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Background: Recently, deep learning via convolutional neural networks (CNNs) has largely superseded conventional
methods for proton (1H)-MRI lung segmentation. However, previous deep learning studies have utilized single-center data
and limited acquisition parameters.
Purpose: Develop a generalizable CNN for lung segmentation in 1H-MRI, robust to pathology, acquisition protocol, ven-
dor, and center.
Study type: Retrospective.
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Population: A total of 809 1H-MRI scans from 258 participants with various pulmonary pathologies (median age (range):
57 (6–85); 42% females) and 31 healthy participants (median age (range): 34 (23–76); 34% females) that were split into
training (593 scans (74%); 157 participants (55%)), testing (50 scans (6%); 50 participants (17%)) and external validation
(164 scans (20%); 82 participants (28%)) sets.
Field Strength/Sequence: 1.5-T and 3-T/3D spoiled-gradient recalled and ultrashort echo-time 1H-MRI.
Assessment: 2D and 3D CNNs, trained on single-center, multi-sequence data, and the conventional spatial fuzzy c-means
(SFCM) method were compared to manually delineated expert segmentations. Each method was validated on external
data originating from several centers. Dice similarity coefficient (DSC), average boundary Hausdorff distance (Average
HD), and relative error (XOR) metrics to assess segmentation performance.
Statistical Tests: Kruskal–Wallis tests assessed significances of differences between acquisitions in the testing set. Fried-
man tests with post hoc multiple comparisons assessed differences between the 2D CNN, 3D CNN, and SFCM. Bland–
Altman analyses assessed agreement with manually derived lung volumes. A P value of <0.05 was considered statistically
significant.
Results: The 3D CNN significantly outperformed its 2D analog and SFCM, yielding a median (range) DSC of 0.961 (0.880–
0.987), Average HD of 1.63 mm (0.65–5.45) and XOR of 0.079 (0.025–0.240) on the testing set and a DSC of 0.973 (0.866–
0.987), Average HD of 1.11 mm (0.47–8.13) and XOR of 0.054 (0.026–0.255) on external validation data.
Data Conclusion: The 3D CNN generated accurate 1H-MRI lung segmentations on a heterogenous dataset, demonstrating
robustness to disease pathology, sequence, vendor, and center.
Evidence Level: 4.
Technical Efficacy: Stage 1.

J. MAGN. RESON. IMAGING 2023.

Imaging of the lungs is a key component in the management
of patients with respiratory diseases and facilitates their

diagnosis, treatment planning, monitoring, and assessment.
Imaging modalities such as computed tomography (CT) and
proton MRI (1H-MRI) enable the visualization and quantifi-
cation of anatomical features within the lungs.1,2

High-resolution CT has traditionally represented the refer-
ence standard in clinical practice for structural lung imaging
due to its impeccable resolution (�1 mm3) and ubiquitous
availability.3 1H-MRI has historically been limited in the
management of patients with respiratory diseases due to the
low proton density and fast signal decay within the lungs,
which pose inherent challenges for the modality.4 However,
recent advances in sequence development and coil design
have improved structural detail via ultrashort and zero echo-
time sequences which increase the resolution to approxi-
mately that of CT (�1.5 mm3), enabling the use of 1H-MRI
in numerous pulmonary imaging applications.5 Furthermore,
1H-MRI uses non-ionizing radiation and therefore can be uti-
lized for pediatric patient care and treatment monitoring
where longitudinal imaging studies are required.

Segmentation of the lungs in 1H-MRI is required to
delineate the lung cavity from other nearby features and has
numerous applications, such as disease characterization,6

treatment planning7 and longitudinal assessment.8 Lung seg-
mentation is also required for the computation of quantitative
dynamic contrast-enhanced and oxygen-enhanced MRI,
which evaluate lung perfusion and ventilation, respectively.5

In addition, surrogates of ventilation can be derived from
non-contrast, multi-inflation 1H-MRI, requiring the segmen-
tation of the lung parenchyma at different volumes.9 Segmen-
tation of pathological lungs, in particular, represents a
challenge due to the relative similarity in signal intensity
between aerated and non-aerated lung tissue and the presence

of various pathological patterns such as ground glass opacities,
consolidation, and bronchiectasis.

Conventional image processing and machine learning
approaches have traditionally been used for lung segmenta-
tion in 1H-MRI; these include semi-automatic thresholding,
clustering and region growing methods.1 Spatial fuzzy
c-means (SFCM) is a clustering method that employs spatial
information to modify cluster membership and has been used
successfully as a semi-automated 1H-MRI lung segmentation
method.10,11 However, although these methods achieved
varying degrees of success, they remain semi-automated in
nature. Time-consuming manual correction is often required
to modify semi-automated methods based on MRI sequence
or readout parameters.

In recent years, deep learning (DL) has largely super-
seded classical image processing, such as thresholding, and
conventional machine learning, such as clustering, for medical
image segmentation applications. Convolutional neural net-
works (CNNs) have emerged as the dominant DL approach
and have been used in numerous pulmonary image segmenta-
tion applications. A recent review of DL applications in lung
image segmentation indicated that studies predominantly uti-
lized CT imaging and single-center datasets.12 This leads to
reduced performance when deploying DL models across mul-
tiple centers due to variations in training and testing set dis-
tributions.13 Due to variations in MR acquisition protocols
or vendor, the large-scale segmentation of 1H-MRI represents
a significant challenge for the deployment of implementable
DL models. Multi-center datasets have been used for other
DL-based lung segmentation applications such as the use of
the COPDGene dataset in CT fissure detection and segmen-
tation14; however, large-scale DL investigations are yet to be
conducted for 1H-MRI lung segmentation. Consequently,
there is a pressing need for a multi-center implementable
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approach to 1H-MRI segmentation that can be deployed
regardless of specific MR imaging parameters or patient
pathology.

In this study, we hypothesized that a generalizable DL-
based segmentation algorithm can accurately delineate the
lung cavity across a multi-center, multi-vendor, and multi-
disease 1H-MRI dataset. We aimed to develop and compare
1H-MRI DL segmentation networks with a conventional seg-
mentation approach to automatically segment the lungs on
1H-MRI scans.

Materials and Methods
Patient Data
All studies received ethical approval from the relevant institutional
review boards with participants (or their guardians) providing
informed written consent. Appropriate consent and permissions have
been granted by the sponsors to utilize these data for retrospective
purposes. All data were anonymized, and all investigations were con-
ducted in accordance with the appropriate guidelines and
regulations.

1H-MRI scans used in this study were retrospectively collected
from several research imaging studies and patients referred for clini-
cal pulmonary MRI scans. The dataset comprised 809 1H-MRI
scans from 31 healthy participants with a median age (range) of
34 (23, 76); 66% males, 34% females and 258 participants with var-
ious pulmonary pathologies with a median age (range) of 57 (6, 85);
58% males, 42% females. Scans acquired at different inflation levels,
longitudinal, and intrasession reproducibility scans were included in
the dataset, resulting in a larger number of 3D scans than partici-
pants. A breakdown of patient data and demographics, stratified by
disease, is included in Table 1.

1H-MRI Protocol
The dataset used in this study contained 1H-MRI acquired with a
range of sequences and readout parameters from three distinct cen-
ters in the United Kingdom. 1H-MRI acquisition details are summa-
rized in Table 2.

Spoiled-gradient echo (SPGR) and ultrashort echo-time
(UTE) 1H-MRI scans were collected from center 1 and originated
from several research and clinical studies conducted between 2014
and 2022. The data were used for training and testing DL networks
containing a total of 643 scans from 207 participants and included
five distinct MR sequence and readout parameter configurations (see
Table 2). These acquisitions included differences in scanner manu-
facturer, sequence, field strength, lung inflation level, in-plane reso-
lution, and slice thickness.

SPGR 1H-MRI scans collected from center 2 and center
3 and originated from a single clinical study conducted between
2021 and 2022. They were used for external validation with a total
of 110 scans from 55 participants (center 2) and 54 scans from
27 participants (center 3) acquired 3 to 12 months after hospitaliza-
tion due to COVID-19. Each participant underwent an inspiratory
and expiratory scan, resulting in two scans per subject. Acquisition
details are provided in Table 2.

1H-MRI Segmentations
All 1H-MRI scans (n = 809) had corresponding, manually edited
segmentations, representing the lung parenchyma. These segmenta-
tions were used as ground-truth delineations of the lung cavity vol-
ume, exclusive of major airways. Segmentations were pooled
retrospectively and were originally generated manually or using a
variety of semi-automated methods.10,15,16 Subsequently, they were
manually reviewed and edited by several experienced observers (B.A.
T had 10 years, H.M had 7 years, G.J.C had 6 years, P.J.C.H had
5 years, A.M.B had 5 years, H.F.C had 4 years, L.J.S had 3.5 years,
and J.R.A had 3 years of experience in editing lung segmentations)
with each observer segmenting different cases within the dataset
using the ITK-SNAP software (ITK-SNAP, University of Pennsylva-
nia, PA, USA). Airways were removed down to the third generation,
and care was taken to ensure that no more than two connected com-
ponents were present in the segmentations, thus removing any
potentially incorrect stray voxels.

Convolutional Neural Networks
The proposed networks consisted of a 2D and 3D implementation
of the UNet CNN.17 All networks were trained using the medical
imaging DL framework NiftyNet (0.6.0)18 built on top of Ten-
sorFlow (1.14).19 To ensure an adequate comparison between the
two CNNs, training was performed on an NVIDIA Tesla V100
graphical processing unit (GPU) (Nvidia Corporation, Santa Clara,
CA, USA) with 16 GB of RAM for the same length of time, thereby
normalizing the performance in terms of computational efficiency
and resources. Each network was trained for 120 hours.

2D UNET. A 2D UNet20 architecture was used with varying kernel
sizes from 3 � 3 � 3 to 1 � 1 � 1 depending on the layer of the
network. An input spatial window size of 128 � 128 � 1 and a vol-
ume padding size of 24 � 24 � 0 was implemented to maintain
consistent image dimensions. Each network was trained with a par-
tial rectified linear unit (PReLU) activation function,21 Adam opti-
mization22 and binary cross-entropy loss function. A learning rate of
1 � 10�5 and batch size of 1 were used for 123 training epochs. A
decay of 1 � 10�6 and L2 regularization were implemented to mini-
mize overfitting.

3D UNET. A 3D implementation of the UNet, referred to as the
nn-UNet was used.17 Convolution operations varied in kernel size
from 3 � 3 � 3 to 1 � 1 � 1 depending on the layer of the net-
work. The network also made use of instance and batch normaliza-
tion to reduce the covariate shift between network layers. An
isotropic spatial window size of 96 � 96 � 96 was used. Each net-
work was trained with a PReLU activation function,21 Adam optimi-
zation22 and binary cross-entropy loss function. A learning rate of
1 � 10�5 and batch size of 2 were used for 227 training epochs. A
decay of 1 � 10�6 and L2 regularization were selected to minimize
overfitting.

DATA AUGMENTATION. Data augmentation was employed
before 3D scans were fed into the network to increase the variability
of the training images. The augmentation method did not increase
the total size of the dataset but instead used random rotation and
scaling factors to modify scans before entering the network. Rotation
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angles of �10� to 10� and scaling values of �10% to 10% were
applied for each epoch, selected based on previous research investiga-
tions.23 Augmentation techniques were constrained to the above
limits to produce physiologically plausible scans.

TRAINING AND TESTING SETS. Fifty scans from 50 partici-
pants, with 10 scans from each distinct acquisition in center 1, were
randomly selected as a testing set. This constituted approximately
8% of the total number of scans from center 1 and 25% of the total
number of participants. This was done to ensure that no participant
was included concurrently in the training and testing sets and that
only one scan per participant was included in the testing set. In
addition, two external validation cohorts from centers 2 and 3 were
used to further validate the DL frameworks. Therefore, as a propor-
tion of the total dataset, approximately 27% and 46% of the data in
terms of scans and participants were used for testing, respectively.
Numbers of scans and participants in the training, testing, and exter-
nal validation datasets are shown in Table 3.

Conventional Approach: Spatial Fuzzy c-Means
A conventional approach commonly used for 1H-MRI segmentation,
namely, SFCM, was used.10 Images were initially bilaterally filtered
to remove noise and maintain edges.24 SFCM differs from generic
FCM algorithms in that it assumes that voxels in close spatial prox-
imity will have a high correlation with each other and hence have
similarly high membership to the same cluster. This spatial informa-
tion will modify the membership value if, for instance, the voxel is
noisy yet highly spatially correlated and consequently would have
been incorrectly classified. The optimal number of clusters was man-
ually selected by A.M.B based on previous experience in the clinical
translation of this technique. Traditional FCM methods assign
N pixels to C clusters via fuzzy memberships yet do not make use of

nearby pixels during the iteration process. By taking into account,
the membership of voxels within a predefined window (5 � 5 in this
work), SFCM will weigh the central voxel depending on the pro-
vided weighting variables25 and thus is expected to generate more
accurate segmentations.10

Quantitative Evaluation
Segmentations generated by DL and SFCM were compared to manu-
ally annotated segmentations and quantitatively evaluated using the fol-
lowing voxel-based evaluation metrics. The overlap-based Dice
similarity coefficient (DSC) metric assesses the overlap between ground
truth (GT) and output (OP) segmentations and is defined as follows26:

DSC¼ 2
jOP \GT j
jOPjþ jGT j ð1Þ

The average boundary Hausdorff distance (Average HD)
assesses the conformity of boundaries between GT and OP segmen-
tations and is defined as follows27:

HD OP,GTð Þ¼ max h OP,GTð Þ,h GT ,OPÞð Þð ð2Þ

where h OP,GTð Þ represents the directed Hausdorff distance
between the sets of OP and GT voxels at the boundary, op represents
an individual boundary voxel in the set OP, and gt represents an
individual boundary voxel in GT . Further, h OP,GTð Þ is defined as:

h OP,GTð Þ¼ max
op � OP

min
gt � GT

OP�GTk k ð3Þ

where OP�GTk k is the Euclidean distance between OP and GT .

TABLE 1. Summary of Patient Data

Disease
Number of
Subjects

Number of
Scans

Agea Sexa

Median
(range)

Frequency
(%)

Asthma 17 89 50 (15, 73) 5 M (29%), 12 F (71%)

Post-COVID-19 147 376 57 (21, 83) 97 M (66%), 49 F (34%)

Cystic fibrosis 26 82 18 (6, 48) 12 M (46%), 14 F (54%)

Healthy 31 103 34 (23, 76) 19 M (66%), 10 F (34%)

ILDb 46 83 69 (44, 83) 25 M (54%), 21 F (46%)

Investigation for possible airways
disease

4 15 50 (46, 64) 0 M (0%), 4 F (100%)

Lung cancer 18 59 72 (35, 85) 11 M (61%), 7 F (39%)

Total 289 809 56 (6, 85) 168 M (59%), 117 F (41%)

aPatient demographic data were unavailable for four participants.
bContains connective tissue disease-associated interstitial lung disease (CTD-ILD), hypersensitivity pneumonitis (HP), idiopathic pulmo-
nary fibrosis (IPF) and drug-induced ILD (DI-ILD).
M = male; F = female; ILD = interstitial lung disease.
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The relative error metric (XOR) is an error-based metric,
which is expected to correlate with the manual editing time required
to correct the OP segmentation28 and is defined as follows:

XOR¼ jOP \GT 0jþ jOP 0 \GT j
jGT j ð4Þ

where OP0 and GT0 are the complements of OP and GT,
respectively.

Statistical Analysis
The normality of the data was assessed using Shapiro–Wilk tests; if
normality was not satisfied, non-parametric tests were conducted.
Kruskal–Wallis tests for multiple comparisons were used to assess
differences in segmentation performance between center 1 image
acquisitions (see Table 2). One-way repeated-measures analysis of
variance (ANOVA) with Tukey’s test or Friedman tests with
corrected Dunn’s method for post hoc multiple comparisons were
used to assess differences in segmentation performance between the
2D UNet, 3D UNet and SFCM methods for center 1 data. Bland–
Altman analyses were conducted to compare the 2D UNet-, 3D
UNet- and SFCM-generated segmentations on external validation
data. ANOVA or Friedman tests were used to assess differences
between segmentation methods on external validation cohorts from
centers 2 and 3. Furthermore, independent t-tests with Welch’s

correction or Mann–Whitney U tests were used to assess differences
between expiratory and inspiratory segmentations in external valida-
tion data. Statistical analyses were conducted using GraphPad Prism
9.2.0 (GraphPad Software, San Diego, CA). A P value of <0.05 was
considered statistically significant.

Results
Qualitative Evaluation
Figure 1 shows the segmentations generated by the 2D UNet,
3D UNet and SFCM methods in comparison to the manu-
ally edited segmentations for six cases, where a range of pul-
monary pathologies, centers, and MR sequences were chosen
to demonstrate each method’s performance. For all cases, the
3D UNet exhibited improved performance over its 2D analog
and the SFCM method; this superior performance was
maintained for the external validation dataset. Cases with
challenging features such as artifacts, ground glass opacities,
consolidation and bronchiectasis are displayed in Fig. 2 along
with expert, DL and SFCM segmentations. The 3D UNet
exhibited improved performance on these cases compared to
the other approaches tested; however, some differences were
observed with expert segmentations, particularly when areas

TABLE 3. Breakdown of Training and Testing Strategy With External Validation

Image Acquisition Number of Scans Number of Participants

Training Total 593 157a

Acquisition 1 89 44

Acquisition 2 78 39

Acquisition 3 242 65

Acquisition 4 99 26

Acquisition 5 85 33

Testing Total 50 50

Acquisition 1 10 10

Acquisition 2 10 10

Acquisition 3 10 10

Acquisition 4 10 10

Acquisition 5 10 10

External validation Total 166 82

External validation 1 110 55

External validation 2 54 27

aThe number of unique participants in the training set. The totals for each acquisition in the training set are greater than this number as
some participants have scans from multiple acquisitions.
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of high signal intensity were adjacent to the border of the
lung cavity.

Center 1 Evaluation
Quantitative results for the 2D UNet, 3D UNet and SFCM
method are displayed in Table 4. Results demonstrated that
the 3D UNet generated superior segmentations across all
three metrics for each acquisition. The 3D UNet achieved a
median (range) DSC, Average HD and XOR of 0.961
(0.880, 0.987), 1.63 mm (0.65, 5.45) and 0.079 (0.025,
0.240), respectively, on testing data from center 1. Both the
DL-based approaches outperformed the SFCM method across
all three metrics. Network training performance and conver-
gence for the 3D and 2D UNets are illustrated graphically in
the Supplementary material S1. Our 3D UNet trained model
is publicly available at https://github.com/POLARIS-
Sheffield/1H-MRI-segmentation. In Fig. 3, performance
between segmentation methods is shown per MR acquisition
configuration for all metrics. The 3D UNet significantly out-
performed the SFCM method in all comparisons and the 2D

UNet in almost all comparisons. The 2D UNet statistically
outperformed the SFCM on acquisition 1 data only. Figure 4
displays graphically the performance of the (a) 3D UNet,
(b) 2D UNet and (c) SFCM methods for each metric. All
methods exhibited statistically significant differences between
some of the acquisitions; however, the 3D UNet exhibited
the smallest range between least and best performing MR
acquisition. The 3D UNet produced the most accurate seg-
mentations for a single acquisition (acquisition 3) when using
all three metrics; in contrast, the 2D UNet and SFCM
methods did not consistently exhibit superior performance for
a specific acquisition across metrics.

External Data Evaluation
As shown in Table 4, improved performance over center
1 testing data was exhibited on the external validation
cohorts, achieving a median (range) DSC, Average HD and
XOR of 0.973 (0.866, 0.987), 1.11 mm (0.47, 8.13) and
0.054 (0.026, 0.255), respectively. The 3D UNet signifi-
cantly outperformed the 2D UNet and SFCM for all three

FIGURE 1: Example coronal slices showing the 1H-MRI scans (row 1), the 1H-MRI scans overlaid with manual segmentations (row 2)
and segmentations generated by the 3D UNet, 2D UNet and spatial fuzzy c-means (SFCM) methods (rows 3–5) for six representative
cases. Dice similarity coefficient (DSC) and average Hausdorff distance (HD) values are provided for each case. Example slices were
left uncropped to display differences in field of view and arm position between acquisitions.
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metrics across 164 external validation scans using the DSC,
Average HD, and XOR metrics; distribution and comparison
of segmentation performance are displayed in the Supplemen-
tary material S1. Figure 5 shows Bland–Altman analyses com-
paring the lung parenchymal volume of DL methods and
SFCM to manually derived lung volumes for the 164 external
validation scans from centers 2 and 3. The 3D UNet
exhibited a significantly reduced bias compared to other
methods tested and achieved a bias of 0.063 liters with limits
of agreement (LoA) �0.099 to 0.225 liters.

Figure 6 displays a comparison of segmentation perfor-
mance between expiratory and inspiratory scans in data from
centers 2 and 3 for all metrics used. For the 2D UNet and
the SFCM methods, inspiratory scans were segmented more
accurately than expiratory scans for all metrics. This was repli-
cated for the 3D UNet using the DSC and XOR metrics;

however, no difference was observed between inspiratory and
expiratory scans using the Average HD metric (P = 0.06).

Discussion
In this study, the proposed implementable DL segmentation
algorithm produced accurate lung segmentations on a large,
multi-center, multi-acquisition, multi-disease 1H-MRI
dataset. Our proposed 3D CNN significantly outperformed a
2D CNN and a conventional machine learning segmentation
method. In addition, it was validated on external data from
two centers, acquired on different vendor scanners, demon-
strating minimal bias compared to manually edited lung vol-
umes. Differences in lung segmentation performance were
observed between scans acquired at inspiratory and expiratory
inflation levels.

FIGURE 2: Example coronal slices showing 1H-MRI scans that exhibit challenging features such as artifacts, ground glass opacities,
consolidation, and bronchiectasis for five cases with corresponding expert, deep learning, and spatial fuzzy c-means (SFCM)
segmentations. Dice similarity coefficient (DSC) values are provided for each case and method.
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The dataset used is diverse in terms of pulmonary
pathology, center in which the scans were acquired, and
image acquisition parameters, including sequence, field
strength and vendor. This results in a segmentation network
that is invariant to the specifics of the 1H-MRI scans ana-
lyzed, relying on relevant anatomical features present in
1H-MRI scans to generate segmentations. These anatomical
features remain consistent regardless of acquisition parameters
in contrast to other features that varied between acquisitions,
such as noise patterns, arm position, or location of the lungs
within the scan. CT lung segmentation methods have
adopted the large, multi-center COPDGene dataset for vali-
dation of DL segmentation models to increase generalizabil-
ity.14 In this work, we used a large multi-center, multi-
vendor 1H-MRI dataset to demonstrate the generalizability of
the DL model, allowing it to potentially be deployed across
numerous centers; this could have a large impact on the pul-
monary MRI field.

Furthermore, our proposed 3D UNet demonstrated
high-quality segmentations across a range of pulmonary
pathologies. This exemplary performance largely extends to
particularly challenging cases such as participants with idio-
pathic pulmonary fibrosis. Fibrotic lungs contain an increased

presence of challenging pathologies, such as ground glass
opacities and honeycombing, which lead to increased hetero-
geneity within the lung parenchyma and consequently repre-
sent challenging cases for segmentation algorithms.29

Similarly, 1H-MRI scans from participants who were previ-
ously hospitalized for COVID-19 can exhibit consolidation
and reticulation patterns that reduce the difference in signal
intensity between lung and non-lung tissue,30 which our pro-
posed model adequately accounts for.

Quantitative results and statistical tests indicated that,
for all acquisitions, across all metrics, the 3D UNet signifi-
cantly outperformed the SFCM method. For the majority of
acquisitions and metrics, the 3D UNet significantly out-
performed its 2D analog. When tested on external validation
data, some degree of overfitting was present in the 2D UNet
exemplified by a reduction in performance compared to test-
ing set data from center 1; this behavior was not exhibited by
the 3D UNet. Differences in performance between the 2D
and 3D UNets are potentially due to the volumetric nature
of the 1H-MRI scans, which were acquired using 3D
sequences. In addition, anatomical features primarily occur
across multiple slices and thus a 3D approach to segmenta-
tion may better encapsulate these features. Comparison

FIGURE 3: Comparison of segmentation performance for each of the methods using the (a) Dice similarity coefficient (DSC),
(b) average Hausdorff distance (HD), and (c) relative error (XOR) metrics. Significances of differences between deep learning
methods and spatial fuzzy c-means (SFCM) as assessed by Friedman tests with Dunn’s method are displayed for each metric.
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between DL networks was limited due to the differences in
batch size and spatial windowing between the two CNNs as a
result of differing memory constraints. It is possible that these
differences may impact network comparisons; however,

computational resources remained consistent between 2D
and 3D CNNs and therefore the computational efficiency of
the networks was assessed alongside segmentation
performance.

FIGURE 4: Comparison of segmentation performance across acquisition protocols for the Dice similarity coefficient (DSC), average
Hausdorff distance (HD) and relative error (XOR) metrics for (a) 3D UNet, (b) 2D UNet, and (c) spatial fuzzy c-means (SFCM)
methods. Significant differences between image acquisitions as assessed by Kruskal–Wallis tests are given for each metric.

FIGURE 5: Bland–Altman agreement analysis of lung volumes for 164 external validation set cases compared to volumes derived
from manual segmentations for (a) 3D UNet (b) 2D UNet, and (c) spatial fuzzy c-means (SFCM) methods.
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FIGURE 6: Comparison of the combined external validation datasets stratified by inspiratory and expiratory scans using the Dice
similarity coefficient (DSC), average Hausdorff distance (HD) and relative error (XOR) metrics for (a) 3D UNet, (b) 2D UNet, and
(c) spatial fuzzy c-means (SFCM) methods. P values between inspiratory and expiratory scans are shown.
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Several investigators have leveraged CNNs for pulmo-
nary MRI segmentation. For example, Zha et al used a 2D
UNet to segment the lung cavity on UTE 1H-MRI scans,
achieving a mean DSC of 0.96 across both lungs. However,
the generalizability of this method was not demonstrated due
to the small dataset of the study, which only contained
45 UTE 1H-MRI scans from a limited number of diseases.31

Tustison et al evaluated a 3D UNet CNN for isotropic 1H-
MRI lung cavity segmentation, achieving a mean DSC of
0.94 on a dataset of 268 scans.32 These studies employed a
limited range of image acquisition parameters with 1H-MRI
scans acquired using the same scanner and from a single cen-
ter. Our 3D UNet proposed here demonstrated improved
performance over previous research studies on a significantly
larger dataset containing scans from multiple centers with
varying sequences and readout parameters. Previous works in
the field of 1H-MRI lung segmentation have employed either
2D31 or 3D32 approaches; here, we directly compared differ-
ences in segmentation performance between 2D and 3D seg-
mentation networks.

Our analysis of external validation data from centers
2 and 3 indicated that all lung cavity segmentation methods
show significantly reduced performance on scans acquired at
expiration. This effect was less prevalent in segmentations
generated by the 3D UNet where no significant difference
between inflation levels was observed using the Average HD
metric. Differences in performance between inflation levels
may be due to the reduced contrast between the lung paren-
chyma and other tissues as air is expelled from the lungs and
the increased heterogeneity of signal within the parenchyma
caused by pathophysiological air trapping at expiration
observed in some patients. In addition, segmentations of
exhaled lungs have a smaller volume than those of inhaled
lungs; this can potentially bias quantitative results when using
voxel-based evaluation metrics.33

Accurate lung segmentation of 1H-MRI plays an impor-
tant role in the treatment planning, monitoring, and assess-
ment of patients with respiratory diseases as well as other
applications that require the delineation of the lung cavity
such as dynamic contrast-enhanced perfusion MRI.5 The
ability to rapidly produce lung cavity segmentations can
greatly reduce cumbersome manual editing, leading to a more
streamlined lung imaging workflow and thus higher clinical
throughput, increasing clinical translation.

Limitations
The ratios of MRI acquisitions present in the training set
leads to potential biases toward some MR sequences or acqui-
sitions; those with a larger number of scans may lead to
improved segmentation performance for these acquisitions by
the network. In particular, this study presented more acquisi-
tion 3 scans than any other acquisition in the training set,
potentially leading to the increased DSC values exhibited by

the 2D and 3D UNets for this acquisition. However, using
the Average HD metric, no relationship between the number
of scans in the training set and reduced segmentation perfor-
mance can be established, indicating that these biases are
minimal. This is further reinforced by the superior perfor-
mance on external validation datasets demonstrated by the
3D UNet, despite the CNN never being exposed to 1H-MRI
scans from these centers or vendors during training. However,
external validation data contained only one pulmonary
pathology, namely, patients previously hospitalized with
COVID-19.

The expert segmentations used in this work delineate
only the lung parenchyma inclusive of vessels and no other
relevant structures, such as the airways. Various applications
require the delineation of only the lung parenchyma, includ-
ing the computation of clinically relevant metrics such as the
ventilation defect percentage15 and as a precursor step to
image registration of multi-inflation proton MRI for the gen-
eration of 1H-MRI surrogates of ventilation.34 However, in
certain respiratory disorders such as obstructive sleep apnea,
the segmentation of the airways is highly relevant for studying
the anatomical structure of the upper airways.35 Future inves-
tigations may aim to integrate a multi-label DL solution,
which can segment both the lung parenchyma and airways
simultaneously.

The number of MRI sequences contained within the
dataset were limited. The dataset contained SPGR and UTE
sequence scans i.e. proton density or T1-weighted scans only.
In addition, UTE scans were acquired with a kooshball acqui-
sition and, therefore, other possible acquisitions, such as
Floret and spiral, were not assessed. Likewise, only 3D acqui-
sition sequences were contained in the dataset, thereby limit-
ing its implementation to 3D sequences. The inclusion of
other MRI sequences, such as steady-state free-precession or
fast spin echo sequences, in combination with 2D and 3D
MRI sequences will help to further generalize the work. In
future investigations, we will aim to further validate the
model with data from an increased number of centers and
from MRI sequences not previously investigated.

In this work, 1H-MRI lung segmentations were primar-
ily evaluated using voxel-wise evaluation metrics, such as the
DSC. These metrics are susceptible to reduced sensitivity in
segmentation evaluation as the volume of the segmentation is
increased.36 Hence, comparisons between lung inflation levels
evaluated using voxel-based metrics are challenging. In future
work, transfer learning could be employed to boost the per-
formance on expiratory scans or more advanced data augmen-
tation methods could be used to increase the number of
expiratory scans in the training set. Similarly, comparisons
between acquisitions were limited in this study because of
variations in voxel resolution, resulting in large differences in
the overall number of voxels between acquisitions. While the
volume of the lung cavity remained largely consistent between
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acquisitions, the number of voxels did not; therefore, biases
were introduced when using voxel-based evaluation metrics.
The subject of appropriate evaluation metrics remains lively
within the medical image analysis field with recent works
aiming to quantify the benefits and drawbacks of each met-
ric.33 With this in mind, in this work, we employed a range
of evaluation metrics; the overlap-based DSC,26 the distance-
based Average HD,27 and the error-based XOR metric,28

which each assessed a different component of segmentation
accuracy. In addition, analysis of the lung cavity volume was
also undertaken when evaluating external validation data as a
non-voxel-based evaluation metric to further diversify seg-
mentation performance evaluation.

Conclusion
The DL-based implementable 1H-MRI segmentation net-
work produced accurate lung segmentations across a range of
pathologies, acquisitions, vendors, and centers, which could
potentially have numerous applications for pulmonary MRI
quantification. A 3D CNN significantly outperformed its 2D
analog and a conventional segmentation method.
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