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Summary		
 

Haematopoietic stem cells (HSCs) possess the unique ability to reconstitute 

an animal’s entire haematopoietic system. As such, it is inherently interesting 

to the fields of regenerative medicine and developmental biology to 

understand how these cells first form in the embryo. Haematopoietic stem and 

progenitor cells (HSPCs) are understood to derive from a specialised 

endothelial precursor termed haemogenic endothelium during a narrow 

window of development. This project was undertaken to better characterise 

endothelial populations in embryonic haematopoietic tissues in an effort to 

improve our understanding of the endothelial to haematopoietic transition 

(EHT). To this end we employed single cell technology, immunofluorescence, 

flow cytometry and sorting, ex vivo co-culturing assays and a mouse 

embryonic stem cell (mESC) differentiation system. This work identified two 

hyaluronan receptors, Cd44 and Stabilin-2 (Stab2) on the surface of 

endothelial cells derived from the aorta gonad mesonephros (AGM) and yolk 

sac, respectively. We showed that Cd44 could be used to mark all stages of 

haematopoietic development arising from the AGM. This enabled us to 

provide transcriptional data on haemogenic endothelium, identifying potential 

new regulators of embryonic haematopoiesis and characterising the 

endothelial precursors as quiescent in nature. Furthermore, ex vivo and in 

vitro culturing of CD44+ cells identified a functional role for CD44 in the 

process of EHT. The precise mechanism by which CD44 and its ligand 

hyaluronan assist in the emergence of HSPCs remains unclear. We further 

identified the cell surface receptor Stab2 as a distinguishing feature of yolk 

sac vascular endothelium compared with vascular endothelium of the AGM. 
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Our analysis suggests that EHT is more likely to derive from yolk sac 

endothelium that is negative for Stab2 expression and by excluding the 

expression of Stab2 we can enrich for AGM-like haematopoietic progenitors. 

Our RNA sequencing data suggests that Stab2+ endothelial cells have a 

transcriptional profile similar to liver sinusoidal endothelial cells, where HSPCs 

migrate after emergence. This poses an interesting question of whether 

endothelial niche cells attract haematopoietic progenitors to the yolk sac and 

their role there. Overall, these two hyaluronan receptors can be used to define 

distinct populations in the yolk sac and AGM and likely have importance for 

the emergence of HSPCs.   
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Chapter	1:	Embryonic	haematopoiesis		

1.1 The embryonic vasculature & primitive haematopoiesis 

1.1.1 Endothelial and haematopoietic lineages have a shared 

developmental origin 

The cardiovascular network is the first organ system to develop in the embryo 

due to its critical role in gas exchange, the supply of nutrients and the removal 

of waste products. Interestingly, the two integral components of this system – 

the blood vessels and the blood cells are closely entwined in their 

development (Chong et al., 2011). The close proximity and shared gene 

expression of endothelial and haematopoietic cells in chick and mouse 

embryos led to the hypothesis that these lineages also share a developmental 

origin (Sabin, 1917; Kallianpur, Jordan and Brandt, 1994; Young, Baumhueter 

and Lasky, 1995). The loss of vascular endothelial growth factor receptor 2 

(Vegfr-2), also known as Flk-1, provided some of the first direct evidence for a 

common progenitor; with mice displaying embryonic lethality due to loss of 

both vascular and haematopoietic cell types (Shalaby et al., 1995). This 

hypothesised shared progenitor was termed the haemangioblast.  

 

Further investigation of the bi-potentiality of Flk-1-expressing mesoderm, 

derived from mouse embryonic stem cells (mESCs) supported the existence 

of a haemangioblast precursor. Single Flk-1+ clones were found to give rise to 

both endothelial and haematopoietic cells in culture (Choi et al., 1998). 

Lineage tracing in zebrafish embryos further supported this idea (Vogeli et al., 

2006). The use of laser-activated cell labelling, enabled the tracking of single 

cells from 6 to 30 hours post fertilisation (HPF) and identified progeny of 
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single cells with either expression of Flk-1 or the haematopoietic transcription 

factor Gata1 (Vogeli et al., 2006). Based on this research in zebrafish and 

mESCs, the haemangioblast was confirmed as the source of both the 

vascular and haematopoietic lineages.  

 

1.1.2 Haemangioblasts derive from the posterior primitive streak  

Based on traditional microscopy techniques it was thought that these 

haemangioblast progenitors in mice coalesce in the yolk sac to form blood 

islands between embryonic day 7 and 7.5 (E7 – E7.5) (Palis and Yoder, 

2001). Cells on the periphery would flatten into an endothelial phenotype and 

cells located centrally would up-regulate haemoglobin genes and differentiate 

into primitive erythrocytes in the newly formed bloodstream (Palis and Yoder, 

2001). However advances in both molecular biology and fluorescent tagging 

techniques have challenged the traditional view of mammalian yolk sac 

haematopoiesis (Ferkowicz and Yoder, 2005). Although Flk-1 has been 

shown to mark both endothelial and haematopoietic progenitors (Yamaguchi 

et al., 1993; Kabrun et al., 1997), further work in mouse embryos using 

fluorescent barcoding has revealed a lack of clonality in yolk sac derived 

blood islands (Ueno and Weissman, 2006). Fluorescent tagging of the murine 

Flk-1 gene, in conjunction with the mesodermal marker Brachyury found that 

the endothelial and haematopoietic progenitor populations derive from the 

posterior primitive streak and that differentiation begins prior to migration into 

the yolk sac (Huber et al., 2004). This is supported by expression and 

functional studies of the early haematopoietic transcription factors Tal1, Gata-

1 and Gata-2. RNA in-situ hybridisation experiments found these transcription 
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factors turned on at the mouse primitive streak stage of development prior to 

blood island formation (Silver and Palis, 1997). However, loss of function of 

Gata-1 and Gata-2 in mice results in severe haematopoietic but not vascular 

defects (Pevny et al., 1991; Tsai et al., 1994). Similarly, loss of Tal1 has a 

severe impact on the haematopoietic system, which precedes its role in 

remodelling of the vasculature (Visvader, Fujiwara and Orkin, 1998; Souza et 

al., 2005). Together, work on mouse embryonic development is supportive of 

a common haemangioblast progenitor, however this progenitor arises in the 

primitive streak region earlier in development than previously thought. These 

cells then migrate to the yolk sac and associate into blood islands before 

further development along their previously specified endothelial or 

haematopoietic pathway.  

 

1.1.3 The yolk sac gives rise to both primitive and definitive 

haematopoietic lineages  

Primitive erythrocytes emerging from the yolk sac were first distinguished from 

foetal liver-derived and adult erythrocytes based on their large nucleated form 

(Kovach et al., 1967). Later gene expression analysis found that εy and βH1 

haemoglobins (in mice) were associated with primitive erythrocytes of the yolk 

sac and silenced in definitive cell types (Leder et al., 1992). These primitive 

erythrocytes provide the oxygen requirements of the embryo up until E12.5 

when foetal liver-derived definitive erythrocytes rapidly expand in number. 

However, primitive erythrocytes can still be detected in the blood several days 

after birth (Kingsley et al., 2004). As early as E7 it is also possible to detect 

primitive megakaryocytes and macrophages deriving from the yolk sac to 



	 18	

support the initial stages of embryonic development (Xu M et al., 2001; 

Bertrand et al., 2005; Tober et al., 2007). These early megakaryocytes are 

important for the development of the vascular system.  In fact lack of 

megakaryocyte-derived platelets in Runx1 knockout mice is thought to result 

in the lethal haemorrhages at mid-gestation (Okuda et al., 1996). Similarly, 

macrophages play an integral role in early development, clearing apoptotic 

cells and assisting in the morphogenesis of numerous tissues, including the 

emergence of HSPCs (Van Ham, Kokel and Peterson, 2012; Travnickova et 

al., 2015). In this way, the initiation of haematopoiesis in the yolk sac is 

integral to the developmental progression of the embryo.  

 

It is now also established that the yolk sac contributes to definitive 

haematopoiesis with the production of erythroid-myeloid progenitors (EMPs) 

starting at E8.5 (Palis et al., 1999, 2001). These cells are thought to arise 

through an endothelial to haematopoietic transition in the yolk sac and go on 

to colonise the foetal liver prior to haematopoietic stem cell emergence (Lux et 

al., 2008; Chen et al., 2011). Lineage tracing studies have uncovered the 

considerable contribution of the yolk sac to adult haematopoiesis with 

primitive macrophages and EMPs generating the tissue-resident 

macrophages present in the adult organism (Ginhoux et al., 2010; Gomez 

Perdiguero et al., 2015). The yolk sac therefore, not only enables early 

development prior to the establishment of the HSC pool but also contributes 

to life-long haematopoietic functions.  
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1.1.4 Vasculogenesis and angiogenesis establishes a primitive 

circulatory system  

Vasculogenesis is the formation of de novo blood vessels from the 

aggregation of angioblasts (Risau and Flamme, 1995). As with the first blood 

progenitors the first angioblasts derive from Flk-1+ cells migrating from the 

posterior primitive streak at E7 of mouse development (Huber et al., 2004). In 

the absence of Flk-1 the mesodermal progenitors do not localise appropriately 

in the yolk sac to form blood islands (Shalaby et al., 1995, 1997). Similarly, 

loss of even one allele of the ligand Vegf or a secondary Vegf receptor known 

as Flt-1 results in defects in the formation of the yolk sac vascular plexus at 

E8.5 (Fong et al., 1995; Carmeliet et al., 1996). Once the mesodermal cells 

have migrated to the periphery of the blood islands and adopted an 

endothelial phenotype the blood islands fuse to form a capillary plexus (Risau 

and Flamme, 1995). Two-photon imaging of zebrafish vessel formation has 

shown that lumenisation of vessels occurs through the fusion of intracellular 

vacuoles (Kamei et al., 2006). The formation of the primary yolk sac vascular 

plexus is also dependent upon the TGFβ-signalling pathway. Loss of function 

of either Tgfβ1 or Tgfβ receptor II results in inadequate capillary tube 

formation leading to wasting and lethality in the embryo (Dickson et al., 1995; 

Oshima, Oshima and Taketo, 1996).  

 

Around the same time, cells from the lateral plate mesoderm coalesce along 

the midline of the embryo to give rise to the dorsal aorta (Coffin and Poole, 

1988; Fouquet et al., 1997). Again, these cells are directed in their migration 

by the chemo-attractant Vegf and concomitantly negatively regulated by BMP 
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antagonists released by the notochord (Carmeliet et al., 1996; Cleaver and 

Krieg, 1998; Reese, Hall and Mikawa, 2004). The capillary network of the yolk 

sac then connects with the aorta of the embryo proper to form a primitive 

circulatory system in time for the first beat of the foetal heart (McGrath et al., 

2003). After the first stages of vasculogenesis, growth of the vascular network 

occurs through either the sprouting or splitting of pre-existing vessels, in a 

process termed angiogenesis (Risau, 1997). Studies in the early post-natal 

mouse retina have shown that the “tip” cells of vessels extend filopodia and 

are guided in their migration by a gradient of Vegf-A, which interacts with its 

receptor Flk-1 (Gerhardt et al., 2003). This ligand also acts upon “stalk” cells 

further down in the vessel to regulate their proliferation (Gerhardt et al., 2003). 

In this way the vascular network is able to expand with the growing embryo, 

supplying the developing tissues with oxygen and nutrients.  

 

At E8.25 the foetal heart begins to beat although fully functional circulation 

does not occur until E10 (Ji et al., 2003; McGrath et al., 2003). As the embryo 

grows the vascular plexus undergoes remodelling to form a hierarchical 

structure of large and small vessels. This process is dependent on the 

haemodynamic forces produced by the heartbeat and the increased viscosity 

caused by entry of erythrocytes into the bloodstream (Lucitti et al., 2007). 

Mouse models that lack a functioning heart fail to remodel their vascular 

networks (Wakimoto et al., 2000; Huang et al., 2003). This enlargement of 

vessels exposed to high blood flow is achieved through fusion and targeted 

migration of endothelial cells (Udan, Vadakkan and Dickinson, 2013). Once 
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again there is a dynamic interplay between the endothelial and 

haematopoietic lineages during embryonic development. 

 

1.1.5 Venous-arterial specification is both genetically pre-determined 

and plastic  

While blood flow is important for the remodelling of the vascular plexus, the 

identification of arterial and venous specific receptors and ligands ignited the 

idea that vessel identity was genetically pre-determined. Veins were shown to 

specifically express EphB4 and Neuropilin-2 (Np-2) while arteries could be 

marked by EphrinB2 and Neuropilin-1 (Np-1) (Wang, Chen and Anderson, 

1998; Herzog et al., 2001). Interestingly, the knockout mouse models 

revealed more generalised defects in vascular development rather than one 

specific to either arteries or veins, indicating a connectedness of the vessels 

beyond their specification (Gerety et al., 1999; Kawasaki et al., 1999). The 

idea of a genetically pre-determined fate was supported however, by fate 

tracking experiments in the zebrafish showing that arterial or venous identity 

is specified in the lateral plate mesoderm prior to the migration of angioblasts 

to the midline (Zhong et al., 2001). Similarly, in the yolk sac arterial and 

venous specific markers turn on prior to the initiation of blood flow (Herzog, 

Guttmann-Raviv and Neufeld, 2005). Sox17 has been positioned at the apex 

of the arterial specification hierarchy, downstream of Vegf signalling (Kim et 

al., 2016). Loss of Sox17 is known to perturb arterial differentiation and is 

thought to act up-stream of the Notch pathway (Corada et al., 2013; Chiang et 

al., 2017). Furthermore, loss of the notch receptors Notch1 and Notch4 or the 
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ligand Delta-like 4 (Dll4) causes defects in remodelling of the embryonic 

vasculature (Krebs et al., 2000, 2004; Duarte et al., 2004).  

 

Despite this strong evidence for early genetic specification of arteries and 

veins research still suggests a role for exogenous factors. Studies of mouse 

and chick yolk sac remodelling indicate a critical role for blood flow and 

haemodynamic forces in the formation of a mature vasculature (le Noble, 

2003; Lucitti et al., 2007). Indeed, after the initiation of blood flow, endothelial 

cells migrate to vessels with high flow in order to rapidly increase their 

diameter (Udan, Vadakkan and Dickinson, 2013). It is even possible to 

identify venous endothelial cells within the dorsal aorta of the early embryo 

suggesting that arterial-venous specification is to some degree malleable 

(Lindskog et al., 2014). This plasticity in endothelial identity is further 

corroborated by studies of vascular grafts. The engraftment of quail 

endothelial cells into chick embryos found that while entire vessels did not 

adopt a new fate, individual endothelial cells could integrate into vessels and 

adopt arterial or venous identity depending on local cues (Moyon et al., 2001; 

Othman-Hassan et al., 2001). This evidence suggests there is a complex 

relationship between intrinsic and extrinsic factors in the maturation of the 

vasculature.  
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1.2 Haematopoietic stem and progenitor cells (HSPCs) arise from an 

endothelial precursor 

1.2.1 HSCs emerge from the aorta gonad mesonephros (AGM) region at 

mid-gestation  

Early studies on the origins of the haematopoietic lineage assumed that HSCs 

first arose with other early blood progenitors in the extra-embryonic yolk sac 

(Medvinsky et al., 1993; Moore and Owen, 1967; Huang and Auerbach, 1993; 

Yoder et al., 1997; Yoder, Hiatt and Mukherjee, 1997; Samokhvalov, 

Samokhvalova and Nishikawa, 2007). This idea was first challenged by 

studies in the avian model where chicken yolk sacs were grafted onto quail 

embryos prior to vascularisation (Dieterlen-Lievre, 1975). The definitive blood 

lineages analysed eight to ten days later were exclusively quail suggesting an 

intra-embryonic origin of HSCs (Dieterlen-Lievre, 1975). Almost two decades 

later the AGM was identified as a site of long-term, re-populating 

haematopoietic potential in the mouse model (Müller et al., 1994). Over time 

and with careful transplantation studies in mice it has been shown, and is now 

accepted within the field that HSCs predominantly derive from the AGM 

region of the embryo proper (Medvinsky and Dzierzak, 1996; Cumano et al., 

2001). This potential was shown to exist during a precise window of 

development beginning at E10.5 and diminishing again by E12 (Müller et al., 

1994; Kumaravelu et al., 2002). In further support of the AGM origin of HSCs, 

this process has been shown to be conserved across vertebrate evolution 

with studies in xenopus, zebrafish, chicken, mouse and human (Ciau-Uitz, 

Walmsley and Patient, 2000; Tavian et al., 2001; Murayama et al., 2006; 

Ivanovs et al., 2011; Yvernogeau and Robin, 2017).  
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The haematopoietic cells of the AGM were first visualised in chick embryos as 

clusters of cells adhered to the endothelial wall; later these clusters were also 

identified in mice (Dieterlen-Lièvre and Martin, 1981; Garcia-Porrero, Godin 

and Dieterlen-Lièvre, 1995). Studies in xenopus, zebrafish, chick and human 

have found these intra-aortic clusters of haematopoietic cells to be localised 

to the ventral wall of the dorsal aorta (Tavian et al., 1996; Ciau-Uitz, Walmsley 

and Patient, 2000; Wilkinson et al., 2009; Yvernogeau and Robin, 2017). 

Conversely, studies in mice reveal clusters deriving from both the dorsal and 

ventral sides of the vessel (Taoudi and Medvinsky, 2007). However, 

development of HSPCs is thought to be enriched on the ventral side of the 

mouse AGM (Souilhol et al., 2016). Research has also revealed that other 

large arterial vessels such as the umbilical and vitelline arteries as well as the 

vasculature of the placenta can also act as sites of HSC generation (de Bruijn, 

2000; Ottersbach and Dzierzak, 2005; Rhodes et al., 2008; Zovein et al., 

2010). Detailed mapping of human and mouse embryos confirmed these 

observations and sought to quantify the overall number of cells emerging from 

the endothelium of the dorsal aorta. Serial sectioning of a five-week-old 

human embryo identified approximately 831 CD34+ cells attached to the 

endothelium (Tavian et al., 1996). In mice the number of haematopoietic 

clusters peaked at E10.5 with 578 c-Kit+ cells identified (Yokomizo and 

Dzierzak, 2010). The process of HSC emergence in the embryo appears 

highly conserved across vertebrate species. Through numerous histological 

analyses it is clear that HSCs arise as clusters in the large arterial vessels of 

the embryo. However, these studies could not definitively determine whether 
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these intra-aortic clusters of haematopoietic cells had an endothelial or 

mesenchymal origin.  

 

1.2.2 The endothelial to haematopoietic transition (EHT) 

Development of an inducible vascular endothelial (VE-Cadherin) cre-

recombinase mouse line enabled HSCs to be traced from the AGM to the 

bone marrow and strongly suggested an endothelial origin for this population 

(Zovein et al., 2008). However, the idea that mesenchymal cells could migrate 

through the endothelial wall to the lumen of the vessel persisted. Time-lapse 

imaging of individual haemangioblast colonies, derived from the mESC culture 

system, provided the first direct evidence that HSCs emerged from an 

endothelial precursor, designated haemogenic endothelium (Lancrin et al., 

2009). This endothelial to haematopoietic transition was first visualised in vivo 

using confocal imaging of a transgenic zebrafish embryo (Bertrand et al., 

2010). This characterised the phenomenon as a process of trans-

differentiation rather than cell division (Bertrand et al., 2010; Kissa and 

Herbomel, 2010). Furthermore, development of an ex vivo culturing protocol 

for slices of murine AGM enabled researchers to observe the endothelial to 

haematopoietic transition live in a mammalian model for the first time (Boisset 

et al., 2010). These studies lay the foundation for a new wave of 

haematopoietic research focussing on the haemogenic endothelium and the 

precise characterisation of HSC emergence.  
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1.2.3 Common markers of the endothelial and haematopoietic lineages 

Lineage tracing and in vivo imaging studies have relied on key endothelial and 

haematopoietic markers for the characterisation of HSCs and their endothelial 

precursors. VE-Cadherin (also known as Cdh5) and Tek (also known as Tie2) 

have been extensively used to mark endothelial cells of the vasculature in 

conjunction with Cd31, a more generalised endothelial marker (Newman et 

al., 1990; Dumont et al., 1995; Breier et al., 1996). Interestingly, these two 

common endothelial markers are also expressed intermittently on HSCs 

during development (North et al., 2002; Baumann et al., 2004; Kim, Yilmaz 

and Morrison, 2005). In mice and zebrafish Cd41 is used as an early marker 

of haematopoietic fate while Cd45 is present on most definitive 

haematopoietic cells (Thomas, 1989; Trochon et al., 1996; Ferkowicz et al., 

2003; Mikkola et al., 2003; Bertrand et al., 2007). More recently, Cd43 has 

been identified as the earliest marker of HSC identity in the mouse model 

(Rybtsov et al., 2014). While Cd41 and Cd43 are favoured in murine studies 

of EHT, human experiments rely on Cd34 and Cd45 (Tavian, Hallais and 

Péault, 1999). Cd34 has been shown in both human and mice to mark cells of 

the vasculature and haematopoietic clusters (Young, Baumhueter and Lasky, 

1995). Similarly c-Kit has been extensively used due to its strong association 

with HSCs and the intra-aortic clusters in mice (Ikuta and Weissman, 1992; 

Yokomizo and Dzierzak, 2010). In conjunction with these cell surface 

receptors, the transcription factors Sca1, Runx1 and Tal1 have been linked to 

the acquisition of HSC identity (Mukouyama et al., 2000; Ma et al., 2002; 

D'Souza et al., 2005). Numerous research groups have used a combination of 

these endothelial and haematopoietic cell surface markers in an effort to 
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define and isolate haemogenic endothelial cells. Others have generated 

reporter models using the regulatory elements of transcription factors 

expressed early in the adoption of the haematopoietic fate. Still the identity of 

haemogenic endothelium remains controversial. No cell surface marker has 

been identified to specifically isolate this rare cell population and little is 

known about its transcriptional profile.  

 

1.2.4 Defining haemogenic endothelium  

In the broadest terms, haemogenic endothelium is a subset of VE-Cadherin+ 

endothelial cells of the vasculature that have the potential to undergo EHT. 

This was first demonstrated when functional endothelial cells, capable of 

acetylated LDL uptake, were isolated based on VE-Cadherin+/Ter119-/CD45- 

markers from E9.5 embryos, and found to generate B and T lymphocytes in 

culture (Nishikawa et al., 1998).  Taking it one step further, endothelial cells of 

the avian vascular system were inoculated with acetylated LDL and later intra-

aortic clusters were found to also be labelled (Jaffredo et al., 1998). However, 

refining this definition and identifying a specific marker for haemogenic 

endothelium has proved difficult. Initial studies focused on endothelial 

transcription factors. Using a GFP reporter, Etv2 was shown to be expressed 

in both haemangioblasts and haemogenic endothelial cells (Wareing et al., 

2012). Over-expression of Etv2 in hPSCs achieved a haemato-endothelial 

phenotype and enabled significant haematopoietic expansion in culture 

(Elcheva et al., 2014). Likewise, Sox7 and Sox17 were proposed as potential 

markers of haemogenic endothelium (Costa et al., 2012; Clarke et al., 2013). 

Ultimately however, these candidates lacked specificity with their expression 
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and function affecting other elements of the vasculature or mesodermal 

progenitors.  

 

More recently researchers have sought to use the regulatory elements of 

transcription factors that drive haematopoietic identity, namely Runx1, Sca-1 

and the downstream target of Runx1, Gfi1 to isolate haemogenic endothelium. 

Early on in the study of EHT a Sca-1 (Ly-6a) GFP reporter mouse was found 

to be a useful tool in enriching for HSCs in the mouse dorsal aorta (de Bruijn 

et al., 2002). Interestingly, it was not possible to enrich for HSCs using 

endogenous staining of Sca-1 and less than half of the GFP+ reporter derived 

cells expressed the well-established HSC marker, c-Kit (de Bruijn et al., 

2002). Sub-fractionation of endothelial cells, haemogenic endothelial cells and 

HSCs from this reporter mouse line, and subsequent RNAseq analysis 

identified Gpr56 as a cell surface marker of EHT. However, as a target gene 

of key haematopoietic regulators, it is probably a more suitable marker of 

early, transitioning HSCs (Solaimani Kartalaei et al., 2014).  

 

Two groups developed GFP reporter models using haematopoietic specific 

enhancers of Runx1 and showed that they could isolate endothelial cells with 

haematopoietic capacity (Ng et al., 2010; Swiers et al., 2013). However, the 

endothelial cells of the Runx1+23GFP reporter, isolated at E10.5 showed 

reduced tubule formation capacity. Small-scale transcriptional analysis 

revealed a heterogeneous population which had already very much 

committed to the haematopoietic pathway and down-regulated endothelial 

gene expression (Swiers et al., 2013). The Runx1 target Gfi1 was proposed 
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as a marker of haemogenic endothelium based on transcriptional data linking 

Gfi1+ cells to endothelial gene expression (Thambyrajah et al., 2015). 

However, further single cell analysis of haemogenic endothelium and non-

haemogenic endothelium as defined by Gfi1 identified very few transcriptional 

differences between the two populations (Baron et al., 2018). It’s possible that 

by targeting transcriptional regulators of haematopoiesis, the cell populations 

isolated are already too late in their transition and haematopoietic 

commitment has already been established. Indeed research has indicated 

that Runx1 is required for the maturation of CD41+ cells and not for their 

formation (Liakhovitskaia et al., 2014).  

 

1.2.5 HSC development occurs in a step-wise fashion  

Despite the number of cells contributing to intra-aortic clusters efforts to 

quantify the number of HSCs emerging from the AGM using transplantation 

into irradiated mice found surprisingly few definitive HSCs (dHSCs). Only one 

HSC per AGM at E11 and a peak of three HSCs by E12 was detected 

(Kumaravelu et al., 2002). Conversely, the foetal liver dramatically expanded 

its HSC potential from one at E11 to approximately 50 by E12 (Ema and 

Nakauchi, 2000; Kumaravelu et al., 2002). The rapid expansion in the HSC 

population was hypothesised to result from differentiation, given the average 

time of the mammalian cell cycle. This idea was supported by the 

development of an in vitro co-aggregation system that enabled the maturation 

of the precursors of HSCs (termed pre-HSCs) in culture; dramatically 

increasing the measurable HSC potential of the AGM (Taoudi et al., 2008). 

From these ex vivo studies, utilising re-aggregation and co-culturing 
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techniques with haematopoietic promoting OP9 stromal cells, the pre-HSC 

populations were described as part of the HSC hierarchy. The expression of 

the early haematopoietic marker CD41 and the definitive haematopoietic 

marker CD45 were used to distinguish pre-HSC type I cells (VE-

Cad+/CD41+/CD45-) from pre-HSC type II cells (VE-Cad+/CD45+) which 

displayed differing maturation times in culture (Rybtsov et al., 2011). These 

experiments re-defined HSC development as a multi-step process (Fig. 1). 

HSC maturation was further delineated by the use of Cd43 which enabled the 

isolation of an even more primitive HSC precursor denoted the pro-HSC 

population (Rybtsov et al., 2014). These VE-Cad+/CD41+/CD43- cells take 

longer culturing time to mature into dHSCs but still lack endothelial potential 

(Rybtsov et al., 2014). Extensive limiting dilution analysis of this pre-HSC pool 

quantified approximately 50 cells per embryo by the end of embryonic day ten 

(39 somite pairs). The pre-HSC pool was found to reach a peak of 65 cells 

during E11 before a rapid drop in potential as foetal liver haematopoiesis 

commences (Rybtsov et al., 2016). Previous methods of assessing the HSC 

potential of the AGM have failed to quantify the proliferative capacity of the 

pre-HSCs that seed the foetal liver. The development of the HSC pool in the 

embryo is a progressive process with several intermediary steps, the power of 

which ultimately lies in the dorsal aorta and other large vessels from which the 

intra-aortic clusters of pre-HSPCs emerge (Fig. 1). The next obvious question 

is once haemogenic endothelium is specified what promotes the induction of 

EHT?  
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Figure 1: Model of endothelial to haematopoietic transition in the murine AGM 

Endothelial to haematopoietic transition occurs in the AGM. Haemogenic 
endothelium differentiates into CD41 expressing pre-HSPC type I cells with the 
help of the transcription factor Runx1. Pre-HSPC type I cells then mature into 
pre-HSPC type II cells with the help of a heptad of transcription factors (TFs).    
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1.2.6 Transcriptional control of HSC development 

Runx1 is well established as the key transcriptional driver of haematopoietic 

stem and progenitor cell development. Runx1 was originally associated with 

haematopoiesis due to its frequent translocations in acute myeloid leukaemia 

(Miyoshi et al., 1991). When knockout mice were generated, they observed 

embryonic lethality at E12.5 due to cerebral haemorrhaging and a complete 

loss of foetal liver haematopoiesis (Okuda et al., 1996; Wang et al., 1996). 

Further investigation found that loss of Runx1 resulted in the complete 

absence of intra-aortic haematopoietic clusters in the embryo and an inability 

of endothelial cells from the embryo and yolk sac to form definitive blood cells 

ex vivo (Yokomizo et al., 2001). Thus, Runx1 is absolutely necessary for the 

formation of both HSCs in the AGM and definitive EMPs from the yolk sac 

(Yokomizo et al., 2001). Conditional loss of Runx1 in endothelial cells showed 

that the transcription factor is necessary for EHT but is not required once 

haematopoietic identity is established (Chen et al., 2009; Tober et al., 2013).  

 

A key function of Runx1 is the down-regulation of endothelial identity through 

the direct repression of Flk-1 and the up-regulation of the transcriptional 

repressors Gfi1 and Gfi1b (Hirai et al., 2005; Lancrin et al., 2012). Runx1 is 

also known to target both the transcription factor Spi1 which is involved in the 

development of all haematopoietic lineages and the cytokine IL-3 which acts 

as a survival and proliferation factor for HSCs (Uchida, Zhang and Nimer, 

1997; Robin et al., 2006; Huang et al., 2008). In addition to the direct targeting 

of down-stream effectors, Runx1 has been implicated in the modification of 

the chromatin landscape. Studies have shown Runx1 to function in the 
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unfolding of chromatin around target promoters, resulting in an increase in 

local histone acetylation and the recruitment of methyltransferases to the 

chromatin structure in the early stages of haematopoietic specification 

(Hoogenkamp et al., 2009; Lichtinger et al., 2012; Herglotz et al., 2013).  

 

Furthermore, discovery of an essential role for the Runx1 trans-activation 

domain in the establishment of haematopoietic identity indicated a role for 

transcriptional complexes in HSC formation (Dowdy et al., 2010). Numerous 

other transcription factors have been implicated in HSC development based 

on disease associations and haematopoietic defects observed in knockout 

mouse models. Both Tal1 and Lmo2 were factors initially linked to T-cell 

leukaemia and later implicated in the establishment of the haematopoietic 

system (Shivdasanl, Mayer and Orkin, 1995; Yamada et al., 1998). Similarly, 

loss of Gata1 or Gata2 was found to severely impact on erythropoiesis (Pevny 

et al., 1991; Tsai et al., 1994). Interestingly, these haematopoietic regulators 

have also been identified as binding partners. Runx1 and Gata1 were found to 

functionally and physically interact during megakaryocyte development 

(Elagib et al., 2003). Likewise, Tal1 and Lmo2 are known to form a complex in 

the haemangioblast (Patterson et al., 2007).   

 

In an effort to investigate this combinatorial control of haematopoietic 

differentiation a genome-wide ChIP-seq analysis was performed on ten 

transcription factors in a haematopoietic cell line. This study identified 927 

targets bound by a combination of seven factors (Wilson et al., 2010). This led 

to the proposal of a heptad complex of transcription factors responsible for the 
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adoption of haematopoietic fate. Through single cell transcriptome analysis 

the simultaneous expression of this heptad of genes has been linked with pre-

HSC identity (Bergiers et al., 2018). Further investigation showed that 

enforced expression of this heptad locked cells into a pre-HSC state (Bergiers 

et al., 2018). However, analysis of the resulting gene regulatory network led to 

a different model of haematopoietic identity acquisition, whereby the 

haematopoietic factors Runx1 and Gata2 functioned in opposition to Fli1 and 

Erg to specify lineage (Bergiers et al., 2018). Although numerous transcription 

factors are known to be important in early haematopoietic development, the 

way in which they interact with each other and respond to cell extrinsic factors 

is yet to be fully understood.  

 

1.2.7 Hedgehog and Bmp/Tgfβ signalling patterns the dorsal aorta in 

preparation for EHT 

While gene regulatory networks are instrumental in the acquisition of HSPC 

identity, cell extrinsic factors are still essential to HSPC development and 

proliferation, as demonstrated by the precise location and timing of their 

emergence. Numerous signalling pathways including Hedgehog, Bmp/Tgf-β, 

Wnt and Notch are known to converge and interact during EHT (Fig. 2). As 

previously discussed, the intra-aortic clusters are often restricted to the ventral 

side of the dorsal aorta. This patterning of haematopoietic potential is thought 

to be achieved through a dynamic interplay of these signalling pathways.  

 

The Hedgehog ligand, Sonic hedgehog (Shh) is released from the notochord 

helping to pattern the dorsal aorta (Wilkinson et al., 2009). Although increased 



	 35	

activation of hedgehog signalling with purmorphamine did not impact on 

HSPC development in zebrafish, depletion of Shh did result in loss of 

definitive haematopoiesis (Gering & Patient, 2005; Wilkinson et al., 2009). 

Addition of exogenous Shh to mouse co-aggregation cultures instead 

increased HSPC output (Peeters et al., 2009; Souilhol et al., 2016). Further 

studies indicated that over-expression of the Notch intracellular domain could 

be used to rescue haematopoietic defects caused by cyclopamine-induced 

inhibition of Hedgehog signalling, positioning the Hedgehog pathway 

upstream of Notch signalling (Kim et al., 2013). Haematopoietic output could 

also be rescued by the transcription factor Tal1 (Kim et al., 2013).  

 

In contrast to Shh, the Bmp4 ligand shows spatial restriction to the ventral 

subaortic region (Marshall, Kinnon and Thrasher, 2007; Pimanda et al., 2007; 

Durand et al., 2007). Further investigation found Bmp4 to be essential for the 

specification of HSPC precursors, however must be down-regulated for the 

maturation of these cells (Souilhol et al., 2016). This produces a complex 

interplay between the expression of Bmp target genes and inhibitors. Creation 

of a Bmp-responsive GFP mouse line demonstrated that only Bmp activated 

cells from the intra-aortic clusters were capable of reconstitution of the 

haematopoietic system after transplantation into an irradiated recipient 

(Crisan et al., 2016). Furthermore, the Bmp antagonists Bmper, Noggin, 

Smad6 and Smad7 were found to be specifically expressed in the ventral 

region of the dorsal aorta helping to modulate Bmp signalling and enabling the 

maturation of HSPCs (Pimanda et al., 2007; Souilhol et al., 2015; McGarvey 

et al., 2017). Given the role of Bmp signalling in the bone marrow to control 
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niche size (Zhang et al., 2003), it is possible that Bmp4 and its inhibitors 

function in the embryo to regulate the emergence of haematopoietic cells. 

Although HSPCs preferentially emerge from the ventral wall, maximum HSPC 

production is achieved with cultures containing both dorsal and ventral 

regions (Souihol et al., 2016). This supports a model where Hedgehog and 

Bmp signals combine for the establishment of the definitive haematopoietic 

system (Fig. 2).  

 

1.2.8 Notch acts down-stream of other signalling pathways but up-

stream of Runx1 expression 

While Notch signalling has been previously implicated in the differentiation of 

arteries and veins, there is now also strong evidence for the involvement of 

Notch in haematopoietic development (Lawson et al., 2001; Krebs et al., 

2000). Loss of the Notch1 receptor, the notch ligand, Jagged1 and the down-

stream Notch effector RBP-jκ all result in embryonic lethality due to severe 

defects in definitive haematopoiesis (Kumano et al., 2003; Robert-Moreno et 

al., 2004; Robert-Moreno et al., 2008). Similarly, the double knockout of the 

Notch targets Hes1 and Hes5, which act as transcriptional repressors, results 

in loss of HSC activity (Guiu et al., 2013). Work in zebrafish haematopoiesis 

has shown that transient expression of the Notch intracellular domain, using 

the Gal4/UAS system, can ectopically expand the HSPC clusters to the roof of 

the dorsal aorta and the neighbouring cardinal vein (Burns et al., 2005). This 

effect could be abolished by the addition of a Runx1 morpholino, positioning 

Notch signalling upstream of the major transcriptional driver of haematopoietic 

fate (Burns et al., 2005). In support of this need for transient Notch signalling, 
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enforced expression of Notch through co-culture with Delta-like 4 (Dll4) 

expressing OP9 cells inhibited the progression of immature HSCs (Souilhol et 

al., 2016). This dependence on Notch signalling strength can be mediated 

through the differing binding capacities of Dll4 and Jagged1 ligands. 

Generation of low and high sensitivity notch reporters found that the 

haematopoietic lineages derived from cells with a history of low Notch signal 

compared to arterial cells, which were previously exposed to high levels of 

notch (Gama-Norton et al., 2015). Furthermore, treatment of AGM explant 

cultures with a Dll4 blocking antibody increased haematopoietic development 

(Gama-Norton et al., 2015). Once again, it is not only the signal but the 

strength of that signal that is important for cell fate decisions.  

 

While the Wnt pathway is also thought to be involved in embryonic 

haematopoiesis, its exact role in the jigsaw is still unclear. The down-stream 

effector of the canonical Wnt pathway, β-catenin is known to be important, as 

the stabilisation of this protein was found to increase haematopoietic output in 

AGM explants (Ruiz-Herguido et al., 2012). Knockdown and rescue 

experiments have shown that Wnt16a is important in zebrafish 

haematopoiesis through a non-canonical pathway and is thought to act in 

parallel with Shh to up-regulate Notch genes in haemogenic endothelium 

(Clements et al., 2011). Much still needs to be explored however into the role 

of Wnt signalling during EHT. Altogether, it is the dosage and intersection of 

several signalling cascades that enables EHT to occur in the AGM at the 

precise time and spatial location for successful development of the blood 

system (Fig. 2).  
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Figure 2: Convergence of signalling pathways during EHT 

Scheme displaying the key signalling pathways involved in the induction of EHT in 
the dorsal aorta. Bmp, hedgehog and inhibition of TGFβ signalling are known to be 
important for the emergence of HSCs. Transient or low Notch signal is necessary for 
the up-regulation of the key haematopoietic transcription factor Runx1 which drives 
the expression of targets responsible for the down-regulation of endothelial genes 
and the up-regulation of haematopoietic genes.  
 
 

1.2.9 Haematopoietic stem cells migrate to the foetal liver and bone 

marrow  

Once the yolk sac and AGM regions have established the definitive progenitor 

populations, these cells then migrate to seed the foetal liver (Fig. 3) (Johnson 

and Moore, 1975). Although little research has been done on the migratory 

path of haematopoietic cells to the foetal liver, it is thought that adhesion 

receptors, selectins and integrins are involved. Single cell analysis of HSCs 

during foetal liver migration found high expression of several integrin genes 

(Ciriza et al., 2012).  More specifically, the loss of β1 integrin leads to a 
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complete inability of haematopoietic cells to seed both the foetal liver and 

bone marrow (Hirsch et al., 1996; Potocnik, Brakebusch and Fa, 2000). 

Furthermore, impairment in the haematopoietic lineage of the Rho GTPase 

protein Rac1, that acts downstream of several cell surface receptors, resulted 

in haematopoietic progenitors with impaired migratory capabilities (Ghiaur et 

al., 2008). Once the pre-HSCs have seeded the foetal liver at E12 they 

undergo rapid expansion, with the tissue increasing its transplantation 

potential ten-fold by E14 (Ema and Nakauchi, 2000). The proliferation and 

survival of HSCs is strongly influenced by the microenvironment. Populations 

of hepatic progenitors and pericytes have been isolated from the foetal liver 

and shown to support HSC proliferation ex vivo (Chou and Lodish, 2010; 

Khan et al., 2016). This function is in part due to the cytokines they express, 

which include SCF, IGF2 and Angiopoietin-like-2 or Angiopoietin-like-3 (Chou 

and Lodish, 2010; Khan et al., 2016).  

 

Beginning at E15 the embryonic HSCs migrate again to the spleen and bone 

marrow, although the HSCs cannot be detected in the bone marrow until 

E17.5 (Fig. 3) (Christensen et al., 2004). This seeding occurs in a gradual 

way, as analysis of foetal blood between E12.5 and E17.5 found a consistent, 

low level of haematopoietic stem cell potential, indicating a continual release 

of HSCs into the bloodstream (Christensen et al., 2004). The migration of 

haematopoietic progenitors to the bone marrow is driven by the chemo-

attractant Cxcl12 (also known as Sdf-1) and its receptor Cxcr4 (Aiuti et al., 

1997; Ara et al., 2003). This signalling axis not only regulates the initial 
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colonisation of the bone marrow but is also important for the maintenance of 

the stem cell pool (Sugiyama et al., 2006).  

 

Current estimates of the adult haematopoietic stem cell pool suggest that 

there are approximately 17 000 long term re-populating HSCs residing in the 

mouse bone marrow (Busch et al., 2015). These cells possess enormous self-

renewal and proliferation potential. Early transplantation studies demonstrated 

that a single HSC is capable of reconstituting the entire haematopoietic 

system of an irradiated mouse (Osawa et al., 1996). Through in vivo 

barcoding of Tie2+ HSC progenitors in the embryo it could be estimated how 

much one HSC could contribute to the adult stem cell population (Pei et al., 

2017). This innovative technique found that a single embryonic HSC could 

give rise to several hundred HSC clones in later life (Pei et al., 2017). This 

estimate was confirmed in humans with one embryonic HSC transplanted into 

irradiated, immune-deficient mice giving rise to at least 300 daughter HSCs 

(Ivanovs et al., 2011). Given these intrinsic properties and the utility of both 

HSCs and differentiated blood cells to clinical treatments there has been a 

strong drive for biomedical researchers to develop methods for both 

expanding endogenous populations of HSCs ex vivo and producing de novo 

HSCs in vitro. This applicability of HSCs to regenerative medicine has in part 

also driven the research into HSC ontogeny.  
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Figure 3: HSC migration in the mouse embryo 

Timeline of HSC emergence and migration in the murine embryo. HSCs emerge in 
the AGM region and migrate first to the foetal liver and then to the bone marrow with 
the assistance of the cell surface receptor Cxcr4 and its ligand Cxcl12.  
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1.3 ESC differentiation towards blood  

1.3.1 The ESC model of haematopoietic differentiation 

The establishment of the first mouse embryonic stem cell (mESC) lines in the 

early 1980s opened up enormous opportunity for the development of new 

model systems of mammalian development (Evans and Kaufman, 1981; 

Martin, 1981). Further investigation identified leukaemia inhibitory factor (LIF) 

to be the key cytokine maintaining embryonic stem cell (ESC) pluripotency 

through the activation of Stat3 (Smith et al., 1988; Williams et al., 1988; 

Matsuda et al., 1999).  More recently the LIF-Stat3 axis has been shown to 

preserve pluripotency through the transcriptional regulation of two of the 

Yamanaka factors, c-Myc and Klf4 (Cartwright, 2005; Hall et al., 2009). 

Removal of feeder cells and LIF from the ESC culture system leads to the 

formation of cell aggregates of endoderm, mesoderm and ectoderm, known 

as embryoid bodies (EBs) (Doetschman et al., 1985). Further culturing of the 

EBs was found to readily generate multiple cell types including the 

haematopoietic lineage (Wiles and Keller, 1991; Keller et al., 1993).  

 

As in the embryo, Flk-1 was identified in the ESC culture system as a tool to 

isolate mesodermal progenitors with haematopoietic capacity along with 

endothelial and vascular smooth muscle (VSM) cell potential (Fig. 4) (Choi et 

al., 1998; Ema et al., 2003). Continued refinement of the EB culturing 

conditions and cell surface marker analysis of Flk-1+ (haemangioblast) 

progeny established the ESC system as a close model of embryonic 

haematopoiesis (Keller, 1995; Kabrun et al., 1997). Through further cytokine 
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exposure and culturing it is possible to produce most differentiated blood cell 

types from ESC-derived progenitors, including, erythrocytes, megakaryocytes 

and platelets, neutrophils, macrophages, as well as B and T lymphocytes 

(Nakano, Kodama and Honjo, 1994; Eto et al., 2003; Fujimoto et al., 2003; 

Pooter et al., 2003; Carotta et al., 2004; Lieber et al., 2004). Despite this 

success the isolation of HSCs from this system and the transplantation of 

ESC-derived cells with multi-potent potential has proven difficult (Müller and 

Dzierzak, 1993; Hole et al., 1996). Although it has not been possible to induce 

ESCs into functional HSCs the in vitro differentiation model has provided 

invaluable insights into the specification and development of the 

haematopoietic system.  
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Figure 4: In vitro model of haematopoietic development 

The pluripotency of mouse embryonic stem cells can be maintained with LIF. 
Removal of LIF results in the differentiation of ESCs and clusters of cells called 
embryoid bodies form. Flk1+ mesoderm can be isolated from embryoid bodies and 
can differentiate in the presence of VEGF and IL-6 into vascular smooth muscle 
cells, endothelium and haematopoietic cells.  
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1.3.2 Contribution of the ESC model to haematopoietic research  

The scalability of the ESC differentiation system to blood and our ability to 

directly observe and manipulate the culture has made this a powerful model 

for understanding haematopoietic development. Use of the mESC system has 

provided access to a developmental time point not easily accessible in the 

embryo, resulting in the first direct observation of EHT (Lancrin et al., 2009). 

The ability to manipulate specific aspects of the culturing conditions has 

enabled us to understand the importance of exogenous factors to HSPC 

development including shear stress and the impact of specific cytokines such 

as Bmp4 and Vegf (Park et al., 2004; Nostro et al., 2008; Adamo et al., 2009). 

It has often been the case that an improved understanding in the in vitro 

model of haematopoiesis has spurred on research in vivo. Isolation of the Flk-

1+ haemangioblast progenitors was first discovered in vitro and later 

confirmed in mouse embryos (Choi et al., 1998; Huber et al., 2004). As such 

the mESC system has proved an invaluable tool enabling the field to test 

ideas not yet possible in the embryo and drive research of haematopoietic 

development forward.  

 

1.4 Production of HSCs in vitro 

1.4.1 Expansion of HSCs ex vivo  

The ability to expand HSCs in culture would be hugely beneficial for both 

research and regenerative medicine. However, HSCs in vitro show a strong 

preference towards differentiation over self-renewal. Nevertheless 

researchers have been able to demonstrate self-renewal capacity in vitro 

through the transplantation of HSCs derived from single cells or short-term 
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cultures (Glimm and Eaves, 1999; Ema et al., 2000). Although several 

cytokines have been identified that aid in the proliferation of HSCs including 

SCF, Flt-3, IL-3, IL-6, IL-11 and G-CSF, incubation with a combination of 

these factors produced only modest two- and three-fold increases in HSC 

populations (Conneally et al., 1997; Miller and Eaves, 1997). Analysis of the 

foetal liver microenvironment, which promotes HSC expansion, helped to 

improve culturing conditions. By combining SCF, TPO and FGF-1 with the 

foetal liver expressed IGF-2, Angptl2 and Angptl3, HSC numbers could be 

increased up to 24-fold (Zhang and Lodish, 2005; Zhang et al., 2006). Wnt 

signalling was also found to play an important role in HSC self-renewal as 

incubation of isolated HSCs with the Wnt3a ligand or transduction with 

constitutively active β -catenin drastically expanded the HSC population 

(Reya et al., 2003; Willert et al., 2003). However, the gains achieved through 

signal induction are much smaller in comparison to the self-renewal capacity 

of transcription factor transduced HSCs. Exogenous expression of Hoxb4 can 

expand the HSC population of a ten-day ex vivo culture by 40-fold 

(Antonchuk, Sauvageau and Humphries, 2002). However, clinical issues with 

the use of transcription factor induction continue to spur research into other 

methods of stimulating HSC expansion ex vivo. Research into HSC 

metabolism found that enforced glycolysis through the blocking of a 

mitochondrial enzyme could help to maintain HSC potency and led to a 

modest three-fold increase in HSCs over a five-day culture period (Liu et al., 

2015). Although multiple methods have been identified that can help in the 

expansion of HSCs ex vivo the gains remain small, limiting the clinical use of 

these cells.  
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1.4.2 Transcription factor reprogramming generates functional HSCs in 

vitro   

With the inability to generate HSCs from ESCs and the difficulty obtaining 

sufficient numbers of HSCs ex vivo many researchers have focussed on the 

idea of reprogramming either induced pluripotent stem cells (iPSCs) or else 

adult fibroblasts and endothelial cells. The observation during iPSC 

generation that a portion of cells with high Oct4 expression also express the 

pan-haematopoietic marker Cd45 led researchers to induce Oct4 expression 

in human fibroblasts (Szabo et al., 2010). These Oct4-expressing fibroblasts 

had a similar transcriptional profile to haematopoietic progenitors and when 

exposed to specific cytokines were able to develop into functional myeloid, 

erythroid and megakaryocyte lineages (Szabo et al., 2010). Soon researchers 

were using transcription factor cocktails in order to reshape the gene 

regulatory network into a haematopoietic configuration. It was found that 

multi-potent haematopoietic progenitors could be specified from 

CD34+CD45+ human iPSCs with the induction of Hoxa9, Erg, Rora, Sox4 and 

Myb expression (Doulatov et al., 2013). Similarly, adult mouse fibroblasts 

exposed to the ectopic expression of five of the heptad of haematopoietic 

transcriptional regulators (Erg, Lmo2, Gata2, Runx1c and Tal1) were also 

induced into multi-potent progenitors (MPPs) (Batta et al., 2014). Interestingly, 

transcriptional analysis of this transformation found that the fibroblasts 

transitioned through a haemogenic endothelial stage in the process (Batta et 

al., 2014). The recognition that definitive haematopoietic lineages arise 

through an endothelial intermediate spurred research into understanding the 

role of endothelium in HSC production. Use of fibroblasts from a GFP reporter 
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mouse line, under the control of Cd34 regulatory elements enabled the 

screening of transcription factors that promoted both endothelial and 

haematopoietic identity (Pereira et al., 2013). Activation of four transcription 

factors (Gata2, cFos, Gfi1b and Etv6) was found to specify an endothelial 

population with haematopoietic potential (Pereira et al., 2013).  Another 

research team focussed on developing a co-culturing system with modified 

primary endothelial cells that have constitutively active Akt signalling and 

support HSC self-renewal (Kobayashi et al., 2010).  This vascular induction 

combined with transcription factor reprogramming (using Foxb, Runx1, Gfi1 

and Spi1) enabled the transformation of human umbilical vein endothelial cells 

into functional MPPs (Sandler et al., 2014). By following on from these 

approaches and taking into account the critical role endothelial cells play in 

HSC emergence researchers were able for the first time through 

transcriptional reprogramming to produce fully functional HSCs in vitro (Lis et 

al., 2017; Sugimura et al., 2017). HSC emergence from iPSCs was achieved 

by first isolating CD34+ haemogenic endothelial cells before over-expressing 

seven transcription factors (Erg, Hoxa5, Hoxa9, Hoxa10, Lcor, Runx1 and 

Spi1) which enabled the primary and secondary reconstitution of mouse 

haematopoietic systems (Sugimura et al., 2017). Similarly, researchers were 

able to produce lymphoid-competent HSCs through the conversion of adult 

mouse endothelial cells using vascular induction and transient expression of 

Foxb, Runx1, Gfi1 and Spi1 (Lis et al., 2017). This ground-breaking research 

not only advances the hope of using HSCs in a clinical context but signifies 

the importance of the endothelial origin of HSCs and the vascular 

microenvironment in which they are born. 	
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Chapter	2:	Hyaluronan	and	hyaluronan	binding	proteins	
(HABPs)	

2.1 Hyaluronan is an inductive signal and provides a matrix for cell 

mobility 

2.1.1 Hyaluronan is an integral part of the extra-cellular space   

Hyaluronan is a large unbranched polymer composed of 2,000 to 25,000 

disaccharide units that exists commonly on the cell surface and within the 

extracellular matrix (ECM) (Weissmann and Meyer, 1954; Toole, 2004). 

Hyaluronan is synthesised by one of three trans-membrane enzymes that 

directly extrude hyaluronan into the extra-cellular space (Weigel, Hascall and 

Tammi, 1997). This high molecular weight glycosaminoglycan forms mesh-

like structures between cells, using its hydrophilic nature to expand the extra-

cellular space and is frequently associated with migrating cell types and tissue 

morphogenesis (Toole, 2004). For this reason it is interesting to consider the 

role of hyaluronan during EHT. Loss of function of Hyaluronan synthase-2 

(Has2) leads to embryonic lethality at E9.5 due to cardiac defects (Camenisch 

et al., 2000). The lack of hyaluronan present in Has2 knockout embryos 

suggests that this enzyme is primarily responsible for hyaluronan synthesis 

during early development (Camenisch et al., 2000).  

 

The broad spectrum of cell processes related to hyaluronan can be explained 

by both its size range and the number and diversity of HABPs (Day and 

Prestwich, 2002; Toole, 2004). In mice and humans there are approximately 

twenty-five HABPs described and six hyaluronan-degrading enzymes (Csoka, 

Frost and Stern, 2001; Day and Prestwich, 2002). Exogenous expression of 
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HAS1, HAS2 and HAS3 resulted in the production of predominantly high 

molecular weight hyaluronan, suggesting that low molecular weight 

hyaluronan is probably the result of enzymatic activity (Itano et al., 1999). 

High molecular weight hyaluronan is generally associated with quiescence 

and has been shown to suppress the immune response, angiogenesis and 

cellular differentiation (Feinberg and Beebe, 1983; Delmage et al., 1986; Su et 

al., 2017; Wong et al., 2017). Conversely, low molecular weight hyaluronan 

has been shown to be stimulatory in nature, promoting angiogenesis and 

inflammation (West et al., 1985; Campo et al., 2010). These opposing 

responses generated based on the size of the macromolecule greatly 

increases the complexity of the role hyaluronan plays in cellular processes.  

 

2.1.2 The formation of pericellular matrices assists in migration and 

tissue morphogenesis   

A key role for hyaluronan in the extracellular space is the formation of 

pericellular matrices around motile, load bearing and transitioning cell types. 

The hyaluronan-enriched matrix has been visualised by exclusion assays and 

electron microscopy on vascular smooth muscle cells, chondrocytes and 

epithelial cells (Knudson et al., 1996; Evanko, Angello and Wight, 1999; 

Cohen et al., 2003). This layer of hyaluronan associates with aggrecan and 

versican as well as other binding proteins to form a complex, highly hydrated 

buffer, which can affect the adhesion, signalling and motility of a cell (Evanko 

et al., 2007). Pericellular matrix formation is mediated often by the attraction 

of hyaluronan to the cell surface by its principal binding protein CD44 

(Knudson et al., 1996). The exogenous expression of CD44 or the addition of 
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high molecular weight hyaluronan to CD44 expressing cells has been shown 

to be sufficient to precipitate the formation of the pericellular matrix, indicating 

the key role HABPs play in this process (Knudson and Knudson, 1991; 

Knudson, Bartnik and Knudson, 1993).  

 

A key function of the pericellular matrix is to aid in cell migration, enabling 

cells the space to move. Time-lapse microscopy observed that the rapid 

formation of the pericellular matrix coordinated with cell detachment during 

smooth muscle cell migration (Evanko, Angello and Wight, 1999). Similarly, 

formation of the matrix in cancer cell lines increased cell motility, while over-

expression of hyaluronan synthases resulted in greater freedom of movement 

through the repression of contact mediated inhibition (Itano et al., 2002; 

Ricciardelli et al., 2007). Furthermore, a pericellular matrix is known to form 

around pre-ovulatory oocytes in preparation for their journey (Camaioni et al., 

1996).. In addition to promoting migration, the loose, hydrated nature of the 

pericellular matrix allows cells to undergo shape changes and transitions. The 

pericellular matrix has been implicated in both specific cell transformations 

such as the process of condensation that precipitates limb bud formation and 

more generalised changes in cell shape that occur during mitosis (Maleski 

and Knudson, 1996; Evanko, Angello and Wight, 1999). As such, it seems 

hyaluronan is often involved in the movement and morphogenesis of multiple 

different cell types.  

2.1.3 Hyaluronan deposition is associated with cancer metastasis 

Not only is hyaluronan important to normal cell movement, its disturbance is 

also associated with disease states. This has drawn further attention since the 
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discovery that the resistance to cancer displayed by the naked mole rat is 

attributable to the production of extremely high molecular weight hyaluronan 

(Tian et al., 2013). This unusual property could be reversed by over-

expressing a hyaluronan degrading enzyme in naked mole rat cells, inducing 

tumourigenesis (Tian et al., 2013). A high level of hyaluronan in the stroma 

around tumours has been used as a general marker of poor cancer prognosis. 

Increased hyaluronan deposition is associated with a high risk of metastasis 

in colorectal, gastric, ovarian, prostate and breast cancers (Ropponen et al., 

1998; Setälä et al., 1999; Anttila et al., 2000; Auvinen et al., 2000; Lipponen et 

al., 2001). In addition to these correlative studies, it has been shown that 

knockdown of Has2 in breast cancer cell lines reduces their aggressive cell 

growth and detachment (Li et al., 2007). Thus, even in perturbed cases 

hyaluronan is critically involved in cell movement and transformation.  

 

2.2 CD44 is the principal receptor of hyaluronan and is associated with 

migrating cell types  

2.2.1 CD44 has a complicated relationship with its principal ligand 

hyaluronan 

CD44 was first identified by monoclonal antibodies as a glycoprotein on the 

cell surface of myeloid and lymphoid cells (Trowbridge et al., 1982; Hughes, 

Colombatti and August, 1983). This led to its characterisation as a lymphoid 

homing receptor, mediating the interaction of lymphoid cells with vascular 

endothelium (Jalkanen et al., 1986, 1987). Elucidation of the genomic 

structure revealed Cd44 to be a highly dynamic receptor with multiple splice 

isoforms (Screaton et al., 1992). In fact, the Cd44 genomic sequence consists 
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of twenty exons, ten of which undergo alternative splicing (Tölg et al., 1993). 

All Cd44 isoforms share with a high degree of homology the hyaluronan 

binding domain, stem region, trans-membrane domain and cytoplasmic 

domains (Thorne, 2003). The smallest and most abundant form, Cd44s 

consists of only ten constitutive exons which encode these regions while 

variant isoforms (Cd44v) include a combination of exons six through fifteen 

which add extra elements to the stem region of the receptor (Tölg et al., 1993; 

Ponta, Sherman and Herrlich, 2003).  

 

This heterogeneity could indicate a high degree of functional diversity. Binding 

affinity assays confirmed this, revealing that at least in vitro CD44 was 

capable of interacting with numerous elements of the ECM including collagen, 

laminin, fibronectin, osteopontin and hyaluronan (Aruffo et al., 1990; Jalkanen 

and Jalkanent, 1992; Weber et al., 1996). Additionally, CD44 is also known to 

recruit matrix-metalloproteineases (MMPs) to the cell surface (specifically 

MMP-9 and MMP-7) where they can interact with growth factors to affect cell 

signalling or function in the degradation of the ECM (Yu and Stamenkovic, 

1999, 2000; Yu et al., 2002). Despite these varied roles, CD44 is frequently 

referred to and most well characterised as the principal cell surface receptor 

for hyaluronan.  

 

CD44 interacts with hyaluronan through a conserved ~100 amino acid motif 

known as the link domain, which is shared with many other HABPs (Neame, 

Christner and Baker, 1986; Yang et al., 1994). CD44 differs however from 

other link-domain proteins as binding of hyaluronan is influenced by flanking 
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regions, glycosylation and the clustering of multiple CD44 receptors (Sleeman 

et al., 1996; English, Lesley and Hyman, 1998; Teriete et al., 2004). Although 

it is thought that a main function of CD44 binding to hyaluronan is simply to 

anchor the glycosaminoglycan to the cell membrane, structural studies have 

uncovered ligand induced conformational changes indicating a more complex 

interaction (Takeda et al., 2006; Banerji et al., 2007). The situation is further 

complicated by the diversity in size of hyaluronan polymers. CD44 was found 

to have higher affinity for high molecular weight hyaluronan due to multivalent 

binding (Wolny et al., 2010; Mizrahy et al., 2011). Overall, it appears that the 

relationship between CD44 and hyaluronan and the outcomes of their 

interaction are highly context dependent.  

 

2.2.2 Down-stream targets and effectors of the CD44 receptor  

Given the heterogeneity of CD44 proteins generated through alternative 

splicing and post-translational modifications, it’s possible this cell surface 

receptor performs multiple functions. Firstly, CD44 acts as a docking site for 

ECM components, MMPs and growth factors, as previously discussed. In 

addition to these ligands, CD44 is known to act as a co-receptor for other cell 

surface proteins, thereby modulating signalling events in the cell. 

Furthermore, CD44 is known to directly interact with the cytoskeleton effecting 

change in cell shape. Much of the interest in CD44 is due to its association 

with cancers; as such many of the signalling pathways described are in the 

context of a disease state.  
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The tyrosine kinase receptor c-Met is critical to embryonic development, 

associated with cancer metastasis and a co-receptor of the variant isoform 

CD44v6 (Orian-rousseau et al., 2002). Specific blocking antibodies against 

CD44v6 are capable of completely abolishing c-MET activation by its ligand 

Hepatocyte growth factor (HGF) (Orian-rousseau et al., 2002). Targeted 

mutation studies have shown that cooperation between these two receptors is 

dependent upon a functional variable exon six and the intracellular domain of 

CD44, that assists in the activation of the c-MET target ERK (Orian-rousseau 

et al., 2002; Orian-Rousseau et al., 2007). Activation of c-Met by HGF results 

in the co-internalisation of both c-MET and CD44v6 (Hasenauer et al., 2013). 

Confirmation of a CD44-cMET-HGF signalling complex was provided by the 

haplo-insufficiency of c-Met on a Cd44 knockout background, with animals 

dying at birth from lung and nerve defects (Matzke et al., 2007). Indeed, in the 

absence of CD44, c-MET recruits ICAM-1 to act as a co-receptor, providing 

evidence of a compensation mechanism which could explain the lack of 

phenotype in Cd44 null mice (Olaku et al., 2011). It is postulated that this 

relationship between CD44v6 and c-MET is the main driver of the metastatic 

phenotype associated with CD44v6 up-regulation. It is worth noting that this 

interaction has been observed in both epithelial and endothelial cells (Orian-

rousseau et al., 2002; Tremmel et al., 2009). Furthermore, preliminary data 

suggest that CD44v6 also complexes with FLK-1 to mediate Vegf-A signalling 

(Tremmel et al., 2009). This novel function of CD44 as a co-receptor of FLK-1 

has not been further explored, although could explain the vascular phenotype 

observed in Cd44 null mice where Matrigel tube formation was impaired and 

the endothelium appeared retracted and thin (Cao et al., 2006).  
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CD44 has also been shown to form a co-receptor complex with the ErbB 

family of tyrosine kinases which are activated by Epidermal growth factor 

(EGF) and Heregulin (HER2) (Ghatak, Misra and Toole, 2005). CD44 was 

previously implicated in the EGF signalling pathways as Cd44 knockout 

keratinocytes fail to proliferate in response to EGF stimulus (Kaya et al., 

1997). In cancer cell lines CD44, ERBB1 and ERBB2 were found to cluster at 

the cell membrane and undergo co-internalisation and proteolysis in response 

to EGF, enhancing migration capacity (Pályi-Krekk et al., 2008; Hernández et 

al., 2011). In vivo the CD44 variant CD44v3, which contains a binding site for 

heparin sulphate, was found to recruit both a heparin-binding EGF precursor 

and the processing enzyme MMP-7 to its co-receptor ERBB4 enabling 

efficient activation of the signalling pathway (Yu et al., 2002). As a result Cd44 

null mice showed reduced phosphorylation of the ERBB4 receptor and 

increased apoptosis of epithelial and smooth muscle cells where this complex 

is present (Yu et al., 2002). This evidence shows that CD44 can play an 

important role in localising ligands to their receptors to facilitate signal 

transduction.  

 

2.2.3 CD44 is expressed on both HSPCs and lymphocytes 

The association of CD44 with lymphocyte homing was first established due to 

the effect of blocking antibodies. This interference in the binding of 

lymphocytes to endothelial cells was found to prevent their return to the 

lymphatic organs (Jalkanen et al., 1986). The link was supported by studies in 

Cd44 knockout mice where loss of Cd44, although resulting in no dramatic 
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phenotype, impaired lymphocyte homing to the thymus and lymph nodes 

(Protin et al., 1999). Further research has shown that the function of CD44 on 

lymphocytes is related to their activation (Galandrini et al., 1994). Stimulation 

of T cells induces the binding of CD44 to hyaluronan and enables the rolling 

of lymphocytes across endothelial cells of the vasculature for homing and 

extravasation to sites of inflammation (Degrendele et al., 1997; Bonder et al., 

2006).  

 

Although Cd44 null mice were viable and displayed few obvious defects, 

Cd44 is thought to play a role in HSPC migration. Not only is Cd44 expressed 

on HSPCs, hyaluronan plays an integral role in their lodgement in the bone 

marrow, and with the loss of Cd44, myeloid progenitors showed difficulties in 

exiting the bone marrow for the blood stream (Schmits et al., 1997; Dimitroff 

et al., 2001; Nilsson et al., 2003). Primitive CD34+ HSPCs have been shown 

to utilise CD44 in their adherence to hyaluronan and human cord blood cells 

could be inhibited in their migration to the bone marrow by pre-treatment with 

a CD44 blocking antibody (Legras et al., 1997; Avigdor et al., 2004). Re-

examination of Cd44 null mice found delayed migration of HSCs from the 

foetal liver to the bone marrow and reduced transplantation efficiency (Cao et 

al., 2015). Together, these findings suggest that CD44 is most important 

during the establishment of the haematopoietic system. Interestingly, in the 

adult it is during disease states such as leukaemia that we can observe a 

more significant role for Cd44 in relation to HSPCs. CD44 has been shown to 

be indispensable to leukaemic stem cells, which rely more extensively on the 

CD44-hyaluronan interaction for engraftment and maintenance in the stem 
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cell niche (Jin et al., 2006; Krause et al., 2006). Preliminary studies have also 

shown that by targeting CD44 it is possible to specifically eradicate the 

leukaemic stem cell population (Jin et al., 2006).  

 

2.2.4 Up-regulation of CD44 is associated with cancer stem cells and 

metastasis  

Since the association of CD44 expression in vitro with metastasising rat 

pancreatic cancer cell lines, much research on CD44 has been focussed on 

its association with cancer (Günthert et al., 1991). Of particular interest is the 

fact that CD44 and its splice variants have been linked to populations of 

cancer stem cells (CSCs) (Zöller, 2011). CSCs represent a small subset of 

tumours, which display self-renewing and differentiation capacity through 

xenograft transplants and are thought to be responsible for the recurrence of 

disease (Wicha, Liu and Dontu, 2006). In addition to leukaemic stem cells, 

(Jin et al., 2006; Krause et al., 2006), CD44 has been associated with cancer 

stem cells in gastric, colorectal, head and neck, breast, prostate and 

pancreatic cancers (Al-Hajj et al., 2003; Patrawala et al., 2006; Li et al., 2007; 

Prince et al., 2007; Du et al., 2008; Takaishi et al., 2009). Despite its 

extensive use as a maker of CSCs, the benefit CD44 confers on tumours is 

still not fully understood.  

 

One mechanism by which CD44 is thought to be useful to CSCs is through 

the promotion of survival pathways and inhibition of apoptosis. The PI3K/Akt 

survival pathway is used by cancer cells to override cell cycle checkpoints and 

evade apoptosis (Sabbatini and McCormick, 1999; Liang and Slingerland, 
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2003). CD44 has been shown to activate PI3K signalling resulting in the 

downstream phosphorylation of Akt through its interaction with its co-receptor 

ERBB2 or through the binding of its ligand osteopontin (Lin and Yang-Yen, 

2001; Misra et al., 2008). Furthermore, hyaluronan oligomers were found to 

interfere with CD44 signalling and inhibit the phosphorylation of Akt in a 

murine mammary cancer cell line (Ghatak, Misra and Toole, 2002). 

Additionally, CD44 is thought to confer an advantage on CSCs by promoting 

drug resistance through the up-regulation of the drug efflux pump MDR1 and 

the promotion of a glycolytic metabolic state through direct association with 

PKM2 (Bourguignon et al., 2008; Tamada et al., 2012).  

 

CD44 is not only a marker of CSC populations, but has been implicated in 

cancer progression and metastasis with cell surface expression linked to 

migratory capacity in several cancer cell lines (Günthert et al., 1991; Okamoto 

et al., 1999; Patrawala et al., 2006). However some studies have suggested 

that in fact CD44 acts as a suppressor of metastasis (Gao et al., 1997; Lopez 

et al., 2005).  Nevertheless, it has been shown that the p53 regulated 

microRNA, miR-34a can specifically down-regulate CD44 expression 

inhibiting prostate cancer metastasis in immune suppressed mice (Liu et al., 

2011). This discrepancy in results could be attributable to the differing effects 

and binding capacities of the CD44 splice variants. Indeed, it has been shown 

that different splice variants of CD44 can confer different oncogenic potential 

(Hofmann et al., 1991). Switching between the standard and variant CD44 

isoforms has also been shown to be instrumental to the epithelial to 

mesenchymal transition (EMT) (Brown et al., 2011).  Overall CD44 
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participates in a diverse array of cell biological processes and its function is 

modulated by the splice isoforms, ligands and binding partners present. As 

such, unravelling the contribution of CD44 to a biological system is a complex 

task.  

 

2.3 Stabilin-2 acts as the major clearance receptor of hyaluronan 

2.3.1 A new hyaluronan receptor  

In comparison to Cd44, far less research has been undertaken on the cell 

surface receptor Stabilin-2 (Stab2). Stab2 was first identified as an hyaluronan 

binding protein expressed on liver sinusoidal endothelial cells (McCourt et al., 

1999; Zhou et al., 2000). Further investigation has since expanded upon its 

role and expression within the body. In addition to the liver endothelium, 

Stab2 expression is found in lymph nodes, spleen, heart valves and bone 

marrow as well as the epithelium of the eye and kidney (Falkowski et al., 

2003). Its role as a clearance receptor involves not only the engulfment of 

metabolic waste products such as hyaluronan and heparin but also the 

phagocytosis of necrotic tissue, apoptotic cells and aging erythrocytes (Harris 

and Weigel, 2008; Harris, Weigel and Weigel, 2008; Park et al., 2008; Kim et 

al., 2010; Lee et al., 2011; D’Souza, Park and Kim, 2013).  Loss of function of 

Stab2 in mice results in little obvious defects, although an increase in serum 

hyaluronan levels was observed (Hirose et al., 2012). Interestingly, a lack of 

Stab2 resulted in a dramatic reduction in the ability of cancer cells to 

metastasise within the mouse which runs counter to the idea that hyaluronan 

deposition aids cancer progression (Hirose et al., 2012).  
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In addition to functioning as a scavenger receptor Stab2 has recently been 

attributed several novel functions relating to cell adhesion and aggregation. 

Over-expression of Stab2 in mouse fibroblasts found that Stab2 mediated cell 

aggregation through homophilic interactions using fasciclin-1 domains (Park, 

Jung and Kim, 2009). In vivo, Stab2 has been shown to enable the adhesion 

of lymphocytes to endothelial cells where it is expressed and aids in the fusion 

of myoblasts during muscle growth and regeneration (Jung, Park and Kim, 

2007; Kim, Park and Kim, 2016). Research into Stab2 has been hampered in 

part by its large coding region (~8kb) and lack of suitable antibodies. With 

more tools now available and the possibility to specify Stab2+ endothelial 

cells from ESCs using a TGFβ inhibitor it has become easier to better 

elucidate the function of Stab2 and its association with hyaluronan (Nonaka et 

al., 2008). 	
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Chapter	3:	Materials	and	Methods		

3.1 Chemicals 

	
Table 1: Chemicals 

Chemical  Manufacturer  Reference Number  
2-Propanol Sigma-Aldrich 33539 
Agarose Sigma-Aldrich A9539 

Bovine serum albumin (BSA) Sigma-Aldrich A9418 

Collagenase Sigma-Aldrich C9722 
Dimethyl sulphoxide (DMSO) Sigma-Aldrich D5879 

Ethanol (absolute) Sigma-Aldrich 32205 

Ethidium bromide Sigma-Aldrich E1510 
Glycine Sigma-Aldrich G8898 
Paraformaldehyde Santa Cruz SC281692 
Phosphate Buffered Saline (PBS) 
(without Ca2+ or Mg2+) 

Gibco 14190-094 

Sucrose Sigma-Aldrich S5016 
Triton-X 100 Sigma-Aldrich T8787 
Tween-20 Sigma-Aldrich P9416 

	
	
	

3.2 Mouse embryo protocols 

3.2.1 Embryo dissection  

All mouse experiments were performed on either C57BL/6N wild-type mice or 

Runx1 null mice. Timed matings were set up overnight and embryos collected 

from pregnant females in PBS supplemented with 10% FBS (PAA Clone, 

A15-02) between embryonic day 9.5 and 11.5. Forceps were used to remove 

embryos from the uterine tissue under a stereomicroscope. In the case of 

embryos derived from Runx1+/- mice the yolk sac or head was used for 

genotyping. In order to determine the developmental age, somite pairs were 
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counted and embryos grouped according to table 2. The yolk sac and AGM 

region were isolated as shown in figure 3. Once the embryo was removed 

from the uterine tissue forceps were used to make an incision in the yolk sac 

and the tissue was peeled away from the embryo. Cuts were made in the 

vitelline and umbilical vessels to detach the yolk sac from the embryo. The 

head and tail were then removed above and below the limb buds using 

0.45mm needles. Next, a cut was made ventral to the AGM region to remove 

the limb buds and organs. Another cut was made dorsal to the AGM region to 

remove the somite tissue above. To create a single cell suspension AGMs 

and yolk sacs were pooled and incubated in 1.25mg/mL of collagenase for 30 

minutes at 37°C. Cells were then pipetted up and down to create a 

homogenous cell suspension.  

 
Table 2: Embryonic stages of mouse development  
   

Number of somite pairs Embryonic days post coitum 

21-29 E9.5  

30-34 E10 

35-39 E10.5 

40-44 E11 

45-48 E11.5 
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3.2.2 Genotyping 

Genotyping of mouse embryos was performed using the Kappa hot start 

mouse genotyping kit (KAPA Biosystems; KK7352) according to the 

manufacturers instructions. Briefly, the head or yolk sac of an embryo was 

incubated at 75°C for ten minutes in extract buffer with two units of Kappa 

express extract enzyme. Samples were then vortexed and centrifuged for one 

minute. The PCR reaction was then performed using 1µL of the supernatant 

in a 25µL reaction with the KAPA 2G mix containing DNA polymerase and 

DNTPs as well as 0.5µM final concentration of each of the Runx1 primers 

listed below.  

 

Runx1 Forward Primer 1: 5’ CCAATGAGAAACAGTAGTAGC 3’ 

Runx1 Forward Primer 2: 5’ TGCTTAATGGTGACACTTTCT 3’  

Runx1 Reverse Primer: 5’GCCTTCAGAATCAGTAGAAC 3’  

 

Figure 5: Dissection of yolk sac and AGM from mouse embryo 

The yolk Sac and AGM region can be isolated from mid-gestation mouse embryos 
using forceps and 0.45mm needles. Cuts were made as indicated by the dotted 
lines.  
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The reaction was then run on the thermocycler for 35 cycles with a fifteen 

second denaturation step at 95°C, annealing for fifteen seconds at 60°C and 

elongation for thirty seconds at 72°C. The products were then visualised with 

electrophoresis using ethidium bromide on a 2% agarose gel.  

 

3.3 In vitro cell culturing methods  

3.3.1 Mouse embryonic fibroblast (MEF) preparation  

Mouse embryonic fibroblasts were isolated from E13.5 embryos and the 

primary cells stored in liquid nitrogen in 40% DMEM (Dulbeco’s modified 

eagle medium) (Gibco; 11965), 50% foetal bovine serum (FBS) (PAA Clone, 

A15-02) and 10% DMSO. To prepare MEFs for ESC culturing a primary vial 

was thawed in a 15cm2 dish with DMEM media (supplemented with 1% 

Penicilliin/Streptomycin (Gibco; 15140122), 1% L-glutamine (Gibco; 25030-

024) and 1% non-essential amino acids (Gibco; 11140-035)). Fifteen percent 

FBS and 0.12mM β-mercaptoethanol (Gibco; 31350-010) was then added. 

The MEFs were cultured for five days in order to expand as much as possible. 

Cells were split when they reached 80-90% confluency. To inhibit further cell 

growth MEFs were treated with 10µg/mL of mitomycin C (Sigma: M4287) and 

incubated for two hours at 37°C. The cells were then harvested with TryplE-

Express (Gibco; 12605-010), counted and frozen in liquid nitrogen for later 

use. 	

3.3.2 Mouse embryonic stem cell (mESC) culture  

The A2lox-Empty embryonic stem cell line (kindly provided by Dr. Michael 

Kyba, University of Minnesota) was maintained in DMEM-ES culture medium 
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containing DMEM KO (Invitrogen; 10829018) supplemented with 1% 

Penicilliin/Streptomycin, 1% L-glutamine and 1% non-essential amino acids. 

In addition, the media contained 15% FBS (PAA Clone, A15-02), 0.024µg/mL 

of LIF (produced by the protein expression facility at EMBL, Heidelberg) and 

0.12mM β-mercaptoethanol. All media was sterile filtered using a Millipore 

stericup (SCGPU 01RE) with a 0.22µm filter. Cells were maintained on MEFs 

and incubated at 37°C with 5% CO2 and 95% relative humidity. TryplE-

Express was used to detach cells for passaging, collection or to create a 

single cell suspension. Cells were incubated in TryplE-Express for three to 

five minutes at 37°C.  

3.3.3 Growth factors   

The growth factors listed in table 3 were added to the culture media for in vitro 

and ex vivo experiments with mESC derived cells and cells from primary 

embryonic mouse tissue.  	

	
Table 3: Growth Factors 

Name  Manufacturer Reference Number  

Basic Fibroblast Growth 
Factor (bFGF) 

R&D Systems 233-FB-025 

Fms-like tyrosine kinase 3 
ligand (Flt-3) 

Preprotech 250-31L 
 

Interleukin-3 (Il-3) Preprotech 213-13 

Interleukin-6 (Il-6) Preprotech 216-16 

Interleukin-7 (Il-7 Preprotech 217-17 

Interleukin-11 (Il-11) Preprotech 220-11 

Leukocyte Inhibitory Factor 
(LIF) 

EMBL Heidelberg  

Oncostatin-M R&D Systems  495-MO-025 
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Stem Cell Factor (SCF) Preprotech 250-03 

Vascular endothelial growth 
factor (VEGF) 

Preprotech 500-P131 

	

3.3.4 Embryoid body (EB) differentiation  

To generate embryoid bodies and isolate the haemangioblast progenitors of 

blood development we used an embryonic stem cell (ESC) differentiation 

system based on a previously described protocol (Sroczynska et al., 2009). 

To begin differentiation the ESCs were passaged twice on 0.1% gelatin to 

remove feeder cells first in DMEM-ES medium and then using IMDM-ES 

medium containing IMDM (Iscove’s modified Dulbecco medium) (Lonza; 

BE12-726F) supplemented with 1% Penicilliin/Streptomycin and 1% L-

glutamine. In addition, 15% FBS (PAA Clone, A15-02), 0.024µg/mL LIF and 

0.12mM β-mercaptoethanol was added. Once feeders were removed cells 

were harvested and cultured in untreated 10cm2 petri dishes at a density of 

0.3x106 cells per dish with EB medium containing IMDM (supplemented with 

1% Penicilliin/Streptomycin and 1% L-glutamine), 10% FBS, 0.6% Transferrin 

(Roche; 10652), 0.03% monothioglycerol (MTG) (Sigma; M6145) and 

50µg/mL ascorbic acid (Sigma; A4544). After three days in culture EBs were 

harvested and the Flk1+ haemangioblast progenitors were isolated. The EB 

clusters were collected and dissociated using TryplE-Express for five minutes. 

The TryplE-Express was neutralised using IMDM with 20% FBS before cells 

were filtered through a BD cup filcon filter (BD Biosciences; 340629) to create 

a single cell suspension. The cells were centrifuged and resuspended in 5mL 

of IMDM with 20% FBS. The same volume of lymphocyte separation medium 

(Lonza; 17-829E) was carefully added to remove dead cells by density 
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gradient separation. Cells were then centrifuged for twenty minutes at 800G 

with no brake to maintain the phases. The central white phase was then 

transferred to a new tube with 10mL of IMDM with 20% FBS. Cells were 

counted using a haemocytometer and resuspended in 1x PBS supplemented 

with 0.5% FBS and 0.5mM EDTA (MACS buffer) to create a concentration of 

1x108 cells per mL. A magnetic activated cell sorting (MACS) system was 

used to isolate Flk1+ progenitors. Cells were stained with anti-Flk1, APC 

conjugated antibody (eBiosciences; 17-5821-81) at a concentration of 3µL per 

1x107 cells and incubated at 4°C for five minutes. Cells were then washed 

with 10mL of MACS buffer, centrifuged and resuspended in a one in five 

dilution of anti-APC microbeads (Miltenyi Biotech; 130-090-855) diluted in 

MACS buffer at a concentration of 1mL for every 1x108 cells. Cells were then 

incubated at 4°C for fifteen minutes. Cells were washed again with 10mL of 

MACS buffer, centrifuged and resuspended in 500µL volume of MACS buffer. 

The LS MACS column (Miltenyi Biotech, 130-042-401) was attached to a 

magnet to perform the magnetic separation and rinsed twice with 5mL of 

MACS buffer before loading the cells. The column is then washed three times 

with 3mL of MACS buffer. Finally, the column is removed from the magnet 

and the Flk1+ cells eluted with 5mL of MACS buffer. The positive cell fraction 

was then centrifuged, resuspended and counted before freezing cells for later 

use in haemangioblast assays. The purity of Flk-1+ cells was evaluated using 

FACS analysis on the FACS Canto cytometer (Becton Dickson) using FACS 

Diva software. This method routinely results in Flk-1+ cell fractions with 

greater than 95% purity.  



	 69	

3.3.5 Haemangioblast culture assay 

To further differentiate the haemangioblast progenitors into vascular smooth 

muscle (VSM), endothelial cells and blood cells the Flk-1+ cells were first 

thawed on 0.1% gelatin in haemangioblast medium containing IMDM 

(supplemented with 1% Penicillin/Streptomycin and 1% L-glutamine), 10% 

FBS, 0.6% transferrin, 0.3% MTG, 50µg/mL ascorbic acid, 0.05% VEGF 

(10µg/mL) and 0.1% IL-6 (10µg/mL). In addition, 15% D4T supernatant was 

added. D4T supernatant is produced by culturing D4T endothelial cells for 48 

hours in IMDM media with 10% FBS and 30mg of endothelial growth 

supplement (BD, 354006). The cultured media is then collected for use in the 

haemangioblast culture. Cells were grown for between 24 and 72 hours and 

used for downstream assays such as flow cytometry, quantitative RT-PCR 

and time-lapse imaging analysis.  

3.3.6 Blocking CD44-hyaluronan interaction in vitro 

For in vitro experiments to inhibit CD44-hyaluronan interaction, Flk-1+ 

haemangioblast cells were plated as per the haemangioblast assay (see 

3.3.5) with either no intervention, 10µg/mL of anti-CD44 blocking antibody 

[KM201] (Abcam; ab25340), 300µg/mL of hyaluronidase enzyme (Sigma; 

H4272) or 50µM of 4-methylumbelliferone (4-MU) (Sigma; M1381-25G). Cell 

populations were then analysed using flow cytometry (see 3.5.1) to 

understand the relative proportion of VSM, endothelial and haematopoietic 

populations using CD41 PE, VE-Cadherin AF660 and Kit BV421 antibodies 

(see table 4).  
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3.4 Generation of a CD44 ESC knockout line with CrispR-Cas9 

3.4.1 Generation of plasmid for CD44 knockout allele  

The CD44 knockout mESC line was generated based on a previously 

published protocol (Wettstein et al., 2016). Firstly, the pX458 plasmid 

containing a Cas9 nuclease construct and a GFP reporter (pSpCas9-2A-GFP, 

Addgene ID: 48138) (kindly provided by Dr. James Hackett, EMBL Rome) (fig. 

6) was amplified; linearised using the BpiI restriction enzyme and gel purified 

using the QIAquick gel extraction kit (Qiagen; 27804)(Fig, 6). A single guide 

RNA was designed to target the constitutive exon 2 of the Cd44 transcript 

using the Broad Institute GPP web portal (5’ 

CATGGAATACACCTGCGTAGCGG 3’). Complementary oligo DNA 

sequences were ordered with the PAM motif removed and the addition of 

“CACCG” 5’ to the sense strand and  “CAAA” on the 5’ of the antisense strand 

as well as the addition of a “C” nucleotide 3’ of the antisense strand. These 

overhangs are complementary to the sticky ends produced by BpiI digestion 

of the pX458 plasmid. To generate double stranded sgRNAs the oligos were 

placed on the heat block for four minutes at 94°C, ten minutes at 70°C and 

twenty minutes at 37°C. A ligation reaction was then performed for 1 hour at 

room temperature using 20µM of the double stranded sgRNAs, 50ng of 

pX458 plasmid and 400U of T4 ligase (NEB: M0202S). The plasmid was 

transformed into competent DH10b E.Coli using a heat shock method and the 

bacteria grown overnight on agar plates with ampicillin. DNA from the 

subsequent clones was purified using Qiagen miniprep columns and 

sequenced to ensure sgRNA insertion.  
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BpiI(245)		

pRS-marker

AAV2	ITR

BpiI		(267)

chicken	beta-actin	promoter

pSpCas9(BB)-2A-GFP	(PX458)
9288	bp

Figure 6: PX458 plasmid map detailing key features 

PX458 plasmid map created with SnapGene Viewer details the key features including 
Cas9 nuclease construct (light blue), EGFP reporter (green), ampicillin-resistance gene 
(orange) and sgRNA scaffold with BpiI restriction sites upstream.  
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3.4.2 Transfection of mESCs 

To transfect A2lox empty mESCs we used the Nanojuice transfection kit 

(Merck Millipore; 719020-3). Cells were treated with 2.5µL of Nanojuice 

transfection reagent, 1.25µL of Nanojuice booster and 1.25µg of plasmid DNA 

for 48 hours. The ESCs were then harvested and single GFP+ clones were 

FACS sorted onto MEFs in a 96 well plate. Single clones were expanded and 

validated for loss of CD44 through FACS analysis with PE conjugated anti-

CD44 antibody.  

3.5 Cell staining techniques 

3.5.1 Flow cytometry and cell sorting  

For flow cytometry analysis and sorting, single cell suspensions were 

obtained from either ESC culture or embryo dissections and kept in 1x PBS 

supplemented with 10% FBS (PAA clone, A15-02). Cells were counted and 

stained for 10 minutes at room temperature with fluorescence-conjugated 

antibodies (table 4). Cells were washed, filtered and analysed using a FACS 

Aria III (Becton Dickinson) and FACS Diva software. Fluorescence minus one 

(FMO) controls were used to determine background fluorescence and 

establish gating of populations. Data were analysed using FlowJo v10.1r5 

(Tree Star Inc.). Cells were sorted using an 85µm nozzle for downstream 

molecular analysis or a 100µm nozzle for live cell culturing experiments.  
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Table 4: Antibodies used for flow cytometry and sorting 
 

Antibody Clone Fluorochrome Reference Concentration 

CD309 Avas12a1 APC eBioscience; 
17-5821-81 

6µg/mL 

CD144 BV13 eFluor 660 eBioscience; 
50-1441-82 

1µg/mL 

CD41 MWReg30 PE eBioscience; 
12-0411-82 

0.5 µg/mL 

CD41 MWReg30 FITC BD Biosciences; 
561849 

5µg/mL 

CD117 2B8 BV421 BD Biosciences; 
562609 

1µg/mL 

CD44 IM7 PE BD Biosciences; 
553134 

0.08 µg/mL 

CD45 30-F11 FITC BD Biosciences; 
553079 

2µg/mL 

CD45 30-F11 BV605 BD Biosciences; 
563053 

2µg/mL 

CD43 S7 PerCP-Cy5.5 BD Biosciences; 
562865 

4µg/mL 

CD19 MB19.1 PE eBioscience;  
12-0191-81 

2µg/mL 

CD11b M1/70 APC eBioscience;  
17-0112-81 

1µg/mL 

CD4 RM4-5 PE-Cy7 BD Biosciences; 
561099 

0.25µg/mL 

CD8a 53-6.7 FITC BD Biosciences; 
557668 

2µg/mL 

CD61 2C9.G2 BB700 BD Biosciences; 
742110 

1µg/mL 

Stabilin-2 34-2 AF488 MBL; D317-A48 5µg/mL 
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3.5.2 Cell cycle analysis 

To analyse the cell cycle status of AGM derived cells we used the Click-iT 

plus EDU flow cytometry kit (Life technologies; C10633). After dissection, 

AGMs were incubated in 10µM of EDU in PBS with 10% FBS for 1 hour at 

37°C. The tissue was then washed and incubated in 1.25mg/mL of 

collagenase for 30 minutes. The sample was washed again and stained for 

cell surface markers (CD44, VE-Cadherin and Kit). Approximately 1000 cells 

were sorted based on cell surface expression into their different populations. 

Cells were then washed in PBS with 1% BSA then fixed in paraformaldehyde. 

The cells were permeabilised with a saponin-based wash solution before the 

addition of a copper protectant and AF488 picolyl azide for the detection of 

EDU. Finally the cell populations were stained with Hoechst (Invitrogen; 

R37605) before re-analysis on the FACS Aria III to determine the proportion 

of cells from each population in G0/G1, S and G2 phase.  

 

3.5.3 Immunofluorescence on mouse cryo-sections 

Mid-gestation mouse embryos were dissected and fixed in 4% 

paraformaldehyde for 15 minutes at room temperature then incubated in 15% 

sucrose solution for 2 hours before snap freezing in OCT (Tissue-Tek; 4583). 

10µm transverse cryo-sections of the AGM region were then placed on 

superfrost plus slides (Thermoscientific; J1800AMNZ). Sections were washed 

in PBS, incubated in 1M glycine solution and permeabilised with 0.3% Triton 

X-100. Blocking solution consisting of 5% donkey serum, 5% chicken serum 

and 0.1% Tween-20 in 1x TBS buffer was applied to sections for 2 hours at 

room temperature. Sections were incubated in primary antibodies (table 5) 
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overnight at 4°C and then washed. Secondary antibodies were applied for 1 

hour at room temperature and washed before DAPI nuclear stain was applied 

for 15 minutes (table 6). Slides were washed before being mounted with 

Prolong gold (Life Technologies; P36970) and imaged on a Leica SP5 

confocal microscope.  

 

Table 5: Primary antibodies for immunofluorescence 

 

  

Table 6: Secondary antibodies for immunofluorescence 

Antibody Reference Concentration 

 
Alexa Fluor 488 donkey 

anti-rabbit 

 
Life Technologies; 

A21206 

 
4µg/mL 

Alexa Fluor 568 goat 
anti-rat 

Life Technologies; 
A11077 

4µg/mL 

DAPI nuclear stain Invitrogen; 
101635 

5µg/mL 

Antibody Clone Reference Concentration 

 
CD44 

 
Rabbit polyclonal 

 
Abcam;  
157107 

 
2µg/mL 

 
VE-Cadherin 

 
Rat monoclonal 

eBioBV13 

 
eBioscience; 
14-1441-81 

 
2.5µg/mL 
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3.6 Ex vivo cell culturing methods 

3.6.1 OP9 co-culturing assay for haematopoietic potential  

OP9 cells were maintained in MEM alpha medium (Gibco; 22561-021) with 

20% FBS (ATCC 30-2020). One day before sorting 3000 OP9 cells per well 

were seeded onto a 96 well plate in OP9 basic medium. On the day of sorting 

the medium was changed to a haemogenic endothelium rich medium 

containing IMDM (Lonza; BE12726F) treated with 1% penicillin-streptomycin 

(Gibco; 15140-122) and supplemented with 10% FBS (PAA Clone, A15-02), 

L-glutamine, transferrin, MTG, abscorbic acid, LIF, 50ng ml-1 SCF, 25ng ml-1 

IL3, 5ng ml-1 IL11, 10ng ml-1 IL6, 10ng ml-1 Oncostatin M and 1ng ml-1 bFGF. 

For limiting dilution co-cultures cells were sorted using a 100µm nozzle 

directly onto the confluent OP9 stromal layer and incubated for three days. 

Round cell colonies were quantified manually using a light microscope.  

3.6.2 Haematopoietic colony forming assay   

One hundred cells were initially sorted onto a confluent OP9 stromal layer as 

per OP9 co-culturing assay. After three days in culture cells were harvested 

with TrypLE express (Gibco) and colony-forming unit-culture (CFU-C) assays 

were initiated using Methocult complete medium (Stem Cell Technologies; 

M3434). Cells were grown in 35mm culture dishes for a further 7 days. 

Colonies were quantified manually using a light microscope and scored as 

either CFU-Erythroid, CFU-Macrophage or CFU-Mixed.  
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3.6.3 Lymphocyte progenitor assay  

Fifty cells were sorted onto confluent OP9 or OP9-DL1 stromal layers as per 

the OP9 co-culturing assay. Instead of using the rich haemogenic 

endothelium medium cells were incubated with factors conducive to 

lymphocyte development - MEM-alpha medium supplemented with 20% FBS 

(PAA Laboratories), 50ng ml-1 SCF, 5ng ml-1 Flt-3L and 1ng ml-1 IL7. Medium 

was changed every 4-5 days and cells were split as necessary. Cells were 

cultured for 21 days before harvesting with TrypLE express for flow cytometry 

analysis with anti-CD45, anti-CD19, anti-CD11b, anti-CD4 and anti-CD8a 

antibodies (see table 1).  

3.6.4 Blocking CD44-hyaluronan interaction ex vivo  

For ex vivo CD44-hyaluronan blocking experiments 20 VE-

Cadherin+/CD44High cells were sorted, as per OP9 co-culturing assay (see 

3.6.1), into a medium containing no antibody, 5µg/mL or 10µg/mL of anti-

CD44 antibody [KM20] (Abcam; ab25340). Colonies were quantified manually 

using a light microscope after three days in culture.  

 

3.7 Molecular biology techniques 

3.7.1 RNA extraction  

RNA extraction was performed on tissue culture derived cells and mouse 

embryo derived FACS sorted populations using the RNeasy micro-kit 

(Quiagen; 74004). In both cases cells were pelleted and resuspended in lysis 

buffer, vortexed and mixed with 70% ethanol before binding to the column. 

The column was washed, treated with DNase I and washed again. Next, 80% 
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ethanol was added to the column before drying the membrane and eluting the 

RNA in RNase-free water.  

3.7.2 cDNA conversion  

Fifty to two hundred nanograms of RNA was converted to single-stranded 

cDNA using the Revertaid H minus first strand cDNA synthesis kit (Thermo 

Scientific; K1632). RNA samples were incubated for five minutes at 65°C with 

random hexamer primers for annealing. RNase inhibitor, dNTPs and 20 Units 

of RT enzyme were added and reverse transcription carried out for one hour 

at 42°C. Denaturation was performed at 70°C for five minutes. PCR reaction 

was carried out immediately to avoid degradation of splice variants.  	

3.7.3 PCR amplification of CD44 splice variants 

Five microlitres of cDNA was amplified using 2.5 Units of DreamTaq DNA 

polymerase (Thermo Scientific; EP0702). Primers were designed against the 

constitutive exons 5 and 16 to capture variant exons present in the CD44 

transcript (see below). The reaction was run for 35 cycles with an annealing 

temperature of 58°C and an elongation time of 90 seconds. 	

	

Forward Primer: 5’ AGCACCCCAGAAAGCTACAT 3’ 

Reverse Primer: 5’ TTCTTGCATCTTTAGCGCCG 3’ 	

	

Splice variants were then visualised on a 1% agarose gel using ethidium 

bromide. Bands were cut and DNA purified using a gel extraction kit (Qiagen; 

28704) before sequencing to identify variant exons expressed. 	
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3.7.4 Single-cell quantitative PCR  

For single cell qPCR analysis cells were sorted using an 85µm nozzle directly 

into lysis buffer (Cells Direct qRT-PCR Kit, Invitrogen) and snap frozen. 

Samples were then reverse transcribed with superscript III reverse 

transcriptase from the Cells Direct one-step qRT-PCR Kit for 15 minutes at 

50°C. The cDNA was then pre-amplified for twenty cycles with 25nM final 

concentration of each outer-primer for the genes of interest. The cDNA was 

then diluted with loading reagent (Fluidigm) and SoFastTM EvaGreen 

supermix (Biorad) and loaded onto a chip with 50µM of inner primer mix. 

Amplification of the 96 target genes (Supplementary table 1) was measured 

with the Fluidigm Biomark HD system with the Biomark Data Collection 

software and the GE96 x 96 + Meltv2.pcl program. 

3.7.5 Single-cell quantitative PCR analysis 

Analysis of single cell qPCR data was performed as previously described 

(Bergiers et al., 2018). Briefly, initial analysis was performed using the 

Fluidigm Real Time PCR analysis software. Hierarchical clustering and 

principal component analysis were performed using the SINGuLAR analysis 

toolkit (Fluidigm version 3.5) in R software (version 3.2.1). This analysis was 

done with the assistance of Christophe Lancrin and EMBL Rome 

Bioinformatician Andreas Buness.  
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3.8 RNA sequencing  

3.8.1 Smart-seq2 25 bulk RNA sequencing  

Bulk RNA sequencing was performed as described by the SmartSeq2 

protocol (Picelli et al., 2014). Briefly, cells were FACS sorted directly into lysis 

buffer containing 0.2% Triton X-100, oligo-dT primers and dNTP mix, and then 

snap frozen. Reverse transcription was then performed, followed by pre-

amplification for 14 cycles. Nextera libraries were then prepared and 

sequenced on the Illumina Next Seq sequencer. The preparation of Smart-

seq2 libraries was performed within our lab by Kerstin Ganter and sequencing 

undertaken by the EMBL GeneCore Facility in Heidelberg.  

3.8.2 Bulk RNA sequencing analysis  

Sequencing data was analysed with the aid of the EMBL Galaxy tools 

(galaxy.embl.de) (Afgan et al., 2016) - specifically, FASTX for adaptor 

clipping, RNA STAR for mapping and htseq-count for obtaining raw gene 

expression counts. Maya Shvartsman and Polina Pavlovich performed pre-

processing of the bulk RNA sequencing data within the lab. The R software 

(version 3.5.1, http://www.R-project.org.) along with R studio (version 

0.99.879) was then used to perform differential expression analysis using the 

DESeq2 package. t-SNE plots were created using the Rtsne and plotTsne 

packages and differentially expressed genes were visualised using ggplot and 

pHeatmap packages (appendix I).  

3.8.3 Takara single cell isolation and RNA sequencing  

AGM derived cells were FACS sorted into VE-Cadherin+ and VE-Cadherin- 

populations before staining with the viability dye propidium iodide. Cells were 
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counted and diluted to 1 cell per 50 nL for dispensing onto the ICELL8 Chip 

(Takara) with the Multi-sample Nano-dispenser (Takara). All nano-wells were 

then imaged with a fluorescence microscope (Olympus) and the images were 

analysed with CellSelect software (Takara) to determine viability and select 

wells containing a single cell. Two hundred wells were selected and 

dispensed with a reverse transcription mix containing 5x RT buffer, dNTPs, 

RT e5 oligo and Maxima H minus RT. The RNA was then reverse transcribed 

at 42° for 90 minutes followed by a denaturation step at 85° for five minutes. 

The cDNA was concentrated using the DNA Clean and Concentrator-5 kit 

(Zymo Research). The cDNA was then treated with Exonuclease I, incubating 

at 37° for 30 minutes and 80° for 20 minutes before amplification with the 

Advantage 2 PCR kit (Clontech Takara) for 18 cycles. The cDNA was then 

purified with Ampure XP Beads (Beckmann Coulter) and the size distribution 

measured on a DNA Bioanalyser. Nextera libraries were then prepared and 

samples sequenced on an illumina NextSeq sequencer.  

3.8.4 Single cell RNA sequencing analysis  

The single cell sequencing data again underwent pre-processing using the 

EMBL Galaxy tools (galaxy.embl.de) (Afgan et al., 2016). Quality control was 

performed using fastqc software before reads were attributed to single cells 

using the well barcodes and saved into a single file. Adaptors and poly-A 

sequences were then removed using Cutadapt and reads were aligned to the 

mouse genome GRCm38.86 using STAR. Reads were counted if they 

overlapped with exactly one gene and where the UMI was found in greater 

than two reads. This generated a count matrix of 200 cells with 11,775 genes 

detected in more than 3 cells. These pre-processing steps were performed by 
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the bioinformatician at EMBL Rome, Andreas Buness with Polina Pavlovich in 

our lab. Down-stream analysis was then performed in R (version 3.5.1, 

http://www.R-project.org) and R studio (version 0.99.879) using the Seurat 

package for single cell analysis (Macosko et al., 2015). After quality control to 

remove potential doublets and cells with high mitochondrial gene content we 

were left with 178 single cells for analysis. Marker genes were then visualised 

using TSNEPlot(), FeaturePlot() and pHeatmap() functions.   
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Chapter	4:	Identifying	a	new	marker	and	regulator	of	the	
endothelial	to	haematopoietic	transition	in	the	AGM	

 

4.1 CD44 marks all stages of early blood development  

4.1.1 Expression of CD44 correlates with haematopoietic development  

It is well established that the first haematopoietic stem and progenitor cells 

(HSPCs) in the embryo have an endothelial origin. Time-lapse imaging in vitro 

(Lancrin et al., 2009), live imaging of zebrafish embryos (Bertrand et al., 2010; 

Kissa & Herbomel, 2010) and even ex vivo imaging of mouse endothelium 

(Boisset et al., 2010) have been able to capture the precise moments of EHT. 

Despite the wealth of visual data much remains to be learned in regards to the 

molecular characterisation and regulation of this process. In particular, it has 

proved difficult to isolate the endothelial precursor of blood development 

known as haemogenic endothelium. With the advent of single cell technology 

isolating rare populations and characterising developmental transitions has 

become significantly easier. To better understand the endothelial origin of 

HSPCs a single cell RNA sequencing (RNAseq) experiment was performed in 

the lab by Özge Vargel (Supplementary Fig. 1a). Subsequent bioinformatics 

analysis by our collaborator Valentine Svensson at EMBL-EBI identified the 

cell surface receptor CD44 as a robust marker of a population with dual 

endothelial and haematopoietic gene expression (Supplementary Fig. 1b).  

 

In order to validate the hypothesis that CD44 could be used to mark cells 

undergoing EHT I performed FACS analysis on both our in vitro model of 

haematopoietic differentiation and on embryonic mouse tissue. CD44 was 
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highly expressed in the haemangioblast (blast) culture of mouse embryonic 

stem cells (mESCs) that mimics early blood development. The proportion of 

cells expressing both the endothelial marker VE-Cadherin and CD44 peaked 

after 48 hours in culture when the process of EHT is most active (Fig. 7a). To 

investigate in vivo I dissected the AGM region of E9.5 and E10.5 mouse 

embryos. We gated on cells with high VE-Cadherin expression to ensure we 

were selecting cells connected to the vessel (Fig. 7b). Within the VE-

Cadherin+ fraction we could identify a proportion of cells that also expressed 

CD44 on their cell surface (Fig. 7c). The frequency of this population of VE-

Cadherin+/CD44+ cells increased significantly from E9.5 to E10.5 as 

haematopoietic clusters develop in the AGM (Fig. 7d). In this way we were 

able to confirm our RNAseq data; identifying at the protein level a population 

of cells with both VE-Cadherin and CD44 cell surface expression in vitro and 

in vivo. 

 

To understand the localisation of this cell population I performed 

immunofluorescence on transverse sections of the AGM region of mouse 

embryos, using a monoclonal VE-Cadherin and a polyclonal CD44 antibody in 

conjunction with DAPI nuclear staining (Fig. 8a). We found co-expression of 

VE-Cadherin and CD44 on a number of cells in the AGM region; interestingly 

expression of these cell surface markers did not appear to overlap. We 

identified double positive cells belonging to the haematopoietic clusters (Fig 

8b) and cells attached to the endothelial wall of the AGM (Fig. 8c). This 

supported the hypothesis that CD44 could be used to mark cells undergoing 

EHT.  
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Figure 7: CD44 marks a subset of VE-Cadherin+ cells in vitro and in vivo 

FACS analysis of CD44 and VE-Cadherin expression in haemangioblast culture (A) and AGM tissue 
(B-D). Gating strategy for E10.5 in vivo analysis removing debris, doublets, dead cells and selecting 
cells with high VE-Cadherin expression (B). The VE-Cadherin+/CD44+ population increases between 
E9.5 and E10.5 (C). Comparison of population percentages between E9.5 and E10.5 (D), n = 4 
independent pools of embryos. Red dot indicates mean value and error lines represent the standard 
deviation. Significance was determined by an unpaired Student’s T test, p = 0.034.  
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Figure 8: CD44 marks cells both haematopoietic clusters and endothelium 

Immunofluorescence staining of 10µM cryosections of the AGM region of an E10 mouse embryo with 
CD44, VE-Cadherin and DAPI nuclear stain (A). Enlarged image of CD44 and VE-Cadherin staining of 
cells of a haematopoietic cluster (B). Enlarged image of a VE-Cadherin+/CD44+ cell attached to the 
endothelial wall (C).  
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4.1.2 A subset of cells expressing CD44 lack expression of the 

haematopoietic marker c-Kit and are quiescent in nature 

	
A marker of haematopoietic clusters in the mouse embryo is the stem cell 

factor receptor, c-Kit (CD117) (Yokomizo and Dzierzak, 2010). To understand 

if our VE-Cadherin+/CD44+ population overlapped with c-Kit expression we 

performed further FACS analysis on mid-gestation mouse embryos. We found 

that cells expressing high levels of CD44 also expressed high levels of c-Kit at 

the protein level (Fig. 9a). However, for cells with lower levels of CD44 

expression only a subset expressed c-Kit (Fig. 9a). This could mean there is a 

portion of the VE-Cadherin+/CD44+ population that do not belong to a 

haematopoietic cluster.  

 

Mean forward scatter is a flow cytometric property often used to evaluate cell 

size. By comparing the forward scatter to the expression of CD44 and c-Kit 

within the vascular endothelium (VE-Cadherin+) (Fig. 9b), we identified a 

significant difference of cell size between the CD44 populations based on a 

one-way ANOVA (F (3, 16) = 142.01, p < 0.00001) (Fig. 9c). Tukey HSD post-

hoc tests found that cells with low expression of CD44 and no c-Kit were 

significantly smaller in size compared to both cells expressing no CD44 (p < 

0.01) and cells with low levels of CD44 and c-Kit (p < 0.01). Additionally, cells 

with low CD44 expression and c-Kit were significantly smaller than cells 

expressing high levels of CD44 (p < 0.01). This difference in cell size 

indicated that these cell populations could be part of a transition process and 

may have many more molecular differences in addition to these physical 

dissimilarities. Therefore, for subsequent analysis we divided the AGM-
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derived cells into four populations based on CD44 and c-Kit staining, namely, 

CD44Negative, CD44Low/Kit-, CD44Low/Kit+ and CD44High (Fig. 9a).  

 

We went on to perform cell cycle analysis on the sorted populations using 

EDU incorporation and Hoechst DNA staining. We found that on average 

approximately 16% of CD44Negative cells and 25% of CD44High cells had 

entered S phase during the one hour of incubation with EDU compared to less 

than 5% of both CD44Low/Kit- and CD44Low/Kit+ populations (Fig. 10a). 

Overall, the vast majority of CD44Low/Kit- cells were found to be in G0/G1 

phase indicating a quiescent phenotype. One-way ANOVAs were performed 

to compare the cell cycle status of the different populations and determine 

statistical significance. CD44Low/Kit- cells were found to have statistically 

reduced cycling compared to both CD44Negative and CD44High populations 

(Fig. 10b). Although not statistically significant a larger proportion of 

CD44Low/Kit+ cells were observed to be in G2 phase, which could indicate 

that these cells are primed and ready for proliferation. There are clear 

differences in the surface markers, size and cycling rates of these populations 

that led us to further investigate their cellular identities.  
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Figure 9: Not all CD44+ cells express c-Kit and vary in cell size 

Flow cytometry analysis at E10 mouse AGMs reveals that a subset of CD44+ cells 
does not express the haematopoietic marker c-Kit. Here we show the expression of Kit 
within the populations of CD44Neg, CD44Low and CD44High cells based on CD44 
and Kit fluorescence minus one (FMO) controls (A). Forward scatter area was 
compared across populations of cells expressing CD44 and c-Kit (B), n = 4 
independent pools of E10 embryos. A one-way ANOVA was performed on the four 
independent experiments, followed by Tukey’s HSD post-hoc tests to determine 
significance (C). Significant differences were identified between CD44Negative and 
CD44Low/Kit-, CD44Negative and CD44Low/Kit+, CD44Low/Kit- and CD44Low/Kit+, 
CD44Low/Kit- and CD44High, CD44Low/Kit+ and CD44High, with p-values < 0.01 **.  
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Figure 10:  CD44+ cells cycle at different rates 

Representative FACS plots of EDU and Hoechst staining on CD44Negative, CD44Low/Kit-, 
CD44Low/Kit+ and CD44High populations. Approximately 1000 cells from each population were 
sorted from pooled E10 mouse AGMs into 1.5mL micro-centrifuge tubes, fixed and re-analysed 
for EDU incorporation (A). One-way ANOVAs and Tukey’s HSD post-hoc tests were used to 
evaluate the significance of differences in cell cycle status between CD44 populations (B). Bar 
plots represent the average of 4 independent experiments and the error bars are equal to the 
standard deviation, * p < 0.05 and ** p < 0.01.	
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4.1.3 Transcriptional analysis of the CD44 populations reveals a 

developmental progression from endothelial to haematopoietic identity 

To investigate the molecular identities of the CD44 populations previously 

defined in the embryonic mouse vasculature we decided to perform single-cell 

quantitative PCR (sc-qPCR) using the Biomark HD platform. Primer sets were 

designed against 95 genes related to endothelial and haematopoietic 

development (Supplementary table 1). This technique minimises the 

background noise inherent to single cell analyses and enables the detection 

of low abundant genes such as transcription factors that drive changes in cell 

fate. In total we assessed the transcriptional profiles of 213 single cells across 

the four different populations previously defined (Fig. 11a). Unsupervised 

clustering identified five homogenous clusters with distinct transcriptional 

profiles. Four major groups were identified that closely resembled the 

populations defined by our sorting strategy and a smaller cluster of 7 cells 

was found that showed intermediate expression between the two CD44Low 

populations (Fig. 11a). Cells were FACS sorted from pooled AGMs derived 

from both E10 and E11 staged embryos, however no difference in 

transcription was observed between the time-points (Fig. 11a).  

 

Of the four main populations identified, two appeared largely endothelial in 

nature (CD44 Negative and CD44Low/Kit-) with high expression of Tek (Tie2), 

Kdr (Flk-1) and Pecam1 (Cd31). Interestingly, one of the endothelial 

populations specifically expressed high levels of the TGFβ inhibitors Smad6 

and Smad7, which had previously been shown to promote the endothelial to 

haematopoietic transition in vitro (Vargel et al., 2016). The CD44Low/Kit+ 
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population showed dual expression of endothelial and haematopoietic genes 

with the up-regulation of Gfi1, Spi1, Bcl11a and Ikzf2. This profile is consistent 

with previous single cell data of pre-HSPCs (Zhou et al., 2016). Similarly, the 

CD44Low/Kit+ cells showed simultaneous expression of the haematopoietic 

heptad of transcription factors (Gata2, Runx1, Lyl1, Erg, Fli1, Lmo2, Tal1), 

which is also associated with pre-HSPC identity (Bergiers et al., 2018). 

Importantly, CD44Low/Kit+ cells also expressed high levels of Smad6 and 

Smad7 suggesting a link to the more endothelial CD44Low/Kit- population 

(Fig. 11a & 12b). Finally, CD44 High cells showed a significant down-

regulation of endothelial gene expression while retaining high levels of 

haematopoietic transcripts. This is in line with a previous report that 

suggested that endothelial identity is rapidly lost upon haematopoietic 

commitment (Swiers et al., 2013). Interestingly, the common haematopoietic 

marker CD41 (Itga2b) showed weak and stochastic expression in the pre-

HSPC population while it’s partner receptor CD61 (Itgb3) was expressed 

more highly and specifically in the CD44Low/Kit+ fraction (Fig. 11a & 12b).  

 

Dimensionality reduction analysis using the t-SNE algorithm showed that 

although two endothelial populations were identified, the CD44 Low/Kit-

population clustered closer to the pre-HSPCs (CD44 Low/Kit+) than to the 

other endothelial cell cluster (CD44 Negative) (Fig. 12a). Indeed, we identified 

distinct commonalities in gene expression between these two populations. By 

averaging the expression profiles of all single cells belonging to a particular 

cluster we could more easily visualise and compare profiles (Fig. 12b). The 

two CD44Low populations clearly shared expression of Smad6, Smad7, 
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Pde3a, Fbn1, CD44 and Emb indicating a developmental link. This suggested 

that by using CD44 expression we could distinguish endothelial cells primed 

for transition into pre-HSPCs from other vascular endothelium. By comparing 

the transcriptional data across these populations, we could identify increasing 

haematopoietic gene expression and decreasing endothelial gene expression 

as cells increase their surface levels of CD44 and c-Kit (Fig. 12b). 

Furthermore, the idea that the CD44Low/Kit- population represents 

haemogenic endothelium was further supported by the isolation of the small 

intermediate cell cluster that formed a transcriptional bridge between the two 

CD44Low groups. Importantly, it is in this small subset where expression of 

the key haematopoietic transcription factor, Runx1, is first detected (Fig. 12b).  
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Figure 11: Single cell qPCR identifies five clusters with varying degrees of endothelial 
and haematopoietic gene expression 

213 single cells from E10 and E11 mouse AGMs (time-point is indicated in figure by purple and 
blue markers) were FACS sorted directly into 96-well Bio-Rad PCR plates containing lysis 
buffer. Cells were sorted according to the phenotype detailed in the figure (either CD44Neg, 
CD44Low/Kit-, CD44Low/Kit+ or CD44High) and reverse transcribed and profiled based on 95 
genes related to endothelial and haematopoietic development (see supplementary table 1). 
Unsupervised clustering identified five clusters, which closely correlated to their cell surface 
phenotype (A). Genes related to endothelial and haematopoietic processes are marked on the 
right-hand side.  
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4.1.4 CD44 can be used to isolate haemogenic endothelium  

Previous work on EHT characterised several intermediary populations 

between haemogenic endothelium and definitive HSCs (pro-HSC, pre-HSC 

type I and pre-HSC type II) based on the cell surface markers VE-Cadherin, 

CD41, CD43 and CD45 (Rybtsov et al., 2011, 2014). These populations 

required differing maturation times in culture to form definitive HSCs with 

transplantation potential.  In order to place the CD44+ populations in context 

we compared them to the transcriptional profiles of cells sorted from these 

previously defined populations using our sc-qPCR protocol (Fig. 13a).  

 

Interestingly we identified two separate pro-HSC clusters, which displayed 

different gene expression profiles, based on the 95 genes that we assessed 

(Supplementary table 1) (Fig. 13c). This heterogeneity brings into doubt 

whether there is a clear distinction between pro-HSCs and pre-HSCs type I 

cells. As expected, the pro-HSCs displayed lower levels of haematopoietic 

gene expression and higher levels of endothelial gene expression (Fig. 13c). 

We then combined analysis of the pro-HSCs, pre-HSCs type I and type II with 

the populations defined by CD44 and c-Kit. t-SNE clustering revealed strong 

similarities between the CD44High and pre-HSC type II cells as well as the 

Figure 12: CD44 and KIT can be used to distinguish homogenous populations 
with increasing haematopoietic identity 

The 213 cells sorted and profiled in figure 11 were used in a t-SNE dimension 
reduction analysis in (A). This analysis shows that cell surface expression of CD44 
and c-Kit can be used to distinguish homogenous populations of cells. Average 
expression of the cells sorted and profiled in figure 11 across a subset of endothelial 
and haematopoietic genes are displayed in a simplified heatmap. Groups were 
identified based on unsupervised clustering (B). Cell numbers are indicated below 
each group. Key endothelial genes are marked in blue and key haematopoietic 
genes are marked in red.  
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CD44Low/Kit+ and pre-HSC type I population (Fig. 13d). Interestingly the 

CD44Low/Kit- population clustered with the more endothelial pro-HSC group 

lending further support to the idea that this population in fact represents 

haemogenic endothelium (Fig. 13d). When combining all markers together 

with multi-colour flow cytometry, we found that on average 98% of pre-HSCs 

type II, 93% of pre-HSCs type I and 80% of pro-HSCs expressed CD44 on 

their cell surface (Fig. 13b). From our results it appears that CD44 cell surface 

expression can be used to isolate more homogenous populations in blood cell 

development and to distinguish the earliest stage of EHT - haemogenic 

endothelium.  
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4.1.5 RNA sequencing of the CD44 populations reveals the earliest 

changes in EHT and identifies potential new regulators of 

haematopoietic development  

So far, we have established that CD44 cell surface expression when 

combined with c-Kit can be used to track the progression of EHT. To better 

characterise the different stages of this transition we performed a further RNA 

sequencing experiment; this was done with the help of our lab manager 

Kerstin Ganter and the sequencing facility at EMBL Heidelberg. To maximise 

the purity of our cell populations and the detection of low abundant genes we 

opted to analyse 25 cell samples comparing CD44 Negative, CD44Low/Kit- 

and CD44Low/Kit+ and CD44 High populations using the SmartSeq2 protocol 

(Picelli et al., 2014). Overall, our results built upon what we had previously 

observed using single cell qPCR, showing that haematopoietic identity 

increases with CD44 and c-Kit cell surface expression.  

 

Differential expression analysis comparing the CD44Negative and CD44 

Low/Kit- populations using the DESeq2 package in R identified distinct 

transcriptional differences between these two endothelial populations 

Figure 13: Comparison of CD44 expression with previous markers of EHT 

FACS plots showing the sorting gates used to isolate pro-HSCs (VE-Cad+/CD45-
/CD41+/CD43-), pre-HSCs type I (VE-Cad+/CD45-/CD41+/CD43+) and type II (VE-
Cad+/CD45+/CD41+/CD43+) populations from AGM tissue (A). Bar graph showing the 
percentage of the pro-HSCs, pre-HSCs type I and type II that expressed CD44 on their 
cell surface in the AGM of E10 mouse embryos (B). Graph indicates the average of n = 3 
independent experiments and error bars show standard deviation. Cells were sorted 
based on the gating in (A) from E9.5 and E11 mouse AGM into Bio-Rad 96-well plates for 
single cell qPCR profiling. Average expression of a subset of endothelial and 
haematopoietic genes is displayed in the heatmap based on the groups identified by 
unsupervised clustering (C). Cell numbers are indicated below each group. t-SNE 
dimension reduction analysis combines the clustering of pro-HSCs, pre-HSCs type I and 
type II with the CD44-defined populations from figure 12 based on single cell qPCR 
expression profiles (D).  
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(Appendix I). In total 452 genes were found to be differentially expressed with 

an adjusted p-value < 0.01 and a log fold change greater than two (Fig. 14a & 

Supplementary table 2). Amongst these significantly different genes were 48 

transcription factors 34 of which were up-regulated in the CD44Low/Kit- 

population (Fig. 14b & Supplementary table 2). This is interesting as it 

indicates that this small, quiescent group of cells could be in the midst of 

significant changes to its expression profile, and supports the idea that these 

cells are primed for transition. While within this group of regulators we see a 

number of factors already associated with haematopoietic development such 

as Spi1, Ikzf1, Ikzf2 and Gfi1, there are also many transcription factors that 

have not previously been implicated in embryonic haematopoiesis (Fig. 14b). 

Given the utility of transcription factors in reprogramming studies, it would be 

interesting to further investigate the role of these factors in EHT.  

 

Exploration of signalling pathway dynamics revealed a slight up-regulation in 

the Hedgehog ligand Desert hedgehog (Dhh) but down-regulation in the 

Hedgehog target genes Myc, Ccnd1 and Snai1 in the CD44Low/Kit- 

population (Fig. 15a). Both Hedgehog and Bmp signalling are known to 

pattern the dorsal aorta prior to EHT (Wilkinson et al., 2009). We observed a 

down-regulation of Bmp4 and an up-regulation of several inhibitors of the 

Bmp/Tgfβ signalling pathway, namely, Smad6, Smad7, Bmper, Id1 and Id2 

(Fig. 15a). Previous research has shown that although Bmp signalling is 

necessary for HSC development in the AGM the pathway must be down-

regulated for the emergence of intra-aortic clusters (McGarvey et al., 2017). 

As such, the strong inhibition of Bmp signalling we observe in the 
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CD44Low/Kit- population could indicate that this group of cells is preparing for 

EHT. In addition, this population shows a strong up-regulation of genes 

related to Notch signalling including Notch1, Dll4, Jag1, Hey1, and Hey2. This 

is also consistent with previous reports of the critical role Notch signalling 

plays in EHT (Burns et al., 2005). In particular, the high levels of the notch 

ligand Jag1 displayed in CD44low/Kit- cells compared to CD44Negative is 

indicative of a population that is diverging from the Dll4 responsive arterial 

fate, towards the haematopoietic lineage (Gamma-Norton et al., 2015). The 

close association of our sequencing results to what is known about EHT in the 

literature provides strong support for our hypothesis that we can use CD44 

surface expression to isolate both haemogenic endothelial cells and pre-

HSPCs.  

 

In conjunction with Kiran Raosaheb Patil and his PhD student Katharina 

Zirngibl we used the RNA sequencing data to compare the metabolic status of 

our CD44Negative and CD44Low/Kit- populations. For this analysis 1605 

genes were identified using the Wald test to be differentially expressed 

between the CD44Negative and CD44Low/Kit- populations (p-value < 0.01). 

Amongst these genes, they found a 1.32 fold enrichment (p-value < 0.05, 

Fisher’s Exact Test) of metabolic genes based on reporter metabolite 

analysis. Overall, they observed a down-regulation of glycolysis and TCA 

cycle related genes and an up-regulation of autophagy related genes in the 

CD44Low/Kit- population (Fig. 16a-c). Both glycolysis and autophagy are 

known to be used by adult HSCs to maintain quiescence (Takubo et al., 2013; 

Ho et al., 2017). Furthermore, these results are consistent with our previous 
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observations that cells from this population are both smaller in size and 

proliferate less.  
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Figure 14: RNA sequencing reveals distinct differences between CD44Neg and 
CD44Low/Kit- endothelial populations 

Cells were bulk sorted into PCR strip tubes based on their expression of VE-Cadherin, 
CD44 and c-Kit from AGM tissue derived from either E9.5, E10 or E11 mouse embryos. 25 
cells were sorted per sample resulting in ten replicates of CD44Neg, six replicates  of 
CD44Low/Kit-, three replicates of CD44Low/Kit+ and three replicates of CD44High, based 
on gating in Figure 9a. The volcano plot represents the differential gene expression 
between CD44Negative and CD44Low/Kit- populations (A). Significant genes with an 
adjusted p-value < 0.01 are shown in yellow and dots located above or below the dotted 
lines represent genes with a greater than 2 log fold change. Heatmap showing the 
expression of 48 transcription factors differentially expressed between CD44Negative and 
CD44Low/Kit- populations (B).  
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Figure 15: RNA sequencing reveals convergence of signalling pathways in 
CD44Low/Kit- cells 

Further analysis of 25-cell bulk RNA sequencing from Figure 14. Heatmap showing 
changes in expression of key genes related to Hedgehog, Wnt, Notch and Bmp/Tgfβ 
signalling across the four different CD44 populations (A).  
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4.2 CD44 is a regulator of EHT  

4.2.1 Cells expressing CD44 and Kit can robustly generate 

haematopoietic colonies ex vivo and differentiate into all the blood cell 

lineages  

In order to verify the haematopoietic potential of our CD44+ populations we 

performed OP9 co-culturing assays. Firstly, single cells were sorted directly 

onto a 96 well plate of confluent OP9 stromal cells in a media conducive to 

haematopoietic development and grown for three days before scoring for 

round cell colony formation (Fig. 17a). At single cell frequency we observed 

an average of approximately 11% growth from the CD44 High population and 

an average of 42% growth from the CD44Low/Kit+ population (Fig. 17b). This 

difference was found to be significant (p = 0.025) and is in line with the highly 

proliferative nature of pre-HSPCs. It also reveals a significant difference in the 

Figure 16: Comparison of CD44Negative and CD44Low/Kit- reveals differences in 
metabolic profile 

Metabolic gene enrichment analysis was performed on 25-cell bulk RNA sequencing data from 
Figure 14, comparing the CD44Neg and CD44Low/Kit- samples. This figure summarises the key 
metabolic nodes and pathways enriched in differentially expressed genes between 
CD44Negative and CD44Low/Kit- populations. These were selected based on reporter 
metabolite analysis. Up-regulated genes are marked in red and down-regulated genes in blue. 
Genes related to autophagy are depicted in (A) where the genes associated with 
autophagosome formation are shown to be up-regulated and remain so as the autophagosome 
fuses to the lysosome to create an autolysosome and the cell products within are enzymatically 
digested. The glycolysis pathway is depicted in (B), where glucose is broken down into pyruvate 
to release energy for the cell. The enzymes involved in this pathway are down-regulated 
between these two populations. Finally, the TCA cycle is depicted in (C) where energy is 
released from the cell through the oxidation of acetyl-CoA. Analysis for this figure was done in 
Kiran Raosaheb Patil’s lab by his PhD student Katharina Zirngibl and the figure was made in 
collaboration with scientific illustrator Gisela Luz.  
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proliferative potential between early type I pre-HSPCs and more mature type 

II pre-HSPCs. No round cell colonies were generated at the single cell level 

from the CD44 Negative and CD44Low/Kit- populations (Fig. 17b). We further 

tested the haematopoietic potential of these two endothelial-like populations 

at a higher cell density, plating 300 cells per well of a 96 well plate (Fig. 17c). 

Although we observed some haematopoietic cell growth from the 

CD44Low/Kit- population, while we never detected any from the 

CD44Negative one, this observation was not statistically different based on a 

Chi-square test for independence (p= 0.052) (Fig. 17d). More repetitions are 

needed to prove that the CD44Low/Kit- population has a higher 

haematopoietic capacity than the CD44Negative endothelial cells. 
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Figure 17: CD44+ cells show haematopoietic potential ex vivo 

Single cells were FACS sorted from CD44Neg, CD44Low/Kit-, CD44Low/Kit+ or CD44High 
populations based on gating in Figure 9a. Cells were sorted directly onto OP9 stromal layers in 
96-well culture plates from the AGM tissue of E10 mouse embryos. Round cell colonies were 
visualised and counted after three days incubation (A). Percentage of positive wells was 
quantified for four independent experiments generated from pooled E10 mouse AGMs (B). 
Significance was determined by a two-tailed, paired Student’s T test. Three hundred 
CD44Negative and CD44Low/Kit- cells were sorted onto an OP9 stromal layer and quantified 
after six days in culture (C). A chi-square test for independence was performed between the two 
conditions (D).  
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We further used methocult colony forming unit (CFU) assays to assess the 

ability of CD44+ populations to contribute to erythroid and myeloid blood cell 

lineages. Both CD44High and CD44Low/Kit+ populations readily generated 

both erythroid, myeloid or mixed colonies ex vivo (Fig. 18a). One hundred 

cells were first co-cultured with OP9 cells for three days. As with the single 

cell assay more colonies were generated from the CD44Low/Kit+ population 

than the CD44High (Fig. 18b). These cells were then transferred to a 

methylcellulose-based culture and grown for a further seven days. The 

CD44Low/Kit+ population produced more erythroid and mixed colonies overall 

(Fig. 18c). However, the differentiation potential of CD44High cells appeared 

to be higher than CD44Low/Kit+, if the number of round cell colonies initially 

generated on the OP9 stromal layer was taken into account (Fig. 18d). This 

could be linked to the more mature state of the CD44High population. Further 

co-culturing experiments were performed using OP9 and OP9-DL1 stromal 

cells in conjunction with lymphocyte inductive cytokines (IL-7 and Flt-3) to 

assess the potential of CD44High cells to contribute to the lymphocyte 

lineage. CD44High cells were cultured for 21 days prior to flow cytometric 

analysis of cell surface marker expression. CD44High cells were found to be 

capable of generating CD19-expressing B cells and CD4+/CD8a+ T cells ex 

vivo, as well as a small proportion of CD11b expressing macrophages (Fig. 

18e). These results indicate that cells derived from the AGM and marked with 

the CD44 cell surface receptor possess multi-potent haematopoietic potential.  
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4.2.2 Runx1 is not required for the formation of haemogenic 

endothelium but for the progression to the pre-HSPC type I stage 

Runx1 is well characterised as a critical driver of the definitive haematopoietic 

program, acting to down-regulate endothelial identity through the activation of 

its targets Gfi1 and Gfi1b (Lancrin et al., 2012). In the absence of this 

transcription factor no haematopoietic clusters are formed in the embryonic 

vasculature (Yokomizo et al., 2001). To understand precisely when Runx1 is 

needed within our CD44+ populations we performed flow cytometric analysis 

and transcriptional profiling in a Runx1 knockout mouse model (Fig. 19). 

Staining of Runx1 knockout embryos with VE-Cadherin, CD44 and c-Kit 

revealed a loss of the pre-HSPC type I (CD44Low/Kit+) and pre-HSPC type II 

(CD44High) populations (Fig. 19a). This was confirmed by single cell qPCR 

where cells from the knockout embryos only cluster with the CD44Negative 

and CD44Low/Kit- populations (Fig. 19b & c). Interestingly, we found no 

transcriptional differences in the CD44 Negative and CD44Low/kit- cells 

derived from wild-type or knockout littermates.  Unsupervised clustering found 

Figure 18: CD44+ cells possess multi-lineage potential 

Cells were first FACS sorted from the AGMs of E10 mouse embryos directly onto OP9 stromal 
layers on 96-well culture plates before being transferred and cultured further in methylcellulose. 
CFU assays were visualised and counted after three days of OP9 co-culture and seven days in 
methylcellulose-based medium (A). Three wells with 100 cells each of CD44High and 
CD44Low/Kit+ populations were plated on OP9 stromal cells and the number of colonies 
quantified after three days before transferring cells into methylcellulose (B). Erythroid, Myeloid 
and mixed colonies were quantified after a total of 10 days in culture (C). The number of CFUs 
generated relative to the number of colonies originally generated on OP9 was also quantified 
(D). These Bar graphs are the result of four independent experiments and the error bars 
represent standard deviation. Comparisons between CD44High and CD44Low/Kit+ populations 
were made using a two-tailed paired Student’s T-test where * indicates p-value < 0.05, ** 
indicates p-value < 0.01 and *** indicates p-value < 0.001. CD44High and CD44Low/Kit+ cells 
were also cultured on OP9 and OP9-Dl1 stromal cells to generate lymphocyte colonies. 
Representative FACS plots of cells after 21 days in culture showing expression of B-cell marker 
CD19, macrophage marker CD11b and T cell markers CD4 and CD8a (E). For this experiment 
n = 2.   
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these cells to segregate indiscriminately (Fig. 19d). As such Runx1 is not 

necessary for the formation of this early EHT population.  
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Figure 19: CD44+ pre-HSPCs type I and type II are absent in Runx1 knockout 
embryos 

FACS analysis comparing wild-type and Runx1 knockout embryos (A). Single-cells were 
FACS sorted from E10 mouse AGMs directly into 96-well plates for qPCR analysis. t-SNE 
clustering combining single-cell qPCR analysis of wild-type and knockout embryos, 
showing both CD44 populations (B) and their genotypes (C). Heatmap of single cell qPCR 
transcriptional data and unsupervised clustering where Runx1 knockout samples are 
interspersed amongst CD44Low/Kit- and CD44Negative populations (D).  
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4.2.3 Blocking CD44 inhibits haematopoietic development both ex vivo 

and in vitro 

To understand whether CD44 expression played an active role in the 

development of HSPCs we used a CD44 blocking antibody to inhibit its 

function. By performing the ex vivo OP9 co-culturing assays on CD44+ cells 

in the presence of the KM201 blocking antibody we were able to inhibit round 

cell colony formation in a dose dependent manner (Fig. 20b). We also noticed 

that in the presence of the blocking antibody the round cell colonies that 

formed were smaller in size (Fig. 20a). Quantification of cell number found a 

significant decrease in the size of round cell colonies in the presence of the 

inhibitory antibody (Fig. 20c).  

 

To further investigate the role of CD44 in EHT we applied the CD44 blocking 

antibody to our in vitro system of early blood development. Exposure of the 

haemangioblast (blast) assay to CD44 inhibition for 48 hours resulted in a 

significant decrease in CD41+/VE-Cadherin- haematopoietic progenitors. We 

could also observe a compensatory increase in the proportion of endothelial 

(CD41-/VE-Cadherin+) and vascular smooth muscle (VSM) cells (CD41-/VE-

Cadherin-) in the culture (Fig. 21a & b). Overall, this showed for the first time 

a functional role for CD44 in the emergence of HSPCs.  
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Figure 20: Ex vivo culturing with CD44 blocking antibody inhibits round cell 
colony formation 

For these experiments 20 CD44High cells were FACS sorted from E10 mouse AGMs 
directly onto OP9 stromal layers in 96 well culture plates. Images of round cell colonies 
after three days in culture, generated from CD44High cells sorted onto OP9 stromal 
layers with increasing concentrations of KM201 CD44 blocking antibody (A). 
Quantification of the number of round cell colonies generated from 20 CD44High cells 
with 5 and 10µg/mL of KM201 (B) and quantification of the size of colonies generated 
(C). Results are based on three independent experiments and significance determined 
by two-tailed independent Student’s T-tests where * indicates p-value < 0.05, ** 
indicates p-value < 0.01 and *** indicates p-value < 0.001.  
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4.2.4 Alterations in hyaluronan content in vitro inhibits HSPC formation  

The KM201 blocking antibody binds close to the hyaluronan-binding domain 

of CD44 and most likely inhibits its function through prohibiting interaction with 

its major ligand, hyaluronan. To explore this hypothesis we further utilised the 

in vitro system to model EHT and treated the cells with an enzyme that 

catalyses hyaluronan degradation, hyaluronidase and an inhibitor of 

hyaluronan synthesis, 4-methylumbelliferone (4-MU). Treatment with either of 

these two compounds resulted in a block in EHT, significantly reducing the 

proportion of haematopoietic progenitors forming and again showing an 

increase in the proportion of pre-HSPCS or VSM cells in culture (Fig. 21a & 

b). By using these two compounds together we found a combined effect with 

an even greater reduction in HSPC output (Fig. 21a & b). As such, the 

interaction between CD44 and hyaluronan appears to play a regulatory role in 

EHT.  
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Figure 21: Differentiation of blast culture towards blood can be blocked by 
inhibitors of CD44 and its ligand hyaluronan 

Representative FACS plots of analysis of blast differentiation culture when untreated 
or treated with a CD44 blocking antibody – KM201, a hyaluronan degrading enzyme – 
hyaluronidase, a hyaluronan synthase inhibitor 4-methylumbelliferone (4-MU) or a 
combination of hyaluronidase and 4-MU (A). Dot plot summarising the changes in 
populations generated from the blast culture under different treatment conditions (B). 
Data is based on at least four independent experiments for each condition. 
Significance was determined on HSPC output of the differentiation culture based on a 
one-way ANOVA, finding a p-value of < 0.0000001 (C). A Dunnett’s post-hoc test was 
then used to determine the significance of each condition compared to the control  
whereby ** indicates a p-value of < 0.01 and *** indicates a p-value of < 0.001.  
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4.2.5 Knockout of CD44 in vitro does not affect EHT 

To further explore the function of CD44 in HSPC development we created a 

CD44 knockout mESC cell line using Crispr-Cas9 technology. A single guide 

RNA was designed to target exon 2 of the CD44 transcript and transfected 

into mESCs along with a GFP-tagged Cas9 nuclease using the pX458 

plasmid. Clones were isolated using single cell FACS sorting. Loss of CD44 

was validated by loss of the CD44 protein in flow cytometric analysis (Fig. 

22a). Haemangioblast culture of the CD44 knockout cell line revealed no 

obvious defects in the differentiation of Flk-1+ mesoderm into blood (Fig. 22b 

& c). This could be due to compensation mechanism whereby another 

hyaluronan binding protein is up-regulated in response to the loss of CD44 on 

the cell surface.  
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Figure 22: Knockout of CD44 in vitro does not impact on EHT 

FACS plot demonstrating loss of CD44 cell surface expression upon transfection with  
CD44 targeting single guide RNA and Cas9 nuclease (A). Representative FACS 
plots of day two of blast culture comparing wild-type and CD44 knockout mESCs, (n 
= 2) (B). Representative images of day two of blast culture showing formation of 
round cell colonies both in wild-type and CD44 knockout cultures, scale bar is equal 
to 100µM (n = 2).  
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Chapter	5:	Haematopoietic	potential	appears	to	be	restricted	
to	the	Stab2	negative	population	in	the	yolk	sac		

 

5.1 Stab2 expression distinguishes the endothelium of the yolk sac from 

the AGM 

5.1.1 Single cell RNA sequencing identifies Stab2 as a marker of yolk 

sac endothelium  

To better understand the properties of endothelial cells that transition into 

HSPCs it is interesting to consider the similarities and differences that exist 

between the AGM and yolk sac. While both tissues undergo EHT in a Runx1 

dependent manner it is not known whether the yolk sac can give rise to HSCs. 

Furthermore, it is useful to the field of developmental haematopoiesis to 

characterise genes that are able to distinguish from which tissue 

haematopoietic cells are derived. To this end, we performed a single cell RNA 

sequencing experiment to compare VE-Cadherin+ and VE-Cadherin- cells 

from the AGM and yolk sac using the Takara ICELL8 platform. Two hundred 

cells were sequenced and the data analysed using the Seurat package in R. 

After quality control measures were performed we analysed the expression of 

11,767 genes across 178 single cells.  

 

Dimension reduction analysis using the t-SNE algorithm and unsupervised 

clustering found that the populations roughly clustered according to the tissue 

from which they derived and their expression of VE-Cadherin (Fig. 23a & 

24a). Based on this clustering we could identify 47 differentially expressed 

genes across the four groups with an adjusted p-value of < 0.05 and a log2 
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fold change > 1.5, displayed in the heatmap in figure 23 (Supplementary table 

3). Amongst these marker genes a cluster of seven genes appeared to be 

more highly expressed in yolk sac endothelium and two genes up-regulated in 

the endothelium derived from the AGM (Fig. 23a). Interestingly, of the seven 

genes associated with the yolk sac endothelium, four are known to be 

expressed in liver sinusoidal endothelial cells – Maf, Mrc1, Lyve1 and Stab2 

(Fig. 24c) (Nonaka et al., 2007; Géraud et al., 2010; Sørensen et al., 2015). 

Given the liver is also a site of embryonic haematopoiesis it is interesting that 

these two tissues share this endothelial signature. Furthermore, the genes 

Colec12, Mrc1 and Stab2 are characterised as scavenger receptors (Jang et 

al., 2009; Schledzewski et al., 2011; Sørensen et al., 2015). Stab2 in 

particular is a scavenger for hyaluronan (Hirose et al., 2012). The two markers 

we found to be highly characteristics of AGM endothelial cells, we identified 

previously in our single cell qPCR and 25-cell RNA sequencing – Mecom and 

Emcn (Fig 24c). Given the surprising coincidence that another hyaluronan 

binding protein is highly expressed and specific to the yolk sac vascular 

endothelium, we decided to investigate the role of Stab2 in combination with 

CD44.  
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Figure 23: Single cell RNA sequencing analysis identifies markers that 
distinguish vascular endothelium from the yolk sac and AGM 

Cells were FACS sorted from the AGM and yolk sac of E10 mouse embryos into VE-
Cad+ and VE-Cad- fractions before being distributed by a nano-dispenser onto a 
5,184 nano-well chip at very low concentration to capture single-cells. After quality 
control and normalisation steps the transcriptional profiles of 178 single cells were 
analysed using the Seurat package on R (version 3.5.1). The FindMarkers function 
was used to identify 42 differentially expressed genes with an adjusted p-value of < 
0.05 and a log 2-fold change of > 1.5 and are displayed in the heatmap. Above. Of 
these 42 genes 7 were identified as being specifically up-regulated in yolk sac 
vascular endothelium (marked in orange) and 2 genes were identified that are 
specific to AGM vascular endothelium (marked in blue).  
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5.1.2 The majority of yolk sac vascular endothelium expresses the Stab2 

receptor on the cell surface 

To validate the idea that Stab2 could be used as a marker to distinguish yolk 

sac derived vascular endothelium from the AGM we performed FACS analysis 

using a monoclonal Stab2 antibody. We confirmed that Stab2 cell surface 

expression was restricted to VE-cadherin+ yolk sac endothelial cells, with little 

to no marker expression detected in the AGM (Fig. 25a-c). In fact, the majority 

of VE-cadherin+ cells were found to express Stab2 in the yolk sac at E9.5, 

E10 and E11 (Fig. 25a & b). Interestingly, in the haemangioblast culture 

system, which was designed for robust production of haematopoietic cells, 

Stab2 is not expressed (Fig. 25d). This finding is of note as the 

haemangioblast culture is often considered to more closely resemble yolk sac 

haematopoiesis due to the lack of HSCs produced in the system. Given this 

difference in endothelial cell output, perhaps this is not the case.  

 

Figure 24: Expression distribution of yolk sac and AGM specific markers of 
vascular endothelium 

Dimension reduction analysis was run on the 178 single cells analysed in Figure 23 
that passed quality control measures. The t-SNE plot shows that cells tend to cluster 
depending on whether they expressed VE-Cadherin and from which embryonic 
tissue they derived (A). VE-Cadherin was expressed, as expected in the endothelium 
of the yolk sac and AGM (B). Stab2, Lyve1, Mrc1 and Colec12 expression closely 
maps to cells that derive from the yolk sac endothelium (C). Conversely, Mecom and 
Emcn are mostly expressed in VE-Cadherin+ cells of the AGM (C).  
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Figure 25: Flow cytometry analysis of Stab2 expression in yolk sac, AGM 
and haemangioblast culture 

Flow cytometry analysis showed that Stab2 is expressed at the protein level in 
the yolk sac of E9.5, E10 and E11 mouse embryos (A) and that within the VE-
Cadherin+ fraction is present on greater than 50% of endothelial cells across 
this time-course (B). Conversely, Stab2 protein expression was absent in the 
AGM at E9.5, E10 and E11 (C) and haemangioblast culture (D) after 24, 48 
and 72 hours of incubation.  
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5.1.3 Stab2 appears to be down-regulated as cells become more 

haematopoietic   

Like CD44, Stab2 is also a HABP, however, unlike CD44, which is often used 

to tether cells to hyaluronan, Stab2 is characterised for its role as a scavenger 

receptor, acting to remove hyaluronan from the blood stream (Hirose et al., 

2012). Given the utility of CD44 in the AGM to track EHT and the recently 

uncovered role for hyaluronan in blood cell emergence we decided to 

combine staining of CD44 expression with Stab2 in the yolk sac. We found 

that cells expressing high levels of CD44 had no Stab2 expression on their 

cell surface while the majority of cells with lower expression of CD44 also 

expressed Stab2 (Fig. 26a & b). If, as we see in the AGM, CD44Low cells 

transition into CD44High cells, then the CD44Low fraction appears to either 

arise from Stab2- vascular endothelium or Stab2 is down-regulated as CD44 

is up-regulated. To further explore this hypothesis we looked at the pre-HSPC 

specific marker CD61 (Itgb3) that we identified in our previous transcriptional 

analysis of EHT in the AGM (Fig. 12b). We found that by excluding Stab2+ 

cells from the CD44Low/Kit+ fraction of the vascular endothelium of the yolk 

sac we could dramatically enrich for CD61+ cells (Fig. 26b). This further 

supported the idea that the haematopoietic transition was occurring in the 

Stab2 negative portion of the yolk sac endothelium.  
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Figure 26: Stab2 appears to be down-regulated in more haematopoietic 
populations  

Flow cytometry analysis of mouse yolk sacs at E10 found that CD44High cells lack 
Stab2 expression while the majority of CD44Low cells are Stab2+ (A). VE-
Cadherin+/CD44+/Stab2-/Kit+ cells are enriched for the pre-HSPC marker CD61 
(B).  
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5.2 Stab2 can be used to isolate a haematopoietic progenitor population 

in the yolk sac 

5.2.1 Single cell qPCR isolates AGM-like haematopoietic progenitors 

from the yolk sac by excluding Stab2 expression  

To understand whether we could isolate AGM-like haematopoietic progenitors 

from the yolk sac by excluding Stab2 surface expression we performed single-

cell qPCR on sorted populations from E10 and E11 staged embryos. By 

analysing the 95 haematopoietic and endothelial related genes 

(Supplementary table 1), across 212 cells expressing various combinations of 

VE-Cadherin, CD44, c-Kit and Stab2 we could isolate four populations with 

varying degrees of haematopoietic and endothelial gene expression (Fig. 

27a). We found that the CD44High population of the yolk sac closely 

resembled that of the AGM with expression of haematopoietic genes such as 

Runx1, Ikzf1, Csf1r and the pan-haematopoietic marker Cd45 (Ptprc)  as well 

as down-regulation of endothelial genes such as Emcn, Pecam1, Tek, Kdr 

and Sox17 (Fig. 27b & Supplementary Fig. 4). Furthermore, the 

CD44Low/Kit+/Stab2- cells also resembled our previously characterised pre-

HSPC population with dual expression of endothelial and haematopoietic 

genes alongside specific markers like Adgrg1 and Itgb3 (Fig. 27b & 

Supplementary Fig. 4). We also identified a small endothelial population 

mostly composed of CD44Low/Kit-/Stab2- cells which shared some similarity 

with the haemogenic endothelial population we found in the AGM (Fig. 27b & 

Supplementary Fig. 4). This population showed some small changes in gene 

expression that could indicate it is the precursor of the pre-HSPC-like 

population with slight decreases in Emcn and Pcdh12 as well as increases in 



	 129	

Emb, Pde3a and Sox6 (Fig. 27b). With this small set of genes we were not 

able to further disentangle any differences between the CD44Neg and 

CD44Low/Stab2+ populations although they appeared largely endothelial in 

nature. Further transcriptional and functional investigation of these 

populations is needed to understand their contribution, if any, to embryonic 

haematopoiesis.  
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Figure 27: Single-cell qPCR identifies haematopoietic progenitors in the Stab2- 
cell populations 

Single cells were FACS sorted into 96-well plates based on their expression of VE-
Cadherin, CD44, Stab2 and c-Kit from the yolk sacs of E10 mouse embryos. t-SNE 
dimension reduction analysis identified four clusters of cells corresponding mainly to 
cells with CD44High, CD44Low/Stab2-/Kit+, CD44Low/Stab2-/Kit- and a combined 
group of endothelial-like cells (A). Average log2 expression of each group based on 
single-cell qPCR showed that CD44High cells from the yolk sac resembled those 
isolated from the AGM and that CD44Low/Stab2-/Kit+ cells expressed both endothelial 
and haematopoietic marker genes (B).   
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Chapter 6: Discussion 
6.1 Summary of results 

Using single-cell transcriptomic analysis we sought to characterise the 

endothelial populations present in embryonic haematopoietic tissues of the 

mouse embryo. We identified the HABP, CD44 as a cell surface receptor that 

could be used in conjunction with Kit and VE-Cadherin to track the 

progression of EHT. With this combination of markers, we were able to 

robustly isolate different stages of HSPC formation. This enabled us to 

perform in depth transcriptional analysis and characterise the physical 

properties of vascular endothelium, haemogenic endothelium, pre-HSPC type 

I and type II cells. Our transcriptional results were in line with previous reports 

on the importance of the heptad of haematopoietic transcription factors and 

the dynamic role of Hedgehog, Notch, Wnt and Bmp/Tgfβ  signalling 

pathways. We uncovered distinct differences in cell size, cell cycle and 

metabolic status as endothelial cells transition towards HSPCs, and with RNA 

sequencing were able to identify new potential regulators of EHT for future 

investigation. In addition, we found a functional role for CD44 and its ligand 

hyaluronan in EHT through ex vivo co-culturing assays and manipulation of 

the mouse in vitro model of blood development. This emphasises the 

importance of the microenvironment in cellular transitions and the need for 

further research into the role the extracellular matrix components in this 

process.  

 

By comparing endothelial populations from the yolk sac and AGM we were 

able to identify a second HABP, Stabilin-2, as a cell surface receptor that is 
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present on endothelial cells of the yolk sac and absent in the AGM.  We found 

that Stab2 was not expressed on cells advanced in the transition towards 

haematopoietic progenitors and that by excluding Stab2+ cells we could 

easily isolate AGM-like haematopoietic progenitors from the yolk sac. Further 

work is needed to characterise these progenitors and to understand the role 

of the Stab2+ endothelium in the yolk sac microenvironment. Our discovery of 

two hyaluronan receptors as markers for endothelial populations in embryonic 

haematopoiesis poses intriguing questions on the overall effect of hyaluronan 

on EHT.   

 

6.2 CD44 is a new marker of EHT 

6.2.1 CD44 has broader expression than Kit but is more specific than 

CD41 

Previous work in developmental haematopoiesis has relied heavily on the cell 

surface marker CD41 for emerging HSPC populations, with CD45 serving to 

mark more mature haematopoietic cell types (Ferkowicz et al., 2003; Rybtsov 

et al., 2011, 2014). However, there are a few issues with the use of CD41 as 

a marker in this system. CD41 is expressed at the focal point between cells of 

the haematopoietic cluster, making it more difficult to identify the positive cells 

(Boisset et al., 2010). Furthermore, the receptor displays a variable 

expression pattern, whereby it is up-regulated during pre-HSPC development 

before being down-regulated again as the HSPCs migrate to the foetal liver 

and bone marrow (Robin, Ottersbach and Boisset, 2011; Boisset et al., 2013). 

Transplantation studies performed using cells marked by CD41 and its partner 
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receptor CD61 found that stem cell potential resided only within the double 

positive population (Boisset et al., 2013). Furthermore, the first single cell 

RNA sequencing study published on EHT dynamics using CD41, CD43 and 

CD45 as markers failed to capture the earliest steps of the transition, namely 

haemogenic endothelium (Zhou et al., 2016). Indeed, our own single cell 

transcriptome data reveals that CD41 has weak and variable expression, 

however, CD61 appears to strongly and specifically mark pre-HSPC type I 

cells (Fig. 11a). Cartography studies of the mid-gestation mouse embryonic 

vasculature opted to use Kit for the quantification of haematopoietic clusters, 

most likely due to its greater specificity (Yokomizo and Dzierzak, 2010). 

However, the Kit receptor is up-regulated later in EHT than CD41 (Rybtsov et 

al., 2014). Conversely, CD44 is expressed on the outer surface of cells in the 

haematopoietic clusters (Fig. 8a) and is up-regulated prior to CD41 (Fig. 11a), 

maintaining its expression as cells migrate to the foetal liver and bone marrow 

(Avigdor et al., 2004). As such CD44 can be used to mark the earliest stage of 

EHT and presents itself as a more reliable marker of HSPC emergence as 

expression of CD44 increases with haematopoietic identity.  

 

6.2.2 Utility of CD44 could be improved through analysis of tissue-

specific isoforms 

A significant drawback of using CD44 as a marker is its widespread 

expression in many non-haematopoietic tissues. The smallest variant of 

CD44, CD44s is expressed on a wide variety of cell types and is the target of 

most commercial anti-bodies. Alternative splicing, however, of the ten variant 

exons present in the CD44 transcript are thought to provide significant tissue 
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specificity (Hirano et al., 1993). To understand if different splice variants of 

CD44 are expressed on haematopoietic precursors we extracted RNA from 

CD44+ and CD44- cells from the AGM, yolk sac and blast culture. Primers 

were designed in the constitutive exons either side of the variable region 

(Supplementary Fig. 2a). Amplification of the resulting cDNA revealed 5 

bands in the VE-Cadherin+/CD44+ cell fraction (Supplementary Fig. 2b). The 

smallest band corresponded to the expected size for the CD44s isoform. All 

tissues displayed the same banding pattern (data not shown). Sequencing of 

AGM derived cDNA revealed that the smallest band (E) indeed corresponded 

to the common CD44s isoform and that the larger bands (A, B and C) aligned 

to regions of the variable exons 8, 9 and 10 (Supplementary Fig. 2c). 

Interestingly, despite the larger size on the gel of band A compared to band B 

sequencing revealed a larger region of homology between bands B and the 

CD44 coding sequence. This could be explained by the presence of an 

alternative splice site in the intervening intron. Bands D and F did not align to 

the CD44 coding sequence. Thus, it appears that several CD44 variant 

isoforms are present on haematopoietic progenitors of the AGM. This 

preliminary data, although intriguing, requires further investigation to identify 

and validate the significance of these isoforms to the process of EHT.  

 

Further investigation of the expression of CD44 isoform(s) in EHT could also 

lead to a more complete understanding of its function. As previously 

discussed, addition of alternative exons to the stem region of the CD44 

receptor can modify its binding capacity. Much of the research centres on the 

effect CD44 variant isoforms have in various cancer models. The presence of 
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CD44v8-10 has been linked to increased metastatic potential in some cancers 

(Lau et al., 2014). Interestingly, this potential is thought to occur by CD44v8-

10 promoting endothelial junction disassembly through the phosphorylation of 

VE-Cadherin (Zhang et al., 2014). Given that VE-Cadherin is also important 

during EHT, this would be an interesting mechanism of action to explore in the 

haematopoietic system.  

 

6.3 CD44 has enabled in-depth transcriptional analysis of EHT dynamics 

6.3.1 CD44Negative cells express both venous and arterial markers 

The identification of CD44 as a marker of pre-HSPCs led to the isolation of 

two endothelial populations from the VE-Cadherin+ fraction of the AGM. Both 

CD44Negative and CD44Low/Kit- populations displayed broadly endothelial 

profiles, however, the shared expression of Smad6, Smad7, Fbn1 and Pde3a 

between CD44Low/Kit- and CD44Low/Kit+ cells led us to hypothesise that 

these cells represented the earliest stage of EHT – haemogenic endothelium 

(Fig. 11 & 12). This transcriptional association was further investigated and 

confirmed using 25-cell RNA sequencing (Fig. 14 & 15).  

 

Some reports have suggested that CD44 is simply an arterial cell marker, 

leading us to question whether our second endothelial population derives from 

the nearby cardinal vein (Robert-Moreno et al., 2008). Previous single cell 

analysis of EHT, which isolated CD31+/VE-Cadherin+/CD41-/CD43-/CD45- 

endothelial cells from the AGM, identified only one population (Zhou et al., 

2016). This population clearly corresponded with our CD44Negative cells. It 

seems unlikely that two independent research groups would have such high 
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contamination of endothelial cells from a smaller nearby vessel, especially 

given that CD44Negative cells are the most numerous VE-Cadherin+ 

population represented in our FACS data of the AGM region (Fig. 9a).  

 

Furthermore Zhou and colleagues (2016) published an interesting finding 

identifying both venous and arterial markers in their CD31+/VE-

Cadherin+/CD41-/CD43-/CD45- endothelial cells and a down-regulation of 

venous markers in their CD31+/CD45-/CD41Low/c-Kit+/CD201High type I pre-

HSCs. We observed a similar phenomenon whereby our CD44Negative 

endothelial population expressed both venous (Nr2f2, Nrp2, Ephb4) and 

arterial makers (Efnb2, Sox17) while our haemogenic endothelial cells 

showed a loss of Nrp2 and Nr2f2 expression (Supplementary Fig. 3). 

Interestingly, expression of the traditional venous marker Ephb4 was 

maintained alongside the arterial marker Efnb2 in the haemogenic endothelial 

cells, and only lost upon acquisition of a haematopoietic profile.  

 

This down-regulation of venous related markers reflects the view in the field 

that the haematopoietic lineage is more closely related to the arterial 

endothelium. Although it is the case that HSC development is restricted to the 

major arteries, this could be the result of the arterial microenvironment rather 

than an inherent property of arterial endothelial cells. Indeed, over-expression 

of the Notch intracellular domain was found to expand HSPC production to 

the venous vessels, indicating that venous endothelial cells could be 

competent for EHT given the right conditions (Burns et al., 2005). 

Furthermore, these findings suggest that the expression of venous and 
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arterial markers may not be as definite as previously thought in embryonic 

development.  

 

6.3.2 Transcriptional regulation of pre-HSCs 

It is important to understand the transcriptional dynamics of this process as 

haemogenic endothelium represents the starting point of HSC development. 

Recently, promising results were achieved in HSC reprogramming using 

transcription factor cocktails to induce fate change.  Interestingly, this success 

was achieved through the use of either endothelial cells as a starting point or 

transitional state, highlighting the importance of understanding the endothelial 

origin of HSCs (Lis et al., 2017; Sugimura et al., 2017).  

 

When comparing our transcriptional profiles to the previously published 

single-cell dataset by Zhou and colleagues (2016), we find many of the same 

haematopoietic transcription factors up-regulated at the pre-HSPC type I 

stage (Nfe2, Runx1, Gfi1, Spi1 and Ikzf2) (Fig. 11a & 14b). However, several 

of the genes they highlight as part of the pre-HSPC type I signature we 

observe up-regulated at the haemogenic endothelial stage which was not 

captured in the previous analysis, including, Nkx2-3, Hlf, Sox6, Bcl11a and 

Stat4 (Fig. 14b). Furthermore, we can identify several novel transcription 

factors not previously associated with embryonic haematopoiesis, including, 

Irf6, Nfat5, Mllt3, Yy2, Isl1 and Mecom (Fig. 14b). We also found two 

receptors Itgb3 (Cd61) and Adgrg1 (Gpr56) that act as specific markers of 

early pre-HSPCs. Although Zhou and colleagues also identified these 
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receptors, they reported no difference in the expression of these markers 

between pre-HSPCs type I and type II populations (Fig. 11a).  

 

Overall, the advantage of our analysis is that we can utilise a simple and 

robust sorting strategy that can isolate all stages of HSPC development and 

importantly distinguish vascular and haemogenic endothelium. From our RNA 

sequencing results we have been able to uncover new potential regulators of 

haematopoietic development, finding 32 transcription factors up-regulated at 

the haemogenic endothelial stage (Fig. 14b). This could have important 

implications for the regenerative medicine field given the utility of transcription 

factor reprogramming to HSC production.  

 

6.3.3 The CD44Low/Kit- haemogenic endothelial population is at the 

intersection of key signal transduction pathways 

Transcriptional analysis of the EHT process also provided us with insight into 

the dynamic signalling interactions that occur during HSC development. 

Previous research has shown that Hedgehog and Bmp signalling are needed 

to pattern the AGM region in preparation for EHT (Wilkinson et al., 2009). In 

the CD44Low/Kit- haemogenic endothelial population we observed a down-

regulation of target genes of the Hedgehog signalling pathway, including, 

Myc, Ccnnd1 and Snai1 (Fig. 15). Reduction in Snai1 expression is surprising 

given its link to a similar cellular transformation, the epithelial to mesenchymal 

transition (EMT) that occurs in cancer cells (Carver et al., 2001).  
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In regards to the Bmp/ Tgfβ signalling pathway, we observed more distinct 

changes. Bmp4 and its target gene Lef1 were both down-regulated at the 

haemogenic endothelial stage. This is consistent with previous work that 

showed down-regulation of the Bmp pathway was necessary for pre-HSPC 

emergence (Marshall, Kinnon and Thrasher, 2007; Pimanda et al., 2007). We 

also observed an up-reguation of the Bmp receptor Bmpr1a, which was 

previously found to play a role in maintaining the size of the HSC niche in the 

bone marrow (Zhang et al., 2003). Furthermore we saw specific up-regulation 

of the Bmp target genes Id1 and Id2 that are known to act as transcriptional 

repressors often used to prevent cellular differentiation (Benezra et al., 1990; 

Norton et al., 1998). As such, their high expression in haemogenic 

endothelium and subsequent down-regulation could indicate that these cells 

are primed and waiting to undergo EHT.  

 

The related Tgfβ  pathway, is also known to play an essential role in 

haematopoietic development with knockout of Tgfβ receptor II and Tgfβ1 

ligand resulting in embryonic lethality from haematopoietic defects (Dickson et 

al., 1995; Oshima, Oshima and Taketo, 1996). In vitro treatment of immature 

HSPCs with Tgfβ inhibited their proliferation while exposure of the mouse 

ESC differentiation system to a Tgf β  inhibitor greatly increased 

haematopoietic output (Keller et al., 1990; Vargel et al., 2016). Our study 

further supports the idea that Bmp/Tgfβ signalling must be inhibited for EHT 

to occur as we see a specific up-regulation of the Bmp antagonist Bmper and 

the Tgfβ inhibitors Smad6 and Smad7 at the haemogenic endothelial stage 
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(Fig. 15).  Previous studies have shown that these genes are up-regulated on 

the ventral side of the dorsal aorta, providing further support for our isolation 

of haemogenic endothelium using CD44 cell surface expression (Pimanda et 

al., 2007; McGarvey et al., 2017).  

 

Down-stream of Hedgehog, Wnt and Bmp/Tgfβ signalling pathways is the 

Notch pathway (Clements et al., 2011; Kim et al., 2013). Notch signalling is 

also strongly associated with early HSPC development as the knockout 

mouse models of Notch1, Jagged1 and RBP-Jκ show significant defects in 

definitive haematopoiesis (Kumano et al., 2003; Robert-Moreno et al., 2005, 

2008). In accordance with this we saw a strong and specific up-regulation in 

both Notch1 and Jagged1 in the haemogenic endothelial population along 

with their target genes Hey1 and Hey2 (Fig. 15). It is possible that CD44 is an 

early down-stream target of Notch signalling as knockout of the Notch 

transcription factors Hey1 and Hey2 results in loss of CD44 expression 

(Fischer et al., 2004). It is this transient Notch expression that also leads to 

the up-regulation of the master transcriptional regulator of haematopoietic 

development, Runx1 (Burns et al., 2005; Nakagawa et al., 2006).  

 

The idea that Bmp/Tgfβ inhibited and Notch responsive endothelial cells up-

regulate Runx1 in order to initiate EHT is not a new model of HSC 

development. What is new is our isolation of a potential early Notch target, 

Cd44 which is a cell surface receptor up-regulated prior to Runx1 expression 

that enables the easy isolation of this population for in depth investigation. 

Although haemogenic endothelium displays differences in other receptor 
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proteins such as Notch1, Jagged1 and Bmpr1a these receptors show less 

dynamic range in their expression when compared to the neighbouring 

endothelial cells. This is due to the dynamic nature of Notch signalling, which 

regulates both arterial and haematopoietic fate, the outcome of which is also 

dependent on the strength and timing of that signal (Gama-Norton et al., 

2015; Souilhol et al., 2016).  

 

This series of events is supported by our experiments with the Runx1 

knockout mouse model. We showed that loss of Runx1 resulted in the 

absence of both the CD44Low/Kit+ and CD44High pre-HSPC populations but 

did not affect the formation of CD44Low/Kit- cells (Fig. 19). Indeed, single cell 

qPCR identified no transcriptional changes between cells derived from wild-

type versus Runx1-/- embryos (Fig. 19). Runx1 is not necessary for the 

specification of haemogenic endothelium but for its initiation of EHT. This idea 

is supported by studies where expansion of Runx1 and Notch intracellular 

domain expression into non-arterial endothelial cells resulted in the 

exogenous formation of HSPCs (Burns et al., 2005; Yzaguirre et al., 2018).  

 

6.3.4 The quiescence and metabolic changes in haemogenic 

endothelium is reminiscent of adult HSCs  

HSCs are known to rely on glycolysis for their energy needs. This is in part 

due to their lodgement in the hypoxic bone marrow niche but is also a 

mechanism used to protect their DNA from reactive oxygen species across 

their long life-span (Chen et al., 2008; Simsek et al., 2010). This carefully 

regulated metabolic program also allows HSCs to maintain their quiescent 
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nature (Takubo et al., 2013). Maintaining this low metabolic state and hence 

the longevity of the HSC compartment is facilitated by autophagy which 

degrades active mitochondria in the cytoplasm (Ho et al., 2017). Similarly, 

endothelial cells also function mostly through the glycolytic pathway, however 

the reasons are slightly different. Vascular endothelial cells rely on glycolysis 

in order to rapidly switch from quiescence to proliferation during angiogenesis 

and function effectively in avascular areas (Mertens et al., 1990; De Bock et 

al., 2013). Endothelial cells are also thought to utilise glycolysis as a pathway 

to synthesise important macromolecules, to reduce their exposure to reactive 

oxygen species and to preserve oxygen molecules for transfer (De Bock, 

Georgiadou and Carmeliet, 2013; Wilhelm et al., 2016).  

 

Comparison of the transcriptomes of our vascular and haemogenic 

endothelial populations found a difference in the expression of numerous 

metabolic genes. Overall, we observed a global down-regulation of genes 

related to the glycolysis pathway and the TCA (tricarboxylic acid) cycle as well 

as an up-regulation of genes related to autophagy (Fig. 16). This finding was 

consistent with our previous observation that haemogenic endothelial cells 

were significantly smaller in size compared to both vascular endothelial cells 

and pre-HSPCs (Fig. 9b). Furthermore, cell cycle analysis revealed that this 

cell population was quiescent in nature with on average approximately 92 per 

cent of cells in the G0/G1 phase (Fig. 10). This high level of quiescence could 

also explain the lack of growth we observed in our OP9 co-culture assay. It is 

possible that this cell population is more preoccupied with transcriptional 

changes, which could also explain the significant increase in expression of 
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many transcription factors we found in comparison to the vascular endothelial 

population (Fig. 14b).  

 

The EHT process is known to occur through trans-differentiation rather than 

cell division (Kissa and Herbomel, 2010). As such, it is also possible that 

these future HSCs are tightly managing their exposure to reactive oxygen 

species in an effort to protect themselves from DNA damage, which could limit 

their lifespan in the haematopoietic niche. Changes in metabolic state has 

also been linked to epigenetic reprogramming which could also explain the 

differences observed in endothelial cells primed for haematopoietic transition 

(Ryall et al., 2015).  Interestingly, we found that a methyl-transferase, 

Dnmt3b, was up-regulated in both haemogenic endothelial cells and pre-

HSPCs type I (Fig. 11a & 12b). Dnmt3b is responsible for de novo methylation 

during embryogenesis and is known to combine with Dnmt3a to enable the 

differentiation of adult HSCs (Challen et al., 2014). This observation is further 

supportive of the idea that these cells could be undergoing a change of fate.  

 

6.4 Hyaluronan and HABPs are implicated in the progression of EHT 

6.4.1 The binding of CD44 to hyaluronan could enable cell shape change 

and migration  

Much of what we know about CD44 is due to its role in the migration of cancer 

cells. Both increased deposition of hyaluronan around cancer cells and the 

presence of CD44 on the cell surface are strongly associated with EMT, a 

transition that has been speculated to share commonalities with EHT 

(Günthert et al., 1991; Okamoto et al., 1999; Auvinen et al., 2000; Lipponen et 
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al., 2001; Patrawala et al., 2006). Similarly, deletion of the hyaluronan 

synthase enzyme Has2 impairs migration of cells during gastrulation 

(Bakkers, 2004). It is now known that CD44 is up-regulated at the very 

beginning of HSPC emergence from the dorsal aorta (Fig. 8). And from 

previous research, we know that CD44 expression is maintained as HSPCs 

migrate to the bone marrow (Cao et al., 2015). Thus, a likely function of CD44 

on the surface of HSPCs is to aid in migration to the different sites of 

haematopoiesis. Given the strong interaction between CD44 and hyaluronan 

and its role in the formation of pericellular matrices, it is possible that CD44 

also functions to enable the shape change required during EHT or to protect 

the travelling HSPCs in their journey to the foetal liver (Knudson, Bartnik and 

Knudson, 1993).  

 

6.4.2 Loss of CD44 could be compensated for by related HABPs 

Although we could perturb EHT and the haematopoietic output by applying a 

CD44 blocking antibody to ex vivo cells or our in vitro culture system, a similar 

phenomenon does not occur when we knock out the Cd44 gene entirely from 

our ES cells (Fig. 20-22). Loss of CD44 in mice also results in only mild 

perturbations in lymphocyte homing and HSC migration (Schmits et al., 1997; 

Cao et al., 2015). This could be a result of redundancy in the system whereby 

another HABP or integrin receptor can compensate for the loss of CD44. This 

has been demonstrated in a collagen-induced arthritis mouse model, whereby 

the loss of CD44 increases inflammation as hyaluronan instead binds to the 

Hyaluronan mediated motility receptor (Hmmr) (Nedvetzki et al., 2004).  The 

arthritis is only alleviated through the knockdown of both CD44 and Hmmr 



	 145	

(Nedvetzki et al., 2004). Similarly, a compensation mechanism has also been 

demonstrated in primary liver cultures, where use of CD44 blocking antibodies 

inhibited regeneration but no phenotype was observed in CD44 knockout 

animals.  Instead the heterologous receptor Intercellular adhesion molecule-1 

(ICAM-1) compensated for the loss of CD44 (Olaku et al., 2011). Thus, it 

seems plausible that within the haematopoietic system the function of CD44 

could also be performed by other cell surface receptors. This is especially 

likely given the critical nature of HSPC development and the evolutionary 

conservation we observe in EHT.   

 

6.4.3 Preliminary data suggest that haematopoietic capacity is restricted 

to Stab2- cell populations 

Based on flow cytometry analysis and transcriptional data we found an anti-

correlation between Stab2 expression and haematopoietic markers (Fig. 26). 

Thus, by excluding Stab2+ cells we could enrich for haematopoietic 

progenitors amongst VE-Cadherin+ cells of the yolk sac (Fig. 27). While the 

transcriptional profile of these progenitors appears very similar to the type I 

pre-HSPCs derived from the AGM, it would be interesting to investigate their 

functional capacity and perform lineage tracing to understand their origin and 

eventual fate. Interestingly, Stab2 expression is also absent from the in vitro 

haemangioblast culture (Fig. 25d). These results indicate that Stab2 can be a 

useful tool to enrich for haematopoietic progenitors in the yolk sac. It remains 

to be established whether Stab2+ endothelium down-regulates this receptor 

on the path to haematopoietic development or whether two independent 

vascular endothelial populations co-exist in the blood vessels of the yolk sac.  
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The question still remains, what role do Stab2+ endothelial cells play in the 

yolk sac and are they involved in embryonic haematopoiesis? Stab2 is 

characterised as a hyaluronan binding protein and scavenger receptor 

(Schledzewski et al., 2011; Hirose et al., 2012). Interestingly, within the top 

markers identified for VE-Cadherin+ yolk sac cells from our single-cell RNA 

sequencing was another hyaluronan binding protein, Lyve1 and two other 

scavenger receptors Mrc1 and Colec12 (Fig. 23 & 24). Furthermore, both 

Lyve1 and Mrc1 in addition to Stab2 are known markers of liver sinusoidal 

endothelial cells (Nonaka et al., 2008; Sørensen et al., 2015). Stab2 has also 

been reported as a cell surface receptor on bone marrow sinusoidal 

endothelial cells, indicating a role for Stab2 in HSPC homing and adhesion 

which is analogous to a report that Stab2 is involved in lymphocyte adhesion 

in the liver (Jung, Park and Kim, 2007; Qian et al., 2009). Given the 

association of HSPCs with sinusoidal endothelial cells in the bone marrow 

and the expression of Stab2 on endothelial cells in all three haematopoietic 

tissues (bone marrow, liver and yolk sac) we hypothesise that Stab2 could 

play a supportive role for HSPCs in the yolk sac as part of an endothelial 

niche (Kiel et al., 2005; Kunisaki et al., 2013). Although this is highly 

speculative, the shared expression of Stab2 across several haematopoietic 

sites is very interesting and worth further exploration.  

 

6.5 Conclusions and future plans  

Overall, we have identified two hyaluronan receptors that act as interesting 

markers for distinct endothelial and haematopoietic populations in the yolk sac 
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and AGM. CD44 is particularly intriguing, as it appears to be a cell surface 

marker up-regulated just prior to Runx1 expression. Use of CD44 opens up 

the possibility to better study the earliest stages of EHT and we hope that this 

marker will prove useful to the field of embryonic haematopoiesis. In the 

future, it would be interesting to increase the specificity of CD44 as a marker 

by investigating the expression of variant exons 8, 9 10 with quantitative PCR, 

full length transcriptome sequencing or isoform specific antibodies. It would be 

further useful to explore the idea that CD44 is a down-stream target of Notch 

signalling through FACS analysis of the Jag1 or Rbp-jκ knockout mouse 

models. This could also provide insight into the receptors that could 

compensate for CD44 function leading to the development of double knockout 

mice. One likely candidate would be the hyaluronan binding protein Hmmr. In 

this way we could more fully understand the role of CD44 in EHT. 

Understanding the mechanism of CD44 action could also be explored through 

the use of fluorescently tagged hyaluronan molecules enabling us to see how 

pre-HSPCs associate with hyaluronan as they emerge and migrate in the 

embryo.  

 

In addition to understanding how CD44 is functionally involved in embryonic 

haematopoiesis, this work has also opened up several new avenues of 

research to explore in regards to EHT. We uncovered several new potential 

regulators of HSPC emergence. These candidates could be further 

investigated through over-expression studies in our in vitro system of EHT or 

through the use of conditional knockout mouse models. Furthermore, it would 

be interesting to look at the epigenetic regulator Dnmt3b to understand 
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whether it plays a role in re-shaping the chromatin during this transition. Being 

able to isolate cells so early in this transition process by using CD44 also 

means that we can explore the very first changes in the chromatin using more 

global techniques such as ATAC-seq. Finally, it would be worthwhile to further 

investigate the metabolic changes we observed during EHT. As the 

differences we observe in glycolysis, the TCA cycle and autophagy are based 

on transcriptional data it would be useful to validate these results with direct 

measurements of metabolic by-products such as lactate or with fluorescent 

staining of autophagosomes or active mitochondrial potential.  

 

The work we report here on Stab2 expression in the yolk sac is in the 

preliminary stages of research. Our main finding is that by excluding Stab2 

expression we can greatly enrich for haematopoietic progenitors in this tissue. 

However, this project poses interesting questions and possibilities due to the 

similarity of these yolk sac endothelial cells with the liver and bone marrow. 

The next steps will be to perform imaging analysis to see if these endothelial 

cells interact with haematopoietic progenitors and to over-express Stab2 in 

our mESC culture system to see whether EHT can be inhibited. Ultimately it 

would be interesting to use Stab2 in a lineage tracing experiment to 

understand whether Stab2+ endothelium contributes to the haematopoietic 

lineage. 	
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Supplementary Figure 1: Single cell RNA sequencing on 78 VE-Cadherin+ cells from the 
AGM 

The transcriptional profile of 78 single cells derived from the VE-Cadherin+ fraction of the AGM 
(A). Bioinformatic analysis comparing the expression of the endothelial cluster and 
haematopoietic cluster identified CD44 as a significant marker gene (B). This experiment was 
performed by Ozge Vargel and the bioinformatics analysis was performed by Valentine 
Svensson. 
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Supplementary Figure 2: CD44 splice variation analysis in VE-Cadherin+/CD44+ cells from 
the AGM 

Depiction of CD44 constitutive exons (red) and variant exons (blue) indicating the placement of 
forward and reverse primers used to amplify alternative CD44 isoforms (A). Lines indicate where 
bands A, B, C and E aligned in relation to the CD44 transcript. Bands D and F did not align to the 
CD44 coding sequence. Agarose gel showing CD44 splice isoforms amplified from VE-
Cadherin+/CD44+ and VE-Cadherin+/CD44- FACS sorted AGM cells (B). Letters indicate bands 
that were cut and sequenced. Sequence alignment between CD44 coding sequence and bands 
indicating the variant and constitutive exons to which they align (C).  
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Supplementary Figure 3: Expression of venous and arterial markers 

25-bulk RNA sequencing reveals differences in arterial and venous gene 
expression between CD44Neg and CD44Low/Kit- cells (A).  
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Supplementary Figure 4: Heatmap of single cell qPCR of Stab2+ and Stab2- yolk sac 
endothelium 

Single cell qPCR data of 212 cells sorted based on the cell surface markers VE-Cadherin, 
CD44, c-Kit and Stab2 from the yolk sac at embryonic day E10 and E11. Clusters of cells are 
marked that display a transcriptional profile similar to the pre-HSPCs and haemogenic 
endothelial populations previously identified in the AGM.  
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Supplementary Table 1: Primers designed against 95 genes for single-
cell qPCR 

Gene 
Name 

Outer Forward 
Primer 

Outer Reverse 
Primer 

Inner Forward 
Primer  

Inner Reverse 
Primer 

Acta2 AGGCACCACTGA
ACCCTAAG 

CACAGCCTGAATA
GCCACAT 

CCAACCGGGAGA
AAATGAC 

ATGGCGGGGACA
TTGAAG 

Acvrl1 CGAATTGCCCATC
GTGACCTCAA 

CGTGGTTGTTGC
CGATATCCAGGTA 

CGAAGTCGCAAT
GTGCTGGTCAA 

CGAAGTCGCAAT
GTGCTGGTCAA 

Adgrg1 GTGGTGGAGGTC
TTCGGTAC 

GGGCCGTAGTTA
TTCACATCCA 

CTATGTGCCCGG
CTATCTG 

CAACGCCACCAG
AGTGA 

Alox5ap TGCGTACCCCAC
TTTCCTTGT 

TCTCTCTCCCAGA
TAGCCGACA 

GCAGGACTACTTT
GCAGCCA 

AGGTACATCAGTC
CGGCGAAGG 

Angpt1 CAGCACGAAGGA
TGCTGATAA 

CCCGCAGTGTAG
AACATTCC 

CTGTATGTGCAAA
TGCGCTCTC 

ATTTAGATTGGAA
GGGCCACAGG 

Atp2a3 CGACCATTGTGG
CTGCAGTAGAA 

CGTCCCAGAATT
GCTGTGAGGAA 

CGAGAGGGCAGG
GCCATCTACA 

CGAGAGGGCAGG
GCCATCTACA 

Bcl11a CCCGGGATGAGT
GCAGAATA 

CTGTGCGTGTTG
CAAGAGAA 

GCCCCGCAGGGT
ATTTGTAAA 

ATGCACTGGTGA
ATGGCTGTT 

Bmp4 CAGCCGAGCCAA
CACTGTGA 

TGGGATGCTGCT
GAGGTTGA 

AGTTTCCATCACG
AAGAACATCTGG 

GAGGAAACGAAA
AGCAGAGC 

Cbfa2t3 AACCAGCAAGAG
GACTCCA 

CTCCCAGTCTTTG
TGCTGAC 

GCGAGAGCTGCT
GGAAC 

AGAAGGACCCGC
AGTAGC 

Cbfb CCCGGACCAGAG
GAGCAA 

CGGCAGGCGTTC
TGGAA 

TCGAGAACGAGG
AGTTCTTCAG 

CGTGTCTGGCGC
TCCT 

Cd44 CCCCTCCTGAAG
AAGACTGTACA 

GCTGTAGCGAGT
ACCATCACG 

GTCACAGACCTA
CCCAATTCCTTCG
A 

GCTGTAGCGAGT
ACCATCACG 

Cd47 CTTCTGGACTTGG
CCTCATTGT 

ACGTAGCCCAGC
ACTTGAGT 

TCTCTACGGGGA
TATTAATACTACT
TCAG 

TGGCAATGGTGA
AAGAGGTCA 

Cdh2 ATCAACAATGAGA
CTGGGGACATCA 

CTTCCATGTCTGT
GGCTTGAA 

CACTGTGGCAGC
TGGTCTGG 

ATTAACGTATACT
GTTGCACTTTCTC
TCG 

Cdh5 CGACACCATCGC
CAAAAGAGAGAC 

CGTCTTAGCATTC
TGGCGGTTCAC 

CGAGGATTTGGA
ATCAAATGCACAT
CG 

CGAGGATTTGGA
ATCAAATGCACAT
CG 

Col3a1 TCTTCTCACCCTT
CTTCATCCC 

TGACATGGTTCTG
GCTTCCA 

ACTCTTATTTTGG
CACAGCAGTC 

TCTCTAGACTCAT
AGGACTGACCAA 

Col4a2 CGACCCTGGAAG
CCCTGGATTTA 

CGTTGTCTTCCCT
TAAGTCCCAACA 

CGATGGCAGGGA
TGCCTGGT 

CGATGGCAGGGA
TGCCTGGT 

Col4a5 CGAGGACTCTCT
GTGGATTGGCTA 

CGTATGAAGGGA
GCGGAACGAA 

CGATTCATGATGC
ATACAAGTGCAG
GA 

CGATTCATGATGC
ATACAAGTGCAG
GA 

Coro1a TCTGCGCTGTCAA
CCCCAAGT 

ACCAGGGGCACG
TTCTTGTCT 

GCTCTGATCTGTG
AGGCCAG 

ACTCGTCCAGTCT
TGCCTAG 

Csf1r ACCCTACTCAGTT
GCCCTACA 

GCCCAGACCAAA
GGCTGTA 

GTGGGAGTTCCC
TCGGAACAA 

GCCTCCACCACC
TTCCCAAA 

Cxcl12 TCTTCGAGAGCC
ACATCGCC 

TGTCTGTTGTTGT
TCTTCAGCCGT 

AGAGCCAACGTC
AAGCATCTGA 

CTGAAGGGCACA
GTTTGGAGT 

Dapp1 ACAGAGTGCTCA
GCTGTTCAA 

CCATTCATCGGCT
TCAACTCC 

TTTGATTACTCAC
AGGAACGAGTAA 

CGTCTTTGCACAG
AGATAAAATGT 

Dnmt3b TTGGTGGAAGCC
CATGCA 

CCTTGGGGCGGG
TATAATTCA 

ATGATCTCTCTAA
CGTCAATCCTG 

GCAAGTGGTAAA
ACTCGAAGAAG 

Dock2 GTACCACTCAGTC
GTCTACTACC 

GAGCGGTGTCGA
AACATGAA 

AAGTCAAACAGC
CCCGATG 

CCTCAAATGGATC
CTCTGCAT 

Dock8 GGATTCTGGACC
TGCTGTTCA 

TCTTCCAGCTTGG
CCTTGAC 

TCTGTGTCTCCTG
CTTTGAATA 

TCTCTTGACTTCT
GCAGGAC 

Dok2 AGCCAGGCACAC
AGCTATA 

ACTCAAAGTTGCC
CTCTCCA 

TGACTGGCCCTA
CAGGTTTCT 

GTCTGCCAGCCT
CAAAGGAAA 

Emb CCTGGTTACCCG
CTCCTCCTTCT 

CGCCATCATTTCT
TCTCGAACAGGT 

ATGTCTTCTGGCG
GCGAC 

ACTTGTAAAAGTT
GGATCTGTGGGA 

Emcn TAGGAAGATTGCA ATTCGATACAAAC CAACCACCCCCT GTTATAACAACCA
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ACCACTCCA CCACCAGAGTA CCTATTCCA GCGCGATAACCA 

Epor TGAAGTGGACGT
GTCGGCAG 

ACAGCGAAGGTG
TAGCGCGT 

CAACCGGGCAGG
AGGGACA 

CCGCCCCGCAGG
TTGCTCAGAA 

Erg TCCCGAAGCTAC
GCAAAGAA 

TTTGGACTGAGG
GGTGAGGTG 

TACAACTAGGCCA
GATTTACCTTATG
A 

TGTGGCCGGTCC
AGGCTGAT 

Esam CGAAGTCTATGTC
TGCAAGGCTCAA 

CGTCCCAACAAAA
GTGCCCACAA 

CGACAGAGTGGG
CTTTGCCAAGT 

CGACAGAGTGGG
CTTTGCCAAGT 

Fbn1 ACGTGGCGGGGA
ATGTACAAACA 

CGTCAGAGCTGT
GTAGCAGTAACC
A 

CGACTGTCAGCA
GCTACTTCTGCAA
AT 

CGACTGTCAGCA
GCTACTTCTGCAA
AT 

Fli1 TGCTGTTGTCGCA
CCTCAGTT 

TTCCTTGACATTC
AGTCGTGAGGA 

CTCAGGGAAAGT
TCACTGCTGGCC
TA 

TGGTCTGTATGG
GAGGTTGTG 

Gata1 CCTGTGCAATGC
CTGTGGCT 

TGCCTGCCCGTTT
GCTGACAA 

GTATCACAAGATG
AATGGTCAGAAC
C 

CATTCGCTTCTTG
GGCCGGATG 

Gata2 AAGCAAGGCTCG
CTCCTG 

CACAGGCATTGC
ACAGGTAGT 

CAGAAGGCCGGG
AGTGTGTC 

GCCCGTGCCATC
TCGT 

Gfi1 CGAGAGATGTGC
GGCAAGACC 

CGTAGCGTGGAT
GACCTCTTGAA 

CGAGTGAGCCTG
GAGCAACACAA 

CGAGTGAGCCTG
GAGCAACACAA 

Gfi1b CGATGGACACTTA
CCACTGTGTCA 

CGTAGGTTTTGCC
ACAGACATCAC 

CGAAGTGCAACA
AGGTGTTCTCC 

CGAAGTGCAACA
AGGTGTTCTCC 

Gpr126 CGACTGTGCAGC
CACTTCACTCA 

CGTGGCAGATATT
CCGCACCCAATA 

CGATGGAGTTCT
GATGGATCTTCC 

CGATGGAGTTCT
GATGGATCTTCC 

Gpx1 CGGGACTACACC
GAGATGAA 

CGGACGTACTTG
AGGGAATTCA 

CAGAAGCGTCTG
GGACCT 

TCTTCATTCTTGC
CATTCTCCTG 

Hbb-bh1 GAGCTGCACTGT
GACAAGCTTCA 

GGGGTGAATTCC
TTGGCAAAA 

TGGATCCTGAGA
ACTTCAAGC 

GAGTAGAAAGGA
CAATCACCAACA 

Hmmr TGCACAGCTACTT
GGTCACCA 

AGCTGAGATCGG
AGTTTTGACACCT 

GGTCACCAGAAC
CTAAAGCAAA 

CACCTCCGATTTG
AGTTGGCT 

Ikzf1 GCAAGCAATGTC
GCCAAAC 

TCCATCACGTGG
GATGTCA 

GAGACAAGTGCC
TGTCAGA 

TCATATCCTCCTT
CTCATAGTTGG 

Ikzf2 AAGAAGGGACGC
TCTCACA 

ACAGCGTTCCTTG
TGTTCC 

GACACCTCAGGA
CCCATTCTG 

TGAGCTGCGCTG
CTTGTA 

Itga2b TTCCAACCAGCG
CTTCACCT 

TGCTCGGATCCC
CATCAAAC 

CGACAACAGCAA
CCCAGTGTTT 

GCCCACGGCTAC
CGAATATC 

Itgam AGCAGGGGTCAT
TCGCTACG 

CAGCTGGCTTAG
ATGCGATGG 

ATTGGGGTGGGA
AATGCCTTC 

GTCGAGCTCTCT
GCGGGACT 

Itgb3 TCCTCCAGCTCAT
TGTTGATGC 

AGGCAGGTGGCA
TTGAAGGA 

ACGGGAAAATCC
GCTCTAAA 

AGTGACAGTTCTT
CCGGCAGGT 

Kdr TGTGGGGCTTGA
TTTCACCTG 

TCGCCACAGTCC
CAGGAAAG 

CACTCTCCACCTT
CAAAGTCTCATCA 

TTTCACATCCCGG
TTTACAATCTTC 

Kit CTGGCTCTGGAC
CTGGATGA 

CCTGGCTGCCAA
ATCTCTGTG 

TGCTGAGCTTCTC
CTACCAGGTG 

ATACAATTCTTGG
AGGCGAGGAA 

Laptm5 ATGACACTGCAG
CTGCTAGAC 

CCTCCTGGCTTG
GGAGGTAA 

CTGTTTGAGTATC
CTGACCCTGTG 

CATGTGGTTCATG
GACTTGAAGTTG 

Lgals9 TGGTGCAGAGGT
CAGAGTTCA 

AAGCAGCCGGAG
ACAGCGAT 

AGGTGATGGTGA
ACAAGAAATTCT 

GGTAGGGTACGC
GGTGTTGG 

Lmo2 TCGGCCATCGAA
AGGAAGAG 

GCGGTCCCCTAT
GTTCTGCT 

CTGGACCCGTCT
GAGGAACC 

GCAGCCACCACA
TGTCAGCA 

Lrp1 TGGGTGGATGCC
TTCTATGAC 

AGGTAGTTGCCAT
GGTGACA 

AATTGAGACCATA
CTGCTCAATGG 

CAGGCCGAAGGC
ATGATTC 

Ly6e CTTTGGCTTGCGA
ACCTTCA 

ACATGAGAAGCA
CATCAGGGAA 

GCAGATGTCTGC
CACTTCCAA 

GAACTTGCTCCAT
GCCCAGAA 

Mctp1 CCTAAATCCTGTG
TGGGAGGAA 

AAGGCTGAGCCC
ATAAAGTCA 

AAGGCTTGCGTG
CTCATT 

TCTTGCAGTCCAA
AATCATAGTCA 

Mdk CCTGTCAGCTCT
GTCAATCAC 

TCAGGGTGGGGA
GAACAAAA 

TGTCCTCTCACGC
CCACAC 

AGGGTATGGGGA
GGCTCACT 

Med12l CTTTGTGTGCAAC
ACCCTCA 

CCACTCCGAACT
CAGAACTGTA 

AATGTGTGCATG
GGACACCAG 

CAGGCAGTTAGC
TCAGAGGAGA 

Meis2 
CGACCCGTACCC
TTCAGAAGAACAG
AA 

CGTTGGTCAATCA
TGGGCTGCACTA 

CGAGAAACAGTTA
GCGCAAGACAC 

CGAGAAACAGTTA
GCGCAAGACAC 
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Myb CGAGTGGCAGAA
AGTGCTGAACC 

CGTTGCTTGGCA
ATAACAGACCAAC 

CGACATCAAAGG
TCCCTGGACCAA
A 

CGACATCAAAGG
TCCCTGGACCAA
A 

Mycn GAGCCTTCGAATT
GGGCTAC 

CATGCAGTCCTG
AAGGATGAC 

AGATGCTGCTGC
CGGAGGCCGAC 

AGTGAGGCCACC
CAGGCCCCC 

Nfe2 TCCTCAGCAGAA
CAGGAACA 

TGAGGCTCAAAA
GATGTCTCAC 

GGTTATCACAGCT
GCCTGTT 

TTTAGACCCTGCA
GCTCAGTA 

Nmt2 GCCACAAAACGC
AGATACCA 

AAGAATATGGTTC
CTGGCGGATA 

TGGGACACACAG
CCAGT 

TTGTCTTTGTCTG
GTTCAATTGC 

Notch1 CGACCAACCCTG
TCAACGGCAAA 

CGTATTTGCCTGC
GTGCTCACAA 

CGATGCCCCTCG
GGGTACA 

CGATGCCCCTCG
GGGTACA 

Notch2 AGCTGCTACTCAC
AGGTGAA 

CCTCACAGTTGAC
ACCAACC 

CGAGTGCCTGAG
CAATCC 

CATCGCAGAGGC
ACTTATAGC 

Pag1 ACAAGTCTCGGG
AAGAAGACC 

GCAGATTCTGGC
CCTTTCATAC 

CGACTCTTACAGA
AGAGGAGATCTC
AG 

CCAGGTTTGTGT
GCCGACTG 

Pbx1 CAGGACATCGGG
GACATTTTACA 

CACATTAAACAAG
GCAGGCTTCA 

AATTATGACCATC
ACAGACCAGAGT
T 

TTCTGTGGCAGTT
TAAAGCATGTT 

Pcdh12 CGATGGCTGCTTT
TGCGGAAC 

TCGTGGTTTGGTT
TGGGCTGGAA 

CGAGGAACCCGG
TGGAGGA 

CGAGGAACCCGG
TGGAGGA 

Pde2a CTGTCCTGCTACA
GGAGATCATCA 

CCACAACGCCAC
CATCGAA 

CGGAAGCCAGAA
ACCTCA 

CCACCAGCTCGT
TCTGAT 

Pde3a TACACGCTGTGT
GGTATCTCA 

ATCCCATGTGTCC
GTGTGTA 

ATTCCTGGCCTCC
CAAGT 

TCCACTGTCAGAA
TCGGAGT 

Pecam1 TGCGGTGGTTGT
CATTGGAG 

CTGGACATCTCCA
CGGGTTT 

GTCATCGCCACC
TTAATAGTTGCAG 

TGTTTGGCCTTGG
CTTTCCTC 

Pfas CAAGAGCTGCAG
CGGAAC 

CGCTAGCTTCTTC
CCATCCA 

CCAGTACAGTGG
AGGTCTTTGA 

CATGGAGCTGGC
CCTTGA 

Pla2g4a CGTGTGGAATGA
GACCTTTGAGT 

AGGGAATGTAGC
TGTGCCTAGGGT 

ACCTTTGAGTTCA
TTTTGGATCCT 

AGTGTGATCTCCA
AAACATTTTCCTG
A 

Plcg2 AGCATGCGCTCT
GAGAAGTA 

GGCAATACTCCG
CCCTAGTTTA 

TGATCCGATGCC
CCTGGAG 

GGTGGCGTGCAC
CAAGAA 

Ppia CGACCGACTGTG
GACAGCTCTAA 

CGTAGTGAGAGC
AGAGATTACAGG
AC 

CGATTTCTTTTGA
CTTGCGGGCATT 

CGATTTCTTTTGA
CTTGCGGGCATT 

Ptk2b AGAAAGACTGTAC
CCAGGACAAC 

TCCAGGTGGGTT
CCTCTTCA 

AAGGAGAAGTTC
ATGAGTGAGG 

TGCCAATCAGCTT
CACGAT 

Ptprb ACGCCAAGAGCG
GCAATTATGCA 

CGTTGCACCCAG
GACACCTTTAA 

CGACCACTCCTTC
ACCGAGGAA 

CGACCACTCCTTC
ACCGAGGAA 

Ptprc GGCTTCAAGGAA
CCCAGGAAATA 

TGACAATAACTGT
GGCCTTTTGCTC 

ATTGCTGCACAAG
GGCCCCGGGATG 

CAGATCATCCTCC
AGAAGTCATCAA 

Rab38 GCGCTGAAGGTG
CTCCA 

CCCCATAGCTTCC
CGGTAATAA 

GTGGTGCGCTTG
CAGCTCTG 

ACTCTTGTCATGT
TTCCAAATC 

Ramp2 TCCCACTGAGGA
CAGCCTTG 

TCCTTGACAGAGT
CCATGCAA 

TCAAAAGGGAAG
ATGGAAGACTAC
GA 

TCTTGTACTCATA
CCAGCAAGGTAG
GACA 

Rbm38 GCTGATAGGGCT
TGCAAAGAC 

GCTGCACACCAA
CAGCAA 

CCTATCATCGATG
GTCGCAAGG 

AGCCCGTCTGTA
AGCTCCTAG 

Runx1 CGAACTACTCGG
CAGAACTGAGAA 

CGTACGGTGATG
GTCAGAGTGAA 

CGAATGCTACCG
CGGCCATG 

CGAATGCTACCG
CGGCCATG 

Serpinf1 AGAACGTCCCCA
GCAGCTCT 

TGCCAGCTTGTTC
ACAGGGACC 

AGCAGCTCTGAG
GGCTCCC 

TCCTCCTCCTCCA
CGGGCT 

Sla CGACGAATCTTCC
GTCTTCCCAAC 

TCGGGTGAGCAC
ACAGCATAGAC 

CGAACTGGTACTA
CATCTCACCAAG
G 

CGAACTGGTACTA
CATCTCACCAAG
G 

Smad2 TGCTCTCCAACGT
TAACCGAAA 

TCAGCAAACACTT
CCCCACCT 

GCCACTGTAGAA
ATGACAAGAAGA
CA 

TGTAATACAAGCG
CACTCCCCTTC 

Smad3 CCAATGTCAACC
GGAATGCAG 

TGAGGCACTCCG
CAAAGACC 

CGTGGAACTTACA
AGGCGACA 

CCCCTCCGATGT
AGTAGAGC 

Smad6 TTCTCGGCTGTCT
CCTCCTGAC 

TTCACCCGGAGC
AGTGATGA 

GTACAAGCCACT
GGATCTGTCCGA

GGAGTTGGTGGC
CTCGGTTT 
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TT 

Smad7 GGAAGATCAACC
CCGAGCTG 

TGAGAAAATCCAT
TGGGTATCTGGA 

TGTGCTGCAACC
CCCATCAC 

AAGGAGGAGGGG
GAGACTCTA 

Snai1 CGATCTGCACGA
CCTGTGGAAA 

CGTGAGCGGTCA
GCAAAAGCA 

CGACTCTAGGCC
CTGGCTGCTT 

CGACTCTAGGCC
CTGGCTGCTT 

Sox17 CGAGATGGGTCT
TCCCTACC 

TCGGGGTAGTTG
CAATAGTAGAC 

GGACACGACTGC
GGAGTGAA 

GTCGGACACCAC
GGAGGAAAT 

Sox6 TCAACCTGCCAAA
CAAAAGCA 

CTGTGTCCTGGT
CCCCAAA 

GCATCCCCAGCC
CCATTG 

CAGGGCAGGAGA
GTTGAGACT 

Spi1 GTGGGCAGCGAT
GGAGAAAG 

TGCAGCTCTGTG
AAGTGGTTCTC 

ATAGCGATCACTA
CTGGGATTTCTCC 

GGGAAGTTCTCA
AACTCGTTGTTG 

Stk26 AGCAGCGCGAAG
TAGCA 

GCCTTTTCCAATG
CGCTCTAA 

CCACCATGGCCC
ACTCA 

TTTGTGAACAGTT
CTTCTGGATCTG 

Stxbp2 AAACGGAGAGAA
CCCATTCC 

GGGCTGCTTTGT
AGGTGAA 

GCTTGGAGGCAA
TTTATTTGCTGAG 

GGTTGGTGTTCC
CTGGAAGTC 

Tal1 ACCGGATGCCTT
CCCCATGTT 

GCGCCGCACTAC
TTTGGTGT 

CCAACAACAACC
GGGTGAAGA 

AGGACCATCAGA
AATCTCCATCTCA 

Tek TCCAAAGGAGAAT
GGCTCAGG 

TCCGGATTGTTTT
TGGCCTTC 

TTCCAGAACGTGA
GAGAAGAACCA 

TGTTAAGGGCCA
GAGTTCCTGA 

Tgfb1 ACCCCCACTGATA
CGCCTGA 

GCAGTGAGCGCT
GAATCGAA 

TGGCTGTCTTTTG
ACGTCACTG 

GCCCTGTATTCC
GTCTCCTTGG 

Was CGTTCAGCAGAA
CATTCCTTCC 

AGTGCCAGGTAG
AGCTGAAC 

AACCTCCTCCAG
GACCATGAA 

CTGTGGTAGCCA
GTGTCCAG 
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Supplementary Table 2: Differentially expressed genes between 
CD44Negative and CD44Low/Kit- populations 

 
Base Mean log2 Fold Change Adjusted p-value 

Ankrd1 25.50618636 30.80488201 7.14E-15 
Tgfbi 161.3901095 10.51636231 1.03E-07 
Apln 63.40484308 9.861703974 9.04E-18 
Lhx6 52.64044743 9.603183946 1.32E-17 
Gas7 93.98741793 9.266688291 1.18E-13 
Fam167b 31.4403707 8.848524118 8.40E-08 
Kbtbd11 31.29723969 8.788236531 3.24E-12 
Prl3b1 230.2757472 7.816149948 1.13E-09 
A730020E08Rik 17.79762791 7.723318885 2.68E-06 
Mctp2 17.0317109 7.572013538 0.00270569 
Dfna5 15.71572309 7.548019237 4.95E-05 
Rasd1 13.33515905 7.517530036 1.49E-05 
Slc35f2 14.59325379 7.509254061 0.000174517 
Ccser1 11.41392086 7.306562694 0.000505947 
Fut4 13.22931601 7.284141351 2.17E-06 
Mlkl 21.28689963 7.263506449 1.86E-07 
Slc2a12 10.9733371 7.229540552 0.009107188 
Tnik 15.0499464 7.224897962 0.000364522 
Pip5k1b 11.17532413 7.159959334 0.008066971 
Tnfrsf9 13.30384109 7.11462124 0.00062631 
Fam19a2 9.357954411 7.110944663 0.003798265 
Nr2f1 9.541781298 7.093658504 0.000447407 
6430573F11Rik 9.128588977 7.056586581 4.56E-05 
D330045A20Rik 23.55768296 7.000742054 8.48E-05 
Elovl4 11.57549775 6.933894172 0.003861909 
Fancf 11.66122717 6.878240253 0.000376731 
Pcx 8.721972385 6.802060229 0.000260268 
Cmah 35.43330851 6.791001024 1.31E-05 
Thsd4 10.80749624 6.769092364 0.007731119 
Gm826 8.099302714 6.664694074 0.000645957 
Fbxo48 9.508180036 6.626351963 0.001796723 
Fam212b 6.771131773 6.540923213 0.006616589 
Shisa2 8.1515097 6.513069612 0.006730245 
Cnr2 21.48756544 6.473032871 3.57E-06 
Nlrc3 26.22581678 6.439929129 1.53E-06 
Prkcq 26.99969101 6.352413377 0.000532665 
Gprasp2 11.76309195 6.232166078 0.005910292 
3300005D01Rik 8.973928472 6.069259786 0.00093867 
Kcne3 542.7033245 6.06867804 2.55E-08 
Nkd1 29.64404099 6.033836205 3.60E-06 
Zfp619 20.52222821 5.900063169 8.13E-06 
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Best1 6.700381274 5.820134532 0.007058308 
Sergef 23.44004177 5.626848995 0.002595308 
Ccl6 120.1257075 5.570351112 0.002777379 
Mt1 330.0015636 5.520101233 7.11E-14 
Bik 42.94178703 5.448640006 2.49E-08 
Mafb 35.83651387 5.415497371 2.81E-06 
Spry1 47.98470795 5.331786413 1.04E-09 
Nrp2 221.354704 5.304305382 4.12E-07 
Hgf 40.43768824 5.225349597 0.006538649 
Hps6 9.713434711 5.116648795 0.00239975 
Pde2a 383.1668234 5.077376892 9.04E-06 
Fzd10 26.85566228 5.03765585 1.76E-05 
Mylpf 12.19876539 5.01017655 0.000255187 
Epb41l3 16.14208692 4.96726305 0.003068604 
St8sia1 66.62618437 4.961531972 9.09E-09 
Gpr183 419.6854705 4.906296555 8.60E-06 
Stab2 115.2685186 4.77357517 0.005418404 
Srl 9.838735419 4.772621086 0.008313103 
Ackr1 35.26158033 4.673118011 0.001894871 
Lama1 44.02834481 4.668218739 1.20E-05 
Lalba 13.01679218 4.642384763 0.003056338 
Adamtsl2 29.06907061 4.603317373 5.84E-05 
Tmem184c 118.6019203 4.586103589 8.49E-08 
Colgalt2 55.1848555 4.537715687 0.000700391 
Piezo2 249.2624354 4.519063563 5.08E-09 
Kcnk5 20.8338197 4.498626032 0.002146742 
Aplnr 1318.543925 4.431561993 0.002409416 
Adamts9 51.69351808 4.395534174 0.00023005 
Etv2 33.62657579 4.316847355 0.002838678 
Ptpn7 93.77173225 4.298106231 3.87E-07 
Orai2 25.97943456 4.270158623 0.002635872 
Otud3 8.664034829 4.258012489 0.006102439 
Tmem108 9.336023979 4.116789524 0.00160165 
Mterf1b 8.288838383 4.095992307 0.004716617 
Cdkl1 46.15810993 4.066157262 0.00111066 
Fuom 14.41432652 4.059354061 0.000800277 
3110035E14Rik 6.753435517 4.026324158 0.002949328 
Cadm1 54.56282319 4.018209876 0.000162956 
Nostrin 50.30814367 4.009328514 1.24E-05 
Nr2f2 347.3381797 3.964062993 0.002875362 
Prtg 407.954527 3.786525846 0.007471836 
Tfec 163.2517233 3.768285495 4.72E-05 
Bcat1 146.0503918 3.755350486 1.02E-05 
Adgrg3 361.8876046 3.750773521 4.55E-06 
Clec1b 532.6457321 3.67106534 0.004910519 
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Aunip 41.04170901 3.663970997 3.84E-05 
Lrp8 37.58449465 3.586735407 0.000849563 
Ak4 45.74298584 3.554337962 0.000282524 
Mcc 61.53054348 3.530052601 0.005528985 
Ramp3 24.93878935 3.525241566 0.009624378 
Ttyh2 50.98333011 3.461134012 0.003780898 
Snai1 84.34270284 3.418124761 0.000281456 
Apold1 182.5033905 3.402928614 9.11E-05 
Cmbl 34.74661164 3.343351781 0.001002703 
Ydjc 15.49640277 3.281997459 0.006201782 
Ciart 23.50574211 3.20648145 0.004063743 
Sgk1 588.0161194 3.174327357 2.32E-05 
Bok 180.1083177 3.084951568 1.35E-08 
Ptges3l 19.74439998 3.015138261 0.000937891 
Rgs7bp 32.29205105 3.014673925 0.008983211 
Gng2 566.2973422 2.985285866 1.90E-09 
Pcbp3 65.48101262 2.968402904 0.00043792 
Lef1 99.12002007 2.948983775 3.24E-12 
Ccnd1 531.5793752 2.93956831 4.26E-14 
Phlda1 50.50855921 2.930155994 6.48E-07 
Slc16a6 28.25647203 2.913338502 0.007127371 
Sh2d3c 235.2968885 2.912104432 7.61E-10 
Zfp41 108.7591782 2.844744034 0.001042896 
Tln2 122.688666 2.837284952 0.004211829 
Lcmt2 42.31211951 2.697843322 0.006242368 
Dok4 191.312712 2.694139264 5.03E-07 
Tiam1 35.52523816 2.690899886 0.003135874 
Ptpn4 26.28700065 2.685462044 0.00270877 
Lhpp 98.16169232 2.673170778 4.52E-06 
2610203C22Rik 125.4281361 2.665946049 0.000452092 
Fam102b 177.9650743 2.648061088 0.002513408 
Arhgap10 35.43605036 2.629608838 0.000135465 
Hlx 44.84965193 2.614098889 0.001464693 
Lgr4 119.8794716 2.59014538 0.00347659 
Mmrn1 1353.872461 2.589564232 4.30E-10 
Asns 432.031957 2.587583511 4.55E-10 
Lck 167.9620297 2.57940835 1.24E-06 
Trib1 127.3071712 2.577190873 2.39E-06 
Pfkp 141.3525152 2.563075919 6.81E-07 
Rpph1 26.84442114 2.546609846 0.005323279 
Ppp1r14a 22.12636926 2.542543733 0.007297326 
Plau 126.5927648 2.540495059 5.31E-05 
Bmp4 182.1357205 2.52712181 0.000173932 
Ada 91.83534223 2.518627373 0.00077738 
Gem 112.4974042 2.508378804 0.00865646 



	 196	

Peg13 67.58738143 2.506492362 0.001322676 
Fam132a 44.21702681 2.506111959 0.003103894 
Mns1 64.0331474 2.504644656 0.001809767 
Rhobtb1 28.75688235 2.495552069 0.003617269 
Fam174b 80.13067739 2.482717182 0.003326631 
Slc16a3 163.465678 2.447539376 9.18E-07 
Dmtn 102.4715512 2.427184483 0.001045852 
Dnph1 146.1811871 2.415319699 0.006106394 
2010204K13Rik 55.05728442 2.391924196 0.006656831 
Abhd8 64.55880258 2.350006183 0.000387277 
Stx2 113.7803836 2.272821442 0.007644503 
Ripply3 218.5103965 2.253860526 0.000120111 
Cnrip1 186.0186162 2.252050612 0.00370756 
Gemin4 198.4461414 2.243080625 3.13E-13 
Lat 85.43576622 2.230546252 0.00047926 
Crmp1 532.1941855 2.201081263 3.46E-06 
Mcm10 209.349248 2.19332879 1.21E-06 
Pcdh12 125.1909264 2.172987949 0.004148032 
Slc29a1 812.4106385 2.156677328 1.34E-11 
Tubb6 1677.868899 2.127057195 8.14E-06 
Lipt2 268.5149927 2.126937491 7.73E-10 
Chaf1b 427.8517934 2.098338699 3.05E-16 
Trps1 71.04208794 2.097537754 0.008286358 
Pkm 5878.223495 2.093383049 1.76E-28 
Asf1b 591.8978876 2.032363005 0.000263584 
Eno1 16.25189932 2.027577027 0.00239975 
Eno1b 333.3380746 2.009950924 2.21E-05 
Mthfd2 183.9073635 2.004672066 0.001998631 
Hspbap1 97.26241189 2.001488452 0.004166933 
Txnrd2 124.6937997 2.001359405 4.46E-05 
Zfp697 48.0247465 -2.00239518 0.001456976 
Fndc3b 384.7662243 -2.011481223 1.01E-05 
Cyp26b1 232.401227 -2.026172164 2.91E-05 
Tanc2 148.3280735 -2.027383926 0.001925265 
Insr 216.1669914 -2.030687775 4.49E-08 
Mylip 160.5543537 -2.038397771 2.06E-05 
Gja4 3607.144179 -2.04140761 0.000197682 
Cpq 185.0160442 -2.045098576 3.51E-05 
Cdk19 197.5256576 -2.051885101 0.003033104 
2610008E11Rik 343.5634581 -2.053446593 1.07E-07 
Ghr 319.0665962 -2.089524481 8.68E-08 
Efnb2 1078.208725 -2.091005095 0.000878689 
Dnajb9 1072.263465 -2.09202724 7.77E-11 
Bcl9l 20.71942381 -2.092553823 0.005861375 
Ccpg1 212.6461943 -2.096878144 1.57E-05 
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Tob1 65.9974918 -2.102942757 0.000293692 
Sat1 5786.321167 -2.108170217 1.89E-07 
Smim3 167.9532155 -2.114904783 0.0016516 
Xpr1 175.0623769 -2.11773641 0.000152169 
Mgst3 236.4399353 -2.122949816 1.04E-07 
Khdrbs3 92.81144596 -2.126084516 0.001093751 
Diaph2 174.2756952 -2.12901338 1.53E-06 
Gabbr1 59.25078487 -2.130276741 0.00270877 
Fam101b 64.93688331 -2.149021013 0.000741716 
Mfap2 938.0850374 -2.150106301 1.62E-06 
Spata1 30.91092925 -2.153493069 0.004467802 
Smad7 161.8905493 -2.15608351 2.62E-05 
Asah2 76.55631038 -2.161335691 0.005177279 
Mum1l1 425.3095902 -2.161376864 0.000260268 
Nfkbiz 78.47104742 -2.164090677 0.002072117 
Firre 111.6090085 -2.167895543 0.000331737 
Itm2a 1782.061766 -2.172156365 4.56E-12 
Slc25a40 114.7276806 -2.17588334 0.000261872 
Mir99ahg 180.2345547 -2.212864064 0.000499024 
Trim47 302.5256951 -2.218397032 2.32E-08 
Dst 223.1978802 -2.24382604 5.16E-06 
Ccdc80 238.4003441 -2.246684808 0.000117708 
Npr3 494.8244693 -2.264198292 0.006061632 
Tapbp 183.8310852 -2.264712582 4.81E-07 
Emp3 392.7862493 -2.270409335 2.92E-08 
Tox 112.4869272 -2.274080721 1.89E-07 
Pmepa1 176.9453091 -2.300774507 3.54E-05 
Gm14420 71.76150356 -2.301041817 0.009040874 
Meis2 252.327756 -2.305849462 0.000322625 
Camk2d 439.7186277 -2.31129653 3.64E-08 
Yy2 212.722359 -2.313377624 0.000115196 
Tspan8 174.6695876 -2.33468579 6.80E-06 
Ifitm1 203.0983107 -2.337077573 0.0030486 
Edn1 554.5931726 -2.337680279 0.000162291 
Prdm16 99.05991569 -2.348027813 0.000503655 
Stk38l 121.4119394 -2.348176317 3.66E-08 
Laptm5 664.5691098 -2.35049818 1.46E-09 
Gm4944 170.3473918 -2.354854452 0.006248635 
Klhl13 615.4932674 -2.375564244 1.15E-13 
Pde9a 140.6664275 -2.375798962 2.54E-06 
Setbp1 50.35822821 -2.377380244 0.008798509 
Nadk2 267.4012478 -2.390123642 1.29E-08 
Acer2 474.7504486 -2.390745584 4.30E-07 
Kank1 133.7521537 -2.406432786 0.002215898 
Snhg14 100.2087273 -2.415460322 0.007888183 
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Scai 237.7870519 -2.428704528 2.17E-05 
Prkcd 152.435323 -2.429452225 0.007084341 
Tmx4 297.0814445 -2.441935768 7.68E-12 
Fam198b 892.8470702 -2.445693944 8.39E-10 
Zfp667 113.5986569 -2.446819119 0.002840966 
Lpin1 52.80732225 -2.453053179 0.004629388 
Pde3b 249.1256989 -2.456901943 1.73E-06 
Pdcd4 421.403935 -2.459878723 5.76E-16 
Cdk14 151.9795738 -2.461081481 9.16E-06 
Zbtb4 47.56615494 -2.464782482 0.005079212 
Ptchd1 527.1282626 -2.493047998 1.37E-09 
Aqp1 60.15802138 -2.507683462 0.003592063 
Senp7 178.6571111 -2.509966518 1.58E-10 
Pld1 318.6574308 -2.520752502 1.02E-07 
Fam181b 83.24531905 -2.522185116 0.002481606 
Serpinf1 1173.297443 -2.525318969 5.52E-16 
Thsd7a 123.9001816 -2.535879428 0.003258933 
Aes 144.3662628 -2.546156229 1.31E-10 
Stmn2 681.9122616 -2.551142191 0.000811735 
Nfat5 420.6209037 -2.555868611 1.56E-07 
Gja5 1022.975322 -2.561364945 4.15E-05 
Il15 191.3510805 -2.563015325 5.30E-06 
Col5a2 835.5105201 -2.564588528 4.56E-12 
Igsf3 228.5166715 -2.569349426 5.15E-12 
Sost 39.99614021 -2.578664215 0.000345192 
Meis1 216.5926366 -2.579594011 1.45E-06 
Slc9a3r1 139.8253626 -2.582919538 2.94E-06 
Mecom 1071.132398 -2.611771496 1.00E-17 
Trim34a 90.03978047 -2.61607329 0.007698747 
Unc13b 76.50883651 -2.627542032 0.003750911 
Gata6 102.9752231 -2.635742846 9.78E-05 
Zfp97 51.94495484 -2.64416592 0.00585697 
Hs3st1 156.4178276 -2.645065468 7.87E-06 
Fn1 5985.622465 -2.675337291 3.42E-28 
Sncaip 64.58688608 -2.690394777 0.005981093 
Timp2 140.2697289 -2.692241973 2.11E-08 
Notch3 71.82103636 -2.716639469 0.001155911 
Calcrl 4603.27198 -2.720760135 2.15E-24 
Nipal2 79.72927297 -2.747410085 0.003054315 
Tmem176b 720.0868452 -2.748968116 1.17E-09 
Fam84b 177.4557529 -2.757428754 0.00014231 
Ssfa2 623.1719156 -2.759015082 1.43E-16 
Plcg2 309.8345006 -2.793749742 0.000101095 
Slc16a4 62.05283257 -2.799637079 6.45E-06 
Gbp7 149.3667069 -2.80586988 0.000442463 
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Fgd4 147.1824455 -2.81097205 0.000638745 
Ptgis 181.9398434 -2.812924918 3.55E-08 
Lmo7 62.66091025 -2.832201053 0.004305355 
Alpk3 45.19896139 -2.844537008 0.002157956 
Ctsh 1401.109937 -2.86772808 6.18E-06 
Sox6 162.1639305 -2.91816727 0.001364567 
BC064078 52.3817415 -2.956683476 0.001018225 
Neto2 125.6935462 -2.987457856 0.000410936 
Enpp4 113.270224 -2.995746 0.000415199 
Slfn2 146.8819422 -3.002569696 0.002252592 
Mtap7d3 34.70340077 -3.003235697 0.008642032 
Fermt3 232.347294 -3.003377117 0.005420852 
Slc18a2 1180.551238 -3.004173686 4.96E-15 
Ocln 284.9178802 -3.022406905 8.39E-09 
Lama5 140.7140661 -3.023547261 1.93E-08 
Smpdl3a 394.3377886 -3.042367317 2.10E-08 
Fjx1 35.60743188 -3.046265094 0.000297076 
Neurl3 293.6950791 -3.057968425 0.004260675 
Krt18 177.2449094 -3.061396679 0.006656831 
Pdlim1 451.2628355 -3.078267654 3.34E-14 
Vegfa 57.60109553 -3.0837278 0.000139904 
Capn5 31.8277457 -3.088913259 0.005797405 
Dmd 190.4620428 -3.095095329 2.32E-10 
Pla2g4a 622.4318404 -3.100313503 0.008679177 
Crebrf 42.87213035 -3.107512312 0.002250157 
Nkx2-3 106.1645302 -3.131720852 0.000139511 
Procr 363.3611547 -3.138509913 1.67E-09 
Srgn 604.7919667 -3.143177768 2.24E-05 
Ctsc 1919.960507 -3.149736412 4.67E-08 
Cd44 890.8903188 -3.152258915 9.71E-13 
Dhh 86.24882163 -3.168188234 0.00112965 
AU021092 328.3931668 -3.174369271 1.19E-09 
Emb 2027.975447 -3.178579222 3.67E-18 
Smad6 142.0697375 -3.180672146 1.28E-07 
Mllt3 289.3727827 -3.224110034 5.69E-11 
Pcsk5 453.7528369 -3.229863171 5.19E-08 
Tm4sf1 1187.439505 -3.237339439 8.05E-12 
Egfl8 51.52588808 -3.245861182 0.001874349 
Jag1 1778.331273 -3.253399908 5.58E-06 
Itga4 256.2172439 -3.276985812 0.000796385 
Tmem100 1611.699263 -3.284758069 0.002704022 
Gpr85 22.0927988 -3.28483231 0.009005113 
Smtnl2 155.6631868 -3.342930901 0.000108383 
Tnfrsf26 196.233847 -3.346020352 5.26E-05 
Adgrg6 213.8991108 -3.352123622 7.08E-07 
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Tmem221 59.13493784 -3.372574835 0.002698392 
Crispld1 104.3196103 -3.375935239 0.000492617 
Sp110 61.14902254 -3.378180854 4.82E-05 
Gm20939 89.99409159 -3.390713393 0.004367915 
C530008M17Rik 144.2685862 -3.411073592 4.52E-06 
Isl1 180.7125252 -3.415247376 0.000262179 
Gpm6b 267.5987719 -3.420775509 0.00074013 
Fas 218.5046748 -3.429257795 1.24E-06 
Sfrp1 42.09572157 -3.461726617 0.005735329 
Ankrd29 135.7451404 -3.468421351 2.64E-06 
Lama3 298.3706902 -3.470725045 2.29E-07 
Frk 146.2696365 -3.516116733 3.45E-06 
Bcl11a 221.5621111 -3.519152267 1.02E-14 
Xk 69.47002093 -3.60433993 0.001333542 
Hacd4 419.1244511 -3.621811213 7.52E-12 
Vwf 1543.343578 -3.622195129 1.60E-10 
Synpo 186.5357296 -3.654890838 1.06E-05 
Sdpr 996.1265572 -3.674639554 0.001940231 
Was 45.48249758 -3.743889227 0.008521852 
Npnt 85.94979989 -3.749120788 0.002520529 
Adgrg1 397.4560578 -3.764534564 7.48E-05 
Dcaf12l1 79.26006413 -3.766468952 0.002361003 
Gas1 24.63902761 -3.771362018 0.003456357 
Ltbp4 524.8986434 -3.782275174 1.16E-05 
Wnk4 47.43961326 -3.785468914 0.000127433 
Naip5 86.54078872 -3.786806454 0.001910655 
Alox12 204.0352482 -3.790211478 0.002215898 
Bcam 35.28086475 -3.79098106 0.001224602 
Fbn1 1328.807222 -3.794576845 3.05E-16 
AI467606 87.1251668 -3.81652144 0.001580202 
Bmx 480.0257825 -3.83832336 9.47E-06 
Ppargc1a 21.53886161 -3.843924835 0.009889554 
Ddb2 18.82384718 -3.855791735 0.002156538 
Ltbp1 357.4724101 -3.873083349 1.18E-14 
Rps6ka5 162.409676 -3.877001758 3.12E-10 
Wipf3 49.49306613 -3.896330049 0.001107964 
Gcnt1 106.5783666 -3.911424284 2.06E-05 
Cyp4b1 36.44988202 -3.928411273 0.006180715 
4930412O13Rik 42.33118633 -3.995332324 0.001874349 
Serpinb8 63.20614008 -4.008865931 0.000122099 
Kcnn4 29.33351762 -4.023341203 0.000718934 
Scarletltr 4.287175301 -4.033958253 0.003155112 
Nfe2 127.8995985 -4.114917568 6.04E-05 
Hey2 335.1618049 -4.190503806 7.97E-05 
Psmb8 76.95527611 -4.192134905 0.001771326 
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Dkk2 242.0562233 -4.21312208 0.002397197 
Mr1 61.54938681 -4.25230154 0.003406739 
Plek2 33.2153158 -4.262347762 0.004152759 
Ikzf2 163.8263323 -4.288764745 4.94E-08 
Sult1a1 69.60759284 -4.31299754 5.24E-06 
Pde3a 82.37867245 -4.36573932 6.81E-05 
Pdzk1ip1 60.71222515 -4.388962016 0.000594807 
Mfap5 47.47202926 -4.419359181 0.005992706 
Pstpip1 16.64815545 -4.469141588 0.00796169 
Grik5 14.78589095 -4.476214081 2.28E-06 
Gp1ba 33.89053099 -4.488660505 0.00019326 
Tnni2 22.64471465 -4.488953199 0.004546222 
F10 104.5735738 -4.503076863 1.03E-06 
Ms4a6d 344.8554883 -4.535570295 0.000694591 
Klhl35 19.47662844 -4.567564877 0.004153971 
Stat4 147.6705734 -4.574453513 0.001333542 
Lrrc9 23.9465403 -4.583362593 0.006248635 
Smtnl1 18.98691679 -4.624930114 0.006183205 
Spi1 419.4956989 -4.641969638 0.000353015 
Bmper 74.71196915 -4.66430177 0.006315645 
5930403L14Rik 65.9032584 -4.67939998 0.000110954 
Akr1c14 573.5535666 -4.691029526 5.52E-05 
Tnfrsf23 53.5718724 -4.731559281 2.51E-06 
Col4a5 101.1502735 -4.736695126 4.78E-07 
Hlf 71.04738958 -4.758502325 0.000107682 
Slc8a1 134.2257614 -4.761549625 0.00011505 
Erich2 5.319713805 -4.775262561 0.009865634 
Nfix 22.22833281 -4.781904636 7.24E-06 
Calml4 26.27866243 -4.846395303 0.000827363 
Isoc2b 13.29986744 -4.894334829 0.000140172 
Lrp1 33.41498845 -4.964992877 0.005506852 
Syne4 18.74216505 -4.974897841 3.96E-05 
Psmb9 29.06089031 -4.975976946 0.001585076 
Lrrc16a 32.75623191 -4.980354993 2.74E-06 
Gfi1 61.39080196 -4.990739639 0.000309948 
Rragd 23.45893981 -4.999731884 0.001988171 
Nmnat3 20.36278187 -5.043358316 0.009889275 
Anpep 24.79727263 -5.055674976 9.39E-06 
Dsp 43.51339786 -5.10113372 1.95E-05 
Pmaip1 47.16894906 -5.131386174 0.001876941 
Pak7 32.77866077 -5.138943462 0.000329005 
Met 151.2609249 -5.149681829 3.41E-05 
Cytl1 50.18970608 -5.195519906 3.81E-05 
Irf6 109.378421 -5.277840743 1.21E-08 
Rhof 31.33032443 -5.291941806 2.12E-05 
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Selp 16.78962727 -5.364284262 0.004775781 
Mctp1 131.8708823 -5.386165582 1.00E-07 
Psd4 26.45007951 -5.397226565 0.002393873 
Lmo1 14.37302096 -5.413149267 0.005300239 
Mt3 19.84340166 -5.522226678 0.000180803 
P4ha3 205.9657655 -5.546860417 0.000166442 
Chil5 17.7634245 -5.572077357 0.003151683 
Syt15 79.93034677 -5.634248142 7.03E-07 
Acaa1b 10.98968606 -5.705877685 0.000141501 
P2rx7 17.13769739 -5.712104747 0.006916767 
Fgfr3 11.02227834 -5.911237503 7.24E-06 
Gpr84 22.52893241 -5.914701165 6.21E-05 
Ctse 14.21116783 -5.946404861 0.007936364 
Efemp1 144.2600701 -5.952631051 0.000152809 
Nupr1 116.8706155 -5.971952377 4.89E-09 
Gucy1a3 55.1915894 -6.036565647 0.00269354 
Has2 37.98998807 -6.068936712 4.59E-10 
Olfml2a 18.92743865 -6.072841895 0.000924955 
Ivl 7.507074635 -6.084293968 0.007008491 
Olfr65 12.48187221 -6.19464371 0.00072814 
Spaca3 9.945287611 -6.267494712 0.002843607 
Htra1 354.0196329 -6.3347494 8.14E-11 
Eln 84.34818961 -6.352916902 2.10E-08 
Nox1 9.362588681 -6.402243085 0.008685178 
Rprm 9.027051747 -6.454293908 0.000140172 
B4galnt2 15.82020492 -6.462112453 1.16E-05 
Atp2a3 36.95610278 -6.506208072 1.04E-06 
Scx 7.501716724 -6.55619466 0.002422051 
Syt10 9.610849779 -6.565298696 0.000800277 
Pitpnm1 6.971062106 -6.631538221 0.000815258 
N4bp2l1 40.60930877 -6.638796432 3.35E-07 
B3galt2 13.17993668 -6.656381035 0.007258845 
Dok2 245.255472 -6.766075464 6.71E-10 
Gm7694 23.35661877 -6.834020521 0.000252112 
Stk26 55.63633961 -6.958570306 0.002115685 
Tmem71 21.92599808 -6.977893638 4.07E-05 
Gria3 36.23682964 -7.183381614 4.40E-11 
Ikzf1 110.3957947 -7.195718005 3.87E-10 
Zcchc16 10.43416971 -7.490146108 0.003889647 
Clec4e 123.8182189 -7.512868091 4.13E-09 
Pcdh11x 11.09887025 -7.547919412 0.003717358 
Casp12 17.83300622 -7.590816992 0.000153776 
Cpne7 14.51037015 -7.869964983 0.000329284 
Gkn3 89.08396995 -7.977462263 7.83E-07 
S100a4 43.58391797 -8.657209255 2.63E-13 
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Mgp 36.20937276 -9.196189016 7.23E-05 
Fbln5 410.100214 -9.351894972 0.000322495 
Lox 43.80010341 -9.377415773 8.63E-05 
Cfi 92.57464584 -10.21368425 1.93E-08 
Sla 196.3674958 -22.33554716 1.90E-17 
Chst9 8.208234389 -24.95145428 4.41E-12 
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Supplementary Table 3: Marker genes identified by single-cell RNA 
sequencing analysis 

Cluster 1: VE-Cadherin- AGM 
   

 

p-value Average 
logFC Percentage 1 Percentage 2 Adjusted  

p-value 
Crabp1 4.52E-25 1.910126326 0.674 0 5.31E-21 
Mdk 7.26E-19 1.675144325 0.93 0.341 8.54E-15 
Gpc6 8.97E-17 1.737179173 0.86 0.244 1.06E-12 
Peg3 9.20E-16 1.707464536 0.953 0.496 1.08E-11 
Col4a1 7.70E-10 -1.506028093 0.395 0.8 9.06E-06 
Afp 1.78E-09 -2.39757156 0.023 0.57 2.09E-05 
Calcrl 9.21E-09 -2.253097582 0.023 0.533 0.00010841 
Cdh5 1.16E-08 -1.884704132 0.023 0.526 0.000136971 
Ttr 5.01E-08 -1.639174794 0.023 0.496 0.000589963 
Flt1 2.00E-07 -1.777476838 0.047 0.496 0.002347822 
Ptprm 2.98E-07 -1.75771161 0.209 0.6 0.003505492 
Kdr 9.24E-07 -1.582539288 0 0.407 0.010876558 
Elmo1 9.44E-07 -1.667179364 0.047 0.452 0.011105373 
Stab2 3.05E-06 -2.767205077 0 0.378 0.035903345 

      Cluster 2: VE-Cadherin+ AGM 
   

 

p-value Average 
logFC Percentage 1 Percentage 2 Adjusted  

p-value 
Emcn 2.47E-23 1.589077525 0.745 0.038 2.91E-19 
Hba-a1 1.11E-20 -3.437116576 0.745 0.992 1.30E-16 
Hba-x 2.71E-20 -3.465859872 0.851 0.985 3.19E-16 
Hbb-bh1 5.59E-20 -3.55073909 0.766 0.985 6.58E-16 
Hbb-y 3.19E-19 -3.261473361 1 0.992 3.75E-15 
Hba-a2 1.01E-15 -3.051395255 0.574 0.908 1.19E-11 
Hbb-b2 3.25E-12 -2.539147613 0.128 0.725 3.82E-08 
Mecom 3.33E-12 1.553983605 0.745 0.221 3.91E-08 
Hbb-b1 1.03E-10 -1.807832267 0.021 0.595 1.21E-06 
Afp 1.14E-10 -2.454551483 0.021 0.588 1.35E-06 
Ttr 1.63E-09 -1.696949333 0 0.519 1.92E-05 
Mt1 2.16E-09 -1.888451876 0.255 0.702 2.54E-05 
Col1a1 2.41E-09 -2.64667958 0 0.511 2.84E-05 
Apoa1 3.30E-08 -1.698690798 0 0.458 0.000388075 
Col3a1 4.41E-08 -1.849208399 0.021 0.489 0.000518502 
Car2 4.99E-08 -1.616543299 0.043 0.496 0.000586596 
Col1a2 1.00E-07 -1.872684794 0.021 0.458 0.001176236 
Mt2 6.83E-07 -1.505230803 0.085 0.496 0.008032469 

      Cluster 3: VE-Cadherin- YS 
   

 

p-value Average 
logFC Percentage 1 Percentage 2 Adjusted  

p-value 



	 205	

Col1a2 3.14E-25 2.207998754 0.953 0.148 3.69E-21 
Col1a1 6.76E-25 2.535544321 0.977 0.185 7.95E-21 
Col3a1 5.72E-23 2.271305297 0.953 0.178 6.73E-19 
Hba-a1 4.15E-21 2.308475377 1 0.904 4.88E-17 
Hbb-y 4.36E-21 2.314894285 1 0.993 5.13E-17 
Hba-x 5.44E-21 2.238500133 1 0.933 6.40E-17 
Hbb-bh1 6.53E-21 2.186465982 1 0.904 7.68E-17 
Hba-a2 1.35E-20 2.182455257 1 0.763 1.59E-16 
Hbb-b2 3.50E-20 1.735779634 1 0.43 4.12E-16 
Car2 3.74E-20 1.506399067 0.953 0.193 4.41E-16 
Col5a1 2.40E-19 1.512775262 0.744 0.081 2.82E-15 
Hbb-b1 2.27E-18 1.690789409 0.953 0.281 2.67E-14 
Mt2 3.21E-18 1.756554941 0.884 0.23 3.78E-14 
Acta2 2.00E-13 1.876104421 0.744 0.23 2.36E-09 
Ptprm 5.17E-10 -2.043837539 0.093 0.637 6.08E-06 
Ldb2 6.69E-10 -1.949390326 0.047 0.607 7.87E-06 
Calcrl 8.05E-09 -2.289136435 0.023 0.533 9.47E-05 
Flt1 9.37E-09 -1.950238015 0 0.511 0.000110211 
Zfpm2 7.40E-08 -1.752546398 0.047 0.511 0.000870795 
Cdh5 1.40E-07 -1.804651705 0.07 0.511 0.001650544 
Mecom 2.21E-07 -1.817886893 0.023 0.467 0.002603218 
Elmo1 3.44E-07 -1.671830876 0.023 0.459 0.004042094 
Prex2 4.66E-07 -1.515435448 0.07 0.496 0.005479366 
Kdr 9.24E-07 -1.582539288 0 0.407 0.010876558 

      Cluster 4: VE-Cadherin+ YS 
   

 

p-value Average 
logFC Percentage 1 Percentage 2 Adjusted  

p-value 
Stab2 6.05E-31 3.609106539 0.933 0.068 7.12E-27 
Lyve1 3.17E-19 1.770801443 0.556 0.008 3.72E-15 
Afp 3.24E-18 1.878811178 0.889 0.286 3.82E-14 
Mrc1 7.84E-17 1.920614638 0.689 0.105 9.23E-13 
Calcrl 2.28E-15 1.742748433 0.844 0.263 2.68E-11 
Maf 1.27E-13 1.88838544 0.689 0.165 1.49E-09 
Myh10 4.50E-12 -1.584283496 0.111 0.737 5.29E-08 
Colec12 9.68E-11 1.769468469 0.644 0.218 1.14E-06 
Ldb2 3.49E-10 1.63076388 0.756 0.376 4.10E-06 
Dab2 8.10E-10 1.692139884 0.667 0.271 9.53E-06 
Ralgapa2 1.06E-07 1.562843321 0.556 0.203 0.00124728 
Gpc6 4.17E-06 -1.500072019 0.111 0.489 0.0490495 
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Appendix	I:	R	code	used	for	differential	gene	expression	
analysis	of	bulk	RNA	sequencing	samples	
 
## RNAseq analysis for thesis ##  
setwd("/Users/morgan/Desktop/R_Analysis/Thesis_25RNA") 
getwd() 
 
## Your output files will start with "output" ## 
output = "CD44Low" 
 
if (!requireNamespace("BiocManager", quietly = TRUE)) 
  install.packages("BiocManager") 
BiocManager::install("DESeq2", version = "3.8") 
## Libraries ## 
library(dplyr) 
library(ggplot2) 
library("pheatmap") 
library("RColorBrewer") 
library("DESeq2") 
 
## Upload your RNAseq read matrix to R ## 
RNAseq_Data <- read.table("all_data_together.tabular", header = TRUE, sep = "\t", 
row.names = "gene") 
dim(RNAseq_Data) 
 
## Removed samples that I don't want to use for the analysis ## 
RNAseq_Data2 <- RNAseq_Data[ -c(23:25) ] 
dim(RNAseq_Data2) 
 
## loaded metadata describing the conditions of the experiment ## 
colNames <- read.table("colNames2.txt", header = TRUE, sep = "\t") 
 
 
### look at summary of data with raw counts ### 
(summary_table <- data.frame(summary(RNAseq_Data2))) 
summary_table <- dplyr::select(summary_table, Var2, Freq) 
 
## pre-filtering to remove zeros from the dataset ## 
## Remove rows with only zeros ## 
nrow(RNAseq_Data2) 
RNAseq_Data2 <- RNAseq_Data2[rowSums(RNAseq_Data2) > 0,] 
nrow(RNAseq_Data2) 
 
## Remove rows with rowsum less or equal than number of samples ## 
RNAseq_Data2 <- RNAseq_Data2[rowSums(RNAseq_Data2) > 
ncol(RNAseq_Data2),] 
nrow(RNAseq_Data2) 
 
## look at summary of data with raw counts again. Medians changed noticeably ## 
dim(RNAseq_Data2) 
(summary_table = data.frame(summary(RNAseq_Data2))) 
 
## create DESeqDataSet from our matrix with raw counts ## 
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dds <- DESeqDataSetFromMatrix(countData = RNAseq_Data2, colData = colNames, 
design =~Group) 
 
## to resolve issues with variability and stabilise the variance accross the mean, 
there are two options ## 
## rlog (regularised logarithm transformation) or vst (variance stabilising 
transformation)## 
rlog_RNAseq2 <- rlog(dds, blind = FALSE) 
head(assay(rlog_RNAseq2), 3) 
 
 
## Generate a table with normalised log expression values = expression matrix!## 
write.table(assay(rlog_RNAseq2), paste0(output, "_rlog_normalized_counts.tsv"),  
            quote = FALSE, sep = "\t") 
exprMatrix <- as.data.frame(assay(rlog_RNAseq2)) 
 
## We can then run the differential expression analysis with the DESeq function ## 
## The function will the estimate of size factors controlling for differences in the 
sequencing depth of the samples ##  
## Then estimate the dispersion values for each gene, and fit a generalized linear 
model ## 
dds <- DESeq(dds, minReplicatesForReplace = 3) 
 
### plot a PCA graph with DESeq2 package build-in function plotPCA() ### 
plotPCA(rlog_RNAseq2, intgroup = c("Group"), ntop = nrow(RNAseq_Data2)) 
PCAdata <- plotPCA(rlog_RNAseq2, intgroup = c("Group"), ntop = 
nrow(RNAseq_Data2), returnData = TRUE) 
 
## Alternative PCA ## 
RNAseq_pca <- prcomp(t(exprMatrix)) 
scores = as.data.frame(RNAseq_pca$x) 
scores <- cbind(scores, colNames)  
install.packages("ggfortify") 
library(ggfortify) 
autoplot(RNAseq_pca, data = scores, colour = "Group") 
pca3d(RNAseq_pca,group=colNames$Group) 
 
## Tsne analysis ## 
install.packages("Rtsne") 
library(Rtsne) 
RNAseq_tsne <- Rtsne(t(exprMatrix), perplexity = 2) 
plot(RNAseq_tsne$Y,col=colNames$Group) 
tsne_plot <- data.frame(x = RNAseq_tsne$Y[,1], y = RNAseq_tsne$Y[,2], col = 
colNames$Group) 
ggplot(tsne_plot) + geom_point(aes(x=x, y=y, color=col)) 
 
## Generate Tsne Plot ## 
plotTSNE(exprMatrix, scale_features = TRUE, perplexity = 10, 
         rand_seed = 7 #this function fixes the TSNE# 
         , theme_size = 13) +  
  geom_point(aes(colour = colNames$Group), size = I(3)) + 
  scale_color_manual(values = c("blue","burlywood3", "cyan2","seagreen3", 
"violetred1", "red")) 
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## Compare CD44Low/KitNeg Group with CD44Negative for differential expression 
analysis ## 
res2 <- results(dds, contrast = c("Group", "CD44Low", "CD44Negative")) 
mcols(res2, use.names = TRUE) 
 
## Filter out NA results ## 
resFilt2 <- res2[!is.na(res2$padj),] 
head(resFilt2) 
dim(resFilt2) 
 
## Create list of genes with an adjusted p-value of > 0.01 and generate text file ## 
resSig2 <- subset(resFilt2, padj < 0.01) 
dim(resSig2) 
resSig2 <- as.data.frame(resSig2[ order(resSig2$log2FoldChange, decreasing = 
TRUE), ]) 
write.table(resSig2, "~DESeq\\Sig2.txt") 
 
## Mark genes within the data set that are significant so they can be displayed on 
plot ## 
data2 <- data.frame(gene = row.names(res2), pvalue = -log10(res2$padj), lfc = 
(res2$log2FoldChange)) 
data2 <- na.omit(data2) 
data3 <- data2 %>% mutate(significant = ifelse(pvalue > 2, "yes", "no")) 
number_yes <- table(data3$significant) 
table <- as.data.frame(number_yes) 
 
## Create volcano plot of differentially expressed genes, plotting adjusted p-value 
and log fold change ## 
volcanoplot2 <- ggplot(data3, aes(x = lfc, y = pvalue, color = significant)) + 
  geom_point(size = 2, alpha = 0.7, na.rm = T)  
volcanoplot2 + scale_color_manual(values = c("black","goldenrod")) +  
  geom_vline(aes(xintercept = 2), linetype = "dashed") +  
  geom_vline(aes(xintercept = -2), linetype = "dashed") +  
  theme(axis.text = element_text(size = 11, colour = "black"), 
        axis.title = element_blank(),  
        panel.background = element_rect(fill = NA),  
        axis.line = element_line(size = 1, colour = "black"),  
        legend.position = "none") +  
  scale_x_continuous(limits = c(-15,15), breaks = c(-15, -10, -5, 0, 5, 10, 15)) +  
  scale_y_continuous(limits = c(0, 30), breaks = c(0, 5, 10, 15, 20, 25)) 
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Appendix	II:	R	code	used	for	single	cell	RNA	sequencing	
analysis		
 
setwd("/Users/morgan/Desktop/R_Analysis/Stab2_Countmat/Seurat") 
getwd() 
 
install.packages('Seurat') 
library(Seurat) 
library(dplyr) 
library(gdata) 
 
## Load matrix with count data and metadata file ## 
stab2_counts <- as.matrix(read.table("MorganFirst_counts_cells_all.tsv", header = 
TRUE, sep = "\t")) 
stab2_meta <- read.table("MorganFirst_coldata.tsv", header = TRUE, sep = "\t") 
 
## Look at the parameters of the matrix ## 
## We have 200 cells and 15777 detected genes ## 
dim(stab2_counts) 
summary(colSums(stab2_counts)) 
 
## Check the number of genes detected in three or more cells ## 
## We have 11,775 genes detected in more than three cells ## 
Stab2_counts3 <- apply(stab2_counts, 1, function(x) sum(x>0)) 
table(Stab2_counts3>=3) 
 
## Create Seurat object ## 
stab2_sc <- CreateSeuratObject(raw.data = stab2_counts, 
                               min.cells = 3, 
                               min.genes = 200, 
                               project = "stab2") 
 
## Add meta-data cell group (VE- AGM, VE+ AGM, VE- YS and VE+ YS) to each cell 
##  
cell_group <- stab2_meta[c("state")] 
stab2_sc <- AddMetaData(object = stab2_sc, metadata = cell_group, col.name = 
"state" ) 
head(stab2_sc@meta.data) 
 
## Identify mitochondrial genes in the matrix & remove cells with high percentage ## 
## List of mitochondrial genes obtained from mouse mito.carta 2.0 ## 
mito <- read.table("Mito_genes.txt", header = TRUE) 
mito.genes <- intersect(mito$genes, rownames(x = stab2_sc@data)) 
length(mito.genes) 
percent.mito <- Matrix::colSums(stab2_sc@raw.data[mito.genes, ]) / 
Matrix::colSums(stab2_sc@raw.data) 
class(percent.mito) 
head(stab2_sc@meta.data) 
stab2_sc <- AddMetaData(object = stab2_sc, 
                        metadata = percent.mito, 
                        col.name = "percent.mito") 
head(stab2_sc@meta.data) 
VlnPlot(object = stab2_sc, features.plot = c("nGene", "nUMI", "percent.mito"), nCol = 
3) 
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## Look at the relationship between gene numbers and UMI ## 
par(mfrow = c(1, 2)) 
GenePlot(object = stab2_sc, gene1 = "nUMI", gene2 = "percent.mito") 
GenePlot(object = stab2_sc, gene1 = "nUMI", gene2 = "nGene") 
table(stab2_sc@meta.data$percent.mito < 0.10 & 
stab2_sc@meta.data$nGene<3000) 
 
## Filter out the cells that appear to be doublets and with too high percentage of 
mitochondrial genes ## 
stab2_filter <- FilterCells(object = stab2_sc, 
                            subset.names = c("nGene", "percent.mito"), 
                            low.thresholds = c(200, -Inf), 
                            high.thresholds = c(3000, 0.10)) 
stab2_filter 
## We are left with 178 cells and 11767 genes ## 
 
## Histogram of gene expression before normalisation ## 
hist(colSums(stab2_filter@data), 
     breaks = 100, 
     main = "Total expression before normalisation", 
     xlab = "Sum of expression") 
 
## Normalise filtered data with a global scaling method ## 
## This normalises the gene expression measurements for each cell by the total 
expression ## 
## Then we multiply this by a scale factor & log-transform the result ## 
stab2_norm <- NormalizeData(object = stab2_filter, 
                            normalization.method = "LogNormalize", 
                            scale.factor = 10000) 
 
## Histogram of gene expression after normalisation ## 
hist(colSums(stab2_norm@data), 
     breaks = 100, 
     main = "Total expression after normalisation", 
     xlab = "Sum of expression") 
 
## Now we identify the highly variable genes ## 
## FindVariableGenes calculates the average expression & dispersion for each gene 
& places these genes into bins ## 
## We can then calculate the z-score fr dispersion within each bin ## 
## Macosko et al., ## 
stab2_norm <- FindVariableGenes(object = stab2_norm, 
                                mean.function = ExpMean, 
                                dispersion.function = LogVMR, 
                                x.low.cutoff = 0.0125, 
                                x.high.cutoff = 3, 
                                y.cutoff = 0.5) 
head(stab2_norm@var.genes, 20) 
length(stab2_norm@var.genes) 
## 2848 highly variable genes were identified ## 
 
## We can then scale the data to remove unwanted sources of variation such as 
batch effects, cell cycle effects ect.. ## 
stab2_norm <- ScaleData(object = stab2_norm, 
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                        vars.to.regress = c("nUMI", "percent.mito")) 
 
 
## We can then run PCA analysis on the highly variable genes ## 
stab2_PCA <- RunPCA(object = stab2_norm, 
                    pc.genes = stab2_norm@var.genes, 
                    do.print = TRUE, 
                    pcs.print = 1:5, 
                    genes.print = 5, rev.pca = TRUE, weight.by.var = TRUE) 
PCAPlot(object = stab2_PCA, dim.1 = 1, dim.2 = 2) 
PCHeatmap(object = stab2_PCA, 
          pc.use = 1:12, 
          do.balanced = TRUE, 
          label.columns = TRUE) 
 
## To determine which PCAs are significant or relevant to feed into down-stream 
analysis ## 
PCElbowPlot(object = stab2_PCA) 
stab2_PCA <- JackStraw(object = stab2_PCA, num.replicate = 100, display.progress 
= FALSE) 
JackStrawPlot(object = stab2_PCA, PCs = 1:20) 
 
## To generate clusters based on the signficant PCA components and changing the 
resolution to alter the number of clusters ## 
stab2_clusters <- FindClusters(object = stab2_PCA, reduction.type = "pca", dims.use 
= 1:9,  
                     resolution = 0.2, print.output = 0, save.SNN = TRUE) 
 
## This sets the identity to cell state so that the Tsne plot will be coloured based on 
your groups ## 
stab2_clusters <- SetAllIdent(object = stab2_clusters, id = "state") 
 
## Running the Tsne algorithm, you can change the perplexity ## 
stab2_tsne <- RunTSNE(object = stab2_clusters, seed.use = 42, add.iter = 5000, 
dims.use = 1:9, perplexity = 12) 
 
## Plotting the Tsne ## 
TSNEPlot(object = stab2_tsne, pt.size = 4,  
         colors.use = (c("VE- AGM" = "cyan3", "VE- YS" = "peachpuff", "VE+ AGM" = 
"cornflowerblue", "VE+ YS" = "salmon"))) +  
  theme(axis.text = element_text(size = 11, colour = "black")) + labs(x="Dimension 1", 
y="Dimension 2") 
save_plot("Seurat_TSNE.pdf", p1, base_height = 10, base_width = 10) 
## You can visualise the number of groups in your data ## 
print(stab2_clusters@meta.data) 
 
## Tsne plots with individual gene expression ## 
FeaturePlot(object = stab2_tsne, 
            features.plot = c("Cdh5"), 
            cols.use = c("grey", "blue"), 
            reduction.use = "tsne", pt.size = 4, no.legend = FALSE, no.axes = FALSE) + 
background_grid() 
 
## Finding marker genes for each cluster ## 
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cluster1.markers <- FindMarkers(object = stab2_clusters, ident.1 = "VE- AGM", 
min.pct = 0.1, logfc.threshold = 1.5) 
cluster2.markers <- FindMarkers(object = stab2_clusters, ident.1 = "VE+ AGM", 
min.pct = 0.1, logfc.threshold = 1.5) 
cluster3.markers <- FindMarkers(object = stab2_clusters, ident.1 = "VE- YS", min.pct 
= 0.1, logfc.threshold = 1.5) 
cluster4.markers <- FindMarkers(object = stab2_clusters, ident.1 = "VE+ YS", min.pct 
= 0.1, logfc.threshold = 1.5) 
 
## Writing the files ## 
write.csv(cluster1.markers, file = "VE-AGM_markers_logfc1.5.csv") 
write.csv(cluster2.markers, file = "VE+AGM_markers_logfc1.5.csv") 
write.csv(cluster3.markers, file = "VE-YS_markers_logfc1.5.csv") 
write.csv(cluster4.markers, file = "VE+YS_markers_logfc1.5.csv") 
 
## I combined the files manually and uploaded the marker gene list ## 
Marker_genes <- read.table(as.matrix("Marker_genes.txt")) 
 
## Extracting the expression matrix from the Seurat object and creating a csv file ## 
data_to_write_out <- as.data.frame(as.matrix(stab2_norm@data)) 
write.csv(data_to_write_out, file = "Seurat_expressionMat.csv") 
 
## Extracting the metadata eg: Cell state for your set of filtered and normalised cells 
##  
meta_data_norm <- as.data.frame(stab2_norm@meta.data) 
write.csv(meta_data_norm, file = "Seurat_metadata.csv") 
 
## Create Heatmap of Marker genes ## 
expressionTable <- read.xls("Seurat_Markers_HM.xlsx",sheet=1, 
stringsAsFactors=FALSE) 
exprID <- expressionTable[,1] 
exprMatrix <- as.matrix(expressionTable[,-1]) 
rownames(exprMatrix) <- exprID 
samples <- read.xls("Seurat_Markers_HM.xlsx", sheet=2, stringsAsFactors=FALSE)  
rownames_samp = make.names(samples$SampleID, unique=TRUE) 
samples = data.frame(GroupID = samples$GroupID) 
rownames(samples) = rownames_samp 
rm(rownames_samp) 
stopifnot( all(rownames(samples) == colnames(exprMatrix))  ) 
genes <- read.xls("Seurat_Markers_HM.xlsx", sheet=3, stringsAsFactors=FALSE) 
rownames(genes) <- genes$GeneID 
stopifnot( all( exprID == rownames(genes) ) ) 
phenoData <- new("AnnotatedDataFrame", samples) 
featureData <- new("AnnotatedDataFrame", genes) 
eS <- new("ExpressionSet", expr=exprMatrix,featureData=featureData, 
phenoData=phenoData) 
library(pheatmap) 
library(RColorBrewer) 
hmcol <- colorRampPalette(brewer.pal(10, "RdYlBu"))(100) 
ann_colors = list (GroupID = c("VE- AGM" = "cyan3", "VE- YS" = "peachpuff", "VE+ 
AGM" = "cornflowerblue", "VE+ YS" = "salmon")) 
pheatmap(mat=exprs(eS),annotation_col=pData(eS), color= rev(hmcol), 
annotation_colors = ann_colors, border_color = "white", cluster_cols = TRUE, 
cluster_rows = TRUE, cellwidth = NA, cellheight = NA, fontsize = 11, show_colnames 
= FALSE) 
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 2

 

Abstract 

 
The endothelial to haematopoietic transition (EHT) is the process whereby 

haemogenic endothelium differentiates into haematopoietic stem and progenitor cells 

(HSPCs). The intermediary steps of this process are unclear, in particular the identity 

of endothelial cells that give rise to HSPCs is unknown. Using single-cell 

transcriptome analysis and antibody screening we identified CD44 as a new marker of 

EHT enabling us to isolate robustly the different stages of EHT in the aorta gonad 

mesonephros (AGM) region. This allowed us to provide a very detailed phenotypical 

and transcriptional profile for haemogenic endothelial cells, characterising them with 

high expression of genes related to Notch signalling, TGFbeta/BMP antagonists 

(Smad6, Smad7 and Bmper) and a downregulation of genes related to glycolysis and 

the TCA cycle. Moreover, we demonstrated that by inhibiting the interaction between 

CD44 and its ligand hyaluronan we could block EHT, identifying a new regulator of 

HSPC development.  
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