𝐾 − 1)𝑟∗

𝐵𝑒
, (1.2.3)

where 𝑟∗ is the “fixed point” solution of the equation 𝑟 = 𝐵𝑒𝜓(𝑟; 𝛿).
1Here and in what follows we will assume that such suprema are measurable, namely, the required regularity

conditions on the underlying function classes are met (see, e.g., Appendix C in [14], Section 1.7 in [15]).
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Since its inception, Statement 1 has become a standard tool in learning theory. However, it requires

a rather technical proof, and it appears to be loose when compared with the original assumption

(1.2.2)—ideally, we would like to directly extend (1.2.2) to hold uniformly without sacrificing any

accuracy. Moreover, some assumptions in the statement are restrictive and might not be necessary.

1.2.2 The “uniform localized convergence” principle

We provide a surprisingly simple analysis that greatly improves and simplifies Statement 1.

Unlike Statement 1, the following proposition does not require the concentrated functions 𝑔 𝑓 to

satisfy the Bernstein condition, and the surrogate function 𝜓 need not to be “sub-root.” Despite

placing less restrictions, Proposition 1 is able to establish results that are typically “sharper” than

the current blueprint. Note that in the proposition, both the measurement functional 𝑇 as well as

the surrogate function 𝜓 are allowed to be sample-dependent.

Proposition 1 (the “uniform localized convergence” argument) For a function class G = {𝑔 𝑓 :

𝑓 ∈ F } and functional 𝑇 : F → [0, 𝑅], assume there is a function 𝜓(𝑟; 𝛿), which is non-

decreasing with respect to 𝑟 and satisfies that ∀𝛿 ∈ (0, 1), ∀𝑟 ∈ [0, 𝑅], with probability at least

1 − 𝛿,

sup
𝑓 ∈F :𝑇 ( 𝑓 )≤𝑟

(P − P𝑛)𝑔 𝑓 ≤ 𝜓(𝑟; 𝛿). (1.2.4)

Then, given any 𝛿 ∈ (0, 1) and 𝑟0 ∈ (0, 𝑅], with probability at least 1 − 𝛿, for all 𝑓 ∈ F , either

𝑇 ( 𝑓 ) ≤ 𝑟0 or

(P − P𝑛)𝑔 𝑓 ≤ 𝜓
(
2𝑇 ( 𝑓 ); 𝛿

(
log2

2𝑅
𝑟0

)−1
)
. (1.2.5)

The key intuition behind Proposition 1 is that the uniform restatement of the “localized” ar-

gument (1.2.4) is nearly cost-free, because the deviations (P − P𝑛)𝑔 𝑓 can be controlled solely by

the real valued functional 𝑇 ( 𝑓 ). As a result, we essentially only require uniform convergence over

an interval [𝑟0, 𝑅]. The “cost” of this uniform convergence, namely, the additional log2( 2𝑅
𝑟0
) term
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in (1.2.5), will only appear in the form log(𝛿/log2( 2𝑅
𝑟0
)) in high-probability bounds, which is of a

negligible 𝑂 (log log 𝑛) order in general.

Formally, we apply a “peeling” technique: we take 𝑟𝑘 = 2𝑘𝑟0, where 𝑘 = 1, 2, . . . , ⌈log2
𝑅
𝑟0
⌉,

and we use the union bound to extend (1.2.4) to hold for all these 𝑟𝑘 . Then for any 𝑓 ∈ F such

that 𝑇 ( 𝑓 ) > 𝑟0 is true, there exists a non-negative integer 𝑘 such that 2𝑘𝑟0 < 𝑇 ( 𝑓 ) ≤ 2𝑘+1𝑟0. By

the non-decreasing property of the 𝜓 function, we then have

(P − P𝑛)𝑔 𝑓 ≤ 𝜓
(
𝑟𝑘+1; 𝛿

(
log2

2𝑅
𝑟0

)−1
)
≤ 𝜓

(
2𝑇 ( 𝑓 ); 𝛿

(
log2

2𝑅
𝑟0

)−1
)
,

which is exactly (1.2.5). Interestingly, the proof of the classical result (Statement 1) relies on a

relatively heavy machinery that includes more complicated peeling and re-weighting arguments

(see Section 3.1.4 in [1]). However, that analysis obscures the key intuition that we elucidate under

inequality (1.2.5).

In this paper, we prove localized generalization error bounds through a unified principle, sum-

marized at a high level in the two-step template below.

Principle of uniform localized convergence. First, determine the concentrated functions, the

measurement functional and the surrogate 𝜓, and obtain a sharp “uniform localized convergence”

argument. Then, perform localization analysis that is customized to the problem setting and the

learning algorithm.

Distinct from the blueprint (1.2.3), the right hand side of our “uniform localized convergence”

argument (1.2.5) contains a “free” variable 𝑇 ( 𝑓 ) rather than a fixed value 𝑟∗. The new principle

strictly improves the current blueprint from many aspects, and its merits will be illustrated in the

sequel.

1.2.3 Merits of “uniform localized convergence”

Our improvements in the “slow rate” regime originate from the noticeable gap between Propo-

sition 1 and Statement 1, illustrated by the following (informal) conclusion.
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Statement 2 (improvements over the current blueprint–informal statement) Setting 𝑔 𝑓 = 𝑓 ,

then under the assumptions of Statement 1, Proposition 1 provides a strict improvement over State-

ment 1. In particular, the slower 𝜓 grows, the larger the gap between the bounds in the two results,

and the bounds are on pair only when 𝜓 is proportional to
√
𝑟, i.e., when the function class F is

parametric and not “rich.”

Formalizing as well as providing rigorous justification for this conclusion is relatively straightfor-

ward: taking the “optimal choice” of 𝐾 in Statement 1, we can re-write its conclusion as

(P − P𝑛) 𝑓 ≤ 20
√︂
𝑟∗P 𝑓

𝐵𝑒
− 𝑟∗

𝐵𝑒
[Statement 1],

where the right hand side is of order
√︁
𝑟∗P 𝑓 /𝐵𝑒 when P 𝑓 < 𝑟∗/𝐵𝑒, and order 𝑟∗/𝐵𝑒 when P 𝑓 ≤

𝑟∗/𝐵𝑒. Our result (1.2.5) is also of order 𝑟∗/𝐵𝑒 when P 𝑓 ≤ 𝑟∗/𝐵𝑒. However, for every 𝑓 such that

P 𝑓 > 𝑟∗/𝐵𝑒, it is straightforward to verify that under the assumptions in Statetment 1,

𝜓(2𝑇 ( 𝑓 ); 𝛿) ≤ 𝜓(2𝐵𝑒P 𝑓 ; 𝛿) [Bernstein condition: 𝑇 ( 𝑓 ) ≤ 𝐵𝑒P 𝑓 ]

≤
√︁

2𝐵𝑒P 𝑓√
𝑟∗

𝜓(𝑟∗; 𝛿) [𝜓(𝑟; 𝛿) is sub-root]

≤
√︂

2𝑟∗P 𝑓
𝐵𝑒

[𝑟∗ is the fixed point of 𝐵𝜓(𝑟; 𝛿)]. (1.2.6)

Therefore, the argument 𝜓(2𝑇 ( 𝑓 ); 𝛿) ≤
√︁

2𝑟∗P 𝑓 /𝐵𝑒 established by (1.2.6) shows that the “uniform

localized convergence” argument (1.2.5) strictly improves over Statement 1 (ignoring negligible

𝑂 (log log 𝑛) factors). Statement 2 indicates that the folklore use of fixed values as straightfor-

ward complexity control is somewhat questionable. In the “slow rate” regime, the key point to

achieve optimal problem-dependent rates is to bound the generalization error using the function 𝜓.

Otherwise the bounds will have the “wrong” dependence on the sample size for all “rich” classes.

Interestingly, the merits of our approach in the “fast rate” regime stem from very different

perspectives: the removal of the “sub-root” requirement on 𝜓 allows one to achieve parameter

localization; and the added flexibility in the choice of 𝑔 𝑓 allows one to prove one-sided uniform
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inequalities and uniform convergence of gradient vectors. To better appreciate these, we provide

the following informal discussion to help elucidate the key messages. Let ` > 0 be the curvature

parameter in the “fast rate” regime (a common example is the strong convexity parameter for the

loss function). The generalization error is often characterized by the fixed point of 𝜓(𝑟; 𝛿)/`,

where 𝜓 is the surrogate function that governs the uniform error of excess risk. The removal of the

“sub-root” restriction is crucial because under curvature and smoothness conditions, the uniform

error of excess loss typically grows “faster” than the square root function. Consider surrogate

functions of the form

𝜓(𝑟; 𝛿) =
√︁
𝑎∗𝑛𝑟︸︷︷︸

problem-dependent

+ 𝑐𝑛𝑟︸︷︷︸
linear

, (1.2.7)

where 𝑎∗𝑛 is a problem-dependent rate, and 𝑐𝑛 satisfies 0 < 𝑐𝑛 < 1/(2`) when the sample size

𝑛 satisfies mild conditions. We call 𝑐𝑛𝑟 with 0 < 𝑐𝑛 < 1/(2`) the benign linear component

in the sense that when solving the fixed point equation 𝑟 = 𝜓(𝑟; 𝛿)/`, that part can be dropped

from both side of the equation. As a result, the fixed point solution only depends on order of the

problem-dependent component
√︁
𝑎∗𝑛𝑟, and so one obtains problem-dependent rates. In contrast,

worst-case parameters will be unavoidable if one wants to use a “sub-root” surrogate function to

govern (1.2.7). In traditional analysis, a loose “sub-root” surrogate function is often obtained via

two-sided concentration and Lipchitz contraction, making global Lipchitz constants unavoidable.

Furthermore, the added flexibility to choose concentrated functions 𝑔 𝑓 is also useful. In particu-

lar, we will show that: 1) our framework unifies traditional value-based uniform convergence and

uniform convergence of gradient vectors, which is crucial to study non-convex learning problems

and sample-based iterative algorithms; and 2) simple “truncated” functions can be used to estab-

lished one-sided uniform inequalities that are sharper than two-sided ones, which enable recovery

of results in unbounded and heavy-tailed regression problems.
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1.2.4 Unification and improvements over existing localization approaches

Beyond proving new bounds, an important objective of the paper is to provide some level of

unification to the methodology of uniform convergence and localization. Here we present a his-

torical review of uniform convergence and localization, and discuss how the “uniform localized

convergence” principle unifies and improves existing approaches. We will overview four general

settings where localization plays a crucial role in generalization error analysis and algorithm de-

sign: 1) the “slow rate” regime; 2) classification under margin conditions; 3) regression under

curvature conditions; and 4) non-convex learning and stochastic optimization (the latter three set-

tings belong to the “fast rate” regime).

The “slow rate” regime. The traditional “local Rademacher complexity” analysis is the standard

tool to study localized generalization error bounds in the “slow rate” regime; it also influences the

design of regularization. Here, our framework resolves the fundamental limitation of the traditional

analysis, leading to the first optimal loss-dependent and variance-dependent rates for general “rich”

classes (see Section 1.3-1.4).

Classification under margin conditions. One early line of work in the “fast rate” regime fo-

cuses on exploiting the margin conditions to establish fast rates in binary classification (e.g., see

Section 5.3 in [13]). It can be shown that the Bernstein condition in Statement 1 subsumes standard

margin conditions such as Tsybakov’s margin condition [16] and Massart’s noise condition [17].

Because the loss functions in binary classification are uniformly bounded, the “current blueprint”

(Statement 1) already provides a good framework to study these questions. In an orthogonal di-

rection, some recent works study more refined complexity measures as alternatives to the notion

“local Rademacher complexity” [12, 18]. While these results are important, they are within the

scope of Statement 1 from the perspective of localization machinery. In this setting, the work pre-

sented in this paper contributes to unification rather than improvements over specific theoretical

results.
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Connections to the “learning without concentration” paradigm. In regression problems un-

der curvature conditions, the traditional localization analysis has been widely applied to achieve

“fast rates.” However, it fails to localize the complexity parameters (e.g., norms of gradients, Lip-

chitz constants, etc.) in the generalization error bounds. As a consequence, the traditional localiza-

tion analysis is widely recognized as not being suitable for regression problems with unbounded

or heavy-tailed losses; and it may be unfavorable even for uniformly bounded problems because it

fails to adapt to the “effective noise level” at the optimal hypothesis. Important progress address-

ing the aforementioned limitations has been made during the last decade. Focusing on supervised

learning problems with structured convex costs (square cost, Huber cost, etc.), the breakthrough

works [8, 9] propose the so-called “learning without concentration” framework, where the central

notions and proof techniques are quite different from the traditional concentration framework. An

interesting direction is to recover these results by directly strengthening the traditional concentra-

tion framework, explicitly figuring out which component of the concentrated functions contributes

to which part of the surrogate function. By exploiting the intrinsic connections between one-sided

uniform inequalities and the “uniform localized convergence” of truncated functions, we are able

to establish such a unified analysis and illustrate systematical refinements of the generalization

error bounds; this development is deferred to Appendix A.1 due to space constraints.

Non-convex learning and stochastic optimization. Traditional value-based generalization error

analysis relies on properties of global (regularized) empirical risk minimizers. However, non-

convex learning problems and generalization error analysis of iterative optimization algorithms

require one to consider uniform convergence of gradient vectors. And it should be noted that

existing localization frameworks mostly focus on supervised learning problems and are unable

to handle general stochastic optimization or missing data problems. Our framework is able to

prove “uniform localized convergence of gradients,” which improves existing vector-based uniform

convergence frameworks [19, 20, 21] and provides problem-dependent generalization error bounds

for iterative algorithms (See Sections 1.5-1.7).
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1.3 Problem-dependent rates in the “slow rate” regime

1.3.1 Preliminaries

Let V∗ and L∗ be the variance and the “effective loss” at the best hypothesis ℎ∗:

V∗ := Var[ℓ(ℎ∗; 𝑧)], L∗ := P[ℓ(ℎ∗; 𝑧) − inf
H
ℓ(ℎ; 𝑧)] .

In this section we study finite-sample generalization errors that scale tightly with V∗ or L∗, which

we call problem-dependent rates, without invoking strong convexity or margin conditions.

In the slow rate regime, we assume the loss function to be uniformly bounded by [−𝐵, 𝐵], i.e.,

|ℓ(ℎ; 𝑧) | ≤ 𝐵 for all ℎ ∈ H and 𝑧 ∈ Z. This is a standard assumption used in almost all previous

works that do not invoke curvature conditions or rely on other problem-specific structure; and our

results in the slow rate regime essentially only require this boundedness assumption. Extensions

to unbounded targets can be obtained via truncation techniques (see, e.g. [22]), and our problem-

dependent results allow 𝐵 to be very large, potentially scaling with 𝑛.

We represent the complexity through a surrogate function 𝜓(𝑟; 𝛿) that satisfies for all 𝛿 ∈ (0, 1),

sup
𝑓 ∈F :P[ 𝑓 2]≤𝑟

(P − P𝑛) 𝑓 ≤ 𝜓(𝑟; 𝛿), (1.3.1)

with probability at least 1 − 𝛿, where F is taken to be the excess loss class

ℓ ◦ H − ℓ ◦ ℎ∗ := {𝑧 ↦→ (ℓ(ℎ; 𝑧) − ℓ(ℎ∗; 𝑧)) : ℎ ∈ H}. (1.3.2)

(From the perspective of Section 1.2.2, we choose the excess losses as the “concentrated functions,”

and use𝑇 ( 𝑓 ) = P[ 𝑓 2] as the “measurement functional”.) To achieve non-trivial complexity control

(and ensure existence of the fixed point), we only consider “meaningful” surrogate functions, as

stated below.

Definition 1 (meaningful surrogate function) A bivariate function 𝜓(𝑟; 𝛿) defined over [0,∞) ×
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(0, 1) is called a meaningful surrogate function if it is non-decreasing, non-negative and bounded

with respect to 𝑟 for every fixed 𝛿 ∈ (0, 1).

We note that the above does not place significant restrictions on the choice of the surrogate func-

tion. In particular, for the 𝜓 function defined in (1.3.1) and the excess loss class in (1.3.2), the

left hand side of (1.3.1) is itself non-decreasing and non-negative; and the boundedness require-

ment can always be met by setting 𝜓(𝑟; 𝛿) = 𝜓(4𝐵2; 𝛿) for all 𝑟 ≥ 4𝐵2. We now give the formal

definition of fixed points.

Definition 2 (fixed point) Given a non-decreasing, non-negative and bounded function 𝜑(𝑟) de-

fined over [0,∞), we define the fixed point of 𝜑(𝑟) to be sup{𝑟 > 0 : 𝜑(𝑟)≥𝑟}.

It is well-known that a non-decreasing, non-negative and bounded function only has finite discon-

tinuity points, all of which belong to “discontinuity points of the first kind” (see Definition 4.26

in [23] for more background). Therefore, it is easy to verify that the fixed point of 𝜑(𝑟) is the

maximal solution to the equation 𝜑(𝑟) = 𝑟.

Given a bounded class F , empirical process theory provides a general way to construct surro-

gate function by upper bounding the “local Rademacher complexity” ℜ{ 𝑓 ∈ F : P[ 𝑓 2] ≤ 𝑟} (see

Lemma 16 in Appendix A.2.6). We give the definition of Rademacher complexity for complete-

ness.

Definition 3 (Rademacher complexity) For a function class F that consists of mappings from Z

to R, define

ℜF := E𝑧,𝜐 sup
𝑓 ∈F

1
𝑛

𝑛∑︁
𝑖=1

𝜐𝑖 𝑓 (𝑧𝑖), ℜ𝑛F := E𝜐 sup
𝑓 ∈F

1
𝑛

𝑛∑︁
𝑖=1

𝜐𝑖 𝑓 (𝑧𝑖),

as the Rademacher complexiy and the empirical Rademacher complexity of F , respectively, where

{𝜐𝑖}𝑛𝑖=1 are i.i.d. Rademacher variables for which Prob(𝜐𝑖 = 1) = Prob(𝜐𝑖 = −1) = 1
2 . In the above

we explicitly denote expectation operators with subscripts that describes the distribution relative

to which the expectation is computed. E𝑧 means taking expectations over {𝑧𝑖}𝑛𝑖=1 and E𝜐 means

taking expectations over {𝜐𝑖}𝑛𝑖=1.
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Furthermore, Dudley’s integral bound provides one general solution to construct a computable

upper bound on the local Rademacher complexity via the covering number of F . We give the

definition of covering number and state Dudley’s integral bound for completeness as well.

Definition 4 (covering number) Assume (M,metr(·, ·)) is a metric space, and F ⊆ M. The

Y−covering number of the set F with respect to a metric metr(·, ·) is the size of its smallest Y−net

cover:

N(Y, F ,metr) = min{𝑚 : ∃ 𝑓1, ..., 𝑓𝑚 ∈ F such that F ⊆ ∪𝑚𝑗=1B( 𝑓 𝑗 , Y)}.

where B( 𝑓 , Y) := { 𝑓 : metr( 𝑓 , 𝑓 ) ≤ Y}.

We call logN(Y, F ,metr) the metric entropy of the set F with respect to a metric metr(·, ·).

Standard metrics include the 𝐿𝑝 (P𝑛) metric defined by 𝐿𝑝 (P𝑛) ( 𝑓1, 𝑓2) := 𝑝
√︁
P𝑛 ( 𝑓1(𝑧) − 𝑓2(𝑧))𝑝

for 𝑝 > 0. For function classes characterized by metric entropy conditions, the surrogate func-

tion constructed by Dudley’s integral bound is often optimal. We use the 𝐿2(P𝑛) metric for sim-

plicity; the result trivially extends to 𝐿𝑝 (P𝑛) metrics for 𝑝 ≥ 2, since logN(Y, F , 𝐿2(P𝑛)) ≤

logN(Y, F , 𝐿𝑝 (P𝑛)) for any set F and discretization error Y > 0.

Lemma 1 (Dudley’s integral bound, [24]) Given 𝑟 > 0 and a class F that consists of functions

defined on Z,

ℜ𝑛{ 𝑓 ∈ F : P𝑛 [ 𝑓 2] ≤ 𝑟} ≤ inf
Y0>0

{
4Y0 + 12

∫ √
𝑟

Y0

√︂
logN(Y, F , 𝐿2(P𝑛))

𝑛
𝑑Y

}
.

In what follows, when comparing different complexity parameters, we often use “∨” to denote

the maximum operator, and to interpret correctly, its use should be understood to take precedence

over addition but not over multiplication. Throughout we will find it convenient to use “big-oh”

notation to simplify various expressions and comparisons that capture order of magnitude effects.

For two non-negative sequence {𝑎𝑛} and {𝑏𝑛}, we write 𝑎𝑛 = 𝑂 (𝑏𝑛), if 𝑎𝑛 can be upper bounded

by 𝑏𝑛 up to an absolute constant for sufficiently large 𝑛. The same expression is often used also in
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the context of probabilistic statements in which case it is interpreted as holding on an event which

has a specified (typically “high”) probability. We write 𝑎𝑛 = Ω(𝑏𝑛) if 𝑏𝑛/𝑎𝑛 = 𝑂 (1).

1.3.2 Loss-dependent rates via empirical risk minimization

In this section we are interested in loss-dependent rates, which should scale tightly with L∗ :=

P[ℓ(ℎ∗; 𝑧) − infH ℓ(ℎ; 𝑧)]; the best achievable “effective loss” on H . The following theorem char-

acterizes the loss-dependent rate of empirical risk minimization (ERM) via a surrogate function 𝜓,

its fixed point 𝑟∗, the effective loss L∗ and 𝐵.

Theorem 1 (loss-dependent rate of ERM) For the excess loss class F in (1.3.2), assume there is

a meaningful surrogate function 𝜓(𝑟; 𝛿) that satisfies ∀𝛿 ∈ (0, 1) and ∀𝑟 > 0, with probability at

least 1 − 𝛿,

sup
𝑓 ∈F :P[ 𝑓 2]≤𝑟

(P − P𝑛) 𝑓 ≤ 𝜓(𝑟; 𝛿).

Then the empirical risk minimizer ℎ̂ERM ∈ arg minH {P𝑛ℓ(ℎ; 𝑧)} satisfies for any fixed 𝛿 ∈ (0, 1)

and 𝑟0 ∈ (0, 4𝐵2), with probability at least 1 − 𝛿,

E( ℎ̂ERM) ≤ 𝜓
(
24𝐵L∗;

𝛿

𝐶𝑟0

)
∨ 𝑟∗

6𝐵
∨ 𝑟0

48𝐵
,

where 𝐶𝑟0 = 2 log2
8𝐵2

𝑟0
, and 𝑟∗ is the fixed point of 6𝐵𝜓

(
8𝑟; 𝛿

𝐶𝑟0

)
.

Remarks. 1) The term 𝑟0 is negligible since it can be arbitrarily small. One can simply set

𝑟0 = 𝐵2/𝑛4, which will much smaller than 𝑟∗ in general (𝑟∗ is at least of order 𝐵2 log 1
𝛿
/𝑛 in the

traditional “local Rademacher complexity” analysis, because this term is unavoidable in two-sided

concentration inequalities).

2) In high-probability bounds,𝐶𝑟0 will only appear in the form log(𝐶𝑟0/𝛿)), which is of a negligible

𝑂 (log log 𝑛) order, so𝐶𝑟0 can be viewed an absolute constant for all practical purposes. As a result,
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our generalization error bound can be viewed to be of the order

E( ℎ̂ERM) ≤ 𝑂
(
𝜓(𝐵L∗; 𝛿) ∨ 𝑟∗

𝐵

)
. (1.3.3)

3) By using the empirical “effective loss,” P𝑛 [ℓ( ℎ̂ERM; 𝑧) − infH ℓ(ℎ; 𝑧)], to estimate L∗, the loss-

dependent rate can be estimated from data without knowledge of L∗. We defer the details to

Appendix A.2.3.

Comparison with existing results. Under additional restrictions (to be explained later), the tra-

ditional analysis (1.2.3) leads to a loss-dependent rate of the order [1]

E( ℎ̂ERM) ≤ 𝑂
(√︂

L∗𝑟∗

𝐵
∨ 𝑟∗

𝐵

)
, (1.3.4)

which is strictly worse than our result (1.3.3) due to reasoning following Statement 2. When

𝐵L∗ ≤ 𝑂 (𝑟∗), both (1.3.3) and (1.3.4) are dominated by the order 𝑟∗/𝐵 so there is no difference

between them. However, when 𝐵L∗ ≥ Ω(𝑟∗), our result (1.3.3) will be of order 𝜓(𝐵L∗; 𝛿) and the

previous result (1.3.4) will be of order
√︁
L∗𝑟∗/𝐵. In this case, the square-root function

√︁
L∗𝑟∗/𝐵

is only a coarse relaxation of 𝜓(𝐵L∗; 𝛿): as the traditional analysis requires 𝜓 to be sub-root, we

can compare the two orders by

𝜓 (𝐵L∗; 𝛿)
𝜓 is sub-root

≤
√︂
𝐵L∗

𝑟∗
𝜓(𝑟∗; 𝛿) 𝑟

∗ is fixed point
= 𝑂

(√︂
L∗𝑟∗

𝐵

)
. (1.3.5)

The “sub-root” inequality (the first inequality in (1.3.5)) becomes an equality when 𝜓(𝑟; 𝛿) =

𝑂 (
√︁
𝑑𝑟/𝑛) in the parametric case, where 𝑑 is the parametric dimension. However, when F is

“rich,” 𝜓(𝑟; 𝛿)/
√
𝑟 will be strictly decreasing so that the “sub-root” inequality can become quite

loose. For example, when F is a non-parametric class we often have 𝜓(𝑟; 𝛿) = 𝑂 (
√︁
𝑟1−𝜌/𝑛) for

some 𝜌 ∈ (0, 1). The richer F is (e.g., the larger 𝜌 is), the more loose the “sub-root” inequality.

This intuition will be validated via examples in Section 1.4.
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Theorem 1 also applies to broader settings than previous results. For example, in [1] it is as-

sumed that the loss is non-negative, and their original result only adapts to Pℓ(ℎ∗; 𝑧) rather than the

“effective loss” L∗. Our proof (see Appendix A.2.2) is quite different as we bypass the Bernstein

condition (which is traditionally implied by non-negativity, but not satisfied by the class used here),

bypass the sub-root assumption on 𝜓, and adapt to the “better” parameter L∗.

1.3.3 Variance-dependent rates via moment penalization

The loss-dependent rate proved in Theorem 1 contains a complexity parameter 𝐵L∗ within its

𝜓 function, which may still be much larger than the optimal variance V∗. Despite its prevalent

use in practice, standard empirical risk minimization is unable to achieve variance-dependent rates

in general. An example is given in [4] where V∗ = 0 and the optimal rate is at most 𝑂 (log 𝑛/𝑛),

while E( ℎ̂ERM) is proved to be slower than 𝑛−
1
2 .

We follow the path of penalizing empirical second moments (or variance) [6, 7, 4, 5] to design

an estimator that achieves the “right” bias-variance trade-off for general, potentially “rich,” classes.

Our proposed estimator simultaneously achieves correct scaling on V∗, along with minimax-

optimal sample dependence (𝑛). Besides empirical first and second moments, it only depends

on the boundedness parameter 𝐵, a computable surrogate function 𝜓, and the confidence parame-

ter 𝛿. All of these quantities are essentially assumed known in previous works: e.g., [6, 7] require

covering number of the loss class, which implies a computable surrogate 𝜓 via Dudley’s integral

bound; and estimators in [4, 5] rely on the fixed point 𝑟∗ of a computable surrogate 𝜓.

In order to adapt to V∗, we use a sample-splitting two-stage estimation procedure (this idea

is inspired by the prior work [5]). Without loss of generality, we assume access to a data set of

size 2𝑛. We split the data set into the “primary” data set 𝑆 and the “auxiliary” data set 𝑆′, both of

which are of size 𝑛. We denote P𝑛 the empirical distribution of the “primary” data set, and P𝑆′ the

empirical distribution of the “auxiliary” data set.

Strategy 1 (the two-stage sample-splitting estimation procedure.) At the first-stage, we derive

a preliminary estimate of L∗
0 := Pℓ(ℎ∗; 𝑧) via the “auxiliary” data set 𝑆′, which we refer to as L̂∗

0.
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Then, at the second stage, we perform regularized empirical risk minimization on the “primal”

data set 𝑆, which penalizes the centered second moment P𝑛 [(ℓ(ℎ; 𝑧) − L̂∗
0)

2].

As we will present later, it is rather trivial to obtain a qualified preliminary estimate L̂∗
0 via

empirical risk minimization. Therefore, we firstly introduce the second-stage moment-penalized

estimator, which is more crucial and interesting.

Strategy 2 (the second-stage moment-penalized estimator.) Consider the excess loss class F

in (1.3.2). Let 𝜓(𝑟; 𝛿) be a meaningful surrogate function that satisfies ∀𝛿 ∈ (0, 1), ∀𝑟 > 0, with

probability at least 1 − 𝛿,

4ℜ𝑛{ 𝑓 ∈ F : P𝑛 [ 𝑓 2] ≤ 2𝑟} +

√︄
2𝑟 log 8

𝛿

𝑛
+

9𝐵 log 8
𝛿

𝑛
≤ 𝜓(𝑟; 𝛿).

Denote 𝐶𝑛 = 2 log2 𝑛 + 5. Given a fixed 𝛿 ∈ (0, 1), let the estimator ℎ̂MP be

ℎ̂MP ∈ arg min
H

{
P𝑛ℓ(ℎ; 𝑧) + 𝜓

(
16P𝑛 [(ℓ(ℎ; 𝑧) − L̂∗

0)
2]; 𝛿
𝐶𝑛

)}
.

Given an arbitrary preliminary estimate L̂∗
0 ∈ [−𝐵, 𝐵], we can prove that the generalization

error of the moment-penalized estimator ℎ̂MP is at most

E( ℎ̂MP) ≤ 2𝜓
(
𝑐0

[
V∗ ∨ (L̂∗

0 − L∗
0)

2 ∨ 𝑟∗
]

;
𝛿

𝐶𝑛

)
, (1.3.6)

with probability at least 1 − 𝛿, where 𝑐0 is an absolute constant, and 𝑟∗ is the fixed point of

16𝐵𝜓(𝑟; 𝛿
𝐶𝑛
). Moreover, the first-stage estimation error will be negligible if

(L̂∗
0 − L∗

0)
2 ≤ 𝑂 (𝑟∗) . (1.3.7)

It is rather elementary to show that performing the standard empirical risk minimization on 𝑆′

suffices to satisfy (1.3.7), provided an additional assumption that 𝜓 is a “sub-root” function. We

now give our theorem on the generalization error following this two-stage procedure.
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Theorem 2 (variance-dependent rate) Let L̂∗
0 = infH P𝑆′ℓ(ℎ; 𝑧) be attained via empirical risk

minimization on the auxiliary data set 𝑆′. Assume that the meaningful surrogate function 𝜓(𝑟; 𝛿)

is “sub-root,” i.e. 𝜓(𝑟;𝛿)√
𝑟

is non-increasing over 𝑟 ∈ [0, 4𝐵2] for all fixed 𝛿. Then for any 𝛿 ∈ (0, 1
2 ),

by performing the moment-penalized estimator in Strategy 2, with probability at least 1 − 2𝛿,

E( ℎ̂MP) ≤ 2𝜓
(
𝑐1V∗;

𝛿

𝐶𝑛

)
∨ 𝑐1𝑟

∗

8𝐵
,

where 𝑟∗ is the fixed point of 𝐵𝜓(𝑟; 𝛿
𝐶𝑛
) and 𝑐1 is an absolute constant.

Remarks. 1) In high-probability bounds, 𝐶𝑛 will only appear in the form log(𝐶𝑛/𝛿)), which is

of a negligible 𝑂 (log log 𝑛) order, so 𝐶𝑛 can effectively be viewed as constant for all practical

purposes.

2) The “sub-root” assumption in Theorem 2 is only used to to bound the first-stage estimation error

(see (1.3.7)). This assumption is not needed for the result (1.3.6) on the second-stage moment-

penalized estimator.

3) Replacing V∗ by an empirical centered second moment, we can prove a fully data-dependent

generalization error bound that is computable from data without the knowledge of V∗. We leave

the full discussion to Appendix A.2.5.

Comparison with existing results. The best variance-dependent rate attained by existing esti-

mators is of the order [5] √︂
V∗𝑟∗

𝐵2 ∨ 𝑟∗

𝐵
,

which is strictly worse than the rate proved in Theorem 2. The reasoning is similar to Statement 2

and the explanation after Theorem 1: when V∗ ≤ 𝑂 (𝑟∗) the two results are essentially identical,

but our estimator can perform much better when V∗ ≥ Ω(𝑟∗). Because 𝜓 is sub-root and 𝑟∗ is the
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fixed point, we can compare the orders of the rates

𝜓(V∗; 𝛿) ≤
√︂

V∗

𝑟∗
𝜓(𝑟∗; 𝛿) [𝜓(𝑟; 𝛿)/

√
𝑟 non-increasing for sub-root 𝜓]

= 𝑂

(√︂
V∗𝑟∗

𝐵2

)
[𝑟∗ is the fixed point of 𝐵𝜓(𝑟; 𝛿)] .

Since variance-dependent rates are generally used in applications that require robustness or exhibit

large worst-case boundedness parameter, V∗ ≥ 𝑟∗ is the more critical regime where one wants to

ensure the estimation performance will not degrade.

Discussion. Per our “uniform localized convergence” principle, the most obvious difficulty in

proving Theorem 2 is in establishing (1.3.6): the empirical second moment is sample-dependent,

whereas standard tools in empirical process theory like Talagrand’s concentration inequality (Lemma

16) require the localized subsets to be independent of the samples. The core techniques in our

proof essentially overcome this difficulty by concentrating data-dependent localized subsets to

data-independent ones. This idea may be of independent interest; we defer details to Appendix

A.2.4.

The tightness of our variance-dependent rates depend on tightness of the computable surrogate

function 𝜓. When covering numbers of the excess loss class are given, a direct choice is Dudley’s

integral bound (see Lemma 1), which is known to be rate-optimal for many important classes.

Previous approaches usually take a simper regularization term [6, 5] that is proportional to the

square root of the empirical second moment (or empirical variance). That type of penalization

is “too aggressive” for rich classes, as Strategy 2 finds the right regularization scheme from the

theoretical perspective. One important future direction is to investigate practical choices of 𝜓

(e.g. convex ones) in Strategy 2 that can be optimized efficiently. [4] proposes a regularization

approach that preserves convexity of empirical risk. However, based on an equivalence proved

in their paper, they have similar limitations to the approaches that penalizes the square root of

the empirical variance. Outside the study of variance-dependent rates, integral-based and local-
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Rademacher-complexity-based penalization is also used in model selection [25], but the setting

and the goal of model selection are very different from the problem we study here.

1.4 Illustrative examples in the “slow rate” regime

1.4.1 Discussion and illustrative examples

Recall that our loss-dependent rates and variance-dependent (moment-penalized) rates are

E( ℎ̂ERM) ≤ 𝑂
(
𝜓(𝐵L∗; 𝛿) ∨ 𝑟∗

𝐵

)
[Theorem 1], (1.4.1)

E( ℎ̂MP) ≤ 𝑂
(
𝜓(V∗; 𝛿) ∨ 𝑟∗

𝐵

)
[Theorem 2], (1.4.2)

respectively. In contrast to our results (1.4.1) (1.4.2), the best known loss-dependent rates [1] and

variance-dependent rates [5] are

E( ℎ̂ERM) ≤ 𝑂
(√︂

L∗𝑟∗

𝐵
∨ 𝑟∗

𝐵

)
[existing result [1]], (1.4.3)

E( ℎ̂previous) ≤ 𝑂
(√︂

V∗𝑟∗

𝐵2 ∨ 𝑟∗

𝐵

)
[existing result [5]], (1.4.4)

respectively (we use ℎ̂previous to denote the previous best known moment-penalized estimator pro-

posed in [5]). To illustrate the noticeable gaps between our new results and previous known ones,

we compare the two different variance-dependent rates, (1.4.2) and (1.4.4) on two important fami-

lies of “rich” classes: non-parametric classes of polynomial growth and VC classes. The implica-

tions of this comparison will similarly apply to loss-dependent rates.

Before presenting the advantages of the new problem-dependent rates, we would like to discuss

how to compute them. In Theorem 1 and Theorem 2, the class of concentrated functions, F , is the

excess loss class ℓ ◦ H − ℓ ◦ ℎ∗ in (1.3.2). As we have mentioned in earlier sections, a general

solution for the 𝜓 function is to use Dudley’s integral bound (Lemma 1). Knowledge of the metric
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entropy of the excess loss class,

logN(Y, ℓ ◦ H − ℓ ◦ ℎ∗, 𝐿2(P𝑛)),

can be used to calculate Dudley’s integral bound and construct the surrogate function 𝜓 needed in

our theorems. Note that there is no difference between the metric entropy of the excess loss class

and metric entropy of the loss class itself: from the definition of covering number, one has

N(Y, ℓ ◦ H − ℓ ◦ ℎ∗, 𝐿2(P𝑛)) = N(Y, ℓ ◦ H , 𝐿2(P𝑛)).

We comment that almost all existing theoretical literature that discusses general function classes

and losses [1, 6, 7, 5] imposes metric entropy conditions on the loss class/excess loss class rather

than the hypothesis class H , and we follows that line as well to allow for a seamless comparison

of the results. As a complement, we will discuss how to obtain such metric entropy conditions for

practical applications in Section 1.4.2.

Non-parametric classes of polynomial growth

Example 1 (non-parametric classes of polynomial growth) Consider a loss class ℓ◦H with the

metric entropy condition

logN(Y, ℓ ◦ H , 𝐿2(P𝑛)) ≤ 𝑂
(
Y−2𝜌

)
, (1.4.5)

where 𝜌 ∈ (0, 1) is a constant. Using Dudley’s integral bound to find 𝜓 and solving 𝑟 ≤ 𝑂 (𝐵𝜓(𝑟; 𝛿)),

it is not hard to verify that

𝜓(𝑟; 𝛿) ≤ 𝑂
(√︂

𝑟1−𝜌

𝑛

)
, 𝑟∗ ≤ 𝑂

(
𝐵

2
1+𝜌

𝑛
1

1+𝜌

)
.
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As a result, our variance-dependent rate (1.4.2) is of the order

E( ℎ̂MP) ≤ 𝑂
(
V∗ 1−𝜌

2 𝑛−
1
2 ∨ 𝑟∗

𝐵

)
, (1.4.6)

which is 𝑂
(
V∗ 1−𝜌

2 𝑛−
1
2

)
when V∗ ≥ 𝑟∗. In contrast, the previous best-known result (1.4.4) is of

the order

E( ℎ̂previous) ≤ 𝑂
(√

V∗𝐵− 𝜌

1+𝜌 𝑛
− 1

2+2𝜌 ∨ 𝑟∗

𝐵

)
, (1.4.7)

which is 𝑂
(√

V∗𝐵− 𝜌

1+𝜌 𝑛
− 1

2+2𝜌
)

when V∗ ≥ 𝑟∗. Therefore, for arbitrary choice of 𝑛,V∗, 𝐵, the

“sub-optimality gap” is

ratio between (1.4.7) and (1.4.6) :=
√
V∗𝐵− 𝜌

1+𝜌 𝑛
− 1

2+2𝜌 ∨ 𝑟∗

𝐵

V∗ 1−𝜌
2 𝑛−

1
2 ∨ 𝑟∗

𝐵

= 1 ∨ (V∗( 𝑛
𝐵2 )

1
1+𝜌 )

𝜌

2 , (1.4.8)

which can be arbitrary large and grows polynomially with 𝑛.

We consider two stylized regimes where our variance-dependent rate is much better (we use

the notation ≈ when the left hand side and the right hand side are of the same order).

• The more “traditional” regime: 𝐵 ≈ 1, V∗ ≈ 𝑛−𝑎 where 𝑎 > 0 is a fixed constant. This

regime captures the traditional supervised learning problems where 𝐵 is not large, but one

wants to use the relatively small order of V∗ to achieve “faster” rates.

• The “high-risk” regime: 𝐵 ≈ 𝑛𝑏 where 𝑏 > 0 is a fixed constant, and V∗ ≪ 𝐵2 (i.e.,

V∗ is much smaller than order 𝑛2𝑏). This regime captures modern “high-risk” learning

problems such as counterfactual risk minimization, policy learning, and supervised learning

with limited number of samples. In those settings, the worst-case boundedness parameter is

considered to scale with 𝑛 so that one wants to avoid (or reduce) the dependence on 𝐵.

In both of the two regimes, generalization errors via naive (non-localized) uniform convergence

arguments will be worse than our approach by orders polynomial in 𝑛, so we only need to compare
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with previous variance-dependent rates.

The “traditional” regime. The “sub-optimality gap” (1.4.8) is 1 ∨ (V∗𝑛
1

1+𝜌 )
𝜌

2 . It is quite clear

that when V∗ ≈ 𝑛−𝑎 where 0 < 𝑎 < 1
1+𝜌 , our variance-dependent rate improves over all previous

generalization error rates by orders polynomial in 𝑛.

The “high-risk” regime. We focus on the simple case 𝐵
2

1+𝜌 ≤ V∗ ≪ 4𝐵2 to gain some in-

sight, where our result exhibits an improvement of order 𝑂 (𝑛
𝜌

2 (
1

1+𝜌 )) relative to the previous result.

Clearly the larger 𝜌, the more improvement we provide. By letting 𝜌 → 1 our improvement can

be as large as 𝑂 (𝑛 1
4 ).

VC-type classes

Our next example considers VC-type classes. Although this classical example has been exten-

sively studied in learning theory, our results provide strict improvements over antecedents.

Example 2 (VC-type classes) One general definition of VC-type classes (which is not necessarily

binary) uses the metric entropy condition. Consider a loss class ℓ ◦ H that satisfies

logN(Y, ℓ ◦ H , 𝐿2(P𝑛)) ≤ 𝑂
(
𝑑 log

1
Y

)
,

where 𝑑 is th so-called the Vapnik–Chervonenkis (VC) dimension [26]. Using Dudley’s integral

bound to find the surrogate 𝜓 and solving 𝑟 ≤ 𝑂 (𝐵𝜓(𝑟; 𝛿)), it can be proven [2] that

𝜓(𝑟; 𝛿) ≤ 𝑂
(√︂

𝑑𝑟

𝑛
log

8𝐵2

𝑟
∨ 𝐵𝑑

𝑛
log

8𝐵2

𝑟

)
, 𝑟∗ ≤ 𝑂

(
𝐵2𝑑 log 𝑛

𝑛

)
.

Recently, [5] proposed a moment-penalized estimator whose generalization error is of the rate

E( ℎ̂previous) ≤ 𝑂
(√︂

𝑑V∗ log 𝑛
𝑛

+ 𝐵𝑑 log 𝑛
𝑛

)
,
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in the worst case without invoking other assumptions. This result has a 𝑂 (log 𝑛) gap compared

with the Ω(
√︃
𝑑V∗
𝑛

) lower bound [27], which holds for arbitrary sample size. There is much recent

interest focused on the question of when the sub-optimal log 𝑛 factor can be removed [28, 5].

By applying Theorem 2, our refined moment-penalized estimator gives a generalization error

bound of tighter rate

E( ℎ̂MP) ≤ 𝑂
©«
√︄
𝑑V∗ log 8𝐵2

V∗

𝑛
∨ 𝐵𝑑 log 𝑛

𝑛

ª®®¬ . (1.4.9)

This closes the 𝑂 (log 𝑛) gap in the regime V∗ ≥ Ω( 𝐵2

(log 𝑛)𝛼 ), where 𝛼 > 0 is an arbitrary pos-

itive constant. Though this is not the central regime, it is the first positive result that closes the

notorious 𝑂 (log 𝑛) gap without invoking any additional assumptions on the loss/hypothesis class

(e.g., the rather complex “capacity function” assumption introduced in [5]). We anticipate addi-

tional improvements are possible under further assumptions on the hypothesis class and the loss

function.

1.4.2 Problem areas to which “localization” theory is applicable

In practical applications it is more standard to consider metric entropy conditions of the hy-

pothesis class H . In view of this, we introduce two important settings where metric entropy on the

loss/excess loss class can be obtained from metric entropy conditions on H . Thus, the improve-

ments illustrated in Section 1.4.1 can be directly transferred to these application areas.

Supervised learning with Lipchitz continuous cost. In supervised learning, the data 𝑧 is a

feature-label pair (𝑥, 𝑦), and the loss ℓ(ℎ; 𝑧) is of the form

ℓ(ℎ; 𝑧) = ℓsv(ℎ(𝑥), 𝑦),
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where ℓsv : R × R→ R is a fixed cost function that is 𝐿sv−Lipchitz continuous with respect to its

first argument,

ℓsv(𝑢1, 𝑦) − ℓsv(𝑢2, 𝑦) ≤ 𝐿sv |𝑢1 − 𝑢2 |, ∀𝑢1, 𝑢2, 𝑦 ∈ R.

For hypothesis classes characterized by metric entropy conditions, properties are preserved be-

cause

logN(Y, ℓ ◦ H , 𝐿2(P𝑛)) ≤ logN( Y

𝐿sv
,H , 𝐿2(P𝑛)).

Note that 𝐿sv only depends on the cost function and is usually of constant order. Our theory

naturally applies to supervised learning problems where the cost function is Lipchitz continuous

(for example, the ℓ1 cost, the hinge cost, the ramp cost, etc.). Moreover, it is simple to show that

any surrogate function of the localized empirical process supP[(ℎ(𝑥)−ℎ∗ (𝑥))2]≤𝑟 (P−P𝑛) (ℓsv(ℎ(𝑥), 𝑦))

will lead to a construction of the surrogate function 𝜓 required in Theorem 1 and Theorem 2.

Counterfactual risk minimization. Denote 𝑥 ∈ X the feature and 𝑡 ∈ T the treatment (e.g.

T = {0, 1} in binary treatment experimental design), and 𝑐(𝑥, 𝑡) the unknown cost function. A

hypothesis (policy) ℎ is a map from X × T to [0, 1] such that
∑
𝑡∈T ℎ(𝑥, 𝑡) = 1. Thus, a hypoth-

esis (policy) essentially maps features to a distribution over treatments. We consider the standard

formulation of “learning with logged bandit feedback,” dubbed “counterfactual risk minimization”

[7]: a batch of samples {(𝑥𝑖, 𝑡𝑖, 𝑐𝑖)}𝑛𝑖=1 are obtained by applying a known policy ℎ0, so that 𝑡𝑖 is sam-

pled from ℎ0(𝑥𝑖, ·) and one can only observe the cost 𝑐𝑖 associated with 𝑡𝑖. We write 𝑧 = (𝑥, 𝑡, 𝑐)

and let

ℓ(ℎ; 𝑧𝑖) =
𝑐𝑖

ℎ0(𝑥𝑖, 𝑡𝑖)
ℎ(𝑥𝑖, 𝑡𝑖), (1.4.10)
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be the “constructed loss” using importance sampling. It is straightforward to show that the popu-

lation risk Pℓ(ℎ; 𝑧) is equal to the expected cost of policy ℎ, so determining good policies requires

one to minimize the generalization error E( ℎ̂). It is usually convenient to obtain metric entropy

condition of the loss/excess loss class by using the linearity structure of (1.4.10). In particular,

from the Cauchy-Schwartz inequality we can prove that

logN(Y, ℓ ◦ H , 𝐿2(P𝑛)) ≤ logN( Y
𝛾𝑛
,H , 𝐿4(P𝑛)), (1.4.11)

where 𝛾𝑛 := 4

√︂
P𝑛

[
( 𝑐(𝑥,𝑡)
ℎ0 (𝑥,𝑡) )

4
]

only depends on the functions 𝑐, ℎ0 in the given problem, and the

samples rather than the worst-case parameters. A systematical challenge in counterfactual risk

minimization is that the worst-case boundedness parameter, supℎ,𝑧 |ℓ(ℎ; 𝑧) |, is typically very large,

since the inverse probability term 1
ℎ0 (𝑥𝑖 ,𝑡𝑖) in (1.4.10) is typically large in the worst case.

1.5 Problem-dependent rates in the parametric “fast rate” regime

1.5.1 Background

When assuming suitable curvature or margin conditions, the direct dependence of the general-

ization error on 𝑛 is typically faster than𝑂 (𝑛− 1
2 ). We call this the “fast rate” regime. A well-known

example is, when the hypothesis class is parametrized and the loss is strongly convex with respect

to the parameter, in which case the direct dependence of the generalization error on 𝑛 is typi-

cally the “parametric rate” 𝑂 (𝑛−1). In the “fast rate” regime, existing problem-dependent rates are

mostly studied in supervised learning with structured convex cost; see Section 1.2.4 for a historical

review of existing localization approaches and problem-dependent rates. Through our proposed

“uniform localized convergence” procedure, we can recover results in [8, 9] for supervised learn-

ing problems with structured convex cost, and our approach is able to systematically weaken some

restrictions. (We defer the discussion to Appendix A.1 as the contributions there mostly lie in

unification and some technical improvements.)

In this and the next two sections we study more modern applications in the fast rate regime,
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focusing on computationally efficient estimators and algorithms, where the derivation of sharp

problem-dependent rates remains an open question. A secondary objective is to provide unification

to vector-based uniform convergence analysis. The main focal points are the following.

Non-convexity, stationary points, and iterative algorithms. Classical generalization error anal-

ysis relies on the property of global empirical risk minimizers. However, many important machine

learning problems are non-convex. For those problems, guarantees on global empirical risk min-

imizes are not sufficient, and therefore one typically targets guarantees on stationary points and

the iterates produced by optimization algorithms. This motivates us to study uniform convergence

of gradients and sample-based iterative algorithms. Existing generalization error bounds in this

area are typically not localized, and connections to traditional localization frameworks is not fully

understood.

General formulation of stochastic optimization. Existing problem-dependent rates mostly fo-

cus on supervised learning settings, with specialized assumptions on the problem structure. Hence,

it is important to characterize problem-dependent generalization error bounds for more general

stochastic optimization problems, in which the classical asymptotic results do not depend on the

parametric dimension 𝑑 and global parameters. Existing methods, however, typically give rise to

dimension-dependent factors and “large” global parameters.

Organization of this section is as follows. In Section 1.5.2, we will strengthen the “uniform

convergence of gradients” idea by developing a theory for “uniform localized convergence of gradi-

ents.” In Section 1.5.3 we will provide problem-dependent rates for approximate stationary points

of empirical risk and iterates of the gradient descent algorithm.

1.5.2 Theoretical foundations

Recently, the idea of “uniform convergence of gradients” [19, 20, 29] has been applied suc-

cessfully to many non-convex learning and stochastic optimization problems. These works do not
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consider problem-dependent rates, and their results typically rely on various global parameters,

like global Lipchitz constants and the radius of the parametric set. In this subsection we strengthen

these ideas by developing a theory of “uniform localized convergence of gradients.” This theory

will be proven to be more powerful in deriving problem-dependent rates. Before moving to state a

key assumption, we introduce some additional notation.

Notation for the parametric “fast rate” regime. We write the loss function as ℓ(\; 𝑧) where

\ ∈ R𝑑 is the parameter representation of the hypothesis ℎ. Consider a compact set Θ ⊆ R𝑑 and

let \∗ be the best parameter within Θ, which satisfies \∗ ∈ arg minΘ Pℓ(\; 𝑧). Denote ∥ · ∥ to be

the 𝐿2 norm in R𝑑 , noting that most of our results can be generalized to matrix learning problems

by considering the Frobenius norm. We let B𝑑 (\0, 𝜌) := {\ ∈ R𝑑 : ∥\ − \0∥ ≤ 𝜌} denote a

ball with center \0 ∈ R𝑑 and radius 𝜌. We assume that there are two radii Δ𝑚,Δ𝑀 such that

B𝑑 (\∗,Δ𝑚) ⊆ Θ ⊆ B𝑑 (\∗,Δ𝑀). We would like to provide guarantee for the generalization error

E(\̂) := Pℓ(\̂; 𝑧) − Pℓ(\∗; 𝑧).

We state a key assumption of our framework.

Assumption 1 (statistical noise of smooth population risk) For all \1, \2 ∈ Θ, ∇ℓ(\1;𝑧)−∇ℓ(\2;𝑧)
∥\1−\2∥

is a 𝛽−sub-exponential random vector. Formally there exist 𝛽 > 0 such that for any unit vector

𝑢 ∈ B(0, 1) and \1, \2 ∈ Θ,

E

{
exp

(
|𝑢𝑇 (∇ℓ(\1; 𝑧) − ∇ℓ(\2; 𝑧)) |

𝛽∥\1 − \2∥

)}
≤ 2.

From Jensen’s inequality and convexity of the exponential function, a simple consequence of

Assumption 1 is that the population risk is 𝛽−smooth: for any \1, \2 ∈ Θ,

∥P∇ℓ(\1; 𝑧) − P∇ℓ(\2; 𝑧)∥ ≤ 𝛽∥\1 − \2∥. (1.5.1)
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Smoothness of the population risk is a standard assumption in the optimization literature. Com-

pared with the smoothness condition (1.5.1), Assumption 1 is a stronger distributional assumption:

it requires the random vectors
{
∇ℓ(\1;𝑧)−∇ℓ(\2;𝑧)

∥\1−\2∥

}
to be a 𝛽−sub-exponential for all \1, \2 ∈ Θ, while

the smoothness condition (1.5.1) only concerns the expectation of these random vectors. Certain

distributional assumptions are necessary to analyze the generalization performance of unbounded

losses (e.g., see the “Hessian statistical noise” assumption in [19], and the “moment-equivalence”

assumptions in [30, 31]). Assumption 1 imposed here is applicable to many smooth machine

learning models studied in previous literature, and its verification is often no much harder than

verification of smoothness conditions. This can be explained through the following lemma and

discussion.

Lemma 2 (Hessian statistical noise implies Assumption 1) Assumption 1 is satisfied if for all

\ ∈ Θ, the random Hessian matrix ∇2ℓ(\; 𝑧) is a 𝛽−sub-exponential matrix. Formally, Assumption

1 is satisfied when there exist 𝛽 > 0 such that for any unit vectors 𝑢1, 𝑢2 ∈ B𝑑 (0, 1) and any \ ∈ Θ,

E

{
exp

(
1
𝛽
|𝑢𝑇1∇

2ℓ(\; 𝑧)𝑢2 |
)}

≤ 2. (1.5.2)

By Lemma 2, one only needs to compute the Hessian matrices and verify they are sub-exponential

over Θ. For instance, many statistical estimation problems have ∇2ℓ(\; 𝑧) proportional to 𝑧𝑧𝑇 (or

𝑥𝑥𝑇 when the problem is a supervised learning problem and 𝑧 = (𝑥, 𝑦) is the feature-label pair). By

assuming the data 𝑧 (or 𝑥) is a 𝜏−sub-Gaussian vector, 𝑧𝑧𝑇 (or 𝑥𝑥𝑇 ) becomes a 𝜏2−sub-exponential

matrix. If the remaining quantities in ∇2ℓ(\; 𝑧) can be uniformly bounded by some constant 𝐶0,

then Assumption 1 holds with 𝐶0𝜏
2. Note that similar steps are needed to verify the smoothness

conditions.

We carefully choose a function class G =
{
𝑔(\,𝑣) : \ ∈ Θ, 𝑣 ∈ B𝑑 (0,max{Δ𝑀 , 1

𝑛
})

}
to apply

concentration, where each element is a function 𝑔(\,𝑣) : Z → R defined by

𝑔(\,𝑣) (𝑧) = (∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇𝑣. (1.5.3)
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By applying Proposition 1 with the “concentrated functions” 𝑔(\,𝑣) and the “measurement func-

tional” 𝑇 defined by 𝑇 ((\, 𝑣)) = ∥\ − \∗∥2 + ∥𝑣∥2, we obtain the key argument of “uniform

localized convergence” for gradients.

Proposition 2 (uniform localized convergence of gradients) Under Assumption 1, ∀𝛿 ∈ (0, 1),

with probability at least 1 − 𝛿, for all \ ∈ Θ,

∥(P − P𝑛) (∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))∥

≤ 𝑐𝛽max
{
∥\ − \∗∥, 1

𝑛

} ©«
√︄
𝑑 + log 4 log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
+
𝑑 + log 4 log2 (2𝑛Δ𝑀+2)

𝛿

𝑛

ª®®¬ , (1.5.4)

where 𝑐 is an absolute constant.

Distinct from previous results on “uniform convergence of gradients,” which give the same up-

per bound on ∥(P−P𝑛)∇ℓ(\; 𝑧)∥ for all \ ∈ Θ, the right hand side of (1.5.4) in Proposition 2 scales

linearly with ∥\ − \∗∥ for all \ such that ∥\ − \∗∥ ≥ 1
𝑛
. Therefore, Proposition 2 provides a refined,

“localized” upper bound on the concentration of gradients. This property makes Proposition 2 the

key in deriving problem-dependent rates.

1.5.3 Main results

In order to obtain tight problem-dependent rates, we require a very mild assumption on the

noise at the optimal point \∗. We also ask \∗ to be the unique population risk minimizer in Θ in

this subsection.

Assumption 2 (noise at the optimal point) There is a unique population risk minimizer \∗ =

arg minΘ Pℓ(\; 𝑧), and the gradient at \∗ satisfies the Bernstein condition: there exists 𝐺∗ > 0

such that for all 2 ≤ 𝑘 ≤ 𝑛,

E[∥∇ℓ(\∗; 𝑧)∥𝑘 ] ≤ 1
2
𝑘!E[∥∇ℓ(\∗; 𝑧)∥2]𝐺𝑘−2

∗ . (1.5.5)
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We note that this assumption is very mild because 𝐺∗ only depends on gradients at \∗, and 𝐺∗

will only appear in the 𝑂 (𝑛−2) terms in our theorems. Our approach also allows many other noise

conditions at \∗ (e.g., those for heavy-tailed noise). At a high level, the order of our generalization

error bounds only depends on the concentration of P𝑛∇ℓ(\∗; 𝑧) relative to P∇ℓ(\∗; 𝑧), which barely

depends on noise at the single point \∗ and can be analyzed under various types of noise conditions.

We introduce Assumption 2 here because it leads to the asymptotically optimal problem-dependent

parameter P[∥∇ℓ(\∗; 𝑧)∥2] and simplifies comparison with previous literature.

Now we turn to establish problem-dependent rates under a curvature condition. While our

methodology is widely-applicable without restriction to particular curvature conditions, we will

focus on the Polyak-Łojasiewicz (PL) condition, which is known to be one of the weakest condi-

tions that guarantee linear convergence of optimization algorithms [32] as well as fast-rate gener-

alization error [20].

Assumption 3 (Polyak-Łojasiewicz condition) There exist ` > 0 such that for all \ ∈ Θ,

Pℓ(\; 𝑧) − Pℓ(\∗; 𝑧) ≤ ∥P∇ℓ(\; 𝑧)∥2

2`
.

The PL condition is weaker than many others recently introduced in the areas of matrix recovery,

deep learning, and learning dynamical systems, such as “one-point convexity” [33, 34], “star con-

vexity” [35], and “quasar convexity” [36, 37], not to mention the classical “strong convexity.” It

is also referred to as “gradient dominance condition” in previous literature [20]. Under suitable

assumptions on their inputs, many popular non-convex models have been shown to satisfy the PL

condition (sometimes locally rather than globally). An incomplete list of these models includes:

matrix factorization [38], neural networks with one hidden layer [33], ResNets with linear acti-

vations [39], binary linear classification [19], robust regression [19], phase retrieval [40], blind

deconvolution [41], linear dynamical systems [37], mixture of two Gaussians [21], to name a few.

While the PL condition is known to be one of the weakest conditions that can be used to es-

tablish linear convergence to the global minimum (see [32] for its relationship with other common
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curvature conditions), the generalization aspects of such structural non-convex learning problems

have not been fully understood. In particular, existing generalization error bounds often contain

global Lipchitz parameters that can be large for unbounded smooth losses.

Our next theorem provides problem-dependent bounds for approximate stationary points of the

empirical risk, under the PL condition of the population risk. The theorem implies that optimization

procedures that find stationary points of the empirical risk are also learning algorithms for the

population risk.

Theorem 3 (generalization error of the approximate stationary point) Under Assumptions 1,

2 and 3, ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿, we have the following results:

(a) there exist approximate stationary points of the empirical risk, \̂ ∈ Θ such that

∥P𝑛∇ℓ(\; 𝑧)∥ ≤

√︄
2P[∥∇ℓ(\∗; 𝑧)∥2] log 4

𝛿

𝑛
+
𝐺∗ log 4

𝛿

𝑛
. (1.5.6)

(b) for all \̂ that satisfy (1.5.6), when 𝑛 ≥ 𝑐𝛽2

`2

(
𝑑 + log 4 log(2𝑛Δ𝑀+1)

𝛿

)
, where 𝑐 is an absolute

constant, we have

E(\̂) ≤
64P[∥∇ℓ(\∗; 𝑧)∥2] log 4

𝛿

`𝑛
+

32𝐺2
∗ log2 4

𝛿
+ 4`2

`𝑛2 .

Ignoring higher order terms and absolute constants, Theorem 3 implies a problem-dependent

bound

E(\̂) ≤ 𝑂
(
P[∥∇ℓ(\∗; 𝑧)∥2] log 1

𝛿

`𝑛

)
, (1.5.7)

which scales tightly with the problem-dependent parameter P[∥∇ℓ(\∗; 𝑧)∥2]. The proof of The-

orem 4 can be found in Appendix A.3.4. Optimality and implications of this problem-dependent

rate will be discussed shortly after we present an additional theorem.

Many optimization algorithms, including gradient descent [32], stochastic gradient descent

[42], and non-convex SVRG [43] can efficiently find (approximate) stationary points of the em-
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pirical risk. However, convergence of these optimization algorithms is mostly studied under as-

sumptions on the empirical risk. The next theorem demonstrates that under assumptions on the

population risk, gradient descent provably achieve “small” generalization error. These type of re-

sults are challenging to prove because properties of the population risk may not transfer to the

empirical risk.

Consider the gradient descent algorithm with fixed step size 𝛼 and initialization \0, generating

iterates according to

\𝑡+1 = \𝑡 − 𝛼P𝑛∇ℓ(\𝑡 ; 𝑧), 𝑡 = 0, 1, . . . (1.5.8)

Theorem 4 (generalization error of gradient descent) Assume Assumptions 1, 2, 3. Then for an

initialization \0 ∈ B𝑑 (\∗,
√︃
`

𝛽
Δ𝑚) and step size 1

𝛽
, the iterates of the gradient descent algorithm

(1.5.8) satisfy for any fixed 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿, for all 𝑡 = 0, 1, . . . ,

E(\𝑡) ≤
16P[∥∇ℓ(\∗; 𝑧)∥2] log 4

𝛿

`𝑛
+

8𝐺2
∗ log2 4

𝛿
+ `2

`𝑛2︸                                                    ︷︷                                                    ︸
statistical error

+(1 − `

2𝛽
)𝑡E(\0), (1.5.9)

provided that the sample size 𝑛 is large enough such that that the “statistical error” term in (1.5.9)

is smaller than `

2Δ
2
𝑚 and 𝑛 ≥ 𝑐𝛽2

`2

(
𝑑 + log 8 log2 (2𝑛Δ𝑀+2)

𝛿

)
, where 𝑐 is an absolute constant.

Theorem 4 is the first broad scope result on the generalization error of gradient descent under

the PL condition. It implies that after a logarithmic number of iterations, gradient descent achieves

the problem-dependent rate (1.5.7). Note that the algorithm only requires the initialization condi-

tion in the theorem, rather than any knowledge of Θ and the problem-dependent parameters. The

proof of Theorem 4 can be found in Appendix A.3.4, and the main idea is applicable to many other

optimization algorithms as well. For example, in Section 1.7 we provide a similar analysis to the

first-order Expectation-Maximization algorithm.
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Optimality of the problem-dependent rates in Theorem 3 and Theorem 4. It is well-known

in the asymptotic statistics literature [26] that when 𝑛 tends to infinity, under mild local conditions,

√
𝑛(\̂ERM − \∗) 𝑑→ 𝑁 (0, 𝐻−1𝑄𝐻−1), (1.5.10)

where 𝐻 = P∇2ℓ(\∗; 𝑧), 𝑄 = P[∇ℓ(\∗; 𝑧)∇ℓ(\∗; 𝑧)𝑇 ], and
𝑑→ means convergence in distribution.

The asymptotic rate (1.5.10) is often information theoretically optimal under suitable conditions

[44] (e.g., it matches the Hájek-Le Cam asymptotic minimax lower bound [45, 46] when the loss

ℓ(\; 𝑧) is a log likelihood function). The generalization error bounds in Theorem 3 and Theorem

4, which are of the order

E(\̂) ≤ 𝑂
(
P[∥∇ℓ(\∗; 𝑧)∥2] log 1

𝛿

`𝑛

)
, (1.5.11)

are natural finite-sample versions of the “ideal” asymptotic benchmark (1.5.10). This is because

the generalization error E(\̂) can be approximated by the quadratic form (\̂ − \∗)𝑇𝐻 (\̂ − \∗), 1/`

is a natural proxy for the inverse Hessian 𝐻−1, and P[∥∇ℓ(\∗; 𝑧)∥2 is a natural proxy for 𝑄.

In both Theorem 3 and Theorem 4, the sample complexity required to make the generalization

error smaller than a fixed Y > 0 is

𝑛 ≥ Ω

(
𝛽2𝑑

`2 +
P[∥∇ℓ(\∗; 𝑧)∥2] log 1

𝛿

`Y

)
. (1.5.12)

Here we only consider the “interesting” case of Y ∈ (0, `Δ
2
𝑚

2 ) in Theorem 4; otherwise the initial-

ization point \0 will satisfy E(\0) ≤ Y. Clearly, the sample complexity threshold 𝑛 ≥ Ω(𝛽2𝑑/`2)

scales with the dimension 𝑑. This threshold is sharp up to absolute constants—there exist simple

linear regression constructions where we require Ω(𝛽2𝑑/`2) samples [47] to make the empirical

Hessian positive definite. As a result, our overall sample complexity (1.5.12) is essentially the

sharpest result one can expect under the aforementioned assumptions.
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1.6 Applications to non-convex learning and stochastic optimization

In this section we will compare our problem-dependent rates with previous results from two

areas: non-convex learning and stochastic optimization. Another topic that nicely illustrates the

advantages of our approach, Expectation-Maximization algorithms for missing data problems, is

deferred to Section 1.7.

1.6.1 Non-convex learning under curvature conditions

In this subsection we discuss generalization error bounds for non-convex losses that satisfy the

Polyak-Łojasiewicz (PL) condition. The PL condition is one of the weakest curvature conditions

that have been rigorously and extensively studied in the areas of matrix recovery, deep learning,

learning dynamical systems and learning mixture models. See our prior discussion under As-

sumption 3 and the reference thereof for representative models that satisfy this condition, and its

relationship with other curvature conditions. The topic has attracted much recent attention because

there is some empirical evidence suggesting that modern deep neural networks might satisfy this

condition in large neighborhoods of global minimizers [34, 35].

For structured non-convex learning problems, a benchmark approach to prove generalization

error bounds is “uniform convergence of gradients.” [19] presents the “uniform convergence of

gradients” principle and proves dimension-dependent generalization error bounds to several repre-

sentative problems; [20] extends this idea to obtain norm-based generalization error bounds. We

will compare our problem-dependent rates with these results.

Comparison with the results in Mei et al. [19]. The main regularity assumptions imposed in

[19] include: 1) an assumption on the statistical noise of the Hessian matrices, whose content is

similar to our Assumption 1; and 2) an assumption that the random gradients ∇ℓ(\; 𝑧) are 𝐺−sub-

Gaussian for all \ ∈ Θ, which is not used in our framework (in contrast, we only impose a mild

assumption on the gradient noise at \∗). They also assume the Hessian is Lipchitz continuous

which we view as redundant.
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The theoretical foundation in [19] is the following result on the (global) uniform convergence

of gradients: with probability at least 1 − 𝛿,

sup
\∈Θ

∥(P − P𝑛)∇ℓ(\; 𝑧)∥ ≤ 𝑂 ©«𝐺
√︄
𝑑 log 𝑛 log 1

𝛿

𝑛

ª®¬ . (1.6.1)

The sub-Gaussian parameter 𝐺 is larger than the global Lipchitz constant, and can be quite large

in practical applications. From (1.6.1), when the population risk satisfies the PL condition, the

generalization error for a stationary point \̂ of the empirical risk can be bounded as follows:

E(\̂) ≤ 𝑂
(
𝐺2𝑑 log 𝑛 log 1

𝛿

`𝑛

)
. (1.6.2)

[19] also provides guarantees for iterates of the gradient descent algorithm, but the analysis is

specialized to the three applications considered in the paper. It is worth mentioning that [19] also

studies the high-dimensional setting and provides a series of important results; we will not compare

with those.

Our approach improves both the result (1.6.2) as well as the methodology (1.6.1) as follows.

• Our Theorem 3 and Theorem 4 provide generalization error bounds for approximate station-

ary points and iterates of the gradient descent algorithm, which are of the order

E(\̂) ≤ 𝑂
(
P[∥∇ℓ(\∗; 𝑧)∥2] log 1

𝛿

`𝑛

)

Focusing on the the dominating 𝑂 (𝑛−1) term, our new result replaces 𝑂 (𝐺2𝑑 log 𝑛) in the

numerator with the typically much smaller localized quantity P∥∇ℓ(\∗; 𝑧)∥2. In fact, from

the definition of sub-Gaussian vectors, one can prove (see, e.g. [48]) that

P[∥∇ℓ(\∗; 𝑧)∥2] ≪ sup
Θ

P∥∇ℓ(\; 𝑧)∥2 ≤ 8𝐺2𝑑,

so our bounds are always more favorable than (1.6.2). In passing, we also remove a super-
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fluous log 𝑛 factor by using generic chaining rather than simple discretization.

• Our Proposition 2 on the localized uniform convergence of gradients,

∥(P − P𝑛) (∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))∥ ≤ 𝑂
©«𝛽∥\ − \∗∥

√︄
𝑑 + log 2 log(2𝑛Δ𝑀 )

𝛿

𝑛

ª®®¬ ,
strengthens (1.6.1) to a localized result, under fewer assumptions.

We illustrate our improvements on a particular non-convex learning example.

Example 3 (non-convex regression with non-linear activation) Consider the model

ℓ(\; 𝑧) = ([(\𝑇𝑥) − 𝑦)2, (1.6.3)

where [(·) is a non-linear activation function, and there exists \∗ ∈ Θ such that E[𝑦] = [(𝑥𝑇\∗).

This model has been empirically shown to be superior relative to convex formulations in several

applications [49, 50, 51], and is representative of the class of one-hidden-layer neural network

models. Popular choices of [ include sigmoid link [(𝑡) = (1 + 𝑒−𝑡)−1 and probit link [(𝑡) = Φ(𝑡)

where Φ is the Gaussian cumulative distribution function. Under mild regularity conditions, the

population risk Pℓ(\; 𝑧) satisfies the PL condition and the statistical noise conditions.

Assumption 4 (regularity conditions for Example 3) (a) ∥𝑥∥∞ is uniformly bounded by 𝜏, the

feasible parameter set Θ is given by {\ ∈ R𝑑 : ∥\∥ ≤ Δ𝑀
2 }, and 𝐵 is the worst-case boundedness

parameter of ([(\𝑇𝑥) − 𝑦)2 (which can scale with 𝑛). (b) there exist 𝐶[ > 0, 𝑐[ > 0 such that

sup
|𝑡 |≤Δ𝑀𝜏

√
𝑑

max{[′(𝑡), [′′(𝑡)} ≤ 𝐶[, inf
|𝑡 |≤Δ𝑀𝜏

√
𝑑

[′(𝑡) ≥ 𝑐[ .

(c) The feature vector 𝑥 spans all directions in R𝑑 , that is, E[𝑥𝑥𝑇 ] ⪰ 𝛾𝜏2𝐼𝑑×𝑑 for some 0 < 𝛾 < 1.

Under Assumption 4, all of our proposed assumptions in Theorem 3 and Theorem 4 are sat-

isfied. In particular: Assumption 1 holds with 𝛽 = 2𝐶[ (𝐶[ +
√
𝐵)𝜏2; Assumption 2 holds with
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𝐺∗ = 2𝐶[𝜏
√
𝐵𝑑; and Assumption 3 holds with ` =

2𝑐3
[𝜏

2𝛾

𝐶[
(see Appendix A.3.5 for details). Let \̂

be the approximate stationary point in Theorem 3, or the output of the gradient descent algorithm

in Theorem 4 (after running sufficiently many iterations), we have the following corollary.

Corollary 5 (generalization error bound for Example 3) Under Assumption 4,

E(\̂) ≤ 𝑂
(
𝑑L∗(𝜏𝐶[)2 log 1

𝛿

`𝑛

)
, (1.6.4)

where L∗ := P[(𝑦 − [(\∗𝑇𝑥))2] is the population risk at the optimal parameter. \∗.

Since the sub-Gaussian parameter of the random gradient satisfies 𝐺 ≤ 𝑂 (𝜏𝐶[
√
𝐵) under

Assumption 4, the result (1.6.2) in Mei et al. [19] implies a generalization error bound of the order

E(\̂) ≤ 𝑂
(
𝑑𝐵(𝜏𝐶[)2 log 𝑛 log 1

𝛿

`𝑛

)
[existing result [19]], (1.6.5)

where 𝐵 = sup\,𝑥,𝑦 ([(\𝑇𝑥) − 𝑦)2 is the worst-case boundedness parameter. Let us now compare

our result (1.6.4) with the the existing result (1.6.5): 1) our result (1.6.4) improves the worst-case

boundedness parameter 𝐵, replacing it with the much smaller optimal risk L∗; and 2) it removes

the superfluous logarithmic factor log 𝑛.

Comparison with the norm-based generalization error bound in Foster et al. [20]. Let us

now compare our problem-dependent rates with the norm-based bounds in [20] (it is worth men-

tioning that they also provide novel results in the infinite-dimensional and high-dimensional set-

tings). Under the formulation in Example 3 and Assumption 4, the generalization error bound

proved in [20] is of the order

E(\̂) ≤ 𝑂
(
𝑑2𝐵(𝜏𝐶[)4 + 𝑑𝐵(𝜏𝐶[)2 log 1

𝛿

`𝑛

)
[converted from [20]], (1.6.6)

for an approximate stationary point \̂. To be specific, their original result assumes ∥𝑥∥ to be uni-

formly bounded by 𝐷 and the generalization error scales with 𝐷4. Under the standard assumption
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∥𝑥∥∞ ≤ 𝜏 (or 𝑥 being a 𝜏−sub-Gaussian random vector), 𝐷4 is of order 𝜏4𝑑2 so their result does

not achieve optimal dependence on 𝑑 (in the original statements in [20] there is a potential misun-

derstanding of the dependence on 𝑑). Besides improving the worst-case boundedness parameter 𝐵

to the optimal risk L∗, our result (1.6.4) further improves (1.6.6) by order 𝑑 (𝜏𝐶[)2.

Lastly, we comment that there is no formal guarantee on how to find \̂ by an optimization

algorithm in [20]. They merely establish the generalization error bound for approximate stationary

points, but analysis of an optimization algorithm is more challenging because properties of the

population risk may not carry over to the empirical risk.

1.6.2 Stochastic optimization

The parametric learning setting we discussed is sometimes referred to as “stochastic optimiza-

tion” [52, 53]. Beyond supervised learning, stochastic optimization also covers operations research

and system control problems, where the dimension 𝑑 may no longer be pertinent in the general-

ization error bound for sufficiently large 𝑛 (i.e., the bound should be dimension-independent in the

asymptotic regime). Therefore, it is preferable to prove norm-based generalization error bounds,

which do not explicitly scale with 𝑑 after a certain sample complexity threshold.

We compare our results with previous ones in the area of stochastic optimization. Those results

typically assume the population risk to be strongly convex, i.e., there exists ` > 0 such that

∀\1, \2 ∈ Θ,

Pℓ(\1; 𝑧) − Pℓ(\2; 𝑧) − (P∇ℓ(\2; 𝑧))𝑇 (\1 − \2) ≥
`

2
∥\1 − \2∥2.

While this assumption is much more restrictive than our Assumption 3, we note that our problem-

dependent rate and sample complexity results are novel even in this well-studied strongly convex

setting.

Recall that our problem-dependent generalization error bounds in Theorem 3 and Theorem 4
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are of the order

E(\̂) ≤ 𝑂
(
P[∥∇ℓ(\∗; 𝑧)∥2] log 1

𝛿

`𝑛

)
, (1.6.7)

provided 𝑛 ≥ Ω(𝛽2𝑑/`2); and the sample complexity (to achieve Y generalization error) is

𝑛 ≥ Ω

(
𝛽2𝑑

`2 +
P[∥∇ℓ(\∗; 𝑧)∥2] log 1

𝛿

`Y

)
. (1.6.8)

Our results are natural finite-sample extensions of the classical “asymptotic normality” result

(1.5.10), and hence are the sharpest results one can expect under aforementioned assumptions

(see the discussion at the end of Section 1.5).

Comparison with the classical result from Shapiro et al. [54]. Perhaps the most representative

result on the generalization error of empirical risk minimization (also referred to as “sample aver-

age approximation”) in the stochastic optimization literature, is Corollary 5.20 from the monograph

[54]. When the random gradient ∇ℓ(\; 𝑧) is 𝐺−sub-Gaussian for all \ ∈ Θ, that result implies

E(\̂ERM) ≤ 𝑂
(
𝐺2𝑑 log 𝑛 log 1

𝛿

`𝑛

)
. (1.6.9)

One advantage of (1.6.9) is that it does not require the population risk to be smooth. However, the

explicit dependence on 𝑑 and the global sub-Gaussian parameter𝐺 in (1.6.9) make it less favorable

for some operations research applications and M-estimation problems, where the asymptotic com-

plexity (1.5.10) does not depend on 𝑑. It is easy to show that our problem-dependent generalization

error bound (1.6.7) strictly improves on this classical result. Specifically, under the sub-Gaussian

distributional assumptions on gradients, one can prove that

P[∥∇ℓ(\∗; 𝑧)∥2] ≪ sup
\∈Θ
P[∥∇ℓ(\; 𝑧)∥2] ≤ 8𝑑𝐺2.
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Plugging this into (1.6.7) and (1.6.9), we observe that our bound improves on (1.6.9) by removing

dependence on the worst-case 𝐿2 norm of the gradient over the entire parameter space Θ.

Comparison with results obtained from the “online to batch conversion” [55]. By assuming

the population risk is strongly convex and satisfies the following “uniform Lipchitz continuous”

condition,

|ℓ(\1; 𝑧) − ℓ(\2; 𝑧) | ≤ 𝐿unif∥\1 − \2∥, ∀𝑧 ∈ Z, ∀\1, \2 ∈ Θ,

[55] proves an “online to batch conversion” that relates the regret of an algorithm (on past data) to

the generalization performance (on future data). As a result, the output \̂𝑆𝐺𝐷 of certain stochastic

gradient methods (also referred to as “stochastic approximation” in the stochastic optimization

literature) can be proved to satisfy

E(\̂SGD) ≤ 𝑂
(
𝐿2

unif log 1
𝛿

𝑛

)
. (1.6.10)

Note that (1.6.10) does not require any sample size threshold. In contrast, our problem-dependent

generalization error bound (1.6.7) provides an improved rate, but only as long as the sample size

condition 𝑛 ≥ Ω(𝛽2𝑑/`2) is satisfied, because in this case

P[∥∇ℓ(\∗; 𝑧)∥2] ≪ sup
\∈Θ,𝑧∈Z

∥∇ℓ(\; 𝑧)∥2 = 𝐿2
unif.

Plugging this into (1.6.7) and (1.6.10), this claimed improvement can be immediately verified.

Comparison with loss-dependent bounds for ERM in [56]. By imposing both strong convexity

and a uniform smoothness condition, [56] systematically provides dimension-independent general-

ization error bounds for empirical risk minimization. However, there are several limitations in their

approach: 1) their sample complexity threshold to achieve dimension-independent generalization

error is sub-optimal for many popular problems; and 2) many of their assumptions are restrictive
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and not required (as our analysis shows).

The main source of the limitations in [56] is the assumption that ℓ(\; 𝑧) admits a uniform

smooth parameter 𝛽unif, i.e.,

∥∇ℓ(\1, 𝑧) − ∇ℓ(\2, 𝑧)∥ ≤ 𝛽unif∥\1 − \2∥, ∀𝑧 ∈ Z, ∀\1, \2 ∈ Θ. (1.6.11)

This quantity serves as the main complexity proxy. With additional assumptions that ℓ(\, 𝑧) is

non-negative and convex for all 𝑧, Theorem 3 in [56] proves that when

𝑛 ≥ Ω

(
𝛽unif𝑑 log 𝑛

`

)
,

empirical risk minimization achieves the problem-dependent bound

E(\̂ERM) ≤ 𝑂
(
𝛽unifL∗ log 1

𝛿

`𝑛

)
. (1.6.12)

However, as 𝛽unif is effectively the largest value of the operator norm of the Hessian—sup\;𝑧 ∥∇2ℓ(\; 𝑧)∥op,

it scales with dimension 𝑑 in most statistical estimation problems. As a result, the sample com-

plexity threshold Ω(𝛽unif𝑑 log 𝑛/`) becomes sub-optimal for most statistical regression problems.

For example, consider a simple linear regression set up:

ℓ(\; (𝑥, 𝑦)) = (𝑦 − \𝑇𝑥)2, 𝑦 = 𝑥𝑇\∗ + 𝜐, 𝜐 ∼ 𝑁 (0, 1), 𝑥 ∼ 𝑁 (0, 𝜏2𝐼𝑑×𝑑). (1.6.13)

In this example, we have ` = 1 and 𝛽unif = Ω(𝜏2𝑑) , so the sample complexity needed to achieve

Y accuracy in [56] is

𝑛 ≥ Ω

(
𝜏2𝑑2 log 𝑛 + 𝑑L

∗𝜏2

Y

)
[sample complexity [56]], (1.6.14)
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In contrast, our sample complexity (1.6.8) is

𝑛 ≥ Ω

(
𝜏2𝑑 + 𝑑L

∗𝜏2

Y

)
[sample complexity (1.6.8)],

in this example. Therefore, the Ω(𝜏2𝑑2 log 𝑛) term in (1.6.14) is sub-optimal primarily because

the analysis in [56] relies on the uniform smoothness parameter 𝛽unif. Moreover, their assumptions

that ℓ(\; 𝑧) is non-negative and convex for all 𝑧 may rule out interesting stochastic optimization

applications. These are not required by our framework and results.

Comparison to loss-dependent bounds for stochastic gradient methods in [57, 58, 59] The

approach in [56] has been extended to analyze a variant of the stochastic gradient descent algorithm

[57], but the results hold only in expectation rather than with high probability, and they have similar

limitations to the results in [56]. This approach has also been extended to non-convex stochastic

optimization problems [58], where the generalization error bounds are of the from (1.6.10)—they

contain the uniform Lipchitz parameter 𝐿unif and are not problem-dependent.

Recently, [59] provided generalization error bounds for various optimization algorithms in-

cluding SGD and non-convex SVRG, under the assumptions that the loss functions satisfy the PL

condition, admit a uniform smooth parameter 𝛽unif as in (1.6.11), and are non-negative. The gen-

eralization error bounds in [59] (see its Theorem 1) include a statistical error term of the order

(1.6.12) and an optimization error term. As we have argued under (1.6.12) through the linear re-

gression example, the statistical error term in their bounds may be sub-optimal for many problems

including linear regression, because its dependence on the uniform smooth parameter 𝛽unif.

1.7 Learning with missing data and Expectation-Maximization algorithms

In this section we introduce a broad class of applicable non-convex and semi-supervised learn-

ing problems, in the area of “learning with missing data.” We again apply our proposed “uniform

localized convergence” framework and prove a variant of Theorem 4, which gives the sharpest

local convergence rate for first-order Expectation-Maximization (EM) algorithms in many widely
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studied problems. Our analysis improves the framework introduced recently in Balakrishnan et al.

[21].

1.7.1 Background

Convex maximum likelihood estimation problems will generally become non-convex when

there is missing or unobserved data. Assume the data (𝑧, 𝑤) is generated from an unknown distri-

bution specified by the true parameter \∗ ∈ R𝑑 , where 𝑧 ∈ Z corresponds to the observable data,

and 𝑤 ∈ W corresponds to the unobservable data (also referred to as the “latent variable”). For

every \ ∈ R𝑑 , let 𝑓\ (𝑧, 𝑤) be the likelihood of observing 𝑧 conditioned on 𝑤, if the underlying

distribution is specified by \. (Throughout this section we will assume the existence of density

functions for simplicity.) Consider the loss function

ℓ(\; 𝑧) = − log
[∫

W
𝑓\ (𝑧, 𝑤)𝑑𝑤

]
. (1.7.1)

Our goal is to estimate the true parameter \∗, which minimizes the population risk

Pℓ(\; 𝑧) =
∫
Z
ℓ(\; 𝑧)𝑑𝑧

over all \ ∈ R𝑑 . (Equivalently, \∗ maximizes the population log-likelihood function.) The

main challenge is that Pℓ(\; 𝑧) is typically non-convex, despite the fact that the conditional log-

likelihood function log 𝑓\ (𝑧, 𝑤) would usually be convex with respect to \, if both 𝑧 and 𝑤 were

observable.

The following ℓ\′ (\; 𝑧) function provides a convex upper bound on ℓ(\; 𝑧), and can be inter-

preted as the conditional expectation of the loss, as if \′ is the true parameter \∗:

ℓ\′ (\; 𝑧) = −
∫
W
𝑘\′ (𝑤 |𝑧) log 𝑓\ (𝑧, 𝑤)𝑑𝑤,

where 𝑘\′ (𝑤 |𝑧) is the conditional density of 𝑤 given 𝑧. Denote ∇\ℓ\′ (\; 𝑧) the gradient of ℓ\′ (\; 𝑧)
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when fixing \′. From the definition of 𝑘\′ (𝑤 |𝑧), it is easy to verify that the vector-value of

∇\ℓ\′ (\; 𝑧) at \′ is exactly the gradient of ℓ(\′; 𝑧): that is, for all \, \′ ∈ Θ,

∇\ℓ\′ (\; 𝑧) |\=\′ = ∇ℓ(\′; 𝑧). (1.7.2)

In view of the identity (1.7.2), it is known [21] that gradient descent on the empirical risk P𝑛ℓ(\; 𝑧)

is equivalent to the first-order Expectation-Maximization algorithm: at the 𝑡−th iteration, the “ex-

pectation” step calculates the sample average P𝑛ℓ\𝑡 (\; 𝑧), and the “maximization” step executes

the first-order update

\𝑡+1 = \𝑡 − 𝛼∇P𝑛∇ℓ\𝑡 (\𝑡 ; 𝑧) = \𝑡 − 𝛼∇P𝑛∇ℓ(\𝑡 ; 𝑧), (1.7.3)

where 𝛼 > 0 is the step size. First-order EM is known to be more computationally efficient than

standard EM, and more amendable for analysis [21].

Examples of learning with missing data problems for which the above observations apply in-

clude the followings.

Example 4 (Mixture of two Gaussians) In this problem, the missing variable 𝑤 ∈ {−1, 1} is an

indicator of the underlying mixture component, which has 1
2 probability to be 1 and the other 1

2

probability to be −1. Conditioned on 𝑤, the observable variable 𝑧 is generated as follows.

(𝑧 |𝑤 = 1) ∼ 𝑁 (\∗, 𝜎2𝐼𝑑×𝑑), (𝑧 |𝑤 = −1) ∼ 𝑁 (−\∗, 𝜎2𝐼𝑑×𝑑).

For this problem, we have

ℓ\′ (\; 𝑧) = 𝑤\′ (𝑧)
2

∥𝑧 − \∥2 + (1 − 𝑤\′ (𝑧))
2

∥𝑧 + \∥2,

where 𝑤\′ (𝑧) = 𝑒−
∥ \′−𝑧 ∥2

2𝜎2 [𝑒−
∥ \′−𝑧 ∥2

2𝜎2 + 𝑒−
∥ \′+𝑧 ∥2

2𝜎2 ]−1.

Example 5 (Mixture of two component linear regression) In this problem, 𝑥 ∼ 𝑁 (0, 𝐼𝑑×𝑑) is a
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random feature vector, and 𝑤 ∈ {−1, 1} is a missing indicator variable that has 1
2 probability to be

1 and 1
2 probability to be −1. Conditioned on 𝑤 and 𝑥, the label variable 𝑦 is generated as follows.

(𝑦 |𝑤 = 1, 𝑥) ∼ 𝑁 (𝑥𝑇\∗, 𝜎2), (𝑦 |𝑤 = −1, 𝑥) ∼ 𝑁 (−𝑥𝑇\∗, 𝜎2).

In this problem, the observable variable 𝑧 is the feature-label pair (𝑥, 𝑦), and we have

ℓ\′ (\; 𝑧) = 𝑤\′ (𝑥, 𝑦)
2

(𝑦 − 𝑥𝑇\)2 + 1 − 𝑤\′ (𝑥, 𝑦)
2

(𝑦 + 𝑥𝑇\)2,

where 𝑤\′ (𝑥, 𝑦) = 𝑒−
(𝑥𝑇 \′−𝑦)2

2𝜎2 [𝑒−
(𝑥𝑇 \′−𝑦)2

2𝜎2 + 𝑒−
(𝑥𝑇 \′+𝑦)2

2𝜎2 ]−1.

1.7.2 Problem-dependent rates for first-order EM

Motivated by the breakthrough work Balakrishnan et al. [21], we assume that the feasible

parameter space Θ contains the true parameter \∗, and satisfies the two assumptions.

Assumption 5 (strong convexity of Pℓ𝜽∗ (𝜽; 𝒛)) There exists `1 > 0 such that ∀\1, \2 ∈ Θ

Pℓ\∗ (\; 𝑧) − Pℓ\∗ (\∗; 𝑧) ≤
∥P∇ℓ\∗ (\; 𝑧)∥2

2`1
.

Recall that Pℓ\∗ (\; 𝑧) is the underlying “true” log likelihood with respect to parameter \, which is

unknown due to lack of information on \∗. It is standard to assume that Pℓ\∗ (\; 𝑧) is a strongly

convex when there is no missing data [60, 21].

Assumption 6 (gradient smoothness) There exists 0 < `2 < `1 such that ∀\ ∈ Θ

∥P∇ℓ\ (\; 𝑧) − P∇ℓ\∗ (\; 𝑧)∥ ≤ `2∥\ − \∗∥.

Assumption (6) is also assumed in [21]. While this assumption does not typically hold over all

\ ∈ R𝑑 , it is often satisfied with small enough `2 over a local region around the true parameter \∗

[21, 61]. Under the above two assumptions, according to the identity (1.7.2), the gradient of the
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population risk,

P∇ℓ(\; 𝑧) = P∇ℓ\ (\; 𝑧),

can be viewed as a perturbation of ∇ℓ\∗ (\; 𝑧)—the gradient of the strongly convex function Pℓ\∗ (\; 𝑧).

Therefore, Assumption 5 and Assumption 6 play a similar role to that of the PL condition that we

have analyzed in Section 1.5.3. The following theorem can be viewed as a modification of our

previous Theorem 4, where the proof is tailored to these new assumptions but the key ideas remain

mostly similar.

Theorem 6 (generalization error of first-order EM) Assume Assumptions 1, 2, 5, 6, and as-

sume access to an initialization \0 ∈ B𝑑 (\∗,Δ𝑚). For any fixed 𝛿 ∈ (0, 1), iterates of the first-order

EM algorithm {\𝑡} generated by (1.7.3) with the fixed step size 2
𝛽+`1

satisfy with probability at least

1 − 𝛿 and all 𝑡 = 0, 1, . . . ,

E(\𝑡) ≤ 16𝛽
`2

1

©«
√︄

2P[∥∇ℓ(\∗; 𝑧)∥2] log 4
𝛿

𝑛
+
𝐺∗ log 4

𝛿
+ `1

𝑛

ª®¬
2

+
(
1 − 2`1 − `2

2(𝛽 + `1)

)2𝑡
𝛽∥\0 − \∗∥2, and

∥\𝑡 − \∗∥ ≤ 4
`1

©«
√︄

2P[∥∇ℓ(\∗; 𝑧)∥2] log 4
𝛿

𝑛
+
𝐺∗ log 4

𝛿
+ `1

𝑛

ª®¬ +
(
1 − 2`1 − `2

2(𝛽 + `1)

) 𝑡
∥\0 − \∗∥,

(1.7.4)

provided the sample size condition 𝑛 ≥ max
{
𝑐𝛽2

`2
1

(
𝑑 + log 8 log2 (2𝑛Δ𝑀+2)

𝛿

)
,

128P[∥∇ℓ(\∗;𝑧)∥2] log 4
𝛿

`1Δ𝑀
,

8𝐺∗ log 4
𝛿
+8`1

`1Δ𝑀

}
holds, where 𝑐 is an absolute constant.

We comment that it is usually straightforward to verify Assumption 1 for a specific missing

data applications (no harder than verifying it on the completely observable case). From Lemma 2,

we only need to show that the hessian matrices { 𝜕2

𝜕\2 [− log 𝑓\ (𝑧, 𝑤)]}\∈Θ are sub-exponential for
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all fixed 𝑤 and \. That is,

E

{
exp

(
1
𝛽

����𝑢𝑇1 (
𝜕2 [log 𝑓\ (𝑧, 𝑤)]

𝜕\2

)
𝑢2

����)} ≤ 2, (1.7.5)

for any unit vectors 𝑢1, 𝑢2, any 𝑧 and any \ ∈ Θ. Typically, condition (1.7.5) simply requires that

the observable data 𝑧 be a sub-Gaussian vector, regardless of the (fixed) values the unobservable

data 𝑤 take.

As a result, Theorem 6 applies to a broad class of “learning with missing data” problems,

including Example 4 and Example 5. In order to validate Assumption 6 on these two examples, a

common strategy [21] is to assume the signal-to-noise ratio (SNR) to be lower bounded as

∥\∗∥
𝜎

≥ [, (1.7.6)

for some absolute constant [ > 0. The following corollary holds under identical assumptions on [

as in [21].

Corollary 7 (Theorem 6 applied to Example 4 and Example 5) In both Example 4 and Exam-

ple 5, after sufficiently many iterations, the first-order EM algorithm with step size 1 satisfies the

generalization error bound

E(\𝑡) ≤ 𝑂
(
𝜎2𝑑 log 1

𝛿

𝑛

)
.

Specifically,

• For the Gaussian mixture model (Example 4), assuming the signal-to-noise condition (1.7.6)

holds, and the initialization point satisfies \0 ∈ B𝑑 (\∗, ∥\
∗∥

4 ), then the result of Theorem 6

holds with 𝛽 = 1, 𝐺∗ = 𝜎
√
𝑑, `1 = 1 and `2 = 𝑐1(1 + 1

[2 + [2)𝑒−𝑐2[
2
, where 𝑐1, 𝑐2 are

absolute constants.

• For the mixture of linear regression model (Example 5), assuming the signal-to-noise condi-
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tion (1.7.6), and the initialization point satisfies \0 ∈ B𝑑 (\∗; ∥\∗∥
32 ), then the result of Theorem

6 holds with 𝛽 = 1, 𝐺∗ = 𝜎
√
𝑑, `1 = 1 and `2 = 1

4 .

Proofs can be found in Appendix A.3.7. Notably, our results do not depends on ∥\∗∥, and

hence refine those in [21]. Our generalization error bounds for EM in Example 4 and Example 5

are information-theoretically optimal, because𝑂 (𝜎2𝑑/𝑛) is also the optimal rate for learning from

a single Gaussian without mixture and linear regression without mixture!

1.7.3 Discussion and improvements over previous results

In this subsection, we will first compare our general theory with the methodology in Balakrish-

nan et al. [21]. Then, we will discuss the improvement over [21] as illustrated in Example 4 and

Example 5. Lastly, we will provide some intuition pertaining to this improvement.

Improvements in the methodology. We now restate the theoretical result from Balakrishnan et

al. [21] on the estimation error of first-order EM. Assume with probability at least 1 − 𝛿,

sup
Θ

∥(P − P𝑛)∇ℓ\ (\; 𝑧)∥ ≤ Yunif(𝑛, 𝛿). (1.7.7)

When the sample size 𝑛 is large enough, [21] proves that the first-order EM iterates {\𝑡}∞
𝑡=0 satisfy

∥\𝑡 − \∗∥ ≤ 𝑂
(
Yunif(𝑛, 𝛿)
`1 − `2

)
+

(
1 − 2`1 − `2

𝛽 + `1

) 𝑡
∥\0 − \∗∥. (1.7.8)

Compared with (1.7.4) in Theorem 6, the approach in [21] has two main limitations.

• The result (1.7.8) contains a loose, global uniform convergence terms Yunif(𝑛, 𝛿) defined

via (1.7.7). In contrast, our Theorem 4 suggests that the statistical error only depends on

the concentration of P𝑛∇ℓ(\∗; 𝑧) relative to P∇ℓ(\∗; 𝑧) at the single point \∗. The precise

improvement will be illustrated on Example 4 and Example 5 shortly.

• [21] does not discuss how to calculates the complex uniform convergence term Yunif(𝑛, 𝛿)

51



for general models. In fact, [21] only calculate this term for Example 4. For the rest of the

applications they consider, they turn to analyze sample-splitting heuristics. Although these

heuristics are easier to analyze, they are less common in practice. In contrast, our Theorem

6 applies to general models without leaving the uniform convergence term unspecified.

Improvements on the examples. For the mixture of two Gaussians (Example 4), [21] proves

that after sufficiently many iterations, the first-order EM algorithm satisfies the generalization error

bound

E(\𝑡) ≤ 𝑂
©«
∥\∗∥2

(
1 + ∥\∗∥2

𝜎2

)
𝑑 log 1

𝛿

𝑛

ª®®¬ [GMM result [21]], (1.7.9)

and for the mixture of regressions (Example 5), [21] proves that after sufficient iterations, the

first-order EM algorithm satisfies the generalization error bound

E(\𝑡) ≤ 𝑂
( (
𝜎2 + ∥\∗∥2) 𝑑 log 1

𝛿

𝑛

)
[regression result [21]] . (1.7.10)

In contrast, our problem-dependent generalization error bounds given by Corollary 7 are of the

order

E(\𝑡) ≤ 𝑂
(
𝜎2𝑑 log 1

𝛿

𝑛

)
[Corollary 7],

which exhibits an improvement over the previous results (1.7.9) (1.7.10) from [21], under identical

assumptions on the signal-noise ratio (∥\∗∥/𝜎 ≥ [, where [ is a sufficiently large absolute constant

specified in [21]). In particular, in the high signal-to-noise ratio regime, ∥\∗∥2 ≫ 𝜎2 so our

improvements are significant.

Tight characterization of the statistical error is traditionally considered challenging in the area

of mixture models. Only recently, [62] provided a refined analysis of the mixture of regression

problem (Example 5), and proved that the achievable generalization error is indeed of the order
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(
𝜎2𝑑 log 1

𝛿
/𝑛

)
. However, the analysis in [62] is fairly involved and customized to the specifics of

the mixture of regression setting, and it is not clear how to extend the analysis to more general

problems. Our theory can be applied to quite general settings, and moreover simplifies existing

approaches.

From our theory, the optimal 𝑂
(
𝜎2𝑑 log 1

𝛿
/𝑛

)
characterization is very natural. Theorem 6 indi-

cates the crucial fact that statistical error of the first-order EM algorithm only relies on P[∥∇ℓ(\∗; 𝑧)∥2],

a quantity that depends only on the optimal parameter \∗.

We now use Example 4 to illustrate the simplicity of our analysis. Define the function 𝑔 : R→

R+ as

𝑔(𝑢) = 2𝑒−
∥2\∗−𝑢∥2

2𝜎2

𝑒
− ∥𝑢∥2

2𝜎2 + 𝑒−
∥2\∗−𝑢∥2

2𝜎2

, (1.7.11)

where 𝑢 is a random vector drawn from 𝑁 (0, 𝜎2𝐼𝑑×𝑑). In the high SNR regime, 𝑔(𝑢) is anticipated

to be very close to zero with high probability, due to the fact that

∥𝑢∥2

2𝜎2 ≫ ∥2\∗ − 𝑢∥2

2𝜎2 .

In the Gaussian mixture model, whether 𝑤 = 1 or 𝑤 = −1, it is straightforward to show that when

conditioned on 𝑤, the random vector (∇ℓ(\∗; 𝑧) |𝑤) has the same distribution as 𝑢(1 − 𝑔(𝑢)) +

\∗𝑔(𝑢). As a result, we have

P[∥∇ℓ(\∗; 𝑧)∥2] = E𝑢 [∥𝑢 · (1 − 𝑔(𝑢)) + \∗ · 𝑔(𝑢)∥2] . (1.7.12)

As 𝑔(𝑢) is very close to 0 with high probability, P[∥∇ℓ(\∗; 𝑧)∥2] should only scale with E𝑢 [∥𝑢∥2] =

𝜎2𝑑 rather than ∥\∗∥. This intuition also applies to other examples like the mixture of linear

regression model.
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1.8 Concluding remarks

This paper provides contributions both in the “uniform localized convergence” approach it

develops, as well as the applications thereof to various problems areas. Below we highlight some

key implications.

From a methodological viewpoint, our approach resolves some fundamental limitations of the

existing uniform convergence and localization analysis methods, such as the traditional “local

Rademacher complexity” analysis and the “uniform convergence of gradients.” At a high-level, it

provides some general guidelines to derive generalization error bounds that are sharper than the

worst-case uniform error. In particular, the following observations are of particular interest: 1)

problem-dependent rates can often be explained by uniform inequalities whose right hand side

is a function of the “free” variable 𝑇 ( 𝑓 ); 2) the choice of surrogate function and concentrated

function are flexible, and our proposed framework brings some level of unification to localized

complexities, vector-based uniform convergence results and one-sided uniform inequalities; and 3)

“uniform localized convergence” arguments are also suitable to study regularization and iterative

algorithms. These observations lead to a unified perspective on problem-dependent rates in various

problem settings studied in the paper.

Many problem-dependent generalization error bounds proved in the paper may be of inde-

pendent interest. Their study also informs the design of optimal procedures. For example: in

the “slow rate” regime, we propose the first (moment-penalized) estimator that achieves optimal

variance-dependent rates for general “rich” classes; and in the parametric “fast rate” regime, we

show that efficient algorithms like gradient descent and the first-order Expectation-Maximization

algorithm can achieve optimal problem-dependent rates in several representative problems from

non-convex learning, stochastic optimization, and learning with missing data.

There are several future directions for this line of research. Applications to machine learning

problems with unobservable components or causal effects may be very promising, as the focus

there is typically on avoiding worst-case parameter-dependence. It is particularly intriguing to
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extend our approach to study singular statistical models such as mixture models in the low SNR

regime and over-parameterized low-rank matrix factorization [63]. Another interesting topic is

applying the “uniform localized convergence” principle to study distributional robustness, since

there are profound connections between the latter and variation-based regularization [4, 64]. Lastly,

extension of our framework to overparameterized models is interesting from both the theoretical

and practical viewpoints. Our results in the slow rate regime may be directly applicable to the

study of overparameterized neural networks, in particular, if one has sharp upper bounds on the

local Rademacher complexity. While there has been much recent interest in proving norm-based

upper bounds on the global Rademacher complexity for neural network models [65, 66], proving

meaningful upper bounds on the local Rademahcer complexity remains largely open. It is worthy

mentioning that the recent negative results in [67, 68] neither apply to our general framework nor

the notion of problem-dependency we suggest (distribution-dependent quantities that depend on

the best hypothesis). It is possible that combining our framework with more suitable concentrated

functions and localized subsets (e.g., generalizing the data-dependent subset considered in [69])

may shed light also on the study of some overparameterized models.
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Chapter 2: Upper Counterfactual Confidence Bounds: a New Optimism

Principle for Contextual Bandits

The principle of optimism in the face of uncertainty is one of the most widely used and suc-

cessful ideas in multi-armed bandits and reinforcement learning. However, existing optimistic

algorithms (primarily UCB and its variants) are often unable to deal with large context spaces. Es-

sentially all existing well performing algorithms for general contextual bandit problems rely on

weighted action allocation schemes; and theoretical guarantees for optimism-based algorithms are

only known for restricted formulations. In this paper we study general contextual bandits under

the realizability condition, and propose a simple generic principle to design optimistic algorithms,

dubbed “Upper Counterfactual Confidence Bounds” (UCCB). We show that these algorithms are

provably optimal and efficient in the presence of large context spaces. Key components of UCCB

include: 1) a systematic analysis of confidence bounds in policy space rather than in action space;

and 2) the potential function perspective that is used to express the power of optimism in the con-

textual setting. We further show how the UCCB principle can be extended to infinite action spaces,

by constructing confidence bounds via the newly introduced notion of “counterfactual action di-

vergence.”

2.1 Introduction

2.1.1 Motivation.

Algorithms that rely on the “optimism principle” have been a major cornerstone in the study

of multi-armed bandit (MAB) and reinforcement learning problems. Roughly speaking, optimistic

algorithms are those that choose a deterministic action at each round, based on some optimistic

estimate of future rewards. Perhaps the most representative example is the celebrated Upper Con-
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fidence Bounds (UCB) algorithm and its many variants. Popularity of optimistic algorithms stems

from their simplicity and effectiveness: the analysis of UCB-type algorithms are usually more

straightforward than alternative approaches, so they have become the “meta-algorithms” for more

complex settings. They are also often preferable to weighted allocations among actions because

of the ability to discard sub-optimal actions and achieve superior instance-dependent empirical

performances.

Despite their prevalent use in traditional bandit problems, existing UCB-type algorithms have

a glaring drawback in contextual MAB settings: their regret often scales with the cardinality of

the context space. (Notable exceptions are the special “linear payoff” formulation [70] and its

generalized-linear variant [71].) In particular, despite encouraging empirical observations [72],

optimism-based algorithms provably achieve sub-linear regret only under restrictive distributional

assumptions [73]. This motivates the main problem studied in the paper:

Is there a generic principle that ensures that optimistic algorithms are optimal and efficient for

general contextual bandit problems?

Interestingly, whether computationally efficient or not, almost all existing solutions to general

contextual bandits [74, 75, 76, 77, 78, 79] rely on weighted, randomized allocations among ac-

tions at each round—we refer to these as “randomized algorithms” in the paper. Moreover, there

is little focus on contextual MAB with infinite actions, which we believe to be a natural setting to

illustrate simplicity and universality of optimism-based algorithms. These observations motivate

us to search for a new optimism principle in the presence of large context spaces.e is little focus on

contextual MAB with infinite actions, which we believe to be a natural setting to illustrate simplic-

ity and universality of optimism-based algorithms. These observations motivate us to search for a

new optimism principle in the presence of large context spaces.

2.1.2 The contextual MAB problem

The canonical stochastic contextual bandit problem can be described as follows. Let A be the

action set (in the initial parts of the paper, one can think of A as the integer set {1, . . . , 𝐾}, which
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we generalize later on), and X be the space of contexts that supports the distribution DX (e.g.,

X can be a subset of Euclidean space). For all 𝑥 ∈ X, 𝑎 ∈ A, denote D𝑥,𝑎 a reward distribution

determined by context 𝑥 and action 𝑎. At each round 𝑡 = 1, . . . , 𝑇 , the agent first observes a

context 𝑥𝑡 drawn i.i.d. according to DX . She then chooses an action 𝑎𝑡 ∈ A based on 𝑥𝑡 and the

history 𝐻𝑡−1 generated by {𝑥𝑖, 𝑎𝑖, 𝑟𝑖 (𝑥𝑖, 𝑎𝑖)}𝑡−1
𝑖=1 , and finally observes the reward 𝑟𝑡 (𝑥𝑡 , 𝑎𝑡), which

is conditionally independent and distributed according to the distribution D𝑥𝑡 ,𝑎𝑡 . We assume the

rewards take values in the interval [0, 1]. An admissible contextual bandit algorithm Alg is a

(possibly randomized) procedure that associates each realization of {𝐻𝑡−1, 𝑥𝑡} with an action 𝑎𝑡 to

employ at round 𝑡.

Previous literature on contextual MAB problems can be sorted into two categories: the realiz-

able setting and the agnostic setting. In the realizable setting, the agent has access to a function

class F , with its members 𝑓 ∈ F being mappings from X ×A to [0, 1]. The following is referred

to as the realizability condition [70, 76, 73, 78, 79] :

Assumption 7 (realizability) There exists 𝑓 ∗ ∈ F such that for all 𝑡 ≥ 1, 𝑥 ∈ X, 𝑎 ∈ A, the

conditional mean reward, E[𝑟𝑡 (𝑥𝑡 , 𝑎𝑡) |𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎], is equal to 𝑓 ∗(𝑥, 𝑎).

We call a mapping 𝜋 : X → A from the context space X to the action set A a “policy.” (Those

mappings may be referred to more precisely as “deterministic stationary policies;” in this paper

we often just refer to them as “policies” with slight abuse of terminology.) Let 𝜋 𝑓 ∗ , defined by

𝜋 𝑓 ∗ (𝑥) = arg max 𝑓 ∗(𝑥, 𝑎), be the “ground truth” optimal policy. The cumulative (pathwise) regret

of a contextual bandit algorithm Alg compared with the optimal policy 𝜋 𝑓 ∗ after 𝑇 rounds is

Regret(𝑇,Alg) :=
𝑇∑︁
𝑡=1

(𝑟𝑡 (𝑥𝑡 , 𝜋 𝑓 ∗ (𝑥𝑡)) − 𝑟𝑡 (𝑥𝑡 , 𝑎𝑡)),

and the agent aims to minimize this cumulative regret. The agnostic setting [74, 80, 75, 77], on the

other hand, does not make such realizability assumption; instead, algorithms are compared with

the best policy within a given policy class. In this paper we focus on the realizable setting which

lends itself more naturally to the design of optimism-based algorithms.
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We present some examples of the realizable setting. The most well-studied contextual MAB

problems are simple variants of the “linear payoff” model [70, 71]

F = { 𝑓 : 𝑓 (𝑥, 𝑎) = \𝑇𝑥𝑎, \ ∈ Θ}, Θ,X ⊆ R𝑑 , 𝑥 = (𝑥𝑎)𝑎∈{1,...,𝐾} . (2.1.1)

One motivation towards general function classes is to encompass models of the form

F = { 𝑓 : 𝑓 (𝑥, 𝑎) = 𝑔𝑎 (𝑥), 𝑔𝑎 ∈ G, 𝑎 ∈ {1, . . . , 𝐾}}, (2.1.2)

where parameters of 𝑔𝑎 : X → R can be distinct for different actions [81, 82]; it is also desirable

to handle complex nonlinear models (such as neural networks) which are much more expressive

than their linear counterparts.

On the computation side, we make the rather benign assumption the the agent has access to

a pre-specified least square oracle over F . Formally, after the agent inputs the historical data

{𝑥𝑖, 𝑎𝑖, 𝑟𝑖 (𝑥𝑖, 𝑎𝑖)}𝑡−1
𝑖=1 , the least square oracle outputs a solution �̂�𝑡 ∈ F that provides the best fit,

namely,

�̂�𝑡 ∈ arg min
𝑓 ∈F

𝑡−1∑︁
𝑖=1

( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2. (2.1.3)

This is the simplest optimization oracle assumed in the contextual bandit literature. We assume the

least square oracle to be deterministic, for simplicity, as there may be multiple solutions to (2.1.3).

2.1.3 Introducing UCCB: two equivalent viewpoints

This subsection will describe the UCCB principle introduced in this paper from two equivalent

viewpoints: 1) implicitly, it is an upper confidence bound rule in policy space; and 2) explicitly, it

calculates the upper confidence bound via simulating counterfactual action trajectories rather than

using the original action trajectory. For illustration purpose we focus on the finite-action setting

where A = {1, . . . , 𝐾}; extension to infinite action spaces will be discussed later in Section 2.4.
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Implicit strategy: maximizing upper confidence bounds in policy space. Let Π be the policy

space that contains all deterministic stationary policies 𝜋 : X → {1, . . . , 𝐾}. The core idea of

UCCB is to choose policies that maximize certain upper confidence bounds in the policy space Π.

After initialization, for each round 𝑡, data {(𝑥𝑖, 𝑎𝑖), 𝑟𝑖}𝑡−1
𝑖=1 is sent to an offline least square oracle to

compute the estimator �̂�𝑡 ∈ F . Without the need to “see” 𝑥𝑡 , the agent selects the optimistic policy

𝜋𝑡 ∈ Π (which is a mapping from X to the action set {1, . . . , 𝐾}) such that

𝜋𝑡 ∈ arg max
𝜋∈Π

{
E𝑥 [ �̂�𝑡 (𝑥, 𝜋(𝑥)] + E𝑥

[
𝛽𝑡∑𝑡−1

𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]
+ 𝐾𝛽𝑡

𝑡

}
, (2.1.4)

where the expectation E𝑥 [·] is history-independent and taken with respect to the distribution DX

(over the random context 𝑥), and 𝛽𝑡 is a parameter related to the complexity of the function class.

(When there are multiple solutions to (2.1.4), we take 𝜋𝑡 to be the unique solution such that for all

other solutions 𝜋′ to (2.1.4) and all 𝑥 ∈ X, the index of the action 𝜋𝑡 (𝑥) is smaller than the index of

the action 𝜋′(𝑥).) Then the agent observes 𝑥𝑡 and selects the action 𝑎𝑡 = 𝜋𝑡 (𝑥𝑡). The right hand side

of (2.1.4) is an upper confidence bound on the true expected reward of 𝜋, because we can prove

that with high probability, for all 𝜋 ∈ Π,

��E𝑥 [ 𝑓 ∗(𝑥, 𝜋(𝑥))] − E𝑥 [ �̂�𝑡 (𝑥, 𝜋(𝑥)]�� ≤ E𝑥 [
𝛽𝑡∑𝑡−1

𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]
+ 𝐾𝛽𝑡

𝑡
.

Explicit strategy: constructing confidence bounds via counterfactual actions. The distribu-

tion DX is unknown so there are both statistical and computational challenges in the optimization

over policies. However, since our proposed policy optimization problem (2.1.4) is decomposable

across contexts, there is an equivalent strategy where no explicit policy optimization is required:

at round 𝑡, after observing 𝑥𝑡 , the agent selects the optimistic action

𝑎𝑡 ∈ arg max
𝑎∈{1,...,𝐾}

{
�̂�𝑡 (𝑥𝑡 , 𝑎) +

𝛽𝑡∑𝑡−1
𝑖=1 1{𝑎 = �̃�𝑡,𝑖}

}
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(ties broken by choosing the action with the smallest index), where {�̃�𝑡,𝑖}𝑡−1
𝑖=1 is the counterfac-

tual action trajectory for context 𝑥𝑡 , defined as realizations of all past chosen policies {𝜋𝑖}𝑡−1
𝑖=1 on

the context 𝑥𝑡 . To recover the counterfactual actions, at round 𝑡, the agent runs an inner loop to

sequentially generate �̃�𝑡,1, . . . , �̃�𝑡,𝑡−1: for 𝑖 = 1, . . . , 𝑡 − 1,

�̃�𝑡,𝑖 ∈ arg max
𝑎∈{1,...,𝐾}

{
�̂�𝑖 (𝑥𝑡 , 𝑎) +

𝛽𝑖∑𝑖−1
𝑗=1 1{𝑎 = �̃�𝑡, 𝑗 }

}
,

(ties are broken by choosing the action with the smallest index). Our approach is clearly quite

distinct from previous variants of UCB, as we construct confidence bounds by using simulated

counterfactual actions rather than using the actual selected actions.

The UCCB principle leads to provably efficient optimism-based algorithms for general function

classes: their regret bounds do not scale with the cardinality of the context spaces, and the required

offline least square oracle is feasible for most natural function classes.

2.1.4 Related literature

We review previous works in the following three areas.

Randomized solutions to general contextual bandits (with finite actions). In the agnostic con-

textual bandits setting, the minimax regret is 𝑂 (
√︁
𝐾𝑇 log |Π̄ |)1 given a finite policy class Π̄ ⊂ Π.

The earliest optimal solution to agnostic contextual bandits is the EXP4 algorithm [74] whose com-

putation is linear in |Π̄ |. There are two optimal oracle-efficient randomized algorithms using the

cost-sensitive classification (CSC) oracle: Randomized UCB [75] and ILOVETOCONBANDIT

[77].

In this paper, we focus on the realizable contextual bandits setting. Here, the minimax regret of

stochastic contextual bandits is 𝑂 (
√︁
𝐾𝑇 log |F |) for a general finite function class F . In [76] the

non-efficient algorithm Regressor Elimination was proposed to achieve optimal regret.

1we adopt non-asymptotic big-oh notation: for functions ℎ1, ℎ2, ℎ1 = 𝑂 (ℎ2) if there exists constant 𝐶 >

0 such that ℎ1 is dominated by 𝐶ℎ2 with high probability (omitting log 1
𝛿

factors); ℎ1 = �̃� (ℎ2) if ℎ1 =

𝑂 (ℎ2 max{1, polylog(ℎ2)}).
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[78] proposed the use of an online regression oracle and gave an optimal and oracle-efficient al-

gorithm called SquareCB, however the online regression oracle is only computationally efficient

for specific function classes.

The open problem of optimal realizable contextual MAB with an offline least square oracle

was first solved by [79], with a randomized algorithm called FALCON. One very inspiring aspect

of FALCON is that weighted allocation in policy space can be implicitly achieved by weighted

allocation over actions under the realizability assumption—this implication was referred to as “by-

passing the monster” in [79]. This motivates the investigation in the present paper that considers

implicit optimization over policies when designing optimistic algorithms. Unlike the FALCON

algorithm, our approach is predicated on computing counterfactual action trajectories.

Variants of UCB for particular contextual bandit problems. Variants of LinUCB are well-

known to be regret-optimal and efficient for simple variants of (2.1.1). However, for general func-

tion classes, existing variants of UCB typically have their regret scaling with |X| [83], except under

strong assumptions on the data distribution [73]. UCB has also been used as a subroutines in con-

textual bandits when the functions in F admit smoothness or Lipchitz continuity over X [84, 85].

These works are usually based on discretization of X.

Contextual bandits with infinite actions. There is far less discussion of the infinite-action con-

textual bandit problem with general function classes. [86] studies how to reduce realizable contex-

tual MAB with infinite actions to an online learning oracle called knows-what-it-knows (KWIK),

but this oracle is only known to exist for restricted function classes. [78] studies how to com-

bine general function classes with a linear action model (our illustrative example (2.4.1) in Section

2.4). However, their results crucially rely on the restrictive assumption that the action set A is

the unit ball, and they assume access to the online regression oracle which is not computationally

efficient in general. Lastly, [87] studies infinite-action contextual bandits in a quite general agnos-

tic setting. Their formulation and results are quite different from ours, and they do not provide a

computationally efficient algorithm.
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2.1.5 Organization

In Section 2.2 we introduce an optimal and efficient optimistic algorithm in the finite-action

setting, and explain the key ideas underlying its principles. For illustrative purpose we assume the

function class F to be finite in Section 2.2, and present extensions to infinite function classes in

Section 2.3. In Section 2.4 we introduce a unified framework for contextual bandits with infinite

action spaces, and present several interesting examples for which our work gives rise to the first

efficient solutions. In Section 2.5 we propose an optimistic subroutine to generalize randomized

algorithms to the infinite-action setting.

2.2 Upper counterfactual confidence bounds

Following previous works [76, 73, 78, 79], we start by assuming A = {1, . . . , 𝐾}, |F | < ∞,

and target the “gold standard” in this area—Regret(𝑇,Alg) ≤ �̃� (
√︁
𝐾𝑇 log |F |), which emphasises

the logarithmic scaling in the cardinality |F |. This is mainly for illustrative purposes, and we

discuss extensions to infinite function classes in Section 2.3. A relatively new setting which has

essentially not been explored is the infinite-action setting, which we will discuss in Section 2.4.

2.2.1 The algorithm

We present the algorithm that formalizes the high-level descriptions presented in Section 2.1.3,

where {𝛽𝑡}∞𝑡=1 are tuning parameters that depends on the statistical complexity of F . With the

choice 𝛽𝑡 =
√︁

17𝑡 log(2|F |𝑡3/𝛿)/𝐾 for finite F , the algorithm is simple and achieves �̃� (
√︁
𝐾𝑇 log |F |)

regret, which is optimal up to log𝑇 factors. On the computation side, the algorithm executes no

more than 𝑇2 maximizations over actions and no more than 𝑇 calls to the regression oracle.

Theorem 8 (Regret for Algorithm 1) Under Assumption 7 and fixing 𝛿 ∈ (0, 1), set the parame-

ter 𝛽𝑡 in Algorithm 1 to be

𝛽𝑡 =

√︃
17𝑡 log(2|F |𝑡3/𝛿)/𝐾.
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Algorithm 1 Upper Counterfactual Confidence Bounds (UCCB)
Input tuning parameters {𝛽𝑡}∞𝑡=1.

1: for round 𝑡 = 1, 2, . . . , 𝐾 do
2: Choose action 𝑡.
3: for round 𝑡 = 𝐾 + 1, 𝐾 + 2, . . . do
4: Compute �̂�𝑡 ∈ arg min 𝑓 ∈F

∑𝑡−1
𝑖=1 ( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2 via the least square oracle.

5: Observe 𝑥𝑡 .
6: for 𝑖 = 𝐾 + 1, 𝐾 + 2, . . . , 𝑡 do
7: Calculate the counterfactual action �̃�𝑡,𝑖 by

�̃�𝑡,𝑖 ∈ arg max
𝑎∈A

{
�̂�𝑖 (𝑥𝑡 , 𝑎) +

𝛽𝑖∑𝑖−1
𝑗=𝐾+1 1{𝑎 = �̃�𝑡, 𝑗 } + 1

}
.

(ties broken by taking the action with the smallest index)
8: Take 𝑎𝑡 = �̃�𝑡,𝑡 and observe reward 𝑟𝑡 (𝑥𝑡 , 𝑎𝑡).

Then with probability at least 1− 𝛿, for all 𝑇 ≥ 1, the regret of Algorithm 1 after 𝑇 rounds is upper

bounded by

Regret(𝑇,Algorithm 1) ≤ 2
√︃

17𝐾𝑇 log(2|F |𝑇3/𝛿) (log(𝑇/𝐾) + 1) +
√︁

2𝑇 log(2/𝛿) + 𝐾.

Remark: Recall that our offline regression step can be solved by first-order algorithms and does

not require any computation related to the confidence interval (i.e., maintaining a subset of F

or inverting the Hessian). Therefore, despite having much broader applicability, Algorithm 1 is

also simpler than many variants of UCB [70, 83, 73] from a computational perspective. The only

comparable algorithm to Algorithm 1 is a randomized algorithm—FALCON in [79], which requires

𝑂 (𝑇) maximizations over actions and 𝑂 (log𝑇) calls to the offline least square oracle. However,

we believe our optimistic solution should be preferable in many practical settings as we do not

require randomization and our regret bound exhibits much smaller constants.

2.2.2 Key ideas underlying UCCB

We now explain three key ideas underlying UCCB.
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Key idea 1: building confidence bounds for policies. Previous literature typically refers to the

optimism principle as choosing the optimistic action that has the largest estimate on the current

context [83, 88, 73]—optimism is analyzed in the action space. In contrast, we view policies

as decisions and build confidence bounds in policy space. The key step in our approach is to

characterize the confidence bounds of the function estimate 𝑓𝑡 , which is the output of the least

square oracle given the history 𝐻𝑡−1.

For an admissible non-randomized contextual bandit algorithm, at each round 𝑡 there exists a

deterministic stationary policy 𝜋𝑡 such that the chosen action 𝑎𝑡 is equal to 𝜋𝑡 (𝑥𝑡) for any realization

of 𝑥𝑡 . Equivalently, the algorithm selects 𝜋𝑡 based on 𝐻𝑡−1 and chooses the action 𝑎𝑡 = 𝜋𝑡 (𝑥𝑡)

at round 𝑡. Through this viewpoint, the following lemma is applicable to all admissible non-

randomized contextual bandit algorithms:

Lemma 3 (confidence of policies) Consider an admissible non-randomized contextual bandit al-

gorithm that selects 𝜋𝑡 based on 𝐻𝑡−1 (and chooses the action 𝑎𝑡 = 𝜋𝑡 (𝑥𝑡)) at each round 𝑡. Then

∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿/2, for all 𝑡 > 𝐾 and all 𝜋 ∈ Π, the estimation error on

the expected reward of 𝜋 is bounded by

��E𝑥 [ �̂�𝑡 (𝑥, 𝜋(𝑥))] − E𝑥 [ 𝑓 ∗(𝑥, 𝜋(𝑥))]�� ≤
√√√
E𝑥

[
1∑𝑡−1

𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]√︃
68 log(2|F |𝑡3/𝛿) (2.2.1)

The proof of Lemma 3 may be interesting in its own right; a proof ketch will be presented in

Section 2.2.3, and full details are deferred to Appendix B.1.2.

Key idea 2: the potential function perspective. The idea to establish confidence bounds in

policy space is natural when one takes a potential function perspective. From the potential function

perspective, the cumulative regret of an optimistic algorithm can be approximately bounded by the

sum of confidence bounds at all rounds. Therefore, we would like to establish a uniform upper

bound whatever the trajectory of policies is, which usually depends on the “entropy” of the policies.

Although the number of policies is “large,” the “entropy” of the policies is essentially bounded by
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�̃� (𝐾) in the following manner.

Lemma 4 (contextual potential lemma) Let 𝜋𝑡 be the policy that chooses action 𝑡 regardless of 𝑥

for 𝑡 = 1, . . . , 𝐾 , and from round 𝐾 +1 up to 𝑇 , its actions are given by any deterministic stationary

policy. Then for all 𝑇 > 𝐾 ,

𝑇∑︁
𝑡=𝐾+1

E𝑥

[
1∑𝑡−1

𝑗=1 1{𝜋𝑡 (𝑥) = 𝜋 𝑗 (𝑥)}

]
≤ 𝐾 + 𝐾 log(𝑇/𝐾).

The above lemma applies to all admissible non-randomized contextual bandit algorithms that

choose each action once at the first 𝐾 rounds, regardless of the order by which they are cho-

sen. Proof of this lemma follows from the observation that for every 𝑥 ∈ X, the historical sum

of 1{𝜋𝑡 (𝑥) = 𝜋 𝑗 (𝑥)} will never exceeds a “per-context entropy” 𝑂 (𝐾 log𝑇). In short, analyzing

confidence bounds in policy space helps us take expectation over the “per-context entropy,” and

successfully avoid the dependence on |X|.

Key idea 3: the relaxation tricks and efficient computation. Following Lemma 3 and Lemma

4, a natural “upper confidence bound” strategy is to choose the policy that maximizes the following

(unrelaxed) upper confidence bound:

𝜋𝑡 ∈ arg max
𝜋∈ΠF

E𝑥 [ �̂�𝑡 (𝑥, 𝜋(𝑥)] +
√√√
E𝑥

[
1∑𝑡−1

𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]√︃
68 log(2|F |𝑡3/𝛿)

 ,
where ΠF is the policy class defined by ΠF = {𝜋 𝑓 : 𝜋 𝑓 (𝑥) ∈ arg max𝑎∈A 𝑓 (𝑥, 𝑎),∀𝑥 ∈ X},

which contains 𝜋 𝑓 ∗ . While we can prove this strategy leads to optimal regret bounds, it is not

directly feasible: 1) the distribution DX is unknown; and 2) the optimization over policies is

computationally intractable. To solve this issue, we introduce two relaxations: we “agnostically”

optimize over the full policy space Π rather than ΠF ; and we use a simple inequality to relax the

confidence bound proved in Lemma 3, which we call the “square trick”.
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Lemma 5 (the “square trick” relaxation) The inequality (2.2.1) can be further relaxed to

��E𝑥 [ �̂�𝑡 (𝑥, 𝜋(𝑥))] − E𝑥 [ 𝑓 ∗(𝑥, 𝜋(𝑥))]�� ≤ E𝑥 [
𝛽𝑡∑𝑡−1

𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]
+ 𝐾𝛽𝑡

𝑡
. (2.2.2)

Proof. Simply relax (2.2.1) by the Arithmetic Mean-Geometric Mean inequality. □

By performing the two relaxations stated above, we only need to consider the optimization

problem

𝜋𝑡 ∈ arg max
𝜋∈Π

{
E𝑥 [ �̂� (𝑥, 𝜋(𝑥)] + E𝑥

[
𝛽𝑡∑𝑡−1

𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]}
. (2.2.3)

This is a “per context” optimization problem, where optimality at every context implies optimal-

ity of 𝜋𝑡 over the full policy space Π. The algorithm does not need to calculate 𝜋𝑡 explicitly

in every step. Instead, the algorithm observes 𝑥𝑡 , and calculates all the counterfactual actions

𝜋1(𝑥𝑡), 𝜋2(𝑥𝑡), . . . , 𝜋𝑡−1(𝑥𝑡) as if the past policies were applied at 𝑥𝑡 . Using these counterfactual

actions, the algorithm calculates a counterfactual confidence, and chooses an optimistic action 𝑎𝑡

that maximize the upper confidence bound stated in (2.2.3).

The formula to calculate the counterfactual action 𝜋𝑖 (𝑥𝑡),

𝜋𝑖 (𝑥𝑡) ∈ arg max
𝑎∈A

{
�̂�𝑖 (𝑥𝑡 , 𝑎) +

𝛽𝑖∑𝑖−1
𝑗=1 1{𝑎 = 𝜋 𝑗 (𝑥𝑡)}

}
,

requires us to the compute the sequence {�̃�𝑡,𝑖}𝑡𝑖=1 in a recursive manner: for 𝑖 = 1, . . . , 𝑡, compute

�̃�𝑡,𝑖 ∈ arg max
𝑎∈A

{
�̂�𝑖 (𝑥𝑡 , 𝑎) +

𝛽𝑖∑𝑖−1
𝑗=𝐾+1 1{𝑎 = �̃�𝑡, 𝑗 } + 1

}
.

And finally we take 𝑎𝑡 = 𝜋𝑡 (𝑥𝑡) = �̃�𝑡,𝑡 . Therefore, we can explain the explicit steps in Algorithm 1

via the following (obvious) equivalence:

Lemma 6 (equivalence between Algorithm 1 and implicit strategy (2.2.3)) After the first 𝐾 ini-

tialization rounds, Algorithm 1 produce the same pathwise actions as those produced by the poli-
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cies {𝜋𝑡}𝑡>𝐾 chosen by the upper-confidence-bound rule (2.2.3) and a specific tie-breaking rule

(i.e., when there are multiple solutions to (2.2.3), taking 𝜋𝑡 to be the unique solution such that for

all other solutions 𝜋′ to (2.2.3) and all 𝑥 ∈ X, the index of the action 𝜋𝑡 (𝑥) is smaller than the

index of the action 𝜋′(𝑥)).

Based on all the lemmas that we introduce in this subsection, one can prove the 𝑂 (
√︁
𝐾𝑇 log |F |)

regret bound for Algorithm 1 through relatively standard techniques. The full proof is deferred to

Appendix B.1, and a sketch is provided below.

2.2.3 Proof sketch of Theorem 8 and Lemma 3

In this subsection we present a proof sketch of Theorem 8 (the cumulative regret of Algorithm

1) and Lemma 3 (confidence bounds in policy space, whose relaxation leads to Lemma 5).

Proof sketch of Theorem 8. From Lemma 6, we know Algorithm 1 implicitly chooses the opti-

mistic policy 𝜋𝑡 (i.e., solution of (2.2.3)) at each round 𝑡. We prove the regret bound on the event

where the inequality (2.2.2) holds true for all 𝜋 ∈ Π. From Lemma 5, the measure of this event is

at least 1 − 𝛿
2 .

Optimism of Algorithm 1 in policy space suggests that for all 𝑡 > 𝐾 ,

E𝑥 [ 𝑓 ∗(𝑥, 𝜋 𝑓 ∗ (𝑥)] ≤ E𝑥 [ �̂�𝑡 (𝑥, 𝜋 𝑓 ∗ (𝑥))] + E𝑥
[ 𝛽𝑡∑𝑡

𝑖=1 1{𝜋 𝑓 ∗ (𝑥) = 𝜋𝑖 (𝑥)}
]
+ 𝐾𝛽𝑡

𝑡

≤ arg max
𝜋∈Π

{
E𝑥 [ �̂�𝑡 (𝑥, 𝜋(𝑥))] + E𝑥

[ 𝛽𝑡∑𝑡
𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]}
+ 𝐾𝛽𝑡

𝑡

= E𝑥 [ �̂�𝑡 (𝑥, 𝜋𝑡 (𝑥))] + E𝑥
[ 𝛽𝑡∑𝑡

𝑖=1 1{𝜋𝑡 (𝑥) = 𝜋𝑖 (𝑥)}
]
+ 𝐾𝛽𝑡

𝑡

≤ E𝑥 [ 𝑓 ∗(𝑥, 𝜋𝑡 (𝑥))] + E𝑥
[ 2𝛽𝑡∑𝑡

𝑖=1 1{𝜋𝑡 (𝑥) = 𝜋𝑖 (𝑥)}
]
+ 2𝐾𝛽𝑡

𝑡
,

where the first and the last inequality are due to Lemma 5; and the second inequality due to maxi-
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mization over policies. Therefore, the expected regret incurred at round 𝑡 is bounded by

E𝑥 [ 𝑓 ∗(𝑥, 𝜋 𝑓 ∗ (𝑥)] − E𝑥 [ 𝑓 ∗(𝑥, 𝜋𝑡 (𝑥)] ≤ E𝑥

[
2𝛽𝑡∑𝑡−1

𝑖=1 1{𝜋𝑡 (𝑥) = 𝜋𝑖 (𝑥)}

]
+ 2𝐾𝛽𝑡

𝑡
. (2.2.4)

Taking the telescoping sum of (2.2.4) and applying the contextual potential lemma (Lemma 4), we

can prove

𝑇∑︁
𝑡=1
E𝑥 [ 𝑓 ∗(𝑥, 𝜋 𝑓 ∗ (𝑥) − 𝑓 ∗(𝑥, 𝜋𝑡 (𝑥))] ≤ 2

√︃
17𝐾𝑇 log(2|F |𝑇3/𝛿) (log(𝑇/𝐾) + 1) + 𝐾. (2.2.5)

By Azuma’s inequality and Lemma 6, with probability at least 1− 𝛿/2, we can bound the regret by

Regret(𝑇,Algorithm 1) ≤ E𝑥 [ 𝑓 ∗(𝑥, 𝜋 𝑓 ∗ (𝑥) − 𝑓 ∗(𝑥, 𝜋𝑡 (𝑥))] +
√︁

2𝑇 log(2/𝛿). (2.2.6)

Finally we combine (2.2.5) and (2.2.6) by a union bound to finish the proof.

Proof sketch of Lemma 3. The proof of Lemma 3 includes three key steps: characterization

of the estimation error (inequality (2.2.7)); a counting argument (inequality (2.2.8)); and applying

Cauchy-Schwartz inequality to (2.2.8). Now we describe these key steps.

The following lemma, which holds for arbitrary algorithms, characterizes the estimation errors

of an arbitrary sequence of estimators.

Lemma 7 (uniform convergence over all sequences of estimators) For an arbitrary contextual

bandit algorithm, ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿/2,

𝑡−1∑︁
𝑖=1
E𝑥𝑖 ,𝑎𝑖

[
( 𝑓𝑡 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1

]
≤ 68 log(2|F |𝑡3/𝛿)

+2
𝑡−1∑︁
𝑖=1

( 𝑓𝑡 (𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2 − ( 𝑓 ∗(𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2, (2.2.7)

uniformly over all 𝑡 ≥ 2 and all fixed sequence 𝑓2, 𝑓3, · · · ∈ F .

Proof of Lemma (2.2.7) can be found in Appendix B.1.2.
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Consider the contextual bandit algorithm that choose 𝜋𝑡 based on 𝐻𝑡−1 at each round 𝑡, the left

hand side of (2.2.7) is equal to
∑𝑡−1
𝑖=1 E𝑥

[
( 𝑓 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2] . Then by using the fact that

∀𝜋 ∈ Π, for all 𝑥 ∈ X,

1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}( 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥𝑖, 𝜋(𝑥)))2 ≤ ( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2,

we obtain the key inequality

E𝑥

[ 𝑡−1∑︁
𝑖=1

1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}( 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥𝑖, 𝜋(𝑥)))2
]
≤ 68 log(2|F |𝑡3/𝛿)

+2
𝑡−1∑︁
𝑖=1

( 𝑓𝑡 (𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2 − ( 𝑓 ∗(𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2. (2.2.8)

We then apply Cauchy-Schwartz inequality to lower bound the left hand side of (2.2.8), and take

𝑓𝑡 = �̂�𝑡 be the least square solutions to upper bound the right hand side of (2.2.8).

2.3 Generalization to infinite F

Extensions of our theory to “infinite” F with statistical complexity notions of covering num-

ber and parametric dimension are straightforward. Technically speaking, we only require some

standard uniform convergence arguments to modify Lemma 7. We will first show that our results

trivially generalizes to parametric F with suitable continuity, and then extend our results to general

function classes following some more careful covering arguments.

Parametric dimension. Assume F is parametrized by a compact set Θ ⊂ R𝑑 whose diameter is

bounded by Δ, and satisfies

| 𝑓\1 (𝑥, 𝑎) − 𝑓\2 (𝑥, 𝑎) | ≤ 𝐿∥\1 − \2∥, (2.3.1)

uniformly over 𝑥 ∈ X and 𝑎 ∈ A. This case clearly covers many previous structured models

(variants of the “linear payoff” formulation (2.1.1)).
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Corollary 9 (extension to infinite F via parametric dimension) Under Assumption 7 and the as-

sumption (2.3.1) and fixing 𝛿 ∈ (0, 1), set the parameter 𝛽𝑡 in Algorithm 1 to be

𝛽𝑡 =
√︁

34𝑡/𝐾
√︃
𝑑 log(2 + Δ𝐿𝑡) + log(2𝑡3/𝛿) + 1.

Then Algorithm 1 satisfies that with probability at least 1 − 𝛿, for all 𝑇 ≥ 1,

Regret(𝑇,Algorithm 1) ≤ 2𝐾𝛽𝑇 (log(𝑇/𝐾) + 1) +
√︁

2𝑇 log(2/𝛿) + 𝐾 = �̃� (
√
𝐾𝑇𝑑).

Remark: While this regret bound has a worse dependence on 𝐾 in the “linear payoff” formulation

(2.1.1) compared with SupLinUCB in [70] (whose regret is logarithmic in 𝐾), Algorithm 1 can be

applied in more general parametric settings and enjoys much lower computational demands (there

is no need to invert any Hessian). While the square-root dependence on 𝐾 can not be improved for

general F (see the lower bound in [76]), we can improve this dependence for structured models by

applying our results in Section 2.4.

Covering number formulation. Our results can be extended to general (possibly non-parametric)

function classes via covering numbers and standard uniform convergence techniques. We consider

formulation (2.3.2)—a major target of previous works on general contextual bandits [81, 73, 78].

We assume access to a general function class G that contains mappings from X to [0, 1], and

assume

F = { 𝑓 : 𝑓 (𝑥, 𝑎) = 𝑔𝑎 (𝑥), 𝑔𝑎 ∈ G}. (2.3.2)

Definition 5 (covering number) For a function class G that contains mappings from X to [0, 1]

and fixed 𝑛 ∈ Z+, an empirical 𝐿1 cover on a sequence 𝑥1, . . . , 𝑥𝑛 at scale Y is a set 𝑈 ⊆ R𝑛 such

that ∀𝑔 ∈ G, ∃𝑢 ∈ 𝑈, 1
𝑛

∑𝑛
𝑖=1 |𝑔(𝑥𝑛) − 𝑢𝑛 | ≤ Y. We define the covering number N1(G, Y, {𝑥𝑖}𝑛𝑖=1) to
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be the size of the smallest such cover.

Given careful covering arguments proved in [81, 73], the following extension is straightforward:

Corollary 10 (extension to infinite F via covering number) Under Assumption 7 and the as-

sumption (2.3.2), given 𝑇 ≥ 1 and 𝛿 ∈ (0, 1), by setting all the parameters 𝛽𝑡 in Algorithm 1

to be a fixed value

𝛽 =
√
𝑇𝐾 · inf

Y>0

{
25Y𝑇 + 80 log

(
8𝐾𝑇3E{𝑥𝑖}𝑇𝑖=1

N1(G, Y, {𝑥𝑖}𝑇𝑖=1)
𝛿

)}
.

Then, Algorithm 1 satisfies that with probability at least 1 − 𝛿,

Regret(𝑇,Algorithm 1) ≤ 2𝐾𝛽(log(𝑇/𝐾) + 1) +
√︁

2𝑇 log(2/𝛿) + 𝐾.

2.4 A unified framework for infinite action spaces

In this section we study infinite-action contextual bandits to illustrate the simplicity and ap-

plicability of the UCCB principle. In context-free settings, discussion on infinite actions can be

sorted into two streams. The first stream studies variants of the linear action model. Prominent

examples include linearly parametrized bandit [89, 88], and parametrized bandit with generalized

linear model [90]. The second stream is based on discretization over actions and reduction to the

finite-action setting (e.g., Lipchitz bandit ([91]). We focus on the first stream here, as it exhibits

additional challenges of efficient exploration beyond the finite-action setting.

To focus on the core messages, we assume F to be finite and function in F take values in

[0, 1]. We propose a generic algorithm (Algorithm 2) that achieves

Regret(𝑇,Algorithm 2) ≤ �̃� (
√︁
E log |F |𝑇),

for many models of interest. Here we call E := E𝑥 [E𝑥] the “average decision entropy,” where

E𝑥 is (informally) the complexity of the “fixed-𝑥-model” where the context is fixed to be 𝑥. Note
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that unlike previous complexity measures such as “Eluder dimension” [83], the “average decision

entropy” E does not scale with |X| so that this complexity measure is much more useful in the

contextual settings. We will present several interesting illustrative examples, and present key ideas

of our algorithm using these examples.

2.4.1 Illustrative models

In the context-free infinite-action bandits literature, it is well-known that �̃� (
√
𝑇)−type regret is

only possible for structured models, among which variants of linear bandits are the preponderant

models. As a result, our framework mainly targets settings where all “fixed-𝑥-model” are variants

of linear bandits.

Example 6 (contextual bandit with linear action model) Given a general vector-valued func-

tion class G that contains mappings from X to R𝑑 , let

F = { 𝑓 : ∃𝑔 ∈ G s.t. 𝑓 (𝑥, 𝑎) = 𝑔(𝑥)⊤𝑎,∀𝑥 ∈ X,∀𝑎 ∈ A}. (2.4.1)

We assume A ⊂ R𝑑 is an arbitrary compact set, and is available for the agent at all rounds. This

formulation is a strict generalization of the finite-action realizable contextual bandit problem we

studied in previous sections (it reduces to the 𝐾−armed setting when A is the set of 𝐾 element vec-

tors in R𝐾). Another special case where A is restricted to be the unit ball is studied in Foster and

Rakhlin [78], but a general solution to arbitrary compact action set is still open. Moreover, Fos-

ter and Rakhlin [78] requires online regression oracles which are not computationally efficient in

general. Formulation (2.4.1) was also studied in [92] but the goal there was off-policy evaluation

rather than regret minimization.

With knowledge on linear bandits we can prove E𝑥 = 𝑑 for all 𝑥 ∈ X. (detailed explanation is

deferred to Section 2.4.4). Therefore E = 𝑑, which is independent of the number of actions, and

the order of regret is expected to be �̃� (
√︁
𝑑 log |F |𝑇).
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Example 7 (contextual bandit with generalized linear action model.) Consider a broader choice

of models, which contains generalized linear action models and allows a mapping 𝜑:

F =
{
𝑓 : ∃𝑔 ∈ G s.t. 𝑓 (𝑥, 𝑎) = 𝜎𝑥

(
𝑔(𝑥)⊤𝜑(𝑥, 𝑎)

)
,∀𝑥 ∈ X,∀𝑎 ∈ A

}
, (2.4.2)

where for every 𝑥 ∈ X, 𝜎𝑥 : R→ [0, 1] is a known link function that satisfies

sup𝑎 𝜎′
𝑥 (⟨𝑔∗(𝑥), 𝜑(𝑥, 𝑎)⟩)

inf𝑎 𝜎′
𝑥 (⟨𝑔∗(𝑥), 𝜑(𝑥, 𝑎)⟩)

≤ ^𝑥;

and 𝜑 : X × A → R𝑑 is a known compactness-preserving mapping (e.g., continuous mappings).

This model generalizes (2.4.1) and allows more flexibility. When we set 𝜑(𝑥, 𝑎) = 𝑥𝑎, we see that

this model is significantly broader in scope than the simple “linear payoff” formulation (2.1.1), as

𝑔(𝑥) is a general function that depends on 𝑥 rather than a fixed parameter \.

Our analysis will show that E𝑥 = ^2
𝑥𝑑 for all 𝑥 ∈ X (detailed explanation is deferred to Section

2.4.4), so that E = E𝑥 [^2
𝑥]𝑑, and the order of regret is expected to be �̃� (

√︁
𝐸𝑥 [^2

𝑥]𝑑 log |F |𝑇).

Example 8 (heterogeneous action set) Many real-world, customized pricing and personalized

healthcare applications have a high dimensional action set A, but the “effective dimension” of

available actions after observing 𝑥 is usually much smaller. To model these applications, consider

the reward model

F =
{
𝑓 : ∃𝑔 ∈ G s.t. 𝑓 (𝑥, 𝑎) = 𝜎𝑥 (𝑔(𝑥)⊤𝑎),∀𝑥 ∈ X,∀𝑎 ∈ A(𝑥)

}
, (2.4.3)

where for all 𝑥 ∈ X we assume a compact action set A(𝑥) ⊂ A, and assume A(𝑥) is contained

in a 𝑑𝑥−dimensional subspace. When the agent observes context 𝑥, she can only choose her action

from A(𝑥).

For this model we have E𝑥 = ^2
𝑥𝑑𝑥 (detailed explanation is deferred to Section 2.4.4) so that

E = E𝑥 [^2
𝑥𝑑𝑥]. The salient point here is the we avoid dependence on the full dimension 𝑑. Regret

therefore scales as �̃� (
√︁
E𝑥 [^2

𝑥𝑑𝑥] log |F |𝑇).
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2.4.2 Counterfactual action divergence

The main modification required for infinite-action settings is predicated on a central concept

called “counterfactual action divergence,” which generalizes the term (∑𝑛
𝑖=1 1{𝑎 = 𝑎𝑖})−1 that was

used in Algorithm 1. This new concept characterizes “how much information” is learned from

action 𝑎 given a sequence {𝑎𝑖}𝑛𝑖=1, on the “fixed-𝑥-model.”

Definition 6 (counterfactual action divergence) For fixed integer 𝑛, a context 𝑥, an action 𝑎 and

a sequence of actions {𝑎𝑖}𝑛𝑖=1, we say 𝑉𝑥 (𝑎 | |{𝑎𝑖}𝑛𝑖=1) is a proper choice of the counterfactual action

divergence between 𝑎 and {𝑎𝑖}𝑛𝑖=1 evaluated at 𝑥, if

𝑉𝑥 (𝑎 | |{𝑎𝑖}𝑛𝑖=1) ≥ sup
𝑓 ∈F

{
| 𝑓 (𝑥, 𝑎) − 𝑓 ∗(𝑥, 𝑎) |2∑𝑛

𝑖=1( 𝑓 (𝑥, 𝑎𝑖) − 𝑓 ∗(𝑥, 𝑎𝑖))2

}
.

We define 𝑉𝑥 (𝑎 | |∅) = ∞ in the case 𝑛 = 1.

Using the definition of counterfactual action divergence, the expectation

E𝑥 [𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )], (2.4.4)

can be used to construct an upper confidence bound on the expected reward of policy 𝜋 given the

past chosen policies {𝜋}𝑡−1
𝑖=1 . Similar to the finite-action setting, the agent chooses the optimistic

policy 𝜋𝑡 that maximizes this confidence bound, and chooses 𝑎𝑡 = 𝜋𝑡 (𝑥𝑡) without explicitly com-

puting 𝜋𝑡—this is achieved by sequentially recovering counterfactual actions, as will be illustrated

in our proposed Algorithm.

Convenient choices of 𝑉𝑥 (𝑎 | |{𝑎𝑖}𝑛𝑖=1}
𝑛
𝑖=1) should be taken case by case for different problems.

In the following lemma, we present closed-form choices of 𝑉𝑥 (𝑎 | |{𝑎𝑖}𝑛𝑖=1}
𝑛
𝑖=1) in all our illustrative

examples.

Statement 3 (illustration of counterfactual action divergences) In the illustrative examples, the

counterfactual action divergences are given as follows (and taken as ∞ when inverse of matrices

is not well-defined):

75



• finite-action contextual bandit:

𝑉𝑥 (𝑎 | |{𝑎𝑖 (𝑥)}𝑛𝑖=1) =
1∑𝑛

𝑖=1 1{𝑎 = 𝑎𝑖}
.

• linear action model (2.4.1):

𝑉𝑥 (𝑎 | |{𝑎𝑖}𝑛𝑖=1}
𝑛
𝑖=1) = 𝑎

⊤(
𝑛∑︁
𝑖=1

[𝑎𝑖𝑎⊤𝑖 ])−1𝑎. (2.4.5)

• generalized linear action model (2.4.2):

𝑉𝑥 (𝑎 | |{𝑎𝑖}𝑛𝑖=1) = ^
2
𝑥𝜑(𝑥, 𝑎)⊤(

𝑛∑︁
𝑖=1

[𝜑(𝑥, 𝑎𝑖)𝜑(𝑥, 𝑎𝑖)⊤])−1𝜑(𝑥, 𝑎).

• generalized linear action model with heterogeneous action sets (2.4.3):

𝑉𝑥 (𝑎 | |{𝑎𝑖 (𝑥)}𝑛𝑖=1) = ^
2
𝑥𝑏𝑥,𝑎⊤(

𝑛∑︁
𝑖=1

[𝑏𝑥,𝑎𝑖𝑏⊤𝑥,𝑎𝑖 ])
−1𝑏𝑥,𝑎,

where 𝑏𝑥,𝑎 is the coefficient vector of 𝑎 with a basis {𝐴𝑥,1, . . . , 𝐴𝑥,𝑑𝑥 } of A(𝑥), i.e.,

𝑎 = [𝐴𝑥,1, . . . , 𝐴𝑥,𝑑𝑥 ]𝑏𝑥,𝑎 .

2.4.3 The algorithm and regret bound

Algorithm 2 is a generalization of Algorithm 1 to the infinite-action setting. It can be applied

to most parametric action models that have been studied in the context-free setting, and handles

heterogeneous action sets. Recall that E := E[E𝑥] is the average decision entropy of the problem,

for which we will give the formal definition later. The “initialization oracle” and the “action

maximization oracle” will also be explained shortly.

Algorithm 2 essentically provide a reduction from contextual models to the “fixed-𝑥-models.”

The regret of an optimistic algorithm is usually upper bounded by the sum of confidence bounds.
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Algorithm 2 Upper Counterfactual Confidence Bound-Infinite Action (UCCB-IA)
Input tuning parameters {𝛽𝑡}∞𝑡=1.

1: for round 𝑡 = 1, 2, . . . do
2: Compute �̂�𝑡 = arg min 𝑓 ∈F

∑𝑡−1
𝑡=1 ( 𝑓 (𝑥𝑡 , 𝑎𝑡) − 𝑟𝑡 (𝑥𝑖, 𝑎𝑡))2 via the least square oracle.

3: Observe 𝑥𝑡 , use the initialization oracle to obtain initializations {𝐴𝑥𝑡 ,𝑖}
𝑑𝑥
𝑖=1.

4: for 𝑖 = 1, 2, . . . , 𝑡 ∨ 𝑑𝑥 do
5: Take �̃�𝑡,𝑖 = 𝐴𝑥𝑡 ,𝑖.
6: for 𝑖 = 𝑡 ∧ (𝑑𝑥 + 1), . . . , 𝑡 do
7: Use the action maximization oracle to compute counterfactual actions:

�̃�𝑡,𝑖 ∈ arg max
𝑎∈A(𝑥𝑡 )

{
�̂�𝑖 (𝑥𝑡 , 𝑎) + 𝛽𝑖𝑉𝑥𝑡 (𝑎 | |{�̃�𝑡, 𝑗 }𝑖−1

𝑗=1)
}
.

8: Take 𝑎𝑡 = �̃�𝑡,𝑡 and observe reward 𝑟𝑡 (𝑥𝑡 , 𝑎𝑡).

In our case, the sum of expectations (2.4.4) is decomposable over contexts, so tractability of the

“fixed-𝑥-models” suffices to make Algorithm 2 provably efficient. Formally, we require regularity

conditions so that the “fixed-𝑥-models” are solvable by the optimism principle. Motivated by the

standard potential arguments used in the linear bandit literature, we make Assumption 8 below.

Verification of this assumption on Examples 6-8 will be presented in the next section.

Assumption 8 (per-context models are solvable by optimism) There exists counterfactual ac-

tion divergences such that the following are satisfied:

i)for all 𝑥 ∈ X, there exists 𝑑𝑥 actions 𝐴𝑥,1, . . . , 𝐴𝑥,𝑑𝑥 ∈ A(𝑥) such that 𝑉𝑥 (𝑎 | |{𝐴𝑥,𝑖}𝑑𝑥𝑖=1) < ∞

for all 𝑎 ∈ A(𝑥).

ii) For all 𝑥 ∈ X, there exists E𝑥 > 0 such that for all 𝑇 ≥ 1 and all sequences {𝑎𝑡}𝑇𝑡=1 that

satisfy {𝑎𝑡}𝑑𝑥∧𝑇𝑡=1 = {𝐴𝑥,𝑡}𝑑𝑥∧𝑇𝑡=1 , we have

𝑇∑︁
𝑡=1

[
1 ∧𝑉𝑥 (𝑎𝑡 | |{𝑎 𝑗 }𝑡−1

𝑗=1)
]
≤ E𝑥poly(log𝑇)

for all 𝑥 ∈ X, where poly(·) is a fixed polynomial-scale function.

Given positive values E𝑥 that satisfies condition ii) in Assumption 8, we define E𝑥 := E𝑥 [E𝑥]

to be (a proper choice of) the “average decision entropy” of the problem. The “average decision
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entropy” of a problem is not unique, and any “proper” choice of E leads to a rigorous regret bound

of Algorithm 2.

Besides the least-square oracle, Algorithm 2 uses two other optimization oracles that are nec-

essary in the infinite-action setting: 1) a deterministic initialization oracle which returns {𝐴𝑥,𝑖}𝑑𝑥𝑖=1

satisfying Assumption 8 after inputting A(𝑥) (this is standard for Examples 6-8 using the theory of

barycentric spanners, see the next subsection); and 2) a deterministic action maximization oracle

whose output is a maximizer of a function over the feasible region A(𝑥).

After imposing the regularity conditions proposed in Assumption 8, the regret of Algorithm 2

can be bounded as the follows.

Theorem 11 (Regret of Algorithm 2) Under Assumptions 7 and 8 and fixing 𝛿 ∈ (0, 1), let

𝛽𝑡 =

√︃
17𝑡 log(2|F |𝑡3/𝛿)/E .

Then with probability at least 1 − 𝛿, for all 𝑇 ≥ 1 the regret of Algorithm 2 after 𝑇 rounds is upper

bounded by

Regret(𝑇,Algorithm 2) ≤ 2
√︃

17E𝑇 log(2|F |𝑇3/𝛿) (poly(log𝑇) + 1) +
√︁

2𝑇 log(2/𝛿) + E .

This theorem immediately provides regret bounds for all our illustrative examples, which we will

discuss in the next subsection.

Finally, we give a high-level interpretation of the average decision entropy E: if the expectation

(2.4.4) is the “discrete” partial gradient of a potential function, then the historical sum has the path

independence property—that is, the historical sum of (2.4.4) can be bounded by the maximum

value of a potential function, which is characterized by the average decision entropy E. Since

E is the average rather than the sum of the effective complexities of all “fixed-𝑥-models,” UCCB

provides a generic solution to achieve optimal regret bounds that do not scale with |X|.
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2.4.4 Applications in illustrative examples

In this subsection we will carefully go through the three illustrative examples. We summarize

the conclusions in the following corollary:

Corollary 12 (Theorem 11 applied to illustrative examples) Examples 6-8 satisfy Assumptions

8 with the average decision entropy given by

• linear action model (2.4.1): E = 𝑑.

• generalized linear action model (2.4.2): E = E𝑥 [^2
𝑥]𝑑.

• generalized linear action model with heterogeneous action sets (2.4.3): E = E𝑥 [^2
𝑥𝑑𝑥].

Now we give a verification in the remaining parts of this subsection.

Contextual bandits with linear action model (Example 6).

We begin with contextual bandits with linear action model (2.4.1), with the homogeneous

action set A. For this problem, Algorithm 1 only needs to compute the initialization actions

𝐴1, . . . , 𝐴𝑑 once, and use them during the first 𝑑 rounds. This suffices to complete the required

initialization for all contexts.

Based on well-known results in the linear bandit literature, it is straightforward to show that

E = 𝑑, because we can take E𝑥 = 𝑑 for every per-context model. The details are as follows.

As shown in Statement 3, for all 𝑥 ∈ X, we choose the counterfactual action divergence be-

tween any 𝑎𝑡 and any sequence {𝑎𝑖}𝑡−1
𝑖=1 evaluated at 𝑥 to be

𝑉𝑥 (𝑎𝑡 | |{𝑎𝑖}𝑡−1
𝑖=1 ) = 𝑎

⊤
𝑡 (

𝑡−1∑︁
𝑖=1

[𝑎𝑖𝑎⊤𝑖 ])−1𝑎𝑡 .

Following the standard approach in the linear bandit literature (e.g., see [89]), we choose the 𝑑

initialization actions {𝐴𝑖}𝑑𝑖=1 to be the barycentric spanner of A. A barycentric spanner is a set of

𝑑 vectors, all contained in A, such that every vector in A can be expressed as a linear combination
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of the spanner with coefficients in [−1, 1]. An efficient algorithm to find the barycentric spanner

for an arbitrary compact set is given in [93].

The following result follows Lemma 9 in [89]2, which is often referred to as the “elliptical

potential lemma”: let 𝑎𝑖 = 𝐴𝑖 for 𝑖 = 1, . . . , 𝑑, then for all 𝑇 > 𝑑 and all trajectory {𝑎𝑡}𝑇𝑡=𝑑+1,

𝑇∑︁
𝑡=𝑑+1

[
1 ∧ 𝑎⊤𝑡 (

𝑡−1∑︁
𝑖=1

[𝑎𝑖𝑎⊤𝑖 ])−1𝑎𝑡

]
≤ 2𝑑 log𝑇.

Therefore, we obtain for all 𝑇 ≥ 1 and all 𝑥 ∈ X,

𝑇∑︁
𝑡=1

[
1 ∧𝑉𝑥 (𝑎𝑡 | |{𝑎𝑖}𝑡−1

𝑖=1 )
]
≤ 2𝑑 log𝑇 + 𝑑 ≤ 3𝑑 log𝑇. (2.4.6)

By taking {𝐴𝑖}𝑑𝑖=1 to be a barycentric spanner of A, setting E = 𝑑, and taking poly(log𝑇) =

3 log𝑇 , Assumption 8 holds for problem (2.4.1). Despite the illustration here, we also note that

our Assumption 8 is not restricted to any particular choice of initialization actions and E: there are

other ways to choose linearly independent initialization actions, giving rise to a slightly different

poly(log𝑇) term in Assumption 8 (see, e.g., Lemma 11 in [88]).

Contextual bandits with generalized linear action model (Example 7).

For the problem formulation (2.4.2), we can take E[E𝑥] = E[^2
𝑥]𝑑. The details are as follows.

As shown in Statement 3, given 𝑥 ∈ X, we choose the counterfactual action divergence between

any 𝑎𝑡 and any sequence {𝑎𝑖}𝑡−1
𝑖=1 evaluated at 𝑥 to be

𝑉𝑥 (𝑎𝑡 | |{𝑎𝑖}𝑡−1
𝑖=1 ) = ^

2
𝑥𝜑(𝑥, 𝑎𝑡)⊤(

𝑡−1∑︁
𝑖=1

[𝜑(𝑥, 𝑎𝑖)𝜑(𝑥, 𝑎𝑖)⊤])−1𝜑(𝑥, 𝑎𝑡).

Given 𝑥 ∈ X, we take {𝐴𝑥,𝑖}𝑑𝑖=1 such that {𝜑(𝑥, 𝐴𝑥,𝑖)}𝑑𝑖=1 consists of a barycentric spanner of

{𝜑(𝑥, 𝑎) : 𝑎 ∈ A}3. Note that a different basis {𝐴𝑥,𝑖}𝑑𝑖=1 should be computed for each 𝑥. From

2Lemma 9 in [89] holds for an arbitrary compact set A ⊂ R𝑑 , as changing the coordinate system is without the
loss of generality for this lemma.

3in formulation (2.4.2) we have asked 𝜑 to preserve compactness with respect to 𝑎 (e.g. the continuous ones), so
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our previous result (2.4.6) and the fact ^𝑥 ≥ 1, for all 𝑇 ≥ 1 and all sequences {𝑎𝑖}𝑇𝑖=1 that satisfy

{𝑎𝑖}𝑑𝑥∧𝑇𝑖=1 = {𝐴𝑥,𝑖}𝑑𝑥∧𝑇𝑖=1 ,

𝑇∑︁
𝑡=1

[
1 ∧𝑉𝑥 (𝑎𝑡 | |{𝑎𝑖}𝑡−1

𝑖=1 )
]
=

𝑇∑︁
𝑡=1

[
1 ∧ ^2

𝑥𝜑(𝑥, 𝑎)⊤(
𝑡−1∑︁
𝑖=1

[𝜑(𝑥, 𝑎𝑖)𝜑(𝑥, 𝑎𝑖)⊤])−1𝜑(𝑥, 𝑎)
]
≤ ^2

𝑥3𝑑 log𝑇.

By taking E𝑥 = ^2
𝑥𝑑, and poly(log𝑇) = 3 log𝑇 , Assumption 8 holds with E = E𝑥 [^2

𝑥]𝑑.

Contextual bandits with heterogeneous action set (Example 8)

We consider the problem formulation (2.4.3) where the action set A(𝑥) is heterogeneous for

different 𝑥 ∈ X. Note that A(𝑥) is a compact set contained in a 𝑑𝑥−dimensional subspace. Given

𝑥 ∈ X, we choose {𝐴𝑥,𝑖}𝑑𝑥𝑖=1 as the barycentric spanner of A(𝑥) and take 𝑎𝑖 = 𝐴𝑥,𝑖 for 𝑖 = 1, . . . , 𝑑𝑥 .

As stated in Statement 3, given 𝑥 ∈ X, the counterfactual action divergence between 𝑎𝑡 and {𝑎𝑖}𝑡−1
𝑖=1

evaluated at 𝑥 is

𝑉𝑥 (𝑎𝑡 | |{𝑎𝑖}𝑡−1
𝑖=1 )) = ^

2
𝑥𝑏

⊤
𝑥,𝑎𝑡

(
𝑡−1∑︁
𝑖=1

𝑏𝑥,𝑎𝑡 𝑏
⊤
𝑥,𝑎𝑡

)−1𝑏𝑥,𝑎𝑡 ,

where 𝑏𝑥,𝑎𝑡 is the coefficient vector of 𝑎𝑡 with respect to the basis {𝐴𝑥,𝑖}𝑑𝑥𝑖=1. From our previous

result (2.4.6) and the fact ^𝑥 ≥ 1, for all 𝑇 ≥ 1 and all sequences {𝑎𝑖}𝑇𝑖=1 that satisfy {𝑎𝑖}𝑑𝑥∧𝑇𝑖=1 =

{𝐴𝑥,𝑖}𝑑𝑥∧𝑇𝑖=1 ,

𝑇∑︁
𝑡=1

1 ∧
[
𝑉𝑥 (𝑎𝑡 | |{𝑎𝑖}𝑡−1

𝑖=1 )
]
=

𝑇∑︁
𝑡=1

[
1 ∧ ^2

𝑥𝑏
⊤
𝑥,𝑎𝑡

(
𝑡−1∑︁
𝑖=1

[𝑏𝑥,𝑎𝑖𝑏⊤𝑥,𝑎𝑖 ])
−1𝑏𝑥,𝑎𝑡

]
≤ ^2

𝑥3𝑑𝑥 log𝑇.

By taking E𝑥 = ^2
𝑥𝑑𝑥 , and poly(log𝑇) = 3 log𝑇 , we verify Assumption 8 with E = E[^2

𝑥]𝑑𝑥 . We

note that under the heterogeneous formulation, Algorithm 2 needs to compute a different basis

for each A(𝑥), and the computation of counterfactual action divergence also requires a coefficient

decomposition for each 𝑥 ∈ X.

One significant advantage of Algorithm 2 is that the regret does not rely on the full dimension

such barycentric spanner must exists.
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𝑑—this means that we can increase feature context as long as we can control the average decision

entropy E[^2
𝑥𝑑𝑥].

2.5 Using “optimistic subroutines” to generalize randomized algorithms

What is the connection between our proposed optimistic algorithms and existing randomized

algorithms? In this section, we show that by combining the idea of counterfactual confidence

bounds and a non-trivial “optimistic subroutine,” we can also generalize an existing randomized

algorithm to the infinite-action setting. However, the analysis and implementation of the resulting

randomized algorithm is much more complex than the optimistic algorithm we introduced before.

Through this extension, we see the simplicity and importance of the optimism principle for com-

plex settings like infinite-action spaces.

The first least-square-oracle-efficient randomized algorithm in the general realizable contextual

bandits, FALCON from [79], is restricted to the finite-action setting. FALCON performs implicit

optimization in policy space, but the allocation of policies reduces to a closed-form weighted

allocation rule for actions (this design principle also influences the design of UCCB). We find

that it becomes more crucial to exploit the counterfactual confidence bounds in the infinite-action

setting: the optimization of weighted allocation rules no longer has closed-form solutions, and we

need to design a technical “optimistic subroutine” to find feasible weighted allocations.

As the required subroutine is a bit complex, we focus on the linear action model (2.4.1) stated in

Example 6 for simplicity. Extensions to more complex models follow similar ideas, and the struc-

ture of the proposed algorithm remain mostly unchanged. We assume a deterministic initialization

oracle that outputs a barycentric spanner of the compact set A (e.g. the algorithm in [93]), and an

action maximization oracle that outputs the maximizer of the input function over A. The following

algorithm extends FALCON to the linear action model (2.4.1), where the step 6 is a novel optimiza-

tion problem to find the “right” weighted allocation over actions. Here the “𝑎⊤(E�̃�∼𝑝𝑡 [�̃��̃�⊤])−1𝑎”

term in (2.5.2) is a continuous analogue to the counterfactual action divergence (2.4.5).

Algorithm 3 runs in an epoch schedule and only calls the least square oracle at the pre-specified

82



Algorithm 3 a generalized version of FALCON for linear action model (2.4.1)

Input epoch schedule {𝜏𝑚}∞𝑚=1, 𝜏0 = 0, tuning parameters {𝛽𝑚}∞𝑚=1, an arbitrary function �̂�1 ∈ F .
1: for epoch 𝑚 = 1, 2, . . . do
2: Compute �̂�𝑚 = arg min 𝑓 ∈F

∑𝜏𝑚−1
𝑡=1 ( 𝑓 (𝑥𝑡 , 𝑎𝑡) − 𝑟𝑡 (𝑥𝑡 , 𝑎𝑡))2 via the least square oracle when

𝑚 ≥ 1.
3: for round 𝑡 = 𝜏𝑚−1 + 1, . . . , 𝜏𝑚 do
4: Observe context 𝑥𝑡 .
5: Use the action maximization oracle to compute �̂�𝑡 ∈ max𝑎∈A �̂�𝑚 (𝑥𝑡 , 𝑎).
6: Run the algorithm OptimisticSubroutine(A, �̂�𝑡 , �̂�𝑚 (𝑥𝑡 , ·), 𝛽𝑚) to find a distribu-

tion 𝑝𝑡 over A such that,

E𝑎∼𝑝𝑡 [ �̂�𝑚 (𝑥𝑡 , �̂�𝑡) − �̂�𝑚 (𝑥𝑡 , 𝑎)] ≤ 2𝛽𝑚𝑑, (2.5.1)

∀𝑎 ∈ A, �̂�𝑚 (𝑥𝑡 , 𝑎) + 𝛽𝑚𝑎⊤(E�̃�∼𝑝𝑡 [�̃��̃�⊤])−1𝑎 ≤ �̂�𝑚 (𝑥𝑡 , �̂�𝑡) + 2𝛽𝑚𝑑. (2.5.2)

7: Sample 𝑎𝑡 ∼ 𝑝𝑡 and observe reward 𝑟𝑡 (𝑎𝑡).

rounds 𝜏1, 𝜏2, . . . . We take 𝜏𝑚 = 2𝑚 for all 𝑚 ≥ 1 to simplify the statement of the theorem, though

other choices of the epoch schedule are also possible [79].

Theorem 13 (Regret of Algorithm 3) Consider the problem formulation (2.4.1) stated in Exam-

ple 6, under Assumption 7. Take the epoch schedule 𝜏𝑚 = 2𝑚 for 𝑚 ≥ 1. Let

𝛽𝑚 = 30
√︁

log( |F |𝜏𝑚−1/𝛿)/(2𝑑𝜏𝑚−1)

for 𝑚 = 2, . . . , and 𝛽1 = 1. Then with probability at least 1 − 𝛿, for all 𝑇 ≥ 1, the regret of

Algorithm 3 after 𝑇 rounds is upper bounded by

Regret(𝑇,Algorithm 3) ≤ 608.5
√︁

2𝑑𝑇 log( |F |𝑇/𝛿) + 2
√︁

2𝑇 log(2/𝛿) + 2.

Theorem 13 can be obtained by modifying the regret analysis of the original FALCON algo-

rithm. (We refer the readers to [79] for the background and intuition of the original FALCON

algorithm, especially the “Observation 2” in that paper.) However, the key challenge is to pro-

vide an efficient algorithm to find a weighted allocation rule that satisfy both (2.5.1) and (2.5.2) in

Algorithm 3.
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Algorithm 4 OptimisticSubroutine(�̂�, 𝛽,A, ℎ̂)
input action set A, greedy action �̂� ∈ A, function ℎ̂ : A → [0, 1], parameter 𝛽 > 0.

1: Obtain a barycentric spanner {𝐴𝑖}𝑑𝑖=1 of A via the initialization oracle.
2: Set 𝑞0 =

∑𝑑
𝑖=1

1
𝑑
1𝐴𝑖 .

3: for 𝑡 = 1, 2, . . . do
4: Set

𝑞𝑡− 1
2
= min{ 2𝑑

2𝑑 + E𝑎∼𝑞 [( ℎ̂(�̂�) − ℎ̂(𝑎))/𝛽]
, 1} · 𝑞𝑡−1. (2.5.3)

5: Use the action maximization oracle to compute

𝑎𝑡 = arg max
𝑎∈A

{
ℎ̂(𝑎) + 𝛽𝑎⊤(E�̃�∼𝑞

𝑡− 1
2
[�̃��̃�⊤])−1𝑎

}
. (2.5.4)

6: if ℎ̂(𝑎𝑡) + 𝛽𝑎⊤𝑡 (E𝑎∼𝑞𝑡− 1
2
[𝑎𝑎⊤])−1𝑎𝑡 > ℎ̂(�̂�) + 2𝛽𝑑, then

7: Run the coordinate descent step

𝑞𝑡 = 𝑞𝑡− 1
2
+
−2𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡 + 2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎𝑡))/𝛽

(𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡)2 1𝑎𝑡 . (2.5.5)

8: else
9: Let 𝑞𝑡 = 𝑞𝑡− 1

2
, halt and output

𝑞𝑡 + (1 −
∫
A
𝑞𝑡 (𝑎)d𝑎)1�̂� .
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We provide Algorithm 4 as a subroutine to achieve this. The core idea of this algorithm is to use

a coordinate descent procedure to compute a sparse distribution over actions, which is motivated by

the optimization procedure used in Agarwal et. al. [77]—however, we extend their idea from the

finite-action setting to the linear action model, which requires further matrix analysis and may be

interesting in its own right. We call this algorithm OptimisticSubroutine as the algorithm

is built upon the optimistic step (2.5.4), where the “𝑎⊤(E�̃�∼𝑞
𝑡− 1

2
[�̃��̃�⊤])−1𝑎” term is a continuous

analogue to the counterfactual action divergence (2.4.5) in the linear action model.

Proposition 3 (optimization through SubOpt) At each round within epoch 𝑚, Algorithm 4 out-

puts a probability distribution that satisfies (2.5.1) and (2.5.2) within at most ⌈ 4
𝛽𝑚

+ 8𝑑 (log 𝑑 + 1)⌉

iterations.

According to this proposition, the optimistic subroutine outputs an efficient solution that sat-

isfies the requirements (2.5.1) and (2.5.2) within finite number of iterations at every rounds. One

advantage of Algorithm 3 is that it requires only𝑂 (log𝑇) calls to the least-square oracle. However,

the design and analysis of the optimistic subroutine becomes challenging in the infinite-action set-

ting, especially for complex problem formulations. On the other hand, Algorithm 2 exhibits much

cleaner structure and a principled analysis that covers many problem formulations of interest.

2.6 Conclusion and future directions

In this paper we propose UCCB, a simple generic principle to design optimistic algorithms in

the presence of large context spaces. Key ideas underlying UCCB include: 1) confidence bounds in

policy space rather than in action space; and 2) the potential function perspective that explains the

power of optimism in the contextual setting. We present the first optimal and efficient optimistic

algorithm for realizable contextual bandits with general function classes. Besides the traditional

finite-action setting, we also discuss the infinite-action setting and provide the first solutions to

many interesting models of practical interest.
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Moving forward, there are many interesting future directions that may leverage the ideas pre-

sented in this work. The principle of optimism in the face of uncertainty plays an essential role in

reinforcement learning. Currently the majority of existing provably efficient algorithms are devel-

oped for the “tabular” case, and their regret scales with the cardinality of the state space. However,

empirical reinforcement learning problems typically have a large state space and rely on function

approximation [94]. Motivated by this challenge, a natural next step is to adapt the UCCB principle

to reinforcement learning problems with large state space. This paper can be viewed as an initial

step towards this goal, as the contextual MAB problem is a special case of episodic reinforcement

learning where the episode length is equal to one. Within the scope of bandit problems, UCB-

type algorithms are often the “meta-algorithms” for many complex formulations when there is no

contextual information. Since UCCB improves over UCB-type algorithms in several fundamental

contextual settings, this work may be a building block to combine contextual information and func-

tion approximation with more complex formulations such as Gaussian process optimization [95],

bandits with long-term constraints [96], and bandits in non-stationary environments [97]. We leave

these directions to future work.
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Chapter 3: Bayesian Design Principles for Frequentist Sequential Learning

We develop a general theory to optimize the frequentist regret for sequential learning prob-

lems, where efficient bandit and reinforcement learning algorithms can be derived from unified

Bayesian principles. We propose a novel optimization approach to create “algorithmic beliefs”

at each round, and use Bayesian posteriors to make decisions. This is the first approach to make

Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and opti-

mal manner. Moreover, the algorithms are simple and often efficient to implement. As a major

application, we present a novel algorithm for multi-armed bandits that achieves the “best-of-all-

worlds” empirical performance in the stochastic, adversarial, and non-stationary environments.

And we illustrate how these principles can be used in linear bandits, bandit convex optimization,

and reinforcement learning.

3.1 Introduction

3.1.1 Background

We address a broad class of sequential learning problems in the presence of partial feedback,

which arise in numerous application areas including personalized recommendation [98], game

playing [99] and control [100]. An agent sequentially chooses among a set of possible decisions

to maximize the cumulative reward. By “partial feedback” we mean the agent is only able to

observe the feedback of her chosen decision, but does not generally observe what the feedback

would be if she had chosen a different decision. For example, in multi-armed bandits (MAB), the

agent can only observe the reward of her chosen action, but does not observe the rewards of other

actions. In reinforcement learning (RL), the agent is only able to observe her state insofar as the

chosen action is concerned, while other possible outcomes are not observed and the underlying
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state transition dynamics are unknown. In this paper, we present a unified approach that applies to

bandit problems, reinforcement learning, and beyond.

The central challenge for sequential learning with partial feedback is to determine the optimal

trade-off between exploration and exploitation. That is, the agent needs to try different decisions to

learn the environment; at the same time, she wants to focus on “good” decisions that maximize her

payoff. There are two basic approaches to study such exploration-exploitation trade-off: frequen-

tist and Bayesian. One of the most celebrated examples of the frequentist approach is the family of

Upper Confidence Bound (UCB) algorithms [101, 102]. Here, the agent typically uses sample av-

erage or regression to estimate the mean rewards; and she optimizes the upper confidence bounds

of the mean rewards to make decisions. Another widely used frequentist algorithm is EXP3 [74]

which was designed for adversarial bandits; it uses inverse probability weighting (IPW) to estimate

the rewards, and then applies exponential weighting to construct decisions. One of the most cele-

brated examples of the Bayesian approach is Thompson Sampling (TS) with a pre-specified, fixed

prior [103]. Here, the agent updates the Bayesian posterior at each round to learn the environment,

and she uses draws from that posterior to optimize decisions.

The advantage of the frequentist approach is that it does not require a priori knowledge of the

environment. However, it heavily depends on a case-by-case analysis exploiting special structure

of a particular problem. For example, regression-based approaches can not be easily extended to

adversarial problems; and IPW-type estimators are only known for simple rewards/losses such as

discrete and linear. The advantage of Bayesian approach is that Bayesian posterior is a generic and

often optimal estimator if the prior is known. However, the Bayesian approach requires knowing

the prior at the inception, which may not be accessible in complex or adversarial environments.

Moreover, maintaining posteriors is computationally expensive for most priors.

In essence, frequentist approach requires less information, but is less principled, or more

bottom-up. On the other hand, the Bayesian approach is more principled, or top-down, but re-

quires stronger assumptions. In this paper we focus on the following research:

Can we design principled Bayesian-type algorithms, that are prior-free, computationally effi-
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cient, and work well in both stochastic and adversarial/non-stationary environments?

3.1.2 Contributions

In this paper, we synergize frequentist and Bayesian approaches to successfully answer the

above question, through a novel idea that creates “algorithmic beliefs” that are generated sequen-

tially in each round, and uses Bayesian posteriors to make decisions. Our contributions encompass

over theoretical discoveries, novel methodology, and applications thereby. We summarize the main

contributions as follows.

Making Bayesian-type algorithms prior-free and applicable to adversarial settings. To the

best of our knowledge, we provide the first approach that allows Bayesian-type algorithms to op-

erate without prior assumptions and be applicable in adversarial settings, in a generic, optimal,

and often computationally efficient manner. The regret bounds of our algorithms are no worse

than the best theoretical guarantees known in the literature. In addition to its applicability in

adversarial/non-stationary environments, our approach offers the advantages of being prior-free

and often computationally manageable, which are typically not achievable by traditional Bayesian

algorithms, except for simple model classes like discrete and linear rewards/losses. It is worth

noting that the main ideas underlying our methodology and proofs are quite insightful and can be

explained in a succinct manner.

General theory of “Algorithmic Information Ratio” (AIR). We introduce an objective func-

tion that depends on an “algorithmic belief” and round-dependent information, which we refer

to as “Algorithmic Information Ratio” (AIR). Our approach always selects algorithmic beliefs

by (approximately) maximizing AIR, and the regret of our algorithms can always be bounded

by the cumulative sum of the values of AIR at each round. We then show that AIR can be up-

per bounded by previously known complexity measures such as information ratio (IR) [104] and

decision-estimation coefficient (DEC) [105]. As an immediate consequence, our machinery con-

verts existing regret upper bounds using information ratio and DEC, into simple frequentist algo-
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rithms with tight guarantees. And we provide methods and guarantees to approximately maximize

AIR.

Novel algorithm for MAB with “best of all worlds” empirical performance. As a major il-

lustration, we propose a novel algorithm for Bernoulli multi-armed bandits (MAB) that achieves

the “best-of-all-worlds” empirical performance in the stochastic, adversarial, and non-stationary

environments. This algorithm is quite different from and performs much better than the traditional

EXP3 algorithm, which has been the default choice for adversarial MAB for decades. At the same

time, the algorithm outperforms UCB and is comparable to Thompson Sampling in the stochastic

environment. Moreover, it outperforms traditional Thompson Sampling and “clairvoyant” restarted

algorithms in non-stationary environments.

Applications to linear bandits, bandit convex optimization, and reinforcement learning. Our

theory can be applied to various settings, including linear and convex bandits, and reinforcement

learning, by the principle of approximately maximizing AIR. Specifically, for linear bandits, we

derive a modified version of EXP2 based on our framework, which establishes a novel connection

between inverse propensity weighting (IPW) and Bayesian posteriors. For bandit convex opti-

mization, we propose the first algorithm that attains the best-known �̃� (𝑑2.5√𝑇) regret with a finite

poly(𝑒𝑑 · 𝑇) running time. Lastly, in reinforcement learning, we provide a simple and constructive

algorithm that achieves the sharpest result proven through Bayesian Thompson Sampling in the

early work [105].

Combining estimation and decision-making. Our approach jointly optimizes the belief of an

environment and probability of decision. Most existing algorithms including UCB, EXP3, Estimation-

to-Decision (E2D) [105], TS, and Information-Directed Sampling (IDS) [106] maintain a different

viewpoint that separates algorithm design into a black-box estimation method (sample average,

linear regression, IPW, Bayesian posterior...) and a decision-making rule that makes the estimate

as input to an optimization problem. In contrast, by optimizing AIR to generate new beliefs, our
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algorithm simultaneously deals with estimation and optimization. This viewpoint is quite powerful

and broadens the general scope of bandit algorithms.

3.1.3 Related literature

In this subsection we discuss mostly relevant works. [104, 106] propose the concept of “in-

formation ratio” to analyze and design Bayesian bandit algorithms. Their work studies Bayesian

regret with a known prior rather than the frequentist regret. [107] proposes an algorithm called

“Exploration by Optimization (EBO),” which is the first general frequentist algorithm that opti-

mally bounds the frequentist regret of bandit problems using information ratio. However, the EBO

algorithm is more of a conceptual construct as it requires intractable optimization over the complete

class of “functional estimators,” and hence is not implementable in most settings of interest. Our

algorithms are inspired by EBO, but are simpler in structure and run in decision and model spaces

(rather than intractable functional spaces). In particular, our approach advances EBO by employ-

ing explicit construction and randomization of estimators, offering flexibility in selecting updating

rules, and providing computation guidelines that come with provable guarantees. The recent work

[105] proposes the concept of “decision-estimation coefficient” (DEC) as a general complexity

measure for bandit and reinforcement learning problems. Algorithms in this work typically sepa-

rate black-box estimation method and decision-making rule, and for this reason the proposed E2D

algorithm do not generally achieve optimal regret for bandit problems. The subsequent work [108]

extends the theory of DEC to adversarial environments. However, their algorithm is an adaptation

of EBO in [107], which, as discussed, may present computational challenges.

3.2 Preliminaries and definition of AIR

3.2.1 Problem formulation

To state our results in the broadest manner, we adopt the general formulation of Adversarial

Decision Making with Structured Observation (Adversarial DMSO) [108], which covers broad

problems including bandit problems, reinforcement learning, and partial monitoring. For a locally

91



compact metric space we denote by Δ(·) the set of Borel probability measures on that space. Let Π

be a compact decision space. Let M be a compact model class where each model 𝑀 : Π → O is

a mapping from the decision space to a locally compact observation space O. A problem instance

in this protocol can be described by the decision space Π and the model class M. We define the

mean reward function associated with model 𝑀 by 𝑓𝑀 .

Consider a 𝑇−round game played by a randomized player in an adversarial environment. At

each round 𝑡 = 1, . . . , 𝑇 , the agent determines a probability 𝑝𝑡 over the decisions, and the en-

vironment selects a model 𝑀𝑡 ∈ M. Then the decision 𝜋𝑡 ∼ 𝑝𝑡 is sampled and an observation

𝑜𝑡 ∼ 𝑀𝑡 (𝜋𝑡) is revealed to the agent. An admissible algorithm ALG can be described by a se-

quence of mappings where the 𝑡−th mapping maps the past decision and observation sequence

{𝜋𝑖, 𝑜𝑖}𝑡−1
𝑖=1 to a probability 𝑝𝑡 over decisions. The frequentist regret of the algorithm ALG against

the usual target of single best decision in hindsight is defined as

ℜ𝑇 = sup
𝜋∗∈Π
E

[
𝑇∑︁
𝑡=1

𝑓𝑀𝑡 (𝜋∗) −
𝑇∑︁
𝑡=1

𝑓𝑀𝑡 (𝜋𝑡)
]
,

where the expectation is taken with respect to the randomness in decisions and observations. There

is a large literature that focuses on the so-called stochastic environment, where 𝑀𝑡 = 𝑀
∗ ∈ M for

all rounds, and the single best decision 𝜋∗ ∈ arg min 𝑓𝑀∗ (𝜋) is the natural oracle. Regret bounds

for adversarial sequential learning problems naturally apply to stochastic problems. We illustrate

how the general formulation covers bandit problems, and leave the discussion of reinforcement

learning to Section 3.7.

Example 9 (Bernoulli multi-armed bandits (MAB)) We illustrate how the general formulation

reduces to the basic MAB problem with Bernoulli reward. Let Π = [𝐾] = {1, · · · , 𝐾} be a finite set

of 𝐾 actions, and F be the set of all possible mappings from [𝐾] to [0, 1]. Take M = {𝑀 𝑓 : 𝑓 ∈

F } as the induced model class, where each 𝑀 𝑓 maps 𝜋 into the Bernoulli distribution Bern( 𝑓 (𝜋)).

The mean reward function for model 𝑀 𝑓 is 𝑓 itself. At each round 𝑡, the environment selects a mean

reward function 𝑓𝑡 , and the observation 𝑜𝑡 is the incurred reward 𝑟𝑡 ∼ Bern( 𝑓𝑡 (𝜋𝑡)).
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Example 10 (Structured bandits) We consider bandit problems with general structure of the

mean reward function. Let Π be a 𝑑−dimensional action set, and F ⊆ { 𝑓 : Π → [0, 1]} be

a function class that encodes the structure of the mean reward function. Take M = {𝑀 𝑓 : 𝑓 ∈ F }

as the induced model class, where each 𝑀 𝑓 maps 𝜋 to the Bernoulli distribution Bern( 𝑓 (𝜋)). The

mean reward function for model 𝑀 𝑓 is 𝑓 itself. For example, in 𝑑−dimensional linear bandits, the

mean reward function 𝑓 is parametrized by some \ ∈ Θ ⊆ R𝑑 such that 𝑓 (𝜋) = \𝑇𝜋,∀𝜋 ∈ Π. And

in bandit convex optimization, the mean reward (or loss) function class F is the set of all concave

(or convex) mappings from Π to [0, 1].

3.2.2 Algorithmic Information Ratio

Let a be a probability measure of the joint random variable (𝑀, 𝜋∗) ∈ M × Π, and 𝑝 be a

distribution of another independent random variable 𝜋 ∈ Π. Given a probability measure a, let

a𝜋∗ (·) =
∫
M
a(𝑀, ·)𝑑𝑀

be the marginal distribution of 𝜋∗ ∈ Π. Viewing a as a prior belief over (𝑀, 𝜋∗), we define a(·|𝜋, 𝑜)

as the Bayesian posterior belief conditioned on the decision being 𝜋 and the observation (generated

from the distribution 𝑀 (𝜋)) being 𝑜; and we define the marginal posterior belief of 𝜋∗ conditioned

on 𝜋 and 𝑜 as

a𝜋∗ |𝜋,𝑜 (·) =
∫
M
a(𝑀, ·|𝜋, 𝑜)𝑑𝑀.

Denote KL(P,Q) =
∫

log 𝑑P
𝑑Q𝑑P as the KL divergence between two probability measures.

Now we introduce a central definition in this paper—Algorithmic Information Ratio.

Definition 7 (Algorithmic Information Ratio) Given a reference probability 𝑞 ∈ int(Δ(Π)) and

learning rate [ > 0, we define the “Algorithmic Information Ratio” (AIR) for probability 𝑝 of 𝜋

and belief a of (𝑀, 𝜋∗) as

AIR𝑞,[ (𝑝, a) = E𝑝,a
[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
KL(a𝜋∗ |𝜋,𝑜, 𝑞)

]
,
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where the expectation is taken with 𝜋 ∼ 𝑝, (𝑀, 𝜋∗) ∼ a.

The term “Algorithmic Information Ratio” was used to highlight the key difference between

AIR and classical information ratio (IR) measures (to be presented shortly in (3.2.1)). Firstly, AIR

incorporate a reference probability 𝑞 in its definition, while classical IR does not. This additional

flexibility makes AIR useful for algorithm design and analysis. Secondly, AIR is defined in an

offset form, whereas IR is defined in a ratio form. We choose the word “algorithmic” because AIR

is particularly suited to designing constructive and efficient frequentist algorithms. We remain the

term “ratio” as it is consistent with previous literature on the topic. The formulation of AIR is

inspired by the optimization objectives in recent works on EBO [107] and DEC [105], but AIR

crucially depends an “algorithmic belief” a rather than taking the maximum with respect to the

worst-case deterministic model, and there are multiple differences in the formulations (see the

next subsection for details).

Note that AIR is linear with respect to 𝑝 and concave with respect to a, as conditional entropy is

always concave with respect to the joint probability measure (see Lemma 36). It will be illustrative

to write AIR as the sum of three items:

AIR𝑞,[ (𝑝, a) = E𝑝,a [ 𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋)]︸                        ︷︷                        ︸
expected regret

−1
[
E𝑝,a

[
KL(a𝜋∗ |𝜋,𝑜, a𝜋∗)

]︸                       ︷︷                       ︸
information gain

−1
[

KL(a𝜋∗ , 𝑞)︸       ︷︷       ︸
regularization by 𝑞

,

where: the “expected regret” measures the difficulty of exploitation; “information gain” is the

amount of information gained about 𝜋∗ by observing 𝜋 and 𝑜, and this in fact measures the degree

of exploration; and the last “regularization” term forces the marginal distribution of 𝜋∗ to be “close”

to the reference probability distribution 𝑞. By maximizing AIR, we generate an “algorithmic be-

lief” that simulates the worst-case environment. This algorithmic belief will automatically balance

exploration and exploitation, as well as being close to the chosen reference belief (e.g., a standard

reference is the posterior from previous round, as used in traditional Thompson Sampling).
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3.2.3 Relation to IR and DEC

Notably, our framework allows for the utilization of nearly all existing upper bounds for in-

formation ratio (IR) and DEC in practical applications, enabling the derivation of the sharpest

regret bounds known, along with the development of constructive algorithms. In this subsection

we demonstrate that AIR can be upper bounded by IR and DEC.

We present here the traditional definition of Bayesian information ratio [104]. See [104, 106,

109, 110, 111] for upper bounds of IR in structured bandit and RL problems.

Definition 8 (Information ratio) Given belief a of (𝑀, 𝜋∗) and decision probability 𝑝 of 𝜋, the

information ratio is defined as

IR(a, 𝑝) =
(Ea,𝑝 [ 𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋)])2

Ea,𝑝
[
KL(a𝜋∗ |𝜋,𝑜, a𝜋∗)

] . (3.2.1)

Note that the traditional information ratio (3.2.1) does not involve any reference probability dis-

tribution 𝑞 (unlike AIR). By completing the square, it is easy to show that AIR can always be

bounded by IR as follows.

Lemma 8 (Bounding AIR by IR) For any 𝑞 ∈ int(Δ(Π)), 𝑝 ∈ Δ(Π), belief a ∈ Δ(M × Π), and

[ > 0, we have

AIR𝑞,[ (𝑝, a) ≤
[

4
· IR(a, 𝑝).

The recent paper [105] introduced the complexity measure DEC, which aims to unify bandits

and many reinforcement learning problems.

Definition 9 (Decision-estimation coefficient) Given a model class M, a nominal model �̄� and

[ > 0, we define the decision-estimation coefficient by

DEC[
(
M, �̄�

)
= inf
𝑝∈Δ(Π)

sup
𝑀∈M

Ea,𝑝

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
𝐷2

H
(
𝑀 (𝜋), �̄� (𝜋)

) ]
,
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where 𝐷2
H(P,Q) =

∫
(
√
𝑑P −

√
𝑑Q)2 is the squared Hellinger distance between two probability

measures.

DEC provides a tighter complexity measure compared to several existing measures in the literature,

such as the bilinear dimension [112] and the Eluder Bellman dimension [113], for reinforcement

learning (RL) problems. Moreover, a slightly strengthened version of DEC, defined through the

KL divergence instead of the Hellinger divergence, can be bounded by the traditional information

ratio. This result follows from Proposition 9.1 in [105].

We establish that the worst-case value of AIR under a “maximin” strategy for selecting 𝑝 is

bounded by the worst-case value of the decision-estimation coefficient (DEC) for the convex hull

of the model class in the following lemma.

Lemma 9 (Bounding AIR by DEC) Given model class M and [ > 0, we have

sup
𝑞∈int(Δ(Π))

sup
a

inf
𝑝
AIR𝑞,[ (𝑝, a) ≤ sup

�̄�∈conv(M)
DEC[ (Δ(M), �̄�). (3.2.2)

To prove Lemma 9, we can start by noting that the left-hand side of (3.2.2) is equivalent to the

“parametric information ratio,” defined as

max
a

min
𝑝
Ea,𝑝

[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
KL(a𝜋 |𝜋,𝑜, a𝜋∗)

]
, (3.2.3)

which was introduced in [108]. This equivalence can be shown by using the concavity of AIR to

exchange sup over 𝑞 and min over 𝑝. Furthermore, the inequality between (3.2.3) and the right-

hand side of (3.2.2) has been established by Theorem 3.1 in [108]. Therefore, we obtain a proof of

Lemma 9.

We highlight that AIR is the tightest complexity measure in the adversarial setting. However,

for reinforcement learning problems in the stochastic setting, it is often desirable to remove the

convex hull on the right-hand side of (3.2.2). To this end, we introduce a tighter version of AIR,

called “Model-index AIR” (MAIR), which allows us to apply most existing regret upper bounds
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using DEC to our framework. In Section 3.7, we discuss our theory about MAIR and its application

to RL in the stochastic setting.

3.3 Algorithms

3.3.1 A generic regret bound leveraging AIR

Given an arbitrary admissible algorithm ALG (defined in Section 3.2.1), we can generate a

sequence of algorithmic beliefs {a𝑡}𝑇𝑡=1 and a corresponding sequence of reference probabilities

{𝑞𝑡}𝑇𝑡=1 in a sequential manner as shown in Algorithm 5. Maximizing AIR to create algorithmic

Algorithm 5 Maximizing AIR to create algorithmic beliefs
Input algorithm ALG and learning rate [ > 0.
Initialize 𝑞1 to be the uniform distribution over Π.

1: for round 𝑡 = 1, 2, · · · , 𝑇 do
2: Obtain 𝑝𝑡 from ALG. Find a distribution a𝑡 of (𝑀, 𝜋∗) that solves

sup
a∈Δ(M×Π)

AIR𝑞𝑡 ,[ (𝑝𝑡 , a).

3: The algorithm ALG samples decision 𝜋𝑡 ∼ 𝑝𝑡 and observes the feedback 𝑜𝑡 ∼ 𝑀𝑡 (𝜋𝑡).
4: Update 𝑞𝑡+1 = (a𝑡)𝜋∗ |𝜋𝑡 ,𝑜𝑡 .

beliefs is an alternative approach to traditional estimation procedures, as the resulting algorithmic

beliefs will simulate the true or worst-case environment. In particular, this approach only stores

a single distribution (a𝑡)𝜋∗ |𝜋𝑡 ,𝑜𝑡 at round 𝑡, which is the Bayesian posterior obtained from belief a𝑡

and observations 𝜋𝑡 , 𝑜𝑡 , and it is made to forget all the rest information from the past.

Based on these algorithmic beliefs, we can provide regret bound for an arbitrary algorithm.

Here we assume Π to be finite (but potentially large) for simplicity; this assumption can be relaxed

using standard discretization and covering arguments.

Theorem 14 (Generic regret bound for arbitrary learning algorithm) Given a finite decision

space Π, a compact model class M, the regret of an arbitrary learning algorithm ALG is bounded
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as follows, for all 𝑇 ∈ N+,

ℜ𝑇 ≤ log |Π |
[

+
𝑇∑︁
𝑡=1

AIR𝑞𝑡 ,[ (𝑝𝑡 , a𝑡). (3.3.1)

Note that Theorem 14 provides a powerful tool to study the regret of an arbitrary algorithm

using the concept of AIR. More importantly, it suggests that the algorithm should choose deci-

sion with probability 𝑝𝑡+1 according to the posterior ((a𝑡)𝜋∗ |𝜋𝑡 ,𝑜𝑡 . Building on this principle to

generate algorithmic beliefs, we provide two concrete algorithms: “Adaptive Posterior Sampling”

(APS) and “Adaptive Minimax Sampling” (AMS). Surprisingly, their regret bounds are as sharp

as the best known regret bounds of existing Bayesian algorithms that require knowledge of a well-

specified prior.

3.3.2 Adaptive Posterior Sampling (APS)

When the agent always selects 𝑝𝑡+1 to be equal to the posterior 𝑞𝑡+1 = (a𝑡)𝜋∗ |𝜋𝑡 ,𝑜𝑡 , and optimizes

for algorithmic beliefs as in Algorithm 5, we call the resulting algorithm “Adaptive Posterior Sam-

pling” (APS).

Algorithm 6 Adaptive Posterior Sampling (APS)
Input learning rate [ > 0.
Initialize 𝑝1 = Unif(Π).

1: for round 𝑡 = 1, 2, · · · , 𝑇 do
2: Find a distribution a𝑡 of (𝑀, 𝜋∗) that solves

sup
a∈Δ(M×Π)

AIR𝑝𝑡 ,[ (𝑝𝑡 , a).

3: Sample decision 𝜋𝑡 ∼ 𝑝𝑡 and observe 𝑜𝑡 ∼ 𝑀𝑡 (𝜋𝑡).
4: Update 𝑝𝑡+1 = (a𝑡)𝜋∗ |𝜋𝑡 ,𝑜𝑡 .

At round 𝑡, APS inputs 𝑝𝑡 to the objective AIR𝑝𝑡 ,[ (𝑝𝑡 , a) to optimize for the algorithmic belief

a𝑡 ; and it sets 𝑝𝑡+1 to be the Bayesian posterior obtained from belief a𝑡 and observations 𝜋𝑡 , 𝑜𝑡 .

Unlike traditional TS, APS does not require knowing the prior or stochastic environment; instead,

APS creates algorithmic beliefs “on the fly” to simulate the worst-case environment. We can prove

98



the following theorem using the regret bound (3.3.1) in Theorem 14 and the relationship between

AIR and IR established in Lemma 8.

Theorem 15 (Regret of APS) Assume that 𝑓𝑀 (𝜋) ∈ [0, 1] for all 𝑀 ∈ M and 𝜋 ∈ Π. The

regret of Algorithm 6 with [ =
√︁

2 log |Π |/(IRH(TS) · 𝑇 + 4𝑇) is bounded as follows, for all 𝑇 ≥

2 log |Π |IRH(TS) + 4,

ℜ𝑇 ≤
√︁

log |Π | (IRH(TS)/2 + 2) 𝑇,

where IRH(TS) := supa IRH(a, a𝜋∗)1 is the maximal value of information ratio for Thompson

Sampling.

For 𝐾−armed bandits, APS achieves the near-optimal regret 𝑂 (
√︁
𝐾𝑇 log𝐾) because IRH(TS) ≤

𝐾; for 𝑑−dimensional linear bandits, APS recovers the optimal regret𝑂 (
√
𝑑2𝑇) because IRH(TS) ≤

𝑑.

The main messages about APS and Theorem 15 are: 1) the regret bound of APS is no worse

than the standard regret bound of TS [104], but in contrast to the latter, does not rely on any knowl-

edge needed to specify a prior! 2) Because APS only keeps the marginal beliefs of 𝜋∗ but forgets

beliefs of the models, it is robust to adversarial and non-stationary environments. And 3) Experi-

mental results in Section 3.4 show that APS achieves “best-of-all-worlds” empirical performance

for Bernoulli MAB in different environments.

To the best of our knowledge, Theorem 15 is the first generic result to make TS prior-free and

applicable to adversarial environment. To that end, we note that Corollary 19 in [107] only applies

to 𝐾−armed bandits because of their truncation procedure.

1For technical reason we use the Hellinger distance to define IRH (instead of KL as in the definition (3.2.1) of
IR). There is no difference between the definitions of IR and IRH in practical applications since all currently known
bounds on the information ratio hold for the stronger definition IRH.
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3.3.3 Adaptive Minimax Sampling (AMS)

When the agent selects decision 𝑝𝑡 by solving the minimax problem

inf
𝑝𝑡

sup
a

AIR𝑞𝑡 ,[ (𝑝, a),

and optimizes for algorithmic beliefs as in Algorithm 5, we call the resulting algorithm “Adap-

tive Minimax Sampling” (AMS). By the regret bound (3.3.1) in Theorem 14 and the relationship

Algorithm 7 Adaptive Minimax Sampling (AMS)
Input learning rate [ > 0.
Initialize 𝑞1 = Unif(Π).

1: for round 𝑡 = 1, 2, · · · , 𝑇 do
2: Find a distribution 𝑝 of 𝜋 and a distribution a𝑡 of (𝑀, 𝜋∗) that solves the saddle point of

inf
𝑝∈Δ(Π)

sup
a∈Δ(M×Π)

AIR𝑞𝑡 ,[ (𝑝, a).

3: Sample decision 𝜋𝑡 ∼ 𝑝𝑡 and observe 𝑜𝑡 ∼ 𝑀𝑡 (𝜋𝑡).
4: Update 𝑞𝑡+1 = (a𝑡)𝜋∗ |𝜋𝑡 ,𝑜𝑡 .

between AIR and IR established in Lemma 8, it is straightforward to prove the following theorem.

Theorem 16 (Regret of AMS) For a finite decision space Π and a compact model class M, the

regret of Algorithm 7 with [ = 2
√︁

log |Π |/(IR(IDS) · 𝑇) is always bounded by

ℜ𝑇 ≤ 1
2
√︁

log |Π | · IR(IDS) · 𝑇,

where IR(IDS) := supa inf𝑝 IR(a, 𝑝) is the maximal information ratio of Information-Directed

Sampling.

Theorem 16 shows that the regret bound of AMS is always no worse than that of IDS [106]. By

showing implicit equivalence and making clean-ups, Algorithm 7 can also be explained as a much

simplified implementation of the key ideas in the EBO algorithm from [107], but AMS runs in
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computationally tractable spaces (rather than intractable functional spaces) and does not require

unnecessary truncation.

3.3.4 Using approximate maximizers

In Algorithm 5, we ask for the algorithmic beliefs to maximize AIR. In order to give com-

putationally efficient algorithms in practical applications (MAB, linear bandits, RL, ...), we will

require the algorithmic beliefs to approximately maximize AIR. This argument is made rigorous in

the following theorem, which uses the first-order optimization error of AIR to represent the regret

bound.

Theorem 17 (Generic regret bound using approximate maximizers) Given a finite Π, a com-

pact M, an arbitrary algorithm ALG that produces decision probability 𝑝1, . . . , 𝑝𝑇 , and a se-

quence of beliefs a1, . . . , a𝑇 where 𝑞𝑡 = (a𝑡−1)𝜋∗ |𝜋,𝑜 ∈ int(Δ(Π)) for all rounds, we have

ℜ𝑇 ≤ log |Π |
[

+
𝑇∑︁
𝑡=1

(
AIR𝑞𝑡 ,[ (𝑝𝑡 , a𝑡)

+ sup
a∗

(
𝜕AIR𝑞𝑡 ,[ (𝑝𝑡 , a)

𝜕a

����
a=a𝑡

)⊤
(a∗ − a𝑡)

)
.

Thus we give a concrete approach towards computationally efficient algorithms with rigorous

guarantees—making the gradient of AIR small to approximately maximize AIR.

3.4 Application to Bernoulli MAB

Our Bayesian design principles give rise to a novel algorithm for the Bernoulli multi-armed

bandits (MAB) problem. It is well-known that every bounded-reward MAB problem can equiv-

alently be reduced to the Bernoulli MAB problem, so our algorithm and experimental results ac-

tually apply to all bounded-reward MAB problems. The reduction is very simple: assuming the

rewards are always bounded in [𝑎, 𝑏], then after receiving 𝑟𝑡 at each round, the agent re-samples a

binary reward 𝑟𝑡 ∼ Bern((𝑟𝑡 − 𝑎)/𝑏 − 𝑎) so that 𝑟𝑡 ∈ {0, 1}.
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3.4.1 Simplified APS for Bernoulli MAB

In Example 9, Π = [𝐾] = {1, · · · , 𝐾} is a set of 𝐾 actions, and each model M is a mapping

from actions to Bernoulli distributions. Given belief a ∈ Δ(M × [𝐾]), we introduce the following

parameterization: ∀𝑖, 𝑗 ∈ [𝐾],

\𝑖 ( 𝑗) := E [𝑟 ( 𝑗) |𝜋∗ = 𝑖] , (conditional mean reward)

𝛼(𝑖) := a𝜋∗ (𝑖), (marginal belief)

𝛽𝑖 ( 𝑗) := 𝛼(𝑖) · \𝑖 ( 𝑗). (guarantees concavity)

Then we have a concave parameterization of AIR by the 𝐾 (𝐾 + 1)−dimensional vector (𝛼, 𝜷) =

(𝛼, 𝛽1, · · · , 𝛽𝐾):

AIR𝑞,[ (𝑝, a) =
∑︁
𝑖∈[𝐾]

𝛽𝑖 (𝑖) −
∑︁

𝑖, 𝑗∈[𝐾]
𝑝( 𝑗)𝛽𝑖 ( 𝑗)

−1
[

∑︁
𝑖, 𝑗∈[𝐾]

𝑝( 𝑗)𝛼(𝑖)kl ©« 𝛽𝑖 ( 𝑗)𝛼( 𝑗) ,
∑︁
𝑖∈[𝐾]

𝛽𝑖 ( 𝑗)
ª®¬ − 1

[
KL(𝛼, 𝑞),

where kl(𝑥, 𝑦) := 𝑥 log 𝑥
𝑦
+ (1 − 𝑥) log 1−𝑥

1−𝑦 for all 𝑥, 𝑦 ∈ (0, 1). By setting the gradients of AIR

with respect to all 𝐾2 coordinates in 𝛽 to be exactly zero, and choosing 𝛼 = 𝑝 (which results

in the gradient of AIR with respect to 𝛼 being suitbly bounded), we are able to write down a

simplified APS algorithm in closed form (see Algorithm 8). We apply Theorem 17 to show that

the algorithm achieves near-optimal 𝑂 (
√︁
𝐾𝑇 log𝐾) regret in the general adversarial setting. We

leave the detailed derivation and analysis of the Algorithm 8 to Appendix C.2.2.

At each round, Algorithm 8 increases the weight of the selected action 𝜋𝑡 if 𝑟𝑡 = 1, and de-

creases the weight if 𝑟𝑡 = 0. The algorithm also maintains the “relative weight” between all

unchosen actions 𝜋 ≠ 𝜋𝑡 , allocating probabilities to these actions proportionally to 𝑝𝑡 . Algorithm

8 is clearly very different from the well-known EXP3 algorithm, which instead updates 𝑝𝑡+1 by the
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Algorithm 8 Simplified APS for Bernoulli MAB
Input learning rate [ > 0.
Initialize 𝑝1 = Unif(Π).

1: for round 𝑡 = 1, 2, · · · , 𝑇 do
2: Sample action 𝜋𝑡 ∼ 𝑝𝑡 and receives 𝑟𝑡 .
3: Update 𝑝𝑡+1 by

𝑝𝑡+1(𝜋𝑡) =
{ 1−exp(−[)

1−exp(−[/𝑝𝑡 (𝜋𝑡 )) , if 𝑟𝑡 = 1
1−exp([)

1−exp([/𝑝𝑡 (𝜋𝑡 )) , if 𝑟𝑡 = 0
, and

𝑝𝑡+1(𝜋) = 𝑝𝑡 (𝜋) ·
1 − 𝑝𝑡+1(𝜋𝑡)
1 − 𝑝𝑡 (𝜋𝑡)

, ∀𝜋 ≠ 𝜋𝑡 .

formula

𝑝𝑡+1(𝜋) = 𝑝𝑡 (𝜋) exp
(
[ · 𝑟𝑡1{𝜋 = 𝜋𝑡}

𝑝𝑡 (𝜋𝑡)

)
, ∀𝜋 ∈ Π.

In Section 3.6.2 we recover a modified version of EXP3 by Bayesian principle assuming Gaussian

reward. We conclude that Algorithm 6 uses a precise posterior for Bernoulli reward, while EXP3

estimates worst-case Gaussian reward. This may explain why Algorithm 8 performs much better

in all of our experiments.

3.4.2 Numerical experiments

We implement Algorithm 8 (with the legend “APS” in the figures) in the stochastic, adversar-

ial and non-stationary environments. We plot expected regret (average of 100 runs) for different

choices of [, and set 𝛾 = 0.001 in all experiments. We find APS 1) outperforms UCB and matches

TS in the stochastic environment; 2) outperforms EXP3 in the adversarial environment; and 3)

outperforms EXP3 and is comparable to the “clairvoyant” benchmarks (that have prior knowledge

of the changes) in the non-stationary environment. For this reason we say Algorithm 8 (APS)

achieves the “best-of-all-worlds” performance. We note that the optimized choice of [ in APS

differ instance by instance, but by an initial tuning we typically see good results, whether we tune

[ optimally or not optimally.
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Figure 3.1: Sensitivity analysis in a stochastic bandit problem.

Stochastic Bernoulli MAB

In Figure 3.1 we report the expected regret for APS with different choices of [, TS with differ-

ent Beta priors, and the UCB 1 algorithm, in a stochastic 16-armed Bernoulli bandit problem. We

refer to this as “sensitivity analysis” because the red, semi-transparent, area reports the regret of

APS when learning rates [ are chosen across a range of values drawn from the interval [0.05, 0.5]

(the interval is specified by an initial tuning); and the priors of TS are chosen from Beta(𝑐, 1)

where 𝑐 ∈ [0.5, 5]. In particular, the bottom curve of the red (or blue) area is the regret curve of

APS (or TS) using optimally tuned [ (respectively, prior). The conclusion is that APS outperforms

UCB 1, and is comparable to TS in this stochastic environment.

Adversarial Bernoulli MAB

We equidistantly take 16 horizontal lines from an abstract art piece by Jackson Pollock to simu-

late the rewards (pre-specified) in an adversarial environment, and study this via a 16-armed bandit

problem. Figure 3.2 shows the sensitivity analysis for APS and EXP3 when both the learning rates

are chosen from [0.1, 5] (the interval is specified by an initial tuning). In particular, the red and
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Figure 3.2: Sensitivity analysis in an adversarial bandit problem.

green lower curves compare the optimally tuned versions of APS and EXP3. The conclusion is

that APS outperforms EXP3 whether [ is tuned optimally or not.

Non-stationary Bernoulli MAB (with change points)

We study a 16-armed Bernoulli bandit problem in a non-stationary environment. We generate

4 batches of i.i.d. sequences, where the changes in the environment occur after round 1000, round

2000, and round 3000. We consider a stronger notion of regret known as the dynamic regret [114],

which compares the cumulative reward of an algorithm to the cumulative reward of the best non-

stationary policy (rather than a single arm) in hindsight. In this particular setting, the benchmark

is to select the best arm in all the 4 batches. In Figure 3.3 we perform sensitivity analysis for APS

and EXP3, where the learning rates are chosen across [0, 05, 5]. Since the agent will not know

when and how the adversarial environment changes in general, it is most reasonable to compare

APS with EXP3 without any knowledge of the environment as in Figure 3.3. We observe that APS

dramatically improves the dynamic regret by several times.

In Figure 3.4, we compare APS to three “clairvoyant” restarted algorithms, which require
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Figure 3.3: Sensitivity analysis in a
“change points” environment.
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Figure 3.4: Comparing APS to “clairvoyant”
restarted algorithms in a “change points”
environment.

knowing that the environment consists of 4 batches of i.i.d. sequences, as well as knowing the

exact change points. We tune the parameters in these algorithms optimally. Without knowledge of

the environment, APS performs better than restarted EXP3 and restarted UCB 1, and is comparable

to restarted TS. (It is important to emphasize again that the latter algorithms are restarted based on

foreknowledge of the change points.)

Non-stationary Bernoulli MAB (with “sine curve” reward sequences)

We generate a 4-armed bandit problem with the mean-reward structure shown in Figure 3.5.

The four sine curves (with different colors) in Figure 3.5 represent the mean reward sequences of

the 4 arms. We tune the parameters in all the algorithms to optimal and report their regret curves

in Figure 3.6. As shown in Figure 3.6, APS achieves the best performance, while TS fails in this

non-stationary environment. This experiment shows the vulnerability of TS if the environment is

not stationary, such as the sine curve structure shown here.

To better illustrate the smartness of APS compared with TS in the non-stationary environment,

we track the selected arms and the best arms throughout the process. In Figure 3.7 and Figure 3.8,

the horizontal line represents the 4000 rounds, and the vertical lines represent the 4 arms (indexed

as 1, 2, 3, and 4). In Figure 3.7, the red points show the selected arms of APS, and the black
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Figure 3.5: “Sine curve” reward sequences
for 4 arms.

Figure 3.6: Regret curves in a “sine curve”
environment.

Figure 3.7: Tracking selected arms of APS
in a “sine curve” environment.

Figure 3.8: Tracking selected arms of TS
in a “sine curve” environment.
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points represent the best arms at each round in this “sine curve” non-stationary environment. In

Figure 3.8, the blue points show the selected arms of TS. The more consistent the selected arms

are with the best arms (black points), the better choices an algorithm makes. Comparing Figure

3.7 and Figure 3.8, we can see that APS is highly responsive to changes in the best arm, whereas

TS is relatively sluggish in this regard. The implication of this experiment is that creating a new

algorithmic belief at each round has the potential to significantly improve performance and be a

game changer in many problem settings.

These experiments provide some numerical evidence indicating that APS achieves the “best-

of-all-worlds” across stochastic, adversarial, and non-stationary environments.

3.5 Key intuitions of the proof

It is worth noting that the proof of Theorem 14 is quite insightful and parsimonious. The

two major steps in the proof may be interesting on its own. The first step is a succinct analysis to

bound the cumulative regret by sum of AIR (see Section 3.5.1); and the second step is to extend the

classical minimax theory of “exchanging values” into a constructive approach to design minimax

decisions (estimators, algorithms, etc.), which will be presented in Section 3.5.2.

3.5.1 Bounding regret by sum of AIR

For every �̄� ∈ Π, we have

𝑇∑︁
𝑡=1

[
log

𝑞𝑡+1(�̄�)
𝑞𝑡 (�̄�)

]
= log

𝑞𝑇 (�̄�)
𝑞1(�̄�)

≤ log |Π |. (3.5.1)

Taking 𝑞𝑡+1 = (a𝑡)𝜋∗ |𝜋𝑡 ,𝑜𝑡 as in Algorithm 5, and taking expectation on the left hand side of (3.5.1),

we have

𝑇∑︁
𝑡=1
E𝜋𝑡 ,𝑜𝑡

[
log

(a𝑡)𝜋∗ (�̄� |𝜋𝑡 , 𝑜𝑡)
𝑞𝑡 (�̄�)

]
≤ log |Π |. (3.5.2)
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By subtracting the additive elements on the left-hand side of (3.5.2) (divided by [) from the per-

round regrets against �̄�, we obtain

E

[
𝑇∑︁
𝑡=1

𝑓𝑀𝑡 (�̄�) −
𝑇∑︁
𝑡=1

𝑓𝑀𝑡 (𝜋𝑡)
]
− 1
[
·
𝑇∑︁
𝑡=1
E𝜋𝑡 ,𝑜𝑡

[
log

(a𝑡)𝜋∗ (�̄� |𝜋𝑡 , 𝑜𝑡)
𝑞𝑡 (�̄�)

]
=

𝑇∑︁
𝑡=1
E

[
𝑓𝑀𝑡 (�̄�) − 𝑓𝑀𝑡 (𝜋𝑡) −

1
[

log
(a𝑡)𝜋∗ |𝜋𝑡 ,𝑜𝑡 (�̄�)

𝑞𝑡 (�̄�)

]
≤

𝑇∑︁
𝑡=1

sup
𝑀,�̄�

E

[
𝑓𝑀 (�̄�) − 𝑓𝑀 (𝜋𝑡) −

1
[

log
(a𝑡)𝜋∗ |𝜋𝑡 ,𝑜𝑡 (�̄�)

𝑞𝑡 (𝜋∗)

]
(∗)
=

𝑇∑︁
𝑡=1

AIR𝑞𝑡 ,[ (𝑝𝑡 , a𝑡), (3.5.3)

where the inequality is by taking supremum at each rounds; and the last equality (∗) in (3.5.3) is by

Lemma 11, an important identity to be explained in Section 3.5.2, which is derived from the fact

that the pair of maximizer a𝑡 and posterior functional is a Nash equilibrium of a convex-concave

function.

Combining (3.5.3) and (3.5.2), we obtain the following inequality for every �̄� ∈ Π:

E

[
𝑇∑︁
𝑡=1

𝑓𝑀𝑡 (�̄�) −
𝑇∑︁
𝑡=1

𝑓𝑀𝑡 (𝜋𝑡)
]
− log |Π |

[
≤

𝑇∑︁
𝑡=1

AIR𝑞𝑡 ,[ (𝑝𝑡 , a𝑡).

By taking the supremum over �̄� ∈ Π on the left-hand side of the inequality, we are able to prove

Theorem 14:

ℜ𝑇 ≤ log |Π |
[

+
𝑇∑︁
𝑡=1

AIR𝑞𝑡 ,[ (𝑝𝑡 , a𝑡).

3.5.2 Mimimax theory: from value to construction

Consider a decision space X, a space Y of the adversary’s outcome, and a convex-concave

function 𝜓(𝑥, 𝑦) defined in X×Y. The classical minimax theorem [115] says that, under regularity
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conditions, the minimax and maximin values of 𝜓(𝑥, 𝑦) are equal:

min
X

max
Y

𝜓(𝑥, 𝑦) = max
Y

min
X
𝜓(𝑥, 𝑦).

We refer to arg minX maxY 𝜓(𝑥, 𝑦) as the set of “minimax decisions,” as they are optimal in the

worst-case scenario. And we say 𝑥 ∈ arg minX 𝜓(𝑥, �̄�) is “maximin decision” if �̄� ∈ arg maxY minX 𝜓(𝑥, 𝑦)

is “maximin adversary’s outcome.” One natural and important question is, when will the “maximin

decision” 𝑥 also be a “minimax decision?” The study to this question may provide a construc-

tive way to design frequentist estimators and algorithms through worst-case Bayesian posteriors

and regularization. Making use of strong convexity, we extends the classical minimax theorem for

values into the following minimax theorem for decisions:

Lemma 10 (Constructing minimax decisions) Let X and Y be convex and compact sets, and

𝜓 : X × Y → R a function which for all 𝑦 is strongly convex and continuous in 𝑥 and for all 𝑥

is concave and continuous in 𝑦. For each 𝑦 ∈ Y, let 𝑥𝑦 = min𝑥∈X 𝜓(𝑥, 𝑦) be the corresponding

unique minimizer. Then by maximizing the concave objective

�̄� ∈ max
𝑦∈Y

𝜓(𝑥𝑦, 𝑦),

the pair (𝑥 �̄�, �̄�) will be a Nash equilibrium that solves the minimax optimization problem minX maxY 𝜓(𝑥, 𝑦).

Applying Lemma 10 to our framework, we can show: 1) Bayesian posterior a𝜋∗ |𝜋,𝑜 is the

optimal functional to make decision under belief a; and 2) by choosing worst-case belief ā, we

construct a Nash equilibrium. As a result, we can establish the following per-round identity, which

leads to the key identity denoted as (∗) in (3.5.3). This identity plays a crucial role in the proof of

Theorem 14.

Lemma 11 (Identity by Nash equilibrium) Given 𝑞 ∈ int(Δ(Π)), [ > 0 and 𝑝 ∈ Δ(Π), denote
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ā ∈ arg maxAIR𝑞,[ (𝑝, a). Then we have

sup
𝑀,�̄�

E

[
𝑓𝑀 (�̄�) − 𝑓𝑀 (𝜋) − 1

[
log

ā𝜋∗ |𝜋,𝑜 (�̄�)
𝑞(�̄�)

]
= AIR𝑞,[ (𝑝, ā).

3.6 Applications to infinite-armed bandits

Our design principles can be applied in many sequential learning and decision making envi-

ronments. In order to maximize AIR in practical applications, we parameterize the belief a, and

make the gradient of AIR with respect to such parameter small. Going beyond multi-armed bandits

(MAB), we often need to constrain the search of algorithmic belief within a tractable subspace; and

we study useful concave relaxations of AIR towards efficient algorithm design. We will present

our results for linear bandits and bandit convex optimization in this section and present our results

for reinforcement learning in Section 3.7. We give a high-level overview of the applications to

linear bandits and bandit convex optimization here.

Application to linear bandits. A classical algorithm for adversarial linear bandits (described in

Example 10) is the EXP2 algorithm [116], which uses IPW for linear loss as a black-box estima-

tion method, and combines it with continuous exponential weight. We derive a modified version of

EXP2 from our framework, establishing interesting connection between IPW and Bayesian poste-

riors.

Application to bandit convex optimization. Bandit convex optimization (described in Example

10) is a notoriously challenging problem, and much effort has been put to understanding its mini-

max regret and algorithm design. The best known result, which is of order �̃� (𝑑2.5√𝑇), is derived

through the non-constructive information-ratio analysis in [117]. As a corollary of Theorem 16,

Adaptive Minimax Sampling (AMS) recovers the best known regret bound with a constructive al-

gorithm, which can be computed in poly(𝑒𝑑 ·𝑇) time. To the best of our knowledge, this is the first

finite-running-time algorithm that attains the best known �̃� (𝑑2.5√𝑇) regret.
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3.6.1 Maximization of AIR for structured bandits

Consider the structured bandit problems described in Example 10. We consider the computa-

tion complexity of the optimization problem

sup
a∈Δ(M×Π)

AIR𝑞,[ (𝑝, a). (3.6.1)

The computational complexity of (3.6.1) may be 𝑂 (poly(exp(exp(𝑑)))) in the worst case as

the size of M × Π. However, when the mean reward function class F is a convex function class,

the computational complexity will be 𝑂 (poly( |Π |)) which is efficient for 𝐾−armed bandits and is

no more than 𝑂 (poly(𝑒𝑑)) in general (by standard discretization and covering arguments, we may

assume Π ⊂ R𝑑 to have finite cardinality 𝑂 (𝑒𝑑) for the simplicity of theoretical analysis). More-

over, we also give efficient algorithm for linear bandits with exponential-many actions. We refer

to Appendix C.2.1 for the detailed discussion on the parameterization method and computational

complexity.

3.6.2 Application to Gaussian linear bandits

We consider the adversarial linear bandit problem with Gaussian reward. In such a MAB

problem, Π = A ⊆ R𝑑 is an action set with dimension 𝑑. The model class M can be parameterized

by a 𝑑−dimensional vector \ ∈ R𝑑 that satisfies \⊤𝑎 ∈ [0, 1] for all 𝑎 ∈ A. The reward 𝑟 (𝑎) for

each action 𝑎 ∈ A is independently drawn from a Gaussian distribution that has mean \⊤𝑎 and

variance 𝜎2, and we assume that 𝜎 ≤ 1. Here we use the notations A (as action set), 𝑎 (as action)

and 𝑎∗ (as optimal action) to follow the tradition of literature about linear bandits.

As discussed in Section 3.6.1, we restrict our attention to sparse a where for each 𝜋∗ ∈ Π

there is only one model 𝑀 , which corresponds to the Gaussian distribution 𝑟 (𝜋) ∼ 𝑁 (\𝜋∗ (𝜋), 1).

We parameterize the prior a by vectors {𝛽∗𝑎}𝑎∗∈A and 𝛼 ∈ Δ(Π), where 𝛼 = Pa (𝑎∗) and 𝛽𝑎∗ =

𝛼(𝑎∗) · \𝑎∗ . As discussed in (C.2.7) in Appendix C.2.3, we propose to define a surrogate version

112



of AIR by

AIR𝑞,[ (𝑝, a) =
∫
A
𝛽⊤𝑎∗𝑎

∗𝑑𝑎∗ −
∫
A

∫
A
𝑝(𝑎)𝛽⊤𝑎∗𝑎𝑑𝑎∗𝑑𝑎

− 1
2[

∫
A

∫
A
𝑝(𝑎)𝛼(𝑎∗)

(
𝛽⊤
𝑎∗𝑎

𝛼(𝑎∗) −
∫
A
𝛽⊤𝑎∗𝑎𝑑𝑎

∗
)2

𝑑𝑎 − 1
[

KL(𝛼, 𝑞). (3.6.2)

As discussed in Section 3.6.1, It can be shown that approximate maximizers of this surrogate lead

to rigorous regret bounds. Note that the surrogate defined in (3.6.2) can be bounded by the classical

information ratio bounds defined by square loss (see, e.g., [104, 117]).

By making all the gradients of (3.6.2) with respect to {𝛽𝑎∗}𝑎∗∈A to be exactly zero, and taking

𝛼 = 𝑝, we obtain an approximate maximizer of AIR in (3.6.2). We calculate the Bayesian posterior,

and find that the resulting algorithm is an exponential weight algorithm with a modified IPW

estimator: at each round 𝑡, the agent update 𝑝𝑡+1 by

𝑝𝑡+1(𝑎) ∝ 𝑝𝑡 (𝑎) exp ([𝑟𝑡 (𝑎)) ,

where 𝑟𝑡 is the modified IPW estimator for linear loss,

𝑟𝑡 (𝑎) = 𝑎⊤(E𝑎∼𝑝𝑡 [𝑎𝑎⊤])−1𝑎𝑡𝑟𝑡 (𝑎𝑡) −
[

2
(𝑎⊤(E𝑎∼𝑝𝑡 [𝑎𝑎⊤])−1𝑎𝑡)2. (3.6.3)

Note that in order to avoid boundary conditions in our derivation, we require forced exploration

to ensure _min(E𝑎∼𝑝 [𝑎𝑎⊤]) ≥ [. This can be done with the help of the volumetric spanners con-

structed in [118]. The use of volumetric spanner makes our final proposed algorithm (Algorithm

9) to be slightly more involved, but we only use the volumetric spanner in a “black-box” man-

ner. We highlight that the algorithm is computationally efficient as the reward estimator (3.6.3)

is concave, so one can apply log-concave sampling when executing exponential weighting. The

additional term in (3.6.3) is ignorable from a regret analysis perspective, so the standard analysis

for exponential weight algorithms applies to Algorithm 9 to establish the optimal 𝑂 (
√
𝑑2𝑇 regret

bound. One may also analyze Algorithm 9 within our algorithmic belief framework through The-
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Algorithm 9 Simplified APS for Gaussian linear bandits
Input learning rate [ > 0, forced exploration rate 𝛾, and action set A.
Initialize 𝑝1 = Unif(Π).

1: for round 𝑡 = 1, 2, · · · , 𝑇 do
2: Let 𝑆′𝑡 be a (𝑝𝑡 , exp(−(4

√
𝑑 + log(2𝑇))))−exp-volumetic spanner of A,

Let 𝑆′′𝑡 be a 2
√
𝑑−ratio-volumetric spanner of A.

Set 𝑆𝑡 as the union of 𝑆′𝑡 and 𝑆′′𝑡 .
3: Sample action 𝑎𝑡 ∼ 𝑝𝑡 and receives 𝑟𝑡 .
4: Calculate 𝑝𝑡+1 by

𝑝𝑡+1(𝑎) ∝ 𝑝𝑡 (𝑎) exp ([𝑟𝑡 (𝑎)) ,

where 𝑟𝑡 is the modified IPW estimator for linear loss,

𝑟𝑡 (𝑎) = 𝑎⊤(E𝑎∼𝑝𝑡 [𝑎𝑎⊤])−1𝑎𝑡𝑟𝑡 (𝑎𝑡) −
[

2
(𝑎⊤(E𝑎∼𝑝𝑡 [𝑎𝑎⊤])−1𝑎𝑡)2.

5: Update 𝑝𝑡+1 by 𝑝𝑡+1(𝑎) = (1 − 𝛾)𝑝𝑡 (𝑎) + 𝛾

|𝑆𝑡 |1{𝑎 ∈ 𝑆𝑡}

orem 17, as we did for Algorithm 8 in Section C.2.2; we omit the analysis here. Finally, we note

that the algorithm reduces to a modified version of EXP3 for finite armed bandits, a connection we

mentioned at the end of Section 3.4.1.

3.6.3 Application to bandit convex optimization

We consider the bandit convex optimization problem described in Example 10. In bandit con-

vex optimization, Π ⊆ R𝑑 is a 𝑑−dimensional action set whose diameter is bounded by diam(Π),

and the mean reward (or loss) function is required to be concave (respectively, convex) with respect

to actions:

F = { 𝑓 : Π → [0, 1] : 𝑓 is concave w.r.t. 𝜋 ∈ Π}.

The problem is often formed with finite (but exponentially large) action set by standard discretiza-

tion arguments [117]. Bandit convex optimization is a notoriously challenging problem, and much

effort has been put to understanding its minimax regret and algorithm design. The best known re-

sult, which is of order �̃� (𝑑2.5√𝑇), is derived through the non-constructive information-ratio analy-
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sis in [117]. By the information ratio upper bound for the non-constructive Bayesian IDS algorithm

in [117], Lemma 8 that bounds AIR by IR, and Theorem 16 (regret of AMS), we immediately have

that Algorithm 7 (AMS) with optimally tuned [ achieves

ℜ𝑇 ≤ 𝑂
(
𝑑2.5√𝑇 · polylog(𝑑, diam(A), 𝑇)

)
As a result, AMS recovers the best known �̃� (𝑑2.5√𝑇) regret with a constructive algorithm.

By our discussion on the computational complexity in Appendix C.2.1, AMS solves convex opti-

mization in a poly( |Π |)-dimensional space, so it can be computed in poly(𝑒𝑑 · 𝑇) time for bandit

convex optimization. To the best of our knowledge, this is the first algorithm with a finite running

time that attains the best known �̃� (𝑑2.5√𝑇) regret. We note that the EBO algorithm in [107] has

given a constructive algorithm that achieves the same �̃� (𝑑2.5√𝑇) regret derived by Bayesian non-

constructive analysis. However, EBO operates in an abstract functional space, so it is less clear

how to execute the computation.

3.7 Model-index AIR and application to RL

In the stochastic environment, where 𝑀𝑡 = 𝑀∗ ∈ M for all rounds, we want to find the

optimal decision 𝜋𝑀∗ that minimizes the mean reward function 𝑓𝑀∗ (𝜋). Unlike the adversarial

setting, where algorithmic beliefs are formed over pairs of models and optimal decisions, in the

stochastic setting, we only need to search for algorithmic beliefs regarding the underlying model.

This distinction allows us to develop a strengthened version of AIR, which we call “Model-index

AIR” (MAIR), particularly suited for studying reinforcement learning problems.

Crucially, we can construct a generic and closed-form sequence of algorithmic beliefs that

approximate the maximization of MAIR at each round. By leveraging these beliefs, we develop a

model-based APS algorithm that achieves the sharpest known bounds for RL problems within the

bilinear class [112, 105]. Our algorithm features a generic and closed-form updating rule, making

it potentially well-suited for efficient implementation through efficient sampling oracles.
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3.7.1 Model-index Algorithmic Information Ratio

We denote decision 𝜋𝑀 ∈ arg minΠ 𝑓𝑀 (𝜋) be the induced optimal decision of model 𝑀 . We

introduce the following definition of Model-index AIR (MAIR).

Definition 10 (Model-index AIR) Denote 𝜌 ∈ int(Δ(M)) be a reference distribution of models,

and ` ∈ int(Δ(M)) be a prior belief of models, we define the “Model-index Algorithmic Informa-

tion Ratio” as

MAIR𝜌,[ (𝑝, `) = E`,𝑝
[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL(`(·|𝜋, 𝑜), 𝜌)

]
,

where `(·|𝜋, 𝑜) is the Bayesian posterior belief of models induced by the prior belief `.

It can be seen from the definition that KL divergence between two model distributions will be

no smaller than KL divergence between the two induced decision distributions. Thus we have the

following Lemma.

Lemma 12 (MAIR smaller than AIR) When 𝑞 is the decision distribution of 𝜋𝑀 induced by the

model distribution 𝜌, and a is the distribution of (𝑀, 𝜋𝑀) induced by the model distribution `, we

have

MAIR𝜌,[ (𝑝, `) ≤ AIR𝑞,[ (𝑝, a).

Lemma 9 has shown that the worst-case value of AIR under the “maximin” strategy is smaller

than DEC of the convex hull of M. Now we demonstrate that the worst-case value of MAIR under

a “maximin” strategy is smaller than the worst-case value of DEC, which does not uses the convex

hull of model class in its first argument.

Lemma 13 (Bounding MAIR by DEC) Given model class M and [ > 0, we have

sup
𝜌∈int(Δ(M))

sup
`

inf
𝑝
MAIR𝜌,[ (𝑝, a) ≤ sup

�̄�∈conv(M)
DEC[ (M, �̄�).
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Moreover, when the reference distribution 𝜌 is centered at 𝑀∗ and has “small” variance, we may

completely removes the convex hull in the expression of DEC (unlike Lemma 13 still leaving a

convex hull restriction in the subscribe). This enable us to match the tightest possible version of

DEC, and is discussed in Section 3.7.3.

Comparing AIR and MAIR. We have seen that 1) Maximin AIR can be bounded by DEC of

the convex hull Δ(M); 2) Maximin MAIR can be bounded by DEC of the original class M; and

3) MAIR is “smaller” than AIR as illustrated in Lemma 12. However, as we will later show in

Theorem 14 and Theorem 18, the regret bound using AIR will scale with a log |Π | factor (estima-

tion complexity of decision space), while the regret bound using MAIR will scale with a bigger

log |M| factor (estimation complexity of model class). We explain their difference as follows.

When to use AIR versus MAIR? First, AIR is useful for both stochastic and adversarial bandit

learning problems, while MAIR may only be useful for stochastic environments. Second, using

AIR will result in a log |Π | factor along with information ratio (or DEC), while MAIR will result

in a bigger log |M| factor, so AIR is often the tighter option for bandit problems. For example,

AIR provides optimal regret for 𝐾-armed bandits and
√
𝑇−type regret bound for the challenging

problem bandit convex optimization, while MAIR may not. On the other hand, MAIR can achieve

optimal regret for stochastic linear bandits and stochastic model-based contextual bandits [78],

and it is more useful than AIR for reinforcement learning problems where taking convex hull

to the model class may greatly increase the richness of model class. For example, the model

class (especially the state transition dynamic) in reinforcement learning problems may not satisfy

convexity. In general, AIR is more useful for “infinite divisible” problems where taking convex hull

does not greatly increase the complexity of model class; while MAIR is more useful for stochastic

model-based bandit and reinforcement learning problems where one wants to avoid taking convex

hull.
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3.7.2 Near-optimal algorithmic beliefs in closed form

For any fixed decision probability 𝑝, it is illustrative to write MAIR as

MAIR𝜌,[ (𝑝, `) = E
[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL(`(𝑀 |𝜋, 𝑜), 𝜌)

]
= E

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL(`(𝑀 |𝜋, 𝑜), `) − 1

[
KL(`, 𝜌)

]
= E

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL(𝑀 (𝜋), `𝑜 |𝜋) −

1
[

KL(`, 𝜌)
]
, (3.7.1)

where `𝑜 |𝜋 = E𝑀∼` [𝑀 (𝜋)] is the induced distribution of 𝑜 conditioned on 𝜋, and the third equality

is by property of mutual information. We would like to give a sequence of algorithmic beliefs that

approximately maximize MAIR at each rounds, as well as have closed-form expression.

We consider the following algorithmic priors at each round:

`𝑡 (𝑀) ∝ 𝜌𝑡 (𝑀) · exp([( 𝑓𝑀 (𝜋𝑀) − E𝑝𝑡 [ 𝑓𝑀 (𝜋)])),

and use their corresponding posteriors to update the sequence of reference probabilities:

`𝑡+1 = `𝑡 (𝑀 |𝜋𝑡 , 𝑜𝑡) ∝ `𝑡 (𝑀) [𝑀 (𝜋𝑡)] (𝑜𝑡).

This results in the following update of 𝜌:

𝜌𝑡+1(𝑀) = exp
©«

𝑡∑︁
𝑠=1

©«log[𝑀 (𝜋𝑠)] (𝑜𝑠)︸              ︷︷              ︸
log likelihood

+ [
(
𝑓𝑀 (𝜋𝑀) − E𝑝𝑠 [ 𝑓𝑀 (𝜋)]

)︸                             ︷︷                             ︸
adaptive algorithmic belief

ª®®®¬
ª®®®¬ . (3.7.2)

Our algorithm (3.7.2) updates both the log likelihood term and an adaptive algorithmic belief

term at each iteration, whereas traditional (fixed-prior) Thompson Sampling only updates the log

likelihood term and relies on a fixed prior term.

In Lemma 13, we demonstrate how an upper bound on DEC can automatically translate into
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Algorithm 10 Model-index AIR generation
Input algorithm ALG and learning rate [ > 0.
Initialize 𝜌1 to be the uniform distribution over M.

1: for round 𝑡 = 1, 2, · · · , 𝑇 do
2: Obtain 𝑝𝑡 from ALG. The algorithm ALG samples 𝜋𝑡 ∼ 𝑝𝑡 and observe the feedback 𝑜𝑡 ∼

𝑀𝑡 (𝜋𝑡).
3: Update

𝜌𝑡+1(𝑀) ∝ exp

(
𝑡∑︁
𝑠=1

(
log[𝑀 (𝜋𝑠)] (𝑜𝑠) + [

(
𝑓𝑀 (𝜋𝑀) − E𝑝𝑠 [ 𝑓𝑀 (𝜋)]

) ))
.

an upper bound on the maximin value of MAIR. However, the variable �̄� in DEC is maximized

within the convex hull Δ(M) rather than M. Therefore, to directly apply the upper bounds on

DEC proved in [105], we need to establish a stronger regret bound that completely eliminates

convex hull from the expression of DEC. To achieve this, we prove that when the prior distribution

` is sufficiently “centered,” we can bound MAIR using a DEC-type quantity that does not involve

taking convex hull at all. Specifically, �̄� takes values from M instead of Δ(M). We are motivated

to prove this result by the fact that the update (3.7.2) will converge to 𝑀∗ over time.

Theorem 18 (Generic regret bound in the stochastic setting) Given a finite model class M where

the underlying true model is 𝑀∗ ∈ M, and 𝑓𝑀 (𝜋) ∈ [0, 1] for every 𝑀 ∈ M and 𝜋 ∈ Π. For an

arbitrary algorithm ALG, the regret of algorithm ALG is bounded by

ℜ𝑇 ≤ log( |M|𝑇) + 1
[

+ 2 +
𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡

[
5 ( 𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋)) − 1

[
𝐷2

H(𝑀 (𝜋), 𝑀∗(𝜋)) − 1
[

KL(`𝑡 , 𝜌𝑡)
]
,

where `𝑡 (𝑀) ∝ exp
(∑𝑡

𝑠=1
(
log[𝑀 (𝜋𝑠)] (𝑜𝑠) + [

(
𝑓𝑀 (𝜋𝑀) − E𝑝𝑠 [ 𝑓𝑀 (𝜋)]

) ) )
.

3.7.3 Model-index APS

In our applications, we often use a simple posterior sampling strategy for which we always

induce the distribution of optimal decisions from the posterior distribution of models. We refer to

the resulting algorithm, Algorithm 11, as “Model-index Adaptive Posterior Sampling.”
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Algorithm 11 Model-index Adaptive Posterior Sampling
Input learning rate [ and forced exploration rate 𝛾.
Initialize 𝜌1 to be the uniform distribution over M.

1: for round 𝑡 = 1, 2, · · · , 𝑇 do
2: Sample 𝜋𝑡 ∼ 𝑝𝑡 where 𝑝𝑡 (𝜋) =

∑
𝜋=𝜋𝑀

𝜌𝑡 (𝑀), and observe the feedback 𝑜𝑡 ∼ 𝑀𝑡 (𝜋𝑡).
3: Update

𝜌𝑡+1(𝑀) ∝ exp

(
𝑡∑︁
𝑠=1

(
log[𝑀 (𝜋𝑠)] (𝑜𝑠) + [

(
𝑓𝑀 (𝜋𝑀) − E𝑝𝑠 [ 𝑓𝑀 (𝜋)]

) ))
.

Algorithm 11 is inspired by and closely related to the optimistic posterior sampling algorithm

proposed in [119] (also termed as feel-good Thompson sampling in [120]). Our analysis of sequen-

tial estimation (see Appendix C.3.2) is built on the analysis in [119, 120]. However, our approach

has adaptive terms in our algorithmic beliefs rather than using a pre-specified optimistic prior.

Moreover, our regret bounds can be applied to both on-policy bilinear class as well as the general

bilinear class (as we will explain shortly in Theorem 19 and Section 3.7.4), while the theoretical

results of optimistic posterior sampling in [119] are only proved for on-policy bilinear class.

For model class M, a nominal model �̄� , and the posterior sampling strategy 𝑝(𝜋) = `({𝑀 :

𝜋𝑀 = 𝜋}), we can define the Bayesian decision-estimation coefficient of Thompson Sampling by

DECTS
[ (M, �̄�) = sup

`∈Δ(M)
Ea,𝑝

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
𝐷2

H
(
𝑀 (𝜋), �̄� (𝜋)

) ]
. (3.7.3)

This value is bigger than the minimax DEC in Definition 9, but often easier to use in model-based

RL problems.

Theorem 19 (Regret of Model-index Adaptive Posterior Sampling) Given a finite model class

M where 𝑓𝑀 (𝜋) ∈ [0, 1] for every 𝑀 ∈ M and 𝜋 ∈ Π. The regret of Algorithm 11 with [ ≤ 1/10

is bounded by

ℜ𝑇 ≤ log( |M|𝑇) + 1
[

+ 5 · sup
�̄�∈M

DECTS
2[ (M, �̄�) · 𝑇 + 2.
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3.7.4 Application to reinforcement learning

By using Algorithm 10 and Algorithm 11, we are able to recover several results in [105] that

bound the regret of RL by DEC and the estimation complexity log |M| of the model class. Note that

we are able to prove such results for the Model-index APS (Algorithm 6), which has the potential

to be efficiently implemented through efficient sampling oracles. In contrast, the E2D algorithm

in [105] is not in closed form and requires minimax optimization, and the sharp regret bounds

are proved through the non-constructive Bayesian Thompson Sampling. The paper also presents

regret bounds for a constructive algorithm using the so-called “inverse gap weighting” updating

rules, but that algorithm has worse regret bounds than those proved through the non-constructive

approach (by a factor of the bilinear dimension). As a result, Algorithm 11 makes an improvement

because its simplicity and achieving the sharpest regret bound proved in [105] for RL problems in

the bilinear class.

We discuss how our general problem formulation in Section 3.2.1 covers RL problems as fol-

lows.

Example 11 (Reinforcement learning) An episodic finite-horizon reinforcement learning prob-

lems is defined as follows. Let 𝐻 be the horizon and A be a finite action set. Each model 𝑀 ∈ M

specifies a non-stationary Markov decision process (MDP) {{𝑆(ℎ)}𝐻
ℎ=1,A, {𝑃

(ℎ)
𝑀

}𝐻
ℎ=1, {𝑅

(ℎ)
𝑀

}𝐻
ℎ=1, `},

where ` is the initial distribution over states; and for each layer ℎ, 𝑆(ℎ) is a finite state space,

𝑃
(ℎ)
𝑀

: 𝑆(ℎ) × A → (𝑆(ℎ+1)) is the probability transition kernel, and 𝑅(ℎ)
𝑀

: 𝑆(ℎ) × A → Δ( [0, 1])

is the reward distribution. We allow the transition kernel and loss distribution to be different for

different 𝑀 ∈ M but assume ` to be fixed for simplicity. Let ΠNS be the space of all deterministic

non-stationary policies 𝜋 = (𝑢(1) , . . . , 𝑢(𝐻)), where 𝑢(ℎ) : 𝑆(ℎ) → A. Given an MDP 𝑀 and pol-

icy 𝜋, the MDP evolves as follows: beginning from 𝑠(1) ∼ `, at each layer ℎ = 1, . . . , 𝐻, the action

𝑎 (ℎ) is sampled from 𝑢(ℎ) (𝑠(ℎ)), the loss 𝑟 (ℎ) (𝑎 (ℎ)) is sampled from 𝑅𝑀 (𝑠(ℎ) , 𝑎 (ℎ)) and the state

𝑠(ℎ+1) is sampled from 𝑃𝑀 (·|𝑠(ℎ) , 𝑎 (ℎ)). Define 𝑓𝑀 (𝜋) = E[Σ𝐻
ℎ=1𝑟

(ℎ) (𝑎 (ℎ))] to be the expected re-

ward under MDP 𝑀 and policy 𝜋. The general framework covers episodic reinforcement learning
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problems by taking the observation 𝑜𝑡 to be the trajectory (𝑠(1)𝑡 , 𝑎
(1)
𝑡 , 𝑟

(1)
𝑡 ), . . . , (𝑠(𝐻)𝑡 , 𝑎

(𝐻)
𝑡 , 𝑟

(𝐻)
𝑡 )

and Π be a subspace of ΠNS. While our framework and complexity measures allow for agnostic

policy classes, recovering existing results often requires us to make realizability-type assumptions.

We now focus on a broad class of structured reinforcement learning problems called “bilinear

class” [112, 105]. The following definition of the bilinear class is from [105].

Definition 11 (Bilinear class) A model class M is said to be bilinear relative to reference model

�̄� if:

1. There exist functions 𝑊ℎ (·; �̄�) : M → R𝑑 , 𝑋ℎ (·; �̄�) : M × R𝑑 such that for all 𝑀 ∈ M

and ℎ ∈ [𝐻],

|E�̄�,𝜋𝑀 [𝑄𝑀,∗
ℎ

(𝑠ℎ, 𝑎ℎ) − 𝑟ℎ −𝑉𝑀,∗ℎ
(𝑠ℎ+1)] | ≤ |⟨𝑊ℎ (𝑀; �̄�), 𝑋ℎ (𝑀; �̄�)⟩|.

We assume that𝑊ℎ (𝑀 : �̄�) = 0.

2. Let 𝑧ℎ = (𝑠ℎ, 𝑎ℎ, 𝑟ℎ, 𝑠ℎ+1). There exists a collection of estimation policies {𝜋est
𝑀
}𝑀∈M and

estimation functions {ℓest
𝑀
(·; ·)}𝑀∈M such that for all 𝑀, 𝑀′ ∈ M and ℎ ∈ [𝐻],

⟨𝑋ℎ (𝑀; �̄�),𝑊ℎ (𝑀′ : �̄�)⟩ = E�̄�,𝜋𝑀◦ℎ𝜋est
𝑀 [ℓest

𝑀 (𝑀′; 𝑧ℎ)] .

If 𝜋est
𝑀

= 𝜋𝑀 , we say that estimation is on-policy.

If 𝑀 is bilinear relative to all �̄� ∈ M, we say that M is a bilinear class. We let 𝑑bi(M, �̄�)

denote the minimal dimension 𝑑 for which the bilinear class property holds relative to �̄� , and

define 𝑑bi(M) = sup�̄�∈M 𝑑bi(M, �̄�). We let 𝐿bi(M; �̄�) ≥ 1 denote any almost sure upper bound

on |ℓest
𝑀
(𝑀′; 𝑧ℎ) | under �̄� , and let 𝐿bi(M) = sup�̄�∈M 𝐿bi(M; �̄�).

For 𝛾 ∈ [0, 1], let 𝜋𝛾
𝑀

be the randomized policy that—for each ℎ—plays 𝜋𝑀,ℎ with probability

1−𝛾/𝐻 and 𝜋est
𝑀,ℎ

with probability 𝛾/𝐻. As an application of Theorem 7.1 in [105], we have upper

bounds for DECTS
[ as follows.
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Proposition 4 (Upper bounds for bilinear class reinforcement learning) Let M be a bilinear

class and let �̄� ∈ M. Let ` ∈ Δ(M) be given, and consider the modified Bayesian posterior

sampling strategy that samples 𝑀 ∼ ` and plays 𝜋𝛼
𝑀

, where 𝛼 ∈ [0, 1] is a parameter.

1. If 𝜋est
𝑀

= 𝜋𝑀 (i.e., estimation is on-policy), this strategy with 𝛼 = 0 certifies that

DECTS
[ (M, �̄�) ≤ 4[𝐻2𝐿2

bi(M)𝑑bi(M; �̄�)

for all [ > 0.

2. For general estimation policies, this strategy with 𝛾 =
(
8[𝐻3𝐿2

bi(M)𝑑bi(M, �̄�)
)1/2 certifies

that

DECTS𝛾
[ (M, �̄�) ≤

(
32[𝐻3𝐿2

bi(M)𝑑bi(M; �̄�)
)1/2

.

whenever 𝛾 ≥ 32𝐻3𝐿2
bi(M)𝑑bi(M, �̄�).

By applying the upper bounds on DECTS[ from Proposition 4 to Theorem 19, we can immediately

obtain regret guarantees for RL problems in the bilinear class. In the on-policy case, Algorithm 11

with optimally tuned [ achieves regret

ℜ𝑇 ≤ 𝑂
(
𝐻2𝐿bi2𝑑bi(M) · 𝑇 · log |M|

)
.

In the general case, Algorithm 11 with forced exploration rate 𝛾 =
(
8[𝐻3𝐿2

bi(M)𝑑bi(M, �̄�)
)1/2

and optimally tuned [ achieves regret

ℜ𝑇 ≤ 𝑂
( (
𝐻3𝐿2

bi𝑑bi(M) log |M|
)1/3 · 𝑇2/3) .

As a closed-form algorithm that may be computed through sampling techniques, Algorithm 11

matches the sharp results for the non-constructive Bayesian Posterior Sampling algorithm proved

in [105], and it achieves better regret bounds than the closed-form “inverse gap weighting” al-
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gorithm provided in the same paper. Its regret bound for RL problems in the bilinear class also

match the E2D algorithms in [105, 121] that are not in closed-form and require more challenging

minimax optimization.

Our results in this section apply to reinforcement learning problems where the DEC is easy

to upper bound, but bounding the information ratio may be more challenging, particularly for

complex RL problems where the model class M may not be convex and the average of two MDPs

may not belong to the model class. Specifically, we propose MAIR and provide a generic algorithm

that uses DEC and the estimation complexity of the model class (log |M|) to bound the regret.

Another promising research direction is to extend our general results for AIR and the tools from

Section 3.6.2 to reinforcement learning problems with suitably bounded information ratios, such

as tabular MDPs and linear MDPs, as suggested in [111]. We anticipate that our tools can pave

the way for developing constructive algorithms that provide regret bounds scaling solely with the

estimation complexity of the value function class, which is typically smaller than that of the model

class.

3.8 Conclusion and future directions

In this work, we propose a novel approach to solve sequential learning problems by generating

“algorithmic beliefs.” We optimize the Algorithmic Information Ratio (AIR) to generate these

beliefs. Surprisingly, our algorithms achieve regret bounds that are as good as those assuming

prior knowledge, even in the absence of such knowledge, which is often the case in adversarial or

complex environments. Our approach results in simple and often efficient algorithms for various

problems, such as multi-armed bandits, linear and convex bandits, and reinforcement learning.

Our work provides a new perspective on designing and analyzing bandit and reinforcement

learning algorithms. Our theory applies to any algorithm through the notions of AIR and algorith-

mic beliefs, and it provides a simple and constructive understanding of the duality between frequen-

tist regret and Bayesian regret in sequential learning. Optimizing AIR is a key principle to design

effective and efficient bandit and RL algorithms. We demonstrate the effectiveness of our frame-
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work empirically via experiments on Bernoulli MAB and show that our derived algorithm achieves

“best-of-all-worlds” empirical performance. Specifically, our algorithm outperforms UCB and is

comparable to TS in stochastic bandits, outperforms EXP3 in adversarial bandits, and outperforms

TS as well as clairvoyant restarted algorithms in non-stationary bandits.

Our study suggests several future research directions. First, we aim to provide computational

guidelines for optimizing algorithmic beliefs, including techniques for selecting belief subspaces,

parameterization, and surrogate objective functions. Second, we plan to develop efficient algo-

rithm designs for infinite-armed bandit and reinforcement learning problems. As a first step, we

aim to explore the Bayesian interpretation of frequentist approaches, such as gaining a deeper un-

derstanding of the inverse probability weighting (IPW) estimators and existing computationally-

efficient algorithms for infinite-armed bandits (such as SCRiBLe [122]). Third, we aim to simulate

average-case or non-stationary environments through constraint optimization for algorithmic be-

liefs. Fourth, we plan to investigate the essential features of the offset and constraint formulations

in the algorithmic belief approach and explore possible connections with localized complexity in

statistical learning theory [123] (offset formulation of DEC has been recently studied in [124]).

Lastly, we aim to study instance-dependent bounds by leveraging AIR and algorithmic beliefs,

which, to the best of our knowledge, is currently lacking in the context of information ratio.
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Conclusion

As the field of machine learning rapidly evolves, the demand for creating intelligent systems that

can handle large-scale and complex data sets grows. This requires developing new mathematical

frameworks to understand the behavior of learning algorithms, including statistical and sequential

complexities, constructive optimization procedures, and uniform convergence and localization.

This thesis aimed to contribute to the emerging field of learning theory by advancing principled

algorithm design and localized statistical complexity. The proposed frameworks and algorithms

studied uniform convergence and localization in statistical learning theory, developed efficient al-

gorithms using the optimism principle for contextual bandits, and created Bayesian design princi-

ples for bandit and reinforcement learning problems. Comprising three parts, each focused on

a different but related area of research, Chapter 1 introduced a principled framework for uni-

form localized convergence, resolving limitations of existing approaches and characterizing sharp

problem-dependent generalization error bounds for central statistical learning problems. Chapter

2 proposed a simple and generic principle to design optimistic algorithms for contextual bandits,

which proved to be efficient and optimal even in the presence of large context and action spaces.

Chapter 3 developed a novel optimization approach to create “algorithmic beliefs” for sequential

learning problems, resulting in simple and often efficient algorithms for multi-armed bandits, lin-

ear and convex bandits, and reinforcement learning. The contributions of this thesis establish a

strong foundation for future research towards developing more potent learning algorithms and a

deeper understanding of the fundamental principles that underlie intelligent behavior.
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Appendix A: Appendix for Chapter 1

Appendix A is organized as follows:

• Appendix A.1 presents additional results of our general framework related to the topic of

“learning without concentration” (proofs are deferred to Appendix A.4).

• Appendix A.2 and A.3 contain the proofs for all theoretical claims in the main paper. These

can be read in a selective manner; key steps of each proof will be indicated shortly.

• Appendix A.2.3 and A.2.5 discuss how to compute loss-dependent and variance-dependent

rates directly from data, filling in details that were omitted from the main paper for space

consideration.

For convenience of readers, we will present a guide for reading Appendix A.

Overview for Appendix A.1

Appendix A.1 applies our general framework to study supervised learning problems with struc-

tured convex cost. The relationship between this setting and other parts of the paper has been ex-

plained in Section 1.2.4 and Section 1.5.1. In essence, the treatment presented here allows for non-

parametric and heavy-tailed hypothesis classes, whereas the main paper (Section 1.5-1.7) focuses

on parametric models and assumes a sub-exponential type assumption (Assumption 1). Unlike

the main paper which focuses primally on iterative optimization algorithms, popular non-convex

learning problems, and generic-form stochastic optimization problems, the focus here is on better

studied “classical” problem to best illustrate the key points.

The appendix presents work related to a stream of work pioneered by Mendelson and others

referred to as “learning without concentration” [8, 9]. This line of work has motivated by the
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need to find new localization approaches to replace the traditional “local Rademacher complexity”

analysis. An interesting open question is whether one can achieve the same goals by directly

strengthening the traditional concentration-based approaches. Our investigation shows that one of

the core limitations of traditional localization approaches in this paradigm is its requirement of

“sub-root” surrogate functions. Since our new approach completely remove this requirement, we

are able to answer this question in the affirmative; the results from [8, 9] can be recovered via a

concentration-based analysis. Moreover, we are able to show some technical improvements—our

approach does not require the “star-hull” of the hypothesis class that may increase complexity,

and there are concrete examples showing that the improvement may be meaningful for non-convex

classes. Appendix A.1.3 focuses on these new findings.

Overview of Appendix A.2 and A.3

Appendix A.2 and A.3 provide proofs for all the theoretical claims in the main paper. Readers

may read them in a selective manner, and to that end, we present a high level guide here.

Per our “uniform localized convergence” principle, a proof for problem-dependent generaliza-

tion error bounds contain two steps: 1) obtaining “localized uniform convergence” arguments; and

2) subsequent analysis that is customized to the problem setting. Among the major theoretical

results in the main paper, the following are dedicated to the first step:

• Proposition 1 provides a general tool to prove “uniform localized convergence” arguments.

The proof of this result is “one-shot” via a surprisingly simple observation explained in

Section 1.2.2. The formal proof is given in Appendix A.2.1 (we actually prove a more

general version, Proposition 5), which is succinct and straightforward to verify.

• Proposition 2, the “uniform localized convergence of gradients” argument, is the foundation

for all our results in the parametric “fast rate” regime. The proof (which is presented in

Appendix A.3.2) crucially relies on a careful choice of concentrated function (1.5.3), a novel

chaining analysis (see lines from (A.3.1) to (A.3.3)), and the application of Proposition 1.
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• Theorem 2 (using empirical moment penalization to achieve optimal variance-dependent

rate) crucially requires a “uniform localized convergence” argument where the measurement

functional is data-dependent. The argument, Lemma 15 in Appendix A.2.4, uses tools from

empirical processes theory and is somewhat technical in nature.

As for the second step (subsequent analysis that is customized to the problem setting and the

learning algorithm), the paper presents three different approaches: 1) using the definition of the

estimator to establish an inequality and then calculating the fixed point (this is used in most tra-

ditional approaches); 2) adding a regularization term and then directly using the definition of the

regularized estimator; and 3) coupling the statistical error with analysis of an iterative optimization

algorithm. Below are some of the key points.

• Theorem 1 (using empirical risk minimization to achieve optimal loss-dependent rate) uses

the “fixed point analysis” approach. The core step is to establish an inequality where a “mea-

surement” functional of ℎ̂ERM appears in both sides of the inequality (see inequality (A.2.8)).

Then one can use the definition of the fixed point to prove loss-dependent generalization er-

ror bounds. The proof is presented in Appendix A.2.2.

• For Theorem 2 (using empirical moment penalization to achieve optimal variance-dependent

rate), the core message is that the definition of the proposed moment-regularized estimator

directly leads to variance-dependent generalization error bounds. The proof is somewhat

lengthy, but the readers may focus on “Part III” in Appendix A.2.4 (in particular, the lines

from (A.2.32) to (A.2.35)) for the main message.

• Theorem 3 (“fast rate” of approximate stationary points) uses the “fixed point analysis”

approach, and the core step is to establish the inequality (A.3.10). The readers can parse

(A.3.10) in a rather simple manner: the right hand side is mostly due to Proposition 2 (the

“uniform localized convergence of gradients” argument); and the left hand side is due to the

property of the Polyak-Lojasiewisz (PL) condition. The full proof is presented in Appendix

A.3.3.
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• The proofs for Theorem 4 (Appendix A.3.4) and Theorem 6 (Appendix A.3.6) are very

similar. The core idea is to couple the statistical error from Proposition 2 to the optimization

analysis of an iterative algorithm. The major difference is that Theorem 4 discusses sample-

based gradient descent (before coupling the statistical error, its optimization analysis leads

to (A.3.11)); and Theorem 6 discusses sample-based first-order Expectation-Maximization

(before coupling the statistical error, its optimization analysis leads to (A.3.15)).

Additional corollaries. Besides the above, there are two corollaries in the main paper. Corollary

7 is the application of Theorem 6 to Example 4 (mixture of two Gaussians) and Example 5 (Mixture

of two component linear regression). The explicit calculation of problem-dependent parameters

here is quite novel (Appendix A.3.7), but the informal explanation at the end of Section 1.7.3 (from

(1.7.11) to (1.7.12)) should serve as a better source to understand the main message. Corollary 5 is

the application of Theorem 3 and Theorem 4 to Example 3 (non-convex regression with non-linear

activation), and the verification of the assumptions here are mostly technical in nature (Appendix

A.3.5).

Data-dependent bounds. Lastly but importantly, we would like to highlight Appendix A.2.3 and

Appendix A.2.5—they discuss how to estimate the loss-dependent and variance-dependent rates

from data, which are mentioned in the main paper (see remarks after Theorem 1 and Theorem 2)

but details are omitted there. A central challenge is to replace the loss L∗ and the variance V∗

(which depends on the unknown “best hypothesis” ℎ∗) by suitable empirical estimates. Readers

who are interested in fully data-dependent generalization error bounds may find this of interest.

A.1 Fast rates in supervised learning with structured convex cost

The main purpose of this section is to recover the problem-dependent rates in [9, 8] for (pos-

sibly non-parametric and heavy-tailed) supervised learning problems with structured convex cost

functions. While [9, 8] propose an approach they call “learning without concentration," our ap-

proach emphasizes the use of surrogate functions that are not “sub-root," and relates one-sided
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uniform inequalities to two-sided concentration of “truncated" functions. Besides providing a uni-

fication, there are some technical improvements as well. For example, our approach does not

require the “star-hull" of the hypothesis class that may increase complexity, and there are concrete

examples showing that the improvement may be meaningful for non-convex classes. See Appendix

A.1.3 for contributions of our method, and detailed comparison with existing approaches.

A.1.1 Background

Problem formulation and assumptions. Let the data 𝑧 be a feature-label pair (𝑥, 𝑦) where 𝑥 ∈ X

and 𝑦 ∈ Y ⊆ R. We assume every hypothesis ℎ in the hypothesis class H is a mapping from X

to R. In supervised learning, the loss function is of the form ℓ(ℎ; (𝑥, 𝑦)) = ℓsv(ℎ(𝑥), 𝑦) where the

deterministic bivariate function ℓsv : R × R → R is called the cost function. We assume that the

cost function is differentiable, globally convex with respect to its first argument, and the population

risk is smooth.

Assumption 9 (differentiability, convexity and smoothness) The partial derivative of ℓsu with

respect to its first argument, denoted 𝜕1ℓsu, exists and is continuous everywhere, and ℓsv is a

convex function with respect to its first argument, i.e., ∀𝑢1, 𝑢2, 𝑦 ∈ R,

ℓsu(𝑢1, 𝑦) − ℓsu(𝑢2, 𝑦) − 𝜕1ℓsv(𝑢2, 𝑦) (𝑢1 − 𝑢2) ≥ 0.

In addition, the population risk is smooth, i.e., there exists a constant 𝛽sv > 0 such that ∀ℎ1, ℎ2 ∈

H ,

Pℓsv(ℎ1(𝑥), 𝑦) − Pℓsv(ℎ2(𝑥), 𝑦) − P[𝜕1ℓsv [(ℎ2(𝑥), 𝑦) (ℎ1(𝑥) − ℎ2(𝑥))] ≤
𝛽sv

2
P[(ℎ1(𝑥) − ℎ2(𝑥))2] .

Given a cost function that is globally convex and locally strongly convex, we define {𝛼(𝑣)}𝑣≥0 as

follows.

Definition 12 (strong convexity parameter) For a fixed 𝑣 > 0, let 𝛼(𝑣) be the largest constant
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such that for all 𝑦 ∈ Y, ℓsv(𝑢 + 𝑦, 𝑦) is 𝛼(𝑣)−strongly convex with respect to 𝑢 when 𝑢 ∈ [−𝑣, 𝑣].

That is,

ℓsv(𝑢1 + 𝑦, 𝑦) − ℓsv(𝑢2 + 𝑦, 𝑦) − 𝜕1ℓsv(𝑢2 + 𝑦, 𝑦) (𝑢1 − 𝑢2) ≥
𝛼(𝑣)

2
(𝑢1 − 𝑢2)2, ∀𝑢1, 𝑢2 ∈ [−𝑣, 𝑣],∀𝑦 ∈ Y.

Clearly {𝛼(𝑣)}𝑣≥0 is non-increasing with respect to 𝑣, and we denote 𝛼(0) = lim sup𝑣→0 𝛼(𝑣).

When ℓsv is second-order continuously differentiable, we have the simple relation

𝛼(𝑣) = sup
|𝑢 |≤𝑣,𝑦∈Y

𝜕2
1,1ℓsv(𝑢 + 𝑦, 𝑦), ,∀𝑣 ≥ 0,

where 𝜕2
1,1ℓsv is the second order partial derivative of ℓsv with respect to its first argument. More-

over, to accommodate popular choices of robust costs, Definition 12 also allows 𝜕1ℓsv to be non-

differentiable at certain points in its domain. We list three widely used cost functions, their strong

convexity parameters {𝛼(𝑣)}𝑣≥0, and the smoothness parameters 𝛽sv of the corresponding popu-

lation risks.

• Square cost: consider the regression setting E[𝑦 |𝑥] = ℎtrue(𝑥), where ℎtrue is the function we

want to estimate (not necessarily in H ). It is natural to consider the square cost function

ℓsv(ℎ(𝑥), 𝑦) =
1
2
(ℎ(𝑥) − 𝑦)2.

Here ℓsv(𝑢+𝑦, 𝑦) = 𝑢2. Thus 𝛼(𝑣) = 1
2 ,∀𝑣 ≥ 0. The smoothness parameter of the population

risk is 𝛽sv = 1
2 . In this example, one does not need to localize the strong convexity parameter

𝛼(𝑣) as it is a constant.

• Huber cost: consider the regression setting E[𝑦 |𝑥] = ℎtrue(𝑥), where ℎtrue is the function we

want to estimate (not necessarily in H ). When the conditional distribution of 𝑦 is “heavy
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tailed," one often considers the Huber cost function as follows. For 𝛾 > 0, let

ℓsv,𝛾 (ℎ(𝑥), 𝑦) =


1
2
(ℎ(𝑥) − 𝑦)2 for |ℎ(𝑥) − 𝑦 | ≤ 𝛾,

𝛾 |ℎ(𝑥) − 𝑦 | − 𝛾2

2
for |ℎ(𝑥) − 𝑦 | > 𝛾.

(A.1.1)

Here 𝛼(𝑣) = 1
2 whenever 𝑣 ≤ 𝛾 but 𝛼(𝑣) = 0 for all 𝑣 > 𝛾. The smoothness parameter of

the population risk is 𝛽sv = 1
2 . Localization analysis of 𝛼(𝑣) is required for this loss, and the

key is to avoid its inverse diverging to infinity.

• Logistic cost: consider the standard logistic regression setting, where 𝑦 ∈ {−1, 1} and one

models the “log odd ratio" as

log (Prob(𝑦 = 1|𝑥)/Prob(𝑦 = −1|𝑥)) = ℎtrue(𝑥). (A.1.2)

Here ℎtrue is the discriminant function to be estimated (not necessarily in H ). The maximum

likelihood estimation problem corresponds to using the cost function

ℓsv(ℎ(𝑥), 𝑦) = log
(
1 + exp(−𝑦ℎ(𝑥))

)
.

Here 𝜕2
1,1ℓsv(𝑢 + 𝑦, 𝑦) =

exp(1+𝑢𝑦)
(1+exp(1+𝑢𝑦))2 , so we have 𝛼(𝑣) =

exp(𝑣+1)
(exp(𝑣+1)+1)2 , ∀𝑣 ≥ 0, and the

smoothness parameter of the population risk is 𝛽sv = 1
4 . The issue is that 1

𝛼(𝑣) , a complexity

constant that will appear in the generalization error bound, grows exponentially with 𝑣 [125,

126]. This issue strongly motivate us to localize the parameter 𝑣 within 𝛼(𝑣) to avoid large

exponential constants.

The following assumption is usually invoked in the most representative literature on this topic

[8, 9].

Assumption 10 (optimality condition) Recall that ℎ∗ ∈ Pℓsv(ℎ(𝑥), 𝑦) is the population risk min-
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imizer. Assume for all ℎ ∈ H ,

P[𝜕1ℓsv(ℎ∗(𝑥), 𝑦) (ℎ(𝑥) − ℎ∗(𝑥))] ≥ 0.

We summarize the two primary settings where Assumption 10 holds true.

• Well-specified models: for certain problems, as long as the model is well-specified, then

𝜕1ℓsv(ℎ∗(𝑥), 𝑦) is independent of 𝑥 and E𝜕1ℓsv(ℎ∗(𝑥), 𝑦) = 0. Thus Assumption 10 will

hold. Examples include 1) the settings studied in [9] where ℓsv is a univariate function

of (ℎ(𝑥) − 𝑦) and 𝜕1ℓsv(ℎ∗(𝑥), 𝑦) is odd with respect to 𝑦, such as applications that use

the square cost or the Huber cost; and 2) generalized linear models where the conditional

distribution of 𝑦 belongs to the exponential family, such as the the logistic regression problem

(A.1.2).

• H is a convex class of functions: in this case, we verify Assumption 10 as follows. If

there exists some ℎ1 ∈ H such that Assumption 10 is not true, then by considering ℎ_ =

_ℎ1 + (1−_)ℎ∗ ∈ H with _ sufficiently close to 0, we find Pℓsv(ℎ_ (𝑥), 𝑦) < Pℓsv(ℎ∗(𝑥), 𝑦),

in contradiction, as ℎ∗ is the population risk minimizer.

We call the random variable 𝜕1ℓsv(ℎ∗(𝑥), 𝑦) the “noise multiplier" as it often characterizes the

“effective noise" of the learning problem when using a particular cost function. We define another

random variable b := ℎ∗(𝑥) − 𝑦. In some applications, b is closely related to the “noise multiplier"

(e.g., they are equivalent when one uses the square cost). And the notation b is useful in other

applications as well, because one always seeks to localize the parameter 𝑣 in 𝛼(𝑣) to the order

of ∥b∥𝐿2 . We denote Δ = supℎ∈H ∥ℎ(𝑥) − 𝑦∥𝐿2 and Δ∞ = supℎ,𝑥,𝑦 |ℎ(𝑥) − 𝑦 | as the worst-case

𝐿2 distance and 𝐿∞ distance between ℎ(𝑥) and 𝑦. respectively. It is clear that we typically have

∥b∥𝐿2 ≪ Δ ≪ Δ∞ in practical applications.

Our analysis requires a very weak distributional assumption:

Assumption 11 (“small ball" property) There exist constants ^ > 0 and 𝑐^ ∈ (0, 1) such that

145



for all ℎ ∈ H ,

Prob
(
|ℎ(𝑥) − ℎ∗(𝑥) | ≥ ^∥ℎ − ℎ∗∥𝐿2

)
≥ 𝑐^ .

Assumption 11 is often referred to as “minimal" in the literature, and there are many examples

in which it can be verified for ^ and 𝑐^ that are absolute constants [8, 9, 127, 128, 129, 130].

The scope of Assumption 11 subsumes and is much broader than the “sub-Gaussian" setting. For

example, it is naturally satisfied when the class {ℎ − ℎ∗ : ℎ ∈ H} satisfies any sort of moment

equivalence (see, e.g., Lemma 4.1 in [8]).

Main challenges. Let us first examine limitations of the results obtained using the traditional

“local Rademacher complexity" analysis (Statement 1), which includes the results from [1, 3, 5]

in the fast-rate regime. Assuming the cost function to be 𝐿sv−Lipchitz continuous with respect

to its first argument and setting 𝑓 (𝑧) = ℓsv(ℎ(𝑥), 𝑦) − ℓsv(ℎ∗(𝑥), 𝑦), 𝑇 ( 𝑓 ) = P[ 𝑓 2], and 𝐵𝑒 =

𝐿2
sv/𝛼(Δ∞), following Statement 1, one can prove that the empirical risk minimizer ℎ̂ satisfies

E( ℎ̂) ≤ 𝑂
(
𝑟∗

𝐵𝑒

)
, (A.1.3)

where 𝑟∗ is the fixed point of 𝐵𝑒𝜓, and 𝜓 is a sub-root surrogate function that governs supP[ 𝑓 2]≤𝑟 (P − P𝑛) 𝑓 .

Denote by 𝑟∗1 the fixed point of 𝜓. From the sub-root property of 𝜓 we know that 𝑟∗ ≥ 𝐵2
𝑒𝑟

∗
1, so the

generalization error bound (A.1.3) is at least of order

𝑟∗

𝐵𝑒
≥ 𝐵𝑒𝑟

∗
1 =

𝐿2
sv

𝛼(Δ∞)
𝑟∗1. (A.1.4)

The main message here is that the traditional result (A.1.3) is often loose and not problem-dependent.

As indicated by Mendelson in a series of papers [8, 9], the traditional result (A.1.3) has the follow-

ing limitations.

• The global Lipchitz constant 𝐿sv is not problem-dependent and potentially unbounded.
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𝐿sv is effectively the worst-case value supℎ,𝑥,𝑦 |𝜕1ℓ(ℎ(𝑥), 𝑦) |. For the square cost, this is

Δ∞ = supℎ,𝑥,𝑦 |ℎ(𝑥) − 𝑦 | and is unbounded when either the hypothesis class or noise are

unbounded. It would be beneficial to have a bound that only scales with a measure related

to the “noise multiplier" 𝜕1ℓ(ℎ∗(𝑥), 𝑦), because we usually have |𝜕1ℓ(ℎ∗(𝑥), 𝑦) | ≪ 𝐿sv in

practical applications.

• The global strong convexity parameter 𝛼(Δ∞) is often very small for the logistic cost and the

Huber cost, so its inverse is often large (and potentially unbounded). The challenge here is

to sharpen this to the inverse of a localized strongly convex parameter 𝛼(𝑂 (∥b∥𝐿2)). Since

we usually have 𝜎 ≪ Δ∞, the inverse of 𝛼(𝑂 (∥b∥𝐿2)) can be much smaller than the inverse

of 𝛼(Δ∞).

The “small ball method" and beyond. The breakthrough papers [8, 9] propose the “small ball

method" (also referred to as “learning without concentration") to provide problem-dependent rates

that overcome the limitations mentioned above. Their proofs builds on structural results of 0 − 1

valued indicator functions under the small-ball condition, whose connection to the traditional local-

ization analysis may not be completely obvious. Moving the focal point from indicator functions

to “truncated" functions, we provide the following perspectives.

1) A simple interpretation to the “small-ball" condition is that, suitably “truncated" quadratic

forms are of the same scale as the original quadratic forms. Under the “small-ball" condition, one

can trivially show that uniformly over all ℎ ∈ H ,

P[min{(ℎ(𝑥) − ℎ∗(𝑥))2, ^2∥ℎ − ℎ∗∥2
𝐿2
}] ≥ Prob

(
|ℎ(𝑥) − ℎ∗(𝑥) | ≥ ^∥ℎ − ℎ∗∥𝐿2

)
^2∥ℎ − ℎ∗∥2

𝐿2

≥ 𝑐^^2P[(ℎ(𝑥) − ℎ∗(𝑥))2] .

This suggests that one only needs to concentrate simple “truncated" functions to derive generaliza-

tion error bounds.

2) One-sided uniform inequalities are contained in the “uniform localized convergence" frame-
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work and are often derived from concentration of truncated functions. Many one-sided uniform

inequalities can be equivalently written as “uniform localized convergence" arguments. Consider

the uniform “lower isomorphic bound" (which plays a central role in the “small-ball" method): for

some constant 𝑐 > 0, with high probability, uniformly over all ℎ ∈ H ,

P𝑛 [(ℎ(𝑥) − ℎ∗(𝑥))2] ≥ 𝑐P[(ℎ(𝑥) − ℎ∗(𝑥)2] .

The above argument is equivalent with the following “uniform localized convergence" argument:

(P − P𝑛) [(ℎ(𝑥) − ℎ∗(𝑥))2] ≤ (1 − 𝑐)𝑇 (ℎ), ∀ℎ ∈ H

where the measurement functional 𝑇 (ℎ) is set to be ∥ℎ − ℎ∗∥2
𝐿2

. A more flexible perspective may

directly view the truncated quadratic forms as the concentrated functions, making traditional two-

sided uniform convergence tools applicable in a straightforward manner.

Motivated by the above observations, an interesting open question is to recover the results in

[8, 9] by directly strengthening the traditional concentration framework, explicitly figuring out

which component of the excess loss contributes to which part of the surrogate function. In what

follows, we will present such an analysis. While our error bounds roughly follow the same form as

the results in [8, 9], we obtain several technical improvements; see Appendix A.1.3 for the novel

implications and methodological contributions of our approach.

A.1.2 Main results and illustrative examples

We assume some regularity conditions that hold for non-pathological choices of surrogate func-

tions.

Assumption 12 (regularity conditions on surrogate functions) Assume there is a non-decreasing,
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non-negative and bounded function 𝜑(𝑟) such that ∀𝑟 > 0,

ℜ{ℎ − ℎ∗ : ℎ ∈ H , ∥ℎ − ℎ∗∥2
𝐿2

≤ 𝑟} ≤ 𝜑(𝑟); (A.1.5)

and there is a meaningful surrogate function 𝜑noise(𝑟, 𝛿) that is non-decreasing w.r.t. 𝑟, and satisfies

that ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿,

sup
ℎ∈H ,∥ℎ−ℎ∗∥2

𝐿2
≤𝑟

{(P − P𝑛) [𝜕1ℓsv(ℎ∗(𝑥), 𝑦) (ℎ − ℎ∗)]} ≤ 𝜑noise(𝑟, 𝛿). (A.1.6)

Given any fixed 𝛿 ∈ (0, 1) and 𝑟0 ∈ (0, 4Δ2), denote 𝐶𝑟0 = 2 +
(

16
𝑐^

+ 2
)

log 4Δ2

𝑟0
. Assume there is a

positive integer �̄�𝛿,𝑟0 such that for all 𝑛 ≥ �̄�𝛿,𝑟0 ,

𝜑noise

(
8Δ2;

𝛿

𝐶𝑟0

)
≤
𝛼(4∥b∥𝐿2/

√
𝑐^)∥b∥2

𝐿2

2
and 𝜑

(
8Δ2

)
≤

√
2𝑐^ ∥b∥2

𝐿2

16Δ
. (A.1.7)

We note that the requirements do not place meaningful restrictions on the choice of surrogate func-

tion. The main requirement, condition (A.1.7), asks for uniform errors over H to be smaller than

some fixed values that are independent of 𝑛. For non-pathological choices of surrogate functions,

this will always be satisfied as long as the sample size 𝑛 is larger than some positive integer �̄�𝛿,𝑟0 .

The boundedness requirement for 𝜑 (and 𝜑noise) can always be met by setting 𝜑(𝑟) = 𝜑(4Δ2) (and

𝜑noise(𝑟; 𝛿) = 𝜑noise(4Δ2; 𝛿)) for all 𝑟 ≥ 4Δ2, because ∥ℎ − ℎ∗∥𝐿2 ≤ 2Δ for all ℎ ∈ H .

Theorem 20 (supervised learning with structured convex cost) Let Assumptions 9, 10, 11, 12

hold and 𝛼
(
4∥b∥𝐿2/

√
𝑐^

)
> 0. Let 𝑟∗ver be the fixed point of the function

4
𝑐^^

2 · 𝛼
(
4∥b∥𝐿2/

√
𝑐^

) 𝜑noise

(
2𝑟;

𝛿

𝐶𝑟0

)
. (A.1.8)

Given any fixed 𝛿 ∈ (0, 1) and 𝑟0 ∈ (0, 4Δ2), let 𝑟∗noise be the fixed point of the function

8
𝑐^^

√
2𝑟𝜑(2𝑟). (A.1.9)
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Then with probability at least 1 − 𝛿, the empirical risk minimizer ℎ̂ satisfies

∥ ℎ̂ − ℎ∗∥2
𝐿2 (P) ≤ max

{
𝑟∗noise, 𝑟

∗
ver, 𝑟0

}
and

E( ℎ̂) ≤ 𝛽sv

2
max

{
𝑟∗noise, 𝑟

∗
ver, 𝑟0

}
,

provided that 𝑛 > max
{
�̄�𝛿,𝑟0 ,

72
𝑐2
^

log 𝐶𝑟0
𝛿

}
.

Remarks. 1) The term 𝑟0 is negligible since it can be arbitrarily small. One can simply set

𝑟0 = 1/𝑛4, which will be much smaller than 𝑟∗noise for typical applications. In high-probability

bounds, 𝐶𝑟0 will only appear in the form log(𝐶𝑟0/𝛿)), which is of a negligible 𝑂 (log log 𝑛) order.

In the subsequent discussion, we will hide parameters that only depend on ^ and 𝑐^ in the big 𝑂

notation, as they are often absolute constants in practical applications.

2) The two fixed points 𝑟∗noise and 𝑟∗ver correspond to the two sources of complexities: the uniform

errors characterized by the two surrogate functions in (A.1.8) and (A.1.9). Recall that a funda-

mental limitation of the traditional “local Rademacher complexity analysis" is that it requires a

“sub-root" surrogate function that can not differentiate the two sources of complexity. In contrast,

the surrogate function in (A.1.8) (which we write as 𝑂 (
√
𝑟𝜑(𝑟)) for simplicity) is obviously a

“super-root" function, thus our analysis overcomes that limitation and provides more precise upper

bounds. The key point is that 𝑂 (
√
𝑟𝜑(𝑟)) is a benign “super-root" surrogate function, in the sense

that its fixed point 𝑟∗ver is “very small" when the sample size is large enough; in other words, when

the problem is learnable. For example, for a 𝑑−dimensional linear classes, where 𝜑 = 𝑂 (
√︁
𝑑𝑟/𝑛),

𝑟∗ver will be the fixed point of 𝑂 (𝑑𝑟/𝑛). Thus 𝑟∗ver will be 0 as long as the sample size 𝑛 is larger

than 𝑂 (𝑑). Therefore, the typical generalization error derived by Theorem 20 is of order

E( ℎ̂) ≤ 𝛽sv

2
𝑟∗noise,

where 𝑟∗noise is the fixed point of the function in (A.1.9). Clearly, 𝑟∗noise only depends on the noise

multiplier at ℎ∗ and the local strong convexity parameter, and it is independent of the worst-case
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parameters of the cost function.

At a high level, the subscripts “ver" and “noise" have the the meaning of “version space" and

“noise multiplier," respectively. Intuitively, 𝑟ver is the estimation error of the noise-free realizable

problem, which reflects the complexity of version space—the random subset of H that consists

of all ℎ that agree with ℎ∗ on {𝑥𝑖}𝑛𝑖=1. On the other hand, 𝑟noise is the estimation error induced

by the interaction of H and noise multiplier 𝜕1ℓsv(ℎ∗(𝑥), 𝑦). We refer to [8] for a more detailed

discussion on the source of these two fixed points.

Now we present some representative applications of Theorem 20.

Example 12 (localization of unfavorable parameters) In practical applications, one often wants

to avoid the global Lipchitz constant and the inverse of the global strong convexity parameter. For

example, in regression with square cost, the global Lipchitz constant is equal to Δ∞ and is of-

ten unbounded, so it is desirable to convert it to ∥b∥𝐿2; and in logistic regression, the inverse of

global strong convexity parameter is an exponential constant 𝑒𝑂 (Δ∞) , which we hope to convert to

𝑒𝑂 (∥b∥𝐿2 ) . These goals are achieved in Theorem 20: since the right hand side of (A.1.8) contains

an extra
√
𝑟 factor, 𝑟∗ver is typically much smaller than 𝑟∗noise for sufficiently large 𝑛 (see remark 2

after Theorem 20). Therefore, the generalization error bound will be determined by the fixed point

𝑟∗noise, which only depends on the noise multiplier at ℎ∗ and the local strong convexity parameter.

Example 13 (regression with heavy-tailed noise) We consider the problem of predicting 𝑦 using

ℎ(𝑥), and allow the “noise" b = ℎ∗(𝑥) − 𝑦 to be heavy-tailed. To illustrate the main message of

this example, we consider the 𝑑−dimensional linear class with sub-Gaussian features. That is,

ℎ(𝑥) = \𝑇𝑥 where \ ∈ R𝑑 , and the random feature 𝑥 ∈ R𝑑 is sub-Gaussian. In this setting, the

Huber cost is preferred to the square cost.

• For the Huber cost and truncation parameter 𝛾 = 𝑂 (∥b∥𝐿2) in the definition (A.1.1), Theo-

rem 20 implies that the parameter 𝑣 will be localized to the region where the strong convexity

parameter 𝛼(𝑣) is non-zero. As a result, the strong convexity parameter in the generaliza-

tion error bound will be 1
2 rather than the problematic value 0 (since the generalization
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error scales with the inverse of 𝛼(𝑣), the value 0 will make the bound vacuous). For the

𝑑−dimensional linear class, 𝑟∗ver will be 0 as long as 𝑛 ≥ 𝑂 (𝑑). Since 𝜕1ℓsv(ℎ∗(𝑥), 𝑦) will

be uniformly bounded by 𝑂 (𝜎), we obtain

𝑟∗noise ≤ 𝑂
(
∥b∥2

𝐿2
(𝑑 + log 1

𝛿
)

𝑛

)
,

which recovers the problem-dependent rate in [9].

• For the square cost, the fixed point 𝑟noise will often cause the generalization error to be sub-

optimal. For the 𝑑−dimensional linear class, 𝑟noise will have a polynomial dependence on

1/𝛿 as explained in [9]. The reason is that in the definition of 𝜑noise(𝑟, 𝛿) in A.1.6, the noise

multiplier 𝜕1ℓsv(ℎ∗(𝑥), 𝑦) is equal to b for the square cost. For “heavy-tailed" b, this will

cause the rate 𝑟noise to be sub-optimal.

We note that the condition that ℎ̂ is the empirical risk minimizer is not essential to the proof

of Theorem 20. Similar to the prior work [130], we can extend the result to more general learning

rules that are based on regularization (e.g., LASSO [131], SLOPE [132], etc.) as follows.

Corollary 21 (extension to general regularized learning rules) Let Assumptions 9 10, 11 hold.

Let ℎ̂ be the solution of

min
H
P𝑛ℓsv(ℎ(𝑥), 𝑦) + Ψ(ℎ), (A.1.10)

where Ψ(ℎ) is a non-negative regularization term. Let H0 be a subset of H that is independent of

the samples. If inequality (A.1.5) is modified to

ℜ{ℎ − ℎ∗ : ℎ ∈ H0, ∥ℎ − ℎ∗∥2
𝐿2

≤ 𝑟} ≤ 𝜑(𝑟),

152



and inequality (A.1.6) is modified to

sup
ℎ∈H0,∥ℎ−ℎ∗∥2

𝐿2
≤𝑟

{
(P − P𝑛) [𝜕1ℓsu(ℎ∗(𝑥), 𝑦) (ℎ − ℎ∗)]

}
+ Ψ(ℎ∗) ≤ 𝜑noise(𝑟; 𝛿),

then under Assumption 12, conditioned on the event {ℎ̂ ∈ H0}, the conclusion of Theorem 20

remains true.

As illustrated in the following example, Corollary 21 is able to recover several important results

in the high-dimensional statistics literature.

Example 14 (high-dimensional estimation and LASSO) Consider the linear regression set-up

E[𝑦 |𝑥] = 𝑥𝑇\∗ where \ ∈ Θ ⊆ R𝑑 , 𝑑 ≫ 𝑛 and ∥\∗∥0 ≤ 𝑠 ≪ 𝑑. Consider the LASSO esti-

mator \̂, which is the solution of the ℓ1−norm regularized risk minimization problem, where the

regularization term is Φ(ℎ) = _∥\∥1 and _ > 0 is the regularization parameter, i.e.,

\̂ ∈ arg min
Θ

P𝑛ℓsv(\𝑇𝑥, 𝑦) + _∥\∥1.

Assume ℓsv is the square cost and b is 𝜎−sub-Gaussian, or ℓsv is the Huber cost with truncation

parameter 𝛾 = 𝑂 (𝜎). Assume the feature 𝑥 ∈ R𝑑 is sub-Gaussian. Following standard analysis

(see, e.g., Lemma 1 in [133]), by setting _ to be of order
√︁
𝜎2 log(𝑑/𝛿)/𝑛, the Lasso estimator

\̂ will lie in a sparse cone Θ𝑆 (with high probability), where it can be proven [134] that 𝜑(𝑟) =

𝑂 (
√︁
𝑟𝑠 log 𝑑/𝑛) and 𝜑noise(𝑟; 𝛿) = 𝑂 (

√︁
𝑟𝜎2𝑠 log(𝑑/𝛿)/𝑛) (ignoring dependence on the parameters

𝐶 and 𝑝 described in Assumption 11). Applying Corollary 21 with H0 = {𝑥 ↦→ \𝑇𝑥 : \ ∈ Θ𝑆} and

𝑛 ≥ Ω(𝑠 log 𝑑), we have 𝑟∗ver = 0 and

𝑟∗noise ≤ 𝑂
(
𝜎2𝑠 log 𝑑

𝛿

𝑛

)
.
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A.1.3 Contributions relative to previous approaches

So far we have recovered the main results in the prior works [8, 9], which are valid for un-

bounded regression problems and thus improve the traditional “local Rademacher complexity"

analysis. Now we would like to illustrate how Theorem 20 improves the results in [8, 9] by re-

moving a “star-shape" requirement. That is, we do not need to assume the hypothesis class is

star-shaped/convex, or consider the star-hull of it which may increase complexity.

To be specific, [8, 9] assumes that H is a convex class (and thus star-shaped). When H is not

star-shaped, the results in [8, 9] are still valid by taking the star-hull of F and considering the local

Rademacher/Gaussian complexity of the star-hull. The increase in complexity is quite moderate for

traditional hypothesis classes (e.g., those chracterized by covering number conditions; see Lemma

4.6 in [135] for more details). However, taking the star-hull may significantly increase the local

Rademacher complexity of modern non-convex and overparameterized classes. Here we show that,

even for very simple function classes (e.g., linear classes with non-convex support), our approach

improves on what can be achieved using the star-hulls.

Note that the improvement brought by our approach is systematic and may carry over to more

complicated learning procedures as well. A more comprehensive comparison with existing local-

ization approaches will be presented after the following example.

Example 15 (overparameterized linear class with growing sparsity) Consider the linear regres-

sion model

𝑦 ∼ 𝑁 (𝑥𝑇\∗, 𝜎2), 𝑥 ∼ 𝑁 (0, 𝐼𝑑×𝑑),

where \∗ ∈ Θ ⊆ R𝑑 and 𝑑 ≫ 𝑛 (i.e., the model is overoarameterized). Assume the feasible

parameter set \ satisfies that for all \ ∈ Θ,

∥\ − \∗∥0 ≤ ⌊∥\ − \∗∥2
2⌋ . (A.1.11)
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In other words, the sparsity of \ increases the more \ deviates from \∗. The maximum likelihood

estimation problem corresponds to minimize the empirical average of the square cost with respect

to H = {𝑥 ↦→ 𝑥𝑇\ : \ ∈ Θ}. For this problem, the surrogate function 𝜑noise need to satisfy (with

probability at 1 − 𝛿)

sup
\∈Θ,∥\−\∗∥2

2≤𝑟
(P − P𝑛) [b · 𝑥𝑇 (\ − \∗)] ≤ 𝜑noise(𝑟; 𝛿), (A.1.12)

where the left hand side of (A.1.12) is the localized Gaussian complexity of H . Thanks to the

sparsity condition (A.1.11), it can be tightly controlled by

𝜑noise(𝑟; 𝛿) = 𝑂
©«
√︄
𝜎2(∥\∗∥0 + 𝑟)𝑟 log 𝑑

𝛿

𝑛

ª®¬ = 𝑂
©«
√︄
𝜎2∥\∗∥0𝑟 log 𝑑

𝛿

𝑛

ª®¬︸                       ︷︷                       ︸
problem-dependent component

+ 𝑂
©«
√︄
𝜎2 log 𝑑

𝛿

𝑛
· 𝑟ª®¬︸                  ︷︷                  ︸

benign “super-root" component

.

(A.1.13)

Here, the benign “super-root" component" in 𝜑noise(𝑟; 𝛿) does not affect the order of its fixed point

𝑟∗noise: when 𝑛 ≥ Ω(4𝜎2 log 𝑑
𝛿
), the “super-root" component" in (A.1.13) will be less than 1

2𝑟 so

that 𝑟∗noise is of order 𝜎2∥\∗∥0 log 𝑑
𝛿
/𝑛. In other words, only the problem-dependent component in

𝜑noise(𝑟; 𝛿) matters.

In contrast, if one takes the star-hull (e.g., expanding Θ to star(Θ) = {\∗ + _(\ − \∗) : \ ∈

Θ, _ ∈ [0, 1]}, then it is straightforward to verify that 𝜑noise has to be a “sub-root" function. A

sub-root surrogate function that governs (A.1.13) will be at least of order

𝜑noise(𝑟; 𝛿) = 𝑂 ©«
√︄
𝜎2(∥\∗∥0 + Δ)𝑟 log 𝑑

𝛿

𝑛

ª®¬ ,
whose fixed point unavoidably scales with the worst-case 𝐿2 distance Δ. Here we do not consider

computational issues, and the key message is that if the complexity (e.g., the “effective dimension")

of an overparameterized non-convex class grows very rapidly with respect to its localization scale,
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then some “fast growing components" may still be benign and they may not necessarily increase

the complexity. It is an open question whether such phenomena manifests in more practical appli-

cations.

Comparison with the “small ball method." In a series of pioneering works, Mendelson [8, 9,

30, 136] proposes the “small ball method" as an alternative approach to the traditional “concentration-

contraction" framework. Under the “small ball" condition, that approach establishes one-sided

uniform inequalities through structural results on binary valued indicator functions. Motivated

by these works, we seek to refine the traditional concentration framework. Our approach brings

added flexibility to concentration by emphasizing the use of surrogate functions that are not “sub-

root," and relates one-sided uniform inequalities to two-sided concentration of simple “truncated"

functions. Following are the main contributions relative to the “small ball method."

First, our approach does not require the hypothesis class to be star-shaped/convex (or to con-

sider the star-hull of the hypothesis class). This improvement is particularly relevant for non-

convex hypothesis classes whose complexity can grow rapidly when “away" from the optimal

hypothesis. In Example 15 (and its discussion) we show that the improvement may be meaningful

for some non-convex, overparametrized classes; and the phenomenon of “benign fast growing"

components in overparameterized models may be of independent interest.

To the best of our knowledge, the “small ball method" cannot overcome the star-shape re-

quirement in a straightforward manner, without additional uniform convergence arguments. The

“small ball method" is able to prove one-sided inequalities that hold uniformly over a fixed sphere

{ℎ ∈ H : ∥ℎ − ℎ∗∥2
𝐿2

= 𝑟}, and by assuming the class H to be star-shaped around ℎ∗, it cir-

cumvents the need to have a uniform bound that holds simultaneously for all possible values of 𝑟.

However, without the star-shape assumption and additional uniform convergence arguments, it is

not clear how to uniformly extend the bound to all 𝑟 using peeling. In our analysis, we introduce

some new tricks to address this issue. In particular, we use “adaptive truncation levels" and con-

centration over “rings." Combining these with the “uniform localized convergence" procedure, we
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completely circumvent the need for star-hulls (see “Part II" in Appendix A.4.1 for details).

The discussion here is orthogonal to lifting the star-shape/convexity assumptions using aggre-

gation [10], whose primary goal is to remove Assumption 10 (recall that this assumption implicitly

asks the hypothesis class to be convex/star-shaped when the model is mis-specified). When using

aggregation and improper learning procedures, it is natural to consider the complexity of the en-

larged class. Still, we suspect that taking the star-hull may be unnecessary if the enlarged class

need not to be star-shaped [30, 136], and our analysis may be useful there as well. We note in

passing that aggregation procedures are often computationally demanding.

Lastly, the formulation of supervised costs is slightly broader here compared with [9]. In that

paper, the loss is assumed to be a univariate function of (ℎ(𝑥) − 𝑦), so costs involving the term

𝑦ℎ(𝑥) (e.g., the canonical logistic cost and the costs in some other generalized linear models) are

not permitted ([9] instead analyzes a modified version of the logistic cost).

Comparison with offset Rademacher complexity. Under the square cost and assuming the so-

called “lower isometry bound" as an a priori condition (see Definition 5 in [10]), offset Rademahcer

complexity [10] is also able to provide problem-dependent rates. However, establishing such a

“lower isometry bound" is typically challenging, so this approach may still need to rely on the

“small ball method" (or our analysis) for unbounded regression problems. Moreover, this tool is

tailored to the setting of supervised learning with square cost, and it is unclear how to extend the

analysis to more general losses.

Comparison with the “restricted strong convexity" framework in high-dimensional statis-

tics. In the high-dimensional statistics literature, the “restricted strong convexity" framework

[133, 3] provides analytical tools to prove problem-dependent rates, but only when such condition

is assumed as an a priori (see Definition 2 in [133]). To achieve this, [137, 133, 134] develop

a truncation-based analysis that can establish “restricted strong convexity" for sparse kernel re-

gression and sparse generalized linear models. Those works also indicate that one-sided uniform

inequalities can be established by two-sided concentration of the “truncated" functions. There are
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several differences between their analysis and ours. First, those proofs rely on linearity/star-shape

of the hypothesis class and thus only need to prove the “restricted strong convexity" on a fixed

sphere (similar to what we have discussed in comparison with the “small-ball method"). In con-

trast, our framework does not put any geometric restriction on the hypothesis class, by passing this

through the use of “adaptive truncation levels" and concentration over “rings," tools that may be

of independent interest from a technical perspective. Second, when seeking problem-dependent

generalization error bounds, the proposed 𝐿2 − 𝐿4 moment equivalence condition [133, 134] is

stronger than the “small ball" condition used in our analysis. Third, the analysis does not fully

localize the strong convexity parameter, and does not cover interesting supervised costs that may

have zero curvature, e.g., the Huber cost.

A.2 Proofs for Section 1.2 and Section 1.3

In all the proofs we consider a fixed sample size 𝑛. In order to distinguish “probability of

events” and “expectation with respect to P,” we will use the notation Prob(A) to denote the prob-

ability of the event A.

A.2.1 Proofs for Proposition 1 and its variants

We prove a more general version of of Proposition 1. The differences are that 1) here we use

a more general “peeling scale” _ which can be any value larger than 1, while in Proposition 1 we

simply set _ to be 2; and 2) we only ask 𝜓(𝑟; 𝛿) to be a high-probability surrogate function of the

uniform error over the “ring” { 𝑓 ∈ F : 𝑟/_ ≤ 𝑇 ( 𝑓 ) ≤ 𝑟} rather than the “bigger” localized area

{ 𝑓 ∈ F : 0 ≤ 𝑇 ( 𝑓 ) ≤ 𝑟}.

Proposition 5 (a more general “uniform localized convergence” argument) For a function class

G = {𝑔 𝑓 : 𝑓 ∈ F } and functional 𝑇 : F → [0, 𝑅], assume there is a function 𝜓(𝑟; 𝛿) (pos-

sibly depending on the samples), which is non-decreasing with respect to 𝑟 and satisfies that

158



∀𝛿 ∈ (0, 1),∀𝑟 ∈ [0, 𝑅], with probability at least 1 − 𝛿,

sup
𝑓 ∈F : 𝑟

_
≤𝑇 ( 𝑓 )≤𝑟

(P − P𝑛)𝑔 𝑓 ≤ 𝜓(𝑟; 𝛿).

Then, given any 𝛿 ∈ (0, 1), 𝑟0 ∈ (0, 𝑅] and _ > 1, with probability at least 1 − 𝛿, for all 𝑓 ∈ F ,

either 𝑇 ( 𝑓 ) ≤ 𝑟0 or

(P − P𝑛)𝑔 𝑓 ≤ 𝜓
(
_𝑇 ( 𝑓 ); 𝛿

(
log_

_𝑅

𝑟0

)−1
)
.

Proof of Proposition 5: we apply a “peeling” technique. Given any 𝑟0 ∈ (0, 𝑅], take 𝑟𝑘 = _𝑘𝑟0,

𝑘 = 1, · · · , ⌈log_ 𝑅
𝑟0
⌉. Note that ⌈log_ 𝑅

𝑟0
⌉ ≤ log_ _𝑅𝑟0

.

We use a union bound to establish that sup 𝑟
_
𝑇 ( 𝑓 )≤𝑟 (P − P𝑛)𝑔 𝑓 ≤ 𝜓(𝑟; 𝛿) holds for all these 𝑟𝑘

simultaneously: ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿,

sup
𝑟𝑘−1≤𝑇 ( 𝑓 )≤𝑟𝑘

(P − P𝑛)𝑔 𝑓 ≤ 𝜓
(
𝑟𝑘 ;

𝛿

log2
2𝑅
𝑟0

)
, 𝑘 = 1, · · · ,

⌈
log2

𝑅

𝑟0

⌉
.

For any fixed 𝑓 ∈ F , if 𝑇 ( 𝑓 ) ≤ 𝑟0 is false, then let 𝑘 be the non-negative integer such that

_𝑘𝑟0 < 𝑇 ( 𝑓 ) ≤ _𝑘+1𝑟0, and we further know that 𝑟𝑘+1 = _𝑘+1𝑟0 ≤ _𝑇 ( 𝑓 ). Therefore, with

probability at least 1 − 𝛿,

(P − P𝑛)𝑔 𝑓 ≤ sup
𝑓 ∈F :𝑟𝑘≤𝑇 ( 𝑓 )≤𝑟𝑘+1

(P − P𝑛)𝑔 𝑓

≤ 𝜓
(
𝑟𝑘+1;

𝛿

log_ _𝑅𝑟0

)
≤ 𝜓

(
_𝑇 ( 𝑓 ); 𝛿

log_ _𝑅𝑟0

)
.

Therefore, with probability at least 1 − 𝛿, ∀ 𝑓 ∈ F , either 𝑇 ( 𝑓 ) ≤ 𝑟0 or

(P − P𝑛)𝑔 𝑓 ≤ 𝜓
(
_𝑇 ( 𝑓 ); 𝛿

log_ _𝑅𝑟0

)
.
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This completes the proof of Proposition 5. □

Clearly, Proposition 1 can be viewed as a corollary of Proposition 5. We now present an impli-

cation of Proposition 1, which may be more convenient to use for some problems.

Proposition 6 (a variant of the “uniform localized convergence” argument) For a function class

G = {𝑔 𝑓 : 𝑓 ∈ F } and functional 𝑇 : F → [0, 𝑅], assume there is a function 𝜓(𝑟; 𝛿) (possibly

depending on the samples), which is non-decreasing with respect to 𝑟 and satisfies that ∀𝛿 ∈ (0, 1),

∀𝑟 ∈ [0, 𝑅], with probability at least 1 − 𝛿,

sup
𝑓 ∈F :𝑇 ( 𝑓 )≤𝑟

(P − P𝑛)𝑔 𝑓 ≤ 𝜓(𝑟; 𝛿).

Then, given any 𝛿 ∈ (0, 1) and 𝑟0 ∈ (0, 𝑅], with probability at least 1 − 𝛿, for all 𝑓 ∈ F ,

(P − P𝑛)𝑔 𝑓 ≤ 𝜓
(
2𝑇 ( 𝑓 ) ∨ 𝑟0;

𝛿

𝐶𝑟0

)
,

where 𝐶𝑟0 = 2 log2
2𝑅
𝑟0

.

Proof of Proposition 6: From Proposition 1 we know that with probability at least 1 − 𝛿
2 , for all

𝑓 ∈ F , either 𝑇 ( 𝑓 ) ≤ 𝑟0 or

(P − P𝑛)𝑔 𝑓 ≤ 𝜓
(
2𝑇 ( 𝑓 ); 𝛿

2

(
log2

2𝑅
𝑟0

)−1
)
= 𝜓

(
2𝑇 ( 𝑓 ); 𝛿

𝐶𝑟0

)
. (A.2.1)

We denote the event

A1 =

{
there exists 𝑓 ∈ F such that 𝑇 ( 𝑓 ) ≥ 𝑟0 and (P − P𝑛)𝑔 𝑓 > 𝜓

(
2𝑇 ( 𝑓 ); 𝛿

𝐶𝑟0

)}
.

Then from (A.2.1), we have

Prob(A1) ≤
𝛿

2
. (A.2.2)
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We denote the event

A2 =

{
there exists 𝑓 ∈ F such that 𝑇 ( 𝑓 ) > 𝑟0 and (P − P𝑛)𝑔 𝑓 > 𝜓

(
𝑟0;

𝛿

𝐶𝑟0

)}
.

Then from the surrogate property of 𝜓 and the fact 𝐶𝑟0 ≥ 2, we have

Prob(A2) ≤
𝛿

𝐶𝑟0

≤ 𝛿

2
. (A.2.3)

Combining (A.2.2) and (A.2.3) by an union bound, we have

Prob(A1 ∪ A2) ≤ Prob(A1) + Prob(A2) ≤ 𝛿.

From the above argument, it is straightforward to prove that with probability at least 1 − 𝛿, for all

𝑓 ∈ F ,

(P − P𝑛)𝑔 𝑓 ≤ 𝜓
(
2𝑇 ( 𝑓 ) ∨ 𝑟0;

𝛿

𝐶𝑟0

)
.

This completes the proof of Proposition 6.

A.2.2 Proof of Theorem 1

Let F be the excess loss class in (1.3.2), and define its member 𝑓 by 𝑓 (𝑧) = ℓ(ℎ; 𝑧) −

ℓ(ℎ∗; 𝑧),∀𝑧 ∈ Z. Clearly, F is uniformly bounded in [−2𝐵, 2𝐵]. Let 𝑇 ( 𝑓 ) = P[ 𝑓 2]. Define

𝑓 by 𝑓 (𝑧) = ℓ( ℎ̂ERM; 𝑧) − ℓ(ℎ∗; 𝑧),∀𝑧 ∈ Z.

For a fixed 𝑟0 ∈ (0, 4𝐵2), Denote 𝐶𝑟0 = 2 log2
8𝐵2

𝑟0
. From now to the end of this proof, we will

prove the generalization error bound on the event

A =

{
for all 𝑓 ∈ F , (P − P𝑛) 𝑓 ≤ 𝜓

(
2𝑇 ( 𝑓 ) ∨ 𝑟0;

𝛿

𝐶𝑟0

)}
. (A.2.4)
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From Proposition 6 we know that

Prob(A) ≥ 1 − 𝛿.

This means that proving the generalization error bound on the event A suffices to prove the theo-

rem.

Denote 𝑔(𝑧) = ℓ(ℎ; 𝑧) − infH ℓ(ℎ; 𝑧) and �̂�(𝑧) = ℓ( ℎ̂ERM; 𝑧) − infH ℓ(ℎ; 𝑧). Let 𝑇 (𝑔) = P[𝑔2].

We have

𝑓 (𝑧) = 𝑔(𝑧) − (ℓ(ℎ∗; 𝑧) − inf
H
ℓ(ℎ; 𝑧)), ∀𝑧,

which implies that

P[ 𝑓 2] ≤ 2P[𝑔2] + 2P[(ℓ(ℎ∗; 𝑧) − inf
H
ℓ(ℎ; 𝑧))2]

≤ 2P[𝑔2] + 4𝐵L∗ ≤ 4P[𝑔2] ∨ 8𝐵L∗.

Therefore, we have

𝑇 ( 𝑓 ) ≤ 4𝑇 (�̂�) ∨ 8𝐵L∗. (A.2.5)

From the property of ERM, we have P𝑛 𝑓 ≤ 0, which implies that

E( ℎ̂ERM) ≤ (P − P𝑛) 𝑓 ≤ 𝜓
(
2𝑇 ( 𝑓 ) ∨ 𝑟0;

𝛿

𝐶𝑟0

)
. (A.2.6)

From (A.2.5) and (A.2.6) we have

P�̂� − L∗ = E( ℎ̂ERM) ≤ 𝜓
(
8𝑇 (�̂�) ∨ 16𝐵L∗ ∨ 𝑟0;

𝛿

𝐶𝑟0

)
. (A.2.7)
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Since �̂�(𝑧) ∈ [0, 2𝐵] for all 𝑧, we have 𝑇 (�̂�) ≤ 2𝐵P�̂�. From this fact and (A.2.7) we obtain

𝑇 (�̂�) ≤ 2𝐵P�̂�

≤ 2𝐵
(
L∗ + 𝜓

(
8𝑇 (�̂�) ∨ 16𝐵L∗ ∨ 𝑟0;

𝛿

𝐶𝑟0

))
= 2𝐵L∗ + 2𝐵𝜓

(
8𝑇 (�̂�) ∨ 16𝐵L∗ ∨ 𝑟0;

𝛿

𝐶𝑟0

)
.

Whether 𝐵L∗ ≤ 2𝐵𝜓
(
8𝑇 (�̂�) ∨ 16𝐵L∗ ∨ 𝑟0; 𝛿

𝐶𝑟0

)
or 𝐵L∗ > 2𝐵𝜓

(
8𝑇 (�̂�) ∨ 16𝐵L∗ ∨ 𝑟0; 𝛿

𝐶𝑟0

)
, the

above inequality always implies that

𝑇 (�̂�) ≤ 3𝐵L∗ ∨ 6𝐵𝜓
(
8𝑇 (�̂�) ∨ 16𝐵L∗ ∨ 𝑟0;

𝛿

𝐶𝑟0

)
≤ 3𝐵L∗ ∨ 6𝐵𝜓

(
8𝑇 (�̂�); 𝛿

𝐶𝑟0

)
∨ 6𝐵𝜓

(
16𝐵L∗ ∨ 𝑟0;

𝛿

𝐶𝑟0

)
. (A.2.8)

Let 𝑟∗ be the fixed point of 6𝐵𝜓
(
8𝑟; 𝛿

𝐶𝑛

)
. From the definition of fixed points whether 2𝐵L∗∨ 𝑟0

8 ≤

𝑟∗ or 2𝐵L∗ ∨ 𝑟0
8 > 𝑟∗, we always have

6𝐵𝜓
(
16𝐵L∗ ∨ 𝑟0;

𝛿

𝐶𝑟0

)
≤ 𝑟∗ ∨ 2𝐵L∗ ∨ 𝑟0

8
.

Combining the above inequality with (A.2.8), we have

𝑇 (�̂�) ≤ 3𝐵L∗ ∨ 6𝐵𝜓
(
8𝑇 (�̂�); 𝛿

𝐶𝑟0

)
∨ 𝑟∗ ∨ 𝑟0

8
.

From the above inequality and again the definition of fixed points, it is straightforward to prove

that

𝑇 (�̂�) ≤ 3𝐵L∗ ∨ 𝑟∗ ∨ 𝑟0
8
.
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Combining the above inequality with (A.2.5), we have

𝑇 ( 𝑓 ) ≤ 12𝐵L∗ ∨ 4𝑟∗ ∨ 𝑟0
2
.

From the above inequality and (A.2.6) we have

E( ℎ̂ERM) ≤ (P − P𝑛) 𝑓 ≤ 𝜓
(
24𝐵L∗ ∨ 8𝑟∗ ∨ 𝑟0;

𝛿

𝐶𝑟0

)
, (A.2.9)

which implies that

E( ℎ̂ERM) ≤ 𝜓
(
24𝐵L∗;

𝛿

𝐶𝑟0

)
∨ 𝜓

(
8𝑟∗ ∨ 𝑟0;

𝛿

𝐶𝑟0

)
.

Recall that 𝑟∗ is the fixed point of 6𝐵𝜓(8𝑟; 𝛿
𝐶𝑟0

). Since 𝑟∗ ∨ 𝑟0
8 ≥ 𝑟∗, from the definition of fixed

points we have

6𝐵𝜓(8𝑟∗ ∨ 2𝑟0;
𝛿

𝐶𝑟0

) ≤ 𝑟∗ ∨ 𝑟0
8
.

So we finally obtain

E( ℎ̂ERM) ≤ 𝜓
(
24𝐵L∗;

𝛿

𝐶𝑟0

)
∨ 𝑟∗

6𝐵
∨ 𝑟0

48𝐵
.

Recall that the generalization error bound holds true on the event A defined in (A.2.4), whose

measure is at least 1 − 𝛿. This completes the proof. □

A.2.3 Estimating loss-dependent rates from data

In the remarks following Theorem 1, we comment that fully data-dependent loss-dependent

bounds can be derived using the empirical “effective loss,” P𝑛 [ℓ( ℎ̂ERM; 𝑧) − infH ℓ(ℎ; 𝑧)] to es-

timate the unknown parameter L∗. Here we present the full details and some discussion of this

approach.
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Theorem 22 (estimate of the loss-dependent rate from data) Recall the term L∗ is P[ℓ(ℎ∗; 𝑧) −

infH ℓ(ℎ∗; 𝑧)] and denote L̂∗ = P𝑛 [ℓ( ℎ̂ERM; 𝑧) − infH ℓ(ℎ; 𝑧)]. Under the conditions of Theorem

1, setting 𝐶𝑛 = 2 log2 𝑛 + 6, then for any fixed 𝛿 ∈ (0, 1
2 ), with probability at least 1 − 2𝛿, we have

E( ℎ̂ERM) ≤ 𝜓
(
𝑐𝐵L̂∗;

𝛿

𝐶𝑛

)
∨ 𝑐𝑟∗

𝐵
∨
𝑐𝐵 log 2

𝛿

𝑛
(A.2.10)

and

L∗ ≤ 𝑐1

(
L̂∗ ∨ 𝑟∗

𝐵
∨
𝐵 log 2

𝛿

𝑛

)
≤ 𝑐2

(
L∗ ∨ 𝑟∗

𝐵
∨
𝐵 log 2

𝛿

𝑛

)
, (A.2.11)

where 𝑐, 𝑐1, 𝑐2 are absolute constants.

Remarks. 1) The 𝐵 log 2
𝛿
/𝑛 terms (A.2.10) and (A.2.11) are negligible, because 𝑟∗ is at least of

order 𝐵2 log 1
𝛿
/𝑛 for most practical applications. This order is unavoidable in traditional “local

Rademacher complexity” analysis and two-sided concentration inequalities.

2) The generalization error bound (A.2.10) shows that without knowledge of L∗, one can estimate

the order of our loss-dependent rate by using L̂∗ = P𝑛 [ℓ( ℎ̂ERM; 𝑧) − infH ℓ(ℎ; 𝑧)] as a proxy.

Despite replacing L∗ by L̂∗, other quantities in the bound remain unchanged in order.

3) The inequality (A.2.11) shows that the estimation of L∗ is tight.

Proof of Theorem 22: from the definitions, we know that L∗ = P[ℓ(ℎ∗; 𝑧) − infH ℓ(ℎ∗; 𝑧)],

L̂∗ = P𝑛 [ℓ( ℎ̂ERM; 𝑧) − infH ℓ(ℎ; 𝑧)] and Pℓ(ℎ∗; 𝑧) ≤ Pℓ( ℎ̂ERM; 𝑧). As a result, we have

L∗ − L̂∗ = Pℓ(ℎ∗; 𝑧) − P𝑛ℓ( ℎ̂ERM; 𝑧) − (P − P𝑛) [inf
H
ℓ(ℎ; 𝑧)]

≤ (P − P𝑛)ℓ( ℎ̂ERM; 𝑧) − (P − P𝑛) [inf
H
ℓ(ℎ; 𝑧)]

= (P − P𝑛) 𝑓 + (P − P𝑛) [ℓ(ℎ∗; 𝑧) − inf
H
ℓ(ℎ; 𝑧)], (A.2.12)

where 𝑓 is defined by 𝑓 (𝑧) = ℓ( ℎ̂ERM; 𝑧) − ℓ(ℎ∗; 𝑧),∀𝑧 ∈ Z.
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We take 𝑟0 = 𝐵2

𝑛
in Theorem 1, and denote 𝐶𝑛 := 𝐶𝑟0 = 2 log2 𝑛 + 6. From (A.2.9) in the proof

of Theorem 1, on the event A defined in (A.2.4) (whose measure is at least 1 − 𝛿),

E( ℎ̂ERM) ≤ (P − P𝑛) 𝑓 ≤ 𝜓(24𝐵L∗ ∨ 8𝑟∗ ∨ 𝐵2

𝑛
;
𝛿

𝐶𝑛
), (A.2.13)

where 𝑓 is defined by 𝑓 (𝑧) = ℓ( ℎ̂ERM; 𝑧) − ℓ(ℎ∗; 𝑧),∀𝑧 ∈ Z.

Since 3𝐵L∗ ∨ 𝑟∗ ∨ 𝐵2

4𝑛 ≥ 𝑟∗, from the definition of fixed points we have

(P − P𝑛) 𝑓 ≤ 𝜓
(
8
(
3𝐵L∗ ∨ 𝑟∗ ∨ 𝐵2

8𝑛

)
;
𝛿

𝐶𝑛

)
≤

3𝐵L∗ ∨ 𝑟∗ ∨ 𝐵2

8𝑛
6𝐵

≤ L∗

2
+ 𝑟∗

6𝐵
+ 𝐵

48𝑛
. (A.2.14)

This result holds together with the result of Theorem 1 on the event A.

The random variable ℓ(ℎ∗; 𝑧)− infH ℓ(ℎ; 𝑧) is uniformly bounded by [0, 2𝐵]. From Bernstein’s

inequality and the fact Var[ℓ(ℎ∗; 𝑧) − infH ℓ(ℎ; 𝑧)] ≤ 2𝐵L∗, with probability at least 1 − 𝛿,

����(P − P𝑛) [ℓ(ℎ∗; 𝑧) − inf
H
ℓ(ℎ; 𝑧)]

���� ≤
√︄

4𝐵L∗ log 2
𝛿

𝑛
+

2𝐵 log 2
𝛿

𝑛
≤ L∗

4
+

3𝐵 log 2
𝛿

𝑛
. (A.2.15)

Consider the event

A3 = A ∪ {inequality (A.2.15) holds true},

whose measure is at least 1− 2𝛿. On the event A3, from inequalities (A.2.12) (A.2.14) (A.2.15), it

is straightforward to show that

L∗ − L̂∗ ≤ 3
4
L∗ + 𝑟∗

6𝐵
+

4𝐵 log 2
𝛿

𝑛
,

which implies

L∗ ≤ 4L̂∗ + 2𝑟∗

3𝐵
+

16𝐵 log 2
𝛿

𝑛
. (A.2.16)
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From this result and (A.2.13), it is straightforward to show that

E( ℎ̂ERM) ≤ 𝜓
(
𝑐𝐵L̂∗;

𝛿

𝐶𝑛

)
∨ 𝑐𝑟∗

𝑛
∨
𝑐𝐵 log 2

𝛿

𝑛
,

where 𝑐 is an absolute constant.

We also have

L̂∗ − L∗ = P𝑛ℓ( ℎ̂ERM) − Pℓ(ℎ∗; 𝑧) − (P𝑛 − P) [inf
H
ℓ(ℎ; 𝑧)]

≤ (P𝑛 − P)ℓ(ℎ∗; 𝑧) − (P𝑛 − P) [inf
H
ℓ(ℎ; 𝑧)]

= (P𝑛 − P) [ℓ(ℎ∗; 𝑧) − inf
H
ℓ(ℎ; 𝑧)] .

From this result and (A.2.15), on the event A3,

L̂∗ ≤ 5
4
L∗ +

3𝐵 log 2
𝛿

𝑛
. (A.2.17)

Combine (A.2.16) and (A.2.17) we obtain

L∗ ≤ 𝑐1

(
L̂∗ ∨ 𝑟∗

𝐵
∨
𝐵 log 2

𝛿

𝑛

)
≤ 𝑐2

(
L∗ ∨ 𝑟∗

𝐵
∨
𝐵 log 2

𝛿

𝑛

)
,

where 𝑐1 and 𝑐2 are absolute constants. This completes the proof. □

A.2.4 Proof of Theorem 2

The main goal of this subsection is to prove Theorem 2. We first prove Theorem 23 (the bound

(1.3.6) in the main paper), a guarantee for the second-stage moment penalized estimator ℎ̂MP.

In order to prove Theorem 2, we then combine Theorem 23 with a guarantee for the first-stage

empirical risk minimization (ERM) estimator.
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Analysis for the second-stage moment-penalized estimator

Theorem 23 (variance-dependent rate of the second-stage estimator) Given arbitrary prelim-

inary estimate L̂∗
0 ∈ [−𝐵, 𝐵], the generalization error of the moment-penalized estimator ℎ̂MP in

Strategy 2 is bounded by

E( ℎ̂MP) ≤ 2𝜓
(
𝑐0

[
V∗ ∨ (L̂∗

0 − L∗
0)

2 ∨ 𝑟∗
]

;
𝛿

𝐶𝑛

)
,

with probability at least 1 − 𝛿, where 𝑐0 is an absolute constant and 𝑟∗ is the fixed point of

16𝐵𝜓(𝑟; 𝛿
𝐶𝑛
).

Proof of Theorem 23: the proof of Theorem 23 consist of four parts.

Part I: use 𝝍 to upper bound localized empirical processes. Let F be the excess loss class

in (1.3.2), and define its member 𝑓 is defined by 𝑓 (𝑧) = ℓ(ℎ; 𝑧) − ℓ(ℎ∗; 𝑧),∀𝑧 ∈ Z. We have the

following lemma.

Lemma 14 (bound on localized empirical processes) Given a fixed 𝛿1 ∈ (0, 1), let 𝑟∗1 (𝛿1) be the

fixed point of 16𝐵𝜓(𝑟; 𝛿1) where 𝜓 is defined in Strategy 2. Then with probability at least 1 − 𝛿1,

for all 𝑟 > 0,

sup
P[ 𝑓 2]≤𝑟

(P − P𝑛) 𝑓 ≤ 𝜓
(
𝑟 ∨ 𝑟∗1 (𝛿1); 𝛿1

)
. (A.2.18)

Proof of Lemma 14: clearly, F is uniformly bounded in [−2𝐵, 2𝐵]. When P[ 𝑓 2] ≤ 𝑟, we have

P[ 𝑓 4] ≤ 4𝐵2𝑟. From Lemma 16 (the two-sided version of its second inequality), with probability
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at least 1 − 𝛿1
2 ,

sup
P[ 𝑓 2]≤𝑟

��(P − P𝑛) 𝑓 2��
≤ 4ℜ𝑛{ 𝑓 2 : P[ 𝑓 2] ≤ 𝑟} + 2𝐵

√︄
2𝑟 log 8

𝛿1

𝑛
+

18𝐵2 log 8
𝛿1

𝑛

≤ 16𝐵ℜ𝑛{ 𝑓 : P[ 𝑓 2] ≤ 𝑟} + 2𝐵

√︄
2𝑟 log 8

𝛿1

𝑛
+

18𝐵2 log 8
𝛿1

𝑛
,

where the last inequality follows from the Lipchitz contraction property of Rademahcer complexity

(see, e.g., Theorem 7 in [138]), and the fact that for all 𝑓1, 𝑓2 ∈ F , | 𝑓 2
1 (𝑧) − 𝑓 2

2 (𝑧) | ≤ 4𝐵 | 𝑓1(𝑧) −

𝑓2(𝑧) |. We conclude that with probability at least 1 − 𝛿1
2 ,

sup
P[ 𝑓 2]≤𝑟

��(P − P𝑛) 𝑓 2�� ≤ 𝜑𝛿1 (𝑟), (A.2.19)

where 𝜑𝛿1 (𝑟) := 16𝐵ℜ𝑛{ 𝑓 : P[ 𝑓 2] ≤ 𝑟} + 2𝐵

√︂
2𝑟 log 8

𝛿1
𝑛

+
18𝐵2 log 8

𝛿1
𝑛

.

Denote 𝑟∗2 (𝛿1) the fixed point of 4𝜑𝛿1 (𝑟) (the fixed point must exist as 4𝜑𝛿1 (𝑟) is a non-

decreasing, non-negative and bounded function). From (A.2.19) and the fact that 𝑟∗2 (𝛿1) is the

fixed point of 4𝜑𝛿1 (𝑟), if 𝑟 > 𝑟∗2 (𝛿1), then with probability at least 1 − 𝛿1
2 ,

sup
P[ 𝑓 2]≤𝑟

��(P − P𝑛) 𝑓 2�� ≤ 𝑟

4
. (A.2.20)

(A.2.20) implies that with probability at least 1 − 𝛿1
2 , for all 𝑟 > 𝑟∗2 (𝛿1), P[ 𝑓 2] ≤ 𝑟 implies that

P𝑛 [ 𝑓 2] ≤ 5
4
𝑟 ≤ 2𝑟. (A.2.21)

Again from the two-sided version of the second inequality in Lemma 16, we know that with
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probability at least 1 − 𝛿1
2 ,

sup
P[ 𝑓 2]≤𝑟

| (P − P𝑛) 𝑓 | ≤ 4ℜ𝑛{ 𝑓 : P[ 𝑓 2] ≤ 𝑟} +

√︄
2𝑟 log 8

𝛿1

𝑛
+

9𝐵 log 8
𝛿1

𝑛
.

Combining the above inequality and (A.2.21) using a union bound, we know that with probability

at least 1 − 𝛿1
2 − 𝛿1

2 = 1 − 𝛿1, if 𝑟 > 𝑟∗2 (𝛿1), then

sup
P[ 𝑓 2]≤𝑟

(P − P𝑛) 𝑓 ≤ 4ℜ𝑛{ 𝑓 : P[ 𝑓 2] ≤ 𝑟} +

√︄
2𝑟 log 8

𝛿1

𝑛
+

9𝐵 log 8
𝛿1

𝑛

≤ 4ℜ𝑛{ 𝑓 : P𝑛 [ 𝑓 2] ≤ 2𝑟} +

√︄
2𝑟 log 8

𝛿1

𝑛
+

9𝐵 log 8
𝛿1

𝑛
. (A.2.22)

Recall that the 𝜓 function satisfies that ∀𝑟 > 0,

4ℜ𝑛{ 𝑓 : P𝑛 [ 𝑓 2] ≤ 2𝑟} +

√︄
2𝑟 log 8

𝛿1

𝑛
+

9𝐵 log 8
𝛿1

𝑛
≤ 𝜓(𝑟; 𝛿1).

From this fact and (A.2.22), we see that with probability at least 1 − 𝛿1, for all 𝑟 > 0,

sup
P[ 𝑓 2]≤𝑟

(P − P𝑛) 𝑓 ≤ 𝜓
(
𝑟 ∨ 𝑟∗2 (𝛿1); 𝛿1

)
. (A.2.23)

From (A.2.23), in order to prove the result (A.2.18) in Lemma 14, we only need to prove that

𝑟∗2 (𝛿1) ≤ 𝑟∗1 (𝛿1). (A.2.24)

Assume this is not true, i.e. 𝑟∗2 (𝛿1) > 𝑟∗1 (𝛿1). Since 𝑟∗1 (𝛿1) is the fixed point of 16𝐵𝜓(𝑟; 𝛿1), from

the definition of fixed points we have

𝑟∗2 (𝛿1) > 16𝐵𝜓(𝑟∗2 (𝛿1); 𝛿1).
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From the definitions of 𝜓 and 𝜑𝛿1 , for all 𝑟 > 𝑟∗1 (𝛿1),

4𝜑𝛿1 (𝑟) ≤ 16𝐵𝜓(𝑟; 𝛿1).

From the above two inequalities and 𝑟∗2 (𝛿1) > 𝑟∗1 (𝛿1), we have

𝑟∗2 (𝛿1) > 16𝐵𝜓(𝑟∗2 (𝛿1); 𝛿1) ≥ 4𝜑𝛿1 (𝑟∗2 (𝛿1)). (A.2.25)

From the fact that 𝑟∗2 (𝛿1) is the fixed point of 4𝜑𝛿1 , we have

4𝜑𝛿1 (𝑟∗2 (𝛿1)) = 𝑟∗2 (𝛿1). (A.2.26)

The above two inequalities (A.2.25) and (A.2.26) result in a contradiction. So the assumption

𝑟∗2 (𝛿1) > 𝑟∗1 (𝛿1) is false. Therefore 𝑟∗2 (𝛿1) ≤ 𝑟∗1 (𝛿1), and this completes the proof of Lemma 14. □

Part II: a “uniform localized convergence” argument with data-dependent measurement.

Based on Lemma 14, we will modify the proof of Proposition 1 to obtain a “uniform localized

convergence” argument with the data-dependent “measurement” functional P𝑛 [ 𝑓 2].

Lemma 15 (a “uniform localized convergence” argument with the data-dependent “measurement” functional)

Given a fixed 𝛿1 ∈ (0, 1), let 𝑟∗1 (𝛿1) be the fixed point of 16𝐵𝜓(𝑟; 𝛿1) where 𝜓 is defined in Strategy

2. Then with probability at least 1−
(
log2

8𝐵2∨2𝑟∗1 (𝛿1)
𝑟∗1 (𝛿1) + 1

2

)
𝛿1, for all 𝑓 ∈ F either P[ 𝑓 2] ≤ 𝑟∗1 (𝛿1),

or

(P − P𝑛) 𝑓 ≤ 𝜓
(
4P𝑛 [ 𝑓 2]; 𝛿1

)
. (A.2.27)

Proof of Lemma 15: from the definition of 𝜓 and the fact that 𝑟∗1 (𝛿1) is the fixed point of

16𝐵𝜓(𝑟; 𝛿1), we know that 𝑟∗1 (𝛿1) ≥
144𝐵2 log 8

𝛿1
𝑛

> 0. Take 𝑟0 = 𝑟∗1 (𝛿1).

Take 𝑅 = 4𝐵2∨𝑟0 to be a uniform upper bound for P 𝑓 2, and take 𝑟𝑘 = 2𝑘𝑟0, 𝑘 = 1, · · · , ⌈log2
𝑅
𝑟0
⌉.

Note that ⌈log2
𝑅
𝑟0
⌉ ≤ log2

2𝑅
𝑟0

. We use the union bound to establish that supP[ 𝑓 2]≤𝑟 (P − P𝑛) 𝑓 ≤

171



𝜓(𝑟; 𝛿1) holds for all {𝑟𝑘 } simultaneously: with probability at least 1 − log2
2𝑅
𝑟0
𝛿1,

sup
P[ 𝑓 2]≤𝑟𝑘

(P − P𝑛) 𝑓 ≤ 𝜓(𝑟𝑘 ; 𝛿1), 𝑘 = 1, · · · ,
⌈
log2

𝑅

𝑟0

⌉
.

For any fixed 𝑓 ∈ F , if P[ 𝑓 2] ≤ 𝑟0 is false, let 𝑘 be the non-negative integer such that

2𝑘𝑟0 < P[𝑔(ℎ; 𝑧)2] ≤ 2𝑘+1𝑟0. We further have that 𝑟𝑘+1 = 2𝑘+1𝑟0 ≤ 2P[ 𝑓 2]. Therefore, with

probability at least1 − log2
2𝑅
𝑟0
𝛿1,

P 𝑓 ≤ P𝑛 𝑓 + sup
𝑓 ∈F :P[ 𝑓 2]≤𝑟𝑘+1

(P − P𝑛) 𝑓

≤ P𝑛 𝑓 + 𝜓(𝑟𝑘+1; 𝛿1) (A.2.28)

By (A.2.19) we know that with probability at least 1 − 𝛿1
2 ,

sup
P[ 𝑓 2]≤𝑟

(
P[ 𝑓 2] − P𝑛 [ 𝑓 2]

)
≤ 𝑟

4

for all 𝑟 > 𝑟0 (here we have used the fact 𝑟0 = 𝑟∗1 (𝛿1) ≥ 𝑟∗2 (𝛿1), which is the result (A.2.24) in

the proof of Lemma 14). From the union bound, with probability at least 1 − (log2
2𝑅
𝑟0

+ 1
2 )𝛿1, the

condition 𝑟𝑘+1 ≥ P[ 𝑓 2] > 𝑟𝑘 will imply

P𝑛 [ 𝑓 2] ≥ P[ 𝑓 2] − 1
4
𝑟𝑘+1 ≥ 1

4
𝑟𝑘+1,

so

𝑟𝑘+1 ≤ 4P𝑛 [ 𝑓 2] .

Combining this result with (A.2.28), we have that for all 𝑓 such that 𝑇 ( 𝑓 ) > 𝑟0, with probability
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at least 1 −
(
log2

2𝑅
𝑟0

+ 1
2

)
𝛿1,

P 𝑓 ≤ P𝑛 𝑓 + 𝜓(𝑟𝑘+1; 𝛿1)

≤ P𝑛 𝑓 + 𝜓
(
4P𝑛 [ 𝑓 2]; 𝛿1

)
.

We conclude that with probability at least 1−
(
log2

2𝑅
𝑟0

+ 1
2

)
𝛿1, for all 𝑓 ∈ F , either P[ 𝑓 2] ≤ 𝑟∗1 (𝛿1),

or

(P − P𝑛) 𝑓 ≤ 𝜓
(
4P𝑛 [ 𝑓 2]; 𝛿1

)
.

This completes the proof of Lemma 15. □

Part III: specify the moment-penalized estimator and its error bound.

We define the event

A1 =

{
there exists 𝑓 ∈ F such that P[ 𝑓 2] ≥ 𝑟0 and (P − P𝑛) 𝑓 > 𝜓

(
4P𝑛 [ 𝑓 2]; 𝛿1

)}
.

Lemma 15 has proven that

Prob(A1) ≤
(
log2

8𝐵2 ∨ 2𝑟∗1 (𝛿1)
𝑟∗1 (𝛿1)

+ 1
2

)
𝛿1. (A.2.29)

We denote the event

A2 = {there exists 𝑓 ∈ F such that P[ 𝑓 2] ≤ 𝑟0 and (P − P𝑛) 𝑓 > 𝜓(𝑟0; 𝛿1)}.

Due to the surrogate property of 𝜓, we have

Prob (A2) ≤ 𝛿1. (A.2.30)
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Denote the event

A =

{
for all 𝑓 ∈ F , (P − P𝑛) 𝑓 ≤ 𝜓

(
4P𝑛 [ 𝑓 2] ∨ 𝑟∗1 (𝛿1); 𝛿1

)}
.

From (A.2.29) and (A.2.30), it is straightforward to prove that

Prob(A) ≥ 1 − Prob(A1) − Prob(A2)

≥ 1 −
(
log2

8𝐵2 ∨ 2𝑟∗1 (𝛿1)
𝑟∗1 (𝛿1)

+ 1
2

)
𝛿1 − 𝛿1

≥ 1 −
(
log2

8𝐵2 ∨ 2𝑟∗1 (𝛿1)
𝑟∗1 (𝛿1)

+ 3
2

)
𝛿1. (A.2.31)

Since 𝑓 is the excess loss. we can equivalently write the event A as

A =

{
for all ℎ ∈ H , E(ℎ) ≤ P𝑛 [ℓ(ℎ; 𝑧) − ℓ(ℎ∗𝑧)] + 𝜓

(
4P𝑛 [(ℓ(ℎ; 𝑧) − ℓ(ℎ∗𝑧))2] ∨ 𝑟∗1 (𝛿1); 𝛿1

)}
.

(A.2.32)

Denote 𝑤(ℎ; 𝑧) = ℓ(ℎ; 𝑧) − L̂∗
0, we have

4P𝑛 [(ℓ(ℎ; 𝑧) − ℓ(ℎ∗𝑧))2] ≤ 8P𝑛 [𝑤(ℎ; 𝑧)2] + 8P𝑛 [𝑤(ℎ∗; 𝑧)2]

≤ 16P𝑛 [𝑤(ℎ; 𝑧)2] ∨ 16P𝑛 [𝑤(ℎ∗; 𝑧)2] .

From the above conclusion and (A.2.32), we obtain that on the event A,

E(ℎ) + P𝑛ℓ(ℎ∗; 𝑧) ≤ P𝑛ℓ(ℎ; 𝑧) + 𝜓(4P𝑛 [(ℓ(ℎ; 𝑧) − ℓ(ℎ∗; 𝑧))2] ∨ 𝑟∗1 (𝛿1); 𝛿1)

≤ P𝑛 (ℎ; 𝑧) + 𝜓
(
16P𝑛 [𝑤(ℎ; 𝑧)2] ∨ 16P𝑛 [𝑤(ℎ∗; 𝑧)2] ∨ 𝑟∗1 (𝛿1); 𝛿1

)
≤ P𝑛 (ℎ; 𝑧) + 𝜓

(
16P𝑛 [𝑤(ℎ; 𝑧)2]𝛿1

)
+ 𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2] ∨ 𝑟∗1 (𝛿1); 𝛿1

)
. (A.2.33)
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We specify the moment-penalized estimator to be

ℎ̂MP = arg min
H

{
P𝑛ℓ(ℎ; 𝑧) + 𝜓

(
16P𝑛 [(ℓ(ℎ; 𝑧) − L̂∗

0)
2]; 𝛿1

)}
.

Then we have

P𝑛ℓ( ℎ̂MP; 𝑧) + 𝜓
(
16P𝑛 [𝑤( ℎ̂MP; 𝑧)2]; 𝛿1

)
≤ P𝑛ℓ(ℎ∗; 𝑧) + 𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2]; 𝛿1

)
(A.2.34)

Therefore, on the event A,

E( ℎ̂MP) ≤ P𝑛ℓ( ℎ̂MP; 𝑧) + 𝜓
(
16P𝑛 [𝑤( ℎ̂MP; 𝑧)2]; 𝛿1

)
+ 𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2] ∨ 𝑟∗1 (𝛿1); 𝛿1

)
− P𝑛ℓ(ℎ∗; 𝑧)

= arg min
H

{
P𝑛ℓ(ℎ; 𝑧) + 𝜓

(
16P𝑛 [𝑤(ℎ; 𝑧)]; 𝛿1

)}
− P𝑛ℓ(ℎ∗; 𝑧) + 𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2] ∨ 𝑟∗1 (𝛿1); 𝛿1

)
≤ 𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2]; 𝛿1

)
+ 𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2] ∨ 𝑟∗1 (𝛿1); 𝛿1

)
≤ 2𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2] ∨ 𝑟∗1 (𝛿1); 𝛿1

)
,

(A.2.35)

where the first inequality is due to (A.2.33) and the second inequality is due to (A.2.34).

From Bernstein’s inequality at the single element ℎ∗, for any fixed 𝛿2 ∈ (0, 1), with probability

at least 1 − 𝛿2,

P𝑛 [𝑤(ℎ∗; 𝑧)2] ≤ P[𝑤(ℎ∗; 𝑧)2] + 2𝐵

√︄
2P[𝑤(ℎ∗; 𝑧)2] log 2

𝛿2

𝑛
+

4𝐵2 log 2
𝛿2

𝑛

≤ 2P[𝑤(ℎ∗; 𝑧)2] +
6𝐵2 log 2

𝛿2

𝑛
. (A.2.36)

From (A.2.31) (A.2.35) (A.2.36), with probability at least

Prob(A) − 𝛿2 ≥ 1 −
(
log2

8𝐵2 ∨ 2𝑟∗1 (𝛿1)
𝑟∗1 (𝛿1)

+ 3
2

)
𝛿1 − 𝛿2,
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we have

E( ℎ̂MP) ≤ 2𝜓
(
16P𝑛 [𝑤(ℎ∗; 𝑧)] ∨ 𝑟∗1 (𝛿1) ∨

𝐵2

𝑛
; 𝛿1

)
≤ 2𝜓

((
32P[𝑤(ℎ∗; 𝑧)2] +

96𝐵2 log 2
𝛿2

𝑛

)
∨ 𝑟∗1 (𝛿1) ∨

𝐵2

𝑛
; 𝛿1

)
, (A.2.37)

where the first inequality is due to (A.2.35) and the second inequality is due to (A.2.36).

Part IV: final steps.

From the definition of 𝜓 and the fact that 𝑟∗1 (𝛿1) is the fixed point of 16𝐵𝜓(𝑟; 𝛿1), we know

that

𝑟∗1 (𝛿1) ≥
144𝐵2 log 8

𝛿1

𝑛
. (A.2.38)

Denote 𝐶𝑛 := 2 log2 𝑛 + 5 and take

𝛿1 =
𝛿

𝐶𝑛
,

then we have

2 log2
8𝐵2 ∨ 2𝑟∗1 (𝛿1)

𝑟∗1 (𝛿1)
+ 3 ≤ max

{
2 log2

8𝑛
144 log 8

, 2 + 3
}

≤ max{2 log2 𝑛, 5} ≤ 𝐶𝑛,

so (
log2

8𝐵2 ∨ 2𝑟∗1 (𝛿1)
𝑟∗1 (𝛿1)

+ 3
2

)
𝛿1 ≤ 𝛿

2
. (A.2.39)

Set 𝑟∗ = 𝑟∗1 (𝛿1) and take 𝛿2 = 𝛿
2 . From (A.2.37), we obtain that with probability at least 1 − 𝛿,
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the generalization error of ℎ̂MP is upper bounded by

E( ℎ̂MP) ≤ 2𝜓
(
𝑐

[
P[𝑤(ℎ∗; 𝑧)2] ∨ 𝑟∗ ∨

𝐵2 log 4
𝛿

𝑛

]
;
𝛿

𝐶𝑛

)
, (A.2.40)

where 𝑐 is an absolute constant. From (A.2.38) we have 𝑟∗1 (𝛿1) ≥
144𝐵2 log 8𝐶𝑛

𝛿

𝑛
≥ 𝐵2 log 4

𝛿

𝑛
. Combine

this fact with the inequality (A.2.40), we obtain that

E( ℎ̂MP) ≤ 2𝜓
(
𝑐

[
P[(ℓ(ℎ∗; 𝑧) − L̂∗

0)
2] ∨ 𝑟∗

]
;
𝛿

𝐶𝑛

)
≤ 2𝜓

(
𝑐0

[
V∗ ∨ 𝑟∗ ∨ (L̂∗

0 − L∗
0)

2
]

;
𝛿

𝐶𝑛

)
. (A.2.41)

where 𝑐0 is an absolute constant. This completes the proof of Theorem 23. □

Analysis of the first-stage ERM estimator

After proving Theorem 23, the remaining part needed to prove Theorem 2 is to bound (L̂∗
0 −

L∗
0)

2—the error of the first-stage ERM estimator.

The remaining steps in the proof of Theorem 2: We will give a guarantee on the first-stage

ERM estimator, and combine this guarantee with Theorem 23 to prove Theorem 2. Recall that P𝑆′

is the empirical distribution of the “auxiliary” data set. Denote ℎ̂ERM ∈ arg minH P𝑆′ℓ(ℎ; 𝑧).

From Part I in the proof of Theorem 23, ∀𝛿 ∈ (0, 1
2 ), with probability at least 1 − 𝛿,

sup
F

| (P − P𝑛) 𝑓 | ≤ 𝜓(4𝐵2; 𝛿) ≤ 𝜓
(
4𝐵2;

𝛿

𝐶𝑛

)
.

Since 𝜓 is sub-root with respect to its first argument, we have

𝜓(4𝐵2; 𝛿
𝐶𝑛
)

√
4𝐵2

≤
𝜓(𝑟∗; 𝛿

𝐶𝑛
)

√
𝑟∗

=

√
𝑟∗

16𝐵
,
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where 𝑟∗ is the fixed point of 16𝐵𝜓(𝑟; 𝛿
𝐶𝑛
). So we have proved that 𝜓(4𝐵2; 𝛿

𝐶𝑛
) ≤

√
𝑟∗

8 . Therefore,

sup
F

| (P − P𝑛) 𝑓 | ≤
√
𝑟∗

8
.

Because ℎ̂ERM ∈ arg minH P𝑆′ℓ(ℎ; 𝑧) and P𝑆′ℓ( ℎ̂ERM; 𝑧) = L̂∗
0, we have

L̂∗
0 − L∗

0 = (P𝑆′ℓ( ℎ̂ERM; 𝑧) − P𝑆′ℓ(ℎ∗; 𝑧)) + (P𝑆′ℓ(ℎ∗; 𝑧) − Pℓ(ℎ∗; 𝑧))

≤ P𝑆′ℓ(ℎ∗; 𝑧) − Pℓ(ℎ∗; 𝑧) ≤ sup
F

| (P − P𝑛) 𝑓 |,

and

L̂∗
0 − L∗

0 = (P𝑆′ℓ( ℎ̂ERM; 𝑧)) − Pℓ( ℎ̂ERM; 𝑧)) + (Pℓ( ℎ̂ERM; 𝑧) − Pℓ(ℎ∗; 𝑧))

≥ P𝑆′ℓ( ℎ̂ERM; 𝑧)) − Pℓ( ℎ̂ERM; 𝑧) ≥ − sup
F

| (P − P𝑛) 𝑓 |.

Hence we have

(L̂∗
0 − L∗

0)
2 ≤ (sup

F
| (P − P𝑛) 𝑓 |)2 ≤ 𝑟∗

64
.

Combine this result with (A.2.41), we have with probability 1 − 2𝛿,

E( ℎ̂MP) ≤ 2𝜓
(
𝑐1 (V∗ ∨ 𝑟∗) ;

𝛿

𝐶𝑛

)
≤ 2

(
𝜓

(
𝑐1V∗;

𝛿

𝐶𝑛

)
∨ 𝜓

(
𝑐1𝑟

∗;
𝛿

𝐶𝑛

))
≤ 2𝜓

(
𝑐1V∗;

𝛿

𝐶𝑛

)
∨ 𝑐1𝑟

∗

8𝐵
,

where 𝑐1 = max{𝑐0, 16} is an absolute constant, and the last inequality follows from the fact that

𝑐1𝑟
∗

16 > 𝑟∗ and the definition of fixed points. This completes the proof of Theorem 2. □
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A.2.5 Estimating variance-dependent rates from data

In the remark following Theorem 2, we comment that fully data-dependent variance-dependent

bounds can be derived by employing an empirical estimate to the unknown parameter V∗. Here

we present the full details and some discussion of this approach.

Theorem 24 (estimate of the variance-dependent rate from data) Consider the empirical cen-

tered second moment

V̂∗ := P𝑛
[
ℓ( ℎ̂NMP; 𝑧) − L̂∗

0)
2
]
,

where L̂∗
0 ∈ [−𝐵, 𝐵] is the preliminary estimate of L∗ obtained in the first-stage, 𝜓 is defined in

Strategy 2, and

ℎ̂NMP ∈ arg min
H

P𝑛ℓ(ℎ; 𝑧) − 2𝜓
(
16P𝑛

[
(ℓ(ℎ; 𝑧) − L̂∗

0)
2
] )
.

For any fixed 𝛿 ∈ (0, 1), by performing the moment-penalized estimator in Strategy 2, with proba-

bility at least 1 − 𝛿
2 ,

E( ℎ̂MP) ≤ 4𝜓
(
16V̂∗;

𝛿

𝐶𝑛

)
∨ 𝑟∗

8𝐵
, (A.2.42)

where 𝑟∗ is the fixed point of 16𝐵𝜓(𝑟; 𝛿
𝐶𝑛
).

Remarks. 1) The subscript “NMP” within ℎ̂NMP means “negative moment penalization.” Note

that ℎ̂NMP may not have good generalization performance, it is only used to compute V̂∗ so that

we can evaluate the estimator ℎ̂MP proposed in Strategy 2.

2) While the fully data-dependent generalization error bound (A.2.42) provides a way to evaluate

the moment-penalized estimator in Strategy 2 from training data, it seems that V̂∗ and V∗ are not

necessarily of the same order. Therefore, (A.2.42) may not be as tight as the original variance-

dependent rate in Theorem 2. One should view (A.2.42) as a relaxation of the original variance-
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dependent rate in Theorem 2.

3) We also comment that the “sub-root” assumption in Theorem 2 is not needed here as we do not

discuss the precision of L̂∗
0. It is easy to combine Theorem 24 with the guarantee on L̂∗

0 proved in

Appendix A.2.4.

Proof of Theorem 24: define 𝑓NMP by 𝑓NMP(𝑧) = ℓ( ℎ̂NMP; 𝑧) − ℓ(ℎ∗; 𝑧),∀𝑧 ∈ Z, and 𝑤(ℎ; 𝑧) =

ℓ(ℎ; 𝑧) − L̂∗
0. From the the results (A.2.31) (A.2.35) (A.2.39) in the proof of Theorem 23, we have

with probability at least 1 − 𝛿
2 ,

(P − P𝑛) 𝑓 ≤ 𝜓
(
4P𝑛 [ 𝑓 2] ∨ 𝑟∗; 𝛿

𝐶𝑛

)
, ∀ 𝑓 ∈ F (A.2.43)

and

E( ℎ̂MP) ≤ 2𝜓
(
16P𝑛 [𝑤(ℎ∗; 𝑧)2] ∨ 𝑟∗; 𝛿

𝐶𝑛

)
. (A.2.44)

From the definition of ℎ̂NMP,

P𝑛ℓ( ℎ̂NMP; 𝑧) − 2𝜓
(
16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2]; 𝛿

𝐶𝑛

)
≤ P𝑛ℓ(ℎ∗; 𝑧) − 2𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2]; 𝛿

𝐶𝑛

)
.

(A.2.45)

Therefore, with probability at least 1 − 𝛿
2 , we have

2𝜓
(
16P𝑛 [𝑤(ℎ∗; 𝑧)2]; 𝛿

𝐶𝑛

)
≤ 2𝜓

(
16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2]; 𝛿

𝐶𝑛

)
+ P𝑛ℓ(ℎ∗; 𝑧) − P𝑛ℓ( ℎ̂NMP; 𝑧)

= 2𝜓
(
16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2]; 𝛿

𝐶𝑛

)
+ P[ℓ(ℎ∗; 𝑧) − ℓ( ℎ̂NMP; 𝑧)] + (P𝑛 − P) [ℓ(ℎ∗; 𝑧) − ℓ( ℎ̂NMP; 𝑧)]

≤ 2𝜓
(
16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2]; 𝛿

𝐶𝑛

)
+ (P − P𝑛) 𝑓NMP

≤ 2𝜓
(
16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2]; 𝛿

𝐶𝑛

)
+ 𝜓

(
4P𝑛 [ 𝑓 2

NMP];
𝛿

𝐶𝑛

)
, (A.2.46)
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where the first inequality is due to (A.2.45), the second inequality is due to the fact that ℎ∗ mini-

mizes the population risk; and the last inequality is due to (A.2.43).

Note that

4P𝑛 [ 𝑓 2
NMP] ≤ 8P𝑛 [𝑤( ℎ̂NMP; 𝑧)2] + 8P𝑛 [𝑤(ℎ∗; 𝑧)2]

≤ 16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2] ∨ 16P𝑛 [𝑤(ℎ∗; 𝑧)2] .

From the above inequality and (A.2.46), with probability at least 1 − 𝛿
2 , we have

2𝜓
(
16P𝑛 [𝑤(ℎ∗; 𝑧)2]; 𝛿

𝐶𝑛

)
≤ 2𝜓

(
16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2]; 𝛿

𝐶𝑛

)
+ 𝜓

(
16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2]; 𝛿

𝐶𝑛

)
∨ 𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2]; 𝛿

𝐶𝑛

)
.

(A.2.47)

Whether P𝑛 [𝑤(ℎ∗; 𝑧)2] ≤ 16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2] or P𝑛 [𝑤(ℎ∗; 𝑧)2] > 16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2], the in-

equality (A.2.47) always implies

𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2]; 𝛿

𝐶𝑛

)
≤ 2𝜓

(
16P𝑛 [𝑤( ℎ̂NMP; 𝑧)2]; 𝛿

𝐶𝑛

)
= 2𝜓

(
16V̂∗;

𝛿

𝐶𝑛

)
. (A.2.48)

(Note that V̂∗ := P𝑛 [𝑤( ℎ̂NMP; 𝑧)2].) We conclude that with probability at least 1 − 𝛿
2 ,

E( ℎ̂MP) ≤ 2𝜓
(
16P𝑛 [𝑤(ℎ∗; 𝑧)2] ∨ 𝑟∗; 𝛿

𝐶𝑛

)
= 2𝜓

(
16P𝑛 [𝑤(ℎ∗; 𝑧)2]; 𝛿

𝐶𝑛
) ∨ 2𝜓(𝑟∗; 𝛿

𝐶𝑛

)
≤ 4𝜓

(
16V̂∗;

𝛿

𝐶𝑛

)
∨ 𝑟∗

8𝐵
,

where the first inequality is due to (A.2.44) and the last inequality is due to (A.2.48). This com-

pletes the proof. □
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A.2.6 Auxiliary lemmata

Lemma 16 (Talagrand’s concentration inequality for empirical processes, [1]) Let F be a class

of functions that map Z into [𝐵1, 𝐵2]. Assume that there is some 𝑟 > 0 such that for every 𝑓 ∈ F ,

Var[ 𝑓 (𝑧𝑖)] ≤ 𝑟. Then, for every 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿,

sup
𝑓 ∈F

(P − P𝑛) 𝑓 ≤ 3ℜF +

√︄
2𝑟 log 1

𝛿

𝑛
+ (𝐵2 − 𝐵1)

log 1
𝛿

𝑛
,

and with probability at least 1 − 𝛿,

sup
𝑓 ∈F

(P − P𝑛) 𝑓 ≤ 4ℜ𝑛F +

√︄
2𝑟 log 2

𝛿

𝑛
+ 9

2
(𝐵2 − 𝐵1)

log 2
𝛿

𝑛
.

Moreover, the same results hold for the quantity 𝑠𝑢𝑝 𝑓 ∈F (P𝑛 − P) 𝑓 .

Lemma 17 (Bernstein’s inequality, [139]) Let 𝑋1, · · · , 𝑋𝑛 be real-valued, independent, mean-

zero random variables and suppose that for some constants 𝜎, 𝐵 > 0,

1
𝑛

𝑛∑︁
𝑖=1
E|𝑋𝑖 |𝑘 ≤

𝑘!
2
𝜎2𝐵𝑘−2, 𝑘 = 2, 3, · · ·

Then, ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿

�����1𝑛 𝑛∑︁
𝑖=1

𝑋𝑖

����� ≤
√︄

2𝜎2 log 2
𝛿

𝑛
+
𝐵 log 2

𝛿

𝑛
. (A.2.49)

A.3 Proofs for Section 1.5, Section 1.6 and Section 1.7

A.3.1 Proof of Lemma 2

Fix 𝑢 ∈ B𝑑 (0, 1) and \1, \2 ∈ Θ, then we have

𝑢𝑇 (∇ℓ(\1; 𝑧) − ∇ℓ(\2; 𝑧))𝑇 =

∫ 1

0
𝑢𝑇 [∇2ℓ(\2 + 𝑣(\1 − \2); 𝑧)] (\1 − \2)𝑑𝑣.
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By Jensen’s inequality,

exp
(
𝑢𝑇 (∇ℓ(\1; 𝑧) − ∇ℓ(\2; 𝑧))

𝛽∥\1 − \2∥

)
= exp

(∫ 1

0
𝑢𝑇 [∇2ℓ(\2 + 𝑣(\1 − \2); 𝑧)]

(\1 − \2)
∥\1 − \2∥

𝑑𝑣

)
≤

∫ 1

0
exp

(
𝑢𝑇 [∇2ℓ(\2 + 𝑣(\1 − \2); 𝑧)]

(\1 − \2)
∥\1 − \2∥

)
𝑑𝑣.

It is then straightforward to prove the lemma by taking expectation with respect to 𝑧 in the above

inequality and using the condition (1.5.2). □

A.3.2 Proof of Proposition 2

Take 𝑉 = {𝑣 ∈ R𝑑 : ∥𝑣∥ ≤ max{Δ𝑀 , 1
𝑛
}}. We will first prove a “uniform localized conver-

gence” argument over all \ ∈ Θ and 𝑣 ∈ 𝑉 .

Proposition 7 (directional “uniform localized convergence” of gradient) Under Assumption 1,

∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿, for all \ ∈ Θ, 𝑣 ∈ 𝑉 , either ∥\ − \∗∥2 + ∥𝑣∥2 ≤ 2
𝑛2 , or

(P − P𝑛)
[
(∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇𝑣

]
≤ 𝑐1𝛽max

{
∥\ − \∗∥2 + ∥𝑣∥2,

2
𝑛2

} ©«
√︄
𝑑 + log 2 log2 (2𝑛2Δ2

𝑀
+2)

𝛿

𝑛
+
𝑑 + log 2 log2 (2𝑛2Δ2

𝑀
+2)}

𝛿

𝑛

ª®®¬ ,
where 𝑐1 is an absolute constant.

Proof of Proposition 7: for (\, 𝑣) ∈ Θ × 𝑉 , let 𝑔(\,𝑣) = (∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇𝑣. For (\1, 𝑣1)

and (\2, 𝑣2) ∈ Θ × 𝑣, define the norm on the product space Θ ×𝑉 as

∥(\1, 𝑣1) − (\2, 𝑣2)∥pro =
√︁
∥\1 − \2∥2 + ∥𝑣1 − 𝑣2∥2. (A.3.1)
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Denote B(
√
𝑟) := {(\, 𝑣) ∈ Θ × 𝑉 : ∥\ − \∗∥2 + ∥𝑣∥2 ≤ 𝑟}. Given (\1, 𝑣1), (\2, 𝑣2) ∈ B(

√
𝑟), we

perform the following re-arrangement and decomposition steps:

𝑔(\1,𝑣1) (𝑧) − 𝑔(\2,𝑣2) (𝑧)

= (∇ℓ(\1; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇𝑣1 − (∇ℓ(\2; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇𝑣2

= (∇ℓ(\1; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇 (𝑣1 − 𝑣2) + (∇ℓ(\1; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇𝑣2 + (∇ℓ(\∗; 𝑧) − ∇ℓ(\2; 𝑧))𝑇𝑣2

= (∇ℓ(\1; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇 (𝑣1 − 𝑣2) + (∇ℓ(\1; 𝑧) − ∇ℓ(\2; 𝑧))𝑇𝑣2 (A.3.2)

When (\1, 𝑣1), (\2, 𝑣2) ∈ B(
√
𝑟), we have

∥\1 − \∗∥∥𝑣1 − 𝑣2∥ ≤
√
𝑟 ∥𝑣1 − 𝑣2∥ ≤

√
𝑟 ∥(\1, 𝑣1) − (\2, 𝑣2)∥pro,

so from Assumption 1, (∇ℓ(\1; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇 (𝑣1 − 𝑣2) is 𝛽
√
𝑟 ∥(\1, 𝑣1) − (\2, 𝑣2)∥pro−sub-

exponential. Similarly, we can prove (∇ℓ(\1; 𝑧)−∇ℓ(\2; 𝑧))𝑇𝑣2 to be 𝛽
√
𝑟 ∥(\1, 𝑣1)−(\2, 𝑣2)∥pro−sub-

exponential. From the decomposition (A.3.2) and Jensen’s inequality, for all (\1, 𝑣1), (\2, 𝑣2) ∈

B(
√
𝑟), we have

exp
(

𝑔(\1,𝑣1) (𝑧) − 𝑔(\2,𝑣2) (𝑧)
2𝛽

√
𝑟 ∥(\1, 𝑣1) − (\2, 𝑣2)∥pro

)
≤ 1

2
exp

(
(∇ℓ(\1; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇 (𝑣1 − 𝑣2)
𝛽
√
𝑟 ∥(\1, 𝑣1) − (\2, 𝑣2)∥pro

)
+ 1

2
exp

(
(∇ℓ(\1; 𝑧) − ∇ℓ(\2; 𝑧))𝑇𝑣2

𝛽
√
𝑟 ∥(\1, 𝑣1) − (\2, 𝑣2)∥pro

)
.

By taking expectation with respect to 𝑧 in the above inequality, we prove that 𝑔(\1,𝑣1) (𝑧)−𝑔(\2,𝑣2) (𝑧)

is a 2𝛽
√
𝑟 ∥(\1, 𝑣1) − (\2, 𝑣2)∥pro−sub-exponential random variable, i.e.,

∥𝑔(\1,𝑣1) (𝑧) − 𝑔(\2,𝑣2) (𝑧)∥Orlicz1 ≤ 2𝛽
√
𝑟 ∥(\1, 𝑣1) − (\2, 𝑣2)∥pro.

From Bernstein inequality for sub-exponential variables (Lemma 21), for any fixed 𝑢 ≥ 0 and
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(\1, 𝑣1), (\2, 𝑣2) ∈ Θ ×𝑉 ,

Prob
{
| (P − P𝑛) [𝑔(\1,𝑣1) (𝑧) − 𝑔(\2,𝑣2) (𝑧)] ≥ 2𝛽

√
𝑟 ∥(\1, 𝑣1) − (\2, 𝑣2)∥pro

√︂
2
𝑛

√
𝑢

+
2𝛽

√
𝑟 ∥(\1, 𝑣1) − (\2, 𝑣2)∥pro

𝑛
𝑢

}
≤ 2 exp(−𝑢).

The above inequality implies that the empirical process (P − P𝑛)𝑔(\,𝑣) has a mixed sub-Gaussian-

sub-exponential increments with respect to the metrics ( 2𝛽
√
𝑟

𝑛
∥ · ∥pro,

2
√

2𝛽
√
𝑟√

𝑛
∥ · ∥pro) (see Definition

15).

From Lemma 24, there exists an absolute constants 𝐶 such that ∀𝛿 ∈ (0, 1), with probability at

least 1 − 𝛿,

sup
∥\−\∗∥2+∥𝑣∥2≤𝑟

(P − P𝑛)𝑔(\,𝑣) ≤ 𝐶
(
𝛾2

(
B(

√
𝑟), 2

√
2𝛽

√
𝑟

√
𝑛

∥ · ∥pro

)
+ 𝛾1

(
B(

√
𝑟), 2𝛽

√
𝑟

𝑛
∥ · ∥pro

)
+𝛽𝑟

√︄
log 1

𝛿

𝑛
+ 𝛽𝑟

log 1
𝛿

𝑛

)
.

Using Dudley’s integral (Lemma 23) to bound the 𝛾1 functional and the 𝛾2 functional, we obtain

that there exist absolute constant 𝑐1 such that ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿,

sup
∥(\,\′)−(\∗,\∗)∥2≤𝑟

��(P − P𝑛)𝑔(\,𝑣) �� ≤ 𝑐1𝛽𝑟
©«
√︄
𝑑 + log 1

𝛿

𝑛
+
𝑑 + log 1

𝛿

𝑛

ª®¬ . (A.3.3)

We set

𝜓(𝑟; 𝛿) = 𝑐1𝛽𝑟
©«
√︄
𝑑 + log 1

𝛿

𝑛
+
𝑑 + log 1

𝛿

𝑛

ª®¬ .
Denote 𝑅 = 2(Δ2

𝑀
+ 1
𝑛2 ) and 𝑟0 = 2

𝑛2 . Since 𝑉 is a 𝑑−dimensional ball centered at the origin with

radius max{Δ𝑀 , 1
𝑛
}, we know that ∥\ − \∗∥2 + ∥𝑣∥2 ≤ 2Δ2

𝑀
+ 1
𝑛2 ≤ 𝑅. We apply Proposition 6 and
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obtain: for any fixed 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿, for all \ ∈ Θ and 𝑣 ∈ 𝑉 ,

(P − P𝑛)
[
(∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))𝑇𝑣

]
= (P − P𝑛)𝑔(\,𝑣)

≤ 𝜓
(
max

{
∥\ − \∗∥2 + ∥𝑣∥2,

2
𝑛2

}
;

𝛿

2 log2(2𝑅/ 2
𝑛2 )

)

= 𝑐1𝛽max
{
∥\ − \∗∥2 + ∥𝑣∥2,

2
𝑛2

} ©«
√︄
𝑑 + log 2 log2 (𝑛2𝑅)

𝛿

𝑛
+
𝑑 + log 2 log2 (𝑛2𝑅)

𝛿

𝑛

ª®®¬ .
This completes the proof of Proposition 7. □

Proof of Proposition 2: in order to uniformly bound ∥(P − P𝑛) (∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))∥ for all

\ ∈ Θ, we take

𝑣 = max
{
∥\ − \∗∥, 1

𝑛

}
· (P − P𝑛) (∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))
∥(P − P𝑛) (∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))∥

in Proposition 7. Clearly ∥𝑣∥ = max{∥\ − \∗∥, 1
𝑛
}. From Proposition 2, we can prove that there

exists an absolute constant 𝑐 such that ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿, for all \ ∈ Θ,

∥(P − P𝑛) (∇ℓ(\; 𝑧) − ∇ℓ(\∗; 𝑧))∥

≤ 𝑐𝛽max
{
∥\ − \∗∥, 1

𝑛

} ©«
√︄
𝑑 + log 2 log2 (2𝑛2Δ2

𝑀
+2)

𝛿

𝑛
+
𝑑 + log 2 log2 (2𝑛2Δ2

𝑀
+2)

𝛿

𝑛

ª®®¬
≤ 𝑐𝛽max

{
∥\ − \∗∥, 1

𝑛

} ©«
√︄
𝑑 + log 4 log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
+
𝑑 + log 4 log2 (2𝑛Δ𝑀+2)

𝛿

𝑛

ª®®¬ .
This completes the proof of Proposition 2.

□
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A.3.3 Proof of Theorem 3

We first prove a proposition on the uniform localized convergence of gradients under Assump-

tion 1 and Assumption 2.

Proposition 8 (uniform localized convergence of gradients) Let Assumption 1, Assumption 2 hold

along with the optimality condition P∇ℓ(\∗; 𝑧) = 0. Given 𝛿 ∈ (0, 1), denote

term I :=

√︄
2P[∥∇ℓ(\∗; 𝑧)∥2] log 4

𝛿

𝑛
+
𝐺∗ log 4

𝛿

𝑛
,

term II :=

√︄
𝑑 + log 8 log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
+
𝑑 + log log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
.

Then with probability at least 1 − 𝛿, we have the following:

∥(P𝑛 − P)∇ℓ(\∗; 𝑧)∥ ≤ term I, (A.3.4)

and

∥(P𝑛 − P)∇ℓ(\; 𝑧)∥ ≤ term I + 𝑐0𝛽max
{

1
𝑛
, ∥\ − \∗∥

}
· term II, ∀\ ∈ Θ, (A.3.5)

where 𝑐0 is an absolute constant.

Proof of Proposition 8: from Proposition 2, there exists an absolute constant 𝑐0 such that ∀𝛿1 >

0, with probability at least 1 − 𝛿
2 , for all \ ∈ Θ,

∥(P𝑛 − P)∇ℓ(\; 𝑧)∥

≤ ∥(P𝑛 − P)∇ℓ(\∗; 𝑧)∥ + 𝑐0𝛽max
{
∥\ − \∗∥, 1

𝑛

}
· term II. (A.3.6)
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From Bernstein’s inequality for vectors (Lemma 22), we have with probability at least 1 − 𝛿
2 ,

∥P∇ℓ(\∗; 𝑧) − P𝑛∇ℓ(\∗; 𝑧)∥ ≤

√︄
2P[∥∇ℓ(\∗; 𝑧)∥2] log 4

𝛿

𝑛
+
𝐺∗ log 4

𝛿

𝑛
= term I, (A.3.7)

Combining (A.3.6) and (A.3.7) by a union bound, we complete the proof of Proposition 8. □

We first present the following lemma.

Lemma 18 (relationship between curvature conditions) For a function 𝐹, consider the follow-

ing conditions:

1. Strong convexity (SC): for all \1, \2 ∈ Θ we have

𝐹 (\1) ≥ 𝐹 (\2) + ∇𝐹 (\2)𝑇 (\1 − \2) +
`

2
∥\1 − \2∥2.

2. Polyak-Lojasiewisz (PL): for all \ ∈ Θ we have

𝐹 (\) − 𝐹 (\∗) ≤ 1
2`

∥∇𝐹 (\)∥2.

3. Error Bound (EB): for all \ ∈ Θ we have

∥∇𝐹 (\)∥ ≥ `∥\ − \∗∥.

4. Quadratic Growth (QG): for all \ ∈ Θ we have

𝐹 (\) − 𝐹 (\∗) ≥ `

2
∥\ − \∗∥2.

Then, the following hold:

(SC) =⇒ (PL) =⇒ (EB) =⇒ (QG).

Proof of Lemma 18 can be adapted from [[32], Appendix A]. Note that some parameters in the
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original statements in [32] have typos though the proof ideas are correct. In Lemma 18 we fix those

typos on the parameters. As argued in [32], (PL) and the equivalent (QG) (under the smoothness

condition and change of parameters) are the most general conditions that allow linear convergence

to a global minimizer.

We now prove Theorem 3.

Proof of Theorem 3: we prove the results on the event

A := {the results (A.3.4) (A.3.5) in Proposition 8 hold true},

whose measure is at least 1 − 𝛿. We keep the notations “term I” and “term II” used in Proposition

8, which are defined by

term I :=

√︄
2P[∥∇ℓ(\∗; 𝑧)∥2] log 4

𝛿

𝑛
+
𝐺∗ log 4

𝛿

𝑛
,

term II :=

√︄
𝑑 + log 8 log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
+
𝑑 + log log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
.

The PL condition (Assumption 3) implies that P∇ℓ(\∗; 𝑧) = 0. From the result (A.3.4) in

Proposition 8,

∥P𝑛∇ℓ(\∗; 𝑧)∥ = ∥(P𝑛 − P)∇ℓ(\∗; 𝑧)∥ ≤ term I.

So we know that the equation

∥P𝑛∇ℓ(\; 𝑧)∥ ≤ term I. (A.3.8)

must have a solution within Θ.
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The result (A.3.5) implies that for all \ ∈ Θ such that ∥\ − \∗∥ ≤ 1
𝑛
,

∥P∇ℓ(\; 𝑧)∥ ≤ ∥P𝑛∇ℓ(\; 𝑧)∥ + term I + 𝑐0𝛽∥\ − \∗∥ · term II.

Since the PL condition implies (see Lemma 18)

∥P∇ℓ(\; 𝑧)∥ ≥ `∥\ − \∗∥,

for all \ ∈ Θ such that ∥\ − \∗∥ ≤ 1
𝑛
, we have

`∥\ − \∗∥ ≤ ∥P∇ℓ(\; 𝑧)∥ ≤ ∥P𝑛∇ℓ(\; 𝑧)∥ + term I + 𝑐0𝛽∥\ − \∗∥ · term II,

where 𝑐 is an absolute constant. Therefore, for all \ ∈ Θ, we must have

`∥\ − \∗∥ ≤ ∥P∇ℓ(\; 𝑧)∥ ≤ ∥P𝑛∇ℓ(\; 𝑧)∥ + term I + 𝑐0𝛽∥\ − \∗∥ · term II + `
𝑛
. (A.3.9)

Let \̂ ∈ Θ be an arbitrary solution that satisfies (A.3.8). From (A.3.9), we obtain the inequalities

for ∥\̂ − \∗∥:

`∥\̂ − \∗∥ ≤ ∥P∇ℓ(\̂; 𝑧)∥ ≤ 2 · term I + 𝑐0𝛽 · term II · ∥\ − \∗∥ + `
𝑛
. (A.3.10)

Let 𝑐 = max{4𝑐2
0, 1}. When

𝑛 ≥
𝑐𝛽2(𝑑 + log 4 log(2𝑛Δ𝑀+1)

𝛿
)

`2 ,

we have 𝑐0𝛽 · term II ≤ `

2 so that from (A.3.10),

∥\̂ − \∗∥ ≤ 2
`
(2 · term I + `

𝑛
)
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and the event A. Plugging in “𝑐0𝛽 · term II ≤ `

2 ” and “∥\̂−\∗∥ ≤ 2
`
(2 · term I+ `

𝑛
)” into the second

inequality within (A.3.10), we further have

∥P∇ℓ(\̂; 𝑧)∥ ≤ 2 · term I + `
𝑛
+ `

2
∥\̂ − \∗∥

≤ 4 · term I + 2`
𝑛
.

Lastly, since the PL condition implies (see Lemma 18)

Pℓ(\̂; 𝑧) − Pℓ(ℎ∗; 𝑧) ≤ ∥Pℓ(\̂; 𝑧)∥2

2`
,

by plugging in “∥P∇ℓ(\̂; 𝑧)∥ ≤ 4 · term I + 2`
𝑛

” we have

Pℓ(\̂; 𝑧) − Pℓ(ℎ∗; 𝑧) ≤ ∥Pℓ(\̂; 𝑧)∥2

2`

≤ 16
`
(term I)2 + 4`

𝑛2

≤
64P[∥∇ℓ(\∗; 𝑧)∥2] log 4

𝛿

`𝑛
+

32𝐺2
∗ log2 4

𝛿
+ 4`2

`𝑛2 .

This completes the proof of Theorem 3. □

A.3.4 Proof of Theorem 4

We first prove a simple proposition, which studies how the accumulation of sample approxi-

mation errors at every step influences the convergence of the algorithm.

Proposition 9 (localized statistical error of a linearly convergent iterative algorithm) Consider

a function 𝐹 (for which we call the “Lyapunov function”) and a parameter 𝛾 ∈ (0, 1). Assume an
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algorithm satisfies for all 𝑡 = 0, 1, . . .

𝐹 (\𝑡+1) ≤ (1 − 𝛾)𝐹 (\𝑡) + Y𝑡 (𝑛),

Y𝑡 (𝑛) ≤ 𝛼(𝑛)𝐹 (\𝑡) + Y∗(𝑛),

and \𝑡 ∈ Θ.

When the sample size 𝑛 is large enough such that 𝛼(𝑛) ≤ 𝛾

2 , we have

𝐹 (\𝑡) ≤
(
1 − 𝛾

2

) 𝑡
𝐹 (\0) + 2

𝛾
Y∗(𝑛), 𝑡 = 0, 1, · · · .

Proof of Proposition 9: we have

𝐹 (\𝑡+1) ≤ (1 − 𝛾 + 𝛼(𝑛))𝐹 (\𝑡) + Y∗(𝑛)

≤
(
1 − 𝛾

2

)
𝐹 (\∗) + Y∗(𝑛).

Then by induction we have

𝐹 (\𝑡) ≤
(
1 − 𝛾

2

) 𝑡
𝐹 (\0) + 2

𝛾
Y∗(𝑛), 𝑡 = 0, 1, · · · .

This completes the proof of Proposition 9. □

We now prove Theorem 4.

Proof of Theorem 4: Assumption 1 implies that the population risk is 𝛽−smooth. Consider the

gradient descent algorithm (1.5.8) with fixed step size 1
𝛽
. We have for all 𝑡 = 0, 1, · · · ,

\𝑡+1 = \𝑡 − 1
𝛽
P𝑛∇ℓ(\𝑡 ; 𝑧).
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So we have

Pℓ(\𝑡+1; 𝑧) − Pℓ(\𝑡 ; 𝑧) ≤ (P∇ℓ(\𝑡 ; 𝑧))𝑇 (\𝑡+1 − \𝑡) + 𝛽
2
∥\𝑡+1 − \𝑡 ∥2

= −1
𝛽
(P∇ℓ(\𝑡 ; 𝑧))𝑇 (P𝑛∇ℓ(\𝑡 ; 𝑧)) +

1
2𝛽

∥P𝑛∇ℓ(\𝑡 ; 𝑧)∥2

= −1
𝛽
∥P∇ℓ(\𝑡 ; 𝑧)∥2 − 1

𝛽
(P∇ℓ(\𝑡 ; 𝑧))𝑇 (P𝑛∇ℓ(\𝑡 ; 𝑧) − P∇ℓ(\𝑡 ; 𝑧))

+ 1
2𝛽

∥P∇ℓ(\𝑡 ; 𝑧) + (P𝑛∇ℓ(\𝑡 ; 𝑧) − P∇ℓ(\𝑡 ; 𝑧))∥2

= − 1
2𝛽

∥P∇ℓ(\𝑡 ; 𝑧)∥2 + 1
2𝛽

∥P𝑛∇ℓ(\𝑡 ; 𝑧) − P∇ℓ(\𝑡 ; 𝑧)∥2

≤ −`
𝛽
(Pℓ(\𝑡 ; 𝑧) − Pℓ(\∗; 𝑧)) + 1

2𝛽
∥P𝑛∇ℓ(\𝑡 ; 𝑧) − P∇ℓ(\𝑡 ; 𝑧)∥2.

Rearranging the above inequality, and subtracting Pℓ(\∗; 𝑧) from both sides, we obtain

Pℓ(\𝑡+1; 𝑧) − Pℓ(\∗; 𝑧) ≤
(
1 − `

𝛽

)
(Pℓ(\𝑡 ; 𝑧) − Pℓ(\∗; 𝑧)) + 1

2𝛽
∥P𝑛∇ℓ(\𝑡 ; 𝑧) − P∇ℓ(\𝑡 ; 𝑧)∥2.

(A.3.11)

Applying Proposition 8, we continue the proof on the event

A := {the results (A.3.4) (A.3.5) in Proposition 8 hold true},

whose measure is at least 1 − 𝛿. We keep the notations “term I” and “term II” used in Proposition

8, which are defined by

term I :=

√︄
2P[∥∇ℓ(\∗; 𝑧)∥2] log 4

𝛿

𝑛
+
𝐺∗ log 4

𝛿

𝑛
,

term II :=

√︄
𝑑 + log 8 log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
+
𝑑 + log log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
.
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The result (A.3.5) in Proposition 8 implies that ∀\ ∈ Θ,

∥P𝑛∇ℓ(\; 𝑧) − P∇ℓ(\; 𝑧)∥ ≤ term I + 𝑐0𝛽max
{
∥\ − \∗∥, 1

𝑛

}
· term II

≤
(
term I + 𝑐0𝛽

𝑛
· term II

)
+ 𝑐0𝛽 · term II · ∥\ − \∗∥,

where 𝑐0 is an absolute constant. Since the PL condition implies (see Lemma 18) that

Pℓ(\; 𝑧) − Pℓ(\∗; 𝑧) ≥ `

2
∥\ − \∗∥2, ∀\ ∈ Θ,

we have

∥P𝑛∇ℓ(\; 𝑧) − P∇ℓ(\; 𝑧)∥2 ≤ 2
(
term I + 𝑐0𝛽

𝑛
· term II

)2

+
4𝑐2

0𝛽
2

`
(Pℓ(\; 𝑧) − Pℓ(\∗; 𝑧)) (term II)2. (A.3.12)

Combining (A.3.11) and (A.3.12), we have that for all 𝑡 = 0, 1, . . . ,

E(\𝑡+1) ≤
(
1 − `

𝛽

)
E(\𝑡) + Y𝑡 (𝑛),

Y𝑡 (𝑛) ≤ 𝛼(𝑛)E(\𝑡) + Y∗(𝑛),

where

Y𝑡 (𝑛) = 1
2𝛽

∥P𝑛∇ℓ(\𝑡 ; 𝑧) − P∇ℓ(\𝑡 ; 𝑧)∥2,

𝛼(𝑛) =
2𝑐2

0𝛽

`
(term II)2,

Y∗(𝑛) = 1
𝛽

(
term I + 𝑐0𝛽

𝑛
· term II

)2
.

Consider the following two conditions on the sample size (note that they will be satisfied as

194



long as 𝑛 is large enough):

𝛼(𝑛) ≤ `

2𝛽
, (A.3.13)

Y∗(𝑛) ≤ `2

4𝛽
Δ2
𝑚 . (A.3.14)

Now consider the condition

𝑛 ≥ 𝑐𝛽2

`2

(
𝑑 + log

8 log2(2𝑛Δ𝑀 + 2)
𝛿

)
,

where 𝑐 = max{16𝑐2
0, 1} is an absolute constant. Then (A.3.13) holds. Since we also require the

sample size 𝑛 to be large enough such that the “statistical error” term in (1.5.9) is smaller than

`

2Δ
2
𝑚, the condition (A.3.14) is also true because

`

2
Δ2
𝑚 ≥

16P[∥∇ℓ(\∗; 𝑧)∥2] log 4
𝛿

`𝑛
+

8𝐺2
∗ log2 4

𝛿
+ `2

`𝑛2 ≥ 2
`

(
term II2 + `

2𝑛

)2
≥2𝛽
`

· Y∗(𝑛).

Therefore, both condition (A.3.13) and condition (A.3.14) hold true under Theorem 4’s require-

ment on the sample size.

Since both (A.3.13) and (A.3.14) are true, we can use induction to prove that with probability

at least 1 − 𝛿, for all 𝑡 = 0, 1, . . . ,

E(\𝑡) ≤ `

2
Δ2
𝑚 .

Therefore, for all 𝑡 = 0, 1, . . . ,

\𝑡 ∈ B𝑑 (\∗,Δ𝑚) ⊆ Θ.

We choose the “Lyapunov function” in Proposition 9 to be the excess risk function E(\). Ap-

plying Proposition 9, we obtain that: when the sample size 𝑛 is large enough such that the condi-
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tions (A.3.13) and (A.3.14) hold ture, we have

Pℓ(\𝑡 ; 𝑧) − Pℓ(\∗; 𝑧) ≤
(
1 − `

2𝛽

) 𝑡
E(\0) + 2𝛽

`
· Y∗(𝑛)

≤
(
1 − `

2𝛽

) 𝑡
E(\0) + 2

`

(
term I + `

2𝑛

)2
,

≤
(
1 − `

2𝛽

) 𝑡
E(\0) +

16P[∥∇ℓ(\∗; 𝑧)∥2] log 8
𝛿

`𝑛
+

8𝐺2
∗ log2 4

𝛿
+ `2

`𝑛2 .

This completes the proof of Theorem 4. □

A.3.5 Proof of Corollary 5

We first verify Assumption 1. We have

∇2ℓ(\; 𝑧) = 2
(
[′(\𝑇𝑥)2 + ([(\𝑇𝑥) − 𝑦)[′′(\𝑇𝑥)]

)
𝑥𝑥𝑇 .

Since 𝑥 is 𝜏−sub-Gaussian, 𝑥𝑥𝑇 is a 𝜏2−sub-exponential. From the fact

��2([′(\𝑇𝑥)2 + ([(\𝑇𝑥) − 𝑦)[′′(\𝑇𝑥))
�� ≤ 𝐶[ (𝐵 + 𝐶[),

Assumption 1 holds with 𝛽 = 2𝐶[ (𝐶[ +
√
𝐵)𝜏2.

We then verify Assumption 2. We know

∇ℓ(\∗; 𝑧) = 2([(𝑥𝑇\∗) − 𝑦)[′(𝑥𝑇\∗)𝑥.

So we have for all 𝑧,

∥∇ℓ(\∗; 𝑧)∥ ≤
√
𝑑∥∇ℓ(\∗; 𝑧)∥∞ ≤ 2𝐶[

√
𝐵𝑑.

So Assumption 2 holds with 𝐺∗ = 2𝐶[
√
𝐵𝑑.

Lastly, by the inequality (16) in Lemma 5 from [20], Assumption 3 holds with ` =
2𝑐3
[𝜏

2𝛾

𝐶[
. This
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completes the proof. □

A.3.6 Proof of Theorem 6

Before proving Theorem 6, we refer to Theorem 1 in [21] for the following result on the

population-based first-order EM update.

Lemma 19 (linear convergence of population-based first-order EM) Under Assumption 5, As-

sumption 6 and the condition that Pℓ(\; 𝑧) is 𝛽−smooth, the following update,

\+ = \ − 2
𝛽 + `1

P∇ℓ\ (\; 𝑧)

satisfies that

∥\+ − \∗∥ ≤
(
1 − 2`1 − `2

𝛽 + `1

)
∥\ − \∗∥.

We now prove Theorem 6.

Proof of Theorem 6: Assumption 1 implies that Pℓ(\; 𝑧) is 𝛽−smooth, so Lemma 19 holds under

the assumptions of Theorem 6. Now we turn to analyze the sample-based first-order EM. Consider

the update of sample-based first-order EM,

\𝑡+1 = \𝑡 − 2
𝛽 + `1

P𝑛∇ℓ\𝑡 (\𝑡 ; 𝑧), 𝑡 = 0, 1, . . .

Fix 𝑡 ≥ 0. We have

∥\𝑡+1 − \∗∥ ≤ ∥\𝑡 − 2
𝛽 + `1

P∇ℓ\𝑡 (\𝑡 ; 𝑧)∥ +
2

𝛽 + `1
∥(P − P𝑛)∇ℓ\𝑡 (\𝑡 ; 𝑧)∥

≤
(
1 − 2`1 − `2

𝛽 + `1

)
∥\𝑡 − \∗∥ + 2

𝛽 + `1
∥(P − P𝑛)∇ℓ(\𝑡 ; 𝑧)∥. (A.3.15)
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Applying Proposition 8, we continue the proof on the event

A := {the results (A.3.4) (A.3.5) in Proposition 8 hold true},

whose measure is at least 1 − 𝛿. We keep the notations “term I” and “term II” used in Proposition

8, which are defined by

term I :=

√︄
2P[∥∇ℓ(\∗; 𝑧)∥2] log 4

𝛿

𝑛
+
𝐺∗ log 4

𝛿

𝑛
,

term II :=

√︄
𝑑 + log 8 log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
+
𝑑 + log log2 (2𝑛Δ𝑀+2)

𝛿

𝑛
.

Note that we have the optimality condition ∇ℓ(\∗; 𝑧) = 0, because the true parameter \∗ is

assumed to minimizes the population risk over R𝑑 in the problem setting. The result (A.3.5) in

Proposition 8 implies that ∀\ ∈ Θ,

∥P𝑛∇ℓ(\; 𝑧) − P∇ℓ(\; 𝑧)∥ ≤ term I + 𝑐0𝛽max
{
∥\ − \∗∥, 1

𝑛

}
· term II (A.3.16)

≤
(
term I + 𝑐0𝛽

𝑛
· term II

)
+ 𝑐0𝛽 · term II · ∥\ − \∗∥, (A.3.17)

where 𝑐0 is an absolute constant. Therefore, we have that for all 𝑡 = 0, 1, . . . ,

E(\𝑡+1) ≤
(
1 − 2`1 − `2

𝛽 + `1

)
E(\𝑡) + Y𝑡 (𝑛),

Y𝑡 (𝑛) ≤ 𝛼(𝑛)E(\𝑡) + Y∗(𝑛),
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where

Y𝑡 (𝑛) = 2
𝛽 + `1

∥(P − P𝑛)∇ℓ(\𝑡 ; 𝑧)∥,

𝛼(𝑛) = 2𝑐0𝛽

𝛽 + `1
· term II,

Y∗(𝑛) = 2
𝛽 + `1

(
term I + 𝑐0𝛽

𝑛
· term II

)
.

Consider the following two conditions on the sample size (note that they will be satisfied as

long as 𝑛 is large enough):

𝛼(𝑛) ≤ 2`1 − `2
2(𝛽 + `1)

, (A.3.18)

Y∗(𝑛) ≤ 2`1 − `2
2(𝛽 + `1)

Δ𝑚 . (A.3.19)

When the sample size 𝑛 is large enough so that both (A.3.18) and (A.3.19) are true, we can use

induction to prove that with probability at least 1 − 𝛿, for all 𝑡 = 0, 1, . . . ,

∥\𝑡 − \∗∥ ≤ Δ2
𝑚 .

Therefore, for all 𝑡 = 0, 1, . . . ,

\𝑡 ∈ B𝑑 (\∗,Δ𝑚) ⊆ Θ.

We choose the “Lyapunov function” in Proposition 9 to be ∥\ − \∗∥. Applying Proposition 9,

we obtain: when the sample size 𝑛 is large enough such that the conditions (A.3.18) and (A.3.19)

hold ture, we have

∥\𝑡 − \∗∥ ≤
(
1 − 2`1 − `2

2(𝛽 + `1)

) 𝑡
∥\0 − \∗∥ + 2(𝛽 + `1)

2`1 − `2
· Y∗(𝑛)

≤
(
1 − 2`1 − `2

2(𝛽 + `1)

) 𝑡
∥\0 − \∗∥ + 4

2`1 − `2
· term I + 2

𝑛
. (A.3.20)
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When the sample size is large enough such that

𝑛 ≥ 𝑐𝛽2

(2`1 − `2)2

(
𝑑 + log

8 log2(2𝑛Δ𝑀 + 2)
𝛿

)
and term I + 2`1 − `2

2𝑛
≤ (2`1 − `2)Δ𝑚

4
,

(A.3.21)

where 𝑐 = max{64𝑐2
0, 1} is an absolute constant, we have

term I ≤ 2`1 − `2
4

(
Δ𝑚 − 2

𝑛

)
and term II ≤ 2`1 − `2

4𝑐0𝛽
,

which further guarantee that both the condition (A.3.18) and the condition (A.3.19) are true. We

conclude that when the sample size condition (A.3.21) is true, we have the bound (A.3.20).

Now we use the fact `1 ≤ 2`1 − `2 ≤ 2`1 to simplify the sample size condition (A.3.21) and

the bound (A.3.20). It is straightforward to verify that the sample size condition (A.3.21) will be

satisfied when

𝑛 ≥ max

{
𝑐𝛽2

`2
1

(
𝑑 + log

8 log2(2𝑛Δ𝑀 + 2)
𝛿

)
,

128P[∥∇ℓ(\∗; 𝑧)∥2] log 4
𝛿

`1Δ𝑀
,

8𝐺∗ log 4
𝛿
+ 8`1

`1Δ𝑀

}
;

(A.3.22)

and the bound (A.3.20) implies

∥\𝑡 − \∗∥ ≤ 4
`1

©«
√︄

2P[∥∇ℓ(\∗; 𝑧)∥2] log 4
𝛿

𝑛
+
𝐺∗ log 4

𝛿
+ `1

𝑛

ª®¬ +
(
1 − 2`1 − `2

2(𝛽 + `1)

) 𝑡
∥\0 − \∗∥.

(A.3.23)

Since we always have

E(\𝑡) ≤ 𝛽

2
∥\𝑡 − \∗∥2,
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the bound (A.3.23) will imply

E(\𝑡) ≤ 16𝛽
`2

1

©«
√︄

2P[∥∇ℓ(\∗; 𝑧)∥2] log 4
𝛿

𝑛
+
𝐺∗ log 4

𝛿
+ `1

𝑛

ª®¬
2

+
(
1 − 2`1 − `2

2(𝛽 + `1)

)2𝑡
𝛽∥\0 − \∗∥2.

(A.3.24)

Clearly, the sample size condition (A.3.22) and the bounds (A.3.23) (A.3.24) are identical to those

presented in the statement of the theorem. This completes the proof. □

A.3.7 Proof of Corollary 7

For both examples, verification of Assumptions 1, 2 and 5 is trivial. The parameters can be

specified as 𝛽 = 1, 𝐺∗ = 𝜎
√
𝑑, and `1 = 1.

As for verification of Assumption 6, we refer to the following results that are direct conse-

quence of [21].

Lemma 20 (verification of Assumption 6) (a) Lemma 2 in [21]: Consider Example 4 under the

SNR condition (1.7.6), where [ is a sufficiently large constant such that [ > 4
√

3
3 and 𝑐1(1 + 1

[2 +

[2)𝑒−𝑐2[
2
< 1. Then Assumption 6 holds with `2 = 𝑐1(1+ 1

[2 +[2)𝑒−𝑐2[
2
. Here 𝑐1 and 𝑐2 denote the

same absolute constants as in the proof of Lemma 2 in [21]. Clearly, we can verify Assumption 6

for all [ larger than a certain absolute constant.

(b) Lemma 3 in [21]: Consider Example 5 under the SNR condition (1.7.6), where [ is a

sufficiently large constant such that

𝑐[1− 𝑐
2
𝜏
2 + 𝑐2

𝜏

log [
[

+ 2
[
≤ 1

8
,√︄

∥\∗∥
8[

+ (4 + 2
31

)𝐶
2
𝜏 log [
[

+ 3[1−𝐶
2
𝜏

2 ≤ 1
8

hold true for some sufficiently large constants 𝑐𝜏, 𝐶𝜏 and an absolute constant 𝑐. Then Assumption

6 holds with `2 = 1
4 . Here 𝑐, 𝑐𝜏, 𝐶𝜏 denote the same quantity as in the proof of Lemma 3 in [21].

201



Clearly, we can verify Assumption 6 for all [ larger than a certain absolute constant.

To prove the generalization error bound in this corollary, we need to upper bound the problem-

dependent parameter P[∥∇ℓ(\∗; 𝑧)∥2] for the two examples.

Bounding P[∥∇ℓ(\∗; 𝑧)∥2] for Example 4: we define the function 𝑔 : R𝑑 → (0, 2) as

𝑔(𝑢) = 2𝑒−
∥2\∗−𝑢∥2

2𝜎2

𝑒
− ∥𝑢∥2

2𝜎2 + 𝑒−
∥2\∗−𝑢∥2

2𝜎2

=
2

𝑒
2∥ \∗ ∥2−2𝑢𝑇 \∗

𝜎2 + 1
.

In Example 4, when conditioned on 𝑤 = 1 (i.e., when 𝑧 is drawn from 𝑁 (\∗, 𝜎2𝐼𝑑×𝑑)), the random

gradient ∇ℓ(\∗; 𝑧) at \∗ can be shown to be equal to

(∇ℓ(\∗; 𝑧) |𝑤 = 1) = 𝑢
(
𝑒
− ∥𝑢∥2

2𝜎2 − 𝑒−
∥2\∗−𝑢∥2

2𝜎2

𝑒
− ∥𝑢∥2

2𝜎2 + 𝑒−
∥2\∗−𝑢∥2

2𝜎2

)
︸                     ︷︷                     ︸

1−𝑔(𝑢)

+\∗
(

2𝑒−
∥2\∗−𝑢∥2

2𝜎2

𝑒
− ∥𝑢∥2

2𝜎2 + 𝑒−
∥2\∗−𝑢∥2

2𝜎2

)
︸                     ︷︷                     ︸

𝑔(𝑢)

,

where 𝑢 = \∗ − 𝑧 is a random vector drawn from 𝑁 (0, 𝜎2𝐼𝑑×𝑑). And when conditioned on 𝑤 = −1

(i.e., when 𝑧 is drawn from 𝑁 (0, 𝜎2𝐼𝑑×𝑑)), ∇ℓ(\∗; 𝑧) can be shown to be equal to

(∇ℓ(\∗; 𝑧) |𝑤 = −1) = 𝑣
(
𝑒
− ∥𝑣 ∥2

2𝜎2 − 𝑒−
∥2\∗−𝑣 ∥2

2𝜎2

𝑒
− ∥𝑣 ∥2

2𝜎2 + 𝑒−
∥2\∗−𝑣 ∥2

2𝜎2

)
︸                     ︷︷                     ︸

1−𝑔(𝑣)

+\∗
(

2𝑒−
∥2\∗−𝑣 ∥2

2𝜎2

𝑒
− ∥𝑣 ∥2

2𝜎2 + 𝑒−
∥2\∗−𝑣 ∥2

2𝜎2

)
︸                     ︷︷                     ︸

𝑔(𝑣)

,

where 𝑣 = \∗ + 𝑧 is a random vector drawn from 𝑁 (0, 𝜎2𝐼𝑑×𝑑).

Therefore, we have

P[∥∇ℓ(\∗; 𝑧)∥2]

=
1
2
E

[
∥∇ℓ(\∗; 𝑧)∥2 |𝑤 = 1

]
+ 1

2
E

[
∥∇ℓ(\∗; 𝑧)∥2 |𝑤 = −1

]
=

1
2
E𝑢 [∥𝑢 · (1 − 𝑔(𝑢)) + \∗ · 𝑔(𝑢)∥2] + 1

2
E𝑣 [∥𝑣 · (1 − 𝑔(𝑣)) + \∗ · 𝑔(𝑣)∥2]

= E𝑢 [∥𝑢 · (1 − 𝑔(𝑢)) + \∗ · 𝑔(𝑢)∥2], (A.3.25)
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where the notation E𝑢 means taking expectation with respect to 𝑢 ∼ 𝑁 (0, 𝜎2𝐼𝑑×𝑑), and the notation

E𝑣 means taking expectation with respect to 𝑣 ∼ 𝑁 (0, 𝜎2𝐼𝑑×𝑑).

Since 0 < 𝑔(𝑢) < 2, we have |1 − 𝑔(𝑢) | ≤ 1. Thus

∥𝑢 · (1 − 𝑔(𝑢)) + \∗ · 𝑔(𝑢)∥2

≤ 2∥𝑢∥2 · |1 − 𝑔(𝑢) |2 + 2∥\∗∥2 · |𝑔(𝑢) |2

= 2∥𝑢∥2 + 2∥\∗∥2 · 𝑔(𝑢)2. (A.3.26)

From (A.3.25) and (A.3.26), we have

P[∥∇ℓ(\∗; 𝑧)∥2] ≤ 2E𝑢 [∥𝑢∥2] + 2∥\∗∥2E𝑢 [𝑔(𝑢)2]

= 2𝜎2𝑑 + 2∥\∗∥2E𝑢 [𝑔(𝑢)2] . (A.3.27)

Now we know that 𝑢𝑇\∗ is a ∥\∗∥𝜎−sub-Gaussian vector with mean 0. From Markov’s in-

equality,

Prob
(
|𝑢𝑇\∗ | > 1

2
∥\∗∥2

)
≤ 2 exp(−

1
4 ∥\

∗∥4

∥\∗∥2𝜎2 )

=
2

exp( ∥\∗∥2

4𝜎2 )
≤ 8𝜎2

∥\∗∥2 . (A.3.28)

When |𝑢𝑇\∗ | ≤ 1
2 ∥\

∗∥2, we have

𝑔(𝑢) = 2

𝑒
∥ \∗ ∥2−𝑢𝑇 \∗

𝜎2 + 1
≤ 2

𝑒
∥ \∗ ∥2

2𝜎2

≤ 4𝜎2

∥\∗∥2 .

Since 0 < 𝑔(𝑢) < 2, when |𝑢𝑇\∗ | ≤ 1
2 ∥\

∗∥2, we have

𝑔(𝑢)2 ≤ 8𝜎2

∥\∗∥2 . (A.3.29)
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As a result,

E𝑢 [𝑔(𝑢)2]

≤ Prob
(
|𝑢𝑇\∗ | > 1

2
∥\∗∥2

)
E

[
𝑔(𝑢)2

����|𝑢𝑇\∗ | > 1
2
∥\∗∥2

]
+ Prob

(
|𝑢𝑇\∗ | ≤ 1

2
∥\∗∥2

)
E

[
𝑔(𝑢)2

����|𝑢𝑇\∗ | ≤ 1
2
∥\∗∥2

]
≤ 4 · Prob

(
|𝑢𝑇\∗ | > 1

2
∥\∗∥2

)
+ 8𝜎2

∥\∗∥2

≤ 40𝜎2

∥\∗∥2 ,

where the second inequality is due to the fact 0 < 𝑔(𝑢) < 2 and (A.3.29), and the last inequality is

due to (A.3.28). Combining the above result with (A.3.27), we have

P[∥∇ℓ(\∗; 𝑧)∥2] ≤ (2𝑑 + 40)𝜎2. (A.3.30)

Bounding P[∥∇ℓ(\∗; 𝑧)∥2] for Example 5: we define the function 𝑔 : R × R𝑑 → (0, 2) as

𝑔(𝑢, 𝑥) = 2𝑒−
(2𝑥𝑇 \∗−𝑢)2

2𝜎2

𝑒
− 𝑢2

2𝜎2 + 𝑒−
(2𝑥𝑇 \∗−𝑢)2

2𝜎2

=
2

𝑒
2(𝑥𝑇 \∗ )2−2𝑢(𝑥𝑇 \∗ )

𝜎2 + 1
.

In Example 5, we have

(∇ℓ(\∗; 𝑧) |𝑤 = 1, 𝑥) =


𝑢

(
𝑒
− 𝑢2

2𝜎2 − 𝑒−
(2𝑥𝑇 \∗−𝑢)2

2𝜎2

𝑒
− 𝑢2

2𝜎2 + 𝑒−
(2𝑥𝑇 \∗−𝑢)2

2𝜎2

)
︸                       ︷︷                       ︸

1−𝑔(𝑢,𝑥)

+(𝑥𝑇\∗)
(

2𝑒−
(2𝑥𝑇 \∗−𝑢)2

2𝜎2

𝑒
− 𝑢2

2𝜎2 + 𝑒−
(2𝑥𝑇 \∗−𝑢)2

2𝜎2

)
︸                      ︷︷                      ︸

𝑔(𝑢,𝑥)


𝑥,
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where 𝑢 = 𝑥𝑇\∗ − 𝑦 is a random vector drawn from 𝑁 (0, 𝜎2). And we have

(∇ℓ(\∗; 𝑧) |𝑤 = −1, 𝑥) =


𝑣

(
𝑒
− 𝑣2

2𝜎2 − 𝑒−
(2𝑥𝑇 \∗−𝑣)2

2𝜎2

𝑒
− 𝑣2

2𝜎2 + 𝑒−
(2𝑥𝑇 \∗−𝑣)2

2𝜎2

)
︸                       ︷︷                       ︸

1−𝑔(𝑣,𝑥)

+(𝑥𝑇\∗)
(

2𝑒−
(2𝑥𝑇 \∗−𝑣)2 ∥2

2𝜎2

𝑒
− 𝑣2

2𝜎2 + 𝑒−
(2𝑥𝑇 \∗−𝑣)2

2𝜎2

)
︸                      ︷︷                      ︸

𝑔(𝑣,𝑥)


𝑥,

where 𝑣 = 𝑥𝑇\∗ + 𝑦 is a random vector drawn from 𝑁 (0, 𝜎2).

Therefore, we have

P[∥∇ℓ(\∗; 𝑧)∥2]

=
1
2
E

[
∥∇ℓ(\∗; 𝑧)∥2 |𝑤 = 1

]
+ 1

2
E

[
∥∇ℓ(\∗; 𝑧)∥2 |𝑤 = −1

]
=

1
2
E𝑥

[
∥𝑥∥2E𝑢 [(𝑢 · (1 − 𝑔(𝑢, 𝑥)) + \∗ · 𝑔(𝑢, 𝑥))2 |𝑥]

]
+ 1

2
E𝑥

[
∥𝑥∥2E𝑣 [(𝑣 · (1 − 𝑔(𝑣, 𝑥)) + \∗ · 𝑔(𝑣, 𝑥))2]

]
= E𝑥

[
∥𝑥∥2E𝑢 [(𝑢 · (1 − 𝑔(𝑢, 𝑥)) + \∗ · 𝑔(𝑢, 𝑥))2 |𝑥]

]
, (A.3.31)

where the notation E𝑢 means taking expectation with respect to 𝑢 ∼ 𝑁 (0, 𝜎2), the notation E𝑣

means taking expectation with respect to 𝑣 ∼ 𝑁 (0, 𝜎2), and the notation E𝑥 means taking expecta-

tion with respect to 𝑥 ∼ 𝑁 (0, 𝐼𝑑×𝑑).

Similar to the last part (i.e., the proof of (A.3.30)), we can prove

E𝑢 [(𝑢 · (1 − 𝑔(𝑢, 𝑥)) + \∗ · 𝑔(𝑢, 𝑥))2 |𝑥] ≤ 42𝜎2, ∀𝑥.

Combine this result with (A.3.31), we obtain

P[∥∇ℓ(\∗; 𝑧)∥2] ≤ 42𝜎2E𝑥 [∥𝑥∥2] = 42𝜎2𝑑.

This gives an upper bound on P[∥∇ℓ(\∗; 𝑧)∥2] in Example 5.

Given that we have upper bounded P[∥∇ℓ(\∗; 𝑧)∥2] by 42𝜎2𝑑 in both Example 4 and Example

5, it is straightforward to prove the generalization error bound in Corollary 7. □
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A.3.8 Auxiliary definitions and lemmata

Definition 13 (Orlicz norms, sub-Gaussian, sub-exponential) For every 𝛼 ∈ (0, +∞) we define

the Orlicz-𝛼 norm of a random 𝑢:

∥𝑢∥Orlicz𝛼 = inf{𝐾 > 0 : E exp
(
( |𝑢 |/𝐾)𝛼

)
≤ 2}.

A random variable/vector 𝑋 ∈ R𝑑 is 𝐾−sub-Gaussian if ∀_ ∈ R𝑑 , we have

∥_𝑇𝑋 ∥Orlicz2 ≤ 𝐾 ∥_∥2.

A random variable/vector 𝑋 ∈ R𝑑 is 𝐾−sub-exponential if ∀_ ∈ R𝑑 , we have

∥_𝑇𝑋 ∥Orlicz1 ≤ 𝐾 ∥_∥2.

Lemma 21 (Bernstein’s inequality for sub-exponential random variables) If 𝑋1, · · · , 𝑋𝑚 are sub-

exponential random variables, then Bernstein’s inequality (the inequality (A.2.49) in Lemma 17

holds with

𝜎2 =
1
𝑛

𝑛∑︁
𝑖=1

∥𝑋𝑖∥2
Orlicz1

, 𝐵 = max
1≤𝑖≤𝑛

∥𝑋𝑖∥Orlicz1 .

Lemma 22 (vector Bernstein’s inequality, [140, 141] ) Let {𝑋𝑖}𝑛𝑖=1 be a sequence of i.i.d. ran-

dom variables taking values in a real separable Hilbert space. Assume that E[𝑋𝑖] = `, E[∥𝑋𝑖 −

`∥2] = 𝜎2, ∀1 ≤ 𝑖 ≤ 𝑛. We say that vector Bernstein’s condition with parameter 𝐵 holds if for all

1 ≤ 𝑖 ≤ 𝑛,

E[∥𝑋𝑖 − `∥𝑘 ] ≤
1
2
𝑘!𝜎2𝐵𝑘−2, ∀2 ≤ 𝑘 ≤ 𝑛.
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If this condition holds, then for all 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿 we have

1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − `
 ≤

√︄
2𝜎2 log 2

𝛿

𝑛
+
𝐵 log 2

𝛿

𝑛
.

The following definitions and lemmata provide some background on generic chaining.

Definition 14 (Orlicz-𝛼 processes) Let {𝑋 𝑓 } 𝑓 ∈F be a sequence of random variables. {𝑋 𝑓 } 𝑓 ∈F is

called an Orlicz-𝛼 process for a metric metr(·, ·) on F if

∥𝑋 𝑓1 − 𝑋 𝑓2 ∥Orlicz𝛼 ≤ metr( 𝑓1, 𝑓2),∀ 𝑓1, 𝑓2 ∈ F .

In particular, Orlicz-2 process is called “process with sub-Gaussian increments” and Orlicz-1

process is called “process with sub-exponential increments”.

Definition 15 (mixed sub-Gaussian-sub-exponential increments, [139]) We say a process (𝑋\)\∈Θ

has mixed sub-Gaussian-sub-exponential increments with respect to the pair (metr1,metr2) if

for all \1, \2 ∈ Θ,

Prob
(
∥𝑋\1 − 𝑋\2 ∥ ≥

√
𝑢 · metr2(\1, \2) + 𝑢 · metr1(\1, \2)

)
≤ 2𝑒−𝑢,∀𝑢 ≥ 0.

Definition 16 (Talagrand’s 𝛾𝛼−functional) A sequence 𝐹 = (F𝑛)𝑛≥0 of subsets of F is called

admissible if |F0 | = 1 and |F𝑛 | ≤ 22𝑛 for all 𝑛 ≥ 1. For any 0 < 𝛼 < ∞, the 𝛾𝛼−functional of

(F ,metr) is defined by

𝛾𝛼 (𝐹, 𝑑) = inf
𝐹

sup
𝑓 ∈F

∞∑︁
𝑛=0

2
𝑛
𝛼metr( 𝑓 , F𝑛),

where the infimum is taken over all admissible sequences and we write metr( 𝑓 , F𝑛) = inf𝑠∈F𝑛 metr( 𝑓 , 𝑠).

Lemma 23 (Dudley’s integral bound for 𝛾𝛼 functional, [142]) There exist a constant𝐶𝛼 depend-
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ing only on 𝛼 such that

𝛾𝛼 (F ,metr) ≤ 𝐶𝛼
∫ +∞

0
(log 𝑁 (Y, F ,metr)) 1

𝛼 𝑑Y.

Lemma 24 (generic chaining for a process with mixed tail increments, [139]) If (𝑋 𝑓 ) 𝑓 ∈F has

mixed sub-Gaussian-sub-exponential increments with respect to the pair (metr1,metr2), then

there are absolute constants 𝑐, 𝐶 > 0 such that ∀𝛿 ∈ (0, 1),

sup
\∈Θ

∥𝑋 𝑓 − 𝑋 𝑓0 ∥ ≤ 𝐶 (𝛾2(F ,metr2) + 𝛾1(F ,metr1))+

𝑐

(√︂
log

1
𝛿

sup
𝑓1, 𝑓2∈F

[metr2( 𝑓1, 𝑓2)] + log
1
𝛿

sup
𝑓1, 𝑓2∈F

[metr1( 𝑓1, 𝑓2)]
)
,

with probability at least 1 − 𝛿.

A.4 Proofs for Section A.1

A.4.1 Proof of Theorem 20

The proof consists of five parts. Among them, the main purpose of Part I and Part IV is to

localized the strong convexity parameter. When there is no need to localized the strong convexity

parameter (e.g., when one uses the square cost), the proof can be simplified—Part I and Part IV

will be quite straightforward, and all the “upper-side” truncation analysis related to
2∥b∥𝐿2√

𝑐^
,

4∥b∥2
𝐿2

𝑐^

or
4∥b∥2

𝐿2
^2𝑐^

will be unnecessary.

Part I: analysis of the concentrated functions.

Denote 𝑇 (ℎ) = ∥ℎ − ℎ∗∥2
𝐿2

and

𝑣ℎ = min
{
^∥ℎ − ℎ∗∥𝐿2 ,

2∥b∥𝐿2√
𝑐^

}
.
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For every ℎ ∈ H , define

𝑓ℎ (𝑥, 𝑦) =
2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) 𝜕1ℓsv(ℎ∗(𝑥), 𝑦) (ℎ(𝑥) − ℎ∗(𝑥)),

𝑔ℎ (𝑥, 𝑦) = min
{
(ℎ(𝑥) − ℎ∗(𝑥))2, 𝑣2

ℎ

}
· 1

{
|b | ≤

2∥b∥𝐿2√
𝑐^

}
.

One can view 𝑔ℎ as a truncated version of the quadratic form (ℎ(𝑥) − ℎ∗(𝑥))2. Later we will use

concentration to control (P − P𝑛) ( 𝑓ℎ + 𝑔ℎ) uniformly.

From Lemma 25 (for which we defer to the end of Section A.4.1), we can show

ℓsv(ℎ(𝑥), 𝑦) − ℓsv(ℎ∗(𝑥), 𝑦) − 𝜕1ℓsv(ℎ∗(𝑥), 𝑦) (ℎ(𝑥) − ℎ∗(𝑥)) ≥
𝛼(2𝑣ℎ)

2
min

{
(ℎ(𝑥) − ℎ∗(𝑥))2, 𝑣2

ℎ

}
≥
𝛼

(
4∥b∥𝐿2/

√
𝑐^

)
2

𝑔ℎ (𝑥, 𝑦).

The above inequality implies that

P𝑛 ( 𝑓ℎ + 𝑔ℎ) ≤
2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) P𝑛 [ℓsv(ℎ(𝑥), 𝑦) − ℓsv(ℎ∗(𝑥), 𝑦)] . (A.4.1)

Recall that b = ℎ∗(𝑥) − 𝑦. By Markov’s inequality,

Prob
(
|b | ≥

2∥b∥𝐿2√
𝑐^

)
≤ 𝑐^

4
, (A.4.2)
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From the definition of 𝑔ℎ and 𝑣ℎ, it is straightforward to show that

P𝑔ℎ = P

[
min

{
(ℎ(𝑥) − ℎ∗(𝑥))2, 𝑣2

ℎ

}
· 1

{
|b | ≤

2∥b∥𝐿2√
𝑐^

}]
≥ P

[
min

{
(ℎ(𝑥) − ℎ∗(𝑥))2, 𝑣2

ℎ

}
· 1

{
|ℎ(𝑥) − ℎ∗(𝑥) | ≥ ^∥ℎ − ℎ∗∥𝐿2

}
· 1

{
|b | ≤

2∥b∥𝐿2√
𝑐^

}]
≥ P

[
𝑣2
ℎ · 1

{
|ℎ(𝑥) − ℎ∗(𝑥) | ≥ ^∥ℎ − ℎ∗∥𝐿2

}
· 1

{
|b | ≤

2∥b∥𝐿2√
𝑐^

}]
= 𝑣2

ℎ · Prob
(
|ℎ(𝑥) − ℎ∗(𝑥) | ≥ ^∥ℎ − ℎ∗∥𝐿2 , |b | ≤

2∥b∥𝐿2√
𝑐^

)
≥ 𝑣2

ℎ ·
(
Prob

(
|ℎ(𝑥) − ℎ∗(𝑥) | ≥ ^∥ℎ − ℎ∗∥𝐿2

)
− Prob

(
∥b | >

2∥b∥𝐿2√
𝑐^

))
≥ 3𝑐^

4
𝑣2
ℎ,

where the first inequality is due to 1 ≥ 1
{
|ℎ(𝑥) − ℎ∗(𝑥) | ≥ ^∥ℎ − ℎ∗∥𝐿2

}
; the second inequality

is due to the definition of 𝑣ℎ; and the last inequality is due to Assumption 11 and (A.4.2). From

Assumption 10, we have

P( 𝑓ℎ + 𝑔ℎ) ≥ P𝑔ℎ ≥
3𝑐^
4
𝑣2
ℎ. (A.4.3)

Let us summarize the results from this part. We use the empirical average of the excess loss

to upper bound P𝑛 ( 𝑓ℎ + 𝑔ℎ) in (A.4.1), and use the (truncated) quadratic form to lower bound

P( 𝑓ℎ + 𝑔ℎ) in (A.4.3). The next steps are to prove concentration of 𝑓ℎ and 𝑔ℎ and establish a

“uniform localized convergence” argument.

Part II: bound the localized empirical process.

Given 𝑟 > 0, we want to bound the localized empirical process

sup
𝑟
_
≤𝑇 (ℎ)≤𝑟

(P − P𝑛) ( 𝑓ℎ + 𝑔ℎ)

where _ > 1 is a fixed value that we will specify later. From the definition of 𝜑noise(𝑟; 𝛿) in
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Assumption 12, for any 𝛿 ∈ (0, 1), with probability 1 − 𝛿
2 , we have

sup
𝑟
_
≤𝑇 (ℎ)≤𝑟

(P − P𝑛) ( 𝑓ℎ + 𝑔ℎ) ≤ sup
𝑟
_
≤𝑇 (ℎ)≤𝑟

(P − P𝑛)𝑔ℎ +
2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) 𝜑noise

(
𝑟;
𝛿

2

)
. (A.4.4)

Given 𝑟 > 0, denote the hypothesis class H( 𝑟
_
, 𝑟) = {ℎ ∈ H : 𝑟

_
≤ 𝑇 (ℎ) ≤ 𝑟}, and define the

function 𝑔ℎ,𝑟 as

𝑔ℎ,𝑟 (𝑥, 𝑦) = min

{
(ℎ(𝑥) − ℎ∗(𝑥))2, ^2𝑟,

4∥b∥2
𝐿2

𝑐^

}
· 1

{
|b | ≤

2∥b∥𝐿2√
𝑐^

}
.

Recall that 𝑔ℎ is defined by

𝑔ℎ (𝑥, 𝑦) = min

{
(ℎ(𝑥) − ℎ∗(𝑥))2, ^2𝑇 (ℎ),

4∥b∥2
𝐿2

𝑐^

}
· 1

{
|b | ≤

2∥b∥𝐿2√
𝑐^

}
.

For every ℎ ∈ H ( 𝑟
_
, 𝑟) and any (𝑥, 𝑦) ∈ X × Y, we have

𝑔ℎ, 𝑟
_
(𝑥, 𝑦) ≤ 𝑔ℎ (𝑥, 𝑦) ≤ 𝑔ℎ,𝑟 (𝑥, 𝑦), (A.4.5)

and

𝑔ℎ,𝑟 (𝑥, 𝑦) − 𝑔ℎ, 𝑟
_
(𝑥, 𝑦)

≤ min

{
(ℎ(𝑥) − ℎ∗(𝑥))2, ^2𝑟,

4∥b∥2
𝐿2

𝑐𝑘

}
− min

{
(ℎ(𝑥) − ℎ∗(𝑥))2,

^2𝑟

_
,

4∥b∥2
𝐿2

𝑐^

}
≤ min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐𝑘

}
− min

{
^2𝑟

_
,

4∥b∥2
𝐿2

𝑐^

}
≤

(
1 − 1

_

)
min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐^

}
. (A.4.6)

From (A.4.5) and (A.4.6), for every ℎ ∈ H ( 𝑟
_
, 𝑟) and any (𝑥, 𝑦) ∈ X × Y,

−
(
1 − 1

_

)
min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐^

}
≤ 𝑔ℎ (𝑥, 𝑦) − 𝑔ℎ,𝑟 (𝑥, 𝑦) ≤ 0,
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which implies

(P − P𝑛)𝑔ℎ ≤ (P − P𝑛)𝑔ℎ,𝑟 +
(
1 − 1

_

)
min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐^

}
.

As a result, we have

sup
𝑟
𝐾
≤𝑇 (ℎ)≤𝑟

(P − P𝑛)𝑔ℎ ≤ sup
𝑟
𝐾
≤𝑇 (ℎ)≤𝑟

(P − P𝑛)𝑔ℎ,𝑟 +
(
1 − 1

_

)
min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐^

}
≤ sup
𝑇 (ℎ)≤𝑟

(P − P𝑛)𝑔ℎ,𝑟 +
(
1 − 1

_

)
min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐^

}
. (A.4.7)

We know that 𝑔ℎ,𝑟 is uniformly bounded by
[
0,min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐^

}]
. Form the standard bound

for global Rademacher complexity [3], ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿
2 ,

sup
𝑇 (ℎ)≤𝑟

(P − P𝑛)𝑔ℎ,𝑟 ≤ 2ℜ{𝑔ℎ,𝑟 : 𝑇 (ℎ) ≤ 𝑟} + min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐^

} √︄
log 2

𝛿

2𝑛
. (A.4.8)

It is straightforward to verify that for all ℎ1, ℎ2 ∈ H and (𝑥, 𝑦) ∈ X × Y,

|𝑔ℎ1,𝑟 (𝑥) − 𝑔ℎ2,𝑟 (𝑥) | ≤ 2^
√
𝑟 |ℎ1(𝑥) − ℎ2(𝑥) |.

From the Lipchitz contraction property of Rademacher complexity (see, e.g., Theorem 7 in [138]),

we have

ℜ{𝑔ℎ,𝑟} ≤ 2^
√
𝑟ℜ{ℎ : 𝑇 (ℎ) ≤ 𝑟} ≤ 2^

√
𝑟𝜑(𝑟), (A.4.9)

where 𝜑(𝑟) is defined in Assumption 12. Define the 𝜓 function as

𝜓(𝑟; 𝛿) = 4^
√
𝑟𝜑(𝑟) + ©«

√︄
log 2

𝛿

2𝑛
+ 1 − 1

_

ª®¬ min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐^

}
+ 2
𝛼

(
4∥b∥𝐿2/

√
𝑐^

) 𝜑noise

(
𝑟;
𝛿

2

)
.

(A.4.10)
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Combining the definition (A.4.10) with (A.4.4) (A.4.7) (A.4.8) (A.4.9) , for any 𝛿 ∈ (0, 1), with

probability at least 1 − 𝛿, we have

sup
𝑟
𝐾
≤𝑇 (ℎ)≤𝑟

(P − P𝑛) ( 𝑓ℎ + 𝑔ℎ) ≤ 𝜓(𝑟; 𝛿). (A.4.11)

Part III: the “uniform localized convergence” argument.

Applying Proposition 5, for any 𝛿1 ∈ (0, 1) and 𝑟0 ∈ (0, 4Δ2), with probability at least 1 − 𝛿1,

for all ℎ ∈ H , either 𝑇 (ℎ) ≤ 𝑟0 or

(P − P𝑛) ( 𝑓ℎ + 𝑔ℎ) ≤ 𝜓
(
_𝑇 (ℎ); 𝛿1(log𝐾

4𝐾Δ2

𝑟0
)−1

)
= 4^

√︁
_𝑇 (ℎ)𝜑(_𝑇 (ℎ)) + 2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) 𝜑noise

(
_𝑇 (ℎ); 𝛿1

2 log_ 4_Δ2

𝑟0

)

+ min

{
_^2𝑇 (ℎ),

4∥b∥2
𝐿2

𝑐^

} ©«
√√√

log
2 log_ 4_Δ2

𝑟0
𝛿1

2𝑛
+ 1 − 1

_

ª®®®®¬︸                                                              ︷︷                                                              ︸
last term in (A.4.12)

. (A.4.12)

We specify

_ =
8 + 2𝑐^
8 + 𝑐^

.

Then when 𝑛 > 32
𝑐2
^

log
2 log_ 4_Δ2

𝑟0
𝛿1

, for all ℎ ∈ H we have

_

©«
√√√

log
2 log_ 4_Δ2

𝑟0
𝛿1

2𝑛
+ 1 − 1

_

ª®®®®¬
<
𝑐^

4
,

213



which implies when 𝑇 (ℎ) > 0,

last term in (A.4.12) <
𝑐^

4
min

{
^2𝑟,

4∥b∥2
𝐿2

_𝑐^

}
≤ 𝑐^

4
min

{
^2𝑟,

4∥b∥2
𝐿2

𝑐^

}
. (A.4.13)

Denote 𝐶𝑟0 = 2 +
(

16
𝑐^

+ 2
)

log 4Δ2

𝑟0
, then

2 log_
4_Δ2

𝑟0
= 2 +

log 4Δ2

𝑟0

log_
≤ 2 +

(
16
𝑐^

+ 2
)

log
4Δ2

𝑟0
= 𝐶𝑟0 .

For any 𝛿 ∈ (0, 1), taking 𝛿1 =
2 log_ 4_Δ2

𝑟0
𝐶𝑟0

𝛿, from (A.4.12) (A.4.13) and the fact _ < 2, we have the

following conclusion: when 𝑛 > 32
𝑐2
^

log 𝐶𝑟0
𝛿

, with probability at least 1 − 𝛿, for all ℎ ∈ H , either

𝑇 (ℎ) ≤ 𝑟0 or

(P − P𝑛) ( 𝑓ℎ + 𝑔ℎ)

< 4^
√︁

2𝑇 (ℎ)𝜑(2𝑇 (ℎ)) + 2
𝛼

(
4∥b∥𝐿2/

√
𝑐^

) 𝜑noise

(
2𝑇 (ℎ); 𝛿

𝐶𝑟0

)
+ 𝑐^

4
min

{
^2𝑇 (ℎ),

4∥b∥2
𝐿2

𝑐^

}
.

(A.4.14)

Let ℎ̂ ∈ arg minP𝑛ℓsv(ℎ(𝑥), 𝑦) be the empirical risk minimizer. From (A.4.1) and the property

of ℎ̂, we have

P𝑛 ( 𝑓ℎ̂ + 𝑔ℎ̂) ≤
2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) P𝑛 [ℓsv( ℎ̂(𝑥) − 𝑦) − ℓsv(ℎ∗(𝑥) − 𝑦)] ≤ 0. (A.4.15)

Recall the result (A.4.3) proved in Part I,

P( 𝑓ℎ + 𝑔ℎ) ≥
3𝑐^
4
𝑣2
ℎ =

3𝑐^
4

min

{
^2𝑇 (ℎ),

4∥b∥2
𝐿2

𝑐^

}
. (A.4.16)

From (A.4.14) (A.4.15) (A.4.16), when 𝑛 > 32
𝑐2
^

log 𝐶𝑟0
𝛿

, with probability at least 1 − 𝛿, either
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𝑇 ( ℎ̂) ≤ 𝑟0 or

3𝑐^
4

min

{
^2𝑇 ( ℎ̂),

4∥b∥2
𝐿2

𝑐^

}
< 4^

√︃
2𝑇 ( ℎ̂)𝜑(2𝑇 ( ℎ̂)) + 2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) 𝜑noise

(
2𝑇 ( ℎ̂); 𝛿

𝐶𝑟0

)
+ 𝑐^^

2

4
min

{
𝑇 ( ℎ̂),

4∥b∥2
𝐿2

𝑐^

}
,

i.e.,

𝑐^

2
min

{
^2𝑇 ( ℎ̂),

4∥b∥2
𝐿2

𝑐^

}
< 4^

√︃
2𝑇 ( ℎ̂)𝜑(2𝑇 ( ℎ̂)) + 2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) 𝜑noise

(
2𝑇 ( ℎ̂); 𝛿

𝐶𝑟0

)
. (A.4.17)

In the theorem we have asked 𝑛 > 72
𝑐2
^

log 𝐶𝑟0
𝛿

. Denote the event

A := {either 𝑇 ( ℎ̂) ≤ 𝑟0 or (A.4.17) is true}.

Then we have Prob(A) ≥ 1 − 𝛿.

Part IV: preliminary localization.

We first prove a preliminary localization result 𝑇 ( ℎ̂) ≤ max
{

4∥b∥2
𝐿2

^2𝑐^
, 𝑟0

}
on the event A. The

essential purpose of this step is to localize the strong convexity parameter. If𝑇 ( ℎ̂) ∈
(
max

{
4∥b∥2

𝐿2
^2𝑐^

, 𝑟0

}
, 4Δ2

]
is true, then on the event A one have

RHS of (A.4.17) > 2∥b∥2
𝐿2
. (A.4.18)
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In the theorem we ask 𝑛 > max
{
�̄�𝛿,𝑟0 ,

72
𝑐2
^

log 𝐶𝑟0
𝛿

}
. According to Assumption 12, this implies that

𝜑noise

(
8Δ2;

𝛿

𝐶𝑟0

)
≤
𝛼(4∥b∥𝐿2/

√
𝑐^)∥b∥2

𝐿2

2
, (A.4.19)

𝜑

(
8Δ2

)
≤

√
2𝑐^ ∥b∥2

𝐿2

16Δ
, (A.4.20)

which further imply

RHS of (A.4.17) ≤ ∥b∥2
𝐿2

+ ∥b∥2 = 2∥b∥2
𝐿2
. (A.4.21)

(A.4.18) and (A.4.21) result in a contradiction. Therefore,𝑇 ( ℎ̂) must be bounded by max
{

4∥b∥2
𝐿2

^2𝑐^
, 𝑟0

}
.

Then on the event A, either 𝑇 ( ℎ̂) ≤ 𝑟0 or

𝑐^^
2

2
𝑇 ( ℎ̂) < RHS of (A.4.17). (A.4.22)

Part V: final steps.

Let 𝑟∗noise be the fixed point of

4
𝑐^^

2 · 𝛼
(
4∥b∥𝐿2/

√
𝑐^

) 𝜑noise

(
2𝑟;

𝛿

𝐶𝑟0

)
,

and 𝑟∗ver be the fixed point of

8
𝑐^^

√
2𝑟𝜑(2𝑟).

From the definition of fixed points, when 𝑇 ( ℎ̂) > max{𝑟∗ver, 𝑟
∗
noise}, we have

𝑐^^
2

4
𝑇 ( ℎ̂) > 2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) 𝜑noise

(
2𝑇 ( ℎ̂); 𝛿

𝐶𝑟0

)
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and

𝑐^^
2

4
𝑇 ( ℎ̂) > 4^

√︃
2𝑇 ( ℎ̂)𝜑(2𝑇 ( ℎ̂)).

Contrasting the above two inequalities with our previous result (A.4.22), on the event A we have

𝑇 ( ℎ̂) ≤ max{𝑟∗ver, 𝑟
∗
b , 𝑟0}.

We conclude that when 𝑛 > max
{
�̄�𝛿,𝑟0 ,

72
𝑐2
^

log 𝐶𝑟0
𝛿

}
, with probability at least 1 − 𝛿,

∥ ℎ̂ − ℎ∗∥2
𝐿2

≤ max{𝑟∗noise, 𝑟
∗
ver, 𝑟0}. (A.4.23)

Finally, from the optimality condition on ℎ∗ (Assumption 10), it is straightforward to prove that

for all ℎ ∈ H ,

E(ℎ) ≤ 𝛽sv

2
∥ℎ − ℎ∗∥2

𝐿2
.

Combining the above inequality with (A.4.23), we have

E( ℎ̂) ≤ 𝛽sv

2
max

{
𝑟∗noise, 𝑟

∗
ver, 𝑟0

}
.

This completes the proof. □

Lemma 25 (lower bound of the residual of the Taylor expansion) Let ℓsv be convex with re-

spect to its first argument. Given 𝑣 > 0, for all 𝑢1, 𝑢2 ∈ R and 𝑦 ∈ Y, we have

ℓsv(𝑢1, 𝑦) − ℓsv(𝑢2, 𝑦) − 𝜕1ℓsv(𝑢2, 𝑦) (𝑢1 − 𝑢2) ≥
𝛼(2𝑣)

2
min{|𝑢1 − 𝑢2 |2, 𝑣2} · 1{|𝑢2 − 𝑦 | ≤ 𝑣}.

(A.4.24)
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Proof of Lemma 25: we consider the following four cases: (1) |𝑢2 − 𝑦 | > 𝑣; (2) |𝑢2 − 𝑦 | ≤ 𝑣

and |𝑢1 − 𝑢2 | ≤ 𝑣; (3) |𝑢2 − 𝑦 | ≤ 𝑣 and 𝑢1 − 𝑢2 > 𝑣 ; and (4) |𝑢2 − 𝑦 | ≤ 𝑣 and 𝑢1 − 𝑢2 < −𝑣. It is

straightforward to prove (A.4.24) in case (1) and case (2). In case (3), because

ℓsv(𝑢1, 𝑦) − ℓsv(𝑢2, 𝑦) − 𝜕1ℓsv(𝑢2, 𝑦) (𝑢1 − 𝑢2) =
∫ 1

0
(𝜕1ℓsv(𝑢2 + 𝑡 (𝑢1 − 𝑢2)) − 𝜕1ℓsv(𝑢2)) (𝑢1 − 𝑢2)𝑑𝑡,

and (𝜕1ℓsv(𝑢2 + 𝑡 (𝑢1 − 𝑢2)) − 𝜕1ℓsv(𝑢2)) (𝑢1 − 𝑢2) ≥ 0 for all 𝑡 ∈ [0, 1], we have

ℓsv(𝑢1, 𝑦) − ℓsv(𝑢2, 𝑦) − 𝜕1ℓsv(𝑢2, 𝑦) (𝑢1 − 𝑢2) ≥
∫ 𝑣

𝑢1−𝑢2

0
(𝜕1ℓsv(𝑢2 + 𝑡 (𝑢1 − 𝑢2)) − 𝜕1ℓsv(𝑢2)) (𝑢1 − 𝑢2)𝑑𝑡

= ℓsv(𝑢2 + 𝑣, 𝑦) − ℓsv(𝑢2, 𝑦) − 𝜕1ℓsv(𝑢2, 𝑦)𝑣 ≥ 𝛼(2𝑣)
2

𝑣2.

Similarly, we can prove (A.4.24) in case (4). This completes the proof of Lemma 25. □

A.4.2 Proof of Corollary 21

The proof is nearly identical to the proof of Theorem 20, but with the following modifications.

First, we only need to consider the hypothesis set H0. Second, based on the definition of 𝜑noise in

Corollary 21, we modify (A.4.4) to

sup
ℎ∈H0,

𝑟
_
≤𝑇 (ℎ)≤𝑟

(P − P𝑛) ( 𝑓ℎ + 𝑔ℎ) ≤ sup
𝑟
_
≤𝑇 (ℎ)≤𝑟

(P − P𝑛)𝑔ℎ +
2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) (
𝜑noise

(
𝑟;
𝛿

2

)
−Φ(ℎ∗)

)
.

(A.4.25)

We also do similar modifications to (A.4.10) (A.4.11) (A.4.12) (A.4.14). Third, we modify (A.4.15)

(note that this is the only place we use the property of empirical risk minimization) as follows:

P𝑛 ( 𝑓ℎ̂ + 𝑔ℎ̂) ≤
2

𝛼
(
4∥b∥𝐿2/

√
𝑐^

) P𝑛 [ℓsv( ℎ̂(𝑥) − 𝑦) − ℓsv(ℎ∗(𝑥) − 𝑦)]
≤ 2
𝛼

(
4∥b∥𝐿2/

√
𝑐^

)Φ(ℎ∗), (A.4.26)
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where the first inequality is due to (A.4.1) and the second inequality is due to the definition (A.1.10)

of the estimator ℎ̂. After all these modifications, the inequality (A.4.17) still hold true, and the

remaining proof is identical to that of Theorem 20. □
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Appendix B: Appendix for Chapter 2

B.1 Proofs for the finite-action setting

B.1.1 Proof of Theorem 8.

We prove the theorem on the clean event stated in Lemma 5, whose measure is at least 1− 𝛿/2.

For all 𝑡 > 𝐾 ,

E𝑥 [ 𝑓 ∗(𝑥, 𝜋 𝑓 ∗ (𝑥)] ≤ E𝑥 [ �̂�𝑡 (𝑥, 𝜋 𝑓 ∗ (𝑥))] + E𝑥
[ 𝛽𝑡∑𝑡

𝑖=1 1{𝜋 𝑓 ∗ (𝑥) = 𝜋𝑖 (𝑥)}
]
+ 𝐾𝛽𝑡

𝑡

≤ arg max
𝜋∈Π

{
E𝑥 [ �̂�𝑡 (𝑥, 𝜋(𝑥))] + E𝑥

[ 𝛽𝑡∑𝑡
𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]}
+ 𝐾𝛽𝑡

𝑡

= E𝑥 [ �̂�𝑡 (𝑥, 𝜋𝑡 (𝑥))] + E𝑥
[ 𝛽𝑡∑𝑡

𝑖=1 1{𝜋𝑡 (𝑥) = 𝜋𝑖 (𝑥)}
]
+ 𝐾𝛽𝑡

𝑡

≤ E𝑥 [ 𝑓 ∗(𝑥, 𝜋𝑡 (𝑥))] + E𝑥
[ 2𝛽𝑡∑𝑡

𝑖=1 1{𝜋𝑡 (𝑥) = 𝜋𝑖 (𝑥)}
]
+ 2𝐾𝛽𝑡

𝑡
, (B.1.1)

where the first and the last inequality are due to Lemma 5; the second inequality due to maximiza-

tion over policies.

Therefore, we have the following:

𝑇∑︁
𝑡=1
E[ 𝑓 ∗(𝑥𝑡 , 𝜋 𝑓 ∗ (𝑥𝑡)) − 𝑓 ∗(𝑥𝑡 , 𝑎𝑡) |𝐻𝑡−1] =

𝑇∑︁
𝑡=1

(
E𝑥 [ 𝑓 ∗(𝑥, 𝜋 𝑓 ∗ (𝑥))] − E𝑥 [ 𝑓 ∗(𝑥, 𝜋𝑡 (𝑥))]

)
≤

𝑇∑︁
𝑡=𝐾+1

E𝑥
[ 2𝛽𝑡∑𝑡

𝑖=1 1{𝜋𝑡 (𝑥) = 𝜋𝑖 (𝑥)}
]
+

𝑇∑︁
𝑡=𝐾+1

2𝐾𝛽𝑡
𝑡

+ 𝐾

≤ 2𝛽𝑇
𝑇∑︁

𝑡=𝐾+1
E𝑥

[ 1∑𝑡−1
𝑖=1 1{𝜋𝑡 (𝑥) = 𝜋𝑖 (𝑥)}

]
+ 2

√︃
17𝐾𝑇 log( |F |𝑇3/𝛿) + 𝐾

≤ 2
√︃

17𝐾𝑇 log(2|F |𝑇3/𝛿) (log(𝑇/𝐾) + 1) + 𝐾, (B.1.2)
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where the first line uses the equivalence proved in Lemma 6; the second line is due to (B.1.1); the

third line is due to 𝛽𝑡 ≤ 𝛽𝑇 and
∑𝑇
𝐾+1 1/

√
𝑡 ≤

√
𝑇 ; and the last line is due to the contextual potential

lemma (Lemma 4).

By Azuma’s inequality, with probability at least 1 − 𝛿/2, we can bound the regret by

Regret(𝑇,Algorithm 1) ≤
𝑇∑︁
𝑡=1
E[ 𝑓 ∗(𝑥𝑡 , 𝜋 𝑓 ∗ (𝑥𝑡)) − 𝑓 ∗(𝑥𝑡 , 𝑎𝑡) |𝐻𝑡−1] +

√︁
2𝑇 log(2/𝛿). (B.1.3)

Therefore, by a union bound and inequalities (B.1.2) (B.1.3), with probability at least 1 − 𝛿, the

regret of Algorithm 1 after 𝑇 rounds is upper bounded by

Regret(𝑇,Algorithm 1) ≤ 2
√︃

17𝐾𝑇 log(2|F |𝑇3/𝛿) (log(𝑇/𝐾) + 1) +
√︁

2𝑇 log(2/𝛿) + 𝐾.

□

B.1.2 Analysis on the confidence

The main goal of this subsection is to prove Lemma 3. For a fixed 𝑓 , we denote 𝑌 𝑓 ,𝑖 =

( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2 − ( 𝑓 ∗(𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2, 𝑖 = 1, 2, . . . .

Proof of Lemma 3.

For a fixed 𝑓 ∈ F , when conditioned on Υ𝑖−1, we have

E𝑥𝑖 ,𝑎𝑖
[
( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1

]
= E𝑥𝑖

[
( 𝑓 (𝑥𝑖, 𝜋𝑖 (𝑥𝑖)) − 𝑓 ∗(𝑥𝑖, 𝜋𝑖 (𝑥𝑖)))2 |𝐻𝑖−1

]
= E𝑥

[
( 𝑓 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2��𝐻𝑖−1]

= E𝑥
[
( 𝑓 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2] ,

where the first equation is because 𝑎𝑖 = 𝜋𝑖 (𝑥𝑖) and the fact that 𝜋𝑖 is completely determined by 𝐻𝑡−1;

the second equation is because the independence between 𝑥𝑖 and 𝐻𝑖−1; and the third inequality is

because ( 𝑓 (𝑥𝑖, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥𝑖, 𝜋𝑖 (𝑥𝑖)))2 depends on 𝐻𝑖−1 only through 𝜋𝑖.
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Therefore,

𝑡−1∑︁
𝑖=1
E𝑥𝑖 ,𝑎𝑖

[
( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1

]
=

𝑡−1∑︁
𝑖=1
E𝑥

[
( 𝑓 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥𝑖, 𝜋𝑖 (𝑥)))2] .

Applying Lemma 7, we know that ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿/2,

𝑡−1∑︁
𝑖=1
E𝑥

[
( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥𝑖, 𝜋𝑖 (𝑥)))2] ≤ 68 log(2|F |𝑡3/𝛿) + 2

𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖, (B.1.4)

uniformly over all 𝑡 ≥ 𝐾 and all fixed sequence 𝑓𝐾 , 𝑓𝐾+1, · · · ∈ F .

Therefore, ∀𝜋 ∈ Π,

E𝑥

[ 𝑡−1∑︁
𝑖=1

1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}( 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥, 𝜋(𝑥)))2
]

= E𝑥

[ 𝑡−1∑︁
𝑖=1

1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2
]

=

𝑡−1∑︁
𝑖=1
E𝑥 [1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2]

≤
𝑡−1∑︁
𝑖=1
E𝑥 [( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2]

≤ 68 log(2|F |𝑡3/𝛿) + 2
𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖, (B.1.5)

where the first inequalities are due to 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)} ≤ 1 and the second inequality is (B.1.4).

Since Algorithm 1 pick all actions exactly once during the first 𝐾 rounds, 𝑡 > 𝐾 will ensure∑𝑡−1
𝑖=1 1{𝜋(𝑥) = 𝜋(𝑥)} ≥ 1,∀𝑥 ∈ X.

From Cauchy-Schwarz’s inequality, ∀𝑡 > 𝐾 , ∀𝜋 ∈ Π,

|E𝑥 [ 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥, 𝜋(𝑥))] |

≤
√︄
E𝑥

[ 1∑𝑡−1
𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]√√√
E𝑥

[ 𝑡−1∑︁
𝑖=1

1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}( 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥𝑖, 𝜋(𝑥)))2
]
.
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Combine the above inequality with (B.1.5), we prove

|E𝑥 [ 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥, 𝜋(𝑥))] |

≤
√︄
E𝑥

[ 1∑𝑡−1
𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]√√√
68 log(2|F |𝑡3/𝛿) + 2

𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖 .

Taking 𝑓𝑡 = �̂�𝑡 in the above inequality, and use the fact
∑𝑡−1
𝑖=1 𝑌 �̂�𝑡 ,𝑖 ≤ 0 (as the least square solution

�̂�𝑡 minimizes
∑𝑡−1
𝑖=1 ( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2), we obtain: with probability at least 1 − 𝛿/2, ∀𝑡 > 𝐾 ,

∀𝜋 ∈ Π,

��E𝑥 [ �̂�𝑡 (𝑥, 𝜋(𝑥))] − E𝑥 [ 𝑓 ∗(𝑥, 𝜋(𝑥))]��
≤

√︄
E𝑥

[ 1∑𝑡−1
𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]√︃
68 log(2|F |𝑡3/𝛿)

≤
√︄
E𝑥

[ 1∑𝑡−1
𝑖=1 1{𝜋(𝑥) = 𝜋𝑖 (𝑥)}

]√︃
68 log(2|F |𝑡3/𝛿)

□

Proof of Lemma 7

We now prove Lemma 7 and the supporting lemmas required to prove Lemma 7.

Proof of Lemma 7. Fix a 𝛿 ∈ (0, 1). Take 𝛿𝑡 = 𝛿/2𝑡3, and apply a union bound to Lemma 26

with all 𝑡 ≥ 2. From

∞∑︁
𝑡=1

𝛿𝑡 log2(𝑡 − 1) ≤
∞∑︁
𝑡=2

𝛿/2𝑡2 ≤ 𝛿/2,
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we know that with probability at least 1 − 𝛿/2,

𝑡−1∑︁
𝑖=1
E𝑥𝑖 ,𝑎𝑖

[
( 𝑓𝑡 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1

]
≤ 68 log(2|F |𝑡3/𝛿) + 2

𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖,

uniformly over all 𝑡 ≥ 2 and all fixed sequence 𝑓2, 𝑓3, · · · ∈ F . □

Lemma 26 (uniform convergence over F ) For a fixed 𝑡 ≥ 2 and a fixed 𝛿𝑡 ∈ (0, 1/𝑒2), with

probability at least 1 − log2(𝑡 − 1)𝛿𝑡 , we have

𝑡−1∑︁
𝑖=1
E𝑥𝑖 ,𝑎𝑖

[
( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1

]
≤ 68 log( |F |/𝛿𝑡) + 2

𝑡−1∑︁
𝑖=1
𝑌 𝑓 ,𝑖, (B.1.6)

uniformly over all 𝑓 ∈ F .

Proof of Lemma 26. We have |𝑌 𝑓 ,𝑖 | ≤ 1,∀𝑖. From Lemma 27, for 𝛿𝑡/|F | ≤ 𝛿𝑡 < 1/𝑒2, with

probability at least 1 − log2(𝑡 − 1)𝛿𝑡/|F |,

𝑡−1∑︁
𝑖=1
E[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] −

𝑡−1∑︁
𝑖=1
𝑌 𝑓 ,𝑖 ≤ 4

√√√
𝑡−1∑︁
𝑖=1

Var[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] log( |F |/𝛿𝑡) + 2 log( |F |/𝛿𝑡).

Applying union bound to all 𝑓 ∈ F , we obtain that with probability at least 1 − log2(𝑡 − 1)𝛿𝑡 ≥

1 − log2 𝑡𝛿𝑡 ,

𝑡−1∑︁
𝑖=1
E[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] −

𝑡−1∑︁
𝑖=1
𝑌 𝑓 ,𝑖 ≤ 4

√√√
𝑡−1∑︁
𝑖=1

Var[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] log( |F |/𝛿𝑡) + 2 log( |F |/𝛿𝑡), ∀ 𝑓 ∈ F .
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From Lemma 28 we have Var[𝑌 𝑓 ,𝑖 |𝐻𝑖] ≤ 4E[𝑌 𝑓 ,𝑖 |𝐻𝑖]. Therefore

𝑡−1∑︁
𝑖=1
E[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] ≤ 4

√√√
𝑡−1∑︁
𝑖=1

Var[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] log( |F |/𝛿𝑡) + 2 log( |F |/𝛿𝑡) +
𝑡−1∑︁
𝑖=1
𝑌 𝑓 ,𝑖

≤ 8

√√√
𝑡−1∑︁
𝑖=1
E[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] log( |F |/𝛿𝑡) + 2 log( |F |/𝛿𝑡) +

𝑡−1∑︁
𝑖=1
𝑌 𝑓 ,𝑖, ∀ 𝑓 ∈ F .

This implies ∀ 𝑓 ∈ F ,

©«
√√√

𝑡−1∑︁
𝑖=1
E[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] − 4

√︁
log( |F |/𝛿𝑡)ª®¬

2

≤ 18 log( |F |/𝛿𝑡) +
𝑡−1∑︁
𝑖=1
𝑌 𝑓 ,𝑖,

which further implies ∀ 𝑓 ∈ F ,

𝑡−1∑︁
𝑖=1
E[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] ≤ 68log( |F |/𝛿𝑡) + 2

𝑡−1∑︁
𝑖=1
𝑌 𝑓 ,𝑖 .

From Lemma 28, we have

𝑡−1∑︁
𝑖=1
E𝑥𝑖 ,𝑎𝑖

[
𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1

]
=

𝑡−1∑︁
𝑖=1
E[𝑌 𝑓 ,𝑖 |𝐻𝑖−1] ≤ 68log( |F |/𝛿𝑡) + 2

𝑡−1∑︁
𝑖=1
𝑌 𝑓 ,𝑖 .

This finish the proof to Lemma 26. □

The following two lemmas are used in the proof of Lemma 26.

Lemma 27 (Freeman’s inequality, [143]) Suppose 𝑍1, 𝑍2, . . . , 𝑍𝑡 is a martingale difference se-

quence with |𝑍𝑖 | ≤ 𝑏 for all 𝑖 = 1, . . . , 𝑡. Then for any 𝛿 < 1/𝑒2, with probability at least

1 − (log2 𝑡)𝛿,

𝑡∑︁
𝑖=1

𝑍𝑖 ≤ 4

√√√ 𝑡∑︁
𝑖=1

Var[𝑍𝑖 |𝑍1, . . . , 𝑍𝑖−1] log(1/𝛿) + 2𝑏 log(1/𝛿).
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Lemma 28 (Lemma 4.2 in [76]) Fix a function 𝑓 ∈ F . Suppose we sample 𝑥 from the data

distribution DX , and 𝑟 (𝑥, 𝑎) from D𝑥,𝑎. Define the random variable

𝑌 = ( 𝑓 (𝑥, 𝑎) − 𝑟 (𝑥, 𝑎))2 − ( 𝑓 ∗(𝑥, 𝑎) − 𝑟 (𝑥, 𝑎))2.

Then we have

E𝑥,𝑟,𝑎 [𝑌 ] = E𝑥,𝑎 [( 𝑓 (𝑥, 𝑎) − 𝑓 ∗(𝑥, 𝑎))2],

Var𝑥,𝑟,𝑎 [𝑌 ] ≤ 4E𝑥,𝑟,𝑎 [𝑌 ] .

B.1.3 Proof of Lemma 4

Proof of Lemma 4. For any fixed 𝑥 ∈ X, we have

𝑇∑︁
𝑡=𝐾+1

1∑𝑡−1
𝑖=1 1{𝜋𝑡 (𝑥) = 𝜋 𝑗 (𝑥)}

≤
∑︁
𝑎∈A

∑𝑇
𝑡=1 1{𝜋𝑡 (𝑥)=𝑎}∑︁

𝑖=1

1
𝑖

≤
∑︁
𝑎∈A

(1 + log(
𝑇∑︁
𝑡=1

1{𝜋𝑡 (𝑥) = 𝑎})) ≤ 𝐾 + 𝐾 log(𝑇/𝐾),

where the last inequality is due to Jensen’s inequality. By taking expectation on both sides of the

above inequality, we prove the lemma. □

B.2 Proofs for the extensions to infinite function classes

B.2.1 Proof of Corollary 9

From the well-known result on the covering of 𝑑−dimensional balls [144], the covering number

of a 𝑑−dimensional ball with radius Δ
2 and discretization error 1

𝐿𝑡
is bounded by (1+Δ𝐿𝑡)𝑑 , so there

exists a set 𝑉𝑡 of size no more than (1 + Δ𝐿𝑡)𝑑 + 1 ≤ (2 + Δ𝐿𝑡)𝑑 that contains \∗ and satisfies

∀\ ∈ Θ ∃𝑣 ∈ 𝑉𝑡 s.t. ∥\ − 𝑣∥ ≤ 1
𝐿𝑡
.
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We see log |𝑉𝑡 | ≤ 𝑑 log(2 + Δ𝐿𝑡). ∀ 𝑓\ ∈ F , 𝑥 ∈ X, 𝑎 ∈ A, take 𝑣 to be the closest point to \ in 𝑉𝑡 ,

we have

( 𝑓\ (𝑥, 𝑎) − 𝑓 ∗(𝑥, 𝑎))2 = ( 𝑓\ (𝑥, 𝑎) − 𝑓𝑣 (𝑥, 𝑎) + 𝑓𝑣 (𝑥, 𝑎) − 𝑓\∗ (𝑥, 𝑎))2

≤ 2( 𝑓\ (𝑥, 𝑎) − 𝑓𝑣 (𝑥, 𝑎))2 + 2( 𝑓𝑣 (𝑥, 𝑎) − 𝑓\∗ (𝑥, 𝑎))2

≤ 2𝐿2∥\ − 𝑣∥2 + 2( 𝑓𝑣 (𝑥, 𝑎) − 𝑓\∗ (𝑥, 𝑎))2

≤ 2
𝑡2

+ 2( 𝑓𝑣 (𝑥, 𝑎) − 𝑓\∗ (𝑥, 𝑎))2.

Sine 𝑉𝑡 is a finite function class, we can prove a slight modification of Lemma 26, with the

result (B.1.6) becomes

𝑡−1∑︁
𝑖=1
E𝑥𝑖 ,𝑎𝑖 [( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1] ≤ 136 log( |𝑉𝑡 |/𝛿𝑡) + 2 + 4

𝑡−1∑︁
𝑖=1
𝑌 𝑓 ,𝑖 .

Following the same path in the proof of Lemma 7, we can prove a slight modification of Lemma

7: with probability at least 1 − 𝛿
2 ,

𝑡−1∑︁
𝑖=1
E𝑥𝑖 ,𝑎𝑖

[
( 𝑓𝑡 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1

]
≤ 136

(
𝑑 log(2 + Δ𝐿𝑡) + log

2𝑡3

𝛿

)
+ 2 + 4

𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖

≤ 136
(
𝑑 log(2 + Δ𝐿𝑡) + log

2𝑡3

𝛿
+ 1

)
+ 4

𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖,

uniformly over all 𝑡 ≥ 2 and all fixed sequence 𝑓2, 𝑓3, · · · ∈ F .

By setting the parameter 𝛽𝑡 to be

𝛽𝑡 =
√︁

34𝑡/𝐾
√︃
𝑑 log(2 + Δ𝐿𝑡) + log(2𝑡3/𝛿) + 1

in Algorithm 1, we can prove a slight modification of Theorem 8, with the result being

Regret(𝑇,Algorithm 1) ≤ 2𝐾𝛽𝑇 (log(𝑇/𝐾) + 1) +
√︁

2𝑇 log(2/𝛿) + 𝐾.
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B.2.2 Proof of Corollary 10

We introduce the following Lemma adopt from [73]:

Lemma 29 (a consequence of Lemma 4 in [73]) ∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿,

𝜏2∑︁
𝑖=𝜏1

E𝑥𝑖 ,𝑎𝑖 [( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1] ≤ 2
𝜏2∑︁
𝑖=𝜏1

𝑌 𝑓 ,𝑖+

𝐾 · inf
Y>0

{
100Y𝑇 + 320 log

(
4𝐾E{𝑥𝑖}𝑇𝑖=1

N1(G, Y, {𝑥𝑖}𝑇𝑖=1)
𝛿

)}
.

for all 1 ≤ 𝜏1 ≤ 𝜏2 ≤ 𝑇 and 𝑔 ∈ G.

We then prove a slight modification of Lemma 7, with the result (2.2.7) becomes

𝑡−1∑︁
𝑖=1
E𝑥𝑖 ,𝑎𝑖

[
( 𝑓𝑡 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1

]
≤ 2

𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖+

𝐾 · inf
Y>0

{
100Y𝑇 + 320 log

(
8𝐾𝑇3E{𝑥𝑖}𝑇𝑖=1

N1(G, Y, {𝑥𝑖}𝑇𝑖=1)
𝛿

)}
,

uniformly over all 𝑡 ≥ 2 and all fixed sequence 𝑓2, 𝑓3, · · · ∈ F .

By setting the parameter 𝛽𝑡 in Algorithm 1 to be the fixed value

𝛽 =
√
𝑇𝐾 · inf

Y>0

{
25Y𝑇 + 80 log

(
8𝐾𝑇3E{𝑥𝑖}𝑇𝑖=1

N1(G, Y, {𝑥𝑖}𝑇𝑖=1)
𝛿

)}
,

we can prove a slight modification of Theorem 8, with the result being

Regret(𝑇,Algorithm 1) ≤ 2𝐾𝛽(log(𝑇/𝐾) + 1) +
√︁

2𝑇 log(2/𝛿) + 𝐾.

228



B.3 Proofs for the infinite-action setting

Proof of Theorem 11. We prove the theorem on the clean event stated in Lemma 30, whose

measure is at least 1 − 𝛿/2. For all 𝑡 ≥ 2,

E𝑥 [ 𝑓 ∗(𝑥, 𝜋 𝑓 ∗ (𝑥)] ≤ E𝑥 [1 ∧ 𝛽𝑡𝑉𝑥 (𝜋 𝑓 ∗ (𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] + E𝛽𝑡/𝑡

≤ E𝑥 [ �̂�𝑡 (𝑥, 𝜋𝑡 (𝑥))] + E𝑥 [1 ∧ 𝛽𝑡𝑉𝑥 (𝜋𝑡 (𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] + E𝛽𝑡/𝑡

≤ E𝑥 [ 𝑓 ∗(𝑥, 𝜋𝑡 (𝑥))] + 2E𝑥 [1 ∧ 𝛽𝑡𝑉𝑥 (𝜋𝑡 (𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] + 2E𝛽𝑡/𝑡.

where the first and the last inequalities are due to Lemma 30; the second inequality is due to the

definition of 𝜋𝑡 in Lemma 31. The above argument implies that for all 𝑡 ≥ 2

E𝑥 [ 𝑓 ∗(𝑥, 𝜋 𝑓 ∗ (𝑥) − 𝑓 ∗(𝑥, 𝜋𝑡 (𝑥)] ≤ 2E𝑥 [1 ∧ 𝛽𝑡𝑉𝑥 (𝜋𝑡 (𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] + 2E𝛽𝑡/𝑡. (B.3.1)

When 𝑡 = 1, inequality (B.3.1) trivially holds true, because 𝑉𝑥 (𝜋1(𝑥) | |∅) = ∞ by definition. So

inequality (B.3.1) holds true for all 𝑡 ≥ 1.

When 𝑇 ≤ E, we can bound the regret by E. We now give the regret bound for the case 𝑇 > E.

229



We have the following:

𝑇∑︁
𝑡=1
E[ 𝑓 ∗(𝑥𝑡 , 𝜋 𝑓 ∗ (𝑥𝑡)) − 𝑓 ∗(𝑥𝑡 , 𝑎𝑡) |𝐻𝑡−1] =

𝑇∑︁
𝑡=1

(
E𝑥 [ 𝑓 ∗(𝑥, 𝜋 𝑓 ∗ (𝑥))] − E𝑥 [ 𝑓 ∗(𝑥, 𝜋𝑡 (𝑥))]

)
≤

𝑇∑︁
𝑡=1

2E𝑥 [1 ∧ 𝛽𝑡𝑉𝑥 (𝜋𝑡 (𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] +

𝑇∑︁
𝑡=1

2E𝛽𝑡/𝑡

≤ 2
𝑇∑︁
𝑡=1
E𝑥 [1 ∧ 𝛽𝑡𝑉𝑥 (𝜋𝑡 (𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1

𝑖=1 )] + 2
√︃

17E𝑇 log(2|F |𝑇3/𝛿)

≤ 2
𝑇∑︁
𝑡=1
E𝑥 [𝛽𝑇 ∧ 𝛽𝑇𝑉𝑥 (𝜋𝑡 (𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1

𝑖=1 )] + 2
√︃

17E𝑇 log(2|F |𝑇3/𝛿)

= 2𝛽𝑇E𝑥 [
𝑇∑︁
𝑡=1

1 ∧𝑉𝑥 (𝜋𝑡 (𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] + 2

√︃
17E𝑇 log(2|F |𝑇3/𝛿)

≤ 2𝛽𝑇Epoly(log𝑇) + 2
√︃

17E𝑇 log(2|F |𝑇3/𝛿)

= 2
√︃

17E𝑇 log(2|F |𝑇3/𝛿) (poly(log𝑇) + 1), (B.3.2)

where the first line uses the equivalence proved in Lemma 31; the second line is due to (B.3.1); the

third line is due to
∑𝑇
𝑡=1 1/

√
𝑡 ≤

√
𝑇 ; the fourth line is due to 𝛽𝑇 > 𝛽𝑡 and 𝛽𝑇 > 1 when 𝑇 > E; and

the sixth line is due to the condition II in Assumption 8. By Azuma’s inequality, with probability

at least 1 − 𝛿/2, we can bound the regret by

Regret(𝑇,Algorithm 2) ≤
𝑇∑︁
𝑡=1
E[ 𝑓 ∗(𝑥𝑡 , 𝜋 𝑓 ∗ (𝑥𝑡)) − 𝑓 ∗(𝑥𝑡 , 𝑎𝑡) |𝐻𝑡−1] +

√︁
2𝑇 log(2/𝛿). (B.3.3)

Therefore, by a union bound and inequalities (B.3.2) (B.3.3), with probability at least 1 − 𝛿, the

regret of Algorithm 1 after 𝑇 rounds is upper bounded by

Regret(𝑇,Algorithm 2) ≤ 2
√︃

17E𝑇 log(2|F |𝑇3/𝛿) (poly(log𝑇) + 1) +
√︁

2𝑇 log(2/𝛿).

Combine the case 𝑇 ≤ E and 𝑇 > E we finish the proof. □
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Lemma 30 (counterfactual confidence bound) Consider a non-randomized contextual bandit al-

gorithm that selects 𝜋𝑡 based on 𝐻𝑡−1 and chooses the action 𝑎𝑡 = 𝜋𝑡 (𝑥𝑡) at all rounds 𝑡. Then

∀𝛿 ∈ (0, 1), with probability at least 1 − 𝛿/2, we have

��E𝑥 [ �̂�𝑡 (𝑥, 𝜋(𝑥)] − E𝑥 [ 𝑓 ∗(𝑥, 𝜋(𝑥))]�� ≤ E[1 ∧ 𝛽𝑡𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] + E𝛽𝑡/𝑡.

uniformly over all 𝜋 ∈ Π and all 𝑡 ≥ 2.

Proof of Lemma 30. For a fixed 𝑓 , we denote 𝑌 𝑓 ,𝑖 = ( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2 − ( 𝑓 ∗(𝑥𝑖, 𝑎𝑖) −

𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2, 𝑖 = 1, 2, . . . . From Lemma 7, ∀𝛿 ∈ (0, 1) , with probability at least 1 − 𝛿/2, we have

𝑡−1∑︁
𝑖=1
E𝑥𝑖 ,𝑎𝑖

[
( 𝑓𝑡 (𝑥𝑖, 𝑎𝑖) − 𝑓 ∗(𝑥𝑖, 𝑎𝑖))2 |𝐻𝑖−1

]
≤ 68 log(2|F |𝑡3/𝛿) +

𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖, (B.3.4)

uniformly over all 𝑡 ≥ 2 and all fixed sequence 𝑓2, 𝑓3, . . . 𝑓𝑡+1, · · · ∈ F .

Use the fact that 𝜋𝑖 is completely determined by 𝐻𝑖−1 and independent with 𝑥𝑖, we obtain:

𝑡−1∑︁
𝑖=1
E𝑥

[
( �̂�𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2

]
≤ 68 log(2|F |𝑡3/𝛿) +

𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖 = 4E𝛽2

𝑡 /𝑡 +
𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖,

(B.3.5)

uniformly over all 𝑡 ≥ 2.

From the definition of counterfactual action divergence, we know ∀𝑥 ∈ X,

| 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥, 𝜋(𝑥)) | ≤
√︃
𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1

𝑖=1 )

√√√
𝑡−1∑︁
𝑖=1

( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2.

Applying the AM-GM inequality to the above inequality, we obtain

| 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥, 𝜋(𝑥)) | ≤ 𝛽𝑡𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 ) +

1
4𝛽𝑡

𝑡−1∑︁
𝑖=1

( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2.
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Since F is bounded by [0, 1], we further obtain

| 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥, 𝜋(𝑥)) | ≤ max

{
𝛽𝑡𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1

𝑖=1 ) +
1

4𝛽𝑡

𝑡−1∑︁
𝑖=1

( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2, 1

}
≤ max

{
1, 𝛽𝑡𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1

𝑖=1 )
}
+ 1

4𝛽𝑡

𝑡−1∑︁
𝑖=1

( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2

= 1 ∧ 𝛽𝑡𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 ) +

1
4𝛽𝑡

𝑡−1∑︁
𝑖=1

( �̂�𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2

(B.3.6)

By taking expectation on both side of (B.3.6) and using (B.3.5), we obtain that with probability

at least 1 − 𝛿/2,

��E𝑥 [ 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥, 𝜋(𝑥))]
�� ≤ E𝑥 | 𝑓𝑡 (𝑥, 𝜋(𝑥)) − 𝑓 ∗(𝑥, 𝜋(𝑥)) |

≤ E𝑥 [1 ∧ 𝛽𝑡𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] +

1
4𝛽𝑡
E𝑥 [

𝑡−1∑︁
𝑖=1

( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2]

= E𝑥 [1 ∧ 𝛽𝑡𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] +

1
4𝛽𝑡

𝑡−1∑︁
𝑖=1
E[( 𝑓𝑡 (𝑥, 𝜋𝑖 (𝑥)) − 𝑓 ∗(𝑥, 𝜋𝑖 (𝑥)))2]

≤ E𝑥 [1 ∧ 𝛽𝑡𝑉𝑥 (𝜋(𝑥) | |{𝜋𝑖 (𝑥)}𝑡−1
𝑖=1 )] + E𝛽𝑡/𝑡 +

1
4𝛽𝑡

𝑡−1∑︁
𝑖=1
𝑌 𝑓𝑡 ,𝑖 .

uniformly over all 𝜋 ∈ Π, all 𝑡 ≥ 2 and all fixed sequence 𝑓2, 𝑓3, . . . , ∈ F . Here the first inequality

is due to the triangle inequality; the second inequality is due to (B.3.6); the last inequality is due to

(B.3.5).

By taking 𝑓𝑡 = �̂�𝑡 the the least square solution that minimizes
∑𝑡−1
𝑖=1 ( 𝑓 (𝑥𝑖, 𝑎𝑖) − 𝑟𝑖 (𝑥𝑖, 𝑎𝑖))2, we

have 𝑌 𝑓𝑡 ,𝑖 ≤ 0 and finish the proof. □
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Lemma 31 Consider an algorithm that choose policy 𝜋𝑡 by

𝜋𝑡 (𝑥) =


𝐴𝑥,𝑡 if 𝑡 ≤ 𝑑𝑥 ,

arg max
A(𝑥)

{
�̂�𝑡 (𝑥, ·) + 𝛽𝑡𝑉𝑥𝑡 (·| |{𝜋(𝑥)}𝑡−1

𝑗=1)
}

if 𝑡 > 𝑑𝑥 .

(𝐴𝑥,𝑡 is determined the initialization oracle and the input A(𝑥); the “argmax” problem when

𝑡 > 𝑑𝑥 is computed via the action maximization oracle.) Then this algorithm produces the same

actions as those produced by Algorithm 2.

Proof. The proof to this lemma is straightforward. □

B.4 Proofs for the “optimistic subroutine” in Section 2.5

In this subsection we prove Proposition 3. Our proof is motivated by Lemma 6 and Lemma 7

in [77].

We call 𝑞 an improper distribution if: 1)
∫
A 𝑞(𝑎)d𝑎 is within (0, 1] but not necessarily equal

to one; and 2) E𝑎∼𝑞 [𝑎𝑎⊤] is invertible. We define the improper expectation E𝑎∼𝑞 [𝑊 (𝑎)] for any

random variable𝑊 : A → R by the integral
∫
𝑎∈A𝑊 (𝑎)𝑞(𝑎)d𝑎.

We aim to minimize the potential function

Φ(𝑞) := −2 log(det(E𝑎∼𝑞 [𝑏𝑎𝑏𝑎⊤])) + E𝑎∼𝑞 [2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎))/𝛽], (B.4.1)

where 𝑏𝑎 is the coefficient vector of 𝑎 when the basis is the barycentric spanner {𝐴𝑖}𝑑𝑖=1. We prove

that after each iteration, either Algorithm 4 outputs a desired distribution that satisfies both (2.5.1)

and (2.5.2), or

Φ(𝑞𝑡) ≤ Φ(𝑞𝑡−1) −
1
4
. (B.4.2)

Since Φ function is bounded the algorithm must halt within finite iterations. (B.4.2) is a conse-

quence of the following two lemmas:
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Lemma 32 When E𝑎∼𝑞(𝑎) [2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎))/𝛽] ≥ 2𝑑, the objective Φ(𝑞) will not increase if we

multiply 𝑞 by 2𝑑
2𝑑+E𝑎∼𝑞 [2𝑑+( ℎ̂(�̂�)−ℎ̂(𝑎))/𝛽]

. That is, after step (2.5.3) in Algorithm 4, we always have

Φ(𝑞𝑡− 1
2
) ≤ Φ(𝑞𝑡−1).

Lemma 33 If Algorithm 4 does not halt at round 𝑡, then after the coordinate descent step (2.5.5)

in Algorithm 4, we always have

Φ(𝑞𝑡) ≤ Φ(𝑞𝑡− 1
2
) − 1

4
.

Now we present the proof of Proposition 3, as well as proofs of Lemma 32 and Lemma 33.

Proof of Proposition 3. From Lemma 32 and Lemma 33 we know that if the algorithm does not

halt at round 𝑡, then Φ(𝑞𝑡) ≤ Φ(𝑞𝑡− 1
2
) − 1

4 . Assume Algorithm 4 does not halt after 𝑡 rounds. Then

we have

2𝑑 log 𝑑 + 2𝑑 + 1
𝛽
≥ 2𝑑 log 𝑑 + E𝑎∼𝑞0 [2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎))/𝛽] = Φ(𝑞0)

≥ Φ(𝑞𝑡) +
𝑡

4
= −2 log(det(E𝑎∼𝑞𝑡 [𝑏𝑎𝑏⊤𝑎 ])) + E𝑎∼𝑞𝑡 [2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎))/𝛽] + 𝑡

4

≥ −2 log(det(E𝑎∼𝑞𝑡 [𝑏𝑎𝑏⊤𝑎 ])) +
𝑡

4
. (B.4.3)

where the first inequality is due to
∫
𝐴
𝑞0(𝑎)d𝑎 = 1; the first equation is due to −2 log(det(E𝑎∼𝑞0 [𝑏𝑎𝑏⊤𝑎 ])) =

−2 log(det( 1
𝑑
𝐼)) = 2𝑑 log 𝑑; and the last inequality is due to E𝑎∼𝑞𝑡 [2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎))/𝛽] ≥ 0.

Since the initialization actions consist of a barycentric spanner of A, all coordinates of 𝑏𝑎 is

within [−1, 1], ∀𝑎 ∈ A. Clearly ∥𝑏𝑎∥ ≤
√
𝑑 for all 𝑎 ∈ A. We know that 𝑞𝑡 is a improper
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distribution with at most 𝑑 + 𝑡 non-zero supports, so we assume 𝑞𝑡 =
∑𝑑+𝑡
𝑖=1 𝑞𝑡 (𝐴𝑖)1𝐴𝑖 .

det(E𝑎∼𝑞𝑡 [𝑏𝑎𝑏⊤𝑎 ]) = det(
𝑑+𝑡∑︁
𝑖=1

𝑞𝑡 (𝐴𝑖)𝑏𝐴𝑖𝑏⊤𝐴𝑖 )

≤ (
tr(∑𝑑+𝑡

𝑖=1 𝑞𝑡 (𝐴𝑖)𝑏𝐴𝑖𝑏⊤𝐴𝑖 )
𝑑

)𝑑 = (
∑𝑑+𝑡
𝑖=1 𝑞𝑡 (𝐴𝑖)tr(𝑏𝐴𝑖𝑏⊤𝐴𝑖 )

𝑑
)𝑑

≤ (
∑𝑑+𝑡
𝑖=1 𝑞𝑡 (𝐴𝑖)∥𝑏𝐴𝑖 ∥2

𝑑
)𝑑 ≤ 1,

where the first inequality is due to the AM-GM inequality; the last inequality is due to ∥𝑏𝑎∥ ≤
√
𝑑

for all 𝑎 ∈ A and
∑𝑑+𝑡
𝑖=1 𝑞𝑡 (𝐴𝑖) =

∫
A 𝑞𝑡 (𝑎)𝑑𝑎 ≤ 1. As a result, we obtain log(det(E𝑎∼𝑞𝑡 [𝑏𝑎𝑏⊤𝑎 ])) ≤

0. Combine this result with (B.4.3), we obtain

𝑡 ≤ 8𝑑 (log 𝑑 + 1) + 4
𝛽
.

So Algorithm 4 must halt within at most ⌈ 4
𝛽𝑚

+ 8𝑑 (log 𝑑 + 1)⌉ iterations. When it halts, it is

straightforward to verify that the output distribution is proper and satisfies both (2.5.1) and (2.5.2).

□

Proof of Lemma 32. Denote 𝑤(𝑎) = ( ℎ̂(�̂�) − ℎ̂(𝑎))/𝛽. Given an arbitrary improper distribution

𝑞, we view Φ(𝑐 · 𝑞) as a function on the scaling factor 𝑐. By the chain rule, we can compute the

derivative of this function with respect to 𝑐,

𝜕𝑐Φ(𝑐 · 𝑞) =
∫
A

[
𝜕𝑐𝑞(𝑎)Φ(𝑐 · 𝑞)

] (
𝜕𝑐𝑐𝑞(𝑎)

)
d𝑎

=

∫
A

[
− 2𝑎⊤(E�̃�∼𝑐𝑞 [�̃��̃�⊤])−1𝑎 + 2𝑑 + 𝑤(𝑎)

]
𝑞(𝑎)d𝑎

=
2
𝑐
E𝑎∼𝑞 [𝑎⊤(E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎] + 2𝑑 + E𝑎∼𝑞 [𝑤(𝑎)],

where the second equation use the fact that the partial gradient of log(det(E𝑎∼𝑐𝑞 [𝑏𝑎𝑏⊤𝑎 ])) with

respect to the coordinate 𝑐𝑞(𝑎) is 𝑏⊤𝑎 (E�̃�∼𝑐𝑞 [𝑏�̃�𝑏⊤�̃� ])
−1𝑏𝑎 = 𝑎

⊤(E�̃�∼𝑐𝑞 [�̃��̃�⊤])−1𝑎.
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By the “trace trick”, we have

E𝑎∼𝑞 [𝑎𝑇 (E𝑎∼𝑞 [𝑎𝑎𝑇 ])−1𝑎] = tr(E𝑎∼𝑞 [𝑎𝑇 (E𝑎∼𝑞 [𝑎𝑎𝑇 ])−1𝑎])

= E𝑎∼𝑞 [tr(𝑎𝑇 (E𝑎∼𝑞 [𝑎𝑎𝑇 ])−1𝑎)]

= E𝑎∼𝑞 [tr(𝑎𝑎𝑇 (E𝑎∼𝑞 [𝑎𝑎𝑇 ])−1)]

= tr(E𝑎∼𝑞𝑎𝑎𝑇 (E𝑎∼𝑞 [𝑎𝑎𝑇 ])−1)) = 𝑑.

So we have

𝜕𝑐Φ(𝑐 · 𝑞) = −2𝑑
𝑐

+ 2𝑑 + E𝑎∼𝑞 [𝑤(𝑎)] .

This means that for all 𝑐 ∈ [ 2𝑑
2𝑑+E𝑎∼𝑞 [𝑤(𝑎)] , 1], 𝜕𝑐Φ(𝑐 · 𝑞) ≥ 0.

Proof of Lemma 33. We define

Δ𝑡 =
−2𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡 + 2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎𝑡))/𝛽

(𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡)2 ,

then the coordinate descent step (2.5.5) is 𝑞𝑡 = 𝑞𝑡− 1
2
+ Δ𝑡1𝑎𝑡 .

Φ(𝑞𝑡− 1
2
) −Φ(𝑞𝑡) = 2 log(

det(E𝑎∼𝑞+ [𝑏𝑎𝑏𝑎⊤])
det(E𝑎∼𝑞 [𝑏𝑎𝑏𝑎⊤])

− Δ𝑡
(
2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎𝑡))/𝛽

)
= 2 log(1 + Δ𝑡𝑎

⊤
𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡) − Δ𝑡

(
2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎𝑡))/𝛽

)
(B.4.4)

≥ 2𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡Δ𝑡 − (𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡)2Δ2
𝑡 − Δ𝑡

(
2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎𝑡))/𝛽

)
(B.4.5)

=

(
− 2𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡 + 2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎𝑡))/𝛽

)2

4(𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡)2 , (B.4.6)

where (B.4.4) is due to the matrix determinant lemma as well as 𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡 = 𝑏
⊤
𝑎𝑡
(E𝑎∼𝑞 [𝑏𝑎𝑏𝑎⊤])−1𝑏𝑎𝑡 ;

(B.4.5) is due to the inequality log(1 + 𝑤) ≥ 𝑤 − 𝑤2

2 for all 𝑤 ≥ 0; (B.4.6) is due to the definition
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of Δ𝑡 which maximize the quadratic function in (B.4.5).

As the algorithm does not halt, we have 𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡 ≥ 2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎𝑡))/𝛽, so

| − 2𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡 + 2𝑑 + ( ℎ̂(�̂�) − ℎ̂(𝑎𝑡))/𝛽 |

= 2𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡 − 2𝑑 − ( ℎ̂(�̂�) − ℎ̂(𝑎𝑡))/𝛽

≥ 𝑎⊤𝑡 (E𝑎∼𝑞 [𝑎𝑎⊤])−1𝑎𝑡 .

Combine this inequality with (B.4.6) we obtain

Φ(𝑞𝑡− 1
2
) −Φ(𝑞𝑡) ≥

1
4
.

□
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Appendix C: Appendix for Chapter 3

C.1 Extensions and proofs for AIR

C.1.1 Extensions of AIR

Extension to general Bregman divergence We can generalize AIR from using KL divergence

to using general Bregman divergence. And all the results in Section 3.3 can be extended as well.

This generalization is inspired by [107], which defines information ratio and studies algorithm

design using general Bregman divergence.

Let Ψ : Δ(Π) → R ∪ ∞ be a convex, Legendre, and second-order differentiable function. De-

note 𝐷Ψ to be the Bregman divergence of Ψ, and diam(Ψ) to be the diameter of Ψ (see Appendix

C.4.3) for the background). Given a reference probability 𝑞 ∈ int(Δ(Π)) in the interior of the

simplex and learning rate [ > 0, we define the generalized Algorithmic Information Ratio with

potential function Ψ for decision 𝑝 and distribution a by

AIRΨ
𝑞,[ (𝑝, a) = E

[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
𝐷Ψ (a𝜋∗ |𝜋,𝑜, a𝜋∗) −

1
[
𝐷Ψ (a𝜋∗ , 𝑞)

]
. (C.1.1)

We generalize Theorem 14 and Theorem 17 to second-order differentiable Bregman divergence for

general convex Legendre function, with the log |Π |
[

term in the regret bound be replaced by diam(Ψ)
[

.

Using the extension, we can generalize Theorem 15 (regret of APS) and Theorem 16 (regret of

AMS) to generalized Bregman divergence as well, where the definition of information ratio will

also use the corresponding Bregman divergence as in [107]. We state the extension of Theorem 17

here.

Theorem 25 (Using general Bregman divergence) Assume Ψ : Δ(Π) → R ∪ ∞ is convex, Leg-

endre, second-order differentiable, and has bounded diameter. Given a compact M, an arbitrary
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algorithm ALG that produces decision probability 𝑝1, . . . , 𝑝𝑇 , and a sequence of beliefs a1, . . . , a𝑇

where (a𝑡)𝜋∗ |𝜋,𝑜 ∈ int(Δ(Π)) for all rounds, we have

ℜ𝑇 ≤ diam(Ψ)
[

+
𝑇∑︁
𝑡=1

(
AIRΨ

𝑞𝑡 ,[
(𝑝𝑡 , a𝑡)

+ sup
a∗

(
𝜕AIRΨ

𝑞𝑡 ,[
(𝑝𝑡 , a)

𝜕a

�����
a=a𝑡

)⊤
(a∗ − a𝑡)

)
.

Extension to high probability bound We conjecture that the results in Section 3.3 may be able

to be extended to high probability bounds, with some modification in our algorithm and complexity

measure. We refer to [108] for a possible approach to achieve this goal.

C.1.2 Proof of Theorem 14

By the discussion in Section 3.5.1 and 3.5.2, we only need to prove Lemma 11 in order to prove

Theorem 14.

Proof of Lemma 11: let Q the space of all mappings from Π×O to Δ(Π). For a mapping𝑄 ∈ Q,

denote 𝑄 [𝜋𝑡 , 𝑜𝑡] ∈ Δ(Π) as the image of (𝜋, 𝑜). Define 𝐵 : Δ(M × Π) × Q → R by

𝐵(a, 𝑄) = E
[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
log

𝑄 [𝜋, 𝑜] (𝜋∗)
𝑞(𝜋∗)

]
. (C.1.2)

𝐵(a, 𝑄) is linear with respect to a, convex with respect to 𝑄. In order to apply minimax theorem

to the concave-convex objective function 𝐵, we need to verify that the sets Q and Δ(M × Π) are

convex and compact sets, and 𝐵 is continuous with respect to both 𝑄 ∈ Q and a ∈ Δ(M × Π).

This verification step assumes a basic understanding of general topology, as it involves infinite

sets (compactness and continuity for finite sets are trivial); and eager readers may choose to skip

this step. For this reason we put the verification step to the end of the proof. By applying Sion’s
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minimax theorem (Lemma 37), we have

sup
𝑣

inf
𝑄
𝐵(a, 𝑄) = inf

𝑄
sup
a

𝐵(a, 𝑄). (C.1.3)

From the definition of AIR and first-order optimality condition, we have

AIR𝑞,[ (𝑝, a)

=E

[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
KL(Pa (𝜋∗ |𝜋, 𝑜), 𝑞)

]
= inf
𝑄∈Q

𝐵(a, 𝑄),

so ā is the maximizer of supa inf𝑄 𝐵(a, 𝑄). Define 𝑄 ā as the mapping that maps each (𝜋, 𝑜) to the

conditional probability Pā (𝜋∗ |𝜋, 𝑜), then 𝑄 ā is the unique minimizer of 𝐵(ā, 𝑄). Denote �̄� to be

the minimizer of inf𝑄 supa 𝐵(a, 𝑄). From the equality (C.1.3), (ā, �̄�) must be a Nash equilibrium

of 𝐵, i.e.

AIR𝑞,[ (𝑝, ā) = sup
a

inf
𝑄
𝐵(a, 𝑄) = 𝐵(ā, �̄�) = inf

𝑄
sup
a

𝐵(a, 𝑄).

Then �̄� is a minimizer of 𝐵(a, 𝑄), which implies 𝑄 ā = �̄� as the minimizer is unique. As a result,

we have

AIR𝑞,[ (𝑝, ā)

= sup
a

𝐵(a, 𝑄 ā)

= sup
𝑀,𝜋∗
E

[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
log
Pā (𝜋∗ |𝜋, 𝑜)
𝑞(𝜋∗)

]
.

Verification of the conditions of Sion’s minimax theorem: It is straightforward to see convex-

ity of the sets Q and Δ(M × Π). As a collection of mappings, Q is compact with respect to the

product topology by Tychonoff’s theorem, and 𝐵 is continuous with respect to 𝑄 by the definition
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of product topology. Because the probability measure on the compact set is compact with respect

to the weak*-topology, Δ(M ×Π) is a compact set. We refer to the book [145] for the basic back-

ground of general topology. Finally, 𝐵 is continuous with respect to a because 𝐵 is linear in a.

□

C.1.3 Proof of Theorem 16

Combining Theorem 14 and Lemma 8, we prove Theorem 16.

C.1.4 Proof of Theorem 15

We prove the following lemma that upper bounds AIR𝑞𝑡 ,[ (𝑞𝑡 , a𝑡) by DEC and information ratio

for Thompson Sampling. Theorem 15 will be a straightforward consequence of the regret bound

(3.3.1) in Theorem 14 and this lemma.

Lemma 34 (Bounding AIR by DEC and IR for TS) Assume that 𝑓𝑀 (𝜋) is bounded in [0, 1] for

all 𝑀, 𝜋. Then for [ ∈ (0, 1/2] and all 𝑞 ∈ int(Δ(Π)), we have

AIR𝑞,[ (𝑞, a) ≤ sup
𝑀∈Δ(M)

DEC2[ (Δ(M), 𝑀) + 2[ ≤ [

2
· IRTS + 2[.

Proof of Lemma 34: Given a probability measure a, Denote a𝑜 |𝜋∗,𝜋 = E𝑀∼a𝑀 | 𝜋∗ [𝑀 (𝜋)] to be

the posterior belief of observation 𝑜 conditioned on 𝜋∗ and 𝜋, and a𝑜 |𝜋 = E(𝑀,𝜋∗)∼a [𝑀 (𝜋)] to be

posterior belief of 𝑜 conditioned solely on 𝜋.

Denote the |Π |−dimensional vector 𝑋,𝑌 by

𝑋 (𝜋) = E(𝑀,𝜋∗)∼a [ 𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋)] ,

𝑌 (𝜋) = E(𝑀,𝜋∗)∼a
[
𝐷2

H(a𝑜 |𝜋∗,𝜋, a𝑜 |𝜋)
]
.
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Note that the Algorithmic Information Ratio can always be written as

AIR𝑞,[ (𝑝, a) = Ea,𝑝
[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
KL(a𝜋∗ |𝜋,𝑜, 𝑞)

]
= Ea,𝑝

[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
KL(a𝜋∗ |𝜋,𝑜, a∗𝜋) −

1
[

KL(a𝜋∗ , 𝑞)
]

= Ea,𝑝

[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
KL(a𝑜 |𝜋∗,𝜋, a𝑜 |𝜋) −

1
[

KL(a𝜋∗ , 𝑞)
]
, (C.1.4)

where the first equality is the definition of AIR; the second equality is because the expectation

of posterior is equal to prior; and the third equality is due to the symmetry property of mutual

information. By (C.1.4) we have that

AIR𝑞,[ (𝑞, a)

≤Ea,𝑞
[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
𝐷2

H(a𝑜 |𝜋∗,𝜋, a𝑜 |𝜋)
]
− 1
[

KL(a∗𝜋, 𝜌𝑡)

= ⟨𝑞, 𝑋⟩ − 1
2[

KL(a𝜋∗ , 𝑞) −
1
[
⟨𝑞,𝑌⟩ − 1

2[
KL(a𝜋∗ , 𝑞)

≤ ⟨a𝜋∗ , 𝑋⟩ + 2[ − 1
[
⟨𝑞,𝑌⟩ − 1

2[
KL(a𝜋∗ , 𝑞)

≤ ⟨a𝜋∗ , 𝑋⟩ + 2[ − 1
[
⟨𝑞,𝑌⟩ − 1

2[
𝐷2

H(a𝜋∗ , 𝑞)

≤ ⟨a𝜋∗ , 𝑋⟩ −
(1 − [)
(1 + [)[ ⟨a𝜋∗ , 𝑌⟩ + 2[

≤Ea,a𝜋∗
[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

2[
𝐷2

H(a𝑜 |𝜋∗,𝜋, a𝑜 |𝜋)
]
+ 2[, (C.1.5)

where the first inequality is by Lemma 41; the second inequality is by Lemma 43 and the fact

𝑓𝑀 (𝜋) ∈ [0, 1] for all 𝑀 ∈ M and 𝜋 ∈ Π; the third inequality is by Lemma 41; the fourth

inequality is a consequence of Lemma 42 and the AM-GM inequality; and the last inequality uses

the condition [ ≤ 1
2 .

Finally, by combining (C.1.5) and Lemma 8, we have that

AIR𝑞,[ (𝑞, a) ≤ sup
𝑀∈Δ(M)

DEC2[ (Δ(M), 𝑀) + 2[ ≤ [

2
· IR + 2[.
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□

C.1.5 Proof of Theorem 17 and Theorem 25

In this section we prove Theorem 25, which is a more general extension to Theorem 17 (Theo-

rem 25 applies to general Bregman divergence with second-order differentiable Ψ while Theorem

17 is stated with the KL divergence). Theorem 17 and 25 are consequences of the following “en-

velop theorem,” which shows that gradients of AIR with respect to a is equal to the gradient of the

adversary when one uses the posterior mapping as the decision rule.

Lemma 35 (Envelop theorem) Let X and Y be convex sets, and 𝜙 : X ×Y → R a function such

that for all 𝑦 ∈ Y, 𝜙(·, 𝑦) is a Legendre function in 𝑥; and for all 𝑥 ∈ X, −𝜙(𝑥, ·) is a Legendre

function in 𝑦. For each 𝑦 ∈ Y, let 𝑥𝑦 be the a minimizer of the convex optimization problem

min
𝑥∈X

𝜙(𝑥, 𝑦),

and assume that 𝑥𝑦 is differentiable with respect to 𝑦. Then for all 𝑦 ∈ int(dom(𝜓)), we have

𝜕𝜙(𝑥𝑦, 𝑦)
𝜕𝑦

=
𝜕𝜙(𝑥, 𝑦)
𝜕𝑦

����
𝑥=𝑥𝑦

.

We consider generalized AIR, where Ψ is a Legendre and second-order differentiable function.

Recall in (C.1.1) we define

AIRΨ
𝑞,[ (𝑝, a) = E

[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
𝐷Ψ (a𝜋∗ |𝜋,𝑜, a𝜋∗) −

1
[
𝐷Ψ (a𝜋∗ , 𝑞)

]
.

And similar to (C.1.2), for all a ∈ Δ(M×Π) such that Pa (𝜋∗) ∈ int(Δ(Π)) and 𝑅 : Π×O → R|Π |,

we define

𝐵(a, 𝑅) = E
[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) + 1

[
⟨∇Ψ(𝑞) − 𝑅[𝜋, 𝑜]),1(𝜋∗) − 𝑞⟩ + 1

[
𝐷Ψ∗ (𝑅[𝜋, 𝑜],∇Ψ(𝑞))

]
,
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where 1(𝜋∗) is the vector whose 𝜋∗−coordinate is 1 but all other coordinates are 0. Note that

𝐵(a, 𝑅) is a convex function with respect to 𝑅. By Lemma 39 and the property (b) in Lemma 38,

we know that

AIRΨ
𝑞,[ (𝑝, a) = 𝐵(a,∇Ψ(a𝜋∗ |·,·)) = inf

𝑅
𝐵(a, 𝑅),

where the last equality is by the first-order optimal condition. By Lemma 35, when Ψ is second-

order differentiable, we further have

𝜕AIRΨ
𝑞,[ (𝑝, a)
𝜕a

=
𝜕𝐵(a, 𝑅)
𝜕a

����
𝑅=∇Ψ(a𝜋∗ | ·, ·)

.

By the above identity and the linearity of 𝐵(a, 𝑄) with respect to a, we have

𝐵(a∗, a𝜋∗ |·,·) = AIRΨ
𝑞,[ (𝑝, a) +

〈
𝜕AIRΨ

𝑞,[ (𝑝, a)
𝜕a

, a∗ − a
〉
, ∀a∗.

Following the same steps in proving Theorem 14, we prove Theorem 25 (and consequently Theo-

rem 17).

C.2 Details and proofs for bandit problems

C.2.1 Concave parameterization with Bernoulli reward

We consider Bernoulli structured bandit with an action set Π ⊂ R𝑑 and a mean reward function

class F ⊂ (Π :↦→ [0, 1]) that is convex. (As discussed in the beginning of Section 3.4, every

bounded-reward bandit problem can equivalently be reduced to a Bernoulli bandit problem. For

simplicity we make the standard assumption that Π is finite, which can be removed using standard

discretization and covering argument. The goal here is to make the computation complexity to

be independent of the size of model class M, but only depends on |Π |. The general principle to

achieve this goal is as follows. For each possible value of 𝜋∗, we assign an “effective model” 𝑀𝜋∗

to 𝜋∗ so that the optimization problem (3.6.1) reduces to selecting those |Π | “effective models,” as
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well as the probability distribution over them.

We introduce the following parametrization: ∀𝑎, 𝑎∗ ∈ Π (we use notation 𝑎∗, 𝑎 as the index

sometimes to avoid repetition of notation 𝜋∗, 𝜋),

\𝑎∗ (𝑎) = E [𝑟 (𝑎) |𝜋∗ = 𝑎∗] ,

𝛼(𝑎∗) = a𝑎∗ |𝜋,𝑜 (𝑎∗),

𝛽𝑎∗ (𝑎) = 𝛼(𝑎∗) · \𝑎∗ (𝑎).

Then we have represent AIR by (𝛼, 𝛽𝜋∗𝜋∗∈Π):

AIR𝑞,[ (𝑝, a) =
∑︁
𝜋∗∈Π

𝛽𝜋∗ (𝜋∗) −
∑︁

𝜋∗,𝜋∈[𝐾]
𝑝(𝜋)𝛽𝜋∗ (𝜋)

−1
[

∑︁
𝜋∗,𝜋∈[𝐾]

𝑝(𝜋)𝛼(𝜋∗)kl

(
𝛽𝜋∗ (𝜋)
𝛼(𝜋) ,

∑︁
𝜋∗∈Π

𝛽𝜋∗ (𝜋)
)
− 1
[

KL(𝛼, 𝑞), (C.2.1)

and the constraint of (𝛼, 𝛽𝜋∗𝜋∗∈Π) is that the functions parameterized by \𝑎∗ belong to the mean

reward function class F . We know the constraint set of (𝛼, 𝛽𝜋∗𝜋∗∈Π) to be convex because the

convexity of perspective function.

Now we want to prove that the AIR objective in the maximization problem (3.6.1) is concave.

We have

𝐵(a, 𝑄) = E𝑝,a
[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) + 1

[

∫
O
Pa (𝜋, 𝑜, 𝜋∗) log

𝑞(𝜋∗)
𝑄 [𝜋, 𝑜] (𝜋∗) 𝑑𝑜

]
=

∑︁
𝜋∗
𝛽𝜋∗ (𝜋∗) −

∑︁
𝜋,𝜋∗

𝑝(𝜋)𝛽𝜋∗ (𝜋) +
1
[

∑︁
𝜋,𝜋∗

𝑝(𝜋)𝛽𝜋∗ (𝜋) log
𝑞(𝜋∗)

𝑄 [𝜋, 1] (𝜋∗)

+1
[

∑︁
𝜋,𝜋∗

𝑝(𝜋) (𝛼(𝜋∗) − 𝛽𝜋∗ (𝜋∗)) log
𝑞(𝜋∗)

𝑄 [𝜋, 0] (𝜋∗) . (C.2.2)

This means that after parameterizing a with 𝛼 and {𝛽𝜋∗}𝜋∗∈Π, 𝐵(a, 𝑄) will be a linear function of
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(𝛼, {𝛽𝜋∗}𝜋∗∈Π). As a result,

AIR𝑞,[ (𝑝, a) = inf
𝑄
𝐵(a, 𝑄)

will be a concave function of (𝛼, {𝛽𝜋∗}𝜋∗∈Π). So the optimization problem to maximize AIR

is a convex optimization problem, whose computational complexity will be poly-logarithmic to

the cardinality of (𝛼, {𝛽𝜋∗}𝜋∗∈Π). As a result, the computational complexity to maximize AIR is

polynomial in |Π | and does not depends on cardinality of the model class. This discussion shows

that we give finite-running-time algorithm with computational complexity poly(𝑒𝑑) even when

the cardinality of model class is double-exponential. Still, the computation is only efficient for

simple problems such as 𝐾−armed bandits, but we also give efficient algorithm for linear bandits

in Appendix 3.6.2.

C.2.2 Simplified APS for Bernoulli MAB

For Bernoulli 𝐾−armed bandits discussed in in Section 3.4.1, we give the details about how to

use first-order optimality conditions to derive Algorithm 8.

We denote a𝜋∗ (𝑖 | 𝑗 , 1) as the shorthand for a𝜋∗ (𝑖 |𝜋 = 𝑗 , 𝑜 = 1), the conditional probability

P(𝜋∗ = 𝑖 |𝜋 = 𝑗 , 𝑜 = 1) when the underlying probability measure is a.

By (C.2.2) and Lemma 35 (using the envelop theorem and the bivariate function (C.2.2) to cal-

culate the derivatives is easier than directly calculating the derivatives of the AIR parameterization

(C.2.1)), we have for each 𝑖 ∈ [𝐾],

𝜕AIR𝑞,[ (𝑝, a)
𝜕𝛽𝑖 (𝑖)

= (1 − 𝑝(𝑖)) − 1
[
𝑝(𝑖) (log a𝜋∗ (𝑖 |𝑖, 1) − log a𝜋∗ (𝑖 |𝑖, 0)) . (C.2.3)

And for every 𝑖 ≠ 𝑗 ∈ [𝐾],

𝜕AIR𝑞,[ (𝑝, a)
𝜕𝛽𝑖 ( 𝑗)

= −𝑝( 𝑗) − 1
[
𝑝( 𝑗) (log a𝜋∗ (𝑖 | 𝑗 , 1) − log a𝜋∗ (𝑖 | 𝑗 , 0)) . (C.2.4)
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Lastly, for each 𝑖 ∈ [𝐾],

𝜕AIR𝑞,[ (𝑝, a)
𝜕𝛼(𝑖) =

1
[

∑︁
𝑗∈[𝐾]

𝑝( 𝑗) (log 𝑞(𝑖) − log a𝜋∗ (𝑖 | 𝑗 , 0)) . (C.2.5)

We let the derivatives in (C.2.3) and (C.2.4) be zero, which means that the derivatives with respect

to all coordinates of 𝛽 are zero. We have for all 𝑖 ≠ 𝑗 ∈ [𝐾]

log
a𝜋∗ ( 𝑗 | 𝑗 , 1)
a𝜋∗ ( 𝑗 | 𝑗 , 0)

=
[

𝑝( 𝑗) − [,

log
1 − a𝜋∗ (𝑖 | 𝑗 , 1)
1 − a𝜋∗ (𝑖 | 𝑗 , 0)

= −[, 𝑖 ≠ 𝑗 .

Solving the above two equation we obtain

a𝜋∗ ( 𝑗 | 𝑗 , 1) =
1 − exp(−[)

1 − exp(−[/𝑝( 𝑗)) , ∀ 𝑗 ∈ [𝐾],

a𝜋∗ (𝑖 | 𝑗 , 1) =
exp(−[) − exp(−[/𝑝( 𝑗))

1 − exp(−[/𝑝( 𝑗)) · 𝛼(𝑖)
1 − 𝛼( 𝑗) , ∀𝑖 ≠ 𝑗 ∈ [𝐾],

a𝜋∗ ( 𝑗 | 𝑗 , 0) =
exp([) − 1

exp([/𝑝( 𝑗)) − 1
, ∀ 𝑗 ∈ [𝐾],

a𝜋∗ (𝑖 | 𝑗 , 0) =
exp([/𝑝( 𝑗)) − exp([)

exp([/𝑝( 𝑗)) − 1
· 𝛼(𝑖)

1 − 𝛼( 𝑗) , ∀𝑖 ≠ 𝑗 ∈ [𝐾] . (C.2.6)

Now we set 𝛼 = 𝑝 = 𝑞 so that the posterior updates (C.2.6) all have closed forms. Now

we want to prove that (C.2.5) (the derivatives with respect to coordinates of 𝛼) are bounded by

constants. As can be seen from (C.2.6), when the observed reward at the chosen action 𝑗 is 𝑟𝑡 = 0,

the posterior a𝜋∗ ( 𝑗 | 𝑗 , 0) for the chosen action will be smaller than its prior belief 𝑞( 𝑗); and the

posteriors a𝜋∗ (𝑖 | 𝑗 , 0) will be larger than the prior beliefs 𝑞(𝑖) for all unchosen actions 𝑖 ≠ 𝑗 . As a
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result, we have for every 𝑖 ∈ [𝐾],

𝜕AIR𝑞,[ (𝑝, a)
𝜕𝛼(𝑖) =

1
[

∑︁
𝑗∈[𝐾]

𝑝( 𝑗) log
𝑞(𝑖)

a𝜋∗ (𝑖 | 𝑗 , 0)

≤1
[
𝑝(𝑖) log

𝑞(𝑖)
a𝜋∗ (𝑖 |𝑖, 0)

=
1
[
𝑝(𝑖) log

𝑝(𝑖) (exp([/𝑝(𝑖)) − 1)
exp([) − 1

≤1,

where the first equality is by (C.2.5); the first inequality is because 𝑞(𝑖) < a𝜋∗ (𝑖 | 𝑗 , 0) for all 𝑗 ≠ 𝑖;

the second equality because of (C.2.5) and 𝑝 = 𝑞; and the last inequality is a consequence of the

following application of Jensen’s inequality:

1
1 + 𝑝(𝑖) exp([) + 𝑝(𝑖)

1 + 𝑝(𝑖) exp
(
− [

𝑝(𝑖)

)
≥ 1.

Now we have shown that the derivatives of AIR with respect to all {𝛽𝑖 ( 𝑗)}𝑖, 𝑗∈[𝐾] are zeros, and

the derivatives of AIR with respect to all {𝛼(𝑖)}𝑖∈[𝐾] . We note that AIR is 1
[
−strongly convex with

respect to 𝛼 when the gradient with respect to {𝛽𝑖 ( 𝑗)}𝑖, 𝑗∈[𝐾] are all zeros. Then by Theorem 17

and Theorem 15 we can prove that

Theorem 26 (Regret of Simplified APS for Bernoulli MAB) The regret of Algorithm 8 with [ =

𝛾 =
√︁

2 log𝐾/(𝐾𝑇 + 4𝑇) is bounded as follows, for all 𝑇 ≥ 2𝐾 log𝐾 + 4,

ℜ𝑇 ≤
√︁
(5𝐾 + 4)𝑇 log𝐾.

C.2.3 Surrogate concave objective with Gaussian reward

For structured bandit with Gaussian reward structure, we can formulate the optimization prob-

lem as a surrogate optimization problem, where all classical upper bounds about information ratio

in practical applications apply (e.g., see the square-loss formulation of IR in [104, 117]). For
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the simplicity of presentation, we restrict our attention to Gaussian reward with mean bounded in

[0, 1] and variance 𝜎2 ≤ 1.

Denote 𝛼 = Pa (𝜋∗) and 𝛽𝜋∗ = Pa (𝜋∗) · \𝜋∗ . Define a variant of AIR as

AIR = E

[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

[
KL(𝑁 (\𝜋∗ (𝜋), 1), 𝑁 (\avg(𝜋), 1)) −

1
[

KL(𝛼, 𝑞)
]
, (C.2.7)

where we denote

\avg =
∑︁
𝜋∗∈Π

𝛼(𝜋∗)\𝜋∗ .

And we define

𝐵(a, 𝜔) = E(𝑀,𝜋∗)∼a,𝜋∼𝑝
[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

2[𝜎2

(
(\𝜔𝜋∗ (𝜋) − 𝑜)2 − (\𝜔avg(𝜋) − 𝑜)2

)
− 1
[

log
𝛼𝜔 (𝜋∗)
𝑞(𝜋∗)

]
= E

[
𝑓𝑀 (𝜋∗) − 𝑓𝑀 (𝜋) − 1

2[𝜎2

(
\𝜔𝜋∗ (𝜋)2 − \𝜔avg(𝜋)2

)
− 1
[

log
𝛼𝜔 (𝜋∗)
𝑞(𝜋∗)

]
+ 1
[𝜎2E

[
𝑜(\𝜋∗ − \𝜔avg)

]
.

(C.2.8)

Then we have

AIR𝑞,[ (𝑝, a) = inf
𝜔
𝐵(a, 𝜔).

This means that AIR𝑞,[ (𝑝, a) will be a concave function of (𝛼, {𝛽𝜋∗}𝜋∗∈Π). And we can develop

a parallel theory for approximately optimizing AIR as we have done for AIR in Section 3.3.4. In

particular, we need to verify that 𝐵(a, 𝜔) is always a upper bound of 𝐵(a, P𝜔 (𝜋∗ |·, ·)) in order to

derive regret bounds. This is true if we assume the variance 𝜎2 ≤ 1 as the normal probability

density function is locally concave round its mean.
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C.2.4 Simplified APS for Gaussian linear bandits, relationship with IPW

In this subsection we derive Algorithm 9 for adversarial linear bandits with Gaussian reward.

As the decision space is an 𝑑−dimensional action set Π = A ⊆ R𝑑 , we will use the notations A

(as action set), 𝑎 (as action) and 𝑎∗ (as optimal action) to follow the tradition of literature about

linear bandits.

By (C.2.8) and Lemma 35, we have for each 𝑎∗ ∈ A,

𝜕AIR𝑞,[ (𝑝, a)
𝜕𝛽𝑎∗

= 𝑎∗ − E𝑎∼𝑝 [𝑎] −
1
[
E𝑎∼𝑝 [𝑎𝑎⊤]

(
\𝑎∗ − \avg

)
. (C.2.9)

And for each 𝑎∗ ∈ A,

𝜕AIR𝑞,[ (𝑝, a)
𝜕𝛼(𝑎∗) = − 1

2[

∫
A
𝑝(𝑎)

(
\⊤𝑎∗𝑎 − \⊤avg𝑎

)2
𝑑𝑎 − 1

[
log

𝛼(𝑎∗)
𝑞(𝑎∗) . (C.2.10)

Let the derivatives in (C.2.9) be zero. If the matrix E𝑎∼𝑝 [𝑎𝑎⊤] have full rank, then we have

\𝑎∗ − \avg = [(E𝑎∼𝑝 [𝑎𝑎⊤])−1(𝑎∗ − E𝑎∼𝑝 [𝑎]), ∀𝑎∗ ∈ A,

𝛼 = 𝑝.

Taking the above relationship into (C.2.10), we have

𝜕AIR𝑞,[ (𝑝, a)
𝜕𝛼(𝑎∗) = −[

2
(𝑎∗ − E𝑎∼𝑝 [𝑎]) (E𝑎∼𝑝 [𝑎𝑎⊤])−1(𝑎∗ − E𝑎∼𝑝 [𝑎]) −

1
[

log
𝛼(𝑎∗)
𝑞(𝑎∗) .

Assume the minimal eigenvalue of E𝑎∼𝑝 [𝑎𝑎⊤] satisfies _min(E𝑎∼𝑝 [𝑎𝑎⊤]) ≥ [, then one can

verify that the following solution is approximately optimal to the problem (3.6.1) (with controllable

precision):

𝛼 = 𝑝,

\𝑎∗ = [(E[𝑎𝑎⊤])−1𝑎∗, ∀𝑎∗ ∈ A. (C.2.11)
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Note that this solution satisfies \𝑖 ∈ [0, 1]𝐾 for all 𝑖 ∈ [𝐾].

By Bayes’ rule and (C.2.11), the posterior update Pa (𝜋∗ |𝜋, 𝑟 (𝜋)) can be expressed as follows.

Given 𝑎∗ ∈ A, we have

Pa (𝑎∗ = �̄� |𝑎, 𝑟 (𝑎)) =
𝛼(�̄�) exp(−1

2 (𝑟 (𝑎) − \
⊤
�̄� 𝑎)2)∫

A 𝑝(𝑎∗) exp(−1
2 (𝑟 (𝑎) − \𝑎∗ (𝑎))2)𝑑𝑎∗

=

𝛼(�̄�) exp
(
𝑟 (𝑎)\⊤�̄� 𝑎 −

1
2 (\

⊤
�̄� 𝑎)2

)
∫
A 𝛼(𝑎∗) exp

(
𝑟 (𝑎)\⊤

𝑎∗𝑎 −
1
2 (\⊤𝑎∗𝑎)2

)
𝑑𝑎∗

.

The resulting algorithm is an exponential weight algorithm with a modified importance weight

estimator

𝑟𝑡 (𝑎) = 𝑎⊤(E𝑎∼𝑝 [𝑎𝑎⊤])−1𝑎𝑡𝑟𝑡 (𝑎𝑡) −
[

2
(𝑎⊤(E𝑎∼𝑝 [𝑎𝑎⊤])−1𝑎𝑡)2.

The forced exploration to ensure _min(E𝑎∼𝑝 [𝑎𝑎⊤]) ≥ [ can be done with the help of the volumetric

spanners constructed in [118].

C.3 Proofs for MAIR

C.3.1 Proof of Lemma 13

By Definition 10 we have

sup
𝜌∈int(Δ(M)))

sup
`∈Δ(M)

inf
𝑝∈Δ(Π)

MAIR𝜌𝑡 ,[ (𝑝, `)

= sup
𝜌∈int(Δ(M)))

sup
`∈Δ(M)

inf
𝑝∈Δ(Π)

E

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL(𝑀 (𝜋), `𝑜 |𝜋) −

1
[

KL(`, 𝜌)
]

= sup
`∈Δ(M)

inf
𝑝∈Δ(Π)

E

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL(𝑀 (𝜋), `𝑜 |𝜋)

]
≤ sup
�̄�∈conv(𝑀)

DECKL
[ (M, �̄�),
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where the second equality is by (3.7.1) and the inequality is because Hellinger distance is bounded

by KL divergence (Lemma 41). □

C.3.2 Analysis of sequential estimation

Consider the optimistic Bayesian posterior update

𝜌𝑡+1(𝑀) ∝ exp

(
𝑡∑︁
𝑠=1

(log[𝑀 (𝜋𝑠)] (𝑜𝑠) + [𝑊𝑠 (𝑀))
)
, (C.3.1)

where {𝑊𝑠}𝑇𝑠=1 is a series of non-negative weights in [0, 1]𝑀 . When all 𝑊𝑠 (𝑀) = 0 for all 𝑀 and

𝑠, the update reduces to the update of Bayesian posterior. We want to upper bound the cumula-

tive estimation error of updating rule (C.3.1). We present the following theorem, whose proof is

inspired by [119, 120].

Theorem 27 Applying the updating rule (C.3.1) with 𝑊𝑠 (𝑀) ∈ [0, 1] for all 𝑀 ∈ M and 𝑠 =

1, . . . , 𝑇 , we have

𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡 [𝐷2

𝐻 (𝑀 (𝜋), 𝑀∗(𝜋))] ≤ 2[ + 1 + 2 log( |M|𝑇) + 4
𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡 [𝑊𝑡 (𝑀)] .

Proof of Theorem 27: denote E𝑡 [·] be the conditional expectation conditioned on the filtration

from round 1 to round 𝑡. Denote

𝑍𝑡 (𝑀) =
𝑇∑︁
𝑠=1

(log[𝑀 (𝜋𝑠)] (𝑜𝑠)) + [𝑊𝑠 (𝑀).
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We have

log

( ∑︁
𝑀∈M

E𝑡−1 [𝑍𝑡 (𝑀)]
)
− log

( ∑︁
𝑀∈M

𝑍𝑡−1(𝑀)
)

= log

( ∑︁
𝑀∈M

𝑍𝑡−1(𝑀)∑
𝑀∈M 𝑍𝑡−1(𝑀)E𝑡−1 [exp (log[𝑀 (𝜋𝑡)] (𝑜𝑡) +𝑊𝑡 (𝑀))]

)
= log

( ∑︁
𝑀∈M

`𝑡 (𝑀) · E𝑡−1 [[𝑀 (𝜋𝑡)] (𝑜𝑡)] · exp (𝑊𝑡 (𝑀))
)
.

By the above equality, we have

log

( ∑︁
𝑀∈M

E𝑡−1 [𝑍𝑡 (𝑀)]
)
− log

( ∑︁
𝑀∈M

𝑍𝑡−1(𝑀)
)

≤
∑︁
𝑀∈M

`𝑡 (𝑀) · E𝑡−1 [[𝑀 (𝜋𝑡)] (𝑜𝑡)] · exp (𝑊𝑡 (𝑀)) − 1

=
∑︁
𝑀∈M

`𝑡 (𝑀) · (E𝑡−1 [[𝑀 (𝜋𝑡)] (𝑜𝑡)] − 1) · exp (𝑊𝑡 (𝑀))

+
∑︁
𝑀∈M

`𝑡 (𝑀) · exp (𝑊𝑡 (𝑀)) − 1

≤E`𝑡 ,𝑝𝑡
[∫

O
[𝑀∗(𝜋)] (𝑜) [𝑀 (𝜋)] (𝑜)𝑑𝑜 − 1

]
+ 2𝑊𝑡 (𝑀)

≤E`𝑡 ,𝑝𝑡
[∫

O

√︁
[𝑀∗(𝜋)] (𝑜) [𝑀 (𝜋)] (𝑜)𝑑𝑜 − 1

]
+ 2𝑊𝑡 (𝑀)

= − 1
2
E`𝑡 ,𝑝𝑡

[
𝐷2

H(𝑀 (𝜋), 𝑀∗(𝜋))
]
+ 2𝑊𝑡 (𝑀),

where the first inequality is because log(1 + 𝑧) ≤ 𝑧 for all 𝑧 ∈ R; the second inequality is because

𝑒𝑧 ≤ 1+2𝑧 for all 𝑧 ≤ [0, 1] and𝑊𝑡 (𝑀) ∈ [0, 1]; and the third inequality is because [𝑀∗(𝜋)] (𝑜) ∈

[0, 1] by the the fact 𝑀∗(𝜋) is a probability distribution over O.

Rearrange the above inequality, we conclude that

E`𝑡 ,𝑝𝑡
[
𝐷2

H(𝑀 (𝜋), 𝑀∗(𝜋))
]

≤2 log

( ∑︁
𝑀∈M

𝑍𝑡−1(𝑀)
)
− 2 log

( ∑︁
𝑀∈M

E𝑡−1 [𝑍𝑡 (𝑀)]
)
+ 4𝑊𝑡 (𝑀). (C.3.2)
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By lemma 40, for any 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿,

𝑇∑︁
𝑡=1

(
log

( ∑︁
𝑀∈M

𝑍𝑡−1(𝑀)
)
− log

( ∑︁
𝑀∈M

E𝑡−1 [𝑍𝑡 (𝑀)]
))

≤
𝑇∑︁
𝑡=1

(
log

( ∑︁
𝑀∈M

𝑍𝑡−1(𝑀)
)
− log

( ∑︁
𝑀∈M

𝑍𝑡 (𝑀)
))

+ log
1
𝛿

= log

( ∑︁
𝑀∈M

𝑍0(𝑀)
)
− log

( ∑︁
𝑀∈M

𝑍𝑇 (𝑀)
)
+ log

1
𝛿

≤[ + log |M| + log
1
𝛿
. (C.3.3)

Taking 𝛿 = 1/𝑇 in (C.3.3) and applying (C.3.2), we can show that

𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡

[
𝐷2

H(𝑀 (𝜋), 𝑀∗(𝜋))
]

≤ max{1, 2[ + 2 log( |M|𝑇) + 4
𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡 [𝑊𝑡 (𝑀)]}

≤2[ + 1 + 2 log( |M|𝑇) + 4
𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡 [𝑊𝑡 (𝑀)] .

□

C.3.3 Proof for Theorem 18

Calculating the optimization error. Similar to Theorem 17, we can prove

ℜ𝑇 ≤ log |M|
[

+
𝑇∑︁
𝑡=1

(
MAIR𝜌𝑡 ,[ (𝑝𝑡 , `𝑡) +

〈
𝜕MAIR𝜌𝑡 ,[ (𝑝𝑡 , `)

𝜕`

����
`=`𝑡

,1(𝑀∗) − `𝑡

〉)
, (C.3.4)

where 1(𝑀∗) is the vector whose 𝑀∗− coordinate is 1 but all other coordinates are 0.
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By Lemma 35 we have

𝜕MAIR𝜌,[ (𝑝, `)
𝜕`(𝑀) = 𝑓𝑀 (𝜋𝑀) − E𝜋∼𝑝 [ 𝑓𝑀 (𝜋)] + 1

[
E𝜋∼𝑝,𝑜∼𝑀 (𝜋)

[
log

𝜌(𝑀)
`(𝑀 |𝜋, 𝑜)

]
= 𝑓𝑀 (𝜋𝑀) − E𝜋∼𝑝 [ 𝑓𝑀 (𝜋)] − 1

[
log

`(𝑀)
𝜌(𝑀) −

1
[
E𝜋∼𝑝,𝑜∼𝑀 (𝜋)

[
log

[𝑀 (𝜋)] (𝑜)
`𝑜 (𝑜 |𝜋)

]
.

By using the updating rule in (3.7.2), we have

𝜕MAIR𝜌,[ (𝑝, `)
𝜕`(𝑀) = −1

[
E𝜋∼𝑝,𝑜∼𝑀 (𝜋)

[
log

[𝑀 (𝜋)] (𝑜)
`𝑜 (𝑜 |𝜋)

]
= −1

[
E𝑝∼𝜋

[
KL(𝑀 (𝜋), `𝑜 |𝜋)

]
,

which implies 〈
𝜕MAIR𝜌𝑡 ,[ (𝑝𝑡 , `)

𝜕`

����
`=`𝑡

,1(𝑀∗) − `𝑡

〉
=

1
[
E`𝑡 ,𝑝𝑡

[
KL(𝑀 (𝜋), (`𝑡)𝑜 |𝜋)

]
− 1
[
E𝜋∼𝑝

[
KL(𝑀∗(𝜋), (`𝑡)𝑜 |𝜋)

]
. (C.3.5)

Taking (C.3.5) into (C.3.4), we have

ℜ𝑇

≤ log |M|
[

+
𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL

(
𝑀∗(𝜋), (`𝑡)𝑜 |𝜋

)
− 1
[

KL(`𝑡 , 𝜌𝑡)
]
.

So we have

ℜ𝑇 ≤ log |M|
[

+
𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL(`𝑡 , 𝜌𝑡)

]
. (C.3.6)
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Refined analysis of Algorithm 10. At the same time, we have

E`𝑡 ,𝑝𝑡

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL(`𝑡 , 𝜌𝑡)

]
=E`𝑡 ,𝑝𝑡

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
𝐷2

H (𝑀∗(𝜋), 𝑀 (𝜋))
]

− 1
[

KL(`𝑡 , 𝜌𝑡) +
1
[
E𝜋∼𝑝𝑡 ,𝑀∼`𝑡 ,

[
𝐷2

H(𝑀 (𝜋), 𝑀∗(𝜋))
]
. (C.3.7)

Applying Theorem 27 with

𝑊𝑠 (𝑀) = [
(
𝑓𝑀 (𝜋𝑀) − E𝑝𝑠 [ 𝑓𝑀 (𝜋)]

)
,

we have that

1
[

𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡

[
𝐷2

H(𝑀 (𝜋), 𝑀∗(𝜋))
]
≤ 2 + 2 log( |M|𝑇) + 1

[
+ 4

𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡 [ 𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋)] .

(C.3.8)

Combining (C.3.6), (C.3.7) and (C.3.8), we have

ℜ𝑇

≤ log |M|
[

+
𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

[
KL(`𝑡 , 𝜌𝑡)

]
≤

𝑇∑︁
𝑡=1
E`𝑡 ,𝑝𝑡

[
5 ( 𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋)) − 1

[
𝐷2

H(𝑀 (𝜋), 𝑀∗(𝜋)) − 1
[

KL(`𝑡 , 𝜌𝑡)
]

+ 2 + 2 log( |M|𝑇) + 1
[

.

Therefore, we prove Theorem 18. □
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C.3.4 Proof of Theorem 19

Consider the Bayesian posterior sampling strategy induced by ` ∈ Δ(𝑀), which samples

𝑀 ∼ ` and plays 𝜋𝑀 . Denote the induced decision probability as

`𝜋𝑀 (𝜋) =
∑︁

𝑀∈M,𝜋𝑀=𝜋

`(𝑀).

For arbitrary ` ∈ Δ(𝑀), denote the |Π |−dimensional vectors 𝑋,𝑌 by

𝑋 (𝜋) = E` [ 𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋)] ,

𝑌 (𝜋) = E`
[
𝐷2

H(P(𝑜 |𝑀, 𝜋), P` (𝑜 |𝜋))
]
.

Then

E`,𝜋∼𝜌𝜋𝑀

[
5 ( 𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋)) − 1

[
𝐷2

H(𝑀∗(𝜋), 𝑀 (𝜋))
]
− 1
[

KL(`, 𝜌)

≤
〈
𝜌𝜋𝑀 , 5𝑋

〉
− 1
[

〈
𝜌𝜋𝑀 , 𝑌

〉
− 1
[

KL(`𝜋𝑀 , 𝜌𝜋𝑀 )

≤
〈
`𝜋𝑀 , 5𝑋

〉
+ 10[ − 1

[

〈
𝜌𝜋𝑀 , 𝑌

〉
− 1

2[
KL(`𝜋𝑀 , 𝜌𝜋𝑀 )

≤
〈
`𝜋𝑀 , 5𝑋

〉
+ 10[ − 1

[

〈
𝜌𝜋𝑀 , 𝑌

〉
− 1

2[
𝐷2

H(`𝜋𝑀 , 𝜌𝜋𝑀 )

≤
〈
`𝜋𝑀 , 5𝑋

〉
− (1 − [)

(1 + [)[
〈
`𝜋𝑀 , 𝑌

〉
+ 10[

≤5E`,𝜋∼`𝜋𝑀

[
𝑓𝑀 (𝜋𝑀) − 𝑓𝑀 (𝜋) − 1

2[
𝐷2

H(𝑀∗(𝜋), 𝑀 (𝜋))
]
+ 2[,

where the first inequality is because KL divergence between induced decision distributions of two

model distributions will be no larger than KL divergence between the two model distributions; the

second inequality is by Lemma 43 and the fact 𝑓𝑀 (𝜋) ∈ [0, 1] for all 𝑀 and 𝜋; the third inequality

is by Lemma 41; the fourth inequality is a consequence of Lemma 42 and the AM-GM inequality;

and the last inequality uses the condition [ ≤ 1
10 .

Combining the above inequality with Theorem 18, we prove Theorem 19.
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□

C.4 Technical backgrounds

C.4.1 Conditional entropy

In the discussion after Definition 7, we utilize the following important result stating that con-

ditional entropy is concave. The reference provides a succinct proof to this result.

Lemma 36 (Conditional entropy of a probability measure is concave, [146]) Let P be a prob-

ability measure on locally compact space X, and let 𝔈,𝔉 be countable partitions of the space.

Define the entropy with respect to the partition 𝔈 as

𝐻 (P,𝔈) = −
∑︁
𝐸∈𝔈
P(𝐸) logP(𝐸),

and the conditional entropy as

𝐻 (P,𝔈 |𝔉) =
∑︁
𝐹∈𝔉
P(𝐹)𝐻 (P(·|𝐹),𝔈).

Then the conditional entropy 𝐻 (P,𝔈 |𝔉) is a concave function with respect to P.

C.4.2 Minimax theorem

We introduce the classical minimax theorem for convex-concave game.

Lemma 37 (Sion’s minimax theorem for values, [115]) Let X and Y be convex and compact

sets, and 𝜓 : X × Y → R a function which for all 𝑦 ∈ Y is convex and continuous in 𝑥 and for all

𝑥 ∈ X is concave and continuous in 𝑦. Then

min
𝑥∈X

max
𝑦∈Y

𝜓(𝑥, 𝑦) = max
𝑦∈Y

min
𝑥∈X

𝜓(𝑥, 𝑦).
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C.4.3 Convex analysis

Let W be a 𝑑−dimensional convex decision set. Let the potential function Ψ : R𝑑 → R ∪ ∞

be a proper convex function that is Legendre (see §26 in [147] for more background). We assume

W ⊂ dom(Ψ) := {𝑢 ∈ R𝑑 : Ψ(𝑢) < ∞} and bounded diameter of potential, e.g.,

diam(W) := sup
𝑢,𝑣∈W

Ψ(𝑢) − Ψ(𝑣) < ∞.

Define the Fenchel-Legendre dual of Ψ as

Ψ∗(𝑎) = sup
𝑢∈R𝑑

⟨𝑎, 𝑢⟩ − Ψ(𝑢), ∀𝑎 ∈ R𝑑 .

Define the Bregman divergences with respect to Ψ and Ψ∗ as

𝐷Ψ (𝑢, 𝑣) = Ψ(𝑢) − Ψ(𝑣) − ⟨∇Ψ(𝑣), 𝑢 − 𝑣⟩,

𝐷Ψ∗(𝑎, 𝑏) = Ψ∗(𝑎) − Ψ∗(𝑏) − ⟨∇Ψ∗(𝑏), 𝑎 − 𝑏⟩.

Lemma 38 (Properties of Legendre function, [110]) If Ψ is a Legendre function, then

(a) ∇Ψ is a bijection between int(dom(Ψ)) and int(dom(Ψ∗)) with the inverse (∇Ψ)−1 = ∇Ψ∗.

That is, for 𝑢 ∈ int(dom(Ψ)), if 𝑎 = ∇Ψ(𝑢), then 𝑎 ∈ int(dom(Ψ∗)) and ∇Ψ∗(𝑎) = 𝑢;

(b) 𝐷Ψ (𝑢, 𝑣) = 𝐷Ψ∗ (∇Ψ(𝑣),∇Ψ(𝑢)) for all 𝑢, 𝑣 ∈ int(dom(Ψ)); and

(c) the Fenchel conjugate Ψ∗ is Legendre.

Note that the property (a) in Lemma 38 is a foundational results in convex optimization—in order

to optimize a convex function, one only needs to optimize its Fenchel dual function (in the sense

of making gradient small). For example, mirror descent, dual averaging and follow the regularized

leader are procedures based on this principle. This property is a special case of Lemma 35, the

“envelop theorem.”
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We also introduce a property of Bregman divergence.

Lemma 39 (Generalized Pythagorean theorem) For a convex function Ψ : W → R ∪ ∞ and

𝑢, 𝑣, 𝑤 ∈ W, we have

𝐷Ψ (𝑢, 𝑣) − 𝐷Ψ (𝑣, 𝑤) − 𝐷Ψ (𝑤, 𝑢) = ⟨𝑢 − 𝑤,∇Ψ(𝑤) − ∇Ψ(𝑣)⟩.

C.4.4 Concentration inequality

We introduce a one-sided martingale concentration inequality, Lemma A.4 in [105], for a se-

quence of random variables.

Lemma 40 (Martingale concentration inequality) For any sequence of real-valued random vari-

ables {𝑋𝑡}𝑇𝑡=1 adapted to a filtration {𝔉𝑡}𝑇𝑡=1, it holds that for any 𝛿 ∈ (0, 1), with probability at

least 1 − 𝛿, for all 𝑇 ′ ≤ 𝑇 ,

𝑇 ′∑︁
𝑡=1

𝑋𝑡 ≤
𝑇 ′∑︁
𝑡=1

log (E𝑡−1 [exp(𝑋𝑡)]) + log
1
𝛿
.

C.4.5 Information theory

We have the following result stating that the Hellinger distance between two probability mea-

sures are smaller than the KL divergence between those two probability measures.

Lemma 41 (Hellinger distance smaller than KL divergence) For probability measures P and

Q, the following inequalities hold:

𝐷2
H(P,Q) ≤ KL(P,Q).

We introduce a localized version of Pinsker-type inequality using Hellinger distance (which will

be stronger than using the KL divergence).
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Lemma 42 (Multiplicative Pinsker-type inequality for Hellinger distance, [105]) Let P and Q

be probability measures on compact space X. For all ℎ : X → R with 0 ≤ ℎ(𝑋) ≤ 𝑅 almost

surely under P and Q, we have

|EP [ℎ(𝑋)] − EQ [ℎ(𝑋)] | ≤
√︃

2𝑅(EP [ℎ(𝑋)] + EQ [ℎ(𝑋)]) · 𝐷2
H(P,Q).

We introduce a standard one-sided bound using KL divergence. Compared with Lemma 42,

the upper bound in Lemma 43 only depends on the probability measure 𝑞, while the bound is

one-sided and it does not take the square-root from as in Lemma 42.

Lemma 43 (Drifted error bound using KL divergence) For any 𝑝, 𝑞 ∈ Δ(Π), [ > 0, and any

vector 𝑦 ∈ RΠ where 𝑦(𝜋) ≤ 1/[ for all 𝜋 ∈ Π, we have

⟨𝑦, 𝑝 − 𝑞⟩ − 1
[

KL(𝑝, 𝑞) ≤ [
∑︁
𝜋∈Π

𝑞(𝜋)𝑦(𝜋)2.

Proof of Lemma 43: consider the KL divergence 𝜓𝑞,[ (𝑝) = 1
[
KL(𝑝 | |𝑞), it is known that the

convex conjugate duality of 𝜓𝑞 is the log partition function

𝜓∗
𝑞,[ (𝑦) := sup

𝑝∈Δ(Π)

{
⟨𝑦, 𝑝⟩ − 1

[
KL(𝑝 | |𝑞)

}
=

1
[

log

(∑︁
𝜋∈Π

𝑞(𝜋) exp([𝑦(𝜋))
)
. (C.4.1)
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We have

⟨𝑦, 𝑝⟩ − 1
[

KL(𝑝 | |𝑞)

≤ 1
[

log

(∑︁
𝜋∈Π

𝑞 exp([𝑦(𝜋))
)

≤ 1
[

log

(∑︁
𝜋

𝑞(𝜋) (1 + [𝑦(𝜋) + [2𝑦(𝜋)2)
)

=
1
[

log

(
1 + [⟨𝑦, 𝑞⟩ + [2

∑︁
𝜋∈Π

𝑞(𝜋)𝑦(𝜋)2

)
≤ ⟨𝑦, 𝑞⟩ + [

∑︁
𝜋∈Π

𝑞(𝜋)𝑦(𝜋)2, (C.4.2)

where the first equation is because of (C.4.1); the second inequality is because 𝑒𝑧 ≤ 1 + 𝑧 + 𝑧2 for

all 𝑧 ≤ 1 and the last inequality is due to log(1 + 𝑧) ≤ 𝑧 for all 𝑧 ∈ R. Therefore we have

⟨𝑦, 𝑝 − 𝑞⟩ − 1
[

KL(𝑝 | |𝑞) ≤ [
∑︁
𝜋∈Π

𝑞(𝜋)𝑦(𝜋)2

for all 𝑦 ∈ R|Π | where 𝑦(𝜋) ≤ 1/[ for all 𝜋. □
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