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Abstract

Essays in transportation inequalities, entropic gradient flows and mean field approximations

Lane Chun Lanston Yeung

This thesis consists of four chapters. In Chapter 1, we focus on a class of transportation in-

equalities known as the transportation-information inequalities. These inequalities bound optimal

transportation costs in terms of relative Fisher information, and are known to characterize certain

concentration properties of Markov processes around their invariant measures. We provide a char-

acterization of the quadratic transportation-information inequality in terms of a dimension-free

concentration property for i.i.d. copies of the underlying Markov process, identifying the precise

high-dimensional concentration property encoded by this inequality. We also illustrate how this

result is an instance of a general convex-analytic tensorization principle.

In Chapter 2, we study the entropic gradient flow property of McKean–Vlasov diffusions via a

stochastic analysis approach. We formulate a trajectorial version of the relative entropy dissipation

identity for these interacting diffusions, which describes the rate of relative entropy dissipation

along every path of the diffusive motion. As a first application, we obtain a new interpretation of

the gradient flow structure for the granular media equation. Secondly, we show how the trajectorial

approach leads to a new derivation of the HWBI inequality.

In Chapter 3, we further extend the trajectorial approach to a class of degenerate diffusion

equations that includes the porous medium equation. These equations are posed on a bounded

domain and are subject to no-flux boundary conditions, so that their corresponding probabilistic

representations are stochastic differential equations with normal reflection on the boundary. Our



stochastic analysis approach again leads to a new derivation of the Wasserstein gradient flow prop-

erty for these nonlinear diffusions, as well as to a simple proof of the HWI inequality in the present

context.

Finally, in Chapter 4, we turn our attention to mean field approximation – a method widely

used to study the behavior of large stochastic systems of interacting particles. We propose a new

approach to deriving quantitative mean field approximations for any strongly log-concave prob-

ability measure. Our framework is inspired by the recent theory of nonlinear large deviations,

for which we offer an efficient non-asymptotic perspective in log-concave settings based on func-

tional inequalities. We discuss three implications, in the contexts of continuous Gibbs measures on

large graphs, high-dimensional Bayesian linear regression, and the construction of decentralized

near-optimizers in high-dimensional stochastic control problems.
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Introduction

In this thesis, we present new results in transportation inequalities, entropic gradient flows and

mean field approximations, important topics in probability and stochastic analysis. We provide the

relevant background and a summary of contributions below.

1. Dimension-free characterization of transportation inequalities

Since Marton [1] and Talagrand [2] introduced the celebrated transportation-entropy inequali-

ties, transportation inequalities have been a very active area in probability and functional analysis.

Subsequent work by Bobkov–Götze [3] and Gozlan–Léonard [4] then unfolds their profound con-

nections to the concentration of measure phenomenon and large deviation principles. The first

topic studied in this thesis is a newer class of inequalities that bound Wasserstein distances in

terms of Fisher information. These transportation-information inequalities were introduced in [5]

and studied further in [6, 7, 8, 9, 10, 11]. They are known to characterize the concentration of

Markov processes around their invariant measures.

We show in Chapter 1 that, for an ergodic Markov process on a Polish space, the quadratic

transportation-information inequality for the invariant measure is equivalent to a dimension-free

rate of convergence to equilibrium for the product Markov process, in which each coordinate

evolves independently according to the original process. Remarkably, our characterization ex-

actly parallels Gozlan’s characterization of the quadratic transportation-entropy inequality in [12].

The proof is based on a new Laplace-type principle for the operator norms of Feynman-Kac semi-

groups, which is of independent interest.
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Lastly, we illustrate how both our theorem and (a form of) Gozlans are instances of a general

convex-analytic tensorization principle. This chapter is based on the paper [13] joint with Daniel

Lacker.

2. Trajectorial approach to Otto calculus

In the study of the long-time behavior of Markov processes, an important property we can

analyze is the trend to equilibrium, or more precisely, the convergence of the time-marginal laws to

the stationary distribution. For certain diffusions, when we view their time-marginal distributions

geometrically on the Wasserstein space, they actually evolve in the steepest possible direction. For

example, Jordan, Kinderlehrer and Otto showed in their seminal work [14] that the Fokker-Planck

diffusion is the Wasserstein gradient flow of steepest descent. Recently, a trajectorial approach

to the result of [14] and to the resulting “Otto calculus” was developed in [15]. This approach

operates at the level of the particles, and is based on a detailed perturbation analysis, as well as on

tools from time reversal in stochastic calculus.

2.1 McKean-Vlasov diffusions

This trajectorial analysis was generalized in Chapter 2, where we consider a class of stochastic

differential equations (SDEs) with mean field drift interaction. Theses SDEs are non-local (or

non-linear) in the sense that the drift term depends on the distribution of the state variable. Non-

local equations of this form arise in the modeling of weakly interacting diffusions, which gained

prominence after the work of McKean [16]. As is well known from [17, 18, 19], the McKean-

Vlasov diffusion can be characterized as a gradient flow. This is an optimality property stating

that the curve of time-marginal distributions evolves in the steepest possible direction of the free

energy functional with respect to the quadratic Wasserstein distance.

In Chapter 2, we provide a trajectorial approach to deriving this entropic steepest descent

property. To this end, we first formulate a trajectorial analogue of the relative entropy dissipation

identity, which describes exactly the rate of relative entropy dissipation along every single path of

the diffusion, rather than at the level of their ensembles. Specifically, it is formulated in terms of the

2



semimartingale decomposition of a relative entropy process into a martingale and a compensator,

the latter of which can be viewed as a stochastic counterpart of the deterministic rate of relative

entropy dissipation. Our stochastic analysis approach is based on time reversal of diffusions and

Lions differential calculus over Wasserstein space.

A direct perturbation analysis then reveals the steepest descent property of the McKean–Vlasov

diffusion. This is accomplished by considering a “perturbed” diffusion, constructed by adding a

gradient potential to the drift of the original diffusion. By performing the same trajectorial analysis

as before, we deduce that the Wasserstein metric slope in the original, unperturbed setting is always

steeper than the one in the perturbed setting.

Additionally, our trajectorial approach also leads to a simple proof of the HWBI inequality

[20, Theorem 4.2], which is an extension of the famous HWI inequality of Otto-Villani [21]. This

chapter is based on the paper [22] joint with Bertram Tschiderer.

2.1 Porous medium diffusions

In Chapter 3, we further extend the trajectorial approach to a class of degenerate parabolic

equations, that includes the porous medium equation. Different from Chapter 2, we pose them on

a bounded domain and impose no-flux boundary condition. The corresponding probabilistic rep-

resentations turn out to be SDEs with normal reflection on the boundary. Our stochastic analysis

approach again leads to a new derivation of the Wasserstein gradient flow property for these non-

linear diffusions, as well as to a simple proof of the HWI inequality in the present context. A key

difficulty in adapting the trajectorial approach to this setting stems from the degenerate parabolic-

ity of the diffusion. This is tackled by restricting the initial condition to be nondegenerate, which

ensures that the solution to the parabolic equation is smooth. This chapter is based on the paper

[23] joint with Donghan Kim.

3. Mean field approximations

In Chapter 4, we shift our focus to mean field approximation–a powerful method widely used

to study the behavior of large stochastic systems of interacting particles. The main reason that

3



these systems are difficult to analyze is due to the interactions between particles, which propa-

gate throughout the systems and make them complex and intractable very rapidly as the number

of particles gets large. Mean field approximation substantially reduces this high dimensionality

by approximating the original system with a closely related one, in which particles evolve inde-

pendently and interactions take place simply with the average state of the system. While it was

originally used as a heuristic to make rough predictions, a large body of work has since been de-

voted to rigorously justifying the asymptotic validity of such an approximation in various contexts.

In the discrete setting, this problem was studied in the groundbreaking paper of Chatterjee-

Dembo [24], where they showed that the mean field approximation holds if the Gibbs measure

has low gradient complexity, as measured by the metric entropy of the range of the gradient of the

Hamiltonian. This result, along with a number of subsequent papers [25, 26, 27], resolved an open

problem regarding subgraph counts in sparse random graphs, and had important applications to

Ising models [28, 29, 30]. Alternative and typically more convenient measures of gradient com-

plexity have since appeared, based on the notion of Gaussian-width [31, 32, 33] or Rademacher-

width [34].

In this chapter, we propose an alternative approach to deriving quantitative mean field ap-

proximations for continuous Gibbs measures. It turns out that a natural condition for the mean

field approximation to be valid in our setting is the strong log-concavity of the Gibbs measure.

This provides us with the suitable regularity, such that when combined with functional inequalities

(specifically, the log-Sobolev and the Poincaré inequalities), allows us to obtain simple bounds on

the mean field approximation error. Our bound is typically simpler to work with then prior bounds

involving covering numbers.

We discuss three applications of our framework. The first application concerns Gibbs mea-

sures with pairwise heterogeneous interactions. This class of Gibbs measures appears as invari-

ant measures of locally interacting diffusion process. Under suitable concavity assumptions, our

framework implies that the mean field approximation is valid for this class of Gibbs measures.

Furthermore, if the interaction matrix is doubly stochastic or converges in cut metric, some addi-

4



tional precise asymptotic results and a law of large numbers are available. The second application

is concerned with high-dimensional Bayesian linear regression, where we show that if the prior

distribution is log-concave, then the posterior is mean field, i.e., close to a product distribution.

Leveraging this, we also derive a law of large numbers for the posterior. The final application is

concerned with a class of high-dimensional stochastic control problems, in which a large num-

ber of players cooperatively choose their drifts to maximize an expected reward minus a quadratic

running cost. For a broad class of potentially asymmetric rewards, we show that there exist approx-

imately optimal controls which are decentralized, in the sense that each player’s control depends

only on its own state and not the states of the other players. Moreover, the optimal decentralized

controls can be constructed non-asymptotically, without reference to any mean field limit. This

chapter is based on the paper [35] joint with Daniel Lacker and Sumit Mukherjee.

5



Chapter 1: A characterization of transportation-information inequalities for

Markov processes in terms of dimension-free concentration

Inequalities between transportation costs and Fisher information are known to characterize

certain concentration properties of Markov processes around their invariant measures. This chap-

ter provides a new characterization of the quadratic transportation-information inequality W2I in

terms of a dimension-free concentration property for i.i.d. (conditionally on the initial positions)

copies of the underlying Markov process. This parallels Gozlan’s characterization of the quadratic

transportation-entropy inequality W2H . The proof is based on a new Laplace-type principle for

the operator norms of Feynman-Kac semigroups, which is of independent interest. Lastly, we il-

lustrate how both our theorem and (a form of) Gozlan’s are instances of a general convex-analytic

tensorization principle. This chapter is based on the paper [13] joint with Daniel Lacker.

1.1 Introduction

There is by now a vast literature on the connections between concentration of measure and

transportation-entropy inequalities, which bound Wasserstein distances in terms of relative en-

tropy. See [36, 37, 38] for thorough discussions. In this chapter, we focus on a somewhat newer

class of inequalities between Wasserstein distances and Fisher information, introduced in [5] and

studied further in [6, 7, 8, 9, 10, 11]. These transportation-information inequalities characterize

the concentration of Markov processes around their invariant measures. We show in this chapter

that, for an ergodic Markov process on a Polish space E with invariant measure µ, the quadratic

transportation-information inequality for µ is equivalent to a dimension-free rate of convergence

to equilibrium for the natural Markov process associated with invariant measure µ⊗n. We present

this main result first, and then we discuss its close analogy with Gozlan’s characterization of the

6



quadratic transportation-entropy inequality [12], along with other related literature.

Let us first fix notation. Fix throughout the chapter a complete separable metric space (E, d).

Denote by B(E) the set of measurable and bounded real-valued functions on E. Let P(E) be the

space of Borel probability measures on E, equipped with the topology of weak convergence.

For ν, µ ∈ P(E), the p-order Wasserstein distance is defined as usual by

Wp(ν, µ) :=

(
inf
π

∫
E×E

dp(x, y) π (dx, dy)

)1/p

, (1.1)

where the infimum is over all couplings π of ν and µ. (The value +∞ is allowed.)

Fix a Borel probability measure µ on E. We work with a continuous-time E-valued Markov

process, governed by the family (Ω,F , (Xt)t≥0, (Px)x∈E). The transition semigroup is denoted by

(Pt)t≥0, defined as usual by Ptf(x) := Ex[f(Xt)].

Assumptions 1.1.1. Throughout this chapter, we assume the following two conditions:

(1) The probability measure µ is ergodic and reversible for (Xt)t≥0.

(2) The semigroup (Pt)t≥0 is strongly continuous on L2(µ).

Let L denote the infinitesimal generator of (Pt)t≥0 with domain denoted by D(L) ⊂ L2(µ).

The corresponding Dirichlet form is defined by

E(g, g) := −
∫
E

gLg dµ, for g ∈ D(L). (1.2)

Under our standing assumptions, E is closable in the Hilbert space L2(µ) and its closure (E ,D(E))

has domain D(E) = D(
√
−L) in L2(µ). For ν ∈ P(E), the Fisher information of ν with respect

to µ is defined by

I(ν |µ) :=


E
(√

f,
√
f
)

if ν ≪ µ, dν
dµ

= f, and
√
f ∈ D(E)

+∞ otherwise.
(1.3)
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Example 1.1.2. A classical example comes from diffusion processes: Let E be a complete con-

nected (finite-dimensional) Riemannian manifold equipped with its volume measure dx. Let

V ∈ C1(E) be such that µ(dx) = e−V (x)dx defines a probability measure. Let L = ∆−∇V · ∇,

where ∇ and ∆ denote the usual gradient and Laplace-Beltrami operators, respectively. Then

E(g, g) =
∫
E

|∇g|2 dµ, for all g ∈ D(E) = H1(E, µ),

where | · | is the Riemannian norm, and H1(E, µ) is the closure of the space of infinitely differ-

entiable functions on E with respect to the Sobolev norm g 7→
√∫

E
(|g|2 + |∇g|2) dµ. In this

case,

I(fµ |µ) =
∫
E

|∇
√
f |2 dµ =

1

4

∫
E

|∇ log f |2f dµ.

The transportation-information inequalities of interest in this chapter are the following:1 For

C > 0 and p ≥ 1, we say that µ satisfies the WpI(C) inequality if

W2
p (µ, ν) ≤ CI(ν |µ), for all ν ∈ P(E). (1.4)

1.1.1 A known characterization of W1I

In [5], characterizations of W1I are provided in terms of concentration properties for the

Markov process. They make use of the Feynman-Kac semigroups (Pft )t≥0, defined (as in [5, 39,

40]) for f ∈ B(E) by

Pft g(x) := Ex
[
g(Xt) exp

(∫ t

0

f(Xs)ds

)]
, x ∈ E,

1Take note that different authors adopt different conventions regarding the constant C. For instance, [5] uses 4c2

where we use C.
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for any measurable function g for which the expectation is well-defined. They make use also of

the operator norm

∥∥Pft ∥∥L2(µ)
:= sup

{∥∥Pft g∥∥L2(µ)
: g ≥ 0,

∫
E

g2 dµ ≤ 1

}
. (1.5)

This coincides with the spectral radius of the bounded symmetric operator Pft . Moreover, a well

known form of the Feynman-Kac formula states that (Pft )t≥0 is a strongly continuous semigroup

with infinitesimal generator given by g 7→ Lg + fg with the same domain as L; see, e.g., [41,

Section III.19] or [42, Section 6.1].

Theorem 1.1.3 ([5, Corollary 2.5]). Assume there exists x0 ∈ E such that
∫
E
d2(x, x0)µ(dx) <

∞. Let C > 0. The following are equivalent:

(1) µ satisfies the W1I(C) inequality.

(2) For any λ ∈ R, t > 0, and 1-Lipschitz function f : E → R,

1

t
log ∥Pλft ∥L2(µ) ≤ λ

∫
E

f dµ+
Cλ2

4
.

(3) For any r, t > 0, 1-Lipschitz function f : E → R, and ν ∈ P(E) such that dν/dµ ∈ L2(µ),

Pν
(
1

t

∫ t

0

f(Xs) ds ≥
∫
E

f dµ+ r

)
≤
∥∥∥∥dνdµ

∥∥∥∥
L2(µ)

exp

(
−tr

2

C

)
,

where Pν(·) :=
∫
E
Px(·) ν(dx).

In other words, Theorem 1.1.3 characterizes the W1I inequality in terms of (2) concentration

inequalities for the operator norms of the Feynman-Kac semigroups and (3) deviation inequalities

for the time-averages 1
t

∫ t
0
f(Xs) ds from the spatial averages

∫
E
f dµ for Lipschitz f .
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1.1.2 A new characterization of W2I

Our main result, Theorem 1.1.4 below, provides a similar characterization for the W2I in-

equality, in which conditions (2) and (3) are replaced by dimension-free counterparts involving the

product measures µ⊗n. Different characterizations of the W2I inequality have been given in prior

literature, which we discuss in more detail in Chapter 1.1.4, but none in terms of dimension-free

properties.

We first need some notation. For any n ∈ N, we define in the natural way the product Markov

process (X1
t , . . . , X

n
t )t≥0 onEn in which each coordinate evolves according to the original process

on E, conditionally independently given (X1
0 , . . . , X

n
0 ). We write Pnx for the law of this process

given (X1
0 , . . . , X

n
0 ) = x and Enx for expectation under Pnx.

The corresponding infinitesimal generator maps a suitable function f to the function x 7→∑n
i=1 Lf(·, x−i)(xi), where f(·, x−i) := f(x1, . . . , xi−1, ·, xi+1, . . . , xn) for x = (x1, . . . , xn) ∈

En. That is, L acts on each coordinate separately, and we sum over the coordinates. The corre-

sponding Dirichlet form is the so-called sum-form:

E⊕n(g, g) =

∫
En

n∑
i=1

E(g(·, x−i), g(·, x−i))µ⊗n(dx). (1.6)

The domain D(E⊕n) is the set of g ∈ L2(µ⊗n) for which g(·, x−i) ∈ D(E) for µ⊗n-a.e. x ∈ En and

the integral on the right-hand side of the above equation is finite. The Fisher information I(ν |µ⊗n)

for ν ∈ P(En) is defined analogously to (1.3):

I(ν |µ⊗n) =


E⊕n(

√
f,

√
f) if ν ≪ µ⊗n, dν

dµ⊗n = f, and
√
f ∈ D(E⊕n)

+∞ otherwise.
(1.7)

For f ∈ B(En), let (Pfn,t)t≥0 be the n-dimensional Feynman-Kac semigroup, given by

Pfn,t g(x) := Enx
[
g(X1

t , . . . , X
n
t ) exp

(∫ t

0

f(X1
s , . . . , X

n
s ) ds

)]
, x ∈ En. (1.8)
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Its operator norm is defined in the usual way, by

∥∥Pfn,t∥∥L2(µ⊗n)
:= sup

{∥∥Pfn,t g∥∥L2(µ⊗n)
: g ≥ 0,

∫
En

g2 dµ⊗n ≤ 1

}
. (1.9)

This product Markov process is ubiquitous in probability because of its central role in the ten-

sorization of functional inequalities. Tensorization properties of functional inequalities are critical

to their usefulness in the study of concentration of measure in high dimension. The popular W2H ,

Poincaré, and log-Sobolev inequalities are all well known to be dimension-free [43, 36, 44], in

the sense that if they hold for a measure µ ∈ P(E) with some constant C then they also hold for

µ⊗n ∈ P(En) with the same constant C for every n ∈ N. The same is true for the more recently

introduced W2I inequality, by [5, Corollary 2.13]. These statements, and more fundamentally the

very definitions of the Poincaré, log-Sobolev, and W2I inequalities, depend on a choice of Markov

process (i.e., an infinitesimal generator). On (E, µ)⊗n the canonical choice is precisely this product

Markov process.

Our main result, Theorem 1.1.4, identifies the precise high-dimensional concentration property

encoded by the inequality W2I . Unless stated otherwise, the product space En is equipped with

the ℓ2-metric

((x1, . . . , xn), (y1, . . . , yn)) 7→

√√√√ n∑
i=1

d2(xi, yi). (1.10)

The Wasserstein distance Wp on P(En) is defined relative to this metric, as is the WpI(C) in-

equality for µ⊗n.

Theorem 1.1.4. Assume there exists x0 ∈ E such that
∫
E
d2(x, x0)µ(dx) < ∞. Let C > 0. The

following are equivalent:

(1) µ satisfies the W2I(C) inequality.

(2) For each n ∈ N, µ⊗n satisfies the W1I(C) inequality.
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(3) For each n ∈ N, λ ∈ R, t > 0, and 1-Lipschitz function f : En → R,

1

t
log
∥∥Pλfn,t∥∥L2(µ⊗n)

≤ λ

∫
En

f dµ⊗n +
Cλ2

4
. (1.11)

(4) For each n ∈ N, r, t > 0, 1-Lipschitz function f : En → R, and ν ∈ P(En) such that

dν/dµ⊗n ∈ L2(µ⊗n), we have

Pnν
(
1

t

∫ t

0

f
(
X1
s , . . . , X

n
s

)
ds−

∫
En

f dµ⊗n ≥ r

)
≤
∥∥∥∥ dν

dµ⊗n

∥∥∥∥
L2(µ⊗n)

exp

(
−tr

2

C

)
,

(1.12)

where Pnν (·) :=
∫
En Pnx(·) ν(dx).

The implication (1) ⇒ (2) follows immediately from Jensen’s inequality and [5, Corollary

2.13], which shows that if µ satisfies W2I(C) then so does µ⊗n. The equivalence (2) ⇔ (3) ⇔

(4) is simply Theorem 1.1.3 applied to µ⊗n for each n. Hence, our contribution is to complete the

equivalence by showing that (3) ⇒ (1).

Remark 1.1.5. It is worth pointing out that the W1I inequality itself implies concentration in-

equalities for the product measure µ⊗n which are similar to (1.11) and (1.12), but with a worse

dependence on the dimension n in comparison with the W2I inequality. For instance, suppose

µ satisfies the W1I(C) inequality. Then the tensorization argument of [5, Corollary 2.13] shows

that µ⊗n satisfies the W1I(nC) inequality, with En equipped with the ℓ1-metric instead of the ℓ2-

metric. On the one hand, a transport inequality WpI in the ℓ1-norm is stronger than its ℓ2-norm

counterpart with the same constant, because the ℓ1-norm dominates the ℓ2-norm. On the other

hand, the dimension-free nature of W2I (in the ℓ2-norm) leads to much stronger concentration

properties than W1I . To see this concretely, consider sample averages: The W1I(nC) inequality

along with the implication (1) ⇒ (3) from Theorem 1.1.3 imply that, for any 1-Lipschitz function

f : E → R, n ∈ N, and ν ∈ P(E) such that dν/dµ ∈ L2(µ),

Pnν

(
1

nt

n∑
i=1

∫ t

0

f(X i
s) ds ≥

∫
E

f dµ+ r

)
≤
∥∥∥∥ dν

dµ⊗n

∥∥∥∥
L2(µ⊗n)

exp

(
−tr

2

C

)
, r, t > 0.
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On the other hand, if µ satisfies the W2I(C) inequality, then the exponent on the right-hand side

improves to −ntr2/C.

1.1.3 A Laplace-type principle for Feynman-Kac semigroups

The proof of Theorem 1.1.4, given in Chapter 1.2, makes use of a new Laplace-type principle

for operator norms of Feynman-Kac semigroups, which is interesting in its own right. In the

following, let Ln : En → P(E) denote the empirical measure map, defined by

Ln(x1, . . . , xn) :=
1

n

n∑
k=1

δxk . (1.13)

Theorem 1.1.6. Let t > 0. Then, for any bounded lower semicontinuous function F : P(E) → R,

lim inf
n→∞

1

nt
log
∥∥PnF◦Ln

n,t

∥∥
L2(µ⊗n)

≥ sup
ν∈P(E)

(F (ν)− I(ν |µ)) . (1.14)

Suppose in addition that the sub-level sets of I(· |µ) are compact. Then, for any bounded upper

semicontinuous function F : P(E) → R,

lim sup
n→∞

1

nt
log
∥∥PnF◦Ln

n,t

∥∥
L2(µ⊗n)

≤ sup
ν∈P(E)

(F (ν)− I(ν |µ)) . (1.15)

Only the lower bound (1.14) is needed for the proof of Theorem 1.1.4. The proof of (1.14) is

based on the fact that I(· |µ⊗n) and f 7→ 1
t
log
∥∥Pfn,t∥∥ are convex conjugates (see Lemma 1.2.2

below), along with a chain rule formula relating I(· |µ⊗n) with I(· |µ) (see Lemma 1.2.3 below).

The main idea of our proof of (3) ⇒ (1) in Theorem 1.1.4 is to apply (1.14) with F = W2(·, µ)∧M ,

for M > 0 which we later send to infinity. Essentially, the inequality (1.14) plays the same role

for us that the lower bound of Sanov’s theorem plays in the proof of Gozlan’s theorem (recalled in

Theorem 1.1.10 below).

The matching upper bound (1.15) is of independent interest but is not needed for the proof

of Theorem 1.1.4. We derive it in Chapter 1.3 from a general Sanov-type theorem involving a
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tensorization αn : P(En) → (−∞,∞] of an abstract functional α : P(E) → (−∞,∞] of a

probability measure, inspired by recent work of the first author [45]. In this framework, we show

in Chapter 1.4 that W2
2 (µ, ·) ≤ α if and only if W2

1 (µ
⊗n, ·) ≤ αn for every n ∈ N. Combined

with a dual form of the latter inequality, this generalizes the implications (1) ⇔ (2) ⇔ (3) in both

Theorem 1.1.4 and Gozlan’s Theorem 1.1.10 below. See Chapters 1.3 and 1.4 for full details.

Remark 1.1.7. Theorem 1.1.6 is very different from the usual large deviation principle for the oc-

cupation measure of the Markov process (see [46, 47, 40]), despite sharing the same “rate function"

I(· |µ). The usual large deviation principle, combined with Varadhan’s lemma, takes the form

lim
T→∞

1

T
logEx

[
exp

(
TF

(
1

T

∫ T

0

δXt dt

))]
= sup

ν∈P(E)

(F (ν)− I(ν |µ)) ,

for bounded continuous F : P(E) → R. It is not clear if there is a deeper connection between

Theorem 1.1.6 and this large deviation principle, but we will make no use of the latter.

Remark 1.1.8. Note that the upper bound of Theorem 1.1.6 requires the additional assumption

of compactness of the sub-level sets of I(· |µ). They are always closed, because I(· |µ) is well

known to be lower semicontinuous. Hence, the additional assumption holds automatically if E is

compact. In the non-compact case, there are tractable sufficient conditions, such the hypotheses of

[47, Lemma 7.1], or the uniform integrability of the semigroup as in [48].

1.1.4 Related literature and WpH inequalities

Transportation-information inequalities were introduced in the papers [5, 6], which developed

several necessary and sufficient conditions as well as connections with other functional inequali-

ties. The most satisfying results are in the context of Example 1.1.2: W2I is weaker than a log-

Sobolev inequality but stronger than a Poincaré inequality [5, Proposition 2.9]. In addition, WpI

implies the corresponding transportation-entropy inequality WpH (defined below), for p = 1, 2

[6, Theorems 2.1 and 2.4]. More recently, W2I was characterized in terms of a Lyapunov condi-

tion [10, Theorem 1.3], though again only in the context of Example 1.1.2, and without explicit
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constants. In full generality, a characterization of the W2I inequality in terms of inf-convolution

inequalities was given in [5, Corollary 2.5].

Our main result, Theorem 1.1.4, is best understood in comparison with Gozlan’s characteriza-

tion of Talagrand’s inequality in terms of dimension-free concentration [12]. To explain this, we

first recall the basics of transportation-entropy inequalities, referring to the survey [36] for a more

comprehensive overview. The relative entropy between probability measures ν and µ is defined as

usual by

H(ν |µ) :=


∫
E

dν
dµ

log dν
dµ

dµ, if ν ≪ µ,

+∞, otherwise.
(1.16)

For C > 0 and p ≥ 1, we say that µ satisfies the WpH(C) inequality if

W2
p (µ, ν) ≤ CH(ν |µ), for all ν ∈ P(E). (1.17)

Inequalities of this form gained prominence from the work of Marton [1] and Talagrand [2], with a

number of subsequent contributions further clarifying their precise role in characterizing concen-

tration properties. We first mention a famous dual characterization due to Bobkov and Götze:

Theorem 1.1.9 ([3, Theorem 1.3]). Let C > 0. The following are equivalent:

(1) µ satisfies the W1H(C) inequality.

(2) For every 1-Lipschitz function f : E → R,

log

∫
E

eλfdµ ≤ λ

∫
E

fdµ+
Cλ2

4
, for all λ ∈ R.

This is the W1H analogue of the W1I characterization (1) ⇔ (2) stated in Theorem 1.1.3.

There are several other equivalent formulations possible in Theorem 1.1.9, at least if one is willing

to change the constant (by a universal factor). Notably, if µ satisfies the W1H(C) inequality, then
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(3) For every 1-Lipschitz function f : E → R,

µ

(
f −

∫
E

f dµ > r

)
≤ e−r

2/C , for all r > 0.

Conversely, if µ satisfies (3), then it satisfies the W1H(C ′) inequality for some C ′; see [49,

Theorem 2.3] for details on how to bound C ′. This is analogous to (3) in Theorem 1.1.3. The

W1H inequality thus encodes concentration properties of the underlying measure, whereas the

W1I inequality encodes concentration properties for time-averages of a Markov process around its

equilibrium.

Turning now to the quadratic inequality, it has been known since the work of Marton [1] and

Talagrand [2] that W2H tensorizes: If µ satisfies W2H(C) then so does the product measure

µ⊗n for any n. Since W2H(C) implies W1H(C), this yields any of the above expressions of

concentration for µ⊗n, with a dimension-free constant C. Gozlan proved a remarkable converse

to this statement in [12, Theorem 1.3], though below we quote a somewhat different formulation.

Recall that we equip En with the ℓ2-metric defined in (1.10).

Theorem 1.1.10 ([44, Theorem 9.6.4], [50, Theorem 4.31]). Let C > 0. The following are equiv-

alent:

(1) µ satisfies the W2H(C) inequality.

(2) For each n ∈ N, µ⊗n satisfies the W1H(C) inequality.

(3) For each n ∈ N and 1-Lipschitz function f : En → R,

log

∫
En

eλfdµ⊗n ≤ λ

∫
En

f dµ⊗n +
Cλ2

4
, for all λ ∈ R.

(4) There exists K > 0 such that, for every n ∈ N and 1-Lipschitz function f : En → R,

µ⊗n
(
f −

∫
En

f dµ⊗n > r

)
≤ K exp

(
−r

2

C

)
, for all r > 0.
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The parallels with our Theorem 1.1.4 should be clear. The implications (1) ⇒ (2) ⇔ (3) ⇔ (4)

in Theorem 1.1.10 were known (up to a universal change in the constant for (4)), with Gozlan’s

result completing the equivalence. Our Theorem 1.1.4 fills a gap in the literature by completing

this analogy between W2H and W2I .

Remark 1.1.11. Gozlan’s proof of Theorem 1.1.10 in [12] relies on Sanov’s theorem, but alterna-

tive proofs have since been found based on a characterization of the W2H inequality in terms of

inf-convolution inequalities; see [51, Theorem 5.1], [38, Proposition 3.4], or [44, Theorem 9.6.4].

There is an analogous inf-convolution inequality given in [5, Corollary 2.5] which characterizes

the W2I inequality. This raises the natural question, which we have not resolved, of whether an

alternative proof of Theorem 1.1.4 is possible based on this inf-convolution inequality.

1.1.5 Organization of the chapter

The rest of the chapter is organized as follows. In Chapter 1.2 we prove Theorem 1.1.4 after

first proving the Laplace-type lower bound of Theorem 1.1.6. In Chapter 1.3 we develop an ab-

stract Sanov-type theorem and use it to prove the upper bound in Theorem 1.1.6. Finally, in the

abstract setting, Chapter 1.4 generalizes (some of) the characterizations of W2I and W2H given in

Theorems 1.1.4 and 1.1.10.

1.2 The characterization of W2I

This section is devoted to the proof of Theorem 1.1.4. We first collect a few well-known

properties of the Fisher information and Feynman-Kac semigroups. Recall the definitions of E⊕n

and I(· |µ⊗n) from (1.6) and (1.7).

Lemma 1.2.1. For every t > 0, n ∈ N, and f ∈ B(En), the Feynman-Kac semigroup defined in

(1.8) satisfies

1

t
log
∥∥Pfn,t∥∥L2(µ⊗n)

= sup

{∫
En

fg2 dµ⊗n − E⊕n(g, g) : g ∈ D(E⊕n),

∫
En

g2dµ⊗n = 1

}
.
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Proof. This result can be found in [5, Lemma 6.1] and seems to be folklore. We include a proof

here for the sake of completeness. The inequality (≤) was proved in [40, Proof of Theorem 1,

Case 1] by applying the Lumer-Philips theorem.

For the opposite inequality, note that since f is bounded, the generator Lf := L + f is self-

adjoint and its domain coincides with D(L). Denote by B(R) the Borel sets of R and by B(L2(µ))

the set of bounded linear operators on L2(µ). By the spectral theorem [52, Theorem 13.30], there

is a unique resolution of the identity (a.k.a. spectral family) E : B(R) → B(L2(µ)), such that

∫
E

hLfg dµ =

∫
R
λEg,h(dλ), for all g ∈ D(L), h ∈ L2(µ).

Here, for any f, g ∈ L2(µ), Eg,h is a finite Borel measure on R, defined by

B(R) ∋ A 7→ Eg,h(A) :=

∫
E

hE(A)g dµ ∈ R.

Moreover, E is concentrated on the spectrum of Lf , which we denote by σ(Lf ) ⊂ R. In other

words, E(σ(Lf )) = I , the identity operator on L2(µ). In particular,

∫
E

gLfg dµ =

∫
σ(Lf )

λEg,g(dλ) =

∫
σ(Lf )

λ
∥∥E(dλ)g∥∥2

L2(µ)
, for all g ∈ D(L),

∫
E

g2 dµ = 1,

(1.18)

where the last equality follows from the fact that each E(dλ) is a self-adjoint projection on

L2(µ); see [52, Theorm 12.14 and Equation 1 on pp. 317]. Note that in the above integral,∥∥E(dλ)g∥∥2
L2(µ)

is a probability measure on σ(Lf ), since it is a positive measure with total mass∥∥E(σ(Lf ))g∥∥2L2(µ)
= ∥g∥2L2(µ) = 1.

On the other hand, the symbolic calculus (a.k.a. functional calculus) [52, Theorem 12.21] and

similar reasoning as before implies that

∥∥Pft g∥∥2L2(µ)
=

∫
σ(Lf )

e2tλ
∥∥E(dλ)g∥∥2

L2(µ)
, for all g ∈ L2(µ),

∫
E

g2dµ = 1, (1.19)
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where we make use of the fact that the spectrum σ(Lf ) ⊂ R is bounded from above; see [52,

Theorem 13.38]. Hence, the integrand λ 7→ e2tλ is a bounded function on the domain σ(Lf ). By

Jensen’s inequality, it follows from (1.18) and (1.19) that

∥∥Pft g∥∥L2(µ)
≥ exp

(
t

∫
E

gLfg dµ
)
, for all g ∈ D(L),

∫
E

g2 dµ = 1. (1.20)

Recalling the definition of the operator norm in (1.5), it follows that

∥∥Pft ∥∥L2(µ)
≥ exp

(
t

∫
E

gLfg dµ
)
, for all g ∈ D(L),

∫
E

g2dµ = 1. (1.21)

Taking the supremum over g ∈ D(L), recalling the definition of Lf above and also the definition

of E in (1.2),

∥∥Pft ∥∥L2(µ)
≥ exp

(
t sup

{∫
E

gLfg : g ∈ D2(L),
∫
E

g2 dµ = 1

})
(1.22)

= exp

(
t sup

{∫
E

fg2dµ− E(g, g) : g ∈ D(L),
∫
E

g2 dµ = 1

})
(1.23)

= exp

(
t sup

{∫
E

fg2dµ− E(g, g) : g ∈ D(E),
∫
E

g2 dµ = 1

})
, (1.24)

where the last equality follows from the fact that D(E) is the completion of D(L), with respect

to the Dirichlet norm given by ∥g∥E :=
√
E(g, g) + ∥g∥2L2(µ); see [42, Theorem 3.1.1]. This

concludes the proof of the inequality (≥).

Lemma 1.2.2. For every t > 0, n ∈ N, and f ∈ B(En), the following variational formula holds:

1

t
log
∥∥Pfn,t∥∥L2(µ⊗n)

= sup
ν∈P(En)

(∫
En

f dν − I(ν |µ⊗n)

)
. (1.25)

Proof. This is a straightforward consequence of Lemma 1.2.1, similar to the argument in [5, Proof

of Theorem 2.4]. The contraction property of the Dirichlet form [42, Theorem 1.4.1] ensures

that E⊕n(|g|, |g|) ≤ E⊕n(g, g) for any g ∈ D(E⊕n). This allows us to restrict the supremum in the

formula of Lemma 1.2.1 to nonnegative functions g, which we may then identify with a probability
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measure via g =
√

dν/dµ⊗n. That is, for f ∈ B(En),

1

t
log
∥∥Pfn,t∥∥L2(µ⊗n)

= sup

{∫
En

fg2 dµ⊗n − E⊕n(g, g) : g ∈ D(E⊕n), g ≥ 0,

∫
En

g2 dµ⊗n = 1

}
= sup

ν∈P(En)

(∫
En

f dν − I(ν |µ⊗n)

)
.

Our third lemma is an important chain rule for the Fisher information I(· |µ⊗n), borrowed

from [5]. For integers n ≥ k ≥ 1 and x = (x1, . . . , xn) ∈ En, we denote by x−k := (xi)i∈{1,...,n}\k

the vector consisting of all but the kth coordinate. Let π−k : En → En−1 be the natural projection,

i.e., π−k (x) = x−k. For ν ∈ P(En), we define the measurable map ν−k : En−1 → P(E) via

disintegration

ν(dx1, . . . , dxn) = ν−k(x−k)(dxk) ν ◦ π−1
−k(dx−k). (1.26)

In probabilistic terms, if X = (X1, . . . , Xn) has joint law ν, then ν−k(X−k) is a version of the

conditional law of Xk given X−k. Note that ν−k is uniquely determined up to ν-a.s. equality.

Lemma 1.2.3 ([5, Lemma 2.12]). For each n ∈ N and ν ∈ P(En), it holds that

I(ν |µ⊗n) =

∫
En

n∑
k=1

I(ν−k(x−k) |µ) ν(dx).

We are now ready to give the proof of the lower bound (1.14) of Theorem 1.1.6. Again, only the

lower bound is needed for the proof of Theorem 1.1.4, given just below. The upper bound (1.15)

of Theorem 1.1.6 requires some additional assumptions and machinery and is less self-contained,

so we defer its proof to the very end of Chapter 1.3.

Proof of the lower bound (1.14) of Theorem 1.1.6. According to Lemma 1.2.2, we have

1

nt
log
∥∥PnF◦Ln

n,t

∥∥
L2(µ⊗n)

= sup
ν∈P(En)

(∫
En

F ◦ Ln dν −
1

n
I(ν |µ⊗n)

)
.
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Choose ν ∈ P(E) arbitrarily. From the formula of Lemma 1.2.3 it follows immediately that

I(· |µ⊗n) simplifies for product measures, in the sense that I(ν⊗n |µ⊗n) = nI(ν |µ). Hence,

1

nt
log
∥∥PnF◦Ln

n,t

∥∥
L2(µ⊗n)

≥
∫
En

F ◦ Ln dν⊗n − I(ν |µ).

By the law of large numbers for empirical measures [53, Theorem 11.4.1], we have ν⊗n◦L−1
n → δν

in P(P(E)), in the sense that
∫
En ϕ ◦ Ln dν⊗n → ϕ(ν) for any bounded and weakly continuous

function ϕ : P(E) → R. Together with the lower semicontinuity and boundedness of F and a

version of the Portmanteau theorem [54, Theorem A.3.12], this yields

lim inf
n→∞

1

nt
log
∥∥PnF◦Ln

n,t

∥∥
L2(µ⊗n)

≥ F (ν)− I(ν |µ).

The lower bound (1.14) follows by taking the supremum over ν ∈ P(E).

Proof of Theorem 1.1.4.

• (1) ⇒ (2): Let n ∈ N. Since µ satisfies W2I(C), the tensorization property of transportation-

information inequalities [5, Corollary 2.13] ensures that the product measure µ⊗n also satis-

fies W2I(C). Hence, by Jensen’s inequality, µ⊗n satisfies W1I(C).

• (2) ⇔ (3) ⇔ (4): This follows by applying Theorem 1.1.3 to (En, µ⊗n) for each n.

• (3) ⇒ (1): Let M > 0. Define F : P(E) → R by

F (ν) := W2(µ, ν) ∧M.

For each n ∈ N and x, y ∈ En, note that

W2
2 (Ln(x), Ln(y)) = W2

2

(
1

n

n∑
i=1

δxi ,
1

n

n∑
i=1

δyi

)
≤ 1

n

n∑
i=1

d2(xi, yi),

where the last inequality follows by bounding the infimum in the definition (1.1) of the
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Wasserstein distance using the trivial coupling 1
n

∑n
i=1 δ(xi,yi) of Ln(x) and Ln(y). Recalling

that En is equipped with the ℓ2-metric, this implies by the triangle inequality that
√
nF ◦Ln

is 1-Lipschitz on En. Therefore, by (1.11), for all λ ≥ 0,

1

nt
log
∥∥PλnF◦Ln

n,t

∥∥
L2(µ⊗n)

≤ λ

∫
En

F ◦ Ln dµ⊗n +
Cλ2

4
. (1.27)

Since µ has finite second moment by assumption, the law of large numbers in Wasserstein

distance implies

lim
n→∞

∫
En

F ◦ Ln dµ⊗n = 0. (1.28)

Indeed, if (Xi)i∈N are i.i.d. E-valued random variables with law µ, then Ln(X1, . . . , Xn) →

µ weakly a.s. by the law of large numbers [53, Theorem 11.4.1], and 1
n

∑n
i=1 d

2(Xi, x0) →∫
E
d2(x, x0)µ(dx) for any x0 ∈ E by the law of large numbers and square-integrability

of µ. Use [55, Theorem 7.12, (iii) ⇒ (i)] to deduce W2(Ln(X1, . . . , Xn), µ) → 0 a.s.,

and then the bounded convergence theorem yields (1.28). Note also that W2(µ, ·) is lower

semicontinuous (which follows from Kantorovich duality [55, Theorem 1.3], for instance).

Since F is thus lower semicontinuous and also bounded, we may apply the lower bound of

Theorem 1.1.6, followed by (1.27) and (1.28), to get

sup
ν∈P(E)

(
λW2(µ, ν) ∧M − I(ν |µ)

)
≤ lim inf

n→∞

1

nt
log
∥∥PλnF◦Ln

n,t

∥∥
L2(µ⊗n)

≤ Cλ2

4
,

for λ ≥ 0. Consequently, for all ν ∈ P(E) and λ ≥ 0,

λW2(µ, ν) ∧M − Cλ2

4
≤ I(ν |µ).

Since M > 0 was arbitrary, letting M → ∞ gives

λW2(µ, ν)−
Cλ2

4
≤ I(ν |µ).
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for all ν ∈ P(E) and λ ≥ 0. Optimize over λ ≥ 0 to get C−1W2
2 (µ, ν) ≤ I(ν |µ) for all

ν ∈ P(E), so that µ satisfies W2I(C).

1.3 A limit theorem of Sanov type

In this section, we prove an abstract version of Theorem 1.1.6, inspired by recent work of the

first author [45]. Fix throughout this section a measurable functional α : P(E) → (−∞,∞] which

is bounded from below and not identically +∞. At the end of this section, we will specialize to

α = I(· |µ) in order to prove the upper bound of Theorem 1.1.6.

To define a tensorized functional αn : P(En) → (−∞,∞] for each n ∈ N, recall the notation

for the conditional measures ν−k for ν ∈ P(En), defined in (1.26). Define

αn(ν) :=

∫
En

n∑
k=1

α (ν−k (x−k)) ν (dx1, . . . , dxn) , ν ∈ P(En). (1.29)

Note that αn is well defined and bounded from below because α was assumed to be measurable

and bounded from below. We define the convex conjugate ρn : B(En) → R by

ρn(f) := sup
ν∈P(En)

(∫
En

f dν − αn (ν)

)
, f ∈ B(En). (1.30)

Note that ρn is indeed real-valued because αn is bounded from below and not identically +∞.

In the case α = I(· |µ), it holds that αn = I(· |µ⊗n) by Lemma 1.2.3, where the tensorized

Fisher information was defined in Chapter 1.1.2. Moreover, in this case, ρn(f) = 1
t
log ∥Pfn,t∥L2(µ⊗n)

for any t > 0, by Lemma 1.2.2.

Recall in the following the definition of the empirical measure map from (1.13).

Theorem 1.3.1. For any bounded lower semicontinuous function F : P(E) → R,

lim inf
n→∞

1

n
ρn (nF ◦ Ln) ≥ sup

ν∈P(E)

(F (ν)− α(ν)) . (1.31)

Suppose in addition that α is convex and has compact sub-level sets. Then, for any bounded upper
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semicontinuous function F : P(E) → R,

lim sup
n→∞

1

n
ρn (nF ◦ Ln) ≤ sup

ν∈P(E)

(F (ν)− α(ν)) . (1.32)

Proof of the lower bound (1.31). This is essentially identical to the proof of the lower bound

in Theorem 1.1.6. Let ν ∈ P(E), and note for product measures that we have the simplification

αn(ν
⊗n) = nα (ν). Bound the supremum in the definition of ρn from below using the measure

ν⊗n to get

1

n
ρn (nF ◦ Ln) ≥

∫
En

F ◦ Ln dν⊗n −
1

n
αn
(
ν⊗n
)
=

∫
En

F ◦ Ln dν⊗n − α(ν).

Use the law of large numbers along with lower semicontinuity and boundedness of F to get

lim inf
n→∞

1

n
ρn (nF ◦ Ln) ≥ F (ν)− α (ν) .

The lower bound (1.31) now follows by taking the supremum over ν ∈ P(E).

To prove the upper bound, we next develop an alternative tensorization α̂n which, unlike αn,

takes into account an order of the coordinates. For n ∈ N and ν ∈ P(En), we define ν0,1 ∈ P(E)

and the measurable maps νk−1,k : E
k−1 → P(E) for k = 2, . . . , n via the disintegration

ν(dx1, . . . , dxn) = ν0,1(dx1)
n∏
k=2

νk−1,k(x1, . . . , xk−1)(dxk).

In other words, if X = (X1, . . . , Xn) has joint law ν, then ν0,1 is the marginal law of X1, and

νk−1,k(X1, . . . , Xk−1) is a version of the conditional law of Xk given (X1, . . . , Xk−1). Next, define
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α̂n : P(En) → (−∞,∞] and its conjugate ρ̂n : B(En) → R by

α̂n(ν) :=

∫
En

n∑
k=1

α (νk−1,k (x1, . . . , xk−1)) ν (dx1, . . . , dxn) . (1.33)

ρ̂n(f) := sup
ν∈P(En)

(∫
En

f dν − α̂n (ν)

)
. (1.34)

The analogue of Theorem 1.3.1 for this form of tensorization is known:2

Theorem 1.3.2. [45, Theorem 1.1] For any bounded lower semicontinuous function F : P(E) →

R,

lim inf
n→∞

1

n
ρ̂n (nF ◦ Ln) ≥ sup

ν∈P(E)

(F (ν)− α(ν)) .

Suppose in addition that α is convex and has compact sub-level sets. Then, for any bounded upper

semicontinuous function F : P(E) → R,

lim sup
n→∞

1

n
ρ̂n (nF ◦ Ln) ≤ sup

ν∈P(E)

(F (ν)− α(ν)) .

Remark 1.3.3. As is explained in [45], Theorem 1.3.2 can be seen as a generalization of Sanov’s

theorem. Indeed, if α = H(· |µ), then the chain rule for relative entropy [54, Theorem B.2.1]

yields α̂n = H(· |µ⊗n), and the Gibbs variational formula [54, Proposition 1.4.2] yields ρ̂n(f) =

log
∫
En e

f dµ⊗n. For any bounded continuous F : P(E) → R, Theorem 1.3.2 then states that

lim
n→∞

1

n
log

∫
En

enF◦Ln dµ⊗n = sup
ν∈P(E)

(F (ν)−H(ν |µ)) .

This is precisely Sanov’s theorem, in Laplace principle form [54, Theorem 2.2.1]. This explains

why we describe Theorems 1.3.1 and 1.1.6 also as Sanov-type theorems.

Note that Theorems 1.3.1 and 1.3.2 both give identical upper and lower bounds, despite dealing

with different tensorizations αn and α̂n. These two tensorizations reflect the two different kinds of
2Strictly speaking, [45, Theorem 1.1] assumes convexity of α and compactness of its sub-level sets, but these

assumptions are not needed for the easy proof of the lower bound, which is identical to that of Theorem 1.3.1.
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“chain rules" satisfied by Fisher information and relative entropy, respectively. They are related by

the following:

Lemma 1.3.4. Assume α is convex and lower semicontinuous. For every n ∈ N, we have α̂n(ν) ≤

αn(ν) for all ν ∈ P(En), and ρ̂n(f) ≥ ρn(f) for all f ∈ B(En).

Proof. The second claim clearly follows from the first. For the first claim, let ν ∈ P(En), and

let X = (X1, . . . , Xn) have law ν. The claim follows from Jensen’s inequality after noting that

νk−1,k(X1, . . . , Xk−1) = E[ν−k(X−k) |X1, . . . , Xk−1]. That is, for f ∈ B(E),

∫
E

f dνk−1,k(X1, . . . , Xk−1) = E[f(Xk) |X1, . . . , Xk−1] = E
[
E[f(Xk) |X−k]

∣∣X1, . . . , Xk−1

]
= E

[∫
E

f dν−k(X−k)
∣∣∣X1, . . . , Xk−1

]
, a.s.

Convexity and lower semicontinuity of α imply, by a form of Jensen’s inequality [45, Proposition

B.2],

α(νk−1,k(X1, . . . , Xk−1) ≤ E[α(ν−k(X−k)) |X1, . . . , Xk−1], a.s.

Thus

α̂n(ν) = E

[
n∑
k=1

α(νk−1,k(X1, . . . , Xk−1)

]
≤ E

[
n∑
k=1

α(ν−k(X−k))

]
= αn(ν).

Proof of the upper bound (1.32) of Theorem 1.3.1. This now follows easily by applying Lemma

1.3.4 along with the upper bound of Theorem 1.3.2:

lim sup
n→∞

1

n
ρn (nF ◦ Ln) ≤ lim sup

n→∞

1

n
ρ̂n (nF ◦ Ln) ≤ sup

ν∈P(E)

(F (ν)− α (ν)) .
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Proof of the upper bound (1.15) of Theorem 1.1.6. We apply Theorem 1.3.1 to α = I(· |µ). The

tensorized form is then αn = I(· |µ⊗n), as is easily seen by comparing the definition (1.29) with

the formula from Lemma 1.2.3. By Lemma 1.2.2, the convex conjugate defined by (1.30) takes

the form ρn(f) =
1
t
log
∥∥Pfn,t∥∥L2(µ⊗n)

, which we note does not actually depend on t. The claimed

upper bound is then immediate from Theorem 1.3.1, once we note that I(· |µ) is well known to

be convex. See [48, Corollary B.11], for instance, which shows that I(· |µ) coincides with the

functional Jµ defined in [48, Equation (5.2b)], which is clearly convex.

See also [56] for an extension of Theorem 1.3.2 to different forms of tensorization oriented

toward Markov chains, which however is quite different from our Theorems 1.1.6 or 1.3.1.

1.4 On the Sanov-type theorem and a generalization of Theorem 1.1.4

Continuing in the abstract setting of Chapter 1.3, we next give characterizations of what one

might call “Wp α inequalities," for p = 1, 2. Assume throughout this section that α : P(E) →

(−∞,∞] is measurable and bounded from below. Define αn, α̂n : P(En) → (−∞,∞] as in

(1.29) and (1.33), and define ρn, ρ̂n : B(En) → R as in (1.30) and (1.34).

We begin with a simple dual characterization of the W1 α inequality, which generalizes both

Theorem 1.1.3 and the equivalence (1) ⇔ (2) of Theorem 1.1.9.

Theorem 1.4.1 ([57, Corollary 3], [36, Theorem 3.5]). Let C > 0. The following are equivalent:

(1) W2
1 (µ, ν) ≤ Cα(ν) for all ν ∈ P(E).

(2) For each λ ∈ R and bounded 1-Lipschitz function f : E → R,

ρ1(λf) ≤ λ

∫
E

f dµ+
Cλ2

4
.

Proof. This is known from the above references, but we include the straightforward proof for the
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sake of completeness: Since C−1x2 = supλ≥0[λx− (Cλ2/4)] for x ≥ 0, (1) is equivalent to

λW1(µ, ν) ≤ α(ν) +
Cλ2

4
, ∀ν ∈ P(E), λ ≥ 0.

By Kantorovich duality, this is in turn equivalent to

λ

∫
E

f d(ν − µ) ≤ α(ν) +
Cλ2

4
, ∀ν ∈ P(E), λ ≥ 0, ∀f,

where the functions f are understood to be 1-Lipschitz. Using the definition of ρ1, this is equivalent

to

ρ1(λf) = sup
ν∈P(E)

(
λ

∫
E

f dν − α(ν)

)
≤ λ

∫
E

f dµ+
Cλ2

4
, ∀λ ≥ 0, ∀f.

There is an analogue for W2 α, which we state next, which generalizes the equivalence of (1)

⇔ (2) ⇔ (3) in both Theorems 1.1.4 and 1.1.10. It works for either of the tensorized forms, αn or

α̂n. Recall in the following that we always equip En with the ℓ2-metric, defined in (1.10).

Theorem 1.4.2. Assume there exists x0 ∈ E such that
∫
E
d2(x, x0)µ(dx) < ∞. Let C > 0. The

following are equivalent:

(1) W2
2 (µ, ν) ≤ Cα(ν) for all ν ∈ P(E).

(2) For each n ∈ N, W2
1 (µ, ν) ≤ Cαn(ν) for all ν ∈ P(En).

(2’) For each n ∈ N, W2
1 (µ, ν) ≤ Cα̂n(ν) for all ν ∈ P(En).

(3) For each n ∈ N, λ ∈ R, and bounded 1-Lipschitz function f : En → R, we have

ρn(λf) ≤ λ

∫
En

f dµ⊗n +
Cλ2

4
.

(3’) Property (3) holds with ρ̂n in place of ρn.
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Proof.

• (1) ⇒ (2): Let n ∈ N and ν ∈ P(En). Apply Jensen’s inequality, followed by a known

tensorization inequality for W2 given in [5, Lemma 2.11], and then (1):

W2
1 (µ

⊗n, ν) ≤ W2
2 (µ

⊗n, ν) ≤
∫
En

n∑
k=1

W2
2

(
µ, ν−k(x−k)

)
ν(dx)

≤ C

∫
En

n∑
k=1

α
(
ν−k(x−k)

)
ν(dx) = Cαn(ν).

• (1) ⇒ (2’): Let n ∈ N and ν ∈ P(En). Apply a (different) known tensorization inequality

for W2 given in [36, Proposition A.1], and then (1):

W2
1 (µ

⊗n, ν) ≤ W2
2 (µ

⊗n, ν) ≤
∫
En

n∑
k=1

W2
2

(
µ, νk−1,k(x1, . . . , xk−1)

)
ν(dx)

≤ C

∫
En

n∑
k=1

α
(
νk−1,k(x1, . . . , xk−1)

)
ν(dx) = Cα̂n(ν).

• (2) ⇔ (3) and (2’) ⇔ (3’) follow by applying Theorem 1.4.1 to the conjugate pairs (ρn, αn)

and (ρ̂n, α̂n), respectively.

• (3) ⇒ (1): Let M > 0 and λ ≥ 0. As in the proof of Theorem 1.1.4, define F : P(E) → R

by F := W2(µ, ·) ∧M , and note that
√
nF ◦ Ln is 1-Lipschitz on En for each n. Thus (3)

yields
1

n
ρn(λnF ◦ Ln) ≤ λ

∫
En

F ◦ Ln dµ⊗n +
Cλ2

4
.

The right-hand side converges as n → ∞ to Cλ2/4 by the law of large numbers in Wasser-

stein distance. Since F is bounded and lower-semicontinuous, we may apply the lower

bound of Theorem 1.3.1 to get

sup
ν∈P(E)

(
λW2(µ, ν) ∧M − α(ν)

)
≤ lim inf

n→∞

1

n
ρn(λnF ◦ Ln) ≤

Cλ2

4
.
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Consequently, for all ν ∈ P(E), λ ≥ 0, and M > 0, we have

α(ν) ≥ λW2(µ, ν) ∧M − Cλ2

4

Send M → ∞ and optimize over λ to get α(ν) ≥ C−1W2
2 (µ, ν).

• (3’) ⇒ (1): This is proved exactly as (3) ⇒ (1), simply replacing ρn by ρ̂n and applying

Theorem 1.3.2 instead of Theorem 1.3.1.
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Chapter 2: A trajectorial approach to the relative entropy dissipation of

McKean-Vlasov diffusions

In this chapter, we formulate a trajectorial version of the relative entropy dissipation identity

for McKean–Vlasov diffusions, extending recent results which apply to non-interacting diffusions.

Our stochastic analysis approach is based on time-reversal of diffusions and Lions’ differential

calculus over Wasserstein space. It allows us to compute explicitly the rate of relative entropy

dissipation along every trajectory of the underlying diffusion via the semimartingale decomposition

of the corresponding relative entropy process. As a first application, we obtain a new interpretation

of the gradient flow structure for the granular media equation, generalizing a formulation developed

recently for the linear Fokker–Planck equation. Secondly, we show how the trajectorial approach

leads to a new derivation of the HWBI inequality, which relates relative entropy (H), Wasserstein

distance (W), barycenter (B) and Fisher information (I). This chapter is based on the paper [22]

joint with Bertram Tschiderer.

2.1 Introduction

We are interested in the relative entropy dissipation of McKean–Vlasov stochastic differential

equations of the form

dXt = −
(
∇V (Xt) +∇(W ∗ Pt)(Xt)

)
dt+

√
2 dBt , 0 ≤ t ≤ T, (2.1)

where X0 has some given initial distribution P0 on Rd. Here, the functions V,W : Rd → [0,∞)

play the roles of confinement and interaction potentials and are assumed to be suitably regular,

Pt := Law(Xt) denotes the distribution of the random vector Xt, the symbol ∗ stands for the

standard convolution operator, and (Bt)0≤t≤T is a standard n-dimensional Brownian motion. In
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particular, this SDE is non-local (or non-linear) in the sense that the drift term depends on the

distribution of the state variable. Non-local equations of this form arise in the modeling of weakly

interacting diffusion equations, after the seminal work of McKean [16].

Since the work of Carrillo–McCann–Villani [17, 18], relative entropy dissipation has been

known to be an effective method for studying convergence rates to equilibrium and propagation of

chaos of McKean–Vlasov equations. Some notable examples include the works [58, 59, 60, 61,

62, 63]. In a broader context, [64, 65] recently applied entropy methods to the mean-field theory

of neural networks.

We denote by Pac(Rd) the set of absolutely continuous probability measures on Rd, which we

will often identify with their corresponding probability density functions with respect to Lebesgue

measure. The free energy functional

Pac(Rd) ∋ p 7−→ F (p) := U (p) + V (p) + W (p) (2.2)

is defined as the sum of the energy functionals

U (p) :=

∫
Rd

p(x) log p(x) dx, V (p) :=

∫
Rd

V (x) p(x) dx, W (p) := 1
2

∫
Rd

(W ∗ p)(x) p(x) dx

(2.3)

corresponding to internal (U ), potential (V ) and interaction (W ) energy, respectively. Defining

the relative entropy dissipation functional

Pac(Rd) ∋ p 7−→ D(p) :=

∫
Rd

|∇ log p(x) +∇V (x) +∇(W ∗ p)(x)|2 p(x) dx, (2.4)

the well-known relative entropy dissipation identity takes the form

F (pt)− F (pt0) = −
∫ t

t0

D(pu) du. (2.5)

This identity is of a deterministic nature: it only depends on the curve of probability density func-
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tions (pt)0≤t≤T , but not on the trajectories of the underlying process (Xt)0≤t≤T itself. It is then

natural to ask whether there is a process-level analogue of the relative entropy dissipation iden-

tity (2.5), depending directly on the trajectories of the McKean–Vlasov process (Xt)0≤t≤T . The

main contribution of this paper is to give an affirmative answer to this question, by formulating a

trajectorial version of the relative entropy dissipation identity via a stochastic analysis approach.

Before going into details, let us briefly describe the main ideas. We draw inspiration from prior

literature [66, 15] based on a simpler (linear) setting without interaction, i.e., W ≡ 0. In this case,

the McKean–Vlasov SDE (2.1) reduces to a Langevin–Smoluchowski diffusion equation of the

form

dXt = −∇V (Xt) dt+
√
2 dBt , 0 ≤ t ≤ T. (2.6)

In particular, the drift term does not depend on the distribution of Xt. Moreover, there is an

explicit stationary distribution (also known as the Gibbs distribution [67, 68, 69]) with density

proportional to Rd ∋ x 7→ q(x) := e−V (x). Defining the likelihood ratio function (or Radon–

Nikodym derivative) ℓt(x) := pt(x)/q(x), the free energy at time t can be expressed as F (pt) =

E[log ℓt(Xt)], and the resulting stochastic process

log ℓt(Xt) = log pt(Xt) + V (Xt) , 0 ≤ t ≤ T (2.7)

is called free energy or relative entropy process. As shown in [66, 15], the time-reversal

(
log ℓT−s(XT−s)

)
0≤s≤T

of this process is a submartingale, and Itô calculus can be used to obtain its Doob–Meyer decom-

position

log ℓT−s(XT−s)− log ℓT (XT ) =MT−s + FT−s. (2.8)

Here, (MT−s)0≤s≤T is a martingale and (FT−s)0≤s≤T is an increasing process of finite first vari-

ation, both with explicit expressions. This decomposition describes exactly the rate of relative
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entropy dissipation along every trajectory of the Langevin–Smoluchowski diffusion. Therefore, it

can be viewed as a trajectorial analogue of the (deterministic) relative entropy dissipation identity

(2.5).

Let us now return to our McKean–Vlasov setting. In order to take into account the interaction

potential W , it is natural to consider a generalized relative entropy process of the form

log pt(Xt) + V (Xt) +
1
2
(W ∗ Pt)(Xt) , 0 ≤ t ≤ T. (2.9)

The task is now to compute the semimartingale decomposition of this process. We will provide

a detailed analysis of this extension, which is subtler than might appear at first sight. The main

difficulty is that, even when it exists, the stationary distribution of the McKean–Vlasov diffusion

does not have a closed-form expression and is not even unique in general; see the works [70, 71, 72,

61, 73, 74, 75, 76]. This prevents us from defining the likelihood ratio function in a straightforward

manner as in the setting of Langevin–Smoluchowski diffusions, where one can rely on the invariant

Gibbs distribution. An appropriate definition of the generalized likelihood ratio function turns out

to be that (2.9) should be viewed as a function of the form log ℓt(Xt,Pt), depending explicitly on

the distribution Pt of Xt itself, in addition to the state Xt. This form of generalized likelihood ratio

function allows us to take the L-derivative with respect to the probability distribution Pt. The notion

of L-differentiation for functions of probability measures was introduced by Lions [77]. We refer

to the monograph [78, Chapter 5] for a detailed discussion of differential calculus and stochastic

analysis over spaces of probability measures. In particular, we will use a generalized form of Itô’s

formula for functions of curves of measures, to derive the dynamics of the time-reversal of the

relative entropy process (2.9), in terms of the semimartingale decomposition

log ℓT−s(XT−s,PT−s)− log ℓT (XT ,PT ) =MT−s + FT−s , 0 ≤ s ≤ T, (2.10)

where (MT−s)0≤s≤T is a martingale and (FT−s)0≤s≤T is a process of finite first variation, both of

which will be explicitly computed. Similar to the case of Langevin–Smoluchowski dynamics, this
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decomposition can be viewed as the trajectorial rate of relative entropy dissipation. The classical

(deterministic) identity (2.5) can then be recovered by taking expectations.

2.1.1 Gradient flow structure of the granular media equation

As a first application of our trajectorial approach we obtain a new interpretation of the gradient

flow structure of the granular media equation

∂tpt(x) = div
(
∇pt(x) + pt(x)∇V (x) + pt(x)∇(W ∗ pt)(x)

)
, (t, x) ∈ (0, T )×Rd, (2.11)

which describes the evolution of the curve of probability density functions (pt)0≤t≤T corresponding

to the McKean–Vlasov diffusion (Xt)0≤t≤T of (2.1). When n = 1, this PDE appears in the mod-

eling of the time evolution of granular media [79, 80, 81]; in that context, the granular medium is

modeled as system of particles performing inelastic collisions, and pt(x) is regarded as the velocity

of a representative particle in the system at time t and position x, while V andW represent the fric-

tion and the inelastic collision forces, respectively. Note that in the interaction-free case W ≡ 0,

the equation (2.11) reduces to a linear Fokker–Planck equation. As is well known from [17, 18],

this curve of probability densities can be characterized as a gradient flow in Pac,2(Rd), the space of

absolutely continuous probability measures with finite second moments. Roughly speaking, this is

an optimality property stating that the curve (pt)0≤t≤T evolves in the direction of steepest possible

descent for the free energy functional (2.2) with respect to the quadratic Wasserstein distance.

The Wasserstein gradient flow structure of the linear Fokker–Planck equation was first dis-

covered by Jordan, Kinderlehrer and Otto in the seminal work [14]. In the paper [21], Otto and

Villani developed a formal Riemannian structure on the space of probability measures with fi-

nite second moments, leading to heuristic proofs of gradient flow properties as in [82], where the

porous medium equation was studied. This pioneering approach is often referred to as “Otto calcu-

lus”. Later, a rigorous framework based on minimizing movement schemes and curves of maximal

slope was introduced in [19]. Recently, a trajectorial approach to the gradient flow properties of
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Langevin–Smoluchowski diffusions [15] and Markov chains [83] was established. We will follow

this approach and adapt it to our McKean–Vlasov setting. For gradient flows of McKean–Vlasov

equations on discrete spaces we refer to [84].

Returning to the setting of this paper, our main result leads to a new formulation of the gradient

flow property of the granular media equation. To show this steepest descent property, the main idea

is to consider a perturbed McKean–Vlasov diffusion of the form

dXt = −
(
∇V (Xt) +∇β(Xt) +∇(W ∗ Pβt )(Xt)

)
dt+

√
2 dBβ

t , t0 ≤ t ≤ T (2.12)

which is constructed by adding a perturbation β : Rd → R to the confinement potential1 of the

original McKean–Vlasov SDE (2.1). In other words, from time t0 onward, the perturbed diffusion

drifts in a direction different from that of the original diffusion, hence the perturbed curve of time-

marginal distributions (Pβt )t0≤t≤T also evolves differently from the unperturbed curve (Pt)t0≤t≤T .

In parallel with the unperturbed case, we may compute the dynamics of the perturbed relative

entropy process associated with (2.12). As a consequence, we derive the rate of relative entropy

dissipation for the perturbed McKean–Vlasov diffusion. On the other hand, the rate of change

of the Wasserstein distance along the perturbed curve (Pβt )t0≤t≤T can be computed based on the

general theory of metric derivative of absolutely continuous curves, see [19]. Finally, comparing

these two rates in both the perturbed and unperturbed settings, allows us to establish the gradient

flow property.

2.1.2 The HWBI inequality

The second application of our trajectorial approach deals with the HWBI inequality [20, The-

orem 4.2], which is an extension of the HWI inequality [21]. It relates not only relative entropy

(H), Wasserstein distance (W), and relative Fisher information (I), but also barycenter (B). These

quantities are defined as follows: for two probability measures ν, µ ∈ P(Rd), the relative entropy

1As we will see, the steepest descent property is already visible by perturbing the confinement potential from V to
V + β, thus we avoid complicating the setup further by adding another perturbation to the interaction potential W .
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of ν with respect to µ is defined by

H(ν |µ) :=


∫
Rd

dν
dµ

log(dν
dµ
) dµ, if ν ≪ µ

+∞, otherwise,
(2.13)

the relative Fisher information of ν with respect to µ is given by

I(ν |µ) :=


∫
Rd |∇ log(dν

dµ
)|2 dµ, if ν ≪ µ

+∞, otherwise,
(2.14)

and the barycenter of a probability measure ν ∈ P2(Rd) is defined as b(ν) :=
∫
Rd x dν(x) ∈ Rd,

where the integral is understood as a Bochner integral. Informally, the HWBI inequality then states

that any two probability measures ν0, ν1 ∈ P2(Rd) satisfy

H(ν0 |µ0)−H(ν1 |µ1) ≤
√
I(ν0 |µ↑

0)W2(ν0, ν1)− κV +κW
2

W2
2 (ν0, ν1) +

κW
2
|b(ν0)− b(ν1)|2,

(2.15)

where µ0, µ1, µ
↑
0 are some appropriate σ-finite reference measures depending on the potentials

V,W (see Chapter 2.4.3 for the details), and κV , κW ∈ R are the moduli of uniform convexity for

V,W . This inequality describes the evolution of the relative entropy along the displacement inter-

polation (νt)0≤t≤1 between ν0 and ν1. Compared with the HWI inequality, there are two additional

terms on the right-hand side of (2.15) contributed by the interaction energy functional W of (2.3).

Intuitively, the κW -uniform convexity of W leads to the first additional term −κW
2
W2

2 (ν0, ν1),

which alone would correspond to the κW -uniform displacement convexity of W along (νt)0≤t≤1.

But since W (p) is invariant under any translation of p, the functional W might fail to be uniformly

displacement convex when the barycenter shifts. This suggests that the barycentric shift along

(νt)0≤t≤1 should be factored out of the consideration of the displacement convexity of W , which

is intuitively why the second additional term κW
2
|b(ν0)− b(ν1)|2 in (2.15) appears.

Coming back to our second application, we illustrate how our approach yields a trajectorial
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proof of the inequality (2.15), in the slightly strengthened form of [85, Theorem 4.1] and [86,

Theorem D.50]. Much of this consists of arguments similar in spirit to our main result (2.10), but

with one key difference: instead of the time-marginals of the McKean–Vlasov diffusion, we apply

the trajectorial approach to the displacement interpolation (νt)0≤t≤1. In this regard, our derivation

can be seen as a generalization of the trajectorial proof of the HWI inequality in [15, Section

4.2]; see also [83, Section 9.4], where the same idea was used to derive a discrete version of the

HWI inequality in a Riemannian-geometric framework. Let us also point out that for the proof

of the HWBI inequality we shall impose convexity assumptions (see Assumptions 2.4.18) on the

potentials V,W . We do not require these assumptions in the rest of the paper.

In the literature, similar trajectorial approaches have also been applied in the context of mar-

tingale inequalities [87, 88], functional inequalities [89, 90, 91, 92], and their stability estimates

[93, 94]. In particular, we refer to [91, Corollary 1.4] for a related HWI inequality derived from

the entropic interpolation of the mean-field Schrödinger problem.

2.2 Organization of the chapter

We set up the probabilistic framework and discuss some regularity assumptions in Chapter

2.3. In Chapter 2.4, we state our main trajectorial results, Theorem 2.4.1 and Theorem 2.4.9, and

develop two explicit examples for illustration. As immediate consequences, we derive the classical

relative entropy dissipation identities in Corollary 2.4.4 and Corollary 2.4.10. Building on these

results, we formulate the gradient flow property of the granular media equation in Theorem 2.4.15.

The HWBI inequality is then stated in Theorem 2.4.19. The proofs of the trajectorial results and

of the HWBI inequality are developed in Chapter 2.5. Some proofs of auxiliary results postponed

in previous parts are contained in Chapter 2.6.
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2.3 The probabilistic framework

2.3.1 The setting

We fix a terminal time T ∈ (0,∞) and let Ω := C([0, T ];Rd) be the path space of Rd-valued

continuous functions defined on [0, T ]. We denote by (Xt)0≤t≤T the canonical process defined by

Xt(ω) := ω(t) for ω ∈ Ω, and fix a probability distribution P0 ∈ Pac,2(Rd).

As will be shown in Lemma 2.3.2, under the Assumptions 2.3.1 below, the SDE (2.1) with

initial distribution P0 has a unique strong solution, when it is posed on an arbitrary filtered proba-

bility space. This implies that there exists a probability measure P on Ω and a P-Brownian motion

(Bt)0≤t≤T such that the SDE (2.1) holds. We write F = (Ft)0≤t≤T for the right-continuous aug-

mentation of the canonical filtration.

For each time t ∈ [0, T ], we denote by Pt := P ◦X−1
t the distribution of Xt under P, and by pt

the corresponding probability density function on Rd. The density functions (pt)0≤t≤T then solve

the granular media equation (2.11).

2.3.2 Regularity assumptions

Assumptions 2.3.1. The following regularity assumptions will be used frequently.

(i) The functions V,W : Rd → [0,∞) are smooth and have Lipschitz continuous gradients

with Lipschitz constants ∥∇V ∥Lip, ∥∇W∥Lip. All derivatives of V and W grow at most

exponentially as |x| tends to infinity, and the first derivatives are of linear growth. The latter

condition means that there exists a constant C > 0 such that

∀x ∈ Rd : |∇V (x)| ≤ C(1 + |x|) , |∇W (x)| ≤ C(1 + |x|). (2.16)

Furthermore, the function W is even (in other words, symmetric), i.e., W (x) = W (−x) for

all x ∈ Rd.

(ii) The probability distribution P0 is an element of the space Pac,2(Rd) and the corresponding
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probability density function Rd ∋ x 7→ p0(x) is strictly positive. Moreover, the initial free

energy F (p0) is finite.

These assumptions ensure that the equation (2.1) belongs to a broad class of strongly solvable

McKean–Vlasov SDEs. We relegate the proof of the following result to Chapter 2.6.1.

Lemma 2.3.2. Suppose Assumptions 2.3.1 hold. Then on an arbitrary filtered probability space,

the McKean–Vlasov SDE (2.1) has a pathwise unique, strong solution (Xt)0≤t≤T satisfying

E
[

sup
0≤t≤T

|Xt|2
]
<∞. (2.17)

Moreover, its marginal distributions (Pt)0≤t≤T belong to Pac,2(Rd), and the corresponding curve

of probability density functions (pt)0≤t≤T is a classical solution of the granular media equation

(2.11).

2.3.3 Probabilistic representations of gradient flow functionals

To set up our framework, the first step is to express the free energy as well as the relative

entropy dissipation functional in probabilistic terms. To this end, we introduce the generalized

potential Ψ: Rd × P2(Rd) → [0,∞) and its close relative Ψ↑ given by

Ψ(x, µ) := V (x) + 1
2
(W ∗ µ)(x) , Ψ↑(x, µ) := V (x) + (W ∗ µ)(x) (2.18)

for (x, µ) ∈ Rd × P2(Rd). Furthermore, we define the density functions

q(x, µ) := e−Ψ(x,µ) , q↑(x, µ) := e−Ψ↑(x,µ) , q↓(x) := e−V (x) (2.19)

and the corresponding generalized likelihood ratio functions

ℓt(x, µ) :=
pt(x)

q(x, µ)
, ℓ↑t (x, µ) :=

pt(x)

q↑(x, µ)
, ℓ↓t (x) :=

pt(x)

q↓(x)
(2.20)
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for t ∈ [0, T ]. Note that if W ≡ 0, these three likelihood ratio functions coincide.

For each time t ∈ [0, T ], we introduce σ-finite measures on the Borel sets of Rd, given by

Qt(A) :=

∫
A

q(x,Pt) dx , Q↑
t (A) :=

∫
A

q↑(x,Pt) dx , A ∈ B(Rd). (2.21)

Intuitively, these measures are (unnormalized) time-dependent Gibbs distributions. If W ≡ 0, they

coincide with the true Gibbs distribution of the Langevin–Smoluchowski equation (2.6), which is

also its stationary distribution (when normalized to a probability measure).

With these definitions, we can now write the gradient flow functionals F and D , introduced in

(2.2) and (2.4), in probabilistic terms: the relative entropy (defined in (2.13)) of Pt with respect to

Qt and the relative Fisher information (defined in (2.14)) of Pt with respect to Q↑
t can be expressed

respectively as

H(Pt |Qt) = EP
[
log ℓt(Xt,Pt)

]
, I(Pt |Q↑

t ) = EP
[
|∇ log ℓ↑t (Xt,Pt)|2

]
; (2.22)

and we have the relations H(Pt |Qt) = F (Pt) as well as I(Pt |Q↑
t ) = D(Pt). In particular, the

relative entropy H(Pt |Qt) can be written as the P-expectation of the relative entropy process

log ℓt(Xt,Pt) = log pt(Xt) + V (Xt) +
1
2
(W ∗ Pt)(Xt) , 0 ≤ t ≤ T. (2.23)

The dynamics of this stochastic process, together with its perturbed counterpart to be introduced

in Chapter 3.2.3 below, will be our main objects of interest.

Remark 2.3.3. If the reference measure Qt in (2.21) is a probability measure, then the expression

(2.22) matches the classical definition of relative entropy given in (2.13). In the general case when

Qt is a σ-finite measure, the definition (2.13) is also valid under the condition that Pt has finite

second moment, with the only difference that the range of the function t 7→ H(Pt |Qt) is extended

from [0,∞] to (−∞,∞]; we refer to [95, Appendix C] or [96, Section 3] for the details.
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2.4 Main results

2.4.1 Trajectorial dissipation of relative entropy for McKean–Vlasov diffusions

Our first main result is the semimartingale decomposition of the relative entropy process (2.23).

It describes the dissipation of relative entropy along every trajectory of a particle undergoing the

McKean–Vlasov dynamics (2.1). In the same spirit as the trajectorial approaches of [66] and [15],

we shall study the dynamics of the relative entropy process in the backward direction of time.

Concretely, we consider for arbitrary, fixed T ∈ (0,∞) the time-reversed canonical process

Xs := XT−s , 0 ≤ s ≤ T (2.24)

on the filtered probability space (Ω,G,P), where G = (Gs)0≤s≤T is the P-augmented filtration

generated by (Xs)0≤s≤T .

In order to formulate Theorem 2.4.1 below, we introduce the time-reversed Fisher information

process

Is :=
(∣∣∇ log ℓ↓s

∣∣2 + 1
2

∣∣∇(W ∗ Ps)
∣∣2 + ⟨1

2
∇(W ∗ Ps) , 2∇ log ℓ↓s +∇V

⟩)
(Xs)

− EP̃

[⟨
1
2
∇W (Xs − Ys) ,

(
2∇ log ℓ↓s −∇V +∇(W ∗ Ps)

)
(Ys)

⟩] (2.25)

for 0 ≤ s ≤ T . Here, the process (Ys)0≤s≤T is defined on another probability space (Ω̃, G̃, P̃) such

that the tuple (Ω̃, G̃, P̃, (Ys)0≤s≤T ) is an exact copy of (Ω,G,P, (Xs)0≤s≤T ). A bar over a letter

means that time is reversed as in (2.24).

We also define the time-reversed cumulative Fisher information process as the time integral

Fs :=

∫ s

0

Iu du , 0 ≤ s ≤ T. (2.26)

This process will act as the compensator in the semimartingale decomposition of the relative en-

tropy process (2.23). Its relation with the relative Fisher information (2.22) will be given in (3.17)
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below.

Theorem 2.4.1. Suppose Assumptions 2.3.1 hold. On (Ω,G,P), the time-reversed relative entropy

process

log ℓs(Xs,Ps) = log ℓT−s(XT−s,PT−s) , 0 ≤ s ≤ T (2.27)

admits the semimartingale decomposition

log ℓs(Xs,Ps)− log ℓ0(X0,P0) =Ms + Fs. (2.28)

Here (Ms)0≤s≤T is the L2(P)-bounded martingale

Ms :=

∫ s

0

⟨
∇ log ℓu(Xu,Pu) ,

√
2 dBu

⟩
, (2.29)

with (Bs)0≤s≤T a P-Brownian motion of the backward filtration G, and the compensator (Fs)0≤s≤T

satisfies

EP
[
Fs
]
=

∫ s

0

I
(
Pu
∣∣Q↑

u

)
du = EP

[ ∫ s

0

∣∣∇ log ℓ↑u(Xu,Pu)
∣∣2 du] <∞. (2.30)

Examples

We give two concrete examples to illustrate Theorem 2.4.1.

Example 2.4.2. We set n = 1 and specialize Theorem 2.4.1 to the case of quadratic confinement

potential V (x) = x2

2
and no interaction potential W ≡ 0. The initial position X0 is chosen to be

independent of (Bt)0≤t≤T and to be normally distributed with mean 0 and variance σ2
0 > 0. In this

case, the SDE of (2.1) becomes

dXt = −Xt dt+
√
2 dBt , 0 ≤ t ≤ T (2.31)
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and its solution is given by the Ornstein–Uhlenbeck process

Xt = e−tX0 +
√
2

∫ t

0

eu−t dBu , 0 ≤ t ≤ T (2.32)

with probability density function

pt(x) =
1√
2πσ2

t

exp
(
− x2

2σ2
t

)
, σ2

t := 1 + e−2t(σ2
0 − 1). (2.33)

Recalling (2.18) – (2.20) and using (2.33), we see that in this setting the cumulative Fisher infor-

mation process of (2.26) is explicitly given by

FOU
s =

∫ s

0

(
∇ log ℓ↓u(Xu)

)2
du =

∫ s

0

(
∇ log pu(Xu)+Xu

)2
du =

∫ s

0

(
1− 1

σ2
u

)2
X2
u du (2.34)

for 0 ≤ s ≤ T . In particular, the non-negativity of the integrand in (2.34) implies that the relative

entropy decreases along almost every trajectory.

Now we set T = 1 and σ2
0 = 0.1. The blue lines in Figure 2.1 below are ten simulated

trajectories s 7→ FOU
s (ωi), for i = 1, . . . , 10. The thick black line plots the expected path s 7→

EP[F
OU
s ] of all possible trajectories.

Example 2.4.3. We set again n = 1 and now consider the case of no confinement potential V ≡

0, quadratic interaction potential W (x) = x2

2
, and a centered Gaussian initial position X0 with

variance σ2
0 > 0, which is independent of the Brownian motion (Bt)t≥0 . In this case, for any

t ≥ 0, the drift term of the SDE of (2.1) is

−∇(W ∗ Pt)(Xt) = −
∫
Rd

∇W (Xt − y)pt(y) dy = −
(
Xt − E[Xt]

)
. (2.35)

In particular, the drift term depends on the distribution Pt only through its mean. Substituting it
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Figure 2.1: Simulations of the cumulative Fisher information process (2.34) for the Ornstein–
Uhlenbeck diffusion (2.31).

into (2.1) , this SDE reduces to

dXt = −
(
Xt − E[Xt]

)
dt+

√
2 dBt , 0 ≤ t ≤ T. (2.36)

This type of nonlinear, self-interacting SDE has been studied since [70], where it was shown that

its solution is also given by the Ornstein–Uhlenbeck process of (2.32). Therefore, similar compu-

tations as in Example 2.4.2 show that in this setting the cumulative Fisher information process is

given by

FNL
s =

∫ s

0

((
1
σ4
u
+ 1

2
− 1

σ2
u

)
X2
u + EP̃

[
1
2
(Xu − Yu)

(
2
σ2
u
Yu − Yu

)])
du (2.37)

for 0 ≤ s ≤ T . Using the fact that (Xu)#(P̃) = (Yu)#(P̃) = N (0, σ2
u), which we have from

(2.33), we can compute the expectation appearing in (2.37) and obtain

FNL
s =

∫ s

0

((
1
σ4
u
+ 1

2
− 1

σ2
u

)
X2
u +

σ2
u

2
− 1
)
du. (2.38)
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Figure 2.2: Simulations of the cumulative Fisher information process (2.38) for the nonlinear,
self-interacting diffusion (2.36).

Clearly, FOU
s ̸= FNL

s . In particular, the integrand in (2.38) is non-negative if and only if X2
u ≥(

1
σ4
u
+ 1

2
− 1

σ2
u

)−1(
1 − σ2

u

2

)
. In other words, as opposed to (2.4.2), relative entropy only decreases

along a trajectory if Xu is far from its mean. However, after taking expectations in (2.34) and

(2.38), we see that the expected rate of relative entropy dissipation in both cases is equal to

EP
[
FOU
s

]
= EP

[
FNL
s

]
=

∫ s

0

(
σu − 1

σu

)2
du , 0 ≤ s ≤ T. (2.39)

Now we set again T = 1 and σ2
0 = 0.1. In the same vein as in Figure 2.1, we plot in Figure

2.2 below the paths of ten simulated trajectories s 7→ FNL
s (ωi), for i = 1, . . . , 10. We observe that

some of the red lines describing the paths of these trajectories indeed take negative values. In other

words, the cumulative Fisher information process of (2.38), and hence its integrand, can both be

negative. Finally, the thick black line in Figure 2.2 follows the expected path s 7→ EP[F
NL
s ] of all

possible trajectories. According to (2.39), this is the same black line as in (2.1).
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Consequences of Theorem 2.4.1

We now return to the general statement of Theorem 2.4.1 and deduce some direct conse-

quences. By averaging the trajectorial result of Theorem 2.4.1 according to the path measure

P, we derive the well-known relative entropy identity (2.40) and the dissipation of relative entropy

(2.41) below. A sketch of proof for the latter result was first given in [17, Proposition 2.1].

Corollary 2.4.4. Suppose Assumptions 2.3.1 hold. For all t, t0 ∈ [0, T ], we have the relative

entropy identity

H(Pt |Qt)−H(Pt0 |Qt0) = −
∫ t

t0

I(Pu |Q↑
u) du. (2.40)

In particular, the relative entropy function t 7→ H(Pt |Qt) is monotonically decreasing. Further-

more, for Lebesgue-a.e. t ∈ [0, T ], the relative Fisher information I(Pt |Q↑
t ) is finite, and the rate

of relative entropy dissipation is given by

d
dt H(Pt |Qt) = −I(Pt |Q↑

t ). (2.41)

Proof. The identity (2.40) follows by taking expectations with respect to the probability mea-

sure P in (2.28), recalling the definitions of (2.22), using (3.17), and invoking the fact that the

P-expectation of the martingale (2.29) vanishes. Finally, applying the Lebesgue differentiation

theorem to the monotone function t 7→ H(Pt |Qt) gives (2.41).

Remark 2.4.5. The relation (2.41) describes the temporal dissipation of relative entropy at the

ensemble level. It asserts that the rate of decay of the relative entropy t 7→ H(Pt |Qt) is given by

the relative Fisher information I(Pt |Q↑
t ).

Finally, let us place ourselves again on the filtered probability space (Ω,G,P) as in Theorem

2.4.1 and emphasize that this trajectorial result is valid along almost every trajectory s 7→ Xs(ω)

of the underlying McKean–Vlasov process. As a consequence, by taking conditional expectations,

we can generalize (2.41) and deduce the following trajectorial rate of relative entropy dissipation.
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Corollary 2.4.6. Suppose Assumptions 2.3.1 hold and
∫ T
0
EP[|Iu|] du < ∞. For P-a.e. ω ∈ Ω

there exists a Lebesgue null set Nω ⊆ [0, T ] such that for any s0 ∈ [0, T ] \Nω we have

lim
s↓s0

EP
[
log ℓs(Xs,Ps) | Gs0

]
(ω)− log ℓs0

(
Xs0(ω),Ps0

)
s− s0

= Is0(ω). (2.42)

Remark 2.4.7. Recalling (3.17), we observe that EP[Is0 ] = I(Ps0 |Q↑
s0
). Therefore the limiting

assertion (2.42) can indeed be viewed as a trajectorial version of the deterministic relative entropy

dissipation identity (2.41).

Proof. We let 0 ≤ s0 ≤ s ≤ T . By (2.28), (2.26) and Fubini’s theorem, we have for P-a.e. ω ∈ Ω

EP
[
log ℓs(Xs,Ps) | Gs0

]
(ω)− log ℓs0

(
Xs0(ω),Ps0

)
=

∫ s

s0

EP
[
Iu | Gs0

]
(ω) du. (2.43)

Furthermore, Jensen’s inequality gives

EP

[ ∫ s

s0

∣∣EP
[
Iu | Gs0

]∣∣ du] ≤ ∫ s

s0

EP
[
|Iu|
]
du <∞, (2.44)

which implies ∫ s

s0

∣∣EP
[
Iu | Gs0

]
(ω)
∣∣ du <∞ for P-a.e. ω ∈ Ω. (2.45)

By the Lebesgue differentiation theorem, for every such ω there exists a Lebesgue null set Nω ⊆

[0, T ] so that the limiting assertion

lim
s↓s0

∫ s
s0
EP
[
Iu | Gs0

]
(ω) du

s− s0
= EP

[
Is0 | Gs0

]
(ω) = Is0(ω) (2.46)

holds for every s0 ∈ [0, T ] \Nω. Finally, combining (2.43) and (2.46) proves (2.42).

2.4.2 Gradient flow structure of the granular media equation

In this section, we apply the trajectorial approach of Chapter 2.4.1 in order to formulate the

gradient flow property of the granular media equation (2.11). To this end, we consider a function
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β : Rd → R, which will be treated as a perturbation potential. We denote by V β := V + β the

perturbed confinement potential and invoke the following regularity assumptions.

Assumptions 2.4.8. The function β : Rd → R is smooth and compactly supported, and we require

that Assumptions 2.3.1 are still satisfied if we replace V by V β .

Note that Assumptions 2.4.8 allow us to apply Lemma 2.3.2 to the “perturbed” McKean–

Vlasov SDE

dXt = −
(
∇V β(Xt) +∇(W ∗ Pβt )(Xt)

)
dt+

√
2 dBβ

t , t0 ≤ t ≤ T (2.47)

starting at time t0 ≥ 0, with Xt0 having initial distribution Pβt0 = Pt0 . Therefore, by analogy with

Chapter 2.3.1, we can construct a probability measure Pβ on Ω := C([t0, T ];Rd), under which

the canonical process (Xt)t0≤t≤T satisfies the SDE (2.47), with (Bβ
t )t0≤t≤T being a Pβ-Brownian

motion.

For each time t ∈ [t0, T ], we denote by Pβt := Pβ ◦ X−1
t the probability distribution and by

pβt the probability density function of Xt under Pβ . The “perturbed” curve of density functions

(pβt )t0≤t≤T then satisfies the perturbed granular media equation


∂tp

β
t (x) = div

(
∇pβt (x) + pβt (x)∇V β(x) + pβt (x)∇(W ∗ pβt )(x)

)
, (t, x) ∈ (t0, T )× Rd,

pβt0(x) = pt0(x) , x ∈ Rd.

(2.48)

By analogy with (2.18), we define the perturbed potentials

Ψβ(x, µ) := V β(x) + 1
2
(W ∗ µ)(x) , Ψβ↑(x, µ) := V β(x) + (W ∗ µ)(x) , Ψβ↓ := V β

(2.49)

for (x, µ) ∈ Rd × P2(Rd). In parallel to (2.20), we introduce the perturbed likelihood ratio
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functions

ℓβt (x, µ) :=
pβt (x)

q(x, µ)
, ℓβ↑t (x, µ) :=

pβt (x)

q↑(x, µ)
, ℓβ↓t (x) :=

pβt (x)

q↓(x)
(2.50)

for t ∈ [t0, T ]. Finally, we define the σ-finite measures

Qβ
t (A) :=

∫
A

q(x,Pβt ) dx , Qβ↑
t (A) :=

∫
A

q↑(x,Pβt ) dx , A ∈ B(Rd). (2.51)

They are the perturbed versions of the measures Qt and Q↑
t defined in (2.21). The relative entropy

of Pβt with respect to Qβ
t is then given by

H
(
Pβt
∣∣Qβ

t

)
= EPβ

[
log ℓβt (Xt,P

β
t )
]
= F (Pβt ) (2.52)

and the relative Fisher information of Pβt with respect to Qβ↑
t equals

I
(
Pβt
∣∣Qβ↑

t

)
= EPβ

[∣∣∇ log ℓβ↑t (Xt,P
β
t )
∣∣2] = D(Pβt ). (2.53)

The following trajectorial result, Theorem 2.4.9 below, provides the semimartingale decompo-

sition of the perturbed relative entropy process

log ℓβt (Xt,P
β
t ) = log pβt (Xt) + V (Xt) +

1
2
(W ∗ Pβt )(Xt) , t0 ≤ t ≤ T. (2.54)

In line with its unperturbed counterpart,Theorem 2.4.1, we shall formulate this result in the reverse

direction of time. We first introduce the perturbed analogues of (2.25) and (2.26): the time-reversed
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perturbed Fisher information process is defined as

Iβs :=
(∣∣∇ log ℓβ↓s

∣∣2 + 1
2

∣∣∇(W ∗ Pβs )
∣∣2 + ⟨1

2
∇(W ∗ Pβs ) , 2∇ log ℓβ↓s +∇V β

⟩)
(Xs) (2.55)

− EP̃β

[⟨
1
2
∇W (Xs − Ys) ,

(
2∇ log ℓβ↓s −∇V +∇(W ∗ Pβs ) +∇β

)
(Ys)

⟩]
(2.56)

+
(
⟨∇V ,∇β⟩ −∆β

)
(Xs) (2.57)

for all 0 ≤ s ≤ T − t0, where (Ys)0≤s≤T−t0 is a copy of the process (Xs)0≤s≤T−t0 on a copy

(Ω̃, G̃, P̃β) of the original probability space (Ω,G,Pβ); the perturbed cumulative Fisher informa-

tion process is defined as

F β
s :=

∫ s

0

Iβu du , 0 ≤ s ≤ T − t0. (2.58)

Theorem 2.4.9. Suppose Assumptions 2.4.8 hold. On (Ω,G,Pβ), the time-reversed perturbed

relative entropy process

log ℓβs (Xs,P
β
s ) = log ℓβT−s(XT−s,P

β
T−s) , 0 ≤ s ≤ T − t0 (2.59)

admits the semimartingale decomposition

log ℓβs (Xs,P
β
s )− log ℓβ0 (X0,P

β
0 ) =Mβ

s + F β
s . (2.60)

Here (Mβ
s )0≤s≤T−t0 is the L2(Pβ)-bounded martingale

Mβ
s :=

∫ s

0

⟨
∇ log ℓβu(Xu,P

β
u ) ,

√
2 dBβ

u

⟩
, (2.61)

with (Bβ
s )0≤s≤T−t0 a Pβ-Brownian motion of the backward filtration G, and the compensator (2.58)
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satisfies

EPβ

[
F β
s

]
=

∫ s

0

(
I
(
Pβu
∣∣Qβ↑

u

)
+EPβ

[(⟨
∇V +∇(W ∗Pβu ) ,∇β

⟩
−∆β

)
(Xu)

])
du <∞. (2.62)

With the dynamics of the time-reversed perturbed relative entropy process at hand, we repeat

the same procedure which was carried out for the unperturbed case. Taking expectations with

respect to the probability measure Pβ , we arrive at the perturbed relative entropy identity (2.63),

and applying the Lebesgue differentiation theorem gives the perturbed relative entropy production

identity (2.64).

Corollary 2.4.10. Suppose Assumptions 2.4.8 hold. For all 0 ≤ t0 ≤ t ≤ T , we have the

perturbed relative entropy identity

H
(
Pβt
∣∣Qβ

t

)
−H

(
Pβt0
∣∣Qβ

t0

)
= −

∫ t

t0

(
I
(
Pβu
∣∣Qβ↑

u

)
+EPβ

[(⟨
∇V+∇(W∗Pβu ) ,∇β

⟩
−∆β

)
(Xu)

])
du.

(2.63)

For Lebesgue-a.e. t0 ∈ [0, T ], the perturbed rate of relative entropy dissipation is given by

d

dt

∣∣∣+
t=t0

H
(
Pβt
∣∣Qβ

t

)
= −

(
I
(
Pt0
∣∣Qt0

)
+EP

[(⟨
∇V +∇(W ∗Pt0) ,∇β

⟩
−∆β

)
(Xt0)

])
. (2.64)

Similarly, we have the following trajectorial rate of relative entropy dissipation for the per-

turbed diffusion.

Corollary 2.4.11. Suppose Assumptions 2.4.8 hold and
∫ T−t0
0

EPβ [|Iβu |] du < ∞. For Pβ-a.e.

ω ∈ Ω there exists a Lebesgue null set Nβ
ω ⊆ [0, T − t0] such that for any s0 ∈ [0, T − t0] \Nβ

ω we

have

lim
s↓s0

EPβ

[
log ℓβs (Xs,P

β
s ) | Gs0

]
(ω)− log ℓβs0

(
Xs0(ω),P

β
s0

)
s− s0

= Iβs0(ω). (2.65)

Proof. The proof proceeds almost verbatim as the proof of Corollary 2.4.6. The only difference is

that we now use the semimartingale decomposition (2.60) and the Pβ-martingale property of the

process (2.61) in Theorem 2.4.9.
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We now turn to the computation of the rate of change of the Wasserstein distance along the

curve of probability distributions (Pβt )t0≤t≤T . To this end, we set

vβt (x) := −
(
∇ log pβt +∇V β +∇(W ∗ pβt )

)
(x) , (t, x) ∈ [t0, T ]× Rd, (2.66)

so that the perturbed granular media equation (2.48) can be viewed as a continuity equation

∂tp
β
t (x) + div

(
vβt (x) p

β
t (x)

)
= 0 , (t, x) ∈ (t0, T )× Rd, (2.67)

with vβt ( · ) as the corresponding velocity field. We recall the definition of the tangent space (see

Definition 8.4.1 in [19])

TanµP2(Rd) := {∇φ : φ ∈ C∞
c (Rd;R)}

L2(µ)
(2.68)

of P2(Rd) at the point µ ∈ P2(Rd), and impose the following additional assumptions.

Assumptions 2.4.12. In addition to Assumptions 2.4.8, we suppose that

vt( · ) ∈ TanPt P2(Rd) for Lebesgue-a.e. t ∈ [0, T ], (2.69)

where vt( · ) is obtained by taking β ≡ 0 and t0 = 0 in (2.66).

Remark 2.4.13. For example, we know from [19, Theorem 10.4.13] that the condition (2.69) is

satisfied if, in addition to Assumptions 2.4.8, V is uniformly convex, i.e., Hess(V ) ≥ κV In for

some real constant κV , and W is a convex function satisfying the doubling condition

∃CW > 0 such that ∀x, y ∈ Rd : W (x+ y) ≤ CW
(
1 +W (x) +W (y)

)
. (2.70)

The proof of the following result is based on the general theory of Wasserstein metric deriva-

tives of absolutely continuous curves in Pac,2(Rd); for a thorough discussion, we refer to Chapter
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8 in [19].

Lemma 2.4.14. Suppose Assumptions 2.4.12 hold. For Lebesgue-a.e. t0 ∈ [0, T ], the Wasserstein

metric derivative of the perturbed curve (Pβt )t0≤t≤T is equal to

lim
t↓t0

W2

(
Pβt ,P

β
t0

)
t− t0

=
∥∥vβt0(Xt0)

∥∥
L2(P) =

∥∥∇ log ℓ↑t0(Xt0 ,Pt0) +∇β(Xt0)
∥∥
L2(P). (2.71)

Proof. Without loss of generality we can set β ≡ 0. Note that from (3.17) we have

∫ T

0

∫
Rd

|vt(x)|2 dpt(x) dt = EP

[ ∫ T

0

∣∣∇ log ℓ↑t (Xt,Pt)
∣∣2 dt] <∞, (2.72)

which implies that vt( · ) ∈ L2(Pt) for Lebesgue-a.e. t ∈ [0, T ]. Therefore we can apply Theorem

8.3.1 and Proposition 8.4.5 of [19] to the absolutely continuous curve (Pt)0≤t≤T , which yields

(2.71).

We now have all the ingredients to formulate the gradient flow property of the granular media

equation. The Wasserstein metric slope of the free energy functional F along the McKean–Vlasov

curve (Pt)t0≤t≤T is defined as

∣∣∂F ∣∣W2
(Pt0) := lim

t↓t0

H(Pt |Qt)−H(Pt0 |Qt0)

W2(Pt,Pt0)
. (2.73)

In order to show that this is the slope of steepest descent, we will compare it with the slope

∣∣∂F ∣∣W2

(
Pβt0
)
:= lim

t↓t0

H
(
Pβt
∣∣Qβ

t

)
−H

(
Pβt0
∣∣Qβ

t0

)
W2

(
Pβt ,P

β
t0

) (2.74)

along the perturbed curve (Pβt )t0≤t≤T .

Theorem 2.4.15. Suppose Assumptions 2.4.12 hold. The following assertions hold for Lebesgue-

a.e. t0 ∈ [0, T ]: The random variables

a := ∇ log ℓ↑t0(Xt0 ,Pt0) and b := ∇β(Xt0) (2.75)
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are elements of L2(P), and the Wasserstein metric slope of the free energy functional F along the

McKean–Vlasov curve (Pt)t0≤t≤T is given by

∣∣∂F ∣∣W2
(Pt0) = −∥a∥L2(P). (2.76)

If a+ b ̸= 0, the metric slope along the perturbed curve (Pβt )t0≤t≤T is equal to

∣∣∂F ∣∣W2

(
Pβt0
)
= −

⟨
a ,

a+ b

∥a+ b∥L2(P)

⟩
L2(P)

. (2.77)

In particular, ∣∣∂F ∣∣W2
(Pt0) ≤

∣∣∂F ∣∣W2

(
Pβt0
)

(2.78)

with equality if and only if a+ b is a positive multiple of a.

Proof. The equality (2.76) follows from (2.41) and by taking β ≡ 0 in (2.71). For the proof of

(2.77), we first observe that from (2.64) and (2.71) we obtain the equality

∣∣∂F ∣∣W2

(
Pβt0
)
= −

∥a∥2L2(P) + EP

[(⟨
∇V +∇(W ∗ Pt0) ,∇β

⟩
−∆β

)
(Xt0)

]
∥a+ b∥L2(P)

(2.79)

for Lebesgue-a.e. t0 ∈ [0, T ]. Integrating by parts and recalling the notations in (2.18) – (2.20), we

find that the expectation in the numerator of (2.79) is equal to

∫
Rd

⟨
log∇ℓ↑t0(x) ,∇β(x)

⟩
pt0(x) dx =

⟨
a , b

⟩
L2(P). (2.80)

Now (2.78) follows by the Cauchy–Schwarz inequality.

2.4.3 A trajectorial proof of the HWBI inequality

In this section, we show how our trajectorial approach can be adapted to give a simple proof of

the HWBI inequality. While the techniques that will be used are similar, the setting of this section
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is independent from the rest of the paper. In particular, we shall impose convexity assumptions on

the potentials V,W .

We fix two probability measures ν0 and ν1 in Pac,2(Rd). By Brenier’s theorem [97], there exists

a convex function φ : Rd → R such that

W2
2 (ν0, ν1) =

∫
Rd

|x−∇φ(x)|2 dν0(x). (2.81)

The displacement interpolation of McCann [98] between ν0 and ν1 is given by

νt := (Tt)#ν0 , Tt(x) := (1− t)x+ t∇φ(x) , 0 ≤ t ≤ 1. (2.82)

In particular, since the endpoints ν0 and ν1 belong to Pac,2(Rd), each νt has a probability density

function ρt; see, e.g., [99, Remarks 5.13 (i)].

As before, we consider a confinement potential V and an interaction potential W . For each

t ∈ [0, 1], we then define by analogy with (2.21), the σ-finite measures

µt(A) :=

∫
A

q(x, νt) dx , µ↑
t (A) :=

∫
A

q↑(x, νt) dx , A ∈ B(Rd), (2.83)

where we recall the definitions of the density functions q and q↑ in (2.19). In parallel to the

likelihood ratio functions in (2.19), we define

rt(x, ν) :=
ρt(x)

q(x, ν)
, r↑t (x, ν) :=

ρt(x)

q↑(x, ν)
, (t, x, ν) ∈ [0, 1]× Rd × P2(Rd). (2.84)

Then the relative entropy of νt with respect to µt is given by

H(νt |µt) =
∫
Rd

ρt(x) log rt(x, νt) dx (2.85)
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and the relative Fisher information of νt with respect to µ↑
t is equal to

I
(
νt |µ↑

t

)
=

∫
Rd

|∇ log r↑t (x, νt)|2 ρt(x) dx. (2.86)

We impose the following regularity conditions for Proposition 2.4.17, noting that the strong

assumptions placed on ρ0 and ρ1 are only temporary and will be removed in Assumptions 2.4.18

of Theorem 2.4.19.

Assumptions 2.4.16. The functions V,W : Rd → [0,∞) are smooth and W is symmetric. The

probability density functions ρ0 and ρ1 are smooth, compactly supported and strictly positive in

the interior of their respective supports.

Proposition 2.4.17. Suppose Assumptions 2.4.16 hold. Along the displacement interpolation

(νt)0≤t≤1, the rate of relative entropy dissipation at time t = 0, with respect to the “reference

curve of probability measures” (µt)0≤t≤1, is given by

d

dt

∣∣∣+
t=0

H(νt |µt) =
∫
Rd

⟨
∇ log r↑0(x, ν0) ,∇φ(x)− x

⟩
ρ0(x) dx. (2.87)

Combining Proposition 2.4.17 with the displacement convexity results of McCann [98], we

obtain the following generalization of the HWBI inequality. Equivalent versions of this inequality

can be found in [85, Theorem 4.1] and [86, Theorem D.50].

Assumptions 2.4.18. The functions V,W : Rd → [0,∞) are smooth and W is symmetric. Fur-

thermore, V and W are uniformly convex, i.e., there exist real constants κV and κW such that

Hess(V ) ≥ κV In , Hess(W ) ≥ κW In. (2.88)

Theorem 2.4.19. Suppose Assumptions 2.4.18 hold and the relative entropy H(ν1 |µ1) is finite.
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Then

H(ν0 |µ0)−H(ν1 |µ1) ≤−
∫
Rd

⟨
∇ log r↑0(x, ν0) ,∇φ(x)− x

⟩
ρ0(x) dx (2.89)

− κV +κW
2

W2
2 (ν0, ν1) +

κW
2
|b(ν0)− b(ν1)|2. (2.90)

Remark 2.4.20. By the Cauchy–Schwarz inequality, the right-hand side of (2.89) can be bounded

from above by

√∫
Rd

∣∣∇ log r↑0(x, ν0)
∣∣2 ρ0(x) dx

√∫
Rd

|∇φ(x)− x|2 ρ0(x) dx =

√
I(ν0 |µ↑

0)W2(ν0, ν1),

(2.91)

and we obtain the usual form of the HWBI inequality (2.15); see also [20, Theorem 4.2].

2.5 Proofs of the main results

This section is devoted to the proofs of the results stated in Chapter 2.4. We shall first prove

the main trajectorial results: Theorem 2.4.1 and its “perturbed” counterpart, Theorem 2.4.9.

2.5.1 The proofs of Theorems 2.4.1 and 2.4.9

Since Theorem 2.4.1 follows immediately from Theorem 2.4.9 by setting the perturbation

β : Rd → R to be the zero function, we start with the general setting of Theorem 2.4.9. We

first recall a classical result concerning the time reversal of diffusions.

Lemma 2.5.1 ([100, Theorem 2.1], [95, Theorems G.2, G.5]). Suppose Assumptions 2.4.8 hold.

On (Ω,G,Pβ), the process

Bβ
s := Bβ

T−s −Bβ
T −

√
2

∫ s

0

∇ log pβu(X
β
u ) du , 0 ≤ s ≤ T − t0 (2.92)
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is a Brownian motion. Moreover, the time-reversed canonical process (Xs)0≤s≤T−t0 satisfies

dXs =
(
2∇ log ℓβ↓s −∇V +∇(W ∗ Pβs ) +∇β

)
(Xs) ds+

√
2 dBβ

s . (2.93)

By means of Lemma 2.5.1, the first step in the proof of Theorem 2.4.9 is to compute the dynam-

ics of the time-reversed perturbed relative entropy process (2.59). For the reader’s convenience,

we recall the following characterization of the L-derivative in [78, pp. 383].

Definition 2.5.2. Let f : P2(Rd) → R and µ0 ∈ P2(Rd). On a probability space (Ω,F,P), let X0

be a random variable with distribution µ0. We define ∂µf(µ0) : Rd → Rd as the L-derivative of f

at µ0, if for any µ ∈ P2(Rd) and any random variable X with distribution µ,

f(µ) = f(µ0) + EP

[⟨
∂µf(µ0)(X0) , X −X0

⟩]
+ o
(
∥X −X0∥L2(P)

)
.

Remark 2.5.3. The above characterization of the L-derivative depends neither on the choice of

the probability space (Ω,F,P), nor of the random variables X and X0 used to represent µ and µ0,

respectively. Moreover, if the L-derivative exists, it is uniquely defined up to µ0-equivalence. We

refer to Proposition 5.25 and Remark 5.26 in [78] for the details.

Proposition 2.5.4. Suppose Assumptions 2.4.8 hold. On (Ω,G,Pβ), the time-reversed perturbed

relative entropy process (2.59) satisfies

d log ℓβs (Xs,P
β
s ) =

⟨
∇ log ℓβs (Xs,P

β
s ) ,

√
2 dBβ

s

⟩
(2.94)

+
(∣∣∇ log ℓβ↓s

∣∣2 + 1
2

∣∣∇(W ∗ Pβs )
∣∣2)(Xs) ds (2.95)

+
(⟨

1
2
∇(W ∗ Pβs ) , 2∇ log ℓβ↓s +∇V β

⟩
+ ⟨∇V ,∇β⟩ −∆β

)
(Xs) ds (2.96)

− EP̃β

[⟨
1
2
∇W (Xs − Ys) ,

(
2∇ log ℓβ↓s −∇V +∇(W ∗ Pβs ) +∇β

)
(Ys)

⟩]
ds, (2.97)

where (Ys)0≤s≤T−t0 is a copy of the process (Xs)0≤s≤T−t0 on a copy (Ω̃, G̃, P̃β) of the original
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probability space (Ω,G,Pβ).

Proof. Applying a generalized version of Itô’s formula for McKean–Vlasov diffusions [78, Propo-

sition 5.102] and using the backward dynamics in (2.93), we obtain

d log ℓβs (Xs,P
β
s ) =

⟨
∇ log ℓβs (Xs,P

β
s ) ,

√
2 dBβ

s

⟩
+
(
∂s log ℓ

β
s +∆ log ℓβs

)
(Xs,P

β
s ) ds (2.98)

+
⟨
∇ log ℓβs (Xs,P

β
s ) ,
(
2∇ log ℓβ↓s −∇V +∇(W ∗ Pβs ) +∇β

)
(Xs)

⟩
ds (2.99)

+ EP̃β

[⟨(
∂µ log ℓ

β
s (Xs,P

β
s )
)
,
(
2∇ log ℓβ↓s −∇V +∇(W ∗ Pβs ) +∇β

)⟩
(Ys)

]
ds

(2.100)

+ EP̃β

[
trace

(
∂y∂µ log ℓ

β
s (Xs,P

β
s )(Ys)

)]
ds, (2.101)

where (Ys)0≤s≤T−t0 is a copy of the process (Xs)0≤s≤T−t0 on a copy (Ω̃, G̃, P̃β) of the original

probability space (Ω,G,Pβ). The L-derivative appearing in (2.100) and (2.101) is calculated to be

(
∂µ log ℓ

β
s (x, µ)

)
(y) = 1

2

(
∂µ (W ∗ µ) (x)

)
(y) = −1

2
∇W (x− y) (2.102)

for (x, µ, y) ∈ Rd × P2(Rd) × Rd, see [78, Section 5.2.2, Example 1] for the computation of the

L-derivative of a function which is linear in the distribution variable. Consequently, we have

trace
(
∂y∂µ log ℓ

β
s (x, µ)(y)

)
= −1

2
trace

(
∂y∇W (x− y)

)
= 1

2
∆W (x− y). (2.103)

Putting (2.102) and (2.103) into (2.100) and (2.101), respectively, as well as using the identities

∂s log ℓ
β
s (x, µ) = ∂s log ℓ

β↓
s (x), (2.104)

∇ log ℓβs (x, µ) = ∇ log ℓβ↓s (x) + 1
2
∇(W ∗ µ)(x), (2.105)

∆ log ℓβs (x, µ) = ∆ log ℓβ↓s (x) + 1
2
∆(W ∗ µ)(x), (2.106)
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we obtain

d log ℓβs (Xs,P
β
s ) =

⟨
∇ log ℓβs (Xs,P

β
s ) ,

√
2 dBβ

s

⟩
+
(
∂s log ℓ

β↓
s +∆ log ℓβ↓s

)
(Xs) ds (2.107)

+
⟨(

∇ log ℓβ↓s + 1
2
∇(W ∗ Pβs )

)
,
(
2∇ log ℓβ↓s −∇V +∇(W ∗ Pβs ) +∇β

)⟩
(Xs) ds (2.108)

− EP̃β

[⟨
1
2
∇W (Xs − Ys) ,

(
2∇ log ℓβ↓s −∇V +∇(W ∗ Pβs ) +∇β

)
(Ys)

⟩]
ds (2.109)

+ 1
2

(
∆(W ∗ Pβs )(Xs) + EP̃β

[
∆W (Xs − Ys)

])
ds. (2.110)

Regarding the expression of (2.110), we observe that ∆(W ∗ Pβs )(Xs) = EP̃β [∆W (Xs − Ys)].

Finally, elementary computations based on (2.19), (2.48) and (2.50) show that the perturbed log-

likelihood ratio function (s, x) 7→ log ℓβ↓s (x) of (2.50) satisfies

∂s log ℓ
β↓
s =

⟨
∇ log ℓβ↓s ,∇V −∇(W ∗ Pβs )−∇β

⟩
−
∣∣∇ log ℓβ↓s

∣∣2 −∆ log ℓβ↓s

+
⟨
∇V ,∇(W ∗ Pβs ) +∇β

⟩
−∆(W ∗ Pβs )−∆β

(2.111)

on (0, T − t0)× Rd, with terminal condition log ℓβ↓T−t0 = log ℓ↓T−t0 . Inserting (2.111) into (2.107),

we obtain (2.94) – (2.97).

Setting the perturbation β to be the zero function, we obtain the following result.

Corollary 2.5.5. Suppose Assumptions 2.3.1 hold. On (Ω,G,P), the time-reversed relative entropy

process (2.27) satisfies

d log ℓs(Xs,Ps) =
⟨
∇ log ℓs(Xs,Ps) ,

√
2 dBs

⟩
(2.112)

+
(∣∣∇ log ℓ↓s

∣∣2 + 1
2

∣∣∇(W ∗ Ps)
∣∣2 + ⟨1

2
∇(W ∗ Ps) , 2∇ log ℓ↓s +∇V

⟩)
(Xs) ds (2.113)

− EP̃

[⟨
1
2
∇W (Xs − Ys) ,

(
2∇ log ℓ↓s −∇V +∇(W ∗ Ps)

)
(Ys)

⟩]
ds. (2.114)
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Here, the process

Bs := BT−s −BT −
√
2

∫ s

0

∇ log pu(Xu) du , 0 ≤ s ≤ T (2.115)

is a P-Brownian motion with respect to the backward filtration G, and (Ys)0≤s≤T is a copy of the

process (Xs)0≤s≤T on a copy (Ω̃, G̃, P̃) of the original probability space (Ω,G,P).

Before turning to the final part of the proof of Theorem 2.4.1, we state a classical result based

on the general theory of the Cameron–Martin–Maruyama–Girsanov transformation [101]. The

connection between relative entropy (the left-hand side of (2.117) below) and energy (the right-

hand side of (2.117)) is the foundation of Föllmers entropy approach to the time reversal of dif-

fusion processes on Wiener space [102, 103, 104]. We denote by Wx the Wiener measure on

Ω = C([0, T ];Rd) with starting point x ∈ Rd, and define by

Wx,2(A) := Wx

(
ω ∈ Ω: (

√
2X)(ω) ∈ A

)
, A ∈ B(Ω) (2.116)

the Wiener measure with starting point x and variance 2.

Lemma 2.5.6. The relative entropy of P with respect to WP0,2 :=
∫
Rd Wx,2 P0(dx) is given by

H
(
P |WP0,2

)
=

1

4
EP

[ ∫ T

0

∣∣∇V (Xt) +∇(W ∗ Pt)(Xt)
∣∣2 dt] <∞. (2.117)

Proof. Recalling (2.18), the drift of the McKean–Vlasov dynamics (2.1) can be expressed as

−∇Ψ↑(x,Pt) = −
(
∇V (x) +∇(W ∗ Pt)(x)

)
, (t, x) ∈ [0, T ]× Rd. (2.118)

For any t ∈ [0, T ], using the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we have

EP

[
|∇Ψ↑(Xt,Pt)|2

]
≤ 2EP

[
|∇V (Xt)|2

]
+ 2EP

[
|∇(W ∗ Pt)(Xt)|2

]
. (2.119)
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Using the linear growth condition (2.16) from Assumptions 2.3.1 (i), we find

EP

[
|∇V (Xt)|2

]
≤ 2C2

(
1 + EP

[
|Xt|2

])
≤ 2C2

(
1 + EP

[
sup

0≤t≤T
|Xt|2

])
. (2.120)

Similarly, by Jensen’s inequality and (2.16), we obtain

EP

[
|∇(W ∗ Pt)(Xt)|2

]
≤
∫
Rd×Rd

|∇W (x− y)|2 pt(y) pt(x) dy dx (2.121)

≤ 2C2

(
1 +

∫
Rd×Rd

|x− y|2 pt(y) pt(x) dy dx
)

(2.122)

≤ 2C2

(
1 + 2

∫
Rd×Rd

(|x|2 + |y|2) pt(y) pt(x) dy dx
)

(2.123)

= 2C2
(
1 + 4EP

[
|Xt|2

])
≤ 8C2

(
1 + EP

[
sup

0≤t≤T
|Xt|2

])
. (2.124)

Altogether, we get

EP

[ ∫ T

0

|∇Ψ↑(Xt,Pt)|2 dt
]
≤ 20T

(
1 + EP

[
sup

0≤t≤T
|Xt|2

])
<∞, (2.125)

where the finiteness of this expression follows from the uniform second moment property (2.17)

of Lemma 2.3.2. From [101, Section 7.6.4] we now conclude that P is absolutely continuous with

respect to WP0,2, and the Radon–Nikodym derivatives are given by

dP
dWP0,2

∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

⟨
∇Ψ↑(Xu,Pu) ,

√
2 dBu

⟩
+
1

4

∫ t

0

|∇Ψ↑(Xu,Pu)|2 du
)
, 0 ≤ t ≤ T.

(2.126)

The integrability property (2.125) implies that the P-expectation of the stochastic integral in (2.126)

vanishes, and we obtain

H
(
P |WP0,2

)
= EP

[
log

(
dP

dWP0,2

)]
=

1

4
EP

[ ∫ T

0

|∇Ψ↑(Xt,Pt)|2 dt
]
<∞, (2.127)
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which shows (2.117).

Denoting n-dimensional Lebesgue measure by λ, we consider on Ω = C([0, T ];Rd) the σ-

finite measure Wλ,2 :=
∫
Rd Wx,2 λ(dx), which is known as the law of the reversible Brownian

motion on Rd with variance 2; see [105, 96]. The fundamental property of reversible Brownian

motion is that it is invariant under time reversal. This property can be formalized as follows. Let

R : Ω → Ω be the pathwise time reversal operator on Ω, given by Xs ◦ R = XT−s for s ∈ [0, T ].

For any measure µ on Ω, we denote its time reversal by µ := R#µ. Then we have the invariance

property Wλ,2 = Wλ,2. Let us also consider the probability measure WPT ,2 :=
∫
Rd Wx,2 PT (dx) and

its time reversal given by WPT ,2 =
∫
Rd Wx,2 PT (dx). Then, as already noted in [102, Remarks 3.7],

we have the following result.

Lemma 2.5.7. We have the relative entropy relations

H
(
P |Wλ,2

)
= H

(
P0 |λ

)
+H

(
P |WP0,2

)
(2.128)

and

H
(
P |Wλ,2

)
= H

(
PT |λ

)
+H

(
P |WPT ,2

)
. (2.129)

Furthermore, all these relative entropies are finite.

Proof. For any x ∈ Rd, we let Px( · ) := P( · |X0 = x) denote (a version of) the conditional

probability measure P given X0 = x. By the chain rule for relative entropy [96, Theorem 2] we

have

H
(
P |Wλ,2

)
= H

(
P0 |λ

)
+

∫
Rd

H
(
Px |Wx,2

)
dP0(x) (2.130)

and at the same time

H
(
P |WP0,2

)
= H

(
P0 |P0

)
+

∫
Rd

H
(
Px |Wx,2

)
dP0(x) =

∫
Rd

H
(
Px |Wx,2

)
dP0(x), (2.131)

implying the first identity (2.128). Regarding the finite entropy assertions, we recall (2.2), (2.3)
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and observe that

H
(
P0 |λ

)
=

∫
Rd

p0(x) log p0(x) dx = U (P0) ≤ F (P0) <∞, (2.132)

where the finiteness follows from Assumptions (i) (ii). Furthermore, from Lemma 2.5.6 we know

that H(P |WP0,2) <∞.

By the same arguments as above, (2.129) follows again by the chain rule for relative entropy.

Using the invariance property Wλ,2 = Wλ,2, and as we already know that H(P |Wλ,2) < ∞, it

follows that H(P |Wλ,2) <∞. Let us recall now that PT ∈ Pac,2(Rd) by Lemma 2.3.2. On the one

hand, since PT has finite second moment, H(PT |λ) cannot take the value −∞ as noted in Remark

2.3.3. On the other hand, the absolute continuity of PT implies thatH(PT |λ) cannot take the value

+∞. Therefore, we conclude that H(P |WPT ,2) <∞.

We have assembled now all the ingredients needed for the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. Recalling the definition of the stochastic integral process (Ms)0≤s≤T

in (2.29) and of the cumulative Fisher information process (Fs)0≤s≤T in (2.26), we see that the

stochastic differential of (2.112) – (2.114) can be expressed as claimed in (2.28).

Since (Ms)0≤s≤T is a stochastic integral process, it is a continuous local martingale. In order

to show that it is an L2(P)-bounded martingale, it suffices to show the integrability condition

EP

[⟨
M,M

⟩
T

]
= EP

[
2

∫ T

0

∣∣∇ log ℓu(Xu,Pu)
∣∣2 du] <∞; (2.133)

see, e.g. [106, Corollary IV.1.25]. On (Ω,G,P), the time-reversed canonical process (Xs)0≤s≤T

has backward dynamics

dXs = ϑs(Xs) ds+
√
2 dBs , 0 ≤ s ≤ T (2.134)
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with initial distribution PT , where the drift term is given by

ϑs(x) :=
(
2∇ log ℓ↓s −∇V +∇(W ∗ Ps)

)
(x) = 2∇ log ℓs(x,Ps)−∇V (x) ∈ Rd (2.135)

for (s, x) ∈ [0, T ]×Rd. Therefore, in order to prove (2.133), it suffices to show the two integrability

conditions

EP

[ ∫ T

0

|∇V (Xu)|2 du
]
<∞ and EP

[ ∫ T

0

|ϑu(Xu)|2 du
]
<∞. (2.136)

The first condition is a direct consequence of (2.120). From [102, Lemma 2.6] we conclude that

the expectation of the second condition is bounded by the relative entropy H(P |WPT ,2), which is

finite on account of Lemma 2.5.7.

In order to complete the proof of Theorem 2.4.1, it remains to show (3.17). To begin with,

we take expectation with respect to P in (2.26) and invoke Fubini’s theorem to interchange the

P-expectation and the time integral. Applying once more Fubini’s theorem, we swap the P-

expectation with the P̃-expectation appearing in (2.25). Next, we recall Assumptions 2.3.1 (i)

and use the symmetry of the interaction potential, which implies that ∇W (−x) = −∇W (x) for

all x ∈ Rd. Furthermore, as the distribution of Yu under P̃ is the same as the distribution of Xu

under P, we deduce that

EP
[
Fs
]
=

∫ s

0

EP

[(∣∣∇ log ℓ↓u
∣∣2 + 1

2

∣∣∇(W ∗ Pu)
∣∣2 + ⟨1

2
∇(W ∗ Pu) , 2∇ log ℓ↓u +∇V

⟩)
(Xu)

]
du

(2.137)

+

∫ s

0

EP

[⟨
1
2
∇(W ∗ Pu) ,

(
2∇ log ℓ↓u −∇V +∇(W ∗ Pu)

)
(Xu)

⟩]
du (2.138)

for 0 ≤ s ≤ T . Recalling the definitions in (2.18) – (2.20), we obtain

EP
[
Fs
]
=

∫ s

0

EP

[∣∣∇ log ℓ↑u(Xu,Pu)
∣∣2] du =

∫ s

0

I
(
Pu
∣∣Q↑

u

)
du <∞ , 0 ≤ s ≤ T, (2.139)
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where the second equality is immediate from (2.22), and the finiteness of the expression in (2.139)

is justified as follows. Again, from (2.18) – (2.20) we find

∣∣∇ log ℓ↑s(Xs,Ps)
∣∣2 = ∣∣∇ log ℓs(Xs,Ps) +

1
2
∇(W ∗ Ps)(Xs)

∣∣2 (2.140)

≤ 2
∣∣∇ log ℓs(Xs,Ps)

∣∣2 + 1
2

∣∣∇(W ∗ Ps)(Xs)
∣∣2. (2.141)

In light of (2.133) and (2.121) – (2.124), we see that the expression in (2.139) is finite, which in

turn justifies a posteriori the former applications of Fubini’s theorem.

The proof of Theorem 2.4.9 is now an easy consequence.

Proof of Theorem 2.4.9 . Recalling the definition of the process (Mβ
s )0≤s≤T in (2.61) and of the

perturbed cumulative Fisher information process (F β
s )0≤s≤T in (2.58), we see that the stochastic

differential of (2.94) – (2.97) can be expressed as claimed in (2.60).

As in the proof of Theorem 2.4.1, we will now argue that

EPβ

[⟨
Mβ,Mβ

⟩
T−t0

]
= EPβ

[
2

∫ T−t0

0

∣∣∇ log ℓβu(Xu,P
β
u )
∣∣2 du] <∞, (2.142)

which will then imply that the stochastic integral process (Mβ
s )0≤s≤T−t0 is an L2(Pβ)-bounded

martingale. To this end, we define the density qβ(x, µ) := e−Ψβ(x,µ) for (x, µ) ∈ Rd×P2(Rd), and

consider the “doubly perturbed” likelihood ratio function

ℓβ,βt (x, µ) :=
pβt (x)

qβ(x, µ)
, (t, x) ∈ [t0, T ]× Rd. (2.143)

As the Assumptions 2.3.1 are invariant under the passage from the potential V to V β = V + β, we

can apply Theorem 2.4.1 to the potential V β and obtain

EPβ

[
2

∫ T−t0

0

∣∣∇ log ℓβ,βu (Xu,P
β
u )
∣∣2 du] <∞. (2.144)
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Now, since ℓβt (x, µ)/ℓ
β,β
t (x, µ) = eβ(x), we observe that the difference

∇ log ℓβt (x, µ)−∇ log ℓβ,βt (x, µ) = ∇β(x) (2.145)

is a bounded function. Together with (2.144), this implies (2.142).

It remains to check (2.62). A similar calculation as in the proof of Theorem 2.4.1 leads to the

identity

EPβ

[
F β
s

]
=

∫ s

0

EPβ

[∣∣∇ log ℓβ↑u (Xu,P
β
u )
∣∣2+(⟨∇V +∇(W ∗Pβu ) ,∇β

⟩
−∆β

)
(Xu)

]
du (2.146)

for 0 ≤ s ≤ T − t0. Repeating the reasoning of the previous paragraph for the function ℓβ↑t instead

of ℓβt , we find that

EPβ

[ ∫ T−t0

0

∣∣∇ log ℓβ↑u (Xβ
u ,P

β
u )
∣∣2 du] <∞. (2.147)

Since the function

[0, T − t0]× Rd ∋ (t, x) 7−→
⟨
∇V +∇(W ∗ Pβt ) ,∇β

⟩
(x)−∆β(x) (2.148)

is bounded, we conclude that the quantity of (2.146) is finite. Finally, recalling the definition

(2.53), we arrive at (2.62).

2.5.2 The proofs of Proposition 2.4.17 and Theorem 2.4.19

Proof of Proposition 2.4.17. The first step is to view the probability density functions (ρt)0≤t≤1,

corresponding to the displacement interpolation (νt)0≤t≤1 of (2.82), as a solution to a continuity

equation. Recalling the convex function φ : Rd → R of (2.81), we define a function u0 : Rd → R

by u0(x) := φ(x)− |x|2/2; and for each t ∈ (0, 1], we let the function ut : Rd → R be defined by

the Hopf–Lax formula

ut(x) := inf
y∈Rd

(
u0(y) +

|x− y|2

2t

)
. (2.149)
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For all t ∈ [0, 1), we denote the gradient of ut by vt := ∇ut. For t = 0, it is clear that v0 = ∇φ−Id

is well-defined. For t ∈ (0, 1), the gradient vt is defined Lebesgue-a.e. by [99, Theorem 5.51 (i)],

and

vt(x) = ∇u0 ◦ (Tt)−1(x) , for all x ∈ Tt(Rd), (2.150)

where Tt is defined in (2.82). Note that the inverse of Tt is well-defined because Tt is injective;

see [99, Section 5.4.8]. From (2.150) we see that (vt)0≤t<1 is the velocity field associated with the

trajectories (Tt)0≤t<1, i.e.,

Tt(x) = x+

∫ t

0

vs(Ts(x)) ds , 0 ≤ t < 1. (2.151)

By [99, Theorem 5.51 (ii)], the curve of probability density functions (ρt)0<t<1 satisfies the conti-

nuity equation

∂tρt(x) + div
(
ρt(x) vt(x)

)
= 0 , (t, x) ∈ (0, 1)× Rd. (2.152)

On a sufficiently rich probability space (S,S,P), we let Z0 : S → Rd be a random variable

with probability distribution ν0. For each 0 < t ≤ 1, we let Zt := Tt(Z0). From (2.82) we see that

the random variable Zt has distribution νt, and (2.151) yields the representation

Zt = Z0 +

∫ t

0

vs(Zs) ds , 0 ≤ t < 1. (2.153)

In conjunction with (2.152), we deduce

dρt(Zt) = ∂tρt(Zt) +
⟨
∇ρt(Zt) , dZt

⟩
= −ρt(Zt) div

(
vt(Zt)

)
dt, (2.154)

and thus

d log ρt(Zt) = −div
(
vt(Zt)

)
dt. (2.155)

Recalling the definition of the density function q in (2.19), a similar argument as in (2.102) shows
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that (
∂ν log q(x, ν)

)
(y) = 1

2

(
∂ν (W ∗ ν) (x)

)
(y) = −1

2
∇W (x− y) (2.156)

for (x, ν, y) ∈ Rd × P2(Rd) × Rd. Applying a generalized version of Itô’s formula for McKean–

Vlasov diffusions [78, Proposition 5.102], and using the dynamics (2.153) as well as the L-

derivative (2.156), we obtain

d log q(Zt, νt) = −
⟨
∇V + 1

2
∇(W ∗νt) , vt

⟩
(Zt) dt+

1
2
EP̃

[⟨
∇W (Zt− Z̃t) , vt(Z̃t)

⟩]
dt (2.157)

for 0 < t < 1. Here, the process (Z̃t)0<t<1 is defined on another probability space (S̃, S̃, P̃)

such that the tuple (S,S,P, (Zt)0<t<1) is an exact copy of (S̃, S̃, P̃, (Z̃t)0<t<1). Now taking the

difference between (2.155) and (2.157) gives the dynamics

log rt(Zt, νt)− log r0(Z0, ν0) = −1
2

∫ t

0

EP̃

[⟨
∇W (Zs − Z̃s) , vs(Z̃s)

⟩]
ds (2.158)

+

∫ t

0

(⟨
∇V + 1

2
∇(W ∗ νs) , vs

⟩
(Zs)− div

(
vs(Zs)

))
ds (2.159)

of the relative entropy process (log rt(Zt, νt))0<t<1. Next, let us make two observations. Firstly,

integration by parts yields

EP

[
div
(
vt(Zt)

)]
= −EP

[⟨
∇ log ρt(Zt) , vt(Zt)

⟩]
. (2.160)

Secondly, by applying Fubini’s theorem, and using that W is an even function as well as (Z̃t)#P̃ =

νt, we obtain the identity

EP

[
EP̃

[⟨
∇W (Zt − Z̃t) , vt(Z̃t)

⟩]]
= −EP

[⟨
∇(W ∗ νt)(Zt) , vt(Zt)

⟩]
. (2.161)
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Returning to (2.158), (2.159), we take P-expectations and use (2.160), (2.161) to obtain

H(νt |µt)−H(ν0 |µ0) =

∫ t

0

EP

[⟨
∇ log ρs +∇V +∇(W ∗ νs) , vs

⟩
(Zs)

]
ds (2.162)

=

∫ t

0

EP

[⟨
∇ log r↑s(Zs, νs) , vs(Zs)

⟩]
ds, (2.163)

where for the second equality we recall the notations in (2.84) and (2.19). Finally, letting t ↓ 0, we

get
d

dt

∣∣∣+
t=0

H(νt |µt) =
∫
Rd

⟨
∇ log r↑0(x, ν0) , v0(x)

⟩
ρ0(x) dx; (2.164)

and since v0 = ∇φ− Id, we arrive at (2.87).

Proof of Theorem 2.4.19 . Without loss of generality, we assume that the probability density

functions ρ0 and ρ1 satisfy the strong regularity Assumptions 2.4.16. The general case then follows

by a density argument. We will not provide the details here, but refer to [99, Chapter 9.4], where

this regularization is carried out in the simpler setting of the HWI inequality.

Let us recall the energy functionals U , V , W defined in (2.3), and introduce the functions

f(t) := U (ρt) , g(t) := V (ρt) , h(t) := W (ρt) , 0 ≤ t ≤ 1, (2.165)

where (ρt)0≤t≤1 is the curve of probability density functions corresponding to the displacement

interpolation (νt)0≤t≤1 of (2.82). Then the sum F := f + g + h of these functions satisfies the

relation F (t) = H(νt |µt). In light of [99, Theorem 5.15 (i)], the internal energy functional U is

displacement convex, i.e.,

f ′′(t) ≥ 0 , 0 ≤ t ≤ 1. (2.166)

By Assumptions 2.4.18, the confinement potential V : Rd → [0,∞) is κV -uniformly convex.

Therefore, [99, Theorem 5.15 (ii)] implies that the potential energy functional V is κV -uniformly
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displacement convex. In other words,

g′′(t) ≥ κV W2
2 (ν0, ν1) , 0 ≤ t ≤ 1. (2.167)

Again from Assumptions 2.4.18, the interaction potential W : Rd → [0,∞) is assumed to be sym-

metric and κW -uniformly convex. Therefore, a similar argument as in the proof of [99, Theorem

5.15 (iii)] leads to the κW (W2
2 (ν0, ν1)− |b(ν0)− b(ν1)|2)-uniform convexity of h, so

h′′(t) ≥ κW

(
W2

2 (ν0, ν1)− |b(ν0)− b(ν1)|2
)
, 0 ≤ t ≤ 1. (2.168)

The details of the proof of (2.168) are postponed to Chapter 2.6.2. By combining the estimates

(2.166) – (2.168), we deduce that the relative entropy function [0, 1] ∋ t 7→ F (t) = H(νt |µt)

satisfies

F ′′(t) ≥ (κV + κW )W2
2 (ν0, ν1)− κW |b(ν0)− b(ν1)|2. (2.169)

Furthermore, from Proposition 2.4.17 we have

F ′(0+) =

∫
Rd

⟨
∇ log r↑0(x, ν0) ,∇φ(x)− x

⟩
ρ0(x) dx. (2.170)

In conjunction with (2.169) and (2.170), the Taylor formula F (1) = F (0) + F ′(0+) +
∫ 1

0
(1 −

t)F ′′(t) dt now yields the inequality (2.89) – (2.90).

2.6 Proofs of auxiliary results

2.6.1 Proof of Lemma 2.3.2

The generalized potential Ψ↑ of (2.18) allows us to cast the McKean–Vlasov dynamics of (2.1)

in the more compact form

dXt = −∇Ψ↑(Xt,Pt) dt+
√
2 dBt , 0 ≤ t ≤ T. (2.171)
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Then, for any two pairs (x, µ), (x′, µ′) ∈ Rd × P2(Rd), using the Lipschitz continuity of ∇V in

Assumptions 2.3.1 (i) yields

|∇Ψ↑(x, µ)−∇Ψ↑(x′, µ′)| ≤ ∥∇V ∥Lip |x− x′|+ |∇(W ∗ µ)(x)−∇(W ∗ µ′)(x′)|. (2.172)

For the convolution term, using Jensen’s inequality and the Lipschitz continuity of ∇W in As-

sumptions 2.3.1 (i) leads to

|∇(W ∗µ)(x)−∇(W ∗µ′)(x′)| ≤ ∥∇W∥Lip |x−x′|+ |∇(W ∗µ)(x′)−∇(W ∗µ′)(x′)|. (2.173)

For the last term above, by the Kantorovich–Rubinstein theorem [99, Theorem 1.14], we have

∣∣∣∣ ∫
Rd

∇W (x′ − · ) d(µ− µ′)

∣∣∣∣ ≤ ∥∇W∥Lip sup

{∫
Rd

φ d(µ− µ′) : φ ∈ L1(|µ− µ′|), ∥φ∥Lip ≤ 1

}

= ∥∇W∥LipW1(µ, µ
′) ≤ ∥∇W∥LipW2(µ, µ

′), (2.174)

where

W1(µ, µ
′) = inf

Y ∼µ,Z∼µ′
E|Y − Z| , µ, µ′ ∈ P1(Rd) (2.175)

denotes the 1-Wasserstein-distance, and the inequality in (2.174) follows from Jensen’s inequality.

Altogether, we obtain

|∇Ψ↑(x, µ)−∇Ψ↑(x′, µ′)| ≤ (∥∇V ∥Lip + ∥∇W∥Lip) |x− x′|+ ∥∇W∥LipW2(µ, µ
′). (2.176)

In particular, this shows that the function −∇Ψ↑ is Lipschitz continuous on the product metric

space (Rd, | · |)× (P2(Rd),W2). In conjunction with Assumptions 2.3.1 (ii) , [78, Theorem 4.21]

implies that the McKean–Vlasov SDE (2.171) has a pathwise unique, strong solution satisfying

the uniform second moment condition (2.17). Now we can linearize (2.171) by fixing the time-

marginals (Pt)0≤t≤T , so that the drift term can be viewed as a function (t, x) 7→ ∇Ψ↑(x,Pt), and
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(2.171) becomes an ordinary SDE with a time-inhomogeneous drift coefficient.

The absolute continuity of the time-marginals (Pt)0≤t≤T is immediate from Lemma 2.5.6. A

standard argument using the classical Itô’s formula shows that the curve of probability density

functions (pt)0≤t≤T is a weak solution of the granular media equation (2.11). Finally, we turn to

the regularity of this solution. From (2.176), we see that the drift x 7→ ∇Ψ↑(x,Pt) is Lipschitz

continuous for every t ∈ [0, T ], and Assumptions 2.3.1 (i) implies that the drift is also of linear

growth. The desired smoothness of (pt)0≤t≤T now follows from a straightforward adaptation of

the theorem in [107], see also Remarks (i) – (ii) therein.

2.6.2 Proof of (2.168)

We first rewrite the interaction energy functional W along the displacement interpolation

(νt)0≤t≤1. Using (2.82), for any t ∈ [0, 1], we have

h(t) = 1
2

∫
Rd×Rd

W (x− y) νt(dx) νt(dy) (2.177)

= 1
2

∫
Rd×Rd

W
(
Tt(x)− Tt(y)

)
ν0(dx) ν0(dy) (2.178)

= 1
2

∫
Rd×Rd

W
(
x− y − t

(
θ(x)− θ(y)

))
ν0(dx) ν0(dy), (2.179)

where θ : Rd → Rd is defined as θ(x) := x − ∇φ(x). Now, for any t1, t2, σ ∈ [0, 1], by the

κW -uniform convexity of W in Assumptions 2.4.18, we obtain

σh(t1) + (1− σ)h(t2)− h
(
σt1 + (1− σ)t2

)
(2.180)

= 1
2

∫
Rd×Rd

(
σW

(
x− y − t1

(
θ(x)− θ(y)

))
+ (1− σ)W

(
x− y − t2

(
θ(x)− θ(y)

))
(2.181)

−W
(
x− y −

(
σt1 + (1− σ)t2

)(
θ(x)− θ(y)

)))
ν0(dx) ν0(dy) (2.182)

≥ 1
4
κWσ(1− σ)(t1 − t2)

2

∫
Rd×Rd

|θ(x)− θ(y)|2 ν0(dx) ν0(dy). (2.183)
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Next, we express the integral in (2.183) as

1
2

∫
Rd×Rd

|θ(x)− θ(y)|2 ν0(dx) ν0(dy) =
∫
Rd

|θ(x)|2 ν0(dx)−
∣∣∣∣ ∫

Rd

θ(x) ν0(dx)

∣∣∣∣2

=

∫
Rd

|x−∇φ(x)|2 ν0(dx)−
∣∣∣∣ ∫

Rd

x ν0(dx)−
∫
Rn

x ν1(dx)

∣∣∣∣2
= W2

2 (ν0, ν1)− |b(ν0)− b(ν1)|2.

Putting this back into (2.183), we deduce that h is uniformly convex, with constant

κW

(
W2

2 (ν0, ν1)− |b(ν0)− b(ν1)|2
)
. (2.184)
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Chapter 3: A trajectorial approach to entropy dissipation of degenerate

parabolic equations

In this chapter, we consider degenerate diffusion equations of the form ∂tpt = ∆f(pt) on a

bounded domain and subject to no-flux boundary conditions, for a class of nonlinearities f that

includes the porous medium equation. We derive for them a trajectorial analogue of the entropy

dissipation identity, which describes the rate of entropy dissipation along every path of the diffu-

sion. In line with the recent work [15], our approach is based on applying stochastic analysis to the

underlying probabilistic representations, which in our context are stochastic differential equations

with normal reflection on the boundary. This trajectorial approach also leads to a new derivation of

the Wasserstein gradient flow property for nonlinear diffusions, as well as to a simple proof of the

HWI inequality in the present context. This chapter is based on the paper [22] joint with Donghan

Kim.

3.1 Introduction

In this chapter, we are interested in a class of quasilinear degenerate parabolic equations with

initial and no-flux boundary conditions of the following form:



∂tp(t, x) = ∆
(
f
(
p(t, x)

))
, for (t, x) ∈ (0, T )× U,

p(0, x) = p0(x), for x ∈ U,

∂p(t, x)

∂n(x)
= 0, for (t, x) ∈ (0, T )× ∂U,

(3.1)

for a fixed T ∈ (0,∞), an open connected bounded domain U ⊂ Rd, and a given initial probability

density function p0 on U . Here, n(x) is the outward normal to the boundary ∂U at x ∈ ∂U , and
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f : [0,∞) → R is a function representing the nonlinearity. In particular, when f(u) = um for

some m > 1, the partial differential equation of (3.1) becomes the porous medium equation.

Under suitable assumptions on f , it is well known from [108] that the solution of (3.1) con-

verges to a unique stationary distribution, i.e., a probability density function p∞ satisfying ∆
(
f(p∞(x))

)
=

0, and that this convergence can be quantified by the rate of entropy dissipation. More precisely,

let us define h : (0,∞) → R and Φ : [0,∞) → R by

h(u) :=

∫ u

1

f ′(s)

s
ds, Φ(u) :=

∫ u

0

h(s) ds. (3.2)

Note that the function h plays the role of the “generalized logarithm” since it becomes the logarithm

with the choice f(u) = u, i.e., when (3.1) turns into the heat equation. Define also the entropy

functional

F (p) :=

∫
U

Φ
(
p(x)

)
dx, (3.3)

for any probability density function p on U such that the integral is finite. Then it can be shown

that the stationary probability density function p∞ is the minimizer of F . Also, by abbreviating

pt := p(t, ·), it is well known (see, e.g. [108, Equation (4)]) that

F (pt)− F (pt0) = −
∫ t

t0

I(pu)du (3.4)

holds for every 0 ≤ t0 ≤ t ≤ T , where I is the entropy dissipation functional, defined by

I(p) :=

∫
U

∣∣Φ′′(p(x))∇p(x)∣∣2 p(x) dx (3.5)

for any differentiable probability density function p such that the integral is finite. This identity

measures the rate of entropy dissipation along the flow of the time-marginal probability densities

(pt)0≤t≤T , hence is known as the entropy dissipation identity. In particular, the entropy functional
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t 7→ F (pt) is decreasing in time. See also [109, Lemma 18.14] and [110, Equation 3.4] for a

specific form of this identity for the porous medium equation with drift.

The identity (3.4) describes the rate of entropy dissipation at the ensemble level of the diffusion

modeled by (3.1), since it is formulated in terms of the probability density functions (pt)0≤t≤T of

the diffusion. The main goal of this paper is to formulate a trajectorial analogue to this identity,

which describes the rate of entropy dissipation at the level of the individual diffusive particle. To

illustrate this, we begin with the following stochastic differential equation (SDE) with values in U

and normal reflection at the boundary:

Xt = X0 +

∫ t

0

√
2f
(
p(s,Xs)

)
p(s,Xs)

dBs −
∫ t

0

n(Xs) dLs, X0 ∼ p0. (3.6)

Here,B is a d-dimensional standard Brownian motion andL is a nondecreasing continuous process

satisfying

Lt =

∫ t

0

1{Xs∈∂Ω} dLs, L0 = 0. (3.7)

The stochastic process (Xt)0≤t≤T provides the probabilistic representation of (3.1), in the sense

that its time-marginal probability density function coincides with the solution p(t, ·) of (3.1) (see

Lemma 3.2.4 below for details).

Intuitively, the diffusion Xt is reflected on the boundary ∂U in the direction −n(Xt). The

reflecting term L is associated with a multi-dimensional analogue of the local time on ∂U [111].

With this probabilistic representation, the entropy at time t can then be expressed as an expec-

tation:

F (pt) =

∫
U

v(t, x) p(t, x) dx = E
[
v(t,Xt)

]
, where1 v(t, x) :=

Φ
(
p(t, x)

)
p(t, x)

. (3.8)

Using stochastic analysis, we shall derive the dynamics of the entropy process
(
v(t,Xt)

)
t∈[0,T ], in

1In the case of the porous medium equation, v is known as the pressure function.
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terms of the semimartingale decomposition

v(t,Xt)− v(0, X0) =Mt + Ft, for 0 ≤ t ≤ T, (3.9)

where M is a martingale and F is a process of finite variation. This decomposition describes the

evolution of the entropy process along every trajectory of the diffusive particle, and can thus be

seen as a trajectorial analogue of (3.4). In fact, (3.4) can be recovered from (3.9) by averaging over

these trajectories; in other words, by taking expectations.

Our work is much inspired from the recent work [15], which provides a trajectorial approach

to the relative entropy dissipation for Fokker-Planck equations. This approach has been extended

to Markov chains [83] and to McKean-Vlasov equations [22]. It is therefore natural to expect an

adaptation of the approach for the porous media type equation (3.1). Compared with prior work, a

key difficulty in our setting stems from the degenerate parabolicity of (3.1). More specifically, as

f ′ is not assumed to be bounded from below by some strictly positive constant, the equation (3.1)

is not uniformly parabolic. Without uniform parabolicity, equations of this form are only expected

to have weak solutions [112], but not classical solutions. However, such regularity is crucial for

applying Itô calculus. To this end, we require the initial condition p0 to be nondegenerate, i.e., to

satisfy κ−1 ≤ p0(x) ≤ κ for some κ > 1. This will ensure that (3.1) has a smooth solution. Also,

in addition to considering diffusions on a bounded domain, another main difference with the prior

work [95, 22] is that our main trajectorial result (Theorem 3.2.5 below) is stated in the forward

direction of time.

Along with our trajectorial approach come two applications. The first application is a new

derivation of the Wasserstein gradient flow property of (3.1), which states that the curve of time-

marginal probability density functions (pt)t∈[0,T ] of (3.1) descends in the steepest possible direction

of the entropy functional F in P(U), the space of probability measures on U . Here, P(U) is
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equipped with the quadratic Wasserstein distance W2, defined by

W2(µ, ν) :=

√
inf
π

∫
U×U

|x− y|2 π(dx, dy), for any µ, ν ∈ P(U), (3.10)

where the infimum is taken over π ∈ P(U × U) with marginals µ and ν.

For the porous medium equation on Rd, this property was discovered by Otto in his seminal

paper [82], where he introduced a formal Riemannian structure on P(Rd). More recently, Ambro-

sio, Gigli and Savaré [19] developed a rigorous theory of gradient flows on general metric spaces

based on the notion of curves of maximal slopes. Similar results have been established for porous

medium equations on discrete spaces [113] and with fractional pressure [114].

To show the entropic steepest descent property, we adopt the methodology in [15] of perturbing

the SDE (3.6) from some time t0 ∈ [0, T ) onwards, by adding a gradient drift ∇β, namely,

Xβ
t = Xβ

t0 −
∫ t

t0

∇β(Xβ
s ) ds+

∫ t

t0

√
2f
(
pβ(s,Xβ

s )
)

pβ(s,Xβ
s )

dBs −
∫ t

t0

n(Xβ
s ) dL

β
s .

Here, pβ(t, ·) is the time-marginal probability density function for the solution (Xβ
t )t0≤t≤Tβ of

this perturbed SDE (see Lemmas 3.20 and 3.2.10 for details). By deriving the dynamics of the

associated perturbed entropy process, we obtain an analogous entropy dissipation identity for the

perturbed diffusion. On the other hand, we can also explicitly compute the rates of changes of the

Wasserstein distances along both the perturbed curve (pβt ) and the unperturbed curve (pt). Thus,

the entropy dissipation rates can be measured not in terms of time elapsed, but in terms of the

Wasserstein distances traveled by the curve of time-marginal probability density functions, both

in the perturbed and the unperturbed settings. Comparing these rates allows us to establish the

maximal rate of entropy dissipation for the unperturbed diffusion (3.1), by measuring the exact

effect of each perturbation.

The second application of the trajectorial approach is a simple proof of the HWI inequality in

the context of the nonlinear equation (3.1), which is a special case of [20, Theorem 4.2]. It is an
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interpolation inequality relating the entropy functional (H)2, the Wasserstein distance (W) and the

entropy dissipation functional (I). More precisely, this inequality states that

F (ρ0)− F (ρ1) ≤
√
I(ρ0)W2(ρ0, ρ1) (3.11)

holds for any ρ0, ρ1 ∈ P(U). We will prove this inequality by applying a trajectorial approach

similar to the one just described, but to the displacement interpolation between ρ0 and ρ1, instead

of the time-marginal probability density functions of (Xt)0≤t≤T and (Xβ
t )t0≤t≤Tβ .

The rest of the chapter is organized as follows. In Chapter 3.2.1, we introduce our setup and

state some preliminary lemmas. Chapter 3.2.2 states our result on the trajectorial rate of entropy

dissipation for the degenerate parabolic equation. Building on it, Chapter 3.2.3 formulates the gra-

dient flow property via a perturbation analysis, while Chapter 3.2.4 develops the HWI inequality.

Proofs are provided in Chapter 3.3.

3.2 Setting and main results

3.2.1 Setup

We impose the following assumptions on the initial distribution p0 and on the nonlinearity f of

the degenerate parabolic equation (3.1).

Assumptions 3.2.1.

(a) The domain U is an open connected bounded subset of Rd for some d ≥ 2, and the boundary

∂U is smooth.

(b) The initial datum p0 is a smooth probability density function on U . Moreover, it is non-

degenerate, i.e., there exists a real number κ > 1 for which κ−1 ≤ p0(x) ≤ κ holds for all

2The letter “H" comes from the choice f(u) = u in (3.2), in which case the entropy functional defined in (3.3)
satisfies F (p) = H(p)− 1, where H(p) =

∫
U
p(x) log p(x) dx is the (negative of the) differential entropy.
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x ∈ U . We assume also

∂p0(x)

∂n(x)
= 0, for all x ∈ ∂U, (3.12)

where n(x) is the outward normal to the boundary ∂U .

(c) The function f : [0,∞) → R is smooth and strictly increasing. Moreover, f(0) = f ′(0) = 0

and f ′(u) > 0 for all u > 0. Its derivative f ′ is nondecreasing.

(d) The function h, defined in (3.2), belongs to L1
loc([0,∞)).

Remark 3.2.2. Assumptions 3.2.1(c) - (d) cover the porous medium equations, in which case

f(u) = um for some m > 1. The assumption f ′(u) > 0 implies that (3.1) is a parabolic par-

tial differential equation (PDE), while the assumption f ′(0) = 0 implies that (3.1) is degenerate

parabolic.

We collect now some basic properties of the solution to the PDE (3.1) in the following lemma.

These properties are classical, and we refer to Chapter 3 of the monograph [109], and to the refer-

ences therein, for a comprehensive overview.

Lemma 3.2.3. Under Assumption 3.2.1, there exists a smooth solution p ∈ C∞([0, T ]×U) of (3.1).

Moreover,
∫
U
p(t, x) dx = 1 for all t ∈ [0, T ] and κ−1 ≤ p(t, x) ≤ κ for all (t, x) ∈ [0, T ]× U .

For the rest of the paper, we fix p as the solution given in Lemma 3.2.3. Fix also a filtered prob-

ability space
(
Ω,F,F = (Ft)0≤t≤T ,P

)
supporting a F-Brownian motion B and a F0-measurable

random vector ξ : Ω → Rd with P ◦ ξ−1 = p0. We shall denote by E the expectation taken with

respect to P. We will make use of the probabilistic representation of (3.1), which is described in

Lemma 3.2.4 below in terms of the solution of the following SDE with normal reflection on the
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boundary:



Xt = X0 +

∫ t

0

√
2f
(
p(s,Xs)

)
p(s,Xs)

dBs −
∫ t

0

n(Xs) dLs ∈ U, t ∈ [0, T ],

X0 = ξ,

Lt =

∫ t

0

1{Xs∈∂U} dLs, [0, T ] ∋ t→ Lt is nondecreasing, continuous with L0 = 0.

(3.13)

For an introduction to SDEs with reflection and their connections with nonlinear parabolic PDEs,

we refer to the lecture notes [115] and [116].

The following result shows that (3.13) is well-posed and provides the probabilistic represen-

tation of (3.1). Similar results are known for the porous medium equations [117] as well as for

general nonlinear equations of the form (3.1) with discontinuous coefficients [118, 119], or with

the half-line as the domain [120]. See also [121] for a martingale method for establishing gradient

estimates for the porous medium and fast diffusion equations.

Lemma 3.2.4. Suppose Assumption 3.2.1 holds. Then the SDE with reflection (3.13) has a path-

wise unique, strong solution (X,L), for which the probability density functions of (Xt)t∈[0,T ] are

given by the solution
(
p(t, ·)

)
t∈[0,T ] of (3.1).

3.2.2 Trajectorial entropy dissipation of degenerate parabolic equation

Our first main result describes the dynamics of entropy dissipation along every trajectory of the

diffusion (3.13), formulated in terms of the semimartingale decomposition of the entropy process(
v(t,Xt)

)
t∈[0,T ].

To begin, we define the entropy dissipation function

D(t, x) :=

(
φ′(p)∆f(p) +

f(p)

p
∆v

)
(t, x), (t, x) ∈ [0, T ]× U, where φ(u) :=

Φ(u)

u
,

(3.14)

and Φ is defined in (3.2). This function will help provide the exact trajectorial rate of entropy
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dissipation, as will be explained in Remark 3.2.7 below. We note that the function v of (3.8) can

be cast as v(t, x) = φ(p(t, x)).

Theorem 3.2.5. Suppose Assumption 3.2.1 holds. Then the entropy process
(
v(t,Xt)

)
t∈[0,T ] admits

the semimartingale decomposition

v(t,Xt)− v(0, X0) =Mt + Ft, for t ∈ [0, T ]. (3.15)

where

Ft :=

∫ t

0

D(s,Xs) ds, and Mt :=

∫ t

0

⟨√
2f
(
p(s,Xs)

)
p(s,Xs)

∇v(s,Xs), dBs

⟩
(3.16)

is an L2- bounded martingale. Also, we have

E
[
Ft
]
= −

∫ t

0

I
(
pt
)
dt > −∞ , for t ∈ [0, T ]. (3.17)

The proof of Theorem 3.2.5 will be given in Chapter 3.3.3. This result is the analogue of [95,

Theorem 4.1] and [22, Theorem 3.1]. In contrast to them, Theorem 3.2.5 here is stated in the

forward direction of time.

By aggregating this trajectorial result, i.e., taking expectation, we recover the entropy dissipa-

tion identity (3.4) and its differential version (3.18). Furthermore, by taking conditional expecta-

tion, we obtain below the conditional trajectorial rate of entropy dissipation (3.19).

Corollary 3.2.6. Suppose Assumption 3.2.1 holds. Then for every 0 ≤ t0 ≤ t ≤ T , the entropy

dissipation identity (3.4) holds. The corresponding differential version

d

dt

∣∣∣∣
t=t0

F (pt) = −I(pt0) (3.18)

also holds for all t0 ∈ [0, T ]. Moreover, for all t0 ∈ [0, T ], the conditional trajectorial rate of
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entropy dissipation is given by

lim
t↓t0

E[v(t,Xt)
∣∣Ft0 ]− v(t0, Xt0)

t− t0
= D(t0, Xt0), (3.19)

where the limit exists in L1(P).

Remark 3.2.7. From (3.17), we see that E[D(t0, Xt0)] = −I(pt0) holds. This explains why (3.19)

constitutes a conditional trajectorial version of the entropy dissipation identity (3.18).

3.2.3 Gradient flow property of the degenerate parabolic equation, via perturbation analysis

In this section, we discuss how our trajectorial approach leads to a new interpretation of the

Wasserstein gradient flow property of the degenerate parabolic equation (3.1). Following the

method of [95, 22], we shall perturb the degenerate parabolic equation.

The perturbed degenerate parabolic equation

To this effect, let β be a perturbation potential satisfying the following assumption.

Assumptions 3.2.8. The perturbation potential β : U → R is smooth. Moreover, the gradient of

the perturbation potential vanishes on the boundary, i.e., ∇β(x) = 0 for x ∈ ∂U .

For the rest of the paper, we fix a t0 ∈ [0, T ) and a perturbation β satisfying Assumption 3.2.8.

Consider the following Neumann problem, which can be viewed as a perturbed version of (3.1):



∂tp
β(t, x) = div

(
∇f
(
pβ(t, x)

)
+ pβ(t, x)∇β(x)

)
, for (t, x) ∈ (t0, T ]× U,

pβ(t0, x) = p(t0, x), for x ∈ U,

∂pβ(t, x)

∂n(x)
= 0, for x ∈ ∂U.

(3.20)

The following result, which is the “perturbed analogue” of Lemma 3.2.3, shows the existence of a

strictly positive smooth solution to (3.20) in a short time interval.
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Lemma 3.2.9. Under Assumptions 3.2.1 and 3.2.8, there exists Tβ ∈ (t0, T ] such that (3.20) has a

smooth solution in pβ ∈ C∞([t0, Tβ] × U
)
. Moreover,

∫
U
pβ(t, x) dx = 1 for all t ∈ [t0, Tβ] and

1
2κ

≤ pβ(t, x) ≤ 3
2κ

for all (t, x) ∈ [t0, Tβ]× U .

For the rest of the paper, we fix pβ as given by Lemma 3.2.9. The corresponding probabilistic

representation of the perturbed PDE (3.20) is the following SDE with reflection:



Xβ
t = Xβ

t0 −
∫ t

t0

∇β(Xβ
s ) ds+

∫ t

t0

√
2f
(
pβ(s,Xβ

s )
)

pβ(s,Xβ
s )

dBs −
∫ t

t0

n(Xβ
s ) dL

β
s ∈ U, t ∈ [t0, Tβ],

Xβ
t0 = Xt0 ,

Lβt =

∫ t

t0

1{Xβ
s ∈∂U} dL

β
s , [t0, Tβ] ∋ t 7→ Lβt is nondecreasing continuous with Lβt0 = 0.

(3.21)

By analogy with Lemma 3.2.4, the following result ensures that (3.21) is well-posed and is the

stochastic counterpart of (3.20).

Lemma 3.2.10. Under Assumptions 3.2.1 and 3.2.8, the SDE with reflection (3.21) has a pathwise

unique, strong solution (Xβ
t , L

β
t )t∈[t0,Tβ ], for which the probability density functions of (Xβ

t )t∈[t0,Tβ ]

are given by
(
pβ(t, ·)

)
t∈[t0,Tβ ]

, as in (3.20).

As before, let us abbreviate pβt := pβ(t, ·). In parallel to (3.8), we can express the entropy for

the perturbed diffusion at time t as

F
(
pβt
)
=

∫
U

vβ(t, x) pβ(t, x) dx = E
[
vβ(t,Xβ

t )
]
, where vβ(t, x) :=

Φ
(
pβ(t, x)

)
pβ(t, x)

. (3.22)

Therefore, we similarly call
(
vβ(t,Xβ

t )
)
t∈[t0,Tβ ]

the perturbed entropy process. The following

result, which is the perturbed counterpart of Theorem 3.2.5, derives the dynamics of this process.

By analogy with (3.14), we introduce the perturbed entropy dissipation function

Dβ(t, x) :=

(
φ′(pβ) div

(
∇f
(
pβ
)
+ pβ∇β(x)

)
+
f
(
pβ
)

pβ
∆vβ − ⟨∇vβ, ∇β⟩

)
(t, x), (3.23)

for (t, x) ∈ [t0, Tβ]× U .
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Theorem 3.2.11. Suppose Assumptions 3.2.1 and 3.2.8 hold. Then the perturbed entropy process(
vβ(t,Xβ

t )
)
t∈[t0,Tβ ]

admits the semimartingale decomposition

vβ(t,Xβ
t )− vβ(t0, X

β
t0) =Mβ

t + F β
t , for t ∈ [t0, Tβ], (3.24)

where

F β
t :=

∫ t

t0

Dβ(s, Xβ
s ) ds, and Mβ

t :=

∫ t

t0

⟨√
2f
(
pβ(s,Xβ

s )
)

pβ(s,Xβ
s )

∇vβ(s,Xβ
s ), dBs

⟩
(3.25)

is an L2-bounded martingale. Also, we have for t ∈ [t0, Tβ],

E
[
F β
t

]
= −

∫ t

t0

I(pβs ) ds−
∫ t

t0

E
[⟨
∇h
(
pβ(s,Xβ

s )
)
, ∇β(Xβ

s )
⟩]

ds > −∞. (3.26)

Once again, by averaging this trajectorial result, we obtain the following perturbed entropy

dissipation identity and its conditional trajectorial version, to which a comment similar to Remark

3.2.7 applies.

Corollary 3.2.12. Suppose Assumptions 3.2.1 and 3.2.8 hold. For every t ∈ [t0, Tβ], the following

perturbed entropy dissipation identity holds:

F
(
pβt
)
− F

(
pβt0
)
= −

∫ t

t0

I
(
pβs
)
ds−

∫ t

t0

E
[⟨
∇h
(
pβ(s,Xβ

s )
)
, ∇β(Xβ

s )
⟩]

ds. (3.27)

The corresponding differential version also holds:

d

dt

∣∣∣∣
t=t+0

F (pβt ) = −I(pt0)− E
[⟨
∇h
(
p(t0, Xt0)

)
, ∇β(Xt0)

⟩]
. (3.28)

Moreover, the conditional trajectorial rate of entropy dissipation for the perturbed diffusion is

given by

lim
t↓t0

E
[
vβ(t,Xβ

t )
∣∣Ft0

]
− vβ(t0, Xt0)

t− t0
= Dβ(t0, Xt0), (3.29)
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where the limit exists in L1.

Entropic steepest descent property

The last ingredients we need, in order to establish the entropic steepest descent property, are the

rates of change of the Wasserstein distances along the curves of the marginal distributions (pt) and

(pβt ). The following result is a consequence of the general theory of Wasserstein metric derivatives

for absolutely continuous curves [19, Chapter 8], but our setting allows for a more direct proof,

which we provide in Chapter 3.3.5. We recall the definitions of h in (3.2) and the perturbation

potential β described at the beginning of Chapter 3.2.3. Note in the following that the function

(t, x) 7→ h(p(t, x)) plays the role of “generalized log-likelihood” function, as it becomes the log-

likelihood function (t, x) 7→ log(p(t, x)) in the case of f(u) = u, i.e., when (3.1) turns into the

heat equation.

Lemma 3.2.13. Suppose Assumptions 3.2.1 and 3.2.8 hold. Then the Wasserstein metric slope

along the unperturbed curve (pt) is given by

lim
t↓t0

W2(pt, pt0)

t− t0
=
∥∥∥∇h(p(t0, Xt0)

)∥∥∥
L2
. (3.30)

Similarly, the Wasserstein metric slope along the perturbed curve
(
pβt
)

is given by

lim
t↓t0

W2

(
pβt , p

β
t0

)
t− t0

=
∥∥∥∇h(p(t0, Xt0)

)
+∇β(Xt0)

∥∥∥
L2
. (3.31)

Combining the entropy dissipation identities (3.18) and (3.28) with the Wasserstein deriva-

tives (3.30)–(3.31) allows us to derive the steepest descent property of the entropy. We define the

Wasserstein metric slopes of the entropy functional F along the unperturbed curve (pt) and along

the perturbed curve (pβt ), respectively, by

|∂F |W2(pt0) := lim
t↓t0

F (pt)− F (pt0)

W2(pt, pt0)
and |∂F |W2(p

β
t0) := lim

t↓t0

F
(
pβt
)
− F

(
pβt0
)

W2(p
β
t , p

β
t0)

. (3.32)
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The following theorem computes both of these slopes explicitly, which shows in particular that the

unperturbed slope |∂F |W2(pt0) is always steeper than the perturbed slope |∂F |W2(p
β
t0).

Theorem 3.2.14. Suppose Assumptions 3.2.1 and 3.2.8 hold. Then the Wasserstein metric slope of

the entropy functional along the unperturbed curve (pt) is given by

|∂F |W2(pt0) = −
∥∥∥∇h(p(t0, Xt0)

)∥∥∥
L2

= −
√
I(pt0). (3.33)

Similarly, if ||∇h
(
p(t0, Xt0)

)
+ ∇β(Xt0)||L2 > 0, then the Wasserstein metric slope along the

perturbed curve
(
pβt
)

is given by

|∂F |W2

(
pβt0
)
= −

⟨
∇h
(
p(t0, Xt0)

)
,

∇h
(
p(t0, Xt0)

)
+∇β(Xt0)∥∥∥∇h(p(t0, Xt0)

)
+∇β(Xt0)

∥∥∥
L2

⟩
L2

. (3.34)

In particular,

|∂F |W2(pt0) ≤ |∂F |W2

(
pβt0
)
, (3.35)

and equality holds if and only if ∇h
(
p(t0, Xt0)

)
+∇β(Xt0) is a.s. a scalar multiple of ∇h

(
p(t0, Xt0)

)
.

3.2.4 HWI inequality

In this section, we apply a similar trajectorial approach to derive the HWI inequality (3.11).

Let us fix two probability density functions ρ0, ρ1 ∈ P(U) and impose the following assumption.

Assumptions 3.2.15.

(a) Both ρ0, ρ1 are strictly positive and smooth. Also, ρ0(x) = ρ1(x) for all x ∈ ∂U .

(b) The function f : [0,∞) → R is smooth. Moreover, the function h, defined in (3.2), belongs

to L1
loc([0,∞)).

(c) The function r 7→ rdΦ(r−d) is convex nonincreasing on (0,∞), where Φ is defined in (3.2).
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Remark 3.2.16. Assumption (b), (c) is satisfied by the porous medium equation, see [99, Examples

5.19].

By Brenier’s theorem [99, Theorem 2.12(ii)], there exists a convex function ψ : U → R such

that ∇ψ is the optimal transport map from ρ0 to ρ1, i.e.,

W2
2 (ρ0, ρ1) =

∫
U

∣∣x−∇ψ(x)
∣∣2 ρ0(dx). (3.36)

Let (ρt)t∈(0,1) denote the displacement interpolation between ρ0 and ρ1, i.e.,

ρt = ρ0 ◦
(
(1− t)Id + t∇ψ

)−1
, for t ∈ (0, 1).

It is known that each ρt has a probability density function [99, Remarks 5.13(i)]. For the fol-

lowing result, we recall the entropy functional F defined in (3.3), the nonlinearity f satisfying

Assumption 3.2.15(b), and the convex function ψ described just above.

Proposition 3.2.17. Suppose Assumption 3.2.1(a) and Assumption 3.2.15(a–b) hold. Then the rate

of change of t 7→ F (ρt) at t = 0 is given by

d

dt

∣∣∣+
t=0

F (ρt) =

∫
U

⟨
∇f
(
ρ0(z)

)
,∇ψ(z)− z

⟩
dz. (3.37)

Using this proposition and the displacement convexity of the entropy functional F , we obtain

the HWI inequality (3.11).

Theorem 3.2.18. Suppose Assumption 3.2.1(a) and Assumption 3.2.15 hold. Then

F (ρ0)− F (ρ1) ≤ −
∫
U

⟨
∇f
(
ρ0(z)

)
,∇ψ(z)− z

⟩
dz ≤

√
I(ρ0)W2(ρ0, ρ1), (3.38)

where I is the entropy dissipation functional defined in (3.5).

90



3.3 Proofs

3.3.1 Proofs of Lemmas 3.2.3 and 3.2.9

Proof of Lemma 3.2.3. We adopt the same method as in the proof of [109, Theorem 3.1], which

exploits the nondegeneracy of the initial condition of Assumption 3.2.1(b) in a crucial manner .

Let f̃ : [0,∞) → R be a smooth function satisfying f̃(u) = f(u) for κ−1 ≤ u ≤ κ, f̃ ′(u) > ϵ−1

for 0 ≤ u ≤ κ−1 and f̃ ′(u) < ϵ for u ≥ κ, where ϵ > 1 is some fixed constant. Consider the PDE

∂tp(t, x) = ∆
(
f̃
(
p(t, x)

))
, for (t, x) ∈ (0, T ]× U (3.39)

subject to the same initial and Neumann boundary conditions as in (3.1). By Assumption 3.2.1(c),

f ′ is increasing, so f̃ ′(u) > ϵ−1 for all u ≥ 0. This implies that (3.39) is uniformly parabolic.

We can therefore apply standard quasilinear theory [109, Chapter 3.1] to obtain a smooth solution

p ∈ C∞([0, T ]×U) to (3.39). By the comparison principle, κ−1 ≤ p ≤ κ, so p also satisfies (3.1).

Finally, the mass conservation law [109, Chapter 3.3.3] implies that the total mass
∫
U
p(t, x) dx =

1 is conserved over time t ∈ [0, T ].

Proof of Lemma 3.2.9. The proof is similar to that of Lemma 3.2.3. Let f̄ : [0,∞) → R be a

smooth function satisfying f̄(u) = f(u) for 1
2κ

≤ u ≤ κ + 1
2κ

, f̄ ′(u) > ϵ−1 for 0 ≤ u ≤ 1
2κ

and

f̄ ′(u) < ϵ for u ≥ κ+ 1
2κ

, where ϵ > 1 is some fixed constant. Consider the PDE

∂tp
β(t, x) = div

(
∇f̄
(
pβ(t, x)

)
+ pβ(t, x)∇β(x)

)
, for (t, x) ∈ (t0, T ]× U (3.40)

subject to the same initial and Neumann boundary conditions as in (3.20). Again since f̄ ′(u) > ϵ−1

for all u ≥ 0, this PDE is uniformly parabolic. Therefore, standard quasilinear theory implies that

there exists a smooth solution pβ ∈ C∞([t0, T ] ×U) to (3.40).
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For a fixed δ > 0, we define

λδ := max
t∈[t0, t0+δ], x∈U

∣∣∂tpβ(t, x)∣∣ <∞ and τ := min

(
δ,

1

2κλδ

)
> 0.

Let Tβ := T ∧ (t0 + τ). Since pβt0 = pt0 by construction in (3.20),

∣∣pβ(t, x)− p(t0, x)
∣∣ = ∣∣pβ(t, x)− pβ(t0, x)

∣∣ ≤ ∫ Tβ

t0

∣∣∂tpβ(s, x)∣∣ ds ≤ τλδ ≤
1

2κ
,

for every (t, x) ∈ [t0, Tβ] × U . From Lemma 3.2.3, we have κ−1 ≤ pt0 ≤ κ, thus (2κ)−1 ≤

pβt ≤ κ + (2κ)−1 for all t ∈ [t0, Tβ]. This implies that f̄
(
pβ(t, x)

)
= f

(
pβ(t, x)

)
holds for every

(t, x) ∈ [t0, Tβ]× U and therefore pβ also solves (3.20).

Finally, for mass conservation, note that integration by parts gives us

d

dt

∫
U

pβ(t, x) dx =

∫
U

div
(
∇f
(
pβ(t, x)

)
+ pβ(t, x)∇β(x)

)
dx

=

∫
∂U

⟨
∇f
(
pβ(t, x)

)
+ pβ(t, x)∇β(x), n(x)

⟩
dx = 0,

where the last step follows from the no-flux boundary condition in (3.20) as well as Assumption

3.2.8.

3.3.2 Proofs of Lemmas 3.2.4 and 3.2.10

We will only prove Lemma 3.2.10, as the proof of Lemma 3.2.4 is completely analogous.

For every (τ, y) ∈ [t0, Tβ) × U , consider the SDE with reflection (3.21) conditional on the
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initial position y at time τ :



Xβ,τ,y
t = y −

∫ t

t0

∇β(Xβ,τ,y
s ) ds+

∫ t

τ

√
2f
(
pβ(s,Xβ,τ,y

s )
)

pβ(s,Xβ,τ,y
s )

dBs −
∫ t

τ

n(Xβ,τ,y
s ) dLβ,τ,ys ∈ U, t ∈ [τ, Tβ],

Lβ,τ,yt =

∫ t

τ

1{Xβ,τ,y
s ∈∂U} dL

β,τ,y
s ,

Lβ,τ,yτ = 0 and t 7→ Lβ,τ,yt is nondecreasing and continuous.
(3.41)

From Lemma 3.2.9 and Assumption 3.2.1(c), it is straightforward to check that the diffusion coef-

ficient is uniformly Lipschitz in the spatial variable. Thus by [122, Theorem 3.1 and Remark 3.3],

the SDE with reflection (3.41) has a pathwise unique, strong solution. Let ξ be an independent

U -valued random variable with distribution pt0 . Consider the process Xβ given by Xβ
t0 = ξ and

Xβ
t = Xβ,t0,ξ

t for t ∈ (t0, Tβ]. Similarly, let Lβ be specified by Lβt0 = 0 and Lβt = Lβ,t0,ξt for

t ∈ (t0, Tβ]. Then (Xβ, Lβ) is the unique strong solution to (3.21). This completes the proof of the

first part of the lemma.

Turning to the proof of the second part, we borrow ideas from [115, Remark 3.1.2] and [123,

Chapter 5.7.B]. Recall that pβ is fixed as the solution of (3.20), given in Lemma 3.2.9. Consider

the following backward Kolmogorov equation:


∂τq

β(τ, y) +
f(pβ(τ, y))

pβ(τ, y)
∆yq

β(τ, y)−
⟨
∇yβ(y),∇yq

β(τ, y)
⟩
= 0, for (τ, y) ∈ (t0, Tβ)× U,

∂qβ(τ, y)

∂n(y)
= 0, for y ∈ ∂U.

(3.42)

It follows from [124] that (3.42) has a fundamental solution Gβ(τ, y; t, x) defined for t0 ≤ τ <

t ≤ Tβ and x, y ∈ U . In particular, Gβ is nonnegative and for every ϕ ∈ C(U) and t ∈ (τ, Tβ], the

function

qβ(τ, y) :=

∫
U

Gβ(τ, y; t, x)ϕ(x) dx, (3.43)
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satisfies (3.42) and the terminal condition

lim
τ↑t

qβ(τ, y) = ϕ(y), for all y ∈ U. (3.44)

If furthermore ϕ satisfies the no-flux boundary condition ∂ϕ/∂n = 0, then the above convergence

holds uniformly in U .

From the Feynman-Kac representation [115, Theorem 3.1.1], for any ϕ ∈ C(U),

qβ(τ, y) = E
[
ϕ(Xβ,τ,y

t )
]
. (3.45)

Comparing (3.43) with (3.45), we deduce that the transition probability density of Xβ,τ,y is given

by Gβ , i.e.,

P
(
Xβ,τ,y
t ∈ A

)
=

∫
A

Gβ(τ, y; t, x) dx, for every Borel A ⊆ U. (3.46)

For any fixed y ∈ U , the function Ψβ(t, x) := Gβ(t0, y; t, x) satisfies the forward Kolmogorov

equation

∂tΨ
β(t, x) = divx

(
∇x

(f(pβ(t, x))
pβ(t, x)

Ψβ(t, x)
)
+Ψβ(t, x)∇xβ(t, x)

)
, (3.47)

which is the adjoint of (3.42). The probability density function of Xβ
t with initial distribution pt0

is then

p̂β(t, x) :=

∫
U

Gβ(t0, y; t, x) pt0(y) dy. (3.48)

Together with (3.12) of Assumption 3.2.1(c), we see that p̂β satisfies the linear uniformly parabolic
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PDE

∂tp̂
β(t, x) = div

(
∇
(f(pβ(t, x))

pβ(t, x)
p̂β(t, x)

)
+ p̂β(t, x)∇β(t, x)

)
, for (t, x) ∈ (t0, Tβ]× U,

p̂β(t0, x) = p(t0, x), for x ∈ U,

∂p̂β(t, x)

∂n(x)
= 0, for x ∈ ∂U.

Since the solution to this PDE is unique, we deduce from the Neumann problem in (3.20) and

Lemma 3.2.9 that p̂β = pβ .

3.3.3 Proof of Theorems 3.2.5 and 3.2.11

We will only prove Theorem 3.2.11, as similar arguments can be used to show Theorem 3.2.5.

We first prove (3.24). Recall the function φ defined in (3.14) and note for later use the simple

identities

φ(u) = h(u)− f(u)

u
, h(u) = φ′(u)u+ φ(u), Φ′′(u) = φ′′(u)u+ 2φ′(u) for all u > 0.

(3.49)

By writing vβ(t, x) = φ
(
pβ(t, x)

)
, we deduce from (3.20) that

∂tv
β(t, x) = φ′(pβ(t, x))∂tpβ(t, x) = φ′(pβ(t, x)) div

(
∇f
(
pβ(t, x)

)
+ pβ(t, x)∇β(x)

)
. (3.50)

Using Itô’s lemma along with (3.21) and (3.50), we see that the dynamics of the perturbed entropy

process satisfies

dvβ(t,Xβ
t ) =

(
φ′(pβ) div

(
∇f(pβ) + pβ∇β

)
+
f(pβ)

pβ
∆vβ − ⟨∇vβ, ∇β⟩

)
(t,Xβ

t ) dt

+

⟨(√
2f(pβ)

pβ
∇vβ

)
(t,Xβ

t ), dBt

⟩
−
⟨
∇vβ(t,Xβ

t ), n(X
β
t )
⟩
dLβt

= Dβ(t,Xβ
t ) dt+Mβ

t − φ′(pβ(t,Xt)
)⟨
∇pβ(t,Xβ

t ), n(X
β
t )
⟩
dLβt .
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Note that the last line in (3.13) ensures that the reflection term Lβ only increases when Xβ is on

the boundary. In conjunction with the no-flux boundary condition in (3.20), we see that the last

term above is zero. This completes the proof of (3.24).

Next, to see that the local martingale Mβ in (3.25) is in fact a true L2-martingale, note that the

quadratic variation of Mβ is given by

E
[
⟨Mβ, Mβ⟩Tβ

]
= E

∫ Tβ

t0

(
2f(pβ)

pβ
|∇vβ|2

)
(t,Xβ

t ) dt = E
∫ Tβ

t0

(
2f(pβ)3

(pβ)5
|∇pβ|2

)
(t,Xβ

t ) dt.

We claim that the above quantity is finite. Indeed, due to the properties of the solution pβ in Lemma

3.2.9, the above expectation is bounded by

2(Tβ − t0)(2κ)
5f

(
3

2κ

)3

max
[t0,Tβ ]×U

|∇pβ(t, x)|2 <∞.

Therefore, it follows from [106, Corollary IV.1.25] that
(
Mβ

t

)
is an L2-martingale.

Finally, in order to show (3.26), we take expectation in the first equation in (3.25) and use

Fubini’s theorem, to obtain

E[F β
t ] =

∫ t

t0

E
[
Dβ(s,Xβ

s )
]
ds =

3∑
i=1

∫ t

t0

E
[
Dβ
i (s,X

β
s )
]
ds, (3.51)

where

Dβ
1 := φ′(pβ) div

(
∇f
(
pβ
)
+ pβ∇β

)
, Dβ

2 :=
f(pβ)

pβ
∆vβ, and Dβ

3 := −
⟨
∇vβ, ∇β

⟩
.

We evaluate now each of the expectations in (3.51). Integrating by parts, we have

E
[
Dβ

1 (t,X
β
t )
]
=

∫
U

φ′(pβ)pβ div
(
∇f
(
pβ
)
+ pβ∇β

)
(t, x) dx

= −
∫
U

⟨
∇
(
φ′(pβ)pβ

)
,∇f

(
pβ
)
+ pβ∇β

⟩
(t, x) dx+ C,

(3.52)
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where C is the boundary term given by

C :=

∫
∂U

φ′(pβ)f ′(pβ)pβ
⟨
∇pβ + pβ∇β, n

⟩
(t, x) dx.

From the no-flux boundary condition in (3.20) and Assumption 3.2.8, we see thatC = 0. Similarly,

we see that E
[
Dβ

2 (t,X
β
t )
]

and E
[
Dβ

3 (t,X
β
t )
]

are respectively equal to

−
∫
U

⟨
∇f(pβ),∇vβ

⟩
(t, x) dx, and −

∫
U

⟨
∇vβ,∇β

⟩
(t, x) dx. (3.53)

Assembling them gives

E[Dβ(t,Xβ
t )] = −

∫
U

⟨
∇
(
φ′(pβ)pβ + vβ

)
,∇f(pβ)

⟩
(t, x) dx

−
∫
U

⟨
∇
(
φ′(pβ)pβ

)
+∇vβ, pβ∇β

⟩
(t, x) dx.

(3.54)

Using the third identity in (3.49), we see that the first integrand above is equal to

(
φ′′(pβ)pβ + 2φ′(pβ)

)
f ′(pβ)|∇pβ|2 = Φ′′(pβ)f ′(pβ)|∇pβ|2,

so the first integral in (3.54) is

−
∫
U

(∣∣Φ′′(pβ)∇pβ
∣∣2pβ)(t, x) dx = −I

(
pβt
)
> −∞,

where the last step follows from the boundedness of pβ and ∇pβ implied by Lemma 3.2.9. Simi-

larly, using the second identity in (3.49), we see that the second integral in (3.54) is equal to

−E
[⟨
∇
(
h(pβ)

)
, ∇β

⟩
(t,Xβ

t )
]
> −∞.

Putting them together completes the proof of (3.26).
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3.3.4 Proofs of Corollaries 3.2.6 and 3.2.12

We will only prove Corollary 3.2.12, as the proof of Corollary 3.2.6 proceeds in the same way.

Taking expectation in (3.24) and using the martingale property of Mβ in (3.25) as well as

(3.26), we have

F
(
pβt
)
− F

(
pβt0
)
= E

[
vβ(t,Xβ

t )− vβ(t0, X
β
t0)
]

= −
∫ t

t0

I(pβs ) ds−
∫ t

t0

E
[⟨
∇h
(
pβ(s,Xβ

s )
)
, ∇β(Xβ

s )
⟩]

ds, (3.55)

which proves (3.27).

Turning to the proof of (3.28), note that from (3.2) we have

E
[⟨
∇h
(
pβ(s,Xβ

s )
)
, ∇β(Xβ

s )
⟩]

=

∫
U

f ′(pβ(s, x))⟨∇pβ(s, x),∇β(x)⟩ dx. (3.56)

From the continuity of (s, x) 7→ f ′(pβ(s, x))⟨∇pβ(s, x),∇β(x)⟩, we see that the expression of

(3.56) is continuous as a function of s, thus

d

dt

∣∣∣∣
t=t+0

∫ t

t0

E
[⟨
∇h
(
pβ(s,Xβ

s )
)
, ∇β(Xβ

s )
⟩]
ds = E

[⟨
∇h
(
pβ(t0, Xt0)

)
, ∇β(Xt0)

⟩]
, (3.57)

where the last equality is due to the fact that Xβ
t0 = Xt0 by construction in (3.20). Similarly, from

the continuity of t 7→ I
(
pβt
)
, we have

d

dt

∣∣∣∣
t=t+0

∫ t

t0

I
(
pβu
)
du = I

(
pβt0
)
= I(pt0), (3.58)

and the identity (3.28) follows.

Finally, to show (3.29), the martingale property of Mβ implies that the numerator on the left-

hand side of (3.29) is equal to

E
[
F β
t − F β

t0

∣∣Ft0

]
= E

[∫ t

t0

Dβ(u,Xβ
u ) du

∣∣∣Ft0

]
.
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From the continuity of u 7→ Dβ(u,Xu), we have

lim
t↓t0

1

t− t0

∫ t

t0

Dβ(u,Xβ
u ) du = Dβ(t0, Xt0), a.s..

Moreover, the properties of pβ from Lemma 3.2.9 implies that Dβ is uniformly bounded on

[t0, Tβ]× U . Therefore, by the bounded convergence theorem,

lim
t↓t0

E
[

1

t− t0

∫ t

t0

Dβ(u,Xβ
u )du

]
= E

[
Dβ(t0, Xt0)

]
.

We now apply Scheffé’s lemma to obtain

lim
t↓t0

∥∥∥∥ 1

t− t0

∫ t

t0

Dβ(u,Xβ
u )du−Dβ(t0, Xt0)

∥∥∥∥
L1

= 0.

To complete the proof, use Jensen’s inequality and the tower property to get

∥∥∥∥E[ 1

t− t0

∫ t

t0

Dβ(u,Xβ
u ) du

∣∣∣Ft0

]
−Dβ(t0, Xt0)

∥∥∥∥
L1

≤
∥∥∥∥ 1

t− t0

∫ t

t0

Dβ(u,Xβ
u ) du−Dβ(t0, Xt0)

∥∥∥∥
L1

,

and the L1-convergence in (3.29) follows.

3.3.5 Proof of Lemma 3.2.13

Since the proofs of (3.30) and (3.31) are very similar, we will only prove (3.31). We first

rewrite the PDE in (3.20) as a continuity equation

∂tp
β(t, x) + div

(
pβ(t, x) ṽβ(t, x)

)
= 0, for (t, x) ∈ (t0, Tβ)× U, (3.59)
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where ṽβ : [t0, Tβ]× U → Rd is the velocity field, defined by

ṽβ(t, x) := −∇
[
β + h

(
pβ
)]

(t, x). (3.60)

We see from Assumption 3.2.8 and Lemma 3.2.9 that ṽβ(t0, ·) is the gradient of a smooth function.

For each x ∈ U , consider the curved flow Λβt associated with ṽβ , specified by

d

dt
Λβt (x) = ṽβ

(
t,Λβt (x)

)
, t ∈ [t0, Tβ], Λβt0(x) = x. (3.61)

By the Cauchy-Lipschitz theorem, there exists a unique solution t 7→ Λβt (x) ∈ U to (3.61).

Moreover, it follows from [99, Theorem 5.34] that Λβt pushes forward pβt0 to pβt , in the sense that

pβt0 ◦ (Λ
β
t )

−1 = pβt . Note also that the Jacobian of Λβt is given by

∇Λβt (x) = I −
∫ t

t0

∇2
[(
β + h(pβ)

)(
s,Λβs (x)

)]
ds.

Therefore, by setting

K := max
{∣∣∣∂ij(β + h(pβ)

)
(t, x)

∣∣∣ : t ∈ [t0, Tβ], x ∈ U, i, j = 1, . . . , n
}
,

we see that for any t ∈ [t0, t0 +K−1), the Jacobian ∇Λβt (x) is positive-semidefinite for all x ∈ U ,

so Λβt is the gradient of a convex function. Hence, by Brenier’s theorem [99, Theorem 2.12(ii)],

Λβt is the optimal transport map from pβt0 to pβt , i.e.,

W2
2

(
pβt0 , p

β
t

)
= E

[∣∣Λβt (Xβ
t0)−Xt0

∣∣2] = E

[∣∣∣∣ ∫ t

t0

ṽβ
(
s,Λβs (X

β
t0)
)
ds

∣∣∣∣2
]
.

Now, the continuity of t 7→ ṽβ
(
t,Λβt (x)

)
implies

∣∣∣∣ 1

t− t0

∫ t

t0

ṽβ
(
s,Λβs (X

β
t0)
)
ds

∣∣∣∣2 t↓t0−→
∣∣ṽβ(t0, Xt0)

∣∣2, a.s. (3.62)
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Moreover, by Jensen’s inequality, the random variable on the left-hand side above is bounded by

1

t− t0

∫ t

t0

∣∣ṽβ(s,Λβs (Xβ
t0))
∣∣2ds ≤ max

{
|ṽβ(t, x)|2 : t ∈ [t0, Tβ], x ∈ U

}
<∞,

where the last step follows from the aforementioned fact that ṽβ(t, ·) is the gradient of a smooth

function. Consequently, by the bounded convergence theorem,

lim
t↓t0

W2(p
β
t0 , p

β
t )

t− t0
= lim

t↓t0

∥∥∥∥ 1

t− t0

∫ t

t0

ṽβ
(
s,Λβs (X

β
t0)
)
ds

∥∥∥∥
L2

=
∥∥ṽβ(t0, Xt0)

∥∥
L2 , (3.63)

where the last step follows from the fact that Xβ
t0 = Xt0 by construction in (3.20). Recalling the

expression of ṽβ in (3.60), we arrive at (3.31).

3.3.6 Proof of Theorem 3.2.14

The identity (3.33) follows from (3.18) of Corollary 3.2.6 and (3.30) of Lemma 3.2.13. Simi-

larly, for (3.34), we deduce from (3.28) of Corollary 3.2.12 and (3.31) of Lemma 3.2.13 that

|∂F |W2(p
β
t0) = −

I(pt0) + E
[⟨
∇h
(
p(t0, Xt0)

)
, ∇β(Xt0)

]
∥∥∥∇h(p(t0, Xt0)

)
+∇β(Xt0)

∥∥∥
L2

. (3.64)

Moreover, we see from (3.5) and (3.2) that the entropy dissipation functional can be expressed as

I(pt0) = E
[∣∣∇h(p(t0, Xt0)

)∣∣2].
Putting this back into (3.64) yields (3.34). Finally, the inequality (3.35) follows from the Cauchy-

Schwarz inequality.
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3.3.7 Proof of Proposition 3.2.17

For t ∈ [0, 1), let us denote by

Tt := (1− t)Id + t∇ψ (3.65)

the optimal transport map from ρ0 to ρt. Note that Tt is injective by [99, Theorem 5.49], so its

inverse exists. By [99, Theorem 5.51(ii)], the probability density functions (ρt)t∈(0,1) satisfy the

continuity equation

∂tρt(x) + div
(
ρt(x) v̂t(x)

)
= 0, (3.66)

where v̂ : [0, 1)× U → Rd is the velocity field defined by

v̂t(x) := (∇ψ − Id) ◦ (Tt)−1(x). (3.67)

In conjunction with (3.65), we see that Tt satisfies the integral equation

Tt(x) = x+

∫ t

0

v̂s
(
Ts(x)

)
ds. (3.68)

We now switch to probabilistic notations. On a sufficiently rich probability space, let Z0 be a

random variable with distribution ρ0 and let Zt := Tt(Z0) for t ∈ (0, 1). On account of (3.68), we

have

Zt = Z0 +

∫ t

0

v̂s(Zs) ds. (3.69)

Together with (3.66), we deduce

dρt(Zt) = ∂tρt(Zt) dt+
⟨
∇ρt(Zt), dZt

⟩
= −ρt(Zt) div

(
v̂t(Zt)

)
dt.
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Recalling the function φ in (3.14), we have

dφ
(
ρt(Zt)

)
= −φ′(ρt(Zt))ρt(Zt) div

(
v̂t(Zt)

)
dt = −

f
(
ρt(Zt)

)
ρt(Zt)

div
(
v̂t(Zt)

)
dt,

where the last step follows from the identity f(u) = uh(u)−Φ(u), valid for all u ≥ 0. Integrating

from 0 to t and taking expectation yield

F (ρt)− F (ρ0) = −
∫ t

0

∫
U

f
(
ρs(z)

)
div
(
v̂s(z)

)
dzds

=

∫ t

0

∫
U

⟨
∇f
(
ρs(z)

)
, v̂s(z)

⟩
dzds−

∫ t

0

∫
∂U

f
(
ρs(z)

)⟨
v̂s(z), n(z)

⟩
dz ds.

(3.70)

It follows from Assumption 3.2.15(b) that ∇ψ(x) = x for all x ∈ ∂U . Therefore, we see from

(3.67) that v̂t(x) = 0 for all x ∈ ∂U . Hence, the last integral in (3.70) vanishes. Letting t ↓ 0

yields

d

dt

∣∣∣+
t=0

F (ρt) =

∫
U

⟨
∇f
(
ρ0(z)

)
, v̂0(z)

⟩
dz

Recalling the definition of v̂0 in (3.67) completes the proof.

3.3.8 Proof of Theorem 3.2.18

From [99, Theorem 5.15(i)], Assumption 3.2.15(c) implies that the entropy functional F is

displacement convex. In other words,

d2

dt2
F (ρt) ≥ 0, for t ∈ [0, 1].
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Therefore, Taylor’s theorem and Proposition 3.2.17 give us

F (ρ1) = F (ρ0) +
d

dt

∣∣∣+
t=0

F (ρt) +

∫ 1

0

(1− t)
d2

dt2
F (ρt) dt

≥ F (ρ0) +

∫
U

⟨
∇f
(
ρ0(z)

)
,∇ψ(z)− z

⟩
dz,

which proves the first inequality in (3.38). The second inequality is a simple consequence of the

Cauchy-Schwarz inequality; the expression in the middle of (3.38) is bounded from above by

√∫
U

∣∣∇f(ρ0(z))∣∣2
ρ0(z)

dz

√∫
U

∣∣∇ψ(z)− z
∣∣2ρ0(z)dz =√I(ρ0)W2(ρ0, ρ1).
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Chapter 4: Mean field approximations via log concavity

In this chapter, we propose a new approach to deriving quantitative mean field approximations

for any probability measure P on Rn with density proportional to ef(x), for f strongly concave.

We bound the mean field approximation for the log partition function log
∫
Rn e

f(x)dx in terms

of
∑

i≠j EQ∗ |∂ijf |2, for a semi-explicit probability measure Q∗ characterized as the unique mean

field optimizer, or equivalently as the minimizer of the relative entropy H(· |P ) over product mea-

sures. This notably does not involve metric-entropy or gradient-complexity concepts which are

common in prior work on nonlinear large deviations. Three implications are discussed, in the con-

texts of continuous Gibbs measures on large graphs, high-dimensional Bayesian linear regression,

and the construction of decentralized near-optimizers in high-dimensional stochastic control prob-

lems. Our arguments are based primarily on functional inequalities and the notion of displacement

convexity from optimal transport.

4.1 Introduction

At the center of the recent theory of nonlinear large deviations is the problem of justifying

the mean field approximation for the partition function of a Gibbs measure. Given a (reference)

probability measure µ on R, suppose a probability measure P on Rn takes the form

P (dx) = Z−1ef(x)µ⊗n(dx),

for a function f : Rn → R and normalizing constant Z, where µ⊗n denotes the n-fold product

measure. A recurring problem in diverse applications is the approximation of the often intractable
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partition function Z. It obeys the well-known Gibbs variational principle

logZ = log

∫
Rn

ef dµ⊗n = sup
Q∈P(Rn)

(∫
Rn

f dQ−H(Q |µ⊗n)

)
, (4.1)

where P(Rn) is the set of probability measures on Rn, and H denotes the relative entropy

H(Q |Q′) :=

∫
Rn

dQ

dQ′ log
dQ

dQ′ dQ
′ if Q≪ Q′, H(Q |Q′) := ∞ if Q ̸≪ Q′.

Note that Q = P is the unique optimizer in (4.1). Letting Ppr(Rn) denote the set of product

measures Q = Q1 × · · · ×Qn in P(Rn), the mean field approximation is

log

∫
Rn

ef dµ⊗n ≈ sup
Q∈Ppr(Rn)

(∫
Rn

f dQ−H(Q |µ⊗n)

)
. (4.2)

In the cases studied in this chapter, the left-hand side is expected to be of order n; a precise

formulation of (4.2) is then to find conditions under which the difference is o(n), so that the mean

field approximation becomes asymptotically correct at the leading order. Note that the right-hand

side of (4.2) is trivially a lower bound for the left, because of (4.1), and it is only the upper bound

that incurs an error which must be estimated.

The groundbreaking work of [24], motivated by applications to subgraph counts in sparse ran-

dom graphs, showed how to justify the mean field approximation in the case that µ⊗n is the uniform

measure on the hypercube {−1, 1}n. Their key assumption is that the gradient of f has low com-

plexity, as measured by the metric entropy of the range ∇f({−1, 1}n). A number of subsequent

papers have since refined this approach and results on subgraph counts [25, 26, 27], in addition to

other noteworthy applications such as Ising models [28, 34, 29, 30, 31, 125]. Most applications

thus far involve discrete µ, but the theory has been extended to compactly supported measures [28,

126, 127]. Alternative and often more convenient estimates have appeared, still based on “gradient

complexity" but quantifying it in a different way, eschewing covering number estimates in favor of

the simpler and weaker Gaussian-width [31, 32, 33] or Rademacher-width [34].
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In this chapter, we propose an alternative approach to the mean field approximation, designed

most notably for the case where f is concave and the reference measure µ is strongly log-concave

(see Theorem 4.1.1 and Corollary 4.1.4). In particular, we deal with continuous µ of unbounded

support, which covers a rather different host of applications, discussed in Chapter 4.2, compared

to the somewhat more discrete-oriented prior literature. Our approach is based on a semi-explicit

representation for the mean field optimizer Q∗ in (4.2), which we show to be unique as soon as

P is strictly log-concave, and which is in fact also the unique minimizer of H(· |P ) over product

measures. We control the error in the approximation (4.2) by a constant times EQ∗
∑

i ̸=j |∂ijf |2,

which is typically much simpler to work with compared to the aforementioned notions of gradient

complexity. Eldan [31, 32] and Austin [126] also analyze the mean field approximation by approx-

imating P by product measures in entropy, but our methods and bounds are very different from

theirs; notably, they approximate P not by a single product measure but by a mixture, which is

natural when the mean field optimizer is not unique, as is explained well in [31]. The uniqueness

of the mean field optimizer in our setting means that we expect P to concentrate around a single

pure state, rather than a mixture of states.

In the rest of this section, we describe our general results on mean field approximations for

log-concave measures, along with some related ideas and generalizations, with proofs deferred

to Chapter 4.3. Chapter 4.2 develops three applications: Gibbs measures with heterogeneous in-

teractions, high-dimensional Bayesian linear regression, and high-dimensional stochastic control

problems.

4.1.1 Main results

Recall for κ ∈ R that a function f : Rn → R ∪ {−∞} is said to be κ-concave if x 7→

f(x) + κ
2
|x|2 is concave. If f is finite-valued and C2, i.e., twice continuously differentiable, then

f is κ-concave if and only if ∇2f(x) ≤ −κI in semidefinite order, for each x ∈ Rn. We say that

a probability measure P on Rn is κ-log-concave if it takes the form P (dx) = ef(x) dx for some
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κ-concave function f . We will work with the (negative of the) differential entropy

H(Q) :=

∫
Rn

Q(x) logQ(x) dx,

for an absolutely continuous probability measure Q(dx) = Q(x)dx on a Euclidean space, well-

defined in (−∞,∞] whenever the negative part of Q logQ is integrable; we adopt the convention

that H(Q) = ∞ if Q is not absolutely continuous, or if (Q logQ)− is not integrable. Let Ppr(Rn)

denote the set of product measures on Rn. Let X = (X1, . . . , Xn) : Rn → Rn denote the identity

map, so that we may write EQ[g(X)] =
∫
Rn g dQ for the expectation under Q.

Theorem 4.1.1. Consider a C2 and κ-log-concave probability measure P (dx) = Z−1ef(x) dx, for

some κ > 0. Assume there exist c1 ≥ 0 and 0 ≤ c2 < κ/2 such that |f(x)| ≤ c1e
c2|x|2 for all

x ∈ Rn. Then the following conclusions hold:

(1) There exists a unique product measure Q∗ = Q∗
1×· · ·×Q∗

n ∈ Ppr(Rn) with strictly positive

density a.e. satisfying f ∈ L1(Q∗) and the fixed point equation

Q∗
i (dxi) = Z−1

i exp
(
EQ∗ [f(X) |Xi = xi]

)
dxi, Zi > 0, i = 1, . . . , n. (4.3)

(2) Q∗ is κ-log-concave.

(3) Q∗ is the unique optimizer in

sup
Q∈Ppr(Rn)

(∫
Rn

f dQ−H(Q)

)
. (4.4)

(4) If we define

Rf := log

∫
Rn

ef(x) dx− sup
Q∈Ppr(Rn)

(∫
Rn

f dQ−H(Q)

)
,
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then

0 ≤ Rf ≤
1

2κ
EQ∗

n∑
i=1

VarQ∗(∂if(X) |Xi) ≤
1

κ2

∑
1≤i<j≤n

EQ∗ [|∂ijf(X)|2]. (4.5)

The supremum in (4.4) is finite, as we will see in Lemma 4.3.4. Also, as will be seen in

the proof of Proposition 4.3.9, our assumptions ensure that ∂if(xi, ·) ∈ L1
(∏

j ̸=iQ
∗
j

)
, so the

conditional variance in (4.5) is well-defined in [0,∞]. The final quantity in (4.5) controlling our

mean field approximation error involves only the cross-derivatives i ̸= j, which are insensitive to

additively separable perturbations f(x) → f(x) +
∑n

i=1 f̃i(xi). On the other hand, the measure

Q∗ is sensitive to these perturbations, but in the tractable sense that Q∗
i (dxi) must be multiplied by

exp f̃i(xi) (and a new normalizing constant). In particular, both upper bounds in (4.5) vanish if f

is already additively separable, i.e., if P is a product measure.

In Theorem 4.1.1, the measure Q∗ is defined implicitly, which can make bounding Rf difficult.

In the simplest case where ∇2f is bounded, we need no knowledge of Q∗ to obtain

Rf ≤
1

κ2
sup
x∈Rn

∑
1≤i<j≤n

|∂ijf(x)|2,

which is sharp enough for many applications. But even when ∇2f is unbounded, we can take

advantage of the fact that Q∗ is κ-log-concave by Theorem 4.1.1(2), which implies in particular

that it has finite moments of all orders controlled in terms of κ.

A guiding example is the class of Gibbs measures with pairwise interactions of the form

f(x) =
n∑
i=1

V (xi) +
∑

1≤i<j≤n

JijK(xi − xj), (4.6)

where V is κ-concave, K is even and concave, and J is a symmetric matrix with nonnegative en-

tries. Then ∂ijf(x) = −JijK ′′(xi − xj) for i ̸= j, and for K ′′ bounded we immediately deduce

Rf ≤ Tr(J2)∥K ′′∥2∞/2κ2 from Theorem 4.1.1. Corollary 4.2.3 below proves a similar O(Tr(J2))

bound merely assuming that K ′′ has at most exponential growth, plus a symmetry assumption.
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Since log
∫
Rn e

fdx is order n in this case, we obtain a successful mean field approximation when-

ever J satisfies Tr(J2) = o(n), which is, in a sense, optimal. For instance, in the noteworthy

case that J is 1/d times the adjacency matrix of a d-regular graph, we have Tr(J2) = o(n) pre-

cisely when d → ∞, and the mean field approximation fails in general in the sparsest case where

d = O(1). See Chapter 4.2.1 for further discussion.

As a first corollary of Theorem 4.1.1, we deduce the following non-asymptotic law of large

numbers for the empirical measure.

Corollary 4.1.2. Under the assumptions of Theorem 4.1.1, for any 1-Lipschitz functionφ : R → R,

we have

EP
[(

1

n

n∑
i=1

φ(Xi)−
1

n

n∑
i=1

EQ∗ [φ(Xi)]

)2]
≤

(1 +
√

2Rf )
2

κn
. (4.7)

Remark 4.1.3. Corollary 4.1.2 can be interpreted as a form of concentration of the empirical

measure 1
n

∑n
i=1 δXi

around the measure 1
n

∑n
i=1Q

∗
i . Alternatively, the Poincaré inequality for P

implies VarP ( 1n
∑n

i=1 φ(Xi)) ≤ 1/κn for 1-Lipschitz φ, which in turn implies a form of concen-

tration of 1
n

∑n
i=1 δXi

around its mean 1
n

∑n
i=1 Pi, where Pi is the ith marginal of P . However, the

latter is normally not as useful, because the marginals of P are typically not as tractable as the

various characterizations of Q∗ provided by Theorem 4.1.1.

It is often convenient to work with a probability measure as a reference measure, in place of

Lebesgue measure, as is common in the literature on mean field approximations (see for example

[28, 126, 24, 31, 127]). Theorem 4.1.1 implies a similar result in terms of reference probability

measures.

Corollary 4.1.4. Let Vi : R → R be C2 and κ-concave for some κ > 0, such that ρi(dx) =

eVi(x) dx is a probability measure, for i = 1, . . . , n. Let ρ = ρ1 × · · · × ρn. Let g : Rn → R be

C2 and concave. Assume there exist c1 ≥ 0 and 0 ≤ c2 < κ/2 such that |g(x)| ≤ c1e
c2|x|2 for all

x ∈ Rn. Then the following conclusions hold:

(1) There exists a unique product measure Q∗ = Q∗
1×· · ·×Q∗

n ∈ Ppr(Rn) with strictly positive
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density a.e. satisfying g ∈ L1(Q∗) and

Q∗
i (dxi) = Z−1

i exp
(
EQ∗ [g(X) |Xi = xi]

)
ρi(dxi), Zi > 0, i = 1, . . . , n. (4.8)

(2) Q∗ is κ-log-concave.

(3) Q∗ is the unique optimizer in

sup
Q∈Ppr(Rn)

(∫
Rn

g dQ−H(Q | ρ)
)
. (4.9)

(4) If we define

Rρ
g := log

∫
Rn

eg dρ− sup
Q∈Ppr(Rn)

(∫
Rn

g dQ−H(Q | ρ)
)
,

then

0 ≤ Rρ
g ≤

1

2κ
EQ∗

n∑
i=1

VarQ∗(∂ig(X) |Xi) ≤
1

κ2

∑
1≤i<j≤n

EQ∗ [|∂ijg(X)|2]. (4.10)

For certain symmetric choices of g, the bound (4.10) is related to the theorems of Cramér

and Sanov on large deviations, which are settings in which the Gibbs variational principle is well

known to be nearly saturated by product measures. For instance, if g(x) = nG
(
1
n

∑n
k=1 xk

)
for

some continuous concave G, we obtain Rρ
g ≤ ∥G′′∥2∞/2κ2, which is certainly o(n) when G′′ is

bounded.

4.1.2 Overview and proof ideas

We explain here some key ideas behind Theorem 4.1.1 and its corollaries. The simple identity

log

∫
Rn

ef(x) dx−
∫
Rn

f dQ+H(Q) = H(Q |P ) (4.11)
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is valid for probability measures Q with finite entropy and implies (see Lemma 4.3.4 for details)

log

∫
Rn

ef(x) dx− sup
Q∈Ppr(Rn)

(∫
Rn

f dQ−H(Q)

)
= inf

Q∈Ppr(Rn)
H(Q |P ), (4.12)

and also that optimizing (4.4) is equivalent to optimizing

inf
Q∈Ppr(Rn)

H(Q |P ). (4.13)

That is, Q∗ from Theorem 4.1.1 is the optimizer in (4.13). This can be seen as an entropic pro-

jection, in the sense of Csiszar [128], onto the set of product measures. A minimizer in (4.13)

always exists, because the set of product measures is weakly closed and H(· |P ) has weakly com-

pact sub-level sets. But uniqueness is not obvious and in fact fails in general, because the set of

product measures is not convex. We establish the uniqueness of the optimizer in Lemma 4.3.6 in

the case where P is strictly log-concave, by exploiting the notion of displacement convexity from

the theory of optimal transport, with similarities to the work of McCann [129].

Once we know that the optimizer Q∗ for (4.4) takes the form (4.3), the proof of the mean field

approximation (4.5) is fairly quick, if we ignore certain technical points: The right-hand side of

the identity (4.12) is precisely H(Q∗ |P ). We first use the log-Sobolev inequality for P , which is

ensured by κ-log-concavity and the famous result of Bakry-Émery [130], to get

H(Q∗ |P ) ≤ 1

2κ

∫
Rn

∣∣∣∣∇ log
dQ∗

dP

∣∣∣∣2 dQ∗.

Since Q∗ = Q∗
1 × · · · ×Q∗

n is a product measure, the formula (4.3) implies

∂i logQ
∗(x) = ∂i logQ

∗
i (xi) = ∂iEQ∗ [f(X) |Xi = xi] = EQ∗ [∂if(X) |Xi = xi]. (4.14)
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Thus,

H(Q∗ |P ) ≤ 1

2κ
EQ∗

n∑
i=1

(EQ∗ [∂if(X) |Xi]− ∂if(X))2 =
1

2κ
EQ∗

n∑
i=1

VarQ∗(∂if(X) |Xi).

Differentiating (4.14) again shows easily that Q∗ is κ-log-concave since f is concave. Hence, Q∗

and its marginals obey a Poincaré inequality, and we deduce

VarQ∗(∂if(X) |Xi) ≤
1

κ

∑
j ̸=i

EQ∗
[
|∂ijf(X)|2 |Xi

]
.

Combining the last two inequalities yields (4.5). See the part titled “Generalization of the main

theorem” in Chapter 4.1.3 below for a discussion of a generalization of this argument beyond the

strongly log-concave case.

The proof of Corollary 4.1.2 begins with the observation that the κ-log-concavity of P in

Theorem 4.1.1 implies the quadratic transport inequality [131, Theorems 1 and 2]

W2
2 (Q

∗, P ) ≤ 2

κ
H(Q∗ |P ), (4.15)

where W2 denotes the quadratic Wasserstein distance defined by

W2
2 (Q

∗, P ) = inf
π

∫
Rn×Rn

|x− y|2 π(dx, dy),

where the infimum is over π ∈ P(Rn ×Rn) with marginals Q∗ and P . Combining (4.15) with the

inequality H(Q∗ |P ) ≤ Rf discussed above, we arrive at W2
2 (Q

∗, P ) ≤ 2Rf/κ. The quadratic

Wasserstein distance enjoys a useful and fairly well known subadditivity inequality, which we

prove in Chapter 4.3.4 for the sake of completeness: If PS denotes the marginal law of (Xi)i∈S

under P for a set S ⊂ [n] := {1, . . . , n}, and similarly for Q∗
S , then we have

(
n

k

)−1 ∑
S⊂[n], |S|=k

W2
2 (Q

∗
S, PS) ≤

1

⌊n/k⌋
W2

2 (Q
∗, P ) ≤ 2

κ⌊n/k⌋
Rf ≤

4k

nκ
Rf (4.16)
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for any 1 ≤ k ≤ n. With (4.16) in hand, the proof of Corollary 4.1.2 is straightforward. Moreover,

in our cases of interest where Rf = o(n), the bound (4.16) quantifies a form of approximate

independence: Most k-particle marginals of P are W2-close to product measures, if k = o(n/Rf ).

Remark 4.1.5. We work throughout the paper with state space R, for simplicity. That is, we

study approximations of measures on Rn by n-fold products of measures on R, as opposed to,

say, approximations of measures on (Rd)n by n-fold products of measures on Rd. Most of our

arguments, based primarily on convexity and functional inequalities, extend to the case of Rd or

even Riemannian manifolds with lower curvature bounds in the spirit of Bakry-Émery [130, 44].

The only difficulty is in the uniqueness claimed in Theorem 4.1.1 (proven in Proposition 4.3.9),

which would require a finer analysis involving regularity of certain optimal transport maps.

4.1.3 Additional discussion and results

The remaining results presented in this section will not be used in the rest of the paper but serve

to elaborate on the structure of the main theorem. The reader mainly interested in applications or

proofs of the above results may skip to Chapters 4.2 or 4.3, respectively, with no loss of continuity.

More on entropic projections

Reversing the order of arguments in the relative entropy in (4.13) leads to a very different

optimization problem, but it is instructive to compare the two. The infimum

inf
Q∈Ppr(Rn)

H(P |Q) (4.17)

is uniquely attained by taking Q = P ∗ := P1 × · · · × Pn to be the product of the marginals of P .

Indeed, from the simple identity H(P |Q) = H(P |P ∗) +H(P ∗ |Q), it follows that H(P |Q) ≥

H(P |P ∗) for all Q, with equality if any only if Q = P ∗.

The Gaussian case highlights the difference between (4.17) and (4.13). Suppose P is a centered

Gaussian with nonsingular covariance matrix Σ. In this case it is easy to see that the (unique)
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minimizer ofH(Q |P ) among product measuresQ is the centered Gaussian with covariance matrix

Σ̃, where Σ̃−1 is the diagonal matrix obtained by deleting the off-diagonal entries of Σ−1. On the

other hand, the unique minimizer ofH(P |Q) among product measuresQ is the centered Gaussian

with covariance matrix Σ̂ obtained by deleting the off-diagonal entries of Σ.

Tilts

A similar bound to Corollary 4.1.4 is available if one seeks a stronger mean field approxima-

tion, in which Ppr(Rn) is replaced by the sub-class of product measures given by tilts of a given

reference measure. We focus on the case of Gaussian reference measure, as it is not obvious how

to extend the argument to a general reference measure. For y ∈ Rn, let γy,t denote the Gaussian

with mean y and covariance matrix tI , with γt := γ0,t, noting that γy,t ∈ Ppr(Rn).

Proposition 4.1.6. Let t > 0, and let f : Rn → R be C2 and concave. Assume there exist c1 ≥ 0

and 0 ≤ c2 < 1/2t such that |f(x)| ≤ c1e
c2|x|2 . Then there is a unique y∗ ∈ Rn satisfying

y∗ = t

∫
Rn

∇f dγy∗,t, (4.18)

and it holds that

log

∫
Rn

ef dγt ≤ sup
y∈Rn

(∫
Rn

f dγy,t −H(γy,t | γt)
)
+
t2

2

n∑
i,j=1

∫
Rn

|∂ijf |2 dγy∗,t. (4.19)

Noting that H(γy,t | γt) = |y|2/2t, a simple calculation shows that y∗ uniquely attains the

supremum in (4.19). The difference between (4.19) and (4.10) is that the former includes the diag-

onal terms i = j in the sum. This is natural; an additively separable function f(x) =
∑n

i=1 fi(xi)

yields a product measure P (dx) = Z−1ef(x)γt(dx), but it takes an affine function f for P to be a

Gaussian. Small off-diagonal derivatives ∂ijf can be naturally interpreted as meaning f is close to

being additively separable, but the full Hessian matrix ∇2f must to be small in order for f to be

close to affine.
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The above proposition is worth comparing with prior results based on gradient complexity. It

was shown in [34, Proposition 3.4, arXiv version] that if f : Rn → R is C1 then

log

∫
Rn

ef dγt ≤ sup
y∈Rn

(∫
Rn

f dγy,t −H(γy,t | γt)
)
+
√
2

∫
Rn

sup
y∈Rn

(
x · ∇f(y)

)
γt(dx). (4.20)

The last integral is (
√
t times) the Gaussian mean-width of the set ∇f(Rn). This estimate (4.20)

has the advantage of applying to non-concave functions f , but it is only meaningful if ∇f is

bounded. Proposition 4.1.6, on the other hand, can accommodate non-Lipschitz but concave func-

tions f .

Generalization of the main theorem

We briefly discuss how Theorem 4.1.1 can generalize beyond the strongly log-concave setting.

Essentially, strong log-concavity is needed only for the uniqueness claims and to justify the log-

Sobolev and Poincaré inequalities as explained in Chapter 4.1.2. Uniqueness of Q∗ is actually

not essential if one is interested only in a bound like (4.5). The existence of an optimizer Q∗ is

automatic, and it is not hard to show that it must satisfy the fixed point equation (4.3), modulo

technical conditions. If it can be shown that Q∗ admits a strictly positive C2 density, and that P

and Q∗ obey a log-Sobolev and Poincaré inequality, respectively, with constants C1 and C2, then

the following bound can be proven as in Chapter 4.1.2:

0 ≤ Rf ≤ C1EQ∗

n∑
i=1

VarQ∗(∂if(X) |Xi) ≤ 2C1C2

∑
1≤i<j≤n

EQ∗ [|∂ijf(X)|2].

It is unclear if our assumed bound on |f(x)| is needed or merely an artifact of our proof technique.

We use the assumed bound on |f(x)| in the proof of Theorem 1.1 only to show that Q∗ is strictly

positive a.e., but this can be shown directly in many particular cases, such as when f is symmetric.
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4.1.4 Outline of the chapter

In Chapter 4.2, we will present in detail the three main applications of Theorem 4.1.1, which

pertain to Gibbs measures, high-dimensional Bayesian linear regression, and high-dimensional

stochastic optimal control. The proof of Theorem 4.1.1 is given in Chapter 4.3.1, followed by the

proof of Corollary 4.1.4 in Chapter 4.3.2. Chapter 4.3.3 contains the proof of Proposition 4.1.6,

while Chapter 4.3.4 contains the proofs of the subadditivity inequality (4.16) and Corollary 4.1.2.

Finally, the proofs of the applications are given in Chapters 4.4 and 4.5.

4.2 Applications

4.2.1 Gibbs measures with pairwise interactions

First, we study Gibbs measures with pairwise interaction potentials of the form (4.6), where

the following assumption holds:

Assumptions 4.2.1. V : R → R is C2 and κ-concave for some κ > 0, K : R → R is even, C2,

and concave, and J is a symmetric matrix with nonnegative entries and Jii = 0 for all i = 1, . . . , n.

Assume there exists a, b, c ≥ 0 and 0 ≤ d < κ/2 such that |V (x)| ≤ cedx
2 and |K ′′(x)|2 ≤ aeb|x|

hold for all x ∈ R.

Note since K is even that there is no loss of generality in assuming that J is zero on the

diagonal. The most traditional mean field setting is when Jij = 1/n for all (i, j), so that all

particles interact equally, and there is a vast literature on the large-n behavior; see [132, 133] for

some recent results and references. In general, the matrix J represents disorder or heterogeneous

interactions, and a common situation is when J is the rescaled adjacency matrix of a graph. A

notable strength of the non-asymptotic perspective of our work, and the theory of nonlinear large

deviations more broadly, is that it can seamlessly handle this kind of heterogeneity. Gibbs measures

with pairwise interactions on large graphs have been studied in many contexts, primarily on finite

state space (see [29, 134, 135, 136] and references therein). In the continuous context we study
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here, these Gibbs measures appear as invariant measures of locally interacting diffusion processes

whose large-scale behavior has recently been the subject of active research [137, 138].

To work toward applying Theorem 4.1.1 with f as in (4.6), we first record the simple obser-

vation that f is strongly concave under Assumption 4.2.1. The proof of this and other results in

Chapter 4.2.1 are given in Chapter 4.4.

Lemma 4.2.2. Define f by (4.6), and suppose Assumption 4.2.1 holds. Then f is κ-concave.

The following corollary will allow us to cover the case of unbounded K ′′, but only if we can

control the barycenter of Q∗ in the sense that EQ∗ [Xi − Xj] = 0. This symmetry condition is

justified in different ways in the following applications and is explained further in the part titled

“On the symmetry of Q∗" in Chapter 4.2.1.

Corollary 4.2.3. Define f by (4.6), and suppose Assumption 4.2.1 holds. With Q∗ denoting the

unique optimizer of (4.4), assume further that EQ∗ [Xi −Xj] = 0. Then

Rf ≤ Tr(J2)aκ−2eb
2/κ.

Remark 4.2.4. Corollary 4.2.3 shows that Rf = o(n) as long as Tr(J2) = o(n). The assumption

Tr(J2) = o(n) has been used in the literature as a mean field condition for quadratic interaction

models, first in [29, Theorem 1.1] and then in [127, Theorem 4]. Both cases are limited to mea-

sures with compact support. Moreover, in their setting, neither uniqueness of the optimizer nor

convergence of the empirical measure hold in general. In contrast, in our setting we can allow

measures of unbounded support, and we show both uniqueness of the optimizer and the conver-

gence of the empirical measure in Theorems 4.2.5 and 4.2.8 below. On the other hand, our results

require concavity assumptions which were not needed in [29, 127].

Using Corollary 4.2.3, one can study the weak law of large numbers of the empirical measure

under P , by studying the corresponding weak law under the product measureQ∗. Under additional

assumptions on the matrix J , the mean field optimization problem can be shown to converge as
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n → ∞, allowing us to characterize the weak law under P in terms of the limiting optimization

problem. Below we illustrate this in two special cases.

Doubly stochastic matrices

In the following n → ∞ results, note that the dependence of f , P (dx) = Z−1ef(x)dx and J

on n is suppressed.

Theorem 4.2.5. Define f by (4.6), and suppose Assumption 4.2.1 holds. Assume there exist a, b ≥

0 such that |K ′′(x)|2 ≤ aeb|x| for all x. Assume further that the symmetric matrix J is doubly

stochastic (i.e.,
∑n

j=1 Jij = 1 for all i), and obeys the mean field condition Tr(J2) = o(n). Then

we have the following conclusions:

(1)

lim
n→∞

1

n
log

∫
Rn

ef(x) dx = sup
Q∈P(R)

(∫
R
V dQ+

1

2

∫
R

∫
R
K(x− y)Q(dx)Q(dy)−H(Q)

)
.

(4.21)

(2) The supremum in (4.21) is attained by a unique Q ∈ P(R), and if (X1, . . . , Xn) ∼ P then

1

n

n∑
i=1

δXi
→ Q, weakly in law. (4.22)

The above theorem applies when J = A/d and A is the adjacency matrix of a d-regular graph.

In this case we get Tr(J2) = n/d, which is o(n) as long as d → ∞. The above theorem is

similar in spirit to [29, Theorem 2.1], which dealt with Ising and Potts models, and a comment

similar to Remark 4.2.4 applies. Note that one cannot expect a mean field approximation to be

valid in the sparsest (diluted) case, where d stays bounded as n → ∞. The framework of local

weak convergence has proven to be successful in this context [139], and we refer also to [140,

Sections 2 and B] for continuous models encompassing the form studied here, and for a detailed
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derivation of the (folklore) limit of the empirical measure for locally convergent graph sequences,

which requires uniqueness of the infinite-volume Gibbs measure on the limiting graph.

Graphons

Another case in which we can derive asymptotics of the log partition function is when the ma-

trix J converges to a graphon W in cut metric. Below we introduce the relevant notions, deferring

to [141, 142, 143, 144] for additional background:

Definition 4.2.6. Let W denote the space of all symmetric measurable functions from [0, 1]2 to

[0,∞) which are integrable. For W1,W2 ∈ W , define the strong cut (pseudo-)metric by

d□(W1,W2) := sup
S,T⊂[0,1]

∣∣∣∣ ∫
S×T

(
W1(u, v)−W2(u, v)

)
dudv

∣∣∣∣,
and their weak cut (pseudo-)metric by

δ□(W1,W2) := inf
φ
d□(W1,W

φ
2 ),

where the infimum is over all invertible measure-preserving mapsφ : [0, 1] → [0, 1], andWφ
2 (u, v) :=

W2(φ(u), φ(v)). Given a symmetric matrix A ∈ Rn×n with nonnegative entries, we define a func-

tion WA ∈ W by setting WA(u, v) := A⌈nu⌉,⌈nv⌉. We say that a sequence of symmetric matrices

{An} converges in weak cut metric to a function W ∈ W if δ□(WAn ,W ) → 0.

Remark 4.2.7. SupposeGn is the adjacency matrix of an Erdős-Rényi random graph on n vertices

with parameter pn, such that npn → ∞. If Jn = 1
npn

Gn, then nJn converges in strong cut metric to

the constant function 1 (see [142, Example 3.3.1]). Similar convergences hold if Gn arises from a

stochastic block model, where the edge probability matrix has a block structure, in which case the

limiting W retains the same block structure. For more examples of convergent sequence of graphs

in cut metric, we refer again to [141, 142, 143, 144] and references therein.

Let PUnif([0, 1]×R) denote the space of all probability measures on [0, 1]×R with uniform first
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marginal. Note that any µ ∈ PUnif([0, 1]× R) admits the disintegration µ(du, dx) = duµu(dx).

Theorem 4.2.8. Define f by (4.6), and suppose Assumption 4.2.1 holds. Assume there exist

a, b ≥ 0 such that |K ′′(x)|2 ≤ aeb|x| for all x. Assume further that V is even, K is nonposi-

tive,
∫
R e

V (x) dx = 1, and J = {Jn} is a sequence of matrices such that {nJn} converges in weak

cut metric to a function W ∈ W . Assume also that Tr(J2
n) = o(n).

(1) Defining the probability measure ρ(dx) = eV (x) dx, we have

lim
n→∞

1

n
log

∫
Rn

ef(x) dx

= sup
µ∈PUnif([0,1]×R)

(
1

2

∫
([0,1]×R)2

W (u, v)K(x− y)µ(du, dx)µ(dv, dy)−
∫ 1

0

H(µu | ρ) du
)
.

(4.23)

(2) The supremum in (4.23) is attained by a unique µ∗ ∈ PUnif([0, 1]×R), and if (X1, . . . , Xn) ∼

P , then
1

n

n∑
i=1

δXi
→
∫ 1

0

µ∗
u du, weakly in law. (4.24)

Remark 4.2.9. It follows from [141, Propositions C.5 and C.15] that the condition Tr(J2
n) = o(n)

holds automatically if Jn is the adjacency matrix of a simple graph Gn = ([n], En) multiplied by

n/(2|En|), and nJn converges in cut metric. However, if Jn is a general matrix, we need the added

assumption Tr(J2
n) = o(n) in Theorem 4.2.8.

On the symmetry of Q∗

This short section elaborates on conditions under which one can check that EQ∗ [Xi−Xj] = 0,

which was needed in Corollary 4.2.3. The main two conditions we found are evenness and a weak

form of permutation invariance.

Definition 4.2.10. Let S be a set of permutations of [n]. We say that S is transitive if for every

i, j ∈ [n] there exists π ∈ S such that π(i) = j. We say also that a function f on Rn is invariant

under S if f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) for every x ∈ Rn and π ∈ S.
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Lemma 4.2.11. In the setting of Theorem 4.1.1, the following implications hold:

(1) If f is even, meaning f(−x) = f(x) for all x, then Q∗
i is even for each i = 1, . . . , n.

(2) Suppose f is invariant under a transitive set of permutations. Then Q∗
1 = Q∗

2 = · · · = Q∗
n.

In both cases, we have EQ∗ [Xi −Xj] = 0 for all i, j ∈ [n].

When f is of the form (4.6), it is clear that f is even if K and V are, and indeed V is assumed

even in Theorem 4.2.5 to enable an application of Lemma 4.2.11(1). We will not apply Lemma

4.2.11(2), but we find it interesting in its own right. For instance, (2) holds if f is symmetric, i.e.,

invariant under all permutations. Another natural case covered by (2) is where f is of the form

(4.6) and J is a scalar multiple of the adjacency matrix of a vertex transitive graph.

4.2.2 High dimensional Bayesian linear regression

Our next application is concerned with high dimensional Bayesian linear regression. Suppose

we observe a set of data {(yi, Xi)}ni=1, where yi ∈ R and Xi ∈ Rp. Let y = (y1, . . . , yn)
⊤ ∈ Rn

and X⊤ = (X1, . . . , Xn) ∈ Rp×n. Consider the linear regression model

y = Xβ + ε, ε ∼ γσ2 ,

where γσ2 denotes the Gaussian with mean 0 and covariance matrix σ2I . Here β ∈ Rp is the

unknown parameter.

Following a Bayesian approach, assume that β = (β1, . . . , βp)
⊤ i.i.d.∼ π, where π is a prior

distribution on R with density proportional to eV ∈ L1(R) for some V : R → R. The posterior

density πy,X of β given y and X is then proportional to efy,X , where

fy,X(β) :=

p∑
i=1

V (βi)−
1

2σ2
|y −Xβ|2 .

The posterior distribution is the central object of inference in Bayesian statistics. Note that even

though β has independent coordinates under the prior, the coordinates of β are no longer indepen-
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dent under the posterior. Frequently, mean-field techniques are used to approximate such complex

posterior distributions, including and beyond the set up of Bayesian linear regression (see [145,

146, 147, 148, 149] and references therein). In particular, it is useful to understand what condi-

tions guarantee the validity of a mean field approximation, showing that the posterior is close to a

product measure. Using Theorem 4.1.1, the following corollary provides sufficient conditions un-

der which the posterior is indeed mean-field. Leveraging this, it also derives a law of large numbers

for the empirical measure under the true posterior distribution.

Corollary 4.2.12. Assume V is κ1-concave for some κ1 ∈ R, and that there exists c1 ≥ 0 and

0 ≤ c2 < κ/2 such that |V (x)| ≤ c1e
c2x2 for all x ∈ R. Set J = X⊤X ∈ Rp×p, and assume that

J ≥ κ2I for some κ2 ∈ R such that κ1 + κ2σ
−2 > 0. Then

sup
y∈Rn

∣∣∣∣ log ∫
Rp

efy,X(β)dβ − sup
Q∈Ppr(Rp)

(∫
Rp

fy,X dQ−H(Q)

) ∣∣∣∣ ≤ 1

(κ1σ2 + κ2)2

∑
1≤i<j≤p

J2
ij.

(4.25)

Moreover, for every y ∈ Rn, the inner supremum in (4.25) is attained by a unique Q∗
y ∈ Ppr(Rp),

and for any 1-Lipschitz function φ : R → R, we have

sup
y∈Rn

Eπy,X

[(
1

p

p∑
i=1

φ(βi)−
1

p

p∑
i=1

EQ∗
y

[
φ(βi)

])2
]
≤
σ2
(
κ1σ

2 + κ2 +
√
2
∑

1≤i<j≤p J
2
ij

)2
p(κ1σ2 + κ2)3

.

(4.26)

The proof of this corollary is by a direct application of Theorem 4.1.1 and Corollary 4.1.2, and

is hence omitted. Indeed, the concavity assumption on V and the lower bound on J ensure that

∇2fy,X(β) ≤ −(κ1 + κ2σ
−2)I for all β.

Remark 4.2.13. The uniformity in y in (4.25) implies that the mean field approximation continues

to hold with high probability, under any distributional assumption on y. Note that when n, p→ ∞

in any arbitrary manner, the right-hand side of (4.25) and (4.26) are o(p) and o(1) respectively, as

long as
∑

1≤i<j≤p J
2
ij = o(p) when n, p → ∞. We also point out that the same conclusion as in

123



(4.25) above was derived in [150, Theorem 1] using very different techniques, under the assump-

tion that the prior distribution π is compactly supported. In our setup, we allow the support to be

non-compact, but instead assume that the prior distribution is strongly log-concave. One added

advantage of our setup is that we also get the law of large numbers under no extra assumptions.

4.2.3 Stochastic control

This section describes an application of Corollary 4.1.4 to a class of high-dimensional stochas-

tic optimal control problems. Let T > 0, and let g : Rn → R be C2 and concave. Consider the

stochastic control problem

Vorig := sup E

[
g(XT )−

1

2n

n∑
i=1

∫ T

0

|αi(t,Xt)|2 dt

]
, (4.27)

where the supremum is over pairs (α,X), where α = (α1, . . . , αn) : [0, T ] × Rn → Rn is a

measurable function andX = (X1, . . . , Xn) a weak solution of the stochastic differential equation

(SDE)

dX i
t = αi(t,Xt) dt+ dBi

t, X i
0 = 0, i = 1, . . . , n, (4.28)

defined on an arbitrary filtered probability space (Ω,F ,F,P), satisfying also
∫ T
0
|α(t,Xt)|2 dt <

∞ a.s. Here B = (B1, . . . , Bn) is an n-dimensional F-Brownian motion, and X is required to be

F-adapted. We call such a pair (α,X) admissible. There is a well known semi-explicit solution to

(4.27) which has come to be known as the Föllmer drift, which we will discuss in Remark 4.2.15

below.

We interpret i = 1, . . . , n as the indices of different “players," each facing an independent

source of randomnessBi, and each choosing a control αi which can depend on the full information

of all n players. Players “cooperate" in the sense that (α1, . . . , αn) are chosen together to optimize
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(4.27). When g is of the form

g(x) = G

(
1

n

n∑
i=1

δxi

)
, for some G : P(R) → R, (4.29)

we recover a well-studied class of problems which goes under the name mean field control in the

cooperative setting [151], or mean field games in the competitive (Nash equilibrium) setting [152,

153]; see [154] for an overview. In this setting, it is typically argued that Vorig converges to the

value of a limiting “mean field" control problem, and the optimal control α̂ from this limiting prob-

lem can be used to construct distributed controls αi(t, x1, . . . , xn) = α̂(t, xi) which are provably

approximately optimal for the n-player problem for n large. This is a very desirable outcome,

because distributed controls are much simpler (lower-dimensional).

Our results give a new non-asymptotic perspective on control problems of this form, by show-

ing how to construct approximately optimal distributed controls for much more general g than in

(4.29). The link between (4.27) and the setting of Chapter 4.1 is the formula

Vorig = sup
Q∈P(Rn)

(∫
Rn

g dQ− 1

n
H(Q | γT )

)
=

1

n
log

∫
Rn

eng dγT , (4.30)

where we recall that γT denotes the centered Gaussian with covariance matrix TI . This formula is

essentially a well known consequence of Girsanov’s theorem.1 The mean field approximation also

admits a natural control-theoretic interpretation. Define

Vdstr := sup E

[
g(XT )−

1

2n

n∑
i=1

∫ T

0

|αi(t,Xt)|2 dt

]
, (4.31)

where the supremum is now over admissible pairs (α,X) for which α = (α1, . . . , αn) is of the

1Experts might recognize a similarity with a famous formula often named after Boué-Dupuis [155] or Borell [156],
though the form we present here is simpler because of our restriction to Markovian controls, whereas [155, 156] work
with open-loop controls, i.e., controls specified as arbitrary progressively measurable processes.
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form

αi(t, x1, . . . , xn) = α̂i(t, xi),

for some measurable α̂i : [0, T ] × R → R, and also for which X1
t , . . . , X

n
t are independent for

each t ∈ [0, T ] (this second statement being redundant if the SDE (4.28) driven by this α is known

to be unique in law). Let us call any such pair (α,X) a distributed admissible pair. We will derive

the following result from Corollary 4.1.4, after first showing that Vdstr is nothing but the mean field

approximation of (4.30), in the sense that

Vdstr = sup
Q∈Ppr(Rn)

(∫
Rn

g dQ− 1

n
H(Q | γT )

)
. (4.32)

Corollary 4.2.14. Let g : Rn → R be C2 and concave, and let T > 0. Assume there exists c1 ≥ 0

and 0 ≤ c2 < 1/2T such that |g(x)| ≤ c1e
c2|x|2 for all x ∈ Rn. Define Vorig and Vdstr by (4.27)

and (4.31), respectively. Then the formulas (4.30) and (4.32) hold, and

0 ≤ Vorig − Vdstr ≤ nT 2
∑

1≤i<j≤n

EQ∗ [|∂ijg(X)|2], (4.33)

where Q∗ = Q∗
1 × · · · ×Q∗

n ∈ Ppr(Rn) is the unique product measure with strictly positive density

a.e. satisfying g ∈ L1(Q∗) and the fixed point equation

Q∗
i (dxi) = Z−1

i exp
(
nEQ∗ [g(X) |Xi = xi]

)
γT (dxi), Zi > 0, i = 1, . . . , n.

The proof is given in Chapter 4.5. Corollary 4.2.14 shows that distributed controls are approxi-

mately optimal for large n if n∥
∑

i ̸=j ∂ijg∥2∞ = o(1). As an example, if g is of the form (4.29) and

G is twice continuously Wasserstein- or L-differentiable in the sense of [154, Chapter 5.2], then

∂ig(x) =
1

n
DmG

(
1

n

n∑
k=1

δxk , xi

)
, ∂ijg(x) =

1

n2
D2
mG

(
1

n

n∑
k=1

δxk , xi, xj

)
, i ̸= j.
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Hence, if D2
mG is bounded, then the right-hand side of (4.33) is bounded by T 2∥D2

mG∥2∞/2n.

Remark 4.2.15. In fact, the proof of Corollary 4.2.14 also yields an explicit characterization of

the optimal distributed control in (4.31), which we summarize as follows. For a measure Q≪ γT ,

consider a process X = (Xt)t∈[0,T ] such that XT ∼ Q and the conditional law of the trajectory

(Xt)t∈[0,T ] given XT = x coincides with the law of the Brownian bridge from 0 to x on the time

interval [0, T ]. This process might be called the Brownian (or Schrödinger) bridge with terminal

law Q. The associated control α is given by α(t, x) = ∇x logE[ dQdγT
(x + BT − Bt)], as shown in

full generality by Föllmer [157, 158]. Note that the associated SDE (4.28) may not be pathwise

unique in general, but it always admits a weak solution X with the law just described. The opti-

mizer for the original control problem (4.27) is nothing but the Brownian bridge with terminal law

P (dx) = Z−1eng(x)γT (dx). Similarly, the optimizer for the distributed control problem (4.31) is

the Brownian bridge with terminal law Q∗.

Remark 4.2.16. Proposition 4.1.6 admits a similar control-theoretic formulation in terms of de-

terministic controls. Let Vdet denote the value of the stochastic control problem (4.27) but with

the supremum limited to those admissible pairs (α,X) in which the control is non-random, i.e.,

αi(t, x) = α̃i(t) for some α̃i ∈ L2[0, T ]. For these controls, Xt is Gaussian with covariance matrix

tI for each t ∈ [0, T ]. It can then be shown that

Vdet = sup
y∈Rn

(∫
Rn

g dγy,T − 1

n
H(γy,T | γT )

)
= sup

y∈Rn

(∫
Rn

g dγy,T − |y|2

2nT

)
,

and Proposition 4.1.6 yields the following analogue of (4.33):

0 ≤ Vorig − Vdet ≤
nT 2

2

n∑
i,j=1

∫
Rn

|∂ijg|2 dγy∗,T ,

where y∗ ∈ Rn is the unique solution of y∗ = T
∫
Rn ∇g dγy∗,T .
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4.3 Proof of the main theorem

The proofs will make use of the well known log-Sobolev and Poincaré inequalities for strongly

log-concave measures, recalled here for convenience as we will use them in several parts of the

paper. The former is due to Bakry-Émery (see [130] or [44, Corollary 5.7.2]), and the latter is a

consequence of the Brascamp-Lieb inequality [159, Theorem 4.1].

Theorem 4.3.1 (Log-Sobolev inequality). If h : Rn → R is C2 and κ-concave, and R(dx) =

eh(x)dx is a probability measure, then R satisfies the log-Sobolev inequality,

H(Q |R) ≤ 1

2κ

∫
Rn

∣∣∣∣∇ log
dQ

dR

∣∣∣∣2 dQ,

for every Q ∈ P(Rn) such that Q≪ R and the weak gradient of log dQ/dR exists in L2(Q).

Theorem 4.3.2 (Poincaré inequality). If h : Rn → R is κ-concave, and R(dx) = eh(x) dx is a

probability measure, then R satisfies the Poincaré inequality,

VarR(φ) :=

∫
Rn

φ2 dR−
(∫

Rn

φ dR

)2

≤ 1

κ

∫
Rn

|∇φ|2 dR,

for every continuously differentiable function φ : Rn → R in L1(R).

The above Poincaré inequality is normally stated with the additional assumptions that h is

C2, which is easily removed by mollification by a Gaussian, and that φ ∈ L2(R), which can be

weakened to L1(R) by monotone approximation, though both sides may be infinite.

We will also make use of the Gibbs variational principle, which is well known, but we give the

proof as we need a non-standard form which is careful about edge cases. Recall our convention

that H(Q) := ∞ if Q is not absolutely continuous or if Q logQ /∈ L1(Rn).

Theorem 4.3.3 (Gibbs variational principle). Let f : Rn → R ∪ {−∞} be measurable, bounded

from above and such that Z :=
∫
Rn e

f dx ∈ (0,∞). Define P ∈ P(Rn) by P (dx) = Z−1ef(x) dx.
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Then

sup
Q∈P(Rn)

(∫
Rn

f dQ−H(Q)

)
= logZ ∈ (−∞,∞), (4.34)

and the following are equivalent:

(1) H(P ) <∞.

(2) The supremum in (4.34) is attained uniquely by P .

(3) There exists a maximizer in (4.34).

Proof. We first prove (4.34). Since f is bounded from above,
∫
Rn f dQ ∈ [−∞,∞) is well-defined

for all Q ∈ Ppr(Rn). We may thus restrict the supremum in (4.34) to those Q with H(Q) < ∞.

For H(Q) <∞, we have the simple identity

∫
Rn

f dQ−H(Q) = −H(Q |P ) + logZ. (4.35)

Therefore,

sup
Q∈P(Rn)

(∫
Rn

f dQ−H(Q)

)
= − inf

{
H(Q |P ) : Q ∈ P(Rn), H(Q) <∞

}
+ logZ,

and it suffices to show that the infimum on the right-hand side is zero. We proceed by approxima-

tion. For each k ∈ N, let Bk ⊂ Rn denote the centered ball of radius k, and define the probability

density Qk = P1Bk
/P (Bk). Since f is bounded from above, the density Qk is bounded and sup-

ported on the bounded set Bk. Thus Qk logQk ∈ L1(Rn), or H(Qk) < ∞, and we conclude that

H(Q |P ) ≤ lim infkH(Qk |P ). Finally, since P (Bk) → 1,

H(Qk |P ) = − logP (Bk) → 0.

This proves the claim (4.34).

Turning to the equivalence of (1–3), the implication (1) ⇒ (2) follows by taking Q = P

in (4.35). The implication (2) ⇒ (3) is trivial. Lastly, for the implication (3) ⇒ (1), suppose
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Q ∈ P(Rn) attains the supremum in (4.34). We know from (4.34) that the supremum is not −∞,

so H(Q) <∞. Then, for any R ∈ P(Rn) with H(R) <∞, the identity (4.35) implies

−H(R |P ) + logZ =

∫
Rn

f dR−H(R) ≤
∫
Rn

f dQ−H(Q) = −H(Q |P ) + logZ.

Rearrange and minimize over R to get

H(Q |P ) ≤ inf
{
H(R |P ) : R ∈ P(Rn), H(R) <∞

}
= 0,

where the last equality was shown just above while proving (4.34). It follows that H(Q |P ) = 0,

so Q = P , and H(P ) = H(Q) <∞. This completes the proof.

4.3.1 Proof of Theorem 4.1.1

This section proves Theorem 4.1.1 in several parts, and we assume throughout that f satisfies

the assumptions therein. Since f is C2 and κ-concave,

f(x) ≤ a− b|x|2, for all x ∈ Rn, where a := f(0) + κ−1|∇f(0)|2, b := κ/4. (4.36)

This implies that Z :=
∫
Rn e

f(x)dx < ∞, so P (dx) = Z−1ef(x)dx is well defined. Moreover, f is

bounded from above, so
∫
Rn f dQ is well defined in [−∞,∞) for every Q ∈ P(Rn). Note lastly

that fef ∈ L1(Rn), or equivalently H(P ) <∞, which follows from the growth assumption on |f |

and the fact that the κ-log-concave measure P satisfies
∫
Rn e

c|x|2P (dx) <∞ for each c < κ/2. (In

fact, every absolutely continuous log-concave measure has finite entropy [160, Theorem I.1].) We

first establish some properties of the optimization and fixed point problems appearing in Theorem

4.1.1.
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Lemma 4.3.4. It holds that

−∞ < sup
Q∈Ppr(Rn)

(∫
Rn

f dQ−H(Q)

)
<∞, (4.37)

and any Q∗ ∈ Ppr(Rn) attaining the supremum satisfies f ∈ L1(Q∗). Also, equation (4.12) is

valid.

Proof. The Gibbs variational formula (Theorem 4.3.3) implies that the supremum in (4.37) is no

greater than logZ < ∞. To see that it is not −∞, note that f is locally bounded because it is

concave and real-valued. Hence, if Q is any product measure with bounded support and finite

entropy (such as the uniform measure on [0, 1]n), we can bound the supremum from below by∫
Rn f dQ − H(Q) > −∞. Now, if Q∗ is an optimizer, then H(Q∗) < ∞ and

∫
Rn fdQ

∗ > −∞,

the latter implying that f ∈ L1(Q∗) since f is bounded from above.

To prove (4.12), note that the simple calculation (4.11) is valid for any Q ∈ P(Rn) with

H(Q) < ∞, though both sides are +∞ if and only if
∫
Rn f dQ = −∞. Since

∫
Rn f dQ always

exists in [−∞,∞), the supremum in (4.37) remains the same when restricted to those Q with

H(Q) < ∞. By infimizing (4.11) over Q ∈ Ppr(Rn) with finite entropy, we deduce that the left-

hand side of (4.12) is finite and equals inf{H(Q |P ) : Q ∈ Ppr(Rn), H(Q) < ∞}. To complete

the proof, we claim that if Q ∈ Ppr(Rn) satisfies H(Q |P ) <∞ and H(Q) = ∞, then there exists

Qk ∈ Ppr(Rn) such that H(Qk) < ∞ for each k and H(Qk |P ) → H(Q |P ). Indeed, define the

probability density Qk = Q1Bk
/Q(Bk), where Bk = [−k, k]n, for k large enough that Q(Bk) > 0.

Then

H(Qk |P ) =
1

Q(Bk)

∫
Bk

log
dQ

dP
dQ− logQ(Bk)

is finite and converges to H(Q |P ) as k → ∞. In particular, log(dQk/dP ) ∈ L1(Qk). We also

have logP = f − logZ ∈ L1(Qk) because f is locally bounded and Qk has compact support. We

deduce that logQk ∈ L1(Qk), or H(Qk) <∞, which completes the proof.
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The following proposition shows essentially that the fixed point problem (4.3) is the first or-

der condition for optimality in (4.4). This extends naturally to much more general settings, with

(Rn, dx) replaced by a general σ-finite product measure space, but we will not need this.

Proposition 4.3.5 (Optimality to fixed point). Suppose Q∗ = Q∗
1 × · · · × Q∗

n ∈ Ppr(Rn) attains

the supremum in (4.37). Then f ∈ L1(Q∗) and Q∗ satisfies the fixed point equation

Qi(dxi) = Z−1
i ef̂i(xi) dxi, where f̂i : R → R ∪ {−∞} is defined by

f̂i(xi) :=

∫
Rn−1

f(x1, . . . , xn)
∏
j ̸=i

Q∗
j(dxj), i ∈ [n].

(4.38)

Proof. Note that f ∈ L1(Q∗) by Lemma 4.3.4. By assumption, (Q∗
1, . . . , Q

∗
n) attains the supremum

sup
Q1,...,Qn∈P(R)

(∫
Rn

f d(Q1 × · · · ×Qn)−H(Q1 × · · · ×Qn)

)
.

Clearly, f̂i(xi) = EQ∗ [f(X) |Xi = xi] for Q∗
i -a.e. xi ∈ R. Also, it is well known that entropy

tensorizes for product measures: H(Q1 × · · · × Qn) =
∑n

i=1H(Qi). From these and the tower

property it follows for each i ∈ [n] that Q∗
i attains the supremum

Si := sup
Qi∈P(R)

(∫
R
f̂i dQi −H(Qi)

)
. (4.39)

We wish to invoke the Gibbs variational principle (Theorem 4.3.3) to deduce that this supremum is

uniquely attained by the probability measure with density proportional to ef̂i , and thus Q∗
i (dxi) =

Z−1
i ef̂i(xi) dxi, which yields (4.38). It remains to carefully check the conditions of Theorem 4.3.3.

We know that Q∗
i attains the supremum (4.39), so we must just check that Zi ∈ (0,∞). Note that

(4.36) implies f(x) ≤ a − bx2i for all x ∈ Rn, and thus f̂i(xi) ≤ a − bx2i for all xi ∈ R, which

implies Zi =
∫
R e

f̂i(xi) dxi < ∞. Next, recall from Lemma 4.3.4 that f ∈ L1(Q∗), so by Fubini’s

theorem, Q∗
i (|f̂i| < ∞) = 1. Note that Q∗

i is absolutely continuous since H(Q∗
i ) < ∞. Hence,

{|f̂i| <∞} has nonzero Lebesgue measure, and so Zi > 0.
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Lemma 4.3.6. There exists a unique maximizer in (4.37).

Proof. We first prove existence. Recalling the identity (4.12), the optimizers of (4.37) are in

one-to-one correspondence with the optimizers of infQ∈Ppr(Rn)H(Q |P ). The latter exist because

Ppr(Rn) is a weakly closed subset of P(Rn) and because H(· |P ) has weakly compact sub-level

sets.

We next prove uniqueness. Let Q∗ = Q∗
1 × · · · ×Q∗

n ∈ Ppr(Rn) denote any optimizer of (4.5).

Define G1, G2 : (P(R))n → R by

G1(Q1, . . . , Qn) :=

∫
Rn

f(x1, . . . , xn)
n∏
i=1

Qi(dxi), G2(Q1, . . . , Qn) := H(Q1 × · · · ×Qn).

That is, Q∗ is a maximizer of G = G1 − G2, and we will show it must be the only one. Let

Q ∈ Ppr(Rn) be distinct from Q∗. We denote by M(t) = (M1(t), . . . ,Mn(t)) the displacement

interpolations between the marginals, i.e.,

Mi(t) = Q∗
i ◦ ((1− t)Id + tTi)

−1,

where Ti : R → R is the Q∗
i -a.s. unique nondecreasing function satisfying Q∗

i ◦ T−1
i = Qi. Since

Q∗
i and Qi are distinct, there exists i such that Ti is different from the identity map on a set with

strictly positive Q∗
i -measure. Writing out the expression of G1,

G1(M(t)) =

∫
Rn

f
(
(1− t)x1 + tT1(x1), . . . , (1− t)xn + tTn(xn)

) n∏
i=1

Q∗
i (dxi),

we see that t 7→ G1(M(t)) is strictly concave because f is strictly concave and Q ̸= Q∗. Ten-

sorization of entropy yields G2(M(t)) =
∑n

i=1H(Mi(t)), and it is well known that differential

entropy is displacement convex [55, Theorem 5.15(i)]. That is, t 7→ H(Mi(t)) is convex for each

i. We deduce that t 7→ G(M(t)) is strictly concave. This proves uniqueness: if Q were also an

optimizer, then G(M(1)) = G(Q) = G(Q∗) = G(M(0)) would imply G(M(t)) > G(Q∗) for

some t ∈ (0, 1).
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Remark 4.3.7. We do not expect uniqueness in Lemma 4.3.6 to hold under mere concavity of f .

The challenge is that the differential entropy functional is displacement convex, but not strictly so..

In some of the following proofs, some shorthand notation will be useful. For Q ∈ P(Rn), let

us write Q−i for the marginal of (Xj)j ̸=i under Q. For x ∈ Rn let us write x−i = (xj)j ̸=i and, with

some abuse of notation, f(x) = f(xi, x−i).

Lemma 4.3.8. If Q ∈ Ppr(Rn) satisfies the fixed point equation (4.38), then Q is κ-log-concave.

Proof. By (4.38), the density ofQ is proportional to eF̂ , where F̂ (x) =
∑n

i=1 f̂i(xi) and f̂i is given

by (4.38). By the κ-concavity of f , for any y, z ∈ R and t ∈ [0, 1], we have

f̂i(tz + (1− t)y) +
κ

2
(tz + (1− t)y)2

=

∫
Rn−1

[
f(tz + (1− t)y, x−i) +

κ

2
(tz + (1− t)y)2

]
Q−i(x−i) dx−i

≥
∫
Rn−1

[
tf(z, x−i) + t

κ

2
z2 + (1− t)f(y, x−i) + (1− t)

κ

2
y2
]
Q−i(x−i) dx−i

= tf̂i(z) + t
κ

2
z2 + (1− t)f̂i(y) + (1− t)

κ

2
y2.

This shows that f̂i is κ-concave, and thus so is F̂ .

The next proposition, in conjunction with Proposition 4.3.5, shows that the optimizers of (4.37)

and the solutions of the fixed point problem (4.3) are exactly the same.

Proposition 4.3.9 (Fixed point to optimality). Let Q ∈ Ppr(Rn) satisfy f ∈ L1(Q) and the fixed

point problem (4.38). Then Q has strictly positive density a.e. and is a maximizer of (4.37).

Proof. We first show that Q has strictly positive density a.e. Since Q = Q1 × · · · × Qn satisfies

the fixed point equation (4.38), each Qi has a density with exponent

f̂i(xi) =

∫
Rn−1

f(x1, . . . , xn)
∏
j ̸=i

Qj(dxj) ≥ −c1ec2x
2
i

∏
j ̸=i

∫
R
ec2x

2
jQj(xj) dxj

134



for every xi ∈ R. From Lemma 4.3.8 we know that Q is κ-log-concave. Since c2 < κ/2, we

deduce that
∫
R e

c2x2jQj(xj)dxj <∞. Thus f̂i(xi) > −∞ for all xi ∈ R.

DefineG(R) :=
∫
Rn f dR−H(R) forR ∈ P(Rn). LetQ∗ be an optimizer of sup{G(R) : R ∈

Ppr(Rn)}, which exists uniquely by Lemma 4.3.6. By Proposition 4.3.5, we have f ∈ L1(Q∗),

and Q∗ satisfies the fixed point equation (4.38). The argument given in the previous paragraph

implies that Q∗ has a strictly positive density a.e. To complete the proof, we must show that

G(Q) ≥ G(Q∗).

For i = 1, . . . , n, let Ti : R → R denote the unique nondecreasing function satisfying Qi ◦

T−1
i = Q∗

i , and define Mi(t) = Qi ◦ ((1 − t)Id + tTi)
−1. Let M(t) = M1(t) × · · · ×Mn(t), so

that G(M(t)) = g1(t)− g2(t), where

g1(t) :=

∫
Rn

f
(
(1− t)x1 + tT1(x1), . . . , (1− t)xn + tTn(x1)

) n∏
i=1

Qi(dxi),

g2(t) := H
(
M1(t)× · · · ×Mn(t)

)
=

n∑
i=1

H(Mi(t)).

Let us write g′+ for the right-derivative of a real-valued function g, when it exists. Note that Ti

is a.e. differentiable, as it is monotone. Using [55, Theorem 5.30], we may compute the right-

derivatives at zero as

g′+1 (0) =
n∑
i=1

∫
Rn

∂if(x)
(
Ti(xi)− xi

)
Q(x) dx,

g′+2 (0) = −
n∑
i=1

∫
R
(T ′

i (xi)− 1)Qi(xi) dxi.

We wish to rewrite both terms in more useful forms.

We first claim that

∫
Rn

∂if(x)
(
Ti(xi)− xi

)
Q(x) dx =

∫
R
f̂ ′
i(xi)

(
Ti(xi)− xi

)
Qi(xi) dxi, (4.40)
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where f̂i is defined as in (4.38). To see this, note that f̂i(xi) = EQ[f(xi, X−i)] for all xi ∈ R, so

f̂ ′+
i (xi) = lim

h↓0
h−1EQ[f(xi + h,X−i)− f(xi, X−i)].

By the concavity of f , the difference quotient [f(xi + h,X−i)− f(xi, X−i)]/h increases as h ↓ 0,

and it is bounded from below for 0 < h ≤ h0 by [f(xi + h0, X−i) − f(xi, X−i)]/h0, which has

finite Q-expectation for a.e. choice of h0 > 0 by Fubini’s theorem since f ∈ L1(Q). Hence, by

monotone convergence,

f̂ ′+
i (xi) = EQ[∂if(xi, X−i)]. (4.41)

Moreover, this quantity is finite and nonincreasing in xi because f̂i is a concave real-valued func-

tion. In addition, f̂ ′
i = f̂ ′+

i a.e. since concave functions are a.e. differentiable. Using (4.41), we see

that the right-hand side of (4.40) equals EQ[EQ[∂if(X) |Xi](Ti(Xi)−Xi)], which yields (4.40).

We next integrate by parts to get

−
∫
R
(T ′

i (xi)− 1)Qi(xi) dxi =

∫
R
(Ti(xi)− xi)Q

′
i(xi) dxi. (4.42)

To justify this carefully, we use Lebesgue-Stieltjes integration by parts: Note that the probability

density function ofQi is absolutely continuous because it is proportional to ef̂i , and f̂i is absolutely

continuous as a concave function. Let FQi
and FQ∗

i
denote the CDFs of Qi and Q∗

i respectively.

Recalling that Ti = F−1
Q∗

i
◦ FQi

is the monotone map pushing Qi forward to Q∗
i , and that both Qi

and Q∗
i admit strictly positive densities, the function Ti is absolutely continuous. Hence, there is

no jump term in the integration by parts, and we must only show that the boundary terms vanish.

For this it suffices to show that there exist sequences x±n → ±∞ such that

lim
n→∞

(Ti(x
±
n )− x±n )Qi(x

±
n ) = 0.

If this were not the case, it would imply that |Ti(x)− x|Qi(x) ≤ (|Ti(x)| + |x|)Qi(x) is bounded

away from zero for |x| sufficiently large. This would in turn imply that
∫
R(|Ti(xi)|+|xi|)Qi(xi) dxi =
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∞, contradicting the fact that

∫
R
(|Ti(xi)|+ |xi|)Qi(xi) dxi =

∫
R
|xi|Q∗

i (xi) dxi +

∫
R
|xi|Qi(xi) dxi <∞.

Both integrals are finite because Qi and Q∗
i are κ-log-concave by Lemma 4.3.8 and thus admit

finite moments of every order. With (4.42) and (4.40) now justified, we see that the right-derivative

of G(M(t)) at t = 0 is

g′+1 (0)− g′+2 (0) =
n∑
i=1

∫
R

(
f̂ ′
i(xi)Qi(xi)−Q′

i(xi)
)(
Ti(xi)− xi

)
dxi.

This is in fact zero, because Qi is proportional to ef̂i . We saw in the proof of Lemma 4.3.6 that

G(M(t)) is concave. Since we now know that it has vanishing right-derivative at t = 0, it follows

that G(M(1)) ≤ G(M(0)). That is, G(Q∗) ≤ G(Q), which completes the proof.

Proof of Theorem 4.1.1. Let Sopt denote the set of maximizers in (4.37), and let Sfix denote the

set of Q∗ ∈ Ppr(Rn) satisfying f ∈ L1(Q∗) and the fixed point equation (4.38). Proposition 4.3.5

shows that Sopt ⊂ Sfix. Proposition 4.3.9 shows conversely that Sopt ⊃ Sfix, so in fact Sopt = Sfix.

Lemma 4.3.6 shows that this set is a singleton. Its unique element Q∗ is κ-log-concave by Lemma

4.3.8 and has strictly positive density a.e. by Proposition 4.3.9. This proves claims (1)–(3) of

Theorem 4.1.1.

To prove (4), recall the identity (4.12), which shows that

Rf = log

∫
Rn

ef(x) dx− sup
Q∈Ppr(Rn)

(∫
Rn

f dQ−H(Q)

)
= H(Q∗ |P ).

The κ-log-concavity of P and the log-Sobolev inequality (Theorem 4.3.1) imply

H(Q∗ |P ) ≤ 1

2κ

∫
Rn

∣∣∣∣∇ log
dQ∗

dP

∣∣∣∣2 dQ∗.

Since Q∗ = Q∗
1× · · ·×Q∗

n is a product measure, we have ∂i logQ∗(x) = ∂i logQ
∗
i (xi) for x ∈ Rn
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and note that the derivative exists almost everywhere because logQ∗
i is concave. We saw in (4.41)

in the proof of Proposition 4.3.9 that the following identity is valid for almost every xi ∈ R, with

the expectation on the right-hand side being finite:

∂i logQ
∗
i (xi) = ∂iEQ∗ [f(X) |Xi = xi] = EQ∗ [∂if(X) |Xi = xi].

Thus,

H(Q∗ |P ) ≤ 1

2κ

∫
Rn

n∑
i=1

∣∣∣∂i logQ∗
i (xi)− ∂if(x)

∣∣∣2Q∗(dx)

=
1

2κ
EQ∗

n∑
i=1

(EQ∗ [∂if(X) |Xi]− ∂if(X))2

=
1

2κ
EQ∗

n∑
i=1

VarQ∗(∂if(X) |Xi).

This yields the first bound in (4.5). Recall that Q∗
−i denotes the law of (Xj)j ̸=i, which equals the

conditional law of (Xj)j ̸=i givenXi underQ∗ by independence. The measureQ∗
−i is κ-log-concave

because Q∗
j is for each j. Hence, it obeys a Poincaré inequality (Theorem 4.3.2), VarQ∗

−i
(φ) ≤

κ−1
∫
Rn−1 |∇φ|2 dQ∗

−i, for any C1 function φ ∈ L1(Q∗
−i). Applying this to ∂if with coordinate i

fixed,

VarQ∗(∂if(X) |Xi) ≤
1

κ

∑
j ̸=i

EQ∗ [|∂ijf(X)|2 |Xi].

Complete the proof of the second inequality of (4.5) by using the tower property to get

1

2κ
EQ∗

n∑
i=1

VarQ∗(∂if(X) |Xi) ≤
1

2κ2

n∑
i=1

∑
j ̸=i

EQ∗ [|∂ijf(X)|2].
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4.3.2 Proof of Corollary 4.1.4

Let f(x) := g(x) +
∑n

i=1 Vi(xi). Then
∫
Rn e

g dρ =
∫
Rn e

f(x) dx, and the concavity of g and

κ-concavity of Vi imply that f is κ-concave. Note also that for any Q ∈ Ppr(Rn),

∫
Rn

g dQ−H(Q | ρ) =
∫
Rn

f dQ−H(Q).

This shows that the optimization problems (4.4) and (4.9) are the same. Moreover, the fixed point

problems (4.8) and (4.3) admit exactly the same solutions: Q∗
i solves (4.3) if and only if it solves

(4.8). With these identifications, applying Theorem 4.1.1 to f immediately proves claims (1–3) of

Corollary 4.1.4. Finally, with Q∗
i solving (4.38) (or equivalently (4.8)), we have

Rρ
g = Rf ≤

1

κ2

∑
1≤i<j≤n

EQ∗ [|∂ijf(X)|2] = 1

κ2

∑
1≤i<j≤n

EQ∗ [|∂ijg(X)|2],

because ∂ijf = ∂ijg for all i ̸= j. This proves claim (4) of Corollary 4.1.4.

4.3.3 Proof of Proposition 4.1.6

Note that
∫
Rn f(x + y) γt(dx) < ∞ for each y ∈ Rn by the growth assumption on f . The

function

y 7→
∫
Rn

f dγy,t −H(γy,t | γt) =
∫
Rn

f(x+ y) γt(dx)−
1

2t
|y|2

is (1/t)-concave and thus bounded from above. It admits a unique maximizer obtained by setting

the gradient equal to zero; the first order condition is precisely (4.18). Let P (dx) = Z−1ef(x)γt(dx).

The simple identity

log

∫
Rn

ef dγt −
(∫

Rn

f dγy,t −H(γy,t | γt)
)

= H(γy,t |P ),
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valid for all y ∈ Rn, implies that

log

∫
Rn

ef dγt − sup
y∈Rn

(∫
Rn

f dγy,t −H(γy,t | γt)
)

= inf
y∈Rn

H(γy,t |P ).

The right-hand side is equal to H(γy∗,t |P ). The measure P is (1/t)-log-concave, so we may use

the log-Sobolev inequality (Theorem 4.3.1) to get

H(γy∗,t |P ) ≤
t

2

∫
Rn

∣∣∣∣∇ log
dγy∗,t
dP

∣∣∣∣2 dγy∗,t =
t

2

∫
Rn

∣∣∣∣∇ log
dγy∗,t
dγt

−∇ log
dP

dγt

∣∣∣∣2 dγy∗,t

=
t

2

∫
Rn

∣∣∣∣1t y∗ −∇f(x)
∣∣∣∣2 γy∗,t(dx)

=
t

2

n∑
i=1

Varγy∗,t(∂if),

where the last step follows from (4.18). Using the Gaussian Poincaré inequality (or Theorem

4.3.2), this is bounded by the second term on the right-hand side of (4.19).

4.3.4 Asymptotic independence

Proof of first inequality in (4.16). Let P,Q ∈ P(Rn). Let k1, . . . , km be positive integers summing

to n. Suppose P1, . . . , Pm are the marginals of P on Rk1 , . . . ,Rkm , and define the marginals

Q1, . . . , Qm similarly. Then

m∑
i=1

W2
2 (Pi, Qi) ≤ W2

2 (P,Q).

Indeed, to prove this, let (X,Y ) be an optimal coupling of (P,Q). Let Xi be the Rki coordinate,

for i = 1, . . . ,m, and similarly define Yi. Then (Xi, Yi) is a coupling of (Pi, Qi), and so

W2
2 (P,Q) = E

[
|X − Y |2

]
= E

[
m∑
i=1

|Xi − Yi|2
]
≥

m∑
i=1

W2
2 (Pi, Qi).

Now, let 1 ≤ k ≤ n, and let m = ⌊n/k⌋. Let Π be the set of vectors (S1, . . . , Sm) of disjoint k-
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element subsets of [n]. Let QSi
and PSi

denote the corresponding marginals, on those coordinates

in Si ⊂ [n]. Note that W2
2 (PSi

, QSi
) does not depend on the order of the elements of Si. Then

m∑
i=1

W2
2 (PSi

, QSi
) ≤ W2

2 (PS1∪···∪Sm , QS1∪···∪Sm) ≤ W2
2 (P,Q).

If (S1, . . . , Sm) is chosen uniformly at random from Π and i is chosen uniformly at random from

[m], then the marginal law of Si is the same as the law of a uniformly random choice of k-element

subset of [n]. In particular,

1(
n
k

) ∑
S⊂[n], |S|=k

W2
2 (PS, QS) =

1

|Π|
∑

(S1,...,Sm)∈Π

1

m

m∑
i=1

W2
2 (PSi

, QSi
).

Combining the two previous inequalities yields

1(
n
k

) ∑
S⊂[n], |S|=k

W2
2 (PS, QS) ≤

1

m
W2

2 (P,Q) =
1

⌊n/k⌋
W2

2 (P,Q).

Proof of Corollary 4.1.2. By the triangle inequality, the square root of the left-hand side of (4.7)

is no more than A1 + A2, where we define

A1 := EP

( 1

n

n∑
i=1

φ(Xi)−
1

n

n∑
i=1

EP [φ(Xi)]

)2
1/2

,

A2 :=

∣∣∣∣∣ 1n
n∑
i=1

(EP [φ(Xi)]− EQ∗ [φ(Xi)])

∣∣∣∣∣ .
Recall that |φ′| ≤ 1. Using Kantorovich duality and (4.16) with k = 1,

A2
2 ≤

1

n

n∑
i=1

W2
1 (Pi, Q

∗
i ) ≤

1

n

n∑
i=1

W2
2 (Pi, Q

∗
i ) ≤

2Rf

κn
.
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Apply the Poincaré inequality (Theorem 4.3.2) to the function x 7→ (1/n)
∑n

i=1 φ(xi) to get

A2
1 = VarP

(
1

n

n∑
i=1

φ(Xi)

)
≤ 1

κn2

n∑
i=1

EP [|φ′(Xi)|2] ≤
1

κn
.

Combine these two bounds to complete the proof.

4.4 Gibbs measure proofs

This section proves the results of Chapter 4.2.1. Throughout, the function f : Rn → R is

defined as in (4.6) and satisfies Assumption 4.2.1.

Proof of Lemma 4.2.2. Compute two derivatives to find, for all i ̸= j,

∂iif(x) = V ′′(xi) +
∑
j ̸=i

JijK
′′(xi − xj), ∂ijf(x) = −JijK ′′(xi − xj).

Hence, for any x, z ∈ Rn,

z⊤∇2f(x)z =
n∑

i,j=1

zizj∂ijf(x) =
n∑
i=1

z2i V
′′(xi) +

n∑
i,j=1

(
z2i − zizj

)
JijK

′′(xi − xj).

Using the evenness of K ′′ and the symmetry of J ,

n∑
i,j=1

(
z2i − zizj

)
JijK

′′(xi − xj) =
1

2

n∑
i,j=1

(zi − zj)
2JijK

′′(xi − xj).

Since K ′′ ≤ 0 and Jij ≥ 0, we find that this quantity is nonpositive. By κ-concavity of V ,

z⊤∇2f(x)z ≤
n∑
i=1

z2i V
′′(xi) ≤ −κ|z|2,

which shows that f is κ-concave.

Proof of Corollary 4.2.3. Note that f is C2 and κ-concave. Also, the assumptions on |V | and

|K ′′| in Assumption 4.2.1 clearly imply that |f | satisfies the growth assumption in Theorem 4.1.1.
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Therefore, Theorem 4.1.1 applies. Let Q∗ be given as therein. Computing derivatives as above, we

have

Rf ≤
1

κ2

∑
1≤i<j≤n

EQ∗ [|∂ijf(X)|2] = 1

κ2

∑
1≤i<j≤n

J2
ijEQ∗

[
|K ′′(Xi −Xj)|2

]
. (4.43)

Using the assumption on K ′′, we find

EQ∗
[
|K ′′(Xi −Xj)|2

]
≤ aEQ∗

[
eb|Xi−Xj |

]
. (4.44)

By assumption, Xi −Xj has mean zero under Q∗. It follows from the κ-log-concavity of Q∗ that

the law of Xi −Xj is (κ/2)-log-concave (see, e.g., [161, Theorem 3.7(a) and Theorem 3.8]). This

implies that it is subgaussian in the sense that

EQ∗ [es(Xi−Xj)] ≤ es
2/κ, ∀s ∈ R.

Indeed, this can be deduced from the log-Sobolev inequality (Theorem 4.3.1) via Herbst’s argu-

ment or [3, Theorem 1.3]. Thus, using (4.44),

EQ∗
[
|K ′′(Xi −Xj)|2

]
≤ aEQ∗

[
eb(Xi−Xj) + eb(Xj−Xi)

]
≤ 2aeb

2/κ.

Combine this with (4.43) to complete the proof.

4.4.1 Doubly stochastic matrices

We now turn to the proof of Theorem 4.2.5. We first need a straightforward lemma about

displacement convexity, which is likely known.

Lemma 4.4.1. Let Q1, . . . , Qn ∈ P(R) and t1, . . . , tn ∈ [0, 1] be such that
∑n

i=1 ti = 1. Then
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there exists a random vector X = (X1, . . . , Xn) such that Xi ∼ Qi for each i and

H

(
Law

( n∑
i=1

tiXi

))
≤

n∑
i=1

tiH(Qi).

Proof. The proof is by induction on n, with the case n = 1 holding trivially. Assume that the

statement of the lemma is true for some n. Let Q1, . . . , Qn+1 ∈ P(R) and t1, . . . , tn+1 ∈ [0, 1] be

such that
∑n+1

i=1 ti = 1. Without loss of generality, assume that tn+1 < 1 and that Q1, . . . , Qn+1

have finite entropy, as otherwise there is nothing to prove. For i = 1, . . . , n, define t̃i := ti/(1 −

tn+1), so that
∑n

i=1 t̃i = 1. By assumption, we may find a random vector (X1, . . . , Xn) such that

Xi ∼ Qi for each i = 1, . . . , n and

H(Q̃) ≤
n∑
i=1

t̃iH(Qi), (4.45)

where Q̃ denotes the law of X̃ :=
∑n

i=1 t̃iXi. By absolute continuity, there is a unique nonde-

creasing function T : R → R such that Q̃ ◦ T−1 = Qn+1. The entropy functional is displacement

convex [55, Theorem 5.15(i)], which means that the function

[0, 1] ∋ t 7→ H
(
Q̃ ◦ (tT + (1− t)Id)−1

)
is convex. In particular, letting Xn+1 = T (X̃), we find

H
(
Law(tn+1Xn+1 + (1− tn+1)X̃)

)
= H

(
Q̃ ◦ (tn+1T + (1− tn+1)Id)

−1
)

≤ tn+1H(Qn+1) + (1− tn+1)H(Q̃).

By (4.45) and the definition of t̃i, we have (1 − tn+1)H(Q̃) ≤
∑n

i=1 tiH(Qi), completing the

proof.
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Proof of Theorem 4.2.5(1). Let us abbreviate

Mn := sup
Q∈Ppr(Rn)

Mn(Q), (4.46)

where we define

Mn(Q) :=

∫
Rn

f dQ−H(Q)

=
n∑
i=1

∫
R
V (x)Qi(dx) +

1

2

n∑
i,j=1

Jij

∫
R

∫
R
K(x− y)Qi(dx)Qj(dy)−

n∑
i=1

H(Qi),

where the last equality used the symmetry of J and K, the fact that the diagonal entries of J are

zero, and the tensorization of entropy. Recall that log
∫
Rn e

f dx = Mn + Rf , by definition of Rf .

We will complete the proof by showing that

Mn = n sup
Q∈P(R)

(∫
R
V dQ+

1

2

∫
R

∫
R
K(x− y)Q(dx)Q(dy)−H(Q)

)
, (4.47)

and that the optimizer Q∗ = Q∗
1 × · · · × Q∗

n in (4.4) must be i.i.d., or Q∗
1 = · · · = Q∗

n. Indeed,

the i.i.d. form of Q∗ implies EQ∗ [Xi − Xj] = 0 for all i, j. Using this and the assumption

Tr(J2) = o(n), we may apply Corollary 4.2.3 to deduce that Rf/n → 0, and Theorem 4.2.5(1)

follows.

The proof of the inequality (≥) in (4.47) is immediate upon restricting the supremum in (4.46)

to i.i.d. measures and using
∑n

i,j=1 Jij = n:

Mn ≥ sup
Q∈P(R)

(
n

∫
R
V (x)Q(dx) +

1

2

n∑
i,j=1

Jij

∫
R

∫
R
K(x− y)Q(dx)Q(dy)− nH(Q)

)
= n sup

Q∈P(R)

(∫
R
V dQ+

1

2

∫
R

∫
R
K(x− y)Q(dx)Q(dy)−H(Q)

)
.

To prove the inequality (≤) in (4.47), fixQ = Q1×· · ·×Qn ∈ Ppr(Rn) arbitrarily. By Lemma
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4.4.1, there exists a random vector X = (X1, . . . , Xn) such that Xi ∼ Qi for all i and

H(Q) ≤ 1

n

n∑
i=1

H(Qi). (4.48)

where Q denotes the law of 1
n

∑n
i=1Xi. Using the concavity V , we find

1

n

n∑
i=1

∫
R
V (x)Qi(dx) = E

[
1

n

n∑
i=1

V (Xi)

]
≤
∫
R
V dQ. (4.49)

Let Y = (Y1, . . . , Yn) be an independent copy of X . Using the concavity of K and the fact that∑
i Jij =

∑
j Jij = 1, we have

1

n

n∑
i,j=1

Jij

∫
R

∫
R
K(x− y)Qi(dx)Qj(dy)

= E
[
1

n

n∑
i,j=1

JijK(Xi − Yj)

]
≤ E

[
K

(
1

n

n∑
i,j=1

Jij(Xi − Yj)

)]

= E
[
K

(
1

n

n∑
i=1

Xi −
1

n

n∑
j=1

Yj

)]
=

∫
R

∫
R
K(x− y)Q(dx)Q(dy). (4.50)

Combining (4.48), (4.49), and (4.50), we see that

Mn(Q)/n ≤
∫
R
V dQ+

1

2

∫
R

∫
R
K(x− y)Q(dx)Q(dy)−H(Q) =Mn(Q

⊗n
)/n.

In other words, for an arbitrary choice of product measureQ, we may increaseMn(Q) by replacing

Q with the i.i.d. measure Q
⊗n

. This completes the proof.

Proof of Theorem 4.2.5(2). We first justify the uniqueness claim. From part (3) of Theorem

4.1.1, we know that the optimizer Q∗ ∈ Ppr(Rn) in (4.46) is unique. It follows from the previous

paragraph that this unique optimizer is in fact i.i.d., i.e., Q∗ = Q⊗n, where Q ∈ P(R) is the

(necessarily unique) optimizer of (4.47), which does not depend on n. This proves the desired

uniqueness.

Turning to the proof of (4.22), recall that Rf/n → 0, and use Corollary 4.1.2 and the afore-
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mentioned i.i.d. form of the optimizer Q∗ = Q⊗n to deduce that, for any 1-Lipschitz function

φ,

EP
[(

1

n

n∑
i=1

φ(Xi)−
∫
R
φ dQ

)2]
≤

(1 +
√

2Rf )
2

κn
→ 0, as n→ ∞.

This is enough to deduce that 1
n

∑n
i=1 δXi

converges to Q weakly in law.

4.4.2 Graphons proofs

This section is devoted to the proof of Theorem 4.2.8. For W ∈ W and any measurable

function ψ : R2 → R bounded from above, define TW,ψ : PUnif([0, 1]× R) → R by

TW,ψ(µ) := Eµ⊗2 [ψ(X1, X2)W (U1, U2)] .

where (U1, X1) and (U2, X2) are independent with law µ. Note that W ≥ 0 is integrable, so

TW,ψ(µ) is well-defined in [−∞,∞). Let µ := Unif[0, 1]× ρ, and define I : PUnif([0, 1]× R) →

[0,∞] by

I(µ) := H(µ |µ) =
∫ 1

0

H(µu | ρ) du,

with the second identity coming from the chain rule for relative entropy [54, Theorem B.2.1], and

we recall that ρ(dx) = eV (x)dx is a probability measure. We begin with two lemmas pertaining to

the continuity of TW,ψ.

Lemma 4.4.2. Let K ⊂ R be a compact interval. Let ψ : R2 → R be supported on K2 and

continuous when restricted to K2.

(1) If {Wℓ} converges to W in strong cut metric and Wℓ,W ≥ 0, then

sup
µ∈PUnif([0,1]×R)

∣∣∣TWℓ,ψ(µ)− TW,ψ(µ)
∣∣∣→ 0.

(2) The map µ → TW,ψ(µ) is continuous on {µ ∈ PUnif([0, 1] × R) : I(µ) < ∞}, with respect
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to the topology of weak convergence.

Proof. We begin with (1). Let V denote the space of functions ϕ : K2 7→ R of the form

ϕ(x, y) =
L∑
i=1

ciai(x)bi(y), (4.51)

for some L ∈ N, ci ∈ R, and continuous functions ai, bi : K → [0, 1]. It is easy to check that V is

closed under multiplication, contains the constant functions, separates points in K2, and is a vector

subspace of the space C(K2) of continuous real-valued functions on K2. By the Stone-Weierstrass

Theorem, we deduce that V is dense in C(K2) with the supremum norm. Let ε > 0, and find ϕ ∈ V

such that |ψ − ϕ| < ε uniformly on K2. Extend the domain of ϕ to R2 by setting ϕ = 0 on the

complement of K2. Then for all µ ∈ PUnif([0, 1]× R),

∣∣TWℓ,ψ(µ)− TWℓ,ϕ(µ)
∣∣ ≤ ε∥Wℓ∥L1[0,1]2 ,

∣∣TW,ψ(µ)− TW,ϕ(µ)
∣∣ ≤ ε∥W∥L1[0,1]2 .

Consequently, using the triangle inequality, we have

∣∣TWℓ,ψ(µ)− TW,ψ(µ)
∣∣ ≤ ε∥Wℓ∥L1[0,1]2 + ε∥W∥L1[0,1]2 +

∣∣TWℓ,ϕ(µ)− TW,ϕ(µ)
∣∣. (4.52)

Since ϕ is of the form (4.51), we have

TWℓ,ϕ(µ) =
L∑
i=1

ci

∫
[0,1]2

āi(u)b̄i(v)Wℓ(u, v)dudv,

where we define āi(u) := Eµ[ai(X) |U = u], and b̄i similarly. This yields

∣∣TWℓ,ϕ(µ)− TW,ϕ(µ)
∣∣ ≤ L∑

i=1

|ci|d□(Wℓ,W ). (4.53)

Noting that d□(Wℓ,W ) → 0 implies ∥Wℓ∥L1[0,1]2 → ∥W∥L1[0,1]2 , we may now combine (4.52) and

(4.53), sending ℓ→ ∞ and then ε→ 0, to prove the claim (1).
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To prove (2), let µk be a sequence of measures in PUnif([0, 1] × R) converging weakly to µ∞,

such that I(µ∞) <∞. Let Wℓ be a sequence of continuous functions in W converging in L1[0, 1]
2

to W . By the triangle inequality,

∣∣TW,ψ(µk)− TW,ψ(µ∞)
∣∣ ≤ 2 sup

ν∈PUnif([0,1]×R)

∣∣TW,ψ(ν)− TWℓ,ψ(ν)
∣∣+ ∣∣TWℓ,ψ(µk)− TWℓ,ψ(µ∞)

∣∣.
The first term converges to 0 as ℓ → ∞, by part (1) and the fact that convergence in L1[0, 1]

2

implies convergence in strong cut metric. The second term converges to 0 for fixed ℓ as k → ∞,

using the fact that µk converges weakly to µ∞, and the set of discontinuity points of Wℓ(·, ·)ψ(·, ·)

is contained in [0, 1]2 × ∂(K2), which has measure 0 under µ⊗2
∞ (as µ∞ is absolutely continuous

with respect to Lebesgue measure on [0, 1]× R).

Lemma 4.4.3. Suppose µm is a sequence of measures in PUnif([0, 1] × R) converging weakly to

µ∞. Let ψ : R2 7→ R be a continuous function, and let W ∈ L1[0, 1]
2. For 1 ≤ m ≤ ∞, let

(Um
1 , X

m
1 ), (Um

2 , X
m
2 )

i.i.d.∼ µm. Then

W (Um
1 , U

m
2 )ψ(Xm

1 , X
m
2 )

d→ W (U∞
1 , U

∞
2 )ψ(X∞

1 , X
∞
2 ).

Proof. If W is continuous, then the claim is immediate. For a general W , we proceed as follows:

Fix ε > 0, and let K be a compact set such that P(Xm
1 ∈ K, Xm

2 ∈ K) ≥ 1 − ε, which is again

possible by tightness of {(Xm
1 , X

m
2 )}m∈N. Let g be a continuous function with

∥W − g∥L1[0,1]2 <
ε

1 ∨ supx,y∈K |ψ(x, y)|
.

Then on the event {Xm
1 ∈ K, Xm

2 ∈ K}, we have

∣∣∣W (Um
1 , U

m
2 )ψ(Xm

1 , X
m
2 )− g(Um

1 , U
m
2 )ψ(Xm

1 , X
m
2 )
∣∣∣ ≤ ε.
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Thus, for any continuous function ϕ : R → [0, 1] which is 1-Lipschitz, we have

∣∣∣Eϕ(W (Um
1 , U

m
2 )ψ(Xm

1 , X
m
2 )
)
− Eϕ

(
g(Um

1 , U
m
2 )ψ(Xm

1 , X
m
2 )
)∣∣∣ ≤ 2ε.

Finally,

Eϕ
(
g(Um

1 , U
m
2 )ψ(Xm

1 , X
m
2 )
)
→ Eϕ(g(U∞

1 , U
∞
2 )ψ(X∞

1 , X
∞
2 )),

by the result for continuous functions. Thus

lim sup
m→∞

∣∣∣Eϕ(W (Um
1 , U

m
2 )ψ(Xm

1 , X
m
2 ))− Eϕ(W (U∞

1 , U
∞
2 )ψ(X∞

1 , X
∞
2 ))

∣∣∣ ≤ 4ε.

Since ε > 0 is arbitrary, the proof of the lemma is complete.

Proof of Theorem 4.2.8 (1).

We begin with some notation. For a measurable function ψ : R2 → R which is bounded from

above, define Mψ
n := supQ∈Ppr(Rn)M

ψ
n (Q), where

Mψ
n (Q) :=

n∑
i=1

∫
R
V (x)Qi(dx) +

n∑
i,j=1

Jij

∫
R

∫
R
ψ(x, y)Qi(dx)Qj(dy)−

n∑
i=1

H(Qi)

=
n∑

i,j=1

Jij

∫
R

∫
R
ψ(x, y)Qi(dx)Qj(dy)−

n∑
i=1

H(Qi | ρ).
(4.54)

Letting K̃ : R2 → R by K̃(x, y) = K(x − y)/2, we are most interested in the choice ψ = K̃,

but treating a general ψ will be helpful for a truncation argument. Let Q∗ be as in Theorem 4.1.1.

With this notation, we have log
∫
Rn e

f(x)dx = M K̃
n + Rf . Corollary 4.2.3 and the assumption that

Tr(J2) = o(n) imply that Rf/n→ 0, and to prove Theorem 4.2.8 it will thus suffice to show that

lim
n→∞

Mψ
n /n = sup

µ∈PUnif([0,1]×R)

(
TW,ψ(µ)− I(µ)

)
(4.55)

for any continuous function ψ ≤ 0.

To this effect, use the assumption that {nJ}n≥1 converges in weak cut metric to W to con-
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clude the existence of a sequence of permutations {πn}n≥1 with πn ∈ Sn, such that {nJ (πn)}n≥1

converges in strong cut metric to W , where J (πn)
ij := Jπn(i)πn(j) for 1 ≤ i, j ≤ n. Since πn is a

permutation, for any Q = Q1 × · · · ×Qn ∈ Ppr(Rn) we can write

Mψ
n (Q) =

n∑
i=1

∫
R
V (x)Q̃i(dx) +

n∑
i,j=1

Jπn(i)πn(j)

∫
R

∫
R
ψ(x, y)Q̃i(dx)Q̃j(dy)−

n∑
i=1

H(Q̃i),

where Q̃i := Qπn(i) ∈ P(R). Thus

sup
Q∈Ppr(Rn)

Mψ
n (Q) = sup

Q̃∈Ppr(Rn)

M̃ψ
n (Q̃),

where M̃ψ
n (·) defined similarly to Mψ

n (·) in (4.54), but with J replaced by J (πn). Since nJ (πn)

converges to W in strong cut metric, by replacing J with J (πn) without loss of generality we

assume throughout the rest of the proof that nJ converges in strong cut metric to W .

To prove (4.55), we need the following construction which essentially embeds Ppr(Rn) into

PUnif([0, 1] × R) for all n. For any Q = Q1 × · · · × Qn ∈ Ppr(Rn), define a probability measure

µn(Q) ∈ PUnif([0, 1]×R) as follows: If (U,X) ∼ µn(Q), then U ∼ Unif[0, 1], and the conditional

law of X given {(i− 1)/n < U ≤ i/n]} is given by Qi. Then we have

TWnJ ,ψ(µn(Q)) =
1

n

n∑
i,j=1

Jij

∫
R

∫
R
ψ(x, y)Qi(dx)Qj(dy),

I(µn(Q)) =
1

n

n∑
i=1

H(Qi|ρ),

and so

Mψ
n (Q)/n = TWnJ ,ψ(µn(Q))− I(µn(Q)). (4.56)

As a final preparation for the proof of (4.55), we argue that infnMψ
n /n > −∞. To see this,

take B ⊂ R to be any compact set of positive ρ-measure, and define ρ̂≪ ρ by dρ̂/dρ = 1B/ρ(B).
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Let Qi = ρ̂ for i = 1, . . . , n, and Q = Q1 × · · · ×Qn. Then

1

n

n∑
i=1

H(Qi | ρ) = H(ρ̂ | ρ) = − log ρ(B) <∞,

and also

TWnJ ,ψ(µn(Q)) ≥ −∥WnJ∥L1[0,1]2 sup
x,y∈B

|ψ(x, y)|.

Since ψ is continuous, it is bounded on the compact set B. Since WnJ converges in strong cut

metric to W , we have ∥WnJ∥L1[0,1]2 → ∥W∥L1[0,1]2 , and thus the right-hand side is bounded. This

proves that infnMψ
n /n > −∞. We now prove the upper and lower bounds in (4.55) separately.

Proof of the upper bound in (4.55): Let Qn = Qn
1 × · · · ×Qn

n ∈ Ppr(Rn) be any near-optimizer

of Mψ
n (·), meaning

Mψ
n (Q

n) ≥Mψ
n − o(n). (4.57)

Note that Mψ
n (Q

n)/n is bounded from below by some constant C, as shown just above. Since J

has nonnegative entries and ψ ≤ 0, we have TWnJ ,ψ ≤ 0 which implies

C ≤Mψ
n (Q

n)/n = TWnJ ,ψ(µn(Q
n))− I(µn(Q

n)) ≤ −I(µn(Qn)).

This implies supn I(µn(Qn)) <∞. Since the sub-level sets of I are weakly compact, the sequence

(µn(Q
n)) has a limit point. Let µ∞ be any limit point. Lower semicontinuity of I(·) gives I(µ∞) <

∞. For each m ∈ N, define ψm(x, y) := ψ(x, y)1{|x|,|y|≤m}. Note that ψ ≤ ψm ≤ 0, and thus

TWnJ ,ψ ≤ TWnJ ,ψm . By part (1) of Lemma 4.4.2,

sup
µ∈PUnif([0,1]×R)

∣∣∣TWnJ ,ψm(µ)− TW,ψm(µ)
∣∣∣→ 0,

for all m ∈ N. Therefore, for all m,

lim sup
n→∞

TWnJ ,ψ(µn(Q
n)) ≤ lim sup

n→∞
TWnJ ,ψm(µn(Q

n)) ≤ lim sup
n→∞

TW,ψm(µn(Q
n)) = TW,ψm(µ∞),
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where the last step uses part (2) of Lemma 4.4.2. The left-hand side above does not depend on m,

and thus

lim sup
n→∞

TWnJ ,ψ(µn(Q
n)) ≤ inf

m∈N
TW,ψm(µ∞) = TW,ψ(µ∞),

where the last equality follows from the monotone convergence theorem and the fact that ψm ↓ ψ

pointwise. Using the lower semicontinuity of I , we deduce

TW,ψ(µ∞)− I(µ∞) ≥ lim sup
n→∞

(
TWnJ ,ψ(µn(Q

n))− I(µn(Q
n))
)
= lim sup

n→∞
Mψ

n (Q
n)/n.

Bound the left-hand side by a supremum to prove the upper bound in (4.55). Moreover, once we

prove (4.55), then this argument shows the following: for any near-optimizing sequence Qn =

Ppr(Rn) in the sense of (4.57), the sequence {µn(Qn)} is tight, and for any limit point µ∞ of

{µn(Qn)} it holds that µ∞ is an optimizer for the right-hand side of (4.55).

Proof of the lower bound in (4.55): To prove the lower bound in (4.55), we first claim that

sup
µ∈PUnif([0,1]×R)

(
TW,ψ(µ)− I(µ)

)
= sup

µ∈PUnif([0,1]×R), compact support

(
TW,ψ(µ)− I(µ)

)
. (4.58)

The inequality (≥) is obvious. To prove the reverse, let µ ∈ PUnif([0, 1]×R) such that I(µ) <∞,

and define µm ∈ PUnif([0, 1]×R) with compact support by setting dµm/dµ = 1[0,1]×[−m,m]/µ([0, 1]×

[−m,m]), which is well defined for large enough m. Then

I(µm) = H(µm |µ) =
∫
[0,1]×R

log
dµm

dµ
dµm

=

∫
[0,1]×R

log
dµm

dµ
dµm +

∫
[0,1]×R

log
dµ

dµ
dµm.

The second term converges to I(µ) by dominated convergence. The first term equals − log µ([0, 1]×

[−m,m]) and vanishes as m → ∞. Finally, since W ≥ 0 and ψ ≤ 0, it is straightforward

to check by monotone convergence that TW,ψ(µm) → TW,ψ(µ), and thus TW,ψ(µm) − I(µm) →
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TW,ψ(µ)− I(µ) as m→ ∞. This proves (4.58).

Now, to prove the lower bound in (4.55), we let µ ∈ PUnif([0, 1] × R) with compact support

and with I(µ) < ∞, and note that necessarily µ ≪ µ. By defining h(·, ·) := dµ
dµ

, we have∫
R h(u, ·) dρ = 1 for a.e. u ∈ [0, 1] since both µ and µ have uniform first marginal. For each

i ∈ [n], define hni : R → [0,∞) by

hni (x) := n

∫ i/n

(i−1)/n

h(u, x) du.

By Fubini’s theorem,
∫
R h

n
i dρ = 1 for all i. We may thus defineQn = Qn

1×· · ·×Qn
n ∈ Ppr(Rn) by

setting dQn
i

dρ
= hni , and define µn(Qn) as before; note for later use the key identity dµn(Qn)

dµ
(u, x) =

hn⌈nu⌉(x). If K denotes a compact interval such that [0, 1] × K contains the support of µ, then

[0, 1] × K also contains the support of µn(Qn), and we may replace ψ by ψ1K2 in the following

argument. Recalling the formula (4.56) for Mψ
n (Q), we may use part (1) of Lemma 4.4.2 to get

TW,ψ(µn(Q
n))− 1

n
Mψ

n (Q
n)− I(µn(Q

n)) → 0. (4.59)

To complete the proof of the lower bound, we will show that

lim
n→∞

TW,ψ(µn(Q
n)) = TW,ψ(µ), and I(µn(Q

n)) ≤ I(µ), ∀n. (4.60)

Once (4.60) is established, it will follow from the lower semicontinuity of I that I(µn(Qn)) →

I(µ), and we use (4.59) to deduce

lim inf
n→∞

Mψ
n /n ≥ lim

n→∞
Mψ

n (Q
n)/n = TW,ψ(µ)− I(µ).

This holds for every µ ∈ PUnif([0, 1]×R) of compact support satisfying I(µ) <∞. Hence, taking

the supremum and recalling (4.58) yields the desired lower bound in (4.55).
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It remains to prove (4.60). Note that

∫
[0,1]×R

∣∣∣dµ
dµ

− dµn(Q
n)

dµ

∣∣∣ dµ =

∫ 1

0

∫
R
|h(u, x)− hn⌈nu⌉(x)| ρ(dx) du

= Eµ
∣∣h(U,X)− Eµ[h(U,X)|Fn]

∣∣,
where Fn is the σ-field generated by (⌈nU⌉, X). The right-hand side converges to 0 by Levy’s up-

wards convergence theorem, since Eµ|h(U,X)| = 1 < ∞. Thus the probability measure µn(Qn)

converges in total variation to µ, and the first claim in (4.60) follows from part (2) of Lemma

4.4.2. To prove the second claim in (4.60), use convexity of φ(x) := x log x for x ≥ 0, along with

Jensen’s inequality, to get

I(µn(Q
n)) = Eµφ(Eµ[h(U,X)|Fn]) ≤ Eµφ(h(U,X)) = I(µ).

This proves (4.60), completing the proof of the lower bound, and thus Theorem 4.2.8(1).

Proof of Theorem 4.2.8(2).

We first discuss the optimization problem. The functional to be optimized can be written as

Φ(µ) :=
1

2

∫
[0,1]×R

∫
[0,1]×R

W (u, v)K(x− y)µ(du, dx)µ(dv, dy)−
∫ 1

0

H(µu | ρ) du

We will show the existence of an optimizer via the weak upper semicontinuity: Since W ≥ 0 and

K ≤ 0, monotone convergence yields

2TW,K̃(µ) = Eµ⊗2 [W (U1, U2)K(X1 −X2)] = inf
m>0

Eµ⊗2

[(
W (U1, U2)K(X1 −X2)

)
∨ (−m)

]
.

For each m, the expectation appearing on the right-hand side is continuous as a function of µ ∈

PUnif([0, 1] × R), by Lemma 4.4.3. Hence, the left-hand side is upper semicontinuous. Since

relative entropy is lower semicontinuous with compact sub-level sets, the existence of an optimizer

follows.
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We prove uniqueness of the optimizer via displacement convexity. Letting K̃(x, y) = (1/2)K(x−

y), we may rewrite Φ(µ) = Φ1(µ) + TW,K̃(µ)− Φ2(µ), where we define

Φ1(µ) :=

∫ 1

0

∫
R
V (x)µu(dx) du, Φ2(µ) :=

∫ 1

0

H(µu) du,

where we used the simple identity H(ν | ρ) = H(ν)−
∫
Rn V dν. Let µ0, µ1 ∈ PUnif([0, 1]×R) be

two optimizers, written in disintegrated form as duµiu(dx) for i = 0, 1. Let F i
u(x) = µui (−∞, x]

denote the CDF, with generalized inverse F
i

u(y) := inf{x ∈ R : y ≤ F i
u(x)}. Then, for each

u ∈ [0, 1], Tu(x) := F
1

u(F
0
u (x)) denotes the unique nondecreasing function with µ0

u ◦ T−1
u = µ1

u.

Since F i
u(x) is right-continuous in x and measurable in u, it is jointly measurable in (u, x), and the

same is easily seen to be true for F
i

u(x) and thus Tu(x). Consider the map T : [0, 1]×R → [0, 1]×R

given by T (u, x) = (u, Tu(x)). Define the interpolation µt := µ0 ◦ ((1 − t)Id + tT )−1 for each

t ∈ [0, 1]. Then we have

TW,K̃(µ
t) =

1

2

∫
[0,1]×R

∫
[0,1]×R

W (u, v)K(x− y)µt(du, dx)µt(dv, dy)

=
1

2

∫
[0,1]×R

∫
[0,1]×R

W (u, v)K
(
(1− t)(x− y) + t(Tu(x)− Tu(y))

)
µ0(du, dx)µ0(dv, dy).

Since K is concave and W ≥ 0, t 7→ TW,K̃(µ
t) is concave. Note also that

Φ2(µ
t) =

∫ 1

0

H
(
µ0
u ◦ ((1− t)Id + tTu)

−1
)
du

is a convex function of t, by the displacement convexity of entropy [55, Theorem 5.15(i)]. By

the κ-concavity of V , the function t 7→ Φ1(µ
t) is strictly concave, and we find that t 7→ Φ(µt) is

strictly concave. Since µ0 and µ1 are both optimizers, we have Φ(µ0) = Φ(µ1). Hence, we must

have µ0 = µ1, as otherwise the strict concavity would be contradicted.

With existence and uniqueness of the optimizer settled, we lastly prove the claim (4.24) in

part (2) of Theorem 4.2.8. Note that Theorem 4.1.1 implies uniqueness of the optimizer Qn in

supQ∈Ppr(Rn)Mn(Q) for each n. Since Qn is optimal and thus a fortiori near-optimal, we may
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use the following fact proven in the course of proving the upper bound in Theorem 4.2.8(1): The

sequence {µn(Qn)} is tight (since Qn is), and any limit point is an optimizer for the right-hand

side of (4.55). We have just shown the latter optimizer to be unique, and let us denote it µ∗ ∈

PUnif([0, 1]×R). Thus, µn(Qn) → µ∗ weakly. From part (1) and Corollary 4.1.2, for any bounded

1-Lipschitz function φ : R → R we have

lim
n→∞

EP

( 1

n

n∑
i=1

φ(Xi)−
1

n

n∑
i=1

EQn [φ(Xi)]

)2
 = 0.

Note that

1

n

n∑
i=1

EQn [φ(Xi)] =
1

n

n∑
i=1

∫
R
φ(x)Qn

i (dx) =

∫
[0,1]×R

φ(x)µn(Q
n)(du, dx).

Using the weak convergence µn(Qn) → µ∗, the right-hand side converges to

∫
[0,1]×R

φ(x)µ∗(du, dx) =

∫
R
φ dR∗, where R∗ :=

∫ 1

0

µ∗
u du.

We deduce that 1
n

∑n
i=1 φ(Xi) →

∫
R φ dR∗ in probability for each bounded Lipschitz φ. This is

enough to deduce the convergence in distribution 1
n

∑n
i=1 δXi

→ R∗.

4.4.3 Proof of Lemma 4.2.11

We first prove (1). When f is even, we claim that (the density of) Q∗ is also even, which

completes the proof because it implies EQ∗ [Xi] = 0 for all i. To show that Q∗ is even, let Ri(x) :=

Q∗
i (−x) for each x ∈ R and i = 1, . . . , n. Let R = R1 × · · · ×Rn. Then

∫
Rn f dR =

∫
Rn f dQ by

evenness of f , and clearly H(Q) = H(R). Hence, R is also an optimizer of (4.4), and we deduce

R = Q∗ by uniqueness of the optimizer.

We prove (2) by showing in this case that Q∗
i = Q∗

j for all i, j. Suppose f is invariant with

respect to a transitive set S of permutations of [n]. Fix i, j ∈ {1, . . . , n}. Choose π ∈ S such that

π(i) = j, which is possible by the assumed transitivity of S. LetRk = Q∗
π(k) for each k = 1, . . . , n,
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and let R = R1 × · · · × Rn. The invariance of f under S ensures that
∫
Rn f dR =

∫
Rn f dQ

∗.

Clearly, H(R) = H(Q∗). Hence, R is also an optimizer of (4.4), and we deduce that R = Q∗ by

uniqueness. Since π(i) = j, this implies Q∗
i = Ri = Q∗

j .

4.5 Stochastic control proofs

As explained in Remark 4.2.15, the optimal admissible pair (α,X) for (4.27) is given by

αg(t, x) = ∇x logE[eng(x+BT−Bt)], (4.61)

with X = (Xt)t∈[0,T ] being the Brownian bridge with terminal law P (dx) = Z−1eng(x)γT (dx).

Letting P denote the Wiener measure on C([0, T ];Rn), the law QP of this process X can be

characterized as the unique minimizer of Q 7→ H(Q |P) among Q with time-T marginal equal to

P ; see [162, Proposition 6] or [163, Lemma 10]. This minimizer satisfies

H(QP |P) = H(P | γT ) =
1

2
E
[∫ T

0

|αg(t,Xt)|2 dt
]
. (4.62)

Note that H(P | γT ) <∞, and so the pair (αg, X) is admissible in the sense of Chapter 4.2.3.

Proof of Corollary 4.2.14. Once the formulas (4.30) and (4.32) are established, the final claim

follows immediately from Corollary 4.1.4, applied with Vi(x) = −x2/(2T ) for i = 1, . . . , n and

κ = 1/T .

To prove (4.30) and (4.32), we begin with the inequality (≤). Let (α,X) denote any admissible

pair, and let Q denote the law of X = (Xt)t∈[0,T ]. A well known argument using Girsanov’s

theorem [163, Proposition 1] yields

H(Q |P) ≤ 1

2
E
∫ T

0

|α(t,Xt)|2 dt =
1

2

n∑
i=1

E
∫ T

0

|αi(t,Xt)|2dt.

With QT denoting the law of XT , note that marginalizing (at time T ) does not increase entropy:
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H(Q |P) ≥ H(QT | γT ). Thus,

E

[
g(XT )−

1

2n

n∑
i=1

∫ T

0

|αi(t,Xt)|2dt

]
≤
∫
Rn

g dQT − 1

n
H(QT | γT )

≤ sup
Q∈P(Rn)

(∫
Rn

g dQ− 1

n
H(Q | γT )

)
.

Taking a supremum over all admissible pairs (α,X) proves the inequality (≤) in (4.30). Now, if

(α,X) is an distributed admissible pair, then the same chain of inequalities holds, but also QT is a

product measure. We can thus deduce (4.32) in the same manner.

The inequality (≥) in (4.30) and (4.32) follows quickly from the entropy identity (4.62).

Starting with (4.30), let X = (Xt)t∈[0,T ] be the Brownian bridge with terminal law P (dx) =

Z−1eng(x)γT (dx). Let αg be given as in (4.61). By the Gibbs variational principle [54, Proposition

1.4.2], the supremum in (4.30) is attained by Q = P . Using XT ∼ P and (4.62), we obtain

sup
Q∈P(Rn)

(∫
Rn

g dQ− 1

n
H(Q | γT )

)
=

∫
Rn

g dP − 1

n
H(P | γT )

= E
[
g(XT )−

1

2n

∫ T

0

|αg(t,Xt)|2 dt
]
≤ Vorig.

This proves (≥) in (4.30), and also proves that (αg, X) is optimal. Similarly, to prove the inequality

(≥) in (4.32), let Q∗ ∈ Ppr(Rn) be the unique optimizer in (4.32), which we know by Corollary

4.1.4 to take the form stated in Corollary 4.2.14. Let X = (Xt)t∈[0,T ] be the Brownian bridge with

terminal law Q∗. Define αĝ as in (4.61), with ĝ(x) =
∑n

i=1 EQ∗ [g(X)|Xi = xi] in place of g.

Using XT ∼ Q∗ and (4.62), we obtain

sup
Q∈Ppr(Rn)

(∫
Rn

g dQ− 1

n
H(Q | γT )

)
=

∫
Rn

g dQ∗ − 1

n
H(Q∗ | γT )

= E
[
g(XT )−

1

2n

∫ T

0

|αĝ(t,Xt)|2 dt
]
≤ Vdistr.

Indeed, note that (αĝ, X) is an admissible distributed pair because Q∗ is a product measure. This

proves (≥) in (4.32), and also proves that (αĝ, X) is optimal.
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