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Abstract

RNA structure is conformationally dynamic, and accurate all-atom tertiary (3D) structure

modeling of RNA remains challenging with the prevailing tools. Secondary structure (2D)

information is the standard prerequisite for most RNA 3D modeling. Despite several 2D and

3D structure prediction tools proposed in recent years, one of the challenges is to choose

the best combination for accurate RNA 3D structure prediction. Here, we benchmarked

seven small RNA PDB structures (40 to 90 nucleotides) with different topologies to under-

stand the effects of different 2D structure predictions on the accuracy of 3D modeling. The

current study explores the blind challenge of 2D to 3D conversions and highlights the perfor-

mances of de novo RNA 3D modeling from their predicted 2D structure constraints. Our

results show that conformational sampling-based methods such as SimRNA and IsRNA1

depend less on 2D accuracy, whereas motif-based methods account for 2D evidence. Our

observations illustrate the disparities in available 3D and 2D prediction methods and may

further offer insights into developing topology-specific or family-specific RNA structure pre-

diction pipelines.

Introduction

Ribonucleic acids (RNAs) are versatile molecules that leverage the transfer of genetic informa-

tion, regulation of gene expression, catalytic function, and many other significant roles in cel-

lular metabolism. Unlike protein, RNA is sequentially encoded with only four canonical

nucleotides, A, U, C, and G, and some modified nucleotides. To perform its function, RNA

must fold into specific secondary (2D) and tertiary (3D) structures that are inherently related

to each other. The importance of RNA structures and the challenges associated with experi-

mental determination have briskly promoted computational RNA modeling in recent times.

At the 2D level, RNA canonical base pairing covers A-U, G-C, and G-U pairs.

Furthermore, noncanonical base pair inclusion extends the 2D structure repertoire with the

formation of pseudoknots [1]. It has been hypothesized that the folding of small RNAs is hier-

archical and sequential, i.e., the sequence undergoes canonical 2D structure formation at first,
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followed by stable 3D structure formation [2–5]. Therefore, predicting accurate RNA 2D

structures is the foremost logical step in modeling RNA 3D structures. Multiple approaches

have been proposed for RNA 2D structure prediction based on thermodynamic nearest-neigh-

bor parameters, statistical learning, knowledge, and homology. Many machine learning meth-

ods are also being utilized to solve RNA 2D structure prediction problems.

On the other hand, RNA tertiary interactions are based on a negatively charged phosphate

backbone, sugar moiety, and aromatic heteroatomic bases. Such interactions involve Watson–

Crick–Franklin base pairing, non-Watson–Crick–Franklin pairing, stacking, base-phosphate

interactions, sugar-phosphate interactions, and interactions with microenvironment ions or

cosolutes. Structural rearrangements due to these diverse interactions generate multiple

kinetic traps, slowing the folding of large RNAs [2, 3]. Modeling these interactions, which lead

to a rugged free energy landscape with conformationally alternative yet energetically similar

folds, confounds definite RNA 3D modeling. RNA 3D modeling tools are classified into con-

formational sampling-based and motif-based methods. Despite the availability of several 2D

and 3D tools, it is often difficult to obtain predicted models that fit native structure homogene-

ity. It is currently considered possible that the structural prediction precision and correlation

between 2D and 3D structure modeling were not established properly. Moreover, no unified

2D or 3D structure prediction methods are suitable for predicting all RNA types.

In this study, in an attempt to assess the performance of available 2D and 3D modeling

together, we carried out two stages of evaluations as follows. (A) We performed 2D and 3D

modeling prediction of a given RNA sequence using multiple 2D and 3D tools, respectively.

(B) The correlation of the predicted models with the native 2D and 3D structures was extracted

from experimentally solved structures. The RNA 2D prediction tools used in this study

included ViennaRNA 2.0 RNAfold [6], RNAstructure [7], NUPACK [8], LinearFold [9],

UNAFold/MFold [10], MC-Fold [11], RNAfold_MC-Fold (RNAfold MFE 2D structure as

constraints for MCfold prediction), CONTRAfold [12], MXfold2 [13], SPOTRNA [14], UFold

[15], ContextFold [16], RNAPKplex [6], HotKnots [17], pKiss [18] IPknot [19], DotKnot [20],

CentroidFold [21], CentroidHomfold-LAST [22] and R2DT [23]. Similarly, the 3D modeling

tools considered here were IsRNA1 [24], SimRNA [25], and RNAComposer [26]. RNA-Puz-

zles (https://www.rnapuzzles.org/) has highlighted the important aspects of RNA 3D structure

predictions by evaluating the accuracies and limitations of numerous tools. We chose small

RNA PDB structures ranging between 40 and 90 nucleotides from RNA Puzzle number 3

(PDB 3OWZ), number 11 (PDB 5LYU), number 21 (PDB 5NWQ), number 25 (PDB 6P2H),

and number 29 (PDB 6TB7). Additionally, we included the recent SARS-COV-2 frameshift

pseudoknot (PDB 7LYJ) and the classical fluoride riboswitch (PDB 4ENC). Various 2D predic-

tions followed by RNA 3D modeling were performed for all these RNA candidates. Consis-

tently, with the help of the RNA-Puzzles toolkit [27], the quality and accuracy of the predicted

3D structures were evaluated in terms of clashes between atoms, RMSD, and interaction fidel-

ity network matrix.

The main objective of our work is to display the effect of 2D structure accuracy on the 3D

structure modeling of RNAs (<100 nucleotides). Our results show the RNA 2D structure pre-

diction accuracies for each RNA candidate used in this study, followed by correlations between

the 2D and 3D modeling predictions. We found some discrepancies and advantages between

motif-based and sampling-based 3D modeling and discussed them in detail. Finally, we dem-

onstrated the convergence issues for sampling-based methods. Our analyses correlating the

accuracies of the RNA 2D and 3D structural predictions suggest that considering structural

topologies and RNA families in the pipeline of RNA structure prediction would lead to

improved accuracies.
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Materials and methods

RNA structures used in this study

Three RNA structures (PDB 5LYU, 6TB7, 7LYJ) were used, in the order of relatively simple

(stem–loop) to complex folds (such as pseudoknots and long-range interactions). Then, four

RNA structures (PDB 5NWQ, 4ENC, 6P2H, 3OWZ) with relatively complex folds were cho-

sen. The RNA structures were grouped based on their topological complexities to reveal the

prediction limitations of the existing tools. The RNA structures examined are listed in Table 1.

Briefly, PDB 5LYU [28] is a simple stem–loop structure with one internal loop, one bulge,

and the tetraloop UUCG. PDB 6TB7 [29] is an NAD+ riboswitch with a tandem bulged stem–

loop structure. PDB 7LYJ [30] is a programmed -1 ribosomal frameshifting pseudoknot of

SARS-COV-2, which contains GAAA tetraloop and three planar triplets. PDBs 5NWQ [31]

and 4ENC [32] are pseudoknot structures with guanidine III riboswitch and fluoride ribos-

witch, respectively. PDB 5NWQ contains a left-handed triple-helix core. PDB 6P2H [33] cor-

responds to a 2’-deoxyguanosine riboswitch with a signature three-way junction. PDB 3OWZ

[34] is a glycine riboswitch. We considered chain A of PDB 3OWZ with the terminal nucleo-

tide changed for this study. RNA-Puzzle 3OWZ (RPZ3) differs from the actual crystallized

structure by two terminal nucleotides (GG on the 5’ side and UC on the 3’-side). Additionally,

the loop region “CAUAU” in RNA-Puzzle 3 is replaced by “GAAAC” in the crystallized struc-

ture. Thus, we considered 88 nucleotides in the crystal structure sequence.

PDB 3OWZ_A:

5’-GGCUCUGGAGAGAACCGUUUAAUCGGUCGCCGAAGGAGCAAGCUCUGCGGAAACGC
AGAGUGAAACUCUCAGGCAAAAGGACAGAGUC-3’

RNA-Puzzle 3 sequence:

5’-CUCUGGAGAGAACCGUUUAAUCGGUCGCCGAAGGAGCAAGCUCUGCGCAUAUGCAGA
GUGAAACUCUCAGGCAAAAGGACAGAG-3’

2D software packages

A total of 28 secondary (2D) structure prediction tools were utilized (Table 2). The tools were

broadly grouped into four major classes: thermodynamics-based, machine learning-based,

pseudoknot-based, and homology-based tools. Despite being classified into different catego-

ries, some packages have overlapping features, such as RNAPKplex, which takes advantage of

thermodynamic constraints to predict pseudoknots [35, 36]. All the command-line usages for

the local runs are mentioned in the Supplementary Information. Most of the tools were used

with the default parameters. In a few cases, nondefault parameters were applied. For example,

Das and coworkers observed [37] RNA 2D prediction results that better agreed with the

Table 1. List of RNAs used for 2D and 3D structure prediction.

PDB ID No of bases 3D topology Riboswitch Pseudoknot RNA puzzle ID

5LYU 58 Stem-loop No No 11

6TB7 52 Three-way junction Yes No 29

7LYJ 66 Pseudoknot No Yes NA

5NWQ 41 H-type pseudoknot Yes Yes 21

4ENC 52 Pseudoknot Yes Yes NA

6P2H 69 Three-way junction Yes No 25

3OWZa 88 Three-way junction Yes No 3

aChain A as reference for 3D structure analysis

https://doi.org/10.1371/journal.pone.0290907.t001
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chemical probing data when a high temperature of 60˚ C was considered. We therefore used

60˚ C for the RNAfold_MFE (RNAfold_MFE_60) predictions in addition to the standard

MFE prediction.

3D tools

The three software packages used for RNA 3D structure prediction were (1) IsRNA1, (2) RNA-

Composer, and (3) SimRNA. Detailed descriptions of the usage of each of these tools are sum-

marized below, and corresponding scripts are provided in the Supplementary Information.

IsRNA1

IsRNA1 [24] combines a coarse-grained force field and replica-exchange simulations to model

RNA 3D structures. In IsRNA1, coarse-grained energy functions are inspired by the probabil-

ity distributions of bonds, angles, torsions, and pairwise distances from experimental PDB

Table 2. List of RNA 2D structure prediction tools.

Tools Access Category Description

Native / reference Webserver Experimental RNA 2D structure derived with RNApdbee/3DNA-DSSR [38]

RNAfold_MFE Local Thermodynamics Minimum free energy structure with McCaskill’s algorithm with ViennaRNA package [6]

RNAfold_MFE_60 Local Thermodynamics RNAfold MFE prediction at 60˚ C as it correlates well with chemical mapping data [37]

RNAfold_MEA Local Thermodynamics Maximum expected accuracy with highly probable base-pairing probabilities [12, 39]

RNAStructure_Fold Local Thermodynamics Minimum free energy structure prediction [7]

RNAStructure_Probknot Local Thermodynamics Pseudoknot prediction [40] with RNAstructure package

RNAStructure_MaxExpect Local Thermodynamics Maximum expected accuracy structure with RNAStructure package [12, 39]

DotKnot Local Pseudoknot a pseudoknot prediction method based on a prediction of stem parts [20]

CONTRAfold Local ML/DL Statistical learning based on and independent of nearest neighbor parameters [12]

MXfold2 Local ML/DL Deep neural network + Turner’s 2004 NN parameters [13, 14]

NUPACK Local Thermodynamic Thermodynamic parameters with the capability to predict pseudoknots [41, 42]

SPOT-RNA Local ML/DL Deep neural network (ResNet + 2D-BLSTM) with transfer learning [14]

UFold Webserver ML/DL Convolutional neural network using RNA base pair information as image representation and

allowing canonical as well noncanonical interactions and long-range interactions [15]

RNAPKplex Local Pseudoknot Pseudoknot prediction based on stable fragments in RNA sequence using ViennaRNA 2.0 [6]

CentroidFold_McCaskill Local Thermodynamic Centroid structure prediction with base-pair maximization controlled by tunable γ parameter and

base-pairing information from either McCaskill or CONTRAfold algorithm (https://github.com/

satoken/centroid-rna-package [21, 39, 43]

CentroidFold_CONTRAfold Local Thermodynamic Centroidfold with CONTRAfold based probability distribution [21]

HotKnots (CC09, DP09) Local Pseudoknot Prediction of stable stems using free energy minimization followed by pseudoknot prediction.

Two parameter sets, DP09 and CC09, are tested in this work (https://www.cs.ubc.ca/labs/

algorithms/Software/HotKnots/) [17]

LinearFold

(CONTRAfold and

ViennRNa)

Local Thermodynamic RNA folding in linear time considering either ViennaRNA’s thermodynamic parameters

(LinearFold-V) or model by CONTRAfold (LinearFold-C) (https://github.com/LinearFold/

LinearFold) [9]

UNAFold_MFold Local Thermodynamic Based on partition function calculation [10, 44]

MC-Fold webserver Thermodynamic Scoring functions based on various nucleotide motif databases [11], accessed via CURL.

RNAfold_MC-Fold Webserver

+ local

Thermodynamic RNAfold minimum free energy 2D structure base-pairing as constraints to MC-Fold prediction

[6, 11]

pKiss webserver Pseudoknot Minimum free energy structure prediction with pKiss webserver [18, 45]

ContextFold Local ML/DL Statistical learning based [16]

IPknot Local Pseudoknot Maximum expected accuracy based [19]

R2DT (all templates) Webserver Homology RNACentral database to predict 2D structure with homology modeling [23]

CentroidHomfold-LAST Webserver Homology RNA homologous sequences and γ-centroid estimator [22]

https://doi.org/10.1371/journal.pone.0290907.t002
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structures. The automated 3D structure prediction and clustering protocol proposed by

IsRNA1 developers was used in this study without manual intervention. The details of this

automated protocol are provided in the Supplementary Information. An initial RNA

sequence and corresponding 2D structure were provided to predict the 3D structures.

RNAComposer

The RNAComposer webserver was used in this study. RNAComposer uses known 3D struc-

tural motifs that can be accessed through RNA FRABASE 2.0 to build the 3D model based on

the user-defined RNA sequence and 2D structural information. RNA FRABASE 2.0 is a web-

accessible database [46] of 2753 (accessed on 31 August 2022) PDB-deposited RNA structures

and provides a search engine for the 3D fragments within those PDB-derived structures. RNA-

Composer can build large 3D structures with up to 500 nucleotides within a short time given

an RNA sequence and its predicted 2D structure. We provided the RNA sequence and the pre-

dicted 2D structural information to the RNAComposer webserver to build the 3D models. We

observed that the modeled 3D structure is sensitive to the input format if pseudoknot or long-

range interactions are involved.

Our results show that the RNAComposer webserver is a unique and fast RNA structure

building with accuracies equivalent to or sometimes better than sampling-based methods.

SimRNA

SimRNA utilizes coarse-grained modeling and replica-exchange Monte Carlo (REMC) simula-

tions to predict the RNA 3D structure by conformational sampling. The energy function of

SimRNA is based on the base and backbone parameter distribution, including the RNA pseu-

dotorsion η-θ distribution from experimental structures. SimRNA utilizes RNA 2D structural

information in the form of distance restraints. We used the standard protocol of REMC simu-

lations for the main results.

However, to understand convergence issues with SimRNA, we performed three sets of

repeated REMC simulations with the 2D structures derived from the crystal structures using

the RNApdbee _3DNA-DSSR approach, which we otherwise called native 2D structures. Each

set consisted of 8 repetitions of the REMC simulations but with ~30% of the standard steps,

i.e., 4800000 with the same replica-exchange frequency of 16000. Each REMC simulation con-

sisted of 10 trajectories. Thus, the structures were collected from 80 trajectories (10 replicas x 8

repetitions) for one set. The same clustering protocol was followed to obtain the final centroid

structure from the first majorly populated cluster. In the Results section, we have presented all

the results from the REMC simulations with the default simulation setup and from all three

repeated sets.

Evaluation of RNA 2D structure prediction tools

We evaluated 28 RNA 2D structure prediction tools, including the RNApdbee_3DNA-DSSR

approach, to extract the native 2D structures from the crystal structures. To evaluate the accu-

racy of the predictions, the positive predictive value (PPV, precision), sensitivity (recall), and

F1-score values were calculated as suggested in reference [1] by comparing the base pairs

observed in the predicted structures to those in experimental structures. The definitions of

true positive (TP), false positive (FP), and false negative (FN) are summarized in Table 3.

Briefly, the dot-bracket notation was converted to connectivity table (CT) file format using

the dot2ct program. The PPV and sensitivity values were predicted using the scorer program

of RNAStructure software. As shown in Eqs (1)–(3), F1-score values were derived using PPV

and sensitivity values. In the present work, the scorer program enforced exact base pairing for
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the PPV and sensitivity calculations. This criterion allows differentiation between the native

and near-native 2D structures to better understand the influence of the 2D structural accuracy

in translating to accurate 3D structures.

PPV ¼
TP

TP þ FP
ð1Þ

Sensitivity ¼
TP

TP þ FN
ð2Þ

F1 ¼
2� sensitivity� PPV
sensitivityþ PPV

ð3Þ

Assessing RNA 3D structure quality

The predicted 3D models were normalized by the RNA_normalizer tool from the RNA-Puzzles

toolkit. The normalization of the PDB file altered the modified nucleotides in the PDB to the

nearest possible unmodified nucleotides. The residue numbers and chain termination infor-

mation were preserved, and hydrogens were removed. Although root mean square deviation

(RMSD) measurements are widely used, RMSD values may not be the ideal measure to esti-

mate the accuracy of predicted RNA 3D structures compared to the crystal (native) structure.

For example, two RNA structures can have similar all-atom RMSD values with different

base orientations. In such cases, the RMSD alone could be ambiguous. Magnus et al. proposed

an RNA-Puzzle Toolkit [27, 47]: a collection of RNA structure assessment tools for prediction

benchmarking. Major and coworkers [48] proposed RNA structure descriptors, deformation

index (DI), and interaction network fidelity (INF) parameters. In addition to RMSD, the fol-

lowing metrics (Table 4) were considered to evaluate the RNA 3D structure quality and accu-

racy compared to the crystal (native) structure.

Table 4. RNA 3D structure assessment metrics.

Metrics Ideal value

RMSD < 3.00 Å
P-value < 0.01

DI 0.00

INF_all 1.00

INF_wc 1.00

INF_nwc 1.00

INF_stack 1.00

LCS-TA Length of RNA

MCQ-global <15˚

Molprobity Clashscore <15

https://doi.org/10.1371/journal.pone.0290907.t004

Table 3. Definition of true positive (TP), false positive (FP), and false-negative (FN).

Classification Base pairs in experimental structure Base pairs in the predicted structure

TP Yes Yes

FP No Yes

FN Yes No

https://doi.org/10.1371/journal.pone.0290907.t003
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a. Interaction Network Fidelity (INF)

Interaction network fidelity is an important metric that compares the Watson–Crick–

Franklin (WC) and non-Watson–Crick–Franklin (nWC) base pairs and stacked bases in the

modeled structure to those in the reference native structure (Table 5). INF [47, 48] is given as

INF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PPV � STY
p

ð4Þ

where PPV ¼
jTPj

jTPj þ jFPj
ð5Þ

and STY ¼
jTPj

jTPj þ jFNj
ð6Þ

Thus, the INF serves as a metric for assessing local 3D structure quality. The MC-annotate

program and RNA Puzzle toolkit calculated INF and it is defined as the Mathews correlation

coefficient (MCC) (Eqs 4–6) between the reference structure and the predicted structure.

b. Deformation Index (DI)

The deformation index (DI) is the ratio of RMSD to INF_all (Eq 7) and is used to compare

global and local structural accuracy. If the RMSD values are similar, DI values help to under-

stand the local structural quality of the 3D models of the sequence of interest.

DI ¼
RMSD
INF all

ð7Þ

c. P-value

The p-value [47] for the predicted RMSD is independent of RNA size, and we chose a cutoff

value of less than 0.01, similar to previous studies, to decide on a successful prediction. The P-
value is based on the range of the ideal RMSD values for a given length of an RNA. It is an

important measure for understanding the significance of high RMSD values. The ideal RMSD

value for an RNA of length N is given as

hRMSDi ¼ a � Nð0:41Þ � b ð8Þ

where a = 0.51 and b = 19.80 if 2D structural constraints are applied for 3D structure predic-

tion. If m is the RMSD of the predicted 3D model with respect to the reference structure, the

Table 5. Definitions of true positive (TP), true negative (TN), false positive (FP), and false-negative (FN).

Classification PARAMa in Reference PDB PARAMa in modeled PDB

TP Y Y

TN N N

FP N Y

FN Y N

aPARAM = Watson–Crick–Franklin base pairs, non-Watson–Crick–Franklin base pairs, base stacking.

https://doi.org/10.1371/journal.pone.0290907.t005
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P-value is calculated as

P � value ¼
1þ erf Zffiffi

2
p

� �

2
ð9Þ

where Z ¼ m� hRMSDi
sm

; sm � 1:80 Å

d. Clashscore

The clashscore indicates the number of serious steric clashes in an RNA structure model

per 1000 atoms. We used the MolProbity software package to determine the clashscores, and a

probe diameter of 0.50 Å was used for the calculation.

e. Mean of circular quantities (MCQ)

The mean of circular quantities (MCQ) [49] is a metric to compare RNA 3D structures in

the torsion angle space. The residue-wise comparison in the torsion angle space highlights the

dissimilarity in the local structure. An MCQ score of less than 15˚ suggests a higher similarity

with the native or reference structure.

f. Longest continuous segments in torsion angle space (LCS-TA)

LCS-TA [50] identifies the longest continuous segments that display local similarity in the

torsion angle space.

Molecular dynamics (MD) simulations

For PDB 4ENC, the SimRNA simulations with the native RNA 2D structural restraints pre-

dicted a high-RMSD (19.65 Å) structure. We performed 2 μs long simulations using the

SimRNA-predicted 3D model of PDB 4ENC as a starting structure to understand the effi-

ciency of long MD simulations in improving RNA structure. Many recent studies have pointed

out that the present RNA force fields exhibit an imbalance in nonbonded interactions [51] and

torsional parameters [52]. Additionally, conventional RNA simulations do not assure reliable

and converged conformational sampling [51, 53]. Thus, MD simulations with current RNA

force fields and conformational sampling limitations do not guarantee a substantial improve-

ment of 3D predictions that are structurally distant from the native state. However, with the

present 2 μs simulations, we have attempted to estimate the effect of conventional MD simula-

tions with different water models on the RMSD values and alterations of RNA structures that

are distant from the native state, specific to the case study of the fluoride riboswitch (PDB

4ENC).

Three different sets of simulations were performed with three water models, TIP3P, OPC,

and SPC/E, and the AMBER OL3 [54–57] RNA force field. Na+ ions were added for charge

neutralization, and NaCl salt was used to obtain a 0.15 M concentration. Each water model-

specific Joung-Cheatham ion parameter [58] was used for Na+ and Cl- ions. The RNA mole-

cule was placed in a dodecahedron box, maintaining a minimum distance of 10 Å from the

box edges. The hydrogen mass repartitioning scheme [59] was applied with a 4 fs timestep.

First, the system was minimized to remove any clashes. Then, the whole system was slowly

heated to 300 K within 100 ps. The simulation was continued for another 100 ps with restraints

on the heavy atoms of RNA to allow the equilibration of water and ions. At this equilibration

stage, the Berendsen thermostat and barostat were used to maintain temperature (300 K) and

pressure (1 bar), respectively. Next, a 200 ps NPT equilibration was performed without

restraints before the 2 μs production run simulations. The neighbor list cutoff was set to 10 Å.

The PME method was applied for electrostatics with a cutoff of 10 Å. The van der Waals
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interactions were also truncated at 10 Å. Long-range corrections were applied to pressure and

energy. All bonds were constrained with the LINCS algorithm. RNA and solvent ions were

coupled separately to a V-rescale thermostat (300 K, coupling constant 0.10 ps) and a Parri-

nello-Rahman barostat to maintain pressure (1 bar, coupling constant 1 ps). The coordinates

were saved every 10 ps.

Results

Accuracy of RNA 2D structure predictions

First, the accuracy of the predictions of RNA 2D structures using various tools (Supplemen-

tary Tables S2-S8, Figs S1-S7 in S1 File) was evaluated to establish the correlation between

2D and 3D predictions. As described in the Methods section, the metrics for evaluating the

accuracy of the RNA 2D structure predictions, such as PPV, sensitivity, and F1-score, were cal-

culated for the seven RNA candidates (Table 1). The distributions of the PPV, sensitivity and

F1-score from all 2D prediction tools (Table 2) are plotted in Fig 1.

In general, similar trends were observed for the medians of the PPV, sensitivity, and

F1-score distributions (Fig 1). The distributions were found to be negatively skewed for most

of the tools, indicating a central tendency to predict accurate 2D structures for most of the

RNAs under study. Notably, for R2DT and CentroidHomefold-LAST, the distributions were

found to be positively skewed, showing their limitations in predictions, at least for the RNAs

under study. Considering all 27 prediction tools and 7 RNAs, we observed a high correlation

(0.80) between the PPV and sensitivity metrics, with correlation coefficients of 0.92 and 0.97,

respectively, with the F1 scores (Supplementary Figs S8 and S12 in S1 File). Ideally,

F1-scores, a harmonic mean of PPV and sensitivity, should capture a substantial variation

between them. However, it would be interesting to check the extent of variation between PPV

and sensitivity that would significantly impact the F1-score. For instance, Ufold’s median

F1-score was ~0.90, while the median PPV and sensitivity were ~0.60. Similar results were

observed for RNAStructure Probknot. In both cases, for most RNAs, the base pairings were

incorrectly predicted (quantified by PPV), and the native base pairs were missed (quantified

by sensitivity) in the prediction. These observations can be attributed to the broad interquartile

ranges for the PPV and sensitivity calculated for the seven RNAs with simple to complex folds.

In contrast, the median F1-score for RNAstructure_Fold was greater than 0.80, and the

median PPV and median sensitivity were greater than 0.90 and 0.70, respectively. RNAstruc-

ture_MaxExpect showed similar trends. Interestingly, predictions by DotKnot, CONTRAfold,

RNAPKplex, CentroidFold_CONTRAfold, HotKnots_CC09, HotKnots_DP09, IPknot, and

SPOT-RNA had a median F1-score value of ~0.90 with narrow interquartile ranges. RNA-

fold_MFE, RNAfold_MFE_60, RNAfold_MEA, and pKiss predictions displayed a high

median F1-score, while the interquartile range illustrated that the prediction accuracy may

vary depending on the complexity of the RNA structure.

In general, our results suggest that the predictive accuracy of DotKnot, CONTRAfold,

RNAPKplex, CentroidFold_CONTRAfold, HotKnots_CC09, HotKnots_DP09, IPknot, and

SPOT-RNA are similar for the range of structurally diverse RNA sequences studied in this

work.

Relationship between predicted RNA 2D and 3D structural accuracies

First, the RNA 2D structure prediction accuracy metric F1-scores were clustered as follows: (a)

high (F1-score > = 0.95), (b) medium (0.80< F1-score< 0.95), and (c) low (F1-score =<

0.80) to understand the effect of prediction accuracy on the 3D modeling results. Subsequently,

those F1-score clusters were compared against three important 3D metrics (INF_stack,
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Fig 1. Distributions of the PPV, sensitivity, and F1-score values for each of the seven RNA candidates under study. The predicted 2D

structures were compared to their corresponding native structures. These metrics range from 0 to 1, and a higher value indicates better

prediction. Outliers are shown as diamond shape points.

https://doi.org/10.1371/journal.pone.0290907.g001
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INF_wc, RMSD), considering the results of all three 3D tools for the seven RNAs used in this

study (Fig 2A). A gradual increase in the median RMSD values was observed for the 2D tools

of the high, medium, and low F1-score groups. Similar results were observed for INF_all and

INF_stack, where the groups of 2D tools with higher F1-scores predicted 3D structures with

higher median INF_stack and INF_wc values compared to those with lower F1-scores. Nota-

bly, considering all 28 2D structure prediction tools and three 3D modeling tools applied to

seven RNAs, we calculated correlation coefficients of -0.46, 0.92, and 0.53 for RMSD, INF_wc,

and INF_stack values against the F1-scores (Supplementary Fig S12 in S1 File). These obser-

vations, in general, suggest that 2D structures predicted with higher local base pairing accuracy

translate to 3D models with higher accuracy for the stem parts of RNA, irrespective of the 3D

modeling approaches under study.

However, 2D structures with higher local base pairing accuracy may not ensure the accurate

prediction of base stacking in 3D models. In the case of the deformation index (DI), a correla-

tion coefficient of -0.65 was calculated against the F1-scores (Supplementary Fig S12 in S1

File). This observation and the weak correlations of the F1-scores with the clashscore metric

and the mean of circular quantity (MCQ) and longest continuous segments in torsion angle

space (LCS-TA) metrics indicate that the accurate translation of 2D structures to 3D models

may not be guided by the accurate 2D structural inputs (base pairing) for the prediction of 3D

models; rather, 2D to 3D translation largely depends on the 3D modeling approach. To exam-

ine this further, we compared the F1-score clusters against the distribution of RMSDs for three

different 3D tools, IsRNA1, RNAComposer, and SimRNA (Fig 2B). At the individual package

level, we also observed a gradual increase in the median RMSD values for the 2D tools of the

high, medium, and low F1-score groups.

Fig 2. (a) Distributions of the RMSD, INF_wc, INF_stack values, (b) method-specific RMSD values for high, medium,

and low F1-score groups.

https://doi.org/10.1371/journal.pone.0290907.g002
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High F1-score 2D structural inputs led to 3D structures with a median RMSD of less than

10 Å with all three methods, IsRNA1, RNAComposer, and SimRNA. At the same time, a few

models from IsRNA1 and SimRNA also tended to have relatively higher RMSD values, even

with a high F1 score. Interestingly, for SimRNA, the medium F1-score displayed a bimodal

RMSD distribution arising from low and high RMSD values. Fig 2B reveals that the RMSD vs.

F1-score groups among 3D tools reflected that lower F1-score of each tool correlated with

higher RMSDs. Moreover, a few predicted 3D models with IsRNA1 and SimRNA also tended

to have higher RMSD values (less accurate models) for a high F1-score (accurate 2D structure).

Additionally, the observed low F1-score of each tool correlated with higher RMSDs. For exam-

ple, IsRNA1-, RNAComposer-, and SimRNA-modeled structures with high F1-score 2D struc-

tural inputs showed a median RMSD of less than 10 Å.

Furthermore, to correlate, the 2D and 3D modeling accuracies, the RMSD, deformation

index, interaction network fidelity parameters, MCQ, and LCS-TA of each candidate were

investigated with the F1-score. Specifically, two clusters were chosen for the F1-score: (a)

F1-score> = 0.95 (left, Fig 3), and (b) F1-score < 0.95 (right, Fig 3). Therefore, RNAs were

also grouped into Group I (5LYU, 6TB7, and 7LYJ) and Group II (5NWQ, 4ENC, 6P2H,

3OWZ_A) to demonstrate their structural complexities.

Although 5LYU from Group I with high and low F1-scores displayed similar median

RMSD values, high F1-scores had median RMSDs lower than 10 Å for 6TB7 and 7LYJ with

some outliers. Interestingly, INF_all and INF_wc values for 5LYU showed strong differences

based on F1-scores. Meanwhile, INF_all and INF_wc values of 6TB7 and 7LYJ showed similar

median values regardless of F1-scores. This observation explained the better INF_all and

INF_wc values for simpler 3D topologies such as 6TB7 and 7LYJ. MCQ and LCS_TA were

good indicators of 3D structural accuracy in RNA torsions. Overall, for Group I, the MCQ val-

ues were similar, with overlapping value distributions from5LYU to 7LYJ for low and high

F1-scores. It should be noted that none of the MCQ values dropped below the ideal value of

15˚. The striking difference of 5LYU became apparent with the LCS-TA values obtained a high

F1-score and with a low F1-score, signifying more accurate torsion angles and similar RNA

folds.

For the rest of the Group I and II RNAs, the LCS-TA values were largely condensed within

a distinct range. For Group II RNAs, 5NWQ and 4ENC demonstrated a clear partition

between RMSD, INF_all, and INF_wc parameter value distributions in the low and high

F1-score categories. Overall, all such observations supported the importance of the correct

base-pairing information from the 2D structure, which could manifest as correct Watson–

Crick–Franklin base pairing, ultimately affecting the interaction network fidelity value and

RMSD. These results confirmed that accurate Watson–Crick–Franklin base pairing at the 2D

structure level significantly affected complex RNA folds. Stacking patterns (INF_stack) and

torsional parameters such as MCQ and LCS-TA did not affect the 2D structures.

In Fig 4, we present scatter plots of various accuracy parameters, such as F1-score, RMSD,

INF_all, INF_wc, MCQ, and LCS-TA, to understand the relationships between them. Further-

more, package-specific data are colored according to the 3D tools: IsRNA1, RNAComposer,

and SimRNA data are shown in green, blue, and orange, respectively (Fig 4). The F1-score (2D
structure accuracy parameter) and INF_wc (accuracy parameter of predicted 3D model) dem-

onstrated a linear relationship with a correlation coefficient of 0.92 (Supplementary Fig S12

in S1 File). Similarly, the distributions of INF_wc and F1-score against RMSD were nearly

identical. The RMSD of structures can vary up to ~ 12 Å with high INF_wc values. The RMSD

values increased sharply to 25 Å when the INF_wc values decreased below 0.50.

INF_all and F1-score also showed correlation (cc = 0.74), as Watson–Crick–Franklin inter-

actions contribute to INF_all. For the IsRNA1 simulations (green), the MCQ values were
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higher (20–30); nonetheless, similar F1-score or INF_wc or INF_all values were observed.

Compared with IsRNA1, RNAComposer and SimRNA produced moderately low MCQ val-

ues, representing better predictions in torsional space. RMSD vs. LCS-TA and MCQ vs.

LCS-TA distribution plots further showed a native torsion correlation for SimRNA (orange),
and RNAComposer (blue) predicted 3D models with RMSDs less than 10 Å.

Fig 3. RMSD, deformation index, INF parameters, MCQ, and LCS-TA values for F1-scores greater than or equal to 0.95 (left)

and less than 0.95 (right). The color codes are IsRNA1: green, RNAComposer: orange, and SimRNA: violet. Median values are

indicated by white dots.

https://doi.org/10.1371/journal.pone.0290907.g003
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To reflect the RMSD dependencies of all the 3D models on 2D structure prediction accu-

racy, the RMSDs for each 2D tool were plotted (Fig 5). Since simple and complex folds were

included in our dataset, we believed that the median RMSD values would be a good indicator

for understanding general trends.

When only the native (SS_from_PDB) 2D structure was given, RNAComposer, which is

widely considered a motif-based method, consistently produced lower RMSDs (< 10 Å) for

Fig 4. Pair plot distribution of F1-score values and RNA 3D accuracy parameters RMSD, INF_all, INF_wc, MCQ, and LCS-TA for RNAComposer

(blue), SimRNA (orange), and IsRNA1 (green) methods.

https://doi.org/10.1371/journal.pone.0290907.g004
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Fig 5. RMSD values of all seven PDBs determined with (a) IsRNA1 simulations, (b) the RNAComposer web server, and (c) SimRNA simulations with

2D structural constraints based on various methods (x-axis).

https://doi.org/10.1371/journal.pone.0290907.g005
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both simple and complex folds. In contrast, the sampling-based methods, SimRNA and

IsRNA1, also produced lower median RMSDs for other 2D structure methods. In particular,

SimRNA often produced lower median RMSDs (< 10 Å), as several RMSD values of approxi-

mately 5 Å were observed. RNAPKplex 2D structural inputs produced lower RMSDs for both

the IsRNA1 and SimRNA models. However, we also observed that sampling-based methods

produced higher RMSDs even when the native 2D structural inputs were provided. We found

that RNA 3D modeling with sampling-based methods could generate higher-RMSD structures

due to simulation sampling issues. Thus, native 2D structural information did not always guar-

antee better 3D structures for sampling-based methods. These methods depend on simulation

sampling, complex folds in RNAs, and the underlying effect of force fields. The results of the

3D structures with native 2D structural inputs are shown below in Fig 6. In addition, we

observed that even when the 2D structure input differed from the native or reference 2D struc-

ture, different algorithm-based 2D predictions could impact 3D structure modeling.

Accuracy of predicted 3D structures with native 2D structural input

We systematically tested the influence of native 2D structural input alone on the accuracy of

the 3D modeling outcomes of Group I and II RNAs (Figs 6 and 7, Supplementary Figures

S13-S96 in S1 File). Reasonably, Group I RNA models displayed lower RMSDs with all three

methods than Group II RNAs. The predicted models of IsRNA1 and RNAComposer for

Group I RNAs demonstrated low clashscores, whereas SimRNA-predicted models had very

high prediction clashscores (>100). These observations are in line with the recent work by

Carrascoza et al. [60] quantifying limitations in different 3D modeling methods. Their work

also observed that SimRNA and Vfold modeled structures have large close contacts. We have

provided the results case by case as follows.

For 5LYU, the IsRNA1 RMSD was higher than those of RNAComposer and SimRNA due

to the differences in the loop regions. We observed a more bent structure and heterogeneity in

the loop, possibly arising from the deviation in torsion values relative to the native structure.

Thus, the highest MCQ (29.23) and lowest LCS-TA (10) values were observed. In the case of

6TB7 with SimRNA, the lowest RMSD of 3.57 Å and the highest INF_wc (0.98) value were

obtained, albeit with intermediate LCS-TA and MCQ values. The IsRNA1 and RNAComposer

models had lower RMSDs. For 7LYJ, the SimRNA prediction produced the lowest RMSD.

IsRNA1 and RNAComposer produced similar RMSDs, but significant differences in the

LCS-TA (IsRNA1: 18, SimRNA: 56) and clashscore values (IsRNA1: 0.47, SimRNA: 106.40)

were observed. This illustrated that the torsional values could differ among similar RMSD

structures.

We then checked the effect of native 2D structures on the 3D modeling of complex Group
II RNA folds such as 5NWQ, 4ENC, 6P2H, and 3OWZ_A, as these were relatively challenging

structures for 3D modeling. For 5NWQ, the IsRNA1 and SimRNA RMSD values were similar,

but the SimRNA Model p-value (0.03) indicated a lack of confidence. RNAComposer achieved

the lowest RMSD for 4ENC (0.76 Å), which reflected that their RNA fragments were typically

selected from the PDB 4ENC as part of FRABASE 2.0. SimRNA and IsRNA1 modeling both

exhibited higher RMSDs, and SimRNA had a higher deformation index and p-value for 4ENC.

Due to the differences in their terminal ends, the models showed overall high RMSDs. To

verify this, we performed a 2 μs long molecular dynamics simulation with the SimRNA predic-

tion as a starting structure; however, the overall heavy-atom RMSD remained approximately

16 Å, as described in detail in the next result section. For 6P2H, lower RMSDs were observed

for the sampling-based methods with lower INF_stack values (~ 0.60), suggesting their base

stacking orientations are inaccurate to the native topology. However, a different topology was
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Fig 6. Predicted 3D structures (blue) aligned with the native 3D structure (green) for IsRNA1 (left), RNAComposer

(middle), and SimRNA (right) with native 2D structural constraints for Group I PDBs (5LYU, 6TB7, 7LYJ). The

RMSDs are mentioned in parentheses.

https://doi.org/10.1371/journal.pone.0290907.g006
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Fig 7. Predicted 3D structures (blue) aligned with native 3D structure (green) for IsRNA1 (left), RNAComposer

(middle), and SimRNA (right) with native 2D structural constraints for group II PDBs (5NWQ, 4ENC, 6P2H, 3OWZ

(chain A)). The RMSDs are given in parentheses.

https://doi.org/10.1371/journal.pone.0290907.g007
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observed for RNAComposer with an RMSD of 15.03 Å and a p-value less than 0.01. For

3OWZ (chain A), the RNAComposer RMSD values were lower than those of the other tools.

Despite the terminal end differences, their MCQ (17.27) and LCS-TA (53.00) values and Wat-

son–Crick–Franklin base-pairing (INF_wc = 1.00) were consistent. IsRNA1 and SimRNA for

3OWZ_A structures had RMSD p values below a significance level of 0.01 and lower LCS-TA

values (IsRNA1: 19.00 and SimRNA: 24.00).

Overall, none of the methods could generate lower RMSD models for 5NWQ owing to its

pseudoknot formation. The lowest RMSD of 4ENC with RNAComposer only proved the frag-

mentation assembly. Except for RNA 6P2H, the IsRNA1 and SimRNA models produced

higher RMSD structures than RNAComposer. Again, the complex folding of 3OWZ_A was

apparent with sampling-based methods.

Effect of long MD simulation

As mentioned above, the 4ENC model from SimRNA showed a higher RMSD than the native

3D structure. We sought to confirm the misaligned loop regions and extended single strand in

the terminal region through MD simulation. We performed a 2 μs long simulation with differ-

ent water models (TIP3P, SPC/E, and OPC), and no variation in RMSD values was found, as

presented below in Fig 8.

Discussion

The heatmaps showing RNA 3D structure accuracy parameters are provided in the Supple-

mentary Information (Supplementary Figs S17-S24, S29-S36, S41-S48, S53-S60, S65-S72,

S77-S84, S89-S96 in S1 File), and the general discussion is provided below. RNA 2D struc-

tures provide base-pairing information that can act as distance restraints for sampling-based

Fig 8. Heavy atom RMSD (top) and backbone RMSD (bottom) to the native 4ENC structure with AMBER OL3 and

different water models (TIP3P (black), SPC/E (red), and OPC (green)).

https://doi.org/10.1371/journal.pone.0290907.g008
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methods, such as IsRNA1 and SimRNA, for efficient conformational sampling. However, con-

formational sampling of RNA molecules becomes challenging with increasing complexity of

RNA folds and increasing sequence length even with correct 2D structural information as

input. PDB 3OWZ in our work (RNA-Puzzle 3 with 88 nucleotides) shows that even with the

correct RNA 2D structural restraints, sampling-based methods could not fold to the correct

topology and produced high RMSDs compared to the native crystal structure.

IsRNA1

PDB 3OWZ_A

For 3OWZ_A, none of the 2D structures exactly matched the native base-paired 2D structure,

as shown in Table S8 and Fig S7 of the S1 File. RNAfold_MEA, CONTRAfold, and MXfold2

predicted close to native 2D structures with F1-scores of 0.959 for each of them, and with these

three 2D structural constraints, higher RMSDs (13.60 Å, 15.05 Å, and 18.22 Å, respectively)

were obtained (Supplementary Fig S89 in S1 File). The combination of the standard IsRNA1

protocol with 2D structural constraints from NUPACK and RNAPKplex provided the lowest

RMSDs of all trials, 10.69 Å and 12.17 Å, respectively (Supplementary Fig S89 in S1 File).

These 2D structures differed from the native 2D structure at the active site bulge and the four-

nucleotide bulge defined by G8-A11 (Supplementary Fig S7 in S1 File). With these less accu-

rate 2D structural constraints, IsRNA1 provided lower RMSDs for the 3OWZ_A riboswitch,

suggesting its lower dependency on the 2D structural accuracy.

PDB_4ENC

In the case of 4ENC, among all methods, the 3D structure based on the MC-Fold-derived 2D

structure provided the lowest RMSD structure, albeit 12.53 Å relative to the native all-atom

structure (Supplementary Fig S65 in S1 File). The MC-Fold-derived 2D structure has nonca-

nonical base pairs, G29-A32, U23-U38, and U7-U48, along with incorrect pseudoknot predic-

tion (Supplementary Table S6 and Fig S5 in S1 File). In the native structure, a pseudoknot is

formed by pairing G2-G3-C4-G5 of the 5’-overhang segment and residues C14-G15-C16-C17

of the internal loop. However, in MC-Fold, the pseudoknot is formed by bases

G1-G2-G3-C4-G5 and C14-G15-C16-C17-C18. Notably, this completely different pattern of

base pairing and pseudoknot led to a low-RMSD structure. The MC-Fold 2D structure main-

tained all native base pairing and predicted extra noncanonical base pairs (Supplementary

Table S6 and Fig S5 in S1 File). We hypothesize that these extra base pairs restricted the con-

formational sampling extensively in IsRNA1, reducing the overall RMSD.

The RNA 2D structures predicted by IPknot, pKiss, DotKnot, RNAPKplex, and HotKnots

(CC09 and DP09 parameters) are very similar to the native RNA 2D structure (Supplemen-

tary Table S6 and Fig S5 in S1 File). However, the RMSDs of IsRNA1-based 3D models for

these 2D predictions range from 13.35 Å to 15.74 Å, whereas the native 2D structure-derived

3D structure possesses an RMSD of 14.46 Å (Supplementary Fig S65 in S1 File). For IsRNA1

simulations, the highest RMSD (21.43 Å) was obtained with ContextFold RNA 2D structural

constraints (Supplementary Fig S65 in S1 File). For ContextFold, the native pseudoknot base

pairs were wrongly predicted as a stem part, whereas the G24-C37 stem–loop was correctly

predicted (Supplementary Table S6 and Fig S5 in S1 File). Interestingly, the CentroidHom-

fold-LAST RNA 2D structure differs significantly from the native RNA 2D structure but still

produces 3D structures with similar RMSDs of 14.61 Å and 14.46 Å, respectively. The INF_wc

values for the modeled 3D structures with CentroidHomfold-LAST and native 2D structural

constraints are 0.64 and 0.97, respectively (Supplementary Fig S68 in S1 File). This observa-

tion suggests that these relatively high-RMSD structures have different structural
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arrangements. Thus, the RMSD values from CentroidHomfold-LAST constraints and their

comparison to that from native base pairing indicate that RMSD may not be a good measure

for comparing RNA 3D structural quality.

PDB 5LYU

PDB 5LYU is a simple stem–loop structure, and many RNA 2D tools predicted the correct

RNA 2D structure for this case. Thus, in this case, 2D to 3D translation could help us under-

stand the reproducibility of prediction for simple stem–loop structures with all three 3D

modeling approaches used here.

The RMSDs of the 3D structures corresponding to the native 2D structures from RNA-

fold_MFE, RNAfold_MEA, RNAstructure_Fold, RNAstructure_MaxExpect, MXfold2, Linear-

Fold-V, RNAPKplex, R2DT, and pKiss were 10.22 Å, 10.25 Å, 10.22 Å, 9.00 Å, 11.66 Å, 8.56 Å,

10.22 Å, 10.22 Å, 10.25 Å, and 10.23 Å, respectively (Supplementary Fig S17 in S1 File). The

lowest IsRNA1 RMSD (5.85 Å) was obtained with RNAfold_MFE_60 2D structural input,

which was perfectly base-paired compared to the native 2D structure (Supplementary Fi S17

in S1 File). Thus, the 3D RMSD with the RNAfold_MFE_60 2D constraints could be consid-

ered a rare event of low-RMSD prediction, as with the same input, IsRNA1 mostly predicted

structures with similar RMSDs (approximately 10.00 Å). The high INF_wc values for these 3D

structures (0.93–1.00) indicated that stems might be formed properly (Supplementary Fig S20

in S1 File); however, the different arrangements of nucleotides in unpaired regions led to

RMSDs from 8 Å to 10 Å.

Apart from the above RNA 2D structure prediction tools, DotKnot, NUPACK, Centroid-

Fold_CONTRAfold, HotKnots_CC09, HotKnots_DP09, LinearFold-C, UNAFold_mFold,

and IPknot produced the same 2D structure (Supplementary Table S2 and Fig S1 in S1 File).

This 2D structure has significant stem and bulge structures (U10-G20, C38-G50 residues),

leading to two large interior loops. The PPV, sensitivity, and F1-scores for these RNA 2D

structures compared to the native 2D structure were 0.85. 0.77, 0.81, respectively. However,

these 2D structural constraints in IsRNA1 led to consistent RMSD values of ~ 8.50 Å (except

the RMSD of 7.05 Å for DotKnot).

PDB 5NWQ

PDB 5NWQ is a pseudoknot structure and one of the interesting cases for RNA 2D to 3D

structure prediction. None of the 2D tools could predict the correct 2D structure for this RNA

(Supplementary Table S5 and Fig S4 in S1 File). The 2D structural constraints provided by

the native RNA 2D structure, RNAPKplex, pKiss, DotKnot, and HotKnots_DP09 provided

structures with RMSDs of 5.19 Å – 12.31 Å (Supplementary Fig S53 in S1 File). All other

methods produced structures with higher RMSDs and p-value higher than 0.01 (Supplemen-

tary Fig S50 in S1 File).

For this pseudoknot RNA, IsRNA1 with native base-paired 2D structural constraints exhib-

ited an RMSD of 12.08 Å. Surprisingly, the pseudoknot structures predicted by DotKnot (5.19

Å), HotKnots_DP09 (5.65 Å), and pKiss (5.47 Å), which differed only by the C20-G29 canoni-

cal base pair compared to the native reference 2D structure, led to the lowest-RMSD struc-

tures. The active site region was correctly positioned by DotKnot, HotKnots_DP09, and pKiss

compared to the native structure. The highest RMSDs were produced with the 2D structural

constraints by CentroidFold_CONTRAfold (21.80 Å), LinearFold-C (21.73 Å), and R2DT

(22.00 Å) (Supplementary Fig S53 in S1 File). The R2DT-predicted 2D structure has a large

flexible loop region, A19-G34, whereas this region is divided into bulge and apical loop due to
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the base pairing of C21-G29 and C22-G28 in the CentroidFold_CONTRAfold and Linear-

Fold-C predicted 2D structures (Supplementary Table S5 and Fig S4 in S1 File).

For the nonpseudoknot-specific RNA 2D structure prediction tools, the lowest RMSD of

16.59 Å was given by RNAfold_MFE_60, which matched CentroidFold_CONTRAfold, Line-

arFold-C, and R2DT. This might indicate a convergence issue with IsRNA1 simulation involv-

ing complex folds. SPOT-RNA, CentroidFold_McCaskill, RNAstructure_Probknot, IPknot,

and R2DT predicted RNA 2D structures with a 5’-overhang strand, stem, and large loop

(A19-G34) (Supplementary Table S5 and Fig S4 in S1 File). With these RNA 2D structural

constraints, IsRNA1 provided RMSDs higher than 20.00 Å (Supplementary Fig S53 in S1

File). Thus, with IsRNA1, the predictions in the absence of pseudoknot 2D structural con-

straints led to large-RMSD structures incompatible with the expected RMSD distribution.

PDB 6P2H

The native RNA 2D structural constraints led to the lowest-RMSD (5.97 Å) structure. The

RNA 2D structure prediction tools IPknot, RNAPKplex, RNAstructure Probknot,

SS_from_PDB, ContextFold, DotKnot, RNAStructure MaxExpect, SpotRNA, and UNA-

Fold_mFold led to structures with RMSD p-value lower than the significance value of 0.01

(Supplementary Fig S74 in S1 File). The DotKnot, RNAPKplex, and IPknot 2D structure-

based ISRNA1 simulations produced RNA structures with RMSD values less than 10.00 Å,

and SPOTRNA led to an RMSD of 11.27 Å (Supplementary Fig S77 in S1 File).

The PDB 6P2H sequence with IsRNA1 modeling demonstrates the importance of pseudo-

knot base-pair constraints in 3D structure prediction. The native 2D structure and CONTRA-

fold-predicted 2D structure are the same except for the absence of a pseudoknot base pair in

the CONTRAfold prediction (Supplementary Table S7 and Fig S6 in S1 File). With the lack

of information on pseudoknot base pairs but with canonical base pairs, the CONTRAfold-pre-

dicted 2D structural constraints led to a 3D structure with a large RMSD of 20.44 Å (Supple-

mentary Fig S77 in S1 File). Similarly, if we compare the RMSDs of the 3D structures

predicted with the 2D structural restraints from HotKnots_DP09 (27.96 Å, the largest RMSD

in the dataset) and RNAPKplex (10.01 Å), which differ only by the pseudoknot base-pairing

information, the results differ significantly, with RMSDs of 27.96 Å and 10.10 Å, respectively.

Although the UNAFold_mFold-derived 2D structure is an exact match with that of Hot-

Knots_DP09, the RMSD of the IsRNA1-modeled 3D structure is 14.04 Å (p-value< 0.01)

(Supplementary Figs S74 and S77 in S1 File). The observed differences in the modeled 3D

structure using the same 2D structural input can be attributed to the reproducibility issue with

IsRNA1 when the additional 2D structural constraints of pseudoknots are not provided. The

RMSDs of the 3D structures derived from HotKnots_DP09, RNAfold_MFE, RNAfold_MEA,

HotKnots_CC09, UNAFold_mFold, RNAfold_MFE_60, MXfold2, CentroidFold_CONTRA-

fold, and ContextFold are all above 18.00 Å, which is surely above significance level of 0.01,

thus indicating that the predictions did not come from the expected distribution.

PDB 6TB7

For this RNA sequence, pseudoknot-specific RNA 2D structure prediction tools, namely,

RNAstructure_ProbKnot, DotKnot, RNAPKplex, HotKnots_CC09, HotKnots_DP09, pKiss,

and IPknot, predicted incorrect pseudoknot base pairing, incorrect bulge, and apical loop pre-

diction (Supplementary Table S3 and Fig S2 in S1 File). The native 2D structural input gen-

erated the lowest-RMSD (4.50 Å) 3D structure (Supplementary Fig S29 in S1 File). Most

RNA 2D tools led to lower RMSDs for 3D structures, even if the predicted 2D structures dif-

fered significantly from the native 2D structure. This was counterintuitive with respect to the
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results displayed in the case of PDB 6P2H. Only DotKnot and CentroidFold_McCaskill led to

RMSDs exceeding the significance threshold of 0.01 (Supplementary Fig S26 in S1 File). Even

in the absence of pseudoknot base-pairing 2D structural constraints and inaccurate predic-

tions on the apical loop and bulge, structures with accepted RMSD values were predicted (Sup-

plementary Fig S26 in S1 File).

PDB 7LYJ

PDB 7LYJ is the SARS-COV-2 frameshifting pseudoknot and was an interesting test system

for this study. The lowest-RMSD 3D structures were obtained with the native 2D structure,

which was predicted by the SPOT-RNA 2D tool (Supplementary Fig S41 in S1 File). The 2D

structures differ in the depiction of apical loop G40-C45. SPOT-RNA predicted the noncanon-

ical base pair G41-A44, thus changing the G41-A42-A43-A44 tetraloop to the two-residue

loop A42-A43 (Supplementary Table S4 and Fig S3 in S1 File). Thus, IsRNA1 seemed toler-

ant to small changes in the 2D structural constraints at the base-pairing level. The largest

RMSD of 26.85 Å was obtained for the 2D structural constraints predicted by the MC-Fold 2D

tool (Supplementary Fig S41 in S1 File).

Similar to PDB 6P2H, in the case of PDB 7LYJ, IsRNA1 also provided 3D structures with

larger RMSDs for the 2D structural inputs without pseudoknot base pairing information com-

pared to those with pseudoknot base pairing information. For example, IPknot predicted accu-

rate 2D topology but missed the pseudoknot base pairing information, leading to a 3D

structure with a large RMSD of 18.38 Å (Supplementary Fig S41 in S1 File). Notably, the 2D

predictions of HotKnots_CC09, LinearFold-C, and ContextFold also matched the native 2D

structure except for the prediction of the pseudoknot base pairing information, whereas when

translated to 3D, they possessed RMSDs of 16.27 Å, 16.25 Å, and 10.93 Å, respectively. These

observations indicated the possible convergence issues of IsRNA1.

RNAComposer

In general, RNAComposer provided the lowest RMSD 3D structures with RNA 2D structural

inputs close to the native 2D structures. RNAComposer, a fragment building-based software,

has no reproducibility issues. This means that with the same 2D structure, the same 3D struc-

ture can be obtained every time. A minor change in the 2D base pairing constraints may have

a remarkable effect on the RNAComposer prediction of the 3D structure, as illustrated below.

PDB 3OWZ_A

For 3OWZ_A, among all three methods, RNAComposer created the lowest-RMSD structures

with the native 2D structure and the 2D structures predicted by RNAfold_MEA, CONTRA-

fold, MXfold2, RNAstructure_ProbKnot, SpotRNA, and RNAfold_MEA (Supplementary

Table S8, Figs S7, and S89 in S1 File). As the 2D structures deviated increasingly near the

three stem junctions (loop and bulge regions), the RMSDs of the modeled 3D structures

increased (Supplementary Table S8, Figs S7, and S89 in S1 File).

PDB 4ENC

In this case, the native RNA 2D structure translated to the lowest RMSD (0.76 Å) 3D structure

(Supplementary Fig S65 in S1 File). Notably, PDB 4ENC is included in the underlying frag-

ment database of FRABASE 2.0; thus, RNAComposer picked up the correct fragments, leading

to an accurate 3D structure when sufficiently accurate 2D structural constraints were provided

as input. Notably, in order to evaluate the performance of RNAComposer critically, we
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attempted to filter out the fragments extracted from target PDB structure, here it is 4ENC, by

over-riding the default options of RNAComposer in the batch mode and obtained an RMSD

of 13.23 Å. In the native 2D structure, a pseudoknot is formed by the pairing of G2-G3-C4-G5

of the 5’-overhang segment with residues C14-G15-C16-C17 of the internal loop (Supplemen-

tary Table S6 and Fig S5 in S1 File). However, in IPknot, pseudoknot base pairing started

from G1-G2-G3-G4. This shift by one base pair in pseudoknot led to a 3D structure with an

RMSD of 2.86 Å (Supplementary Fig S65 in S1 File). This showed the sensitivity of 3D struc-

ture building by RNAComposer to the input 2D structural constraints. The largest RMSD was

given by the 3D structure modeled with the CentroidHomfold-LAST 2D structural con-

straints, which are topologically distinct from the native 2D structure.

The IPknot and pKiss 2D structural notations are the same in the VARNA diagrams (Supple-

mentary Fig S5 in S1 File). However, we observed an RMSD difference of 7.0 Å for the 3D struc-

tures predicted using the 2D structural constraints for these two 2D tools. Notably, the dot-

bracket notations for the pseudoknot base pairing representation (either “[” and “]” or “{” and “}”

or “<” and “>”) as inputs to RNAComposer were different because we used the dot-bracket nota-

tions as they were output from the corresponding 2D tools. We found that RNAComposer is sen-

sitive to 2D structural input representations and can predict different 3D structures if the

representations of the same 2D structural input are changed. We assume that RNAComposer’s

motif searching algorithm varies based on the 2D structural input representations.

PDB 5LYU

For this simple stem–loop structure, the 2D structure was correctly predicted by almost all of

the conventional thermodynamics-based 2D tools and by a few pseudoknot-specific methods,

for instance, RNAfold_MFE, RNAfold_MFE_60, RNAfold_MEA, RNAstructure_Fold, RNAs-

tructure_MaxExpect, MXfold2, RNAPKplex, LinearFold-V, R2DT, and pKiss. (Supplemen-

tary Table S2 and Fig S1 in S1 File). These predicted 2D structural constraints and the native

ones led to similar 3D structures with the same RMSD value of 6.4 Å (Supplementary Fig S17

in S1 File). The highest RMSDs were obtained for the 2D structural inputs predicted by Cen-

troidHomfold-LAST and SPOT-RNA, 14.02 Å and 13.84 Å, respectively, with F1-scores of

0.581 and 0.808, respectively (Supplementary Fig S17 in S1 File). Thus, even though the

F1-score was 0.808 for SPOT-RNA, the RNA 2D structural topology was very different from

the native 2D structure, leading to high RMSD. This illustrated that a high F1-score does not

always lead to low RMSD structures.

PDB 5NWQ

This structure is a pseudoknot, and the modeled 3D structures were very sensitive to secondary

structural inputs. The 3D structures predicted with the native secondary structure, obtained

from DotKnot, HotKnots_DP09, and pKiss, had RMSDs with a significance level below 0.01

(Supplementary Fig S50 in S1 File). The rest of the 2D tools led to higher RMSDs with large

significance values (Supplementary Fig S50 in S1 File). Notably, the RNAPKplex-predicted

2D structural input-derived 3D structural RMSD (12.62 Å) was almost the same as that for

pKiss (12.34 Å) (Supplementary Fig S53 in S1 File); however, the significance value was

higher than that for pKiss, indicating that RMSDs produced by DotKnot, HotKnots_DP09,

and pKiss were borderline higher. The predictions of DotKnot (11.94 Å), HotKnots_DP09

(11.94 Å), and pKiss (12.34 Å) differed from the native secondary structure by one base pair,

C20-G29, and the pKiss secondary structure dot-bracket representation was different, demon-

strating the effect of representation on the RNAComposer prediction again (Supplementary

Table S5, Figs S4, and S53 in S1 File).
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PDB 6P2H

This structure provided an example of obtaining high RMSD 3D structures from RNACompo-

ser even with correct secondary structural input (Supplementary Table S7, Figs S6, and S77

in S1 File). Relatively low RMSDs, 11.54 Å, and 11.54 Å, respectively, were produced by Dot-

Knot and RNAPKplex compared to the RMSD of 15.03 Å for the native secondary structural

constraint-driven 3D structure (Supplementary Fig S77 in S1 File). The lack of pseudoknot

base pairing information in the 2D structural input predicted by HotKnots_DP09 can explain

the higher RMSD 3D structures for this 2D tool compared to that for the 2D tools DotKnot

and RNAPKplex.

The 3D structures predicted with secondary structural constraints obtained from IPknot,

RNAPKplex, RNAstructure_ProbKnot, native secondary structure, CentroidFold_McCaskill,

DotKnot, RNAStructure MaxExpect, and SPOT-RNA possessed RMSDs between 10 Å and 20 Å,

with the lowest being 11.54 Å (p-value< 0.01) (Supplementary Fig S74 in S1 File). The crystal

structure of PDB 6P2H is a recently (2019) solved 2’-deoxyguanosine riboswitch with a three-way

junction at the binding site of the ligand. We assume that as the underlying motif database of

RNAComposer, RNA FRABASE 2.0, is not updated yet with the recently solved structural data,

this may lead to high RMSD 3D structures even with accurate 2D structural input.

PDB 6TB7

RNAComposer provided low-RMSD 3D structures for PDB 6TB7, the lowest being 4.42 Å for

the native 2D structural input (Supplementary Fig S29 in S1 File). PDB 6TB7 is the crystal

structure of the NAD+ riboswitch with a flexible bulge and an internal loop (Supplementary

Table S3, Fig S2 in S1 File). Although this is not a pseudoknot structure, it has signature

canonical interactions between the bulge and internal loop residues, C14-G36 and C13-G38,

respectively. UNAFold_MFold and UFold predicted 2D structures similar to the native 2D

structure, albeit with the C14-G36 and C13-G38 base pairs missing, and these 2D structural

inputs led to 3D structures with an RMSD value of 4.48 Å, which is similar to that obtained

with the native 2D structural input. As this base pairing information contributes negligibly to

the RMSD value, it can be assumed that these base pairs have low weight in the 3D structure

prediction of PDB 6TB7. The 2D tools CONTRAfold, CentroidFold_CONTRAfold, and Line-

arFold-V displayed similar 2D structures to UFold, with a difference in a bulge near position

A35, shifting the internal bulge at G23-G24-G25 to U22-G23-G24 (Supplementary Table S3

and Fig S2 in S1 File). However, this small change in the 2D structural rearrangement did not

impact the 3D structural RMSD (4.84 Å) compared to the prediction by the 2D tool UFold

and the native 2D structural input (Supplementary Information, Fig S22 in S1 File). DotKnot,

MXfold2, and CentroidFold-McCaskill produced predictions that are topologically similar

and very different from the native 2D structure and thus led to 3D structures with a high

RMSD value of 17.28 Å and a p-value> 0.01 (Supplementary Figs S26 and S29 in S1 File).

PDB 7LYJ

This SARS-COV-2 frameshift RNA with a pseudoknot displayed RMSDs between 10–15 Å for

most of the 2D tool-derived structural constraints, with MC-Fold-, E2Efold-, and R2DT-

derived 3D RMSDs of 25.96, 22.66, and 26.38, respectively, with the p-value leading tor ejec-

tion (Supplementary Figs S38 and S41 in S1 File). The native 2D structure and the 2D struc-

tural constraints predicted by HotKnots_DP09 led to the lowest RMSD of 6.90 Å
(Supplementary Fig S41 in S1 File). The DotKnot 2D structure has the 5’-C1 residue hanging

and an additional G28-U58 base pair, and the G28-C1 base pair is missing compared to the

native 2D structure; these differences led to a 3D structure with an RMSD of 7.82 Å
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(Supplementary Table S4, Figs S3, and S41 in S1 File). The ContextFold- and MXfold2-der-

ived 2D topologies are the same as the native topologies but lack pseudoknot base pairing

information, which led to an increase of ~7 Å in the 3D RMSDs. Thus, RNAComposer is quite

sensitive to 2D pseudoknot input information, as demonstrated by the PDBs 5NWQ, 6P2H,

and 7LYJ for IsRNA1 and 6P2H for RNAComposer.

SimRNA

PDB 3OWZ_A

For SimRNA, the lowest RMSD 3D structure of PDB 3OWZ_A was modeled by the 2D struc-

tural constraints predicted by RNAstructure_Fold, which differ from the native 2D structure

in the region from G8 to A13 (Supplementary Table S8, Figs S7, and S89 in S1 File). The

native 2D structure has a four-nucleotide bulge (G8 to A11), whereas RNAstructure_Fold pre-

dicted a bulge comprising six residues from G8 to A13 and a missing G12-C28 base pair (Sup-

plementary Table S8 and Fig S7 in S1 File). The 2D structures predicted by RNAfold_MEA,

CONTRAfold, and MXfold2 match the native 2D structure (Supplementary Table S8 and Fig

S7 in S1 File). However, SimRNA predictions with these three 2D structural inputs led to sig-

nificantly different RMSDs ranging from 11.92 Å to 19.92 Å (Supplementary Fig S89 in S1

File). The largest RMSD obtained was 20.7 Å for the 2D structural constraints predicted by

CentroidHomfold-LAST with a significantly lower F1-score of 0.654 than that for RNAfold_-

MEA (0.959). However, the 2D structure predicted by RNAfold_MEA translated to a 3D struc-

ture with an RMSD of 19.92 Å. Thus, it was quite surprising that with the more accurate native

2D structural constraints, the obtained RMSD was similar. This can be attributed to insuffi-

cient conformational sampling.

PDB 4ENC

With the native 2D structural constraints, SimRNA modeled the 3D structure with an RMSD of

19.65 Å for PDB 4ENC (Supplementary Fig S65 in S1 File). The calculated INF_wc for this 3D

model was as low as 0.33, suggesting severe deviation from Watson–Crick–Franklin base pairing

compared to the crystal structure (Supplementary Fig S68 in S1 File). This observation indicated

that conformations were insufficiently sampled during the simulations. The 2D structures pre-

dicted by IPknot, pKiss, DotKnot, RNAPKplex, HotKnots_CC09, and HotKnots_DP09 translated

to 3D structures with consistent RMSDs of ~10.00 Å (Supplementary Fig S65 in S1 File). Nota-

bly, for CentroidHomfold-LAST and ContextFold, even though the topology of the predicted 2D

structures is significantly different from the native 2D structure and pseudoknot base pairing

information is missing in them, SimRNA modeled the 3D structures with an RMSD of ~10.0 Å
(Supplementary Table S6, Figs S5, and S65 in S1 File). CentroidFold_McCaskill predicted a

large unpaired region and only partially predicted the stem–loop structure from G24 to C37 (Sup-

plementary Table S6 and Fig S5 in S1 File). Intriguingly, in this case, even with minimal 2D

structural constraints, SimRNA modeled the 3D structure with an RMSD value of ~11.0 Å (Sup-

plementary Fig S65 in S1 File). SimRNA uses 2D structural information as distance restraints;

however, the unpaired regions fold under the influence of the underlying SimRNA force field

(which does not fully account for the molecular context). The CentroidHomfold-LAST-derived

3D structure demonstrated the efficiency of the SimRNA force field in folding RNAs.

PDB 5LYU

For PDB 5LYU, the native 2D structural constraints led to a 3D structure with an RMSD of

7.19 Å (Supplementary Fig S17 in S1 File). The 2D predictions by RNAfold_MFE,
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RNAfold_MFE_60, RNAfold_MEA, RNAstructure_Fold, RNAstructure_MaxExpect, Linear-

Fold-V, RNAPKplex, R2DT, and pKiss were the same (Supplementary Table S2 and Fig S1

in S1 File). For these abovementioned 2D tools, SimRNA simulations led to similar RMSDs

(6.47 Å – 7.66 Å) (Supplementary Fig S17 in S1 File). The MXfold2 2D structure matches the

native 2D structure but still led to a 3D structure with an RMSD of 8.52 Å (Supplementary

Fig S17 in S1 File). This observation indicated the reproducibility capability of SimRNA for

simple stem–loop structures, but the same could not always be expected for complex fold

structures such as PDBs 3OWZ and 4ENC. Notably, for PDB 5LYU, all three methods,

IsRNA1, RNAComposer, and SimRNA, modeled 3D structures with RMSDs less than 10.0 Å.

PDB 5NWQ

The lowest-RMSD (7.17 Å) structure was produced with the 2D structural constraints

obtained from the 2D tool HotKnots_DP09 (Supplementary Fig S53 in S1 File). The 2D

structure predicted by HotKnots_DP09 deviates from the native 2D structure by the absence

of a large loop comprising residues from C20 to G29 (Supplementary Table S5 and Fig S4 in

S1 File). The 2D structure predicted by IPknot lacks pseudoknot base pairing information

(Supplementary Table S5 and Fig S4 in S1 File); however, it produced a low-RMSD structure

(8.65 Å) (Supplementary Fig S53 in S1 File). This observation demonstrates the capability of

SimRNA to predict pseudoknot structures. However, obtaining diverse RMSD values for the

3D structures with the same 2D structural constraints predicted with IPknot, SPOT-RNA,

CentroidFold_McCaskill, RNAstructure_ProbKnot, and R2DT pointed toward the insuffi-

cient conformational sampling issue in SimRNA simulations. The remaining 2D structures

have distinct topologies compared to the native and HotKnots_DP09 predicted 2D structures

and therefore led to RMSDs higher than 15.0 Å (Supplementary Table S5, Figs S4, and S53

in S1 File).

PDB 6P2H

SimRNA simulations generally generated low-RMSD structures (~6–8 Å) compared to

IsRNA1 and RNAComposer for PDB 6P2H (Supplementary Fig S77 in S1 File). Here, the

lowest RMSD (5.79 Å) structure was produced by the 2D structural constraints predicted from

IPknot. Interestingly, the 2D topology predicted by IPknot is distinctly different from that of

the native 2D structure in terms of the expanded three-way junction (Supplementary

Table S7 and Fig S6 in S1 File). The 2D structures predicted by DotKnot and the native one

are different but still led to very similar 3D structures with RMSDs of 6.85 Å and 6.53 Å,

respectively (Supplementary Table S7, Figs S6, and S77 in S1 File). RNAstructure_Fold,

RNAstructure_ProbKnot, RNAstructure_MaxExpect, and NUPACK predicted significantly

different base pairs compared to the native 2D structure; this led to large RMSDs with lower s

for these 2D tools.

PDB 6TB7

Overall, SimRNA produced higher RMSDs for this structure than the other methods (Supple-

mentary Fig S29 in S1 File). However, with native and UNAFold_mFold-predicted 2D struc-

tural constraints, the 3D structures with the lowest RMSDs, 3.57 Å, and 3.28 Å, respectively,

were generated by SimRNA compared to those generated by IsRNA1 and RNAComposer

(Supplementary Fig S29 in S1 File). Although UFold and UNAFold_mFold predicted the

same 2D structure, it translated to the 3D structure with an RMSD of 13.38 Å (Supplementary

Table S3, Figs S2, and S29 in S1 File). The RNAfold, RNAStructure, and HotKnots variants,

NUPACK, pKiss, and RNAPKplex, all predicted similar 2D structures, and those 2D structural
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constraints, except for those from RNAPKplex, generated 3D structures with a range of

RMSDs ~13–14 Å relative to the native 3D structure. The 2D structural constraints predicted

by RNAPKplex translated to a 3D structure with an RMSD of 9.53 Å. These observations indi-

cate that although SimRNA simulations produce similar 3D structures with similar 2D struc-

tural constraints, the possibility of producing outliers cannot be ignored. As expected, the

distinct topology predicted by MXfold2, DotKnot, and CentroidFold_McCaskill’ led to higher

RMSDs (p-value>0.01) (Supplementary Figs S26 and S29 in S1 File).

PDB 7LYJ

In general, for most of the 2D structural constraints, except for those from UFold and RNA-

fold_MC-Fold, SimRNA-generated 3D structures were close to the crystal structure (Fig S41

in S1 File). Even if pseudoknot base pairing information was not predicted, SimRNA effi-

ciently folded to 3D structures with low RMSD values for the 2D structural constraints pre-

dicted by IPknot, ContextFold, and many other 2D tools (Supplementary Table S4, Figs S3,

and S41 in S1 File). These observations illustrated the remarkable ability of SimRNA simula-

tions to preduct nearly accurate 3D structures in the absence of pseudoknot base pairing infor-

mation as 2D structural constraints. These results are consistent with the observations in

Ref. [25].

SimRNA simulation convergence

We found that with the same RNA 2D structure input and the default single REMC simulation

run, SimRNA-predicted 3D models displayed a wide range of RMSD values with respect to the

reference crystal structure. Thus, assuming convergence as one of the reasons, we followed the

protocol of repeated SimRNA REMC simulations as suggested by the SimRNA developers to

mitigate the convergence issues.

We found that at least for 4 RNAs, namely, 3OWZ_A, 4ENC, 6TB7, and 5NWQ, the accu-

racy of 3D structure prediction may suffer from the issue of insufficient conformational sam-

pling in SimRNA simulations with the default setup. For instance, with the native 2D

structural constraints, the RMSD of the SimRNA-derived 3D structure was as high as 19.7 Å
for PDB 4ENC. Similarly, 2D structural constraints with a high F1-score (0.959) for PDB

3OWZ_A translated to a high-RMSD (19.65 Å) 3D structure.

To check whether these observations arose due to insufficient conformational sampling, we

performed SimRNA replica exchange Monte Carlo (REMC) simulations repeatedly as

described in the methods section. In short, the same REMC simulation was performed in three

sets (set 1, set 2, and set 3) and then analyzed individually, and RMSDs were compared with

each other and to those obtained from the default simulations to ensure whether the results

were reproducible. Notably, for set 1, set 2, and set 3, only the native 2D structural constraints

were used. The native 2D structural constraints with repeated simulations could help shed

light on the variations in RMSD values in terms of RNA topology complexity.

The RMSD results are summarized in Fig 9 (Supplementary Table S1 in S1 File). Except

for PDB 3OWZ_A and 6P2H, the predicted RMSDs did not vary much between sets and

default simulations. Set 1, Set 2, and Set 3 demonstrated varying RMSDs for 3OWZ_A and

6P2H, thus indicating the possibility of different outcomes even if native 2D structural infor-

mation is provided. We attribute this variation to the complex topologies of these RNAs.

Conclusion

In this work, we assessed the transferability of 2D structural constraints to 3D models for

seven RNAs with different complex topologies. The 2D structural constraints predicted by 27
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different tools were utilized as inputs in widely known software packages for RNA 3D struc-

ture prediction, IsRNA1, RNAComposer, and SimRNA. Extensive comparative analyses were

performed to correlate the accuracy of the 2D structure predictions and the 3D model quality.

We found that for the predicted 2D structures with high F1-scores, the motif-based tool

RNAComposer efficiently modeled the 3D structures with a median RMSD of ~5.00 Å
Accordingly, the 3D tools can be ordered as RNAComposer > SimRNA > IsRNA1 based on

their efficiency of translating 2D structural constraints into 3D models. We observed that the

accuracy of the 2D structure prediction, the complexity of the structural folds, and the avail-

ability of 3D structural motifs in the RNA FRABASE 2.0 database played a significant role in

the 2D to 3D translation accuracy of RNAComposer. For the group of 2D tools with medium

F1-scores, SimRNA modeled the 3D structures more efficiently than RNAComposer and

IsRNA1. Our results suggested that the sampling efficiency and the underlying force field of

SimRNA played a major role in compensating for the lack of accuracy in the 2D structural

inputs. Irrespective of motif-based or sampling-based approaches, the modeled 3D structures

deviated greatly from the crystal structures for the 2D structures predicted with F1-score =<

0.80.

However, further extensions of the current study could confirm the performance and accu-

racy of structural prediction and establish the correlation between 2D and 3D modeling of

RNA. This will include the use of state-of-the-art methods in both 2D (recent ML/DL methods

such as CNNFold [61], CROSS [62], DMfold [63], and RPRes [64]) and 3D (Rosetta FARFAR2

[65] and 3dRNA [66, 67]). Further improvements can be expected by considering a larger

dataset, including alternative conformations for each RNA sequence, and incorporating auxil-

iary information such as chemically modified free energy nearest neighbor parameters as fold-

ing constraints.

Fig 9. RMSD values of repeated SimRNA simulations with native 2D structural constraints.

https://doi.org/10.1371/journal.pone.0290907.g009
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