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Abstract
We consider the general problem of a set of agents trading a portfolio of assets in the pres-
ence of transient price impact and additional quadratic transaction costs and we study, with
analytical and numerical methods, the resulting Nash equilibria. Extending significantly
the framework of Schied and Zhang (2019) and Luo and Schied (2020), who considered
the single asset case, we prove the existence and uniqueness of the corresponding Nash
equilibria for the related mean-variance optimization problem. We then focus our atten-
tion on the conditions on the model parameters making the trading profile of the agents
at equilibrium, and as a consequence the price trajectory, wildly oscillating and the mar-
ket unstable. While Schied and Zhang (2019) and Luo and Schied (2020) highlighted the
importance of the value of transaction cost in determining the transition between a stable
and an unstable phase, we show that also the scaling of market impact with the number of
agents J and the number of assets M determines the asymptotic stability (in J and M) of
markets.
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1 Introduction

Instabilities in financial markets have always attracted the attention of researchers, policy
makers and practitioners in the financial industry because of the role that financial crises have
on the real economy.Despite this, a clear understanding of the sources of financial instabilities
is still missing, in part probably because several origins exist and they are different at different
time scales. The recent automation of the trading activity has raised many concerns about
market instabilities occurring at short time scales (e.g. intraday), also because of the attention
triggered by the Flash Crash ofMay 6th, 2010 (Kirilenko et al., 2017) and the numerous other
similar intraday instabilities observed in more recent years (Johnson et al., 2013; Golub et al.,
2012; Calcagnile et al., 2018; Brogaard et al., 2018), such as the Treasury bond flash crash of
October 15th, 2014. The role of High Frequency Traders (HFTs), Algo Trading, and market
fragmentation in causing these events has been vigorously debated, both theoretically and
empirically (Golub et al., 2012; Brogaard et al., 2018).

One of the puzzling characteristics of market instabilities is that a large fraction of them
appear to be endogenously generated, i.e. it is often very difficult to find an exogenous event
(e.g. a news) which can be considered at the origin of the instability (Cutler et al., 1989;
Fair, 2002; Joulin et al., 2008). Liquidity plays a crucial role in explaining these events.
Markets are, in fact, far from being perfectly elastic and any order or trade causes prices to
move, which in turn leads to a cost (termed slippage) for the investor. The relation between
orders and price is called market impact. In order to minimize market impact cost, when
executing a large volume it is optimal for the investor to split the order in smaller parts which
are executed incrementally over the day or even across multiple days. One of the origins
of market impact cost is predatory trading (Brunnermeier & Pedersen, 2005; Carlin et al.,
2007): the knowledge that a trader is purchasing progressively a certain amount of assets
can be used to make profit by buying at the beginning and selling at the end of the trader’s
execution. Part of the core strategy of HFTs is exactly predatory trading. Now, the combined
effect on price of the trading of the predator and of the prey can lead to large price oscillations
and market instabilities. In any case, it is clear that the price dynamics is the result of the
(dynamical) equilibrium between the activity of two or more agents simultaneously trading.

This equilibrium can be studied by modeling the above setting as a market impact game
(Carlin et al., 2007; Schöneborn, 2008; Moallemi et al., 2012; Lachapelle et al., 2016; Schied
& Zhang, 2019; Strehle, 2017a, b). In a nutshell, in a market impact game, two traders want
to trade the same asset in the same time interval. While trading, each agent modifies the price
because of market impact, thus when two (or more) traders are simultaneously present, the
optimal execution schedule of a trader should take into account the simultaneous presence
of the other trader(s). As customary in these situations, the approach is to find the Nash
equilibrium, which in general depends on the market impact model.

Market impact games are a perfect modeling setting to study endogenously generated
market instabilities. A major step in this direction has been recently made1 by Schied and
Zhang (2019). By using the transient impact model of Bouchaud et al. (2004, 2009) plus
a quadratic temporary impact cost (which can alternatively be interpreted as a quadratic
transaction cost, see below), they have recently considered a simple setting with two identical
agents liquidating a single asset and derived the Nash equilibrium. Interestingly, they also
derived analytically the conditions on the transaction cost under which the Nash equilibrium

1 Furthermore, many works have recently examined the continuous time setting, e.g., Schied et al. (2017),
Bayraktar and Munk (2018) and mean field games approach, e.g., Cardaliaguet and Lehalle (2018), Fu et al.
(2021).
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displays huge oscillations of the trading volume and, as a consequence, of the price, thus
leading to market instabilities.2 Specifically, they proved the existence of a sharp transition
between stable and unstable markets at a specific value of the transaction cost parameter.

Although the paper of Schied and Zhang highlights a key mechanism leading to market
instability, several important aspects are left unanswered. First, market instabilities rarely
involve only one asset and, as observed for example during the Flash Crash, a cascade of
instabilities affects very rapidly a large set of assets or the entire market (CFTC-SEC, 2010).
This is due to the fact that optimal execution strategies often involve a portfolio of assets
rather than a single one (see, e.g. Tsoukalas et al. 2019). Commonality of liquidity across
assets (Chordia et al., 2000) and cross-impact effects (Alfonsi et al., 2016; Schneider & Lillo,
2019) makes the trading on one asset triggers price changes on other assets. Furthermore,
Cespa and Foucault (2014) show that a drop in liquidity in one asset can propagate in another
asset, causing a market liquidity crash. Thus, it is natural to ask: is a large market more or
less prone to market instabilities? How does the structure of cross-impact and therefore of
liquidity commonality affect the market stability? A second class of open questions regards
instead the market participants. Do the presence of more agents simultaneously trading one
asset tends to stabilize the market? While the solution of Schied and Zhang considers only
two traders, it is important to know whether having more agents is beneficial or detrimental
to market stability. For example, regulators and exchanges could implement mechanisms to
favor or disincentive participation during turbulent periods. Answering this question requires
solving the impact game with a generic number of agents and it is discussed in the single
asset case in Luo and Schied (2020).

In this paper we extend considerably the setting of Schied and Zhang by answering the
above research questions. Specifically, starting from Luo and Schied (2020), we consider
(i) the case when agents trade multiple assets simultaneously and cross market impact is
present and we provide explicit representations of related Nash equilibria; (ii) after studying
how trading conditions may be affected by the cross impact, we derive theoretical results on
market stability for the J = 2 agents by showing how it is related to cross-impact effects;
(iii) we study numerically market stability in the general case and we extend a previous result
and conjecture of Luo and Schied (2020) in the multi-asset case.

It is important to notice that inmarket impact games,market impact is taken as exogenously
given.Market microstructure literature has extensively discussed its endogenous nature since
the seminal work of Kyle (1985). Theoretical and empirically studies have investigated and
provided evidence of how market impact might depend on number of agents and of traded
assets, e.g., Bagnoli et al. (2001), Benzaquen et al. (2017), Bucci et al. (2020), Garcia del
Molino et al. (2020). Therefore we will consider this dependence and show how the stability
of markets in market impact games depends on the way impact scales with the number of
agents and the number of assets. We find that, if market impact is independent from the
number of agents and assets, larger and more crowded markets are more prone to market
instability. However, if, as observed empirically and proposed theoretically, market impact
suitably scales with these two quantities, stability can be recovered.

The paper is organized as follows. In Sect. 2 we recall some notation of the market impact
games framework and the Luo and Schied (2020) model. We extend the basic model of Luo
and Schied (2020) to the multi-asset case in Sect. 3, where we find the corresponding Nash
equilibria for different objective functions. We analyse how the cross-impact modifies the
trading profile and trading conditions in Sect. 4. Finally, in Sect. 5 we study how the cross-

2 In their paper, Schied and Zhang interpret the large alternations of buying and selling activity observed at
instability as the “hot potato game” among HFTs empirically observed during the Flash Crash (CFTC-SEC,
2010; Kirilenko et al., 2017).
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impact matrix affects the market stability and we present how impact must scale with the
number of assets to preserve stability. Finally, in Sect. 6 we draw some conclusions.

2 Market impact games

Consider two traders who want to trade simultaneously a certain number of shares, minimiz-
ing the trading cost. Since the trading of one agent affects the price, the other agent must take
into account the presence of the former in optimizing her execution. This problem is termed
market impact game and has received considerable attention in recent years (Carlin et al.,
2007; Schöneborn, 2008; Moallemi et al., 2012; Lachapelle et al., 2016; Schied & Zhang,
2019; Strehle, 2017a, b). The seminal paper by Schied and Zhang (2019), considers a market
impact game between two identical agents trading the same asset in a given time period.

When none of the two agents trade, the price dynamics is described by the so called unaf-
fected price process S0t which is a right-continuous martingale defined on a given probability
space (�, (Ft )t≥0,F ,P). A trader wants to unwind a given initial position with inventory
X , where a positive (negative) inventory means a short (long) position, during a given trad-
ing time grid T = {t0, t1, . . . , tN }, where 0 = t0 < t1 < · · · < tN = T and following an
admissible strategy, which is defined as follows:

Definition 2.1 (Admissible Strategy) Given T and X , an admissible trading strategy for T
and X ∈ R is a vector ζ = (ζ0, ζ1, . . . , ζN ) of random variables such that:

• ζk ∈ Ftk and bounded, ∀k = 0, 1, . . . , N .

• ζ0 + ζ1 + · · · + ζN = X .

The random variable ζk represents the order flow at trading time tk where positive (nega-
tive) flowcorresponds to a sell (buy) trade of volume |ζk |.We denotewith X1 and X2 the initial
inventories of the two considered agents playing the game and with � = (ξi,k) ∈ R

2×(N+1)

the matrix of the respective strategies, where ξ1,· = {ξ1,k}k∈T and ξ2,· = {ξ2,k}k∈T are the
strategies of trader 1 and 2, respectively. Traders are subject to fees and transaction costs
and their objective is to minimize them by optimizing the execution. As customary in the
literature, the costs are modeled by two components. The first one is a temporary impact
component modeled by a quadratic term θξ2j,k , respectively for trader j , which does not
affect the price dynamics and depends on the immediate liquidity present in the order book.
Notice that, as discussed in Schied and Zhang (2019), this term can also be interpreted as a
quadratic transaction fee. Here we do not specify exactly what this term represents, sticking
to the mathematical modeling approach of Schied and Zhang.

The second component is related to permanent impact and affects future price dynamics.
Following Schied and Zhang (2019), we consider the celebrated transient impact model of
Bouchaud et al. (2004, 2009), which describes the price process S�

t affected by the strategies
� of the two traders, i.e.,

S�
t = S0t −

∑

tk<t

G(t − tk)(ξ1,k + ξ2,k), ∀ t ∈ T,

where G : R+ → R+ is the so called decay kernel, which describes the lagged price impact
of a unit buy or sell order over time. Usual assumptions on G are satisfied, i.e., it is convex,
nonincreasing, nonconstant so that t �→ G(|t |) is strictly positive definite in the sense of
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Bochner3, see Alfonsi et al. (2012) and Schied and Zhang (2019). Notice that by choosing a
constant kernel G, one recovers the celebrated Almgren-Chriss model (Almgren & Chriss,
2001).

The cost faced by each agent is the sum of the two components above. Specifically, let us
denote withX (X ,T) the set of admissible strategies for the initial inventory X on a specified
time grid T, the cost functions are defined as:

Definition 2.2 (Schied & Zhang, 2019) Given T = {t0, t1, . . . , tN }, X1 and X2. Let
(εi )i=0,1,...N be an i.i.d. sequence of Bernoulli

( 1
2

)
-distributed random variables that are

independent of σ(
⋃

t≥0 Ft ). Then the cost of ξ1,· ∈ X (X1,T) given ξ2,· ∈ X (X2,T) is
defined as

CT(ξ1,·|ξ2,·) =
N∑

k=0

(
G(0)

2
ξ21,k − Sξ ,η

tk ξ1,k + εkG(0)ξ1,kξ2,k + θξ21,k

)
+ X1S

0
0

and the costs of ξ2,· given ξ1,· are

CT(ξ2,·|ξ1,·) =
N∑

k=0

(
G(0)

2
ξ22,k − Sξ ,η

tk ξ2,k + (1 − εk)G(0)ξ1,kξ2,k + θξ22,k

)
+ X2S

0
0 .

Thus the execution priority at time tk is given to the agent who wins an independent coin toss
game, represented by a Bernoulli variable εk , which is a fair game in the framework of Schied
and Zhang (2019). Given the time gridT = {t0, t1, . . . , tN } and the initial values X1, X2 ∈ R,
we define the Nash Equilibrium as a pair (ξ∗

1,·, ξ∗
2,·) of strategies inX (X1,T) ×X (X2,T)

such that

E[CT(ξ∗
1,·|ξ∗

2,·)] = min
ξ1,·∈X (X1,T)

E[CT(ξ1,·|ξ∗
2,·)] and

E[CT(ξ∗
2,·|ξ∗

1,·)] = min
ξ2,·∈X (X2,T)

E[CT(ξ2,·|ξ∗
1,·)].

One of main results of Schied and Zhang (2019) is the proof, under general assumptions,
of the existence and uniqueness of the Nash equilibrium. Moreover, they showed that this
equilibrium is deterministically given by a linear combination of two constant vectors, namely

ξ∗
1,· = 1

2
(X1 + X2)v + 1

2
(X1 − X2)w (1)

ξ∗
2,· = 1

2
(X1 + X2)v − 1

2
(X1 − X2)w, (2)

where the fundamental solutions v and w are defined as

v = 1

eT (	θ + 	̃)−1e
(	θ + 	̃)−1e

w = 1

eT (	θ − 	̃)−1e
(	θ − 	̃)−1e.

3 The function t �→ G(|t |) is strictly positive definite in the sense of Bochner, if for all n ∈ N, t1, t2, . . . , tn ∈
R and x1, x2, . . . , xn ∈ R,

∑n
i, j=1 xi x j G(|ti − t j |) ≥ 0, where the equality it is satisfied if and only if

x1 = x2 = · · · = xn = 0. Alfonsi et al. (2012) (Proposition 2) show that it is satisfied as G is convex,
nonincreasing and nonconstant. This condition prevents the existence of price manipulation strategies in the
sense of Huberman and Stanzl (2004), see Alfonsi et al. (2012) and Schied and Zhang (2019) for further
details.
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and e = (1, . . . , 1)T ∈ R
N+1. The kernel matrix 	 ∈ R

(N+1)×(N+1) is given by

	i j = G(|ti−1 − t j−1|), i, j = 1, 2, . . . , N + 1,

and for θ ≥ 0 it is 	θ := 	 + 2θ I , and the matrix 	̃ is given by

	̃i j =

⎧
⎪⎨

⎪⎩

	i j if i > j
1
2G(0) if i = j,

0 otherwise.

As shown by Schied and Zhang (2019) all these matrices are positive definite.
An interesting result of Schied and Zhang (2019) concerns the stability of the Nash equi-

librium related to the transaction costs parameter θ and the decay kernel G. Generically,
following Schied and Zhang (2019), we say that a market is unstable if the trading strategies
at the Nash equilibrium exhibit spurious oscillations.

Definition 2.3 (Spurious Oscillations) A trading strategy ξ exhibits spurious oscillations,
if there exists a sequence of at least three consecutive trading times, ti , ti+1, . . . , tτ , where
τ − i > 1, such that the orders are consecutively composed by buy and sell trades, i.e.,
there are at least three consecutive trades with opposite direction, ξi+k · ξi+k+1 < 0, for
k = 0, 1, . . . , τ − i − 1.

In the optimal execution literature such behavior is termed transaction triggered price
manipulation, see Alfonsi et al. (2012). Figure1 shows the simulation of the price process
under the Schied and Zhang model when both investors have an inventory equal to 1 for two
values of θ . The unaffected price process is a simple randomwalk with zero drift and constant
volatility and the trading of the two agents, according to the Nash equilibrium, modifies the
price path. For small θ (top panel) the affected price process exhibits wild oscillations, while
when θ is large (bottom panel) the irregular behavior disappears.4

Thus, Schied and Zhang (2019) showed, when the trading time grid is equispaced,TN , and
under general assumptions on G, the existence of a critical value θ∗ = G(0)/4 such that for
θ < θ∗ the equilibrium strategies exhibit oscillations of buy and sell orders for both traders.
Hence, the behavior at zero of the kernel function plays a relevant role for the equilibrium
stability. Now, we recall the extension of this framework in a multi-agent market (J > 2) of
Luo and Schied (2020). Then, we first extend their framework in the multi-asset (M > 1)
case, where we show the existence and uniqueness of the related Nash equilibrium. Finally,
we generalize the stability result of Schied and Zhang (2019) in the multi-asset case and we
show how to appropriately scale with J and M the kernel function in order to prevent huge
oscillations in the related equilibria.

2.1 The Luo and Schiedmulti-agent market impact model

The Luo and Schied (2020) model is an extension of the Schied and Zhang (2019) model
where J risk-averse traders want to trade the same asset. The unaffected price process S0t is

4 Moreover, we observe that the presence of spurious oscillations in the price dynamics may affect the
consistency of the spot volatility estimation. Indeed, these oscillations act as a market microstructure noise,
even if this noise is caused by the oscillations of a deterministic trend, while usually it is characterized by
some additive noise term. In particular, we find that when θ is close to zero the noise is amplified by spurious
oscillations, while for sufficiently large θ these oscillations do not compromise the consistency of the spot
volatility.
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Fig. 1 Blue lines exhibit the price process when both agents have inventory equals to 1. The top (bottom) panel
shows the dynamics when θ = 0.01 (θ = 1.5). The trading time grid has N +1 = 51 points, G(t) = exp(−t),
the volatility of the unaffected price process is fixed to 1 and S0 = 100. The vertical grey dotted lines delineates
the trading session. The red lines shows the drift dynamics due to trading

always assumed to be a right continuous martingale in a suitable filtered probability space
(�,F , (Ft )t≥0,P) and it is also required that S0· is a square-integrable process. As before,
let T = {t0, t1, . . . , tN } be the trading time grid. Consistently with the previous notation, we
denote with � = (ξ j,k) ∈ R

J×(N+1) the matrix of all strategies, where ξ j,k is the order flow
of agent j at time tk , so that the affected price process is defined as

S�
t := S0t −

∑

tk<t

G(t − tk) ·
J∑

j=1

ξ j,k,

where G is the decay kernel. When comparing markets with a variable number of agents,
differently from Luo and Schied (2020), we will assume that the function G can depend on J
(Bagnoli et al., 2001;Bucci et al., 2020), see below). The generalization of admissible strategy
is straightforward, indeed if X j denotes the inventory of the j-th agent, � is admissible for
X ∈ R

J and T, if ξ j,· is admissible for X j and T for each j according to Definition 2.1, i.e.,
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it is adapted to the filtration, bounded and
∑N

k=0 ξ j,k = X j . The set of admissible strategy is
denoted asX (X,T). Then, if we consider all the possible time priorities among the J traders
at each time step, i.e. all the possible permutations that determine the time priority for each
trading time tk assumed to be equiprobable, it is possible to generalize the previous definition
of liquidation cost for a trader strategy, see Luo and Schied (2020) for further details. We
denote �− j,· the matrix � where the j-th row is eliminated.

Definition 2.4 (Luo & Schied, 2020) Given a time grid T, the execution costs of a strategy
ξ j,· given all other strategies ξ l,· where l �= j is defined as

CT(ξ j,·|�− j,·) =
N∑

k=0

(
G(0)

2
ξ2j,k − S�

tk ξ j,k + G(0)

2

∑

l �= j

ξ j,kξl,k + θ ξ2j,k

)
,

where θ ≥ 0.

In the framework of Schied and Zhang (2019) we have two risk-neutral agents which
want to minimize the expected costs of a strategy, i.e. implementation shortfall orders. Now,
following Luo and Schied (2020), we consider the agents’ risk aversion by introducing the
mean-variance and expected utility functionals, respectively

MVγ (ξ j,·|�− j,·) := E[CT(ξ j,·|�− j,·)] + γ

2
Var[CT(ξ j,·|�− j,·)], (3)

Uγ (ξ j,·|�− j,·) := E[uγ (−CT(ξ j,·|�− j,·))], (4)

where γ is the risk-aversion parameter and uγ (x) is the CARA utility function,

uγ (x) =
{

1
γ
(1 − e−γ x ) if γ > 0,

x if γ = 0.

As usual, see e.g. Almgren and Chriss (2001), the minimization of the mean-variance func-
tional is restricted to deterministic admissible strategies, which is denoted as Xdet(X,T).
All agents are assumed to have the same risk-aversion γ ≥ 0, see Luo and Schied (2020)
for further details. Moreover, they introduced the corresponding Nash equilibrium for the
previously defined functionals.

Definition 2.5 (from Luo and Schied 2020) Given the time grid T and initial inventories
X ∈ R

J for J traders with risk aversion parameter γ �= 0, then:

• a Nash Equilibrium for mean-variance optimization is a matrix of strategies �∗ ∈
Xdet(X,T) such that each row ξ∗

j,· minimizes the mean-variance functional MVγ (ξ j,·
|�∗− j,·) over ξ j,· ∈ Xdet(X j ,T);

• a Nash Equilibrium for CARA expected utility maximization is a matrix of strategies
�∗ ∈ X (X,T) such that each row ξ∗

j,· maximizes the CARA expected utility functional
Uγ (ξ j,·|�∗− j,·) over ξ j,· ∈ X (X j ,T).

In particular, Luo and Schied (2020) showed that when the decay kernel is strictly positive
definite and for any T, parameters θ, γ ≥ 0 and initial inventories X ∈ R

J , there exists a
unique Nash equilibrium for the mean-variance optimization which is given by

ξ∗
j,· = Xv + (X j − X)w, j = 1, 2, . . . , J , (5)

where X = 1
J

∑J
j=1 X j and v, w are the fundamental solutions defined as

v = 1

eT [	γ,θ + (J − 1)	̃]−1e
[	γ,θ + (J − 1)	̃]−1e
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w = 1

eT [	γ,θ − 	̃]−1e
[	γ,θ − 	̃]−1e,

and, if ϕ(t) := Var(S0t ), for t ≥ 0, the matrix 	γ,θ is defined for θ, γ ≥ 0 as

	
γ,θ

i, j := (	θ )i, j + γ ϕ(ti−1 ∧ t j−1), i, j = 1, 2, . . . , N + 1,

where 	θ is the previously defined kernel matrix. Moreover, if S0t = S0 + σ Bt , for t ≥ 0,
where S0, σ > 0 are constants and Bt is a standard Brownian motion, i.e., the unaffected
price process is a Bachelier model, then (5) is also a Nash equilibrium for CARA expected
utility maximization and it is unique if we restrict all trader strategies to be deterministic, see
Luo and Schied (2020) for further details.

3 Multi-asset market impact games

We now extend the previous framework allowing the J agents to trade a portfolio of M > 1
assets. Indeed, agents often liquidate portfolio positions, which accounts in trading simulta-
neously many assets. In general, the optimal execution of a portfolio is different from many
individual asset optimal executions, because of (i) correlation in asset prices, (ii) common-
ality in liquidity across assets (Chordia et al., 2000), and (iii) cross-impact effects. In the
following we will focus mainly on the third effect, even if disentangling them is a challeng-
ing statistical problem and we will discuss its relations with the correlation in asset prices
which ensure the existence of Nash equilibrium.

To proceed, we first extend the notion of admissible strategy to the multi-asset case. A
strategy for J traders during the trading time interval T for M assets is a multidimensional
array � = (ξi, j,k) ∈ R

M×J×(N+1), where ξi, j,k is the strategy for the j-th trader in the
i-th asset at time step k. Straightforwardly, given a fixed time grid T and initial inventory
X ∈ R

M×J , where each column j contains the inventories of trader j for the M assets, a
strategy � of random variables is admissible for X if i) for all time step k, �·,·,k is Ftk -
measurable and bounded and ii)

∑N
k=0 ξ ·, j,k = X j ∈ R

M for each j , where X j is the j-th
column of X .

The second important point is that the trading of one asset modifies also the price of the
other asset(s). This effect is termed cross-impact. While self-impact may be attributed to a
mechanical and induced consequence of the order book, the cross-impact may be understood
as an effect related to mispricing in correlated assets which are exploited by arbitrageurs
betting on a reversion to normality, see Almgren and Chriss (2001) and Schneider and Lillo
(2019) for further details. Cross-impact has been empirically studied recently, see e.g. Mas-
tromatteo et al. (2017), Schneider and Lillo (2019) and its role in optimal execution has been
highlighted in Tsoukalas et al. (2019).

Mathematically cross-impact is modeled by introducing a functionQ(J ,M) : R+×R
M →

R
M describing how the trading of the M assets affect their prices at a certain future time.

Note that in general the cross-impact function might depend on the number of assets M
and on the number of agents J . Later we will discuss more in detail how this dependence
affects market stability. Schneider and Lillo (2019) have discussed necessary conditions for
the absence of price manipulation for multi-asset transient impact models. They have shown
that the cross-impact function need to be symmetric and linear in order to avoid arbitrage and
manipulations. Moreover, following example 3.1 of Alfonsi et al. (2016) and as empirically
observed by Mastromatteo et al. (2017), we assume the same temporal dependence of G
among the assets. Then, we assume thatQ(J ,M) = Q ·G(t)where Q is linear and symmetric,
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i.e., Q ∈ R
M×M and Q = QT and G : R+ → R+. Clearly the dependence from J and M

can be in Q and/or in G(t). We also assume that Q is a nonsingular matrix. Therefore, the
price process during order execution is defined as

S�
t = S0t −

∑

tk<t

G(t − tk) · Q ·
J∑

j=1

ξ ·, j,k

where we refer to Q ∈ R
M×M as the cross-impact matrix, S0t ∈ R

M is the unaffected price
process which is assumed to be a right-continuous martingale defined on a suitable filtered
probability space and it is a square-integrable process.

If for each asset the time priority among the traders is determined by considering all the
possible permutations of agents for each trading time tk , then, following the same motivation
of Schied and Zhang (2019) and Luo and Schied (2020), the Definition 2.4 of liquidation
cost is generalized as follows:

Definition 3.1 (Execution Cost) Given a time grid T and θ ≥ 0, the execution cost of a
strategy �·, j,· given all other strategies �·,l,· where l �= j is defined as

CT(�·, j,·|�·,− j,·) =
N∑

k=0

(
G(0)

2
〈Qξ ·, j,k, ξ ·, j,k〉 − 〈S�

tk , ξ ·, j,k〉+

+ G(0)

2

∑

l �= j

〈Qξ ·,l,k, ξ ·, j,k〉 + θ 〈ξ ·, j,k, ξ ·, j,k〉.
)

.

The previous definition is motivated by the following argument.When only agent j trades,
the prices are moved from S�

tk to S�
tk+ = S�

tk − G(0)Qξ ·, j,k . However, the order is executed
at the average price and the player incurs in the expenses

−1

2
〈(S�

tk + S�
tk+), ξ ·, j,k〉 = G(0)

2
〈Qξ ·, j,k, ξ ·, j,k〉 − 〈S�

tk , ξ ·, j,k〉.
Then, suppose that immediately after j the agent l place an order and the prices are moved
linearly from S�

tk+ to S�
tk+ − G(0)Qξ ·,l,k , so the cost for l is given by:

−1

2
〈(S�

tk+ + S�
tk+) − G(0)Qξ ·,l,k, ξ ·,l,k〉 = G(0)

2
〈Qξ ·,l,k, ξ ·,l,k〉 − 〈S�

tk , ξ ·,l,k〉
+G(0)〈Qξ ·, j,k, ξ ·,l,k〉.

The term G(0)〈Qξ ·, j,k, ξ ·,l,k〉 is the additional cost due to the latency, where on average
for each asset half of the times the order of agent j will be executed before the one of agent
l, so that the latency costs for agent j at time step k is given by G(0)

2

∑
l �= j 〈Qξ ·,l,k, ξ ·, j,k〉,

see Luo and Schied (2020) for further details.
The mean-variance and CARA expected utility functionals are straightforwardly gener-

alized using the previous defined execution cost. Indeed,

MVγ (�·, j,·|�·,− j,·) := E[CT(�·, j,·|�·,− j,·)] + γ

2
Var[CT(�·, j,·|�·,− j,·)], (6)

Uγ (�·, j,·|�·,− j,·) := E[uγ (−CT(�·, j,·|�·,− j,·))]. (7)

Therefore, we may define the related Nash equilibria definitions:

Definition 3.2 Given the time grid T and initial inventories X ∈ R
M×J for M assets and J

traders with risk aversion parameter γ ≥ 0, then:
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• a Nash Equilibrium for mean-variance optimization is a multidimensional array of
strategies �∗ ∈ Xdet(X ,T) such that �∗·, j,· minimizes the mean-variance functional
MVγ (�·, j,·|�∗·,− j,·) over �·, j,· ∈ Xdet(X j ,T);

• a Nash Equilibrium for CARA expected utility maximization is a multidimensional array
of strategies �∗ ∈ X (X ,T) such that each �∗·, j,· maximizes the CARA expected utility
functional Uγ (�·, j,·|�∗·,− j,·) over �·, j,· ∈ X (X j ,T).

We recall that S0t follows a Bachelier model if S0t = S0 + LBt where S0 is a fixed vector
and Bt is a multivariate (standard) Brownian motion, where its components are independent
with unit variance so that the variance-covariance matrix of S0t is given by  = LLT .

Remark 3.3 The execution cost of Definition 3.1 could be slightly generalized5 by replacing
θ < ξ ·, j,k, ξ ·, j,k > by θ < Qξ ·, j,k, ξ ·, j,k >. This generalization makes sense financially
if the θ dependent term is interpreted as a temporary impact component, while it becomes
meaningless if it represents a transaction fee term. In the former case, it is also reasonable
to assume that the off-diagonal terms are described by the matrix Q, since cross-permanent
impact has likely a similar structure to cross-temporary impact. Under these assumptions,
we are able to generalize the main results presented in the rest of the paper in the case of
the cost defined in Definition 3.1. In Appendix 1 we present the main derivations for this
generalization.

3.1 Nash equilibrium for the linear cross impact model

Wenowprove the existence and uniqueness of theNash equilibrium in thismulti-asset setting.
This is achieved by using the spectral decomposition of Q to orthogonalize the assets, which
we call “virtual” assets, so that the impact of the orthogonalized strategies on the virtual
assets is fully characterized by the self-impact, i.e., the transformed cross impact matrix is
diagonal. Thus, the existence and uniqueness of the Nash equilibrium derives immediately
by following the same argument as in Schied and Zhang (2019) and Luo and Schied (2020).
All the proofs are given in Appendix 1.

Remark 3.4 If we suppose that Q is the identity matrix, then the multi-asset market impact
game is a straightforward generalization of the Luo and Schied (2020) model. Indeed, each
order of the players for the i-th stock does not affect any other asset.

In general, if we assume that S0t has uncorrelated components, i.e., the variance-covariance
matrix  is diagonal, then the following result holds.

Lemma 3.5 (Nash Equilibrium for Diagonal Cross-Impact Matrix) If S0t has uncorrelated
components, for any strictly positive definite decay kernel G, time grid T, parameters
θ, γ ≥ 0, initial inventory X ∈ R

M×J and diagonal positive cross impact matrix
D = diag(λ1, λ2, . . . , λM ), there exists a unique Nash Equilibrium �∗ ∈ Xdet(X ,T) for
the mean-variance optimization problem and it is given by

ξ∗
i, j,· = Xi,·vi + (Xi, j − Xi,·)wi , j = 1, 2, . . . , J , i = 1, 2, . . . , M, (8)

where Xi,· = 1
J

∑J
j=1 Xi, j , vi and wi are the fundamental solutions associated with the

decay kernel Gi (t) = G(t) · λi and same parameter θ . Moreover, if S0t follows a Bachelier
model, then (8) is also a Nash equilibrium for CARA expected utility maximization.

5 We thank an anonymous Referee for this suggestion.
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Remark 3.6 We observe that for risk-neutral agents, i.e., γ = 0, the assumptions of
uncorrelated assets is no more necessary to prove Lemma 3.5. Indeed, the mean-variance
functional is restricted only to the expected cost and for linearity MV0(�·, j,·|�·,− j,·) =∑M

i=1 MV0(ξ i, j,·|�i,− j,·;Gi ), where MV0(ξ i, j,·|�i,− j,·;Gi ) = E[CT(ξ i, j,·|�i,− j,·;Gi )]
is the expected cost of Definition 2.4 where the decay kernel is multiplied by λi , and we have
the same conclusion of Lemma 3.5 regardless the covariance matrix of S0t .

We first introduce some notation and then we state the main results. We say that assets are
orthogonal if the corresponding cross-impact matrix is diagonal. Let us consider the spectral
decomposition of Q, i.e., QV = V D, where V and D are the orthogonal and diagonal
matrices containing the eigenvectors and eigenvalues, respectively. Since we assume that Q
is a non singular symmetric matrix, then D is diagonal with all elements different from zero.
We define the prices of the virtual assets as Pt := V T S�

t and we observe that

Pt = P0
t −

∑

tk<t

G(t − tk) · D · V T ·
( J∑

j=1

ξ ·, j,k
)

= P0
t −

∑

tk<t

G(t − tk) · D ·
( J∑

j=1

ξ P·, j,k
)

,

(9)

where P0
t := V T S0t and ξ P·, j,k := V T ξ ·, j,k . This last quantity is the strategy of trader

j at time step k in the virtual assets, which is admissible for inventory X P
j = V T X j ,

i.e,
∑N

k=0 ξ P·, j,k = ∑N
k=0 V

T ξ ·, j,k = V T X j . The virtual assets are mutually orthogonal by
construction and their corresponding (virtual) decay kernelsGi (t) are obtained as the product
of the original decay kernel G(t) and the corresponding eigenvalues λi of the cross impact
matrix, i.e., the decay kernel associated with the i-th virtual asset is Gi (t) := G(t) · λi .
Indeed, from Equation (9) the decay kernel G(t) is multiplied by the eigenvalues of the cross
impact matrix for each trading time tk ,

G(t − tk) · D =

⎡

⎢⎢⎢⎣

G(t − tk)λ1
G(t − tk)λ2

. . .

G(t − tk)λM

⎤

⎥⎥⎥⎦ .

Then, as observed in Remark 3.4, the multi-asset market impact game where each asset is
orthogonal to others is equivalent to M one-asset market impact games, i.e., Luo and Schied
(2020) models. The (virtual) decay kernels Gi (t) satisfy the assumptions of strictly positive
definite kernels as far as λi > 0 ∀i = 1, 2, . . . , M , i.e., Q is positive definite (see also Alfonsi
et al. 2016). If Cov(S0t ) = , then Cov(P0

t ) = V TV . So, if Q and  are simultaneously
diagonalizable then Cov(P0

t ) is diagonal, i.e., the components of P0· are uncorrelated and by
Lemma 3.5 we obtain the associated Nash equilibria �∗,P , whose components are defined
as

ξ
∗,P
i, j,· = X

P
i,·vi + (X P

i, j − X
P
i,·)wi , j = 1, 2, . . . , J , i = 1, 2, . . . , M, (10)

where X
P
i,· = 1

J

∑J
j=1 X

P
i, j is the average inventory on the i-th virtual asset among the

traders and vi and wi are the previously defined fundamental solutions of Luo and Schied
(2020) for the i-th virtual asset P·,i . For them, the decay kernel is given by Gi (t) = G(t) ·λi
and the corresponding ϕi (t) is given by Var(P0

t,i ). Since, Q and  are both symmetric, so

123



Annals of Operations Research

diagonalizable, Q and are simultaneously diagonalizable if and only if Q and commute.
Therefore, we consider the following assumption.

Assumption 1 The cross-impact matrix, Q, and the covariance matrix of the unaffected price
process S0t , , commute, i.e., Q = Q.

This assumption is frequently made in the literature and approximately valid in real data,6

e.g., Mastromatteo et al. (2017) makes this assumption on the correlation matrix. The empir-
ical observation that the matrix Q has a large eigenvalue with a corresponding eigenvector
with almost constant components (as the market factor) and a block structure with blocks
corresponding to economic sectors (as in the correlation matrix) indicates that the eigenvec-
tors of Q and  are the same, i.e. that Q and  (approximately) commute. Notice also that
Gârleanu and Pedersen (2013) propose a model of optimal portfolio execution where the
quadratic transaction cost is characterized by a matrix which is proportional to .

We enunciate the following theorem of existence and uniqueness of Nash equilibrium
which extends Theorem 2.4 of Luo and Schied (2020).

Theorem 3.7 (Nash Equilibrium for Multi-Asset and Multi-Agent Market Impact Games)
For any strictly positive definite decay kernel G, time grid T, parameter θ, γ ≥ 0, initial
inventory X ∈ R

M×J and symmetric positive definite cross impact matrix Q such that
Assumption 1 holds, there exists a unique Nash Equilibrium �∗ ∈ Xdet(X ,T) for the mean-
variance optimization problem and it is given by

�∗·, j,· = V�
∗,P
·, j,·, j = 1, 2, . . . , J (11)

where V is the matrix of eigenvectors of Q and�∗,P ∈ Xdet(X P ,T) is the Nash Equilibrium
(10) of the corresponding orthogonalized virtual asset market impact game where X P =
V T X. Moreover, if S0 follows a Bachelier model then (11) is also a Nash equilibrium for
CARA expected utility maximization.

However, we observe that for risk-neutral agents, i.e., γ = 0,Assumption 1 is unnecessary.
We remark this result in the following Corollary.

Corollary 3.8 If the agents are risk-neutral, i.e., γ = 0, then for any strictly positive def-
inite decay kernel G, time grid T, parameter θ ≥ 0, initial inventories X ∈ R

M×J and
symmetric positive definite cross impact matrix Q, there exists a unique Nash Equilibrium
�∗ ∈ Xdet(X ,T) for the mean-variance optimization problem and it is given by

�∗·, j,· = V�
∗,P
·, j,·, j = 1, 2, . . . , J (12)

where V is the matrix of eigenvectors of Q and�∗,P ∈ Xdet(X P ,T) is the Nash Equilibrium
associated to the corresponding orthogonalized virtual asset market impact game where
X P = V T X. Moreover, if S0t follows a Bachelier model then (12) is also a Nash equilibrium
over the set X (X ,T).

4 Trading strategies in market impact games

Before studying market stability we investigate how the cross-impact effect and the presence
of many competitors may affect trading strategies, in terms of Nash equilibria. To understand

6 See for instance Fig. 4 of Benzaquen et al. (2017), where authors the empirically estimated matrix Q, whose
block structure is similar to that of the correlation matrix.
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the rich phenomenology that can be observed in a market impact game, we introduce three
types of traders:

• the Directional wants to trade one or more assets in the same direction (buy or sell).
Notice that a Directional can have zero initial inventory for some assets;

• the Arbitrageur has a zero inventory to trade in each asset and tries to profit from the
market impact payed by the other agents;

• the Market Neutral has a non zero volume to trade in each asset, but in order to avoid
to be exposed to market index fluctuations, the sum of the volume traded in all assets is
zero.7

We remark that an Arbitrageur is a particular case of a Market Neutral agent in the limit case
when the volume to trade in each asset is zero. Clearly in a single-asset market we have only
two types of the previous agents, since a Market Neutral strategy requires at least two assets.

4.1 Cross-impact effects and liquidity strategies

To better understand how cross-impact affects optimal liquidation strategies, we consider the
case of two risk-neutral agents which can (but not necessarily must) trade M assets. We show
below that the presence of multiple assets and of cross-impact can affect the trading strategy
of an agent interested in liquidating only one asset. In particular, we find, counterintuitively,
that it might be convenient for such an agent to trade (with zero inventory) the other asset(s)
in order to reduce transaction costs.

We focus on the two-asset case, M = 2, and we analyse the Nash equilibrium when the
kernel function has an exponential decay,8 G(t) = e−t . The first trader is a Directional who
wants to liquidate the position in the first asset, i.e., X1,1 = 1, while the second agent is
an Arbitrageur, i.e., X1,2 = 0. We set an equidistant trading time grid with 26 points and
θ = 1.5. The second asset is available for trading, but let us consider as a benchmark case
when both agents trade only the first asset. This is a standard Schied and Zhang (2019) game.
Figure2 exhibits the Nash Equilibrium for the two players. We observe that the optimal
solution for the Directional is very close to the classical U-shape derived under the Transient
Impact Model (TIM)9, i.e., our model when only one agent is present. However, the solution
is asymmetric and it is more convenient for the Directional to trade more in the last period of
trading. This can be motivated by observing that at equilibrium the Arbitrageur places buy
order at the end of the trading day, and thus she pushes up the price. Then, the Directional
exploits this impact to liquidate more orders at the end of the trading session. We remark that
the Arbitrageur earns at equilibrium, since her expected cost is negative (see the caption).

Now we examine the previous situation when the two traders solve the optimal execution
problem taking into account the possibility of trading the other asset. We define the cross

impact matrix Q =
[
1 q
q 1

]
, where q = 0.6. In Fig. 3 we report the optimal solution where

7 Real Market Neutral agents follow signals which are orthogonal to the market factor, thus they typically are
short on approximately half of the assets and long on the other half. The sum of trading volume is not exactly
equal to zero but each trading volume depends on the β of the considered asset with respect to the market
factor. In our stylized market setting, we assume that all assets are equivalent with respect to the market factor.
8 All our numerical experiments are performed with exponential kernel as in Obizhaeva and Wang (2013).
Schied and Zhang shows that the form of the kernel does not play a key role for stability, given that the
conditions given above are satisfied.
9 Given the initial inventory X , the optimal strategy in the standard TIM is ξ = X

eT 	−1
θ

e
	−1

θ e, see for further

details Schied and Zhang (2019).
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Fig. 2 Nash equilibrium ξ∗
1 of the Directional and ξ∗

2 of the Arbitrageur trading only one asset. The trading
time grid is equidistant with 26 points and θ = 1.5. The expected costs are equal to E[CT(ξ∗

1|ξ∗
2)] = 0.4882,

E[CT(ξ∗
2|ξ∗

1)] = −0.0370

the inventory of the agents are set to be X1 = (
1 0

)T
and X2 = (

0 0
)T

. The Directional
wants to liquidate only one asset, but, as clear from the Nash equilibrium, the cross-impact
influences the optimal strategies in such a way that it is optimal for him/her to trade also
the other asset. In terms of cost, for the Directional trading the two assets is worse off than
in the benchmark case (see the values of E[CT(�∗·,1,·|�∗·,2,·)] in captions). However, if the
Directional trades only asset 1 and Arbitrageur trades both assets, the former has a cost of
0.4935 which is greater than the expected costs associated with Fig. 3. Thus, the Directional
must trade the second asset if the Arbitrageur does (or can do it).

For completeness in Table 1 we compare the expected costs of both Directional and
Arbitrageur when the two agents may decide to trade i) both assets, i.e., they consider market
impact game and cross-impact effect, or ii) one asset, i.e., they only consider the market
impact game. It is clear that both agents prefer to trade both assets. Actually, the state where
both agents trade two assets is the Nash equilibrium of the gamewhere each agent can choose
how many assets to trade.

The solution presented above is generic, but an important role is played by the transaction
cost modeled by the temporary impact. When the temporary impact parameter θ increases,
the benefit of the cross-impact vanishes, and the optimal strategy of the Directional tends to
the solution provided by the simple TIM with one asset and no other agent. We find that the
difference between these expected costs is negative, i.e. it is always optimal to trade also the
second asset, but converges to zero for large θ , see Fig. 4a. Furthermore, it is worth noting
that, if S = ∑

k |ξk,2| denotes the total absolute volume traded by the Directional on the
second asset, then limθ→0 S = 0 and limθ→∞ S = 0 as exhibited from Fig. 4b. This means,
that when the cost of trades increases, it is not anymore convenient for both traders to try to
exploit the cross impact effect.

4.2 Do arbitrageurs act as market makers at equilibrium?

Wenow consider the cases when the agents are of different type. In particular, we focus on the
role of an Arbitrageur as an intermediary between two Directional traders of opposite sign.
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Fig. 3 Optimal strategies for a Directional (�∗·,1,·) and an Arbitrageur (�∗·,2,·), where their inventories are

equal to (1 0)T and (0 0)T , respectively. Q =
[
1 0.6
0.6 1

]
, and the trading time grid is an equidistant time grid

with 26 points. The expected costs are equalE[CT(�∗·,1,·|�∗·,2,·)] = 0.4885,E[CT(�∗·,2,·|�∗·,1,·)] = −0.0377
when θ = 1.5

Table 1 Payoff matrix of expected costs when the Directional and Arbitrageur inventories are equal to (1 0)T

and (0 0)T , respectively

Arbitrageur

1 Asset 2 Asset

Directional 1 Asset (0.4882, −0.0370) (0.4935,−0.0412)

2 Asset (0.4836,−0.0334) (0.4885, −0.0377)

We have highlighted in italic the Nash Equilibrium associated with this payoff matrix. The payoff in the i-th
row and j-th column correspond to the game when the Directional and Arbitrageur decide to trade i and j
assets, respectively, i.e., the element in the first row and second column is the payoff when the Directional
trades only the first asset while the Arbitrageur trades both assets
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Fig. 4 a The y axis shows the difference between the expected cost of the Directional when he/she considers
the cross-impact effect and the Arbitrageur and the expected cost when he/she places order following the
classical one asset TIM model and the x axis the cost parameter θ . b Cumulative traded volume of the second
asset by the Directional when playing against an Arbitrageur as a function of θ . The inset shows the same
curve in semi-log scale. The setting is the same of Fig. 3
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When aDirectional seller and aDirectional buyer trade the same asset(s), are theArbitrageurs
able to profit, acting as a sort of market maker by buying from the former and selling to the
latter?

To answer this question, we compute the Nash equilibrium of a market impact game
with M = 2 assets and J = 3 agents, namely a Directional seller with inventory (1 0)T , a
Directional buyer with inventory (−1 0)T , and an Arbitrageur. We assume that agents are

risk-neutrals, γ = 0, and Q =
[
1 0.6
0.6 1

]
. As panels (a) of Fig. 5 show, the Arbitrageur does

not longer trade and the expected costs are 0.1056 and 0 for the two Directional and the Arbi-
trageur, respectively. This indicates that the two Directional are able to reduce significantly
their costs with respect to the previous case, increasing their protection against predatory
trading strategies and that the Arbitrageur is unable to act as a market maker. The previous
cases are particular examples of the following more general result.

Proposition 4.1 Under the assumptions of Theorem 3.7, the following are equivalent:

(a) The aggregate net order flow is zero for each asset, i.e.,

Xi,· = 1

J

J∑

j=1

Xi, j = 0 ∀i = 1, 2, . . . , M;

(b) The optimal solution for an Arbitrageur is equal to zero for all assets.

In other words, when the aggregate net order flow is zero for each asset then there are
no arbitrageurs in the market, i.e., the Nash equilibrium for Arbitrageurs is zero, so that the
optimal schedule corresponds to place no orders in the market.

As a comparison, we consider two identical Directional sellers (with inventories (1 0)T )
and the other parameters are the same as above. Figure5b, displays the equilibrium solution.
The solution of the Directional are identical. While the trading pattern of the Arbitrageur
is qualitatively similar to the one of the two agent case (see Fig. 3), the Directional trade
significantly less toward the end of the day. This is likely due to the fact that it might be
costly to trade for one Directional given the presence of the other. The expected costs of
the two Directional is equal to 0.8911 (which is approximately two times of the two players
game) and −0.0996 for the Arbitrageur.

5 Instabilities in market impact games

Wenow turn to our attention to the study ofmarket stability. Since the seminal work of Schied
and Zhang (2019) we know that, when two risk-neutral agents trade one asset, stability is
fully determined by the value θ of the transaction cost, see Theorem 2.7 of Schied and Zhang
(2019). Here we extend their results for the multi-asset case and we derive a general result
which involves the spectrum of the cross-impact matrix. However, the proof of Schied and
Zhang (2019) cannot10 be extended to the multi-agent case with J risk-averse agents, even
though in the one asset case, as highlighted by Luo and Schied (2020). Therefore, we study
market stability by using numerical analyses for the general setting of multi-agent and multi-
asset case from which we deduce a new conjecture which is in line with the analyses carried

10 The proofs provided of Schied and Zhang (2019) rely on general results of Toeplitz matrix, which cannot
be used in the multi-agent framework, since the involved decay kernel matrices are no longer Toeplitz.
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Fig. 5 Optimal schedule for market impact game with M = 2 assets and J = 3 risk-neutral agents. a Exhibit
the optimal schedule for a Directional seller, buyer (with inventory (1 0)T and (−1 0)T , respectively), and
an Arbitrageur. b Exhibit the optimal schedule for two identical Directional sellers (with inventories (1 0)T ,
respectively), and an Arbitrageur. Blue and red lines are the Nash equilibrium for the Directional traders. The
dark line refers to the equilibrium of the Arbitrageur. The trading time is equidistant with 26 points, where the
cross impact is set to q = 0.6, γ = 0 and θ = 1.5.

out by Luo and Schied (2020). We conclude by presenting some advice to policy regulators
which want to prevent market instability.

To clarify better our results, we introduce two definitions of market stability in a market
with M assets and J traders:

Definition 5.1 (Strong Stability) The market is strongly (uniformly) stable if ∀ θ ≥ 0 the
Nash equilibrium ξ∗

i, j,· ∈ X (Xi, j ,T) does not exhibit spurious oscillations ∀ Xi, j ∈ R

initial inventory, for all assets i = 1, 2, . . . , M and agents j = 1, 2, . . . , J .

Definition 5.2 (Weak Stability) Themarket isweakly stable if there exists an interval I ⊂ R+
such that ∀ θ ∈ I the Nash equilibrium ξ∗

i, j,· ∈ X (Xi, j ,T) does not exhibit spurious
oscillations ∀ Xi, j ∈ R initial inventory, for all assets i = 1, 2, . . . , M and agents j =
1, 2, . . . , J

We recall that a spurious oscillations is a sequence of trading times such that the orders
are consecutively composed by buy and sell trades, see Sect. 2. Therefore, Schied and Zhang
(2019) showed that for M = 1 and J = 2 the market is not strongly but only weakly stable
where I , the stability region, is equal to [θ∗,+∞) where θ∗ = G(0)/4.

5.1 Scaling of impact with J andM

Up to now we have not discussed how the function Q(J ,M), and therefore its components Q
and G(t), depend on the number of agents J and the number of assets M . While this is not
important for finding the Nash equilibrium, we will show below that the behavior ofQ(J ,M)
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is critical to study the stability properties of markets. In this subsection we review what the
theoretical and empirical literature tells us about this dependence.

Concerning the dependence of impact on J , Bagnoli et al. (2001) generalizes the Kyle
(1985) model to the case when J ≥ 1 symmetrically informed agents are simultaneously
present, and shows that the Kyle’s lambda, i.e. the proportionality factor between price
impact and aggregated order flow, scales as J−1/α , where α is the exponent of the stable
law describing the price and uninformed order flow distribution. Moreover if the second
moment of both variables is finite, Bagnoli et al. (2001) shows that the Kyle’s lambda scales
as 1/

√
J (see also Lambert et al. 2018 for the non symmetrical case when distributions are

Gaussian). In our impact model, this property can be modeled by assuming that the decay
kernel depends on J asG(t) := J−β · Ḡ(t)where Ḡ(t) is the J independent part of the decay
kernel and β ≥ 0. The case β = 0 corresponds to the additive case, while for β = 1 the
total instantaneous impact does not depend on the number of agents J . On the empirical side,
there are some recent evidences suggesting that the impact strength depends on the number
of agents simultaneously trading. Figure3 of Bucci et al. (2020) indicates that market impact
of a metaorder11 decreases with the number of metaorders simultaneously present.

Concerning the dependence of impact from M , the recent work of Garcia del Molino
et al. (2020) proposes a multi-asset version of the Kyle model. In particular, they prove
the existence and uniqueness of the linear equilibrium and show in Proposition 3.4 that the
cross-impact matrix Q (� in their notation) satisfies 1

40 = Q�Q where 0 and � are the
covariance matrices of the fundamental price and of the bids of the noise trader, respectively.
If we assume that these matrices have a one factor structure and can be decomposed as
0 = sd I + sneeT and � = ωd I + ωneeT , where sd , sn, ωd , ωn ∈ R and e is the vector
with all components equal to one, then necessarily12 Q = qd I + qneeT , where qd , qn ∈ R.

However, since 1
40 = Q�Q, qd =

√
sd
4ωd

which is independent from M [this was also

empirically observed by Benzaquen et al. 2017] and more interestingly, limM→∞ qn =
limM→∞

(
−qd ±

√
sd
4ωn

)
1
M = 0.13 Thus, in the model the off-diagonal terms of Q scale

as 1/M and asymptotically, when M becomes large, the cross-impact terms would vanish
and Q would converge towards a diagonal matrix. The decay of cross-impact coefficients
with the number of considered assets M has been empirically observed in Benzaquen et al.
(2017).

In conclusion, theoretical and empirical studies have shown thatmarket impact is generally
dependent on the number of assets and on the number of agents. While we have some
indication of the scaling properties in some specific cases, the general formof this dependence
is still an open issue. In the following we will show that if market impact does not properly
scale with J and M , markets become more unstable when more assets and/or more agents
are present.

11 A metaorder is a sequence of trades executed in the same direction (either buys or sells) and originating
from the same market participant. Thus in our framework each trader j executes a metaorder of size X j .
12 If A = aI +beeT is a one-factor matrix, a particular case of rank-one update matrix, where a, b ∈ R, then
A−1 is one-factor and moreover L is also a one-factor matrix where LLT = A. Therefore, by Theorem 3.5
equation (3.6) of Garcia del Molino et al. (2020) Q is a one-factor matrix.
13 It is worth to nothing that even though ωn = 0, i.e., the order flow of the uninformed trader is uncorrelated,

the cross-impact Kyle lambda, qn , is different from zero and limM→∞ qn = limM→∞
√

sn
4ωd M

= 0.
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Fig. 6 Nash Equilibrium for a Directional and an Arbitrageur, where their inventories are equal to (1 0)T and
(0 0)T respectively. The blue lines are the optimal solution when θ = 0 and the red lines when θ = 0.3. The

trading time has 51 points and Q =
[
1 0.9
0.9 1

]

5.2 Market stability and cross impact structure

In this Section we consider J = 2 risk-neutral agents which trade M > 1 assets. We study
whether the increase of the number of assets and the structure of cross impact matrix help
avoiding oscillations and market instability at equilibrium according to the previous defini-
tions. To this end, we consider different structures of the cross-impact matrix Q describing
the complexity of the market for what concerns commonality in liquidity.

We first show that instabilities are generically observed also in the multi-asset case and
that actually more assets generally make the market less stable if the elements of the cross-
impact matrix do not depend on M . For simplicity let us consider M = 2 assets and a game
between a Directional and an Arbitrageur (similar results hold for different combinations of

agents). We choose G(t) = e−t , the cross impact matrix equal to Q =
[
1 0.9
0.9 1

]
, and we

consider θ = 0.3; remember that for the one asset case the market is stable for this value of θ .
Figure6 shows that for this value of θ the strategies are oscillating and therefore the market
is not strongly stable. More surprisingly, the fact that oscillations are observed for θ = 0.3
indicates that the transition between the two stability regimes depends on also on the number
of assets and that more assets require larger values of θ to ensure stability. In the following
we prove that this is the case and we determine the threshold value. Figure6 shows also the
case θ = 0. Notably, in this case the oscillations in the second asset disappear. This is due
to the fact that, since 	1

0, (	
2
0), the 	 matrix associated with the first (second) virtual asset is

equal to (1 + q)	, ((1 − q)	), the combination of “fundamental" solutions v and w are the
same for the two virtual assets. Thus, at equilibrium the two solutions for the second asset
are exactly zero.

We have shown in a simple setting that having more than one available asset does not help
improving the strong stability of the market and increases the threshold value between stable
and unstable markets. Now, we show that when the number of assets tends to infinity and G
does not depend on M , the market becomes unstable. To this end we introduce the definition
of asymptotic stability.
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Definition 5.3 (Asymptotic weak stability) The market is asymptotically weakly stable if it
is weakly stable when M → ∞.

Given this definition, we prove the following:

Theorem 5.4 (Instability in Multi-Asset Market Impact Games) Suppose that G is a con-
tinuous, positive definite, strictly positive, log-convex decay kernel and that the time grid is
equidistant. Let (λi )i=1,..,M be the eigenvalues of the cross-impact matrix Q. If θ < θ∗ the
market is unstable, where

θ∗ = max
i=1,2,...,M

G(0) · λi

4
. (13)

Moreover, if the largest eigenvalue of the cross-impact matrix diverges for M → ∞, i.e.,
limM→+∞ λmax = +∞, then the market is not asymptotically weakly stable. The theorem
tells that the instability of the market is related to the spectral decomposition of the cross-
impact matrix, i.e. to the liquidity factors.

We analyze some realistic cross-impact matrices and their implications for the stability of
the Nash equilibrium. Specifically, we consider the one-factor and block matrices.

5.2.1 One factor matrix

We say that Q is a one factor matrix if Q = (1−q)I +q · eeT , where e = (1, . . . , 1)T ∈ R
M

and q ∈ (0, 1) to guarantee the positive definiteness Q. As we have seen in Sect. 5.1, q can
be a function of M . Then it holds:

Corollary 5.5 Under the assumptions of Theorem 5.4, if the cross-impact matrix is a one
factor matrix, then the market is not asymptotically weakly stable if limM→∞ qM diverges.

This implies that when M increases and q is independent from M , the transactions cost
θ must raise in order to prevent market instability, since θ∗ = G(0)λmax/4 ∼ G(0)qM/4,
because λmax = 1+ q(M − 1). On the contrary, when, as in the multi-assset Kyle model of
Garcia del Molino et al. (2020), it is q = O

( 1
M

)
, the market is asymptotically stable. Thus

the market stability conditions critically depends on the scaling of market impact with M .
Figure7 exhibits the equilibrium for a Directional and an Arbitrageur, when θ = 1.5,

q = 0.2 and M = 2000. The inventory of the Directional is 1 for the first 1000 assets and
zero for the others. The solutions clearly show spurious oscillations of buy and sell orders.
Notice that in the one asset case this value of θ gives a stable market.

We observe that the eigenvector corresponding to λmax is given by e, which represents an
equally weighted portfolio. As a consequence, if we consider a Market Neutral agent against
an Arbitrageur the solution becomes stable ∀ θ > (1 − q)/4, since both traders have zero
inventory on the first virtual asset. Thus, oscillations might disappear when the inventory of
the agents in the first virtual asset is zero.

A generalization of the above model considers Q as a rank-one modification matrix, i.e.
Q = D + ββT , where D = diag(1− β2

1 , . . . , 1− β2
M ) and β ∈ R

M is a fixed vector. In this
way the cross impact is not the same across all pairs of stocks. We find again that the market
is not asymptotically stable if the βs do not suitably scale with M , i.e. instability occurs when
limM→∞〈β2

i 〉M diverges, where 〈...〉 is the average value over the M values.
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Fig. 7 Nash equilibrium when θ = 1.5 between a Directional with inventory (1, . . . , 1, 0, . . . , 0)T ∈ R
M

and an Arbitrageur with inventory (0, . . . , 0)T ∈ R
M , where M = 2, 000. The cross impact matrix is a one

factor matrix with q = 0.2. The blue lines exhibits the volume traded for any of the first 1, 000 assets, while
the red ones are those for any of the last 1, 000 assets. The equidistant time grid has 26 points

5.2.2 Block matrix

We now assume that the cross impact matrix has a block structure in such a way that cross
impact between two stocks in the same block i is qi , while when the two stocks are in different
blocks the cross impact is q , which we assume to be 0 ≤ q < qi ∀i . This is consistent with the
empirical evidence in Mastromatteo et al. (2017), where blocks are in good correspondence
with economic sectors.

Let us denote with Mi the number of stocks in block i , (i = 1, . . . K ), and let Qi =
(1 − qi )I + qi · ei eTi ∈ R

Mi × R
Mi with qi ∈ (0, 1) and ei = (1, . . . , 1)T ∈ R

Mi , where K
is the number of blocks. We define the cross impact matrix as:

Q :=

⎡

⎢⎢⎢⎣

Q1 qe1eT2 · · · qe1eTK
qe2eT1 Q2 · · · qe2eTK

...
. . .

...

qeK eT1 · · · qeK eTK−1 QK

⎤

⎥⎥⎥⎦ .

In a similar way of Sect. 5.2.1 qi might depend on the number of stocks in the i-th cluster,
Mi . We prove an analogue result as for the one factor matrix case:

Corollary 5.6 Under the assumptions of Theorem 5.4, if Q is a block matrix, where each
block is a one factor matrix, if (i) limMi→+∞ Mi (qi − q) → +∞ for all i = 1, 2, . . . , K
and (ii) limM→+∞ M

K → +∞, then the market is not asymptotically weakly stable.

When (qi − q) is independent from Mi , for all i , and the average number of stocks of
a cluster tends to infinity when M goes to infinity, the transaction costs level parameter
must raise in order to prevent instability. As an example, we consider K = 10 equally sized
blocks from an universe of M = 2, 000 assets and set q = 0.05 where each block has a
fixed cross-impact qi . With this kind of cross impact matrix, we have K large eigenvalues
whose eigenvectors correspond to virtual assets displaying oscillations. The optimal trading
strategies for stocks belonging to the same block are the same. Thus in Fig. 8 we show the
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Fig. 8 Nash equilibrium when θ = 1.5 with inventories for the Market Neutral X0 =
(1, . . . , 1, −1, . . . , −1)T ∈ R

M and for the Arbitrageur Y0 = (0, . . . , 0)T ∈ R
M , where M = 2000.

The cross impact matrix is a block matrix with K = 10. The figure exhibits the equilibria related to one (the
first) asset for each block. The trading time grid is an equidistant time grid with 26 points. Each block has a
cross-impact qi equal to 0.1, 0.2, . . . , 0.9 for i = 1, 2, . . . , 9 and 0.95 for the last one

Nash equilibrium for the first asset in each of the 10 blocks when the two agents are a Market
Neutral and an Arbitrageur. The oscillations are evident, as expected, in all traded assets.

We now study how the critical value θ∗ varies when the number of assets increases for
different structures of the cross impactmatrix and therefore of the liquidity factors.Comparing
different matrix structures is not straightforward since the critical value depends on the values
of the matrix elements. To this end we consider the set of symmetric cross impact matrices
of M assets having one on the diagonal and fixed sum of the off diagonal elements. More
precisely let h ∈ R, then we introduce for each M the set

AM
h := {A ∈ R

M×M |AT = A,

N∑

j=1

∑

i> j

ai j = h, aii = 1},

One important element of this set is the cross impact matrix Q1 f ac ∈ R
M×M of a one factor

model (see above) with off-diagonal elements equal to 2h/M(M − 1). In Appendix 1 we
prove the following:

Theorem 5.7 For a fixed h ∈ R, let us consider the related one-factor matrix Q1 f ac ∈ AM
h ,

then

λ1(Q) ≥ λ1(Q1 f ac), ∀Q ∈ AM
h ,

i.e. among all the matrices with one in the diagonal and constant sum of the off-diagonal
terms, the one-factor matrix (i.e. where all the off-diagonal elements are equal) is one of the
matrices with the smallest largest eigenvalue.

Moreover, we prove in the last part of Appendix 1 that the previous is not a strict inequality,
by showing that both a diagonal blockmatrix, with identical blocks, and the one-factor matrix
have the same maximum eigenvalue. This theorem implies that among all the cross impact
matrices belonging toAM

h , the one factor case is among themost stable cross-impactmatrices.
For example, it is direct to construct an example of a block diagonal cross impact matrix with
non-zero off block elements (i.e. similar to what observed empirically) and to prove that its
critical θ∗ is larger than the critical value for the one factor matrix having the same value h
of total cross-impact.
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5.3 Market stability in multi-agent andmulti-asset market impact games

Wenow study how the stability of themarket depends on the number of agents, J , the number
of assets,M , the risk-aversion parameter γ , and the number of trading periods N . Specifically,
we compute numerically the critical value of θ after which the market is not stable. However,
we first observe that to study the stability it is sufficient to analyse the fundamental solutions
of each virtual assets.

5.3.1 Characterization of the fundamental solutions

If all agents have the same inventory, i.e., X·, j = Z ∀ j where Z ∈ R
M is a fixed inventory

vector, then also the virtual inventories are all equal, since X P·, j = V T Z ≡ ZP ∀ j . Then,

X
P
i,· = 1

J

∑J
j=1 X

P
i, j = Z P

i and by Eq. (10) the solution for all agent j in virtual asset i is

given by�
∗,P
i, j = Z P

i, jvi . So, let V = [
ν1|ν2| · · · |νM

]
the matrix of eigenvectors of Q, which

we may assume to be normalized, νTi νi = 1, if X·, j = νm ∀ j then the optimal schedule on
the virtual assets is given

�
∗,P
i, j =

{
vm, i = m

0, ∀ i �= m
, ∀ j

since X P·, j = V T X·, j has 1 in the m-th position and zero otherwise, so �∗·, j = V · �
∗,P
·, j =

νm ⊗ vm, ∀ j, which means that the strategies for all traders is fully characterized by the
fundamental solution vm .

If Xi,· = 0, ∀i then X
P
i,· = 0 and by Eq. (10) the solution for each agent j is given by

�
∗,P
i, j = X P

i, jwi , i = 1, 2, . . . , M .. Thus, as for the previous case, if the inventory of the

j-th trader X·, j = νm (and if Xi,· = 0 for all i), then his/her optimal schedule on the virtual
assets is given by

�
∗,P
i, j =

{
wm, i = m

0, ∀ i �= m
,

so that �∗·, j = V · �
∗,P
·, j = νm ⊗ wm,.

We summarize the previous results as follows:

(a) If all agents have the same inventories, i.e. X·, j = νm ∀ j , then the Nash equilibrium for
j is proportional to vm , i.e, �∗·, j = νm ⊗ vm .

(b) If Xi,· = 0, ∀i and X·, j = νm , then the Nash equilibrium for j is proportional to wm ,
i.e, �∗·, j = νm ⊗ wm .

We observe that, respectively, if vm , or wm , exhibits spurious oscillations also �∗·, j is
affected by these oscillations, respectively. We recall that market is unstable if a particular
initial inventories leads to optimal trading strategies with spurious oscillations. So we can
restrict the stability analysis on the fundamental solutions among all assets.

5.3.2 Numerical analysis of stability

In this section we study how J , M , γ , and N affect the market stability in the multi-agent
and multi-asset case. In particular, we compute numerically θ∗ such that when θ < θ∗ the
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Fig. 9 Level curves of θ∗ in function of M and J for fixed N = 300 and γ = 10. The bottom left corner,
corresponding to M = 1 and J = 2, is the case of Schied and Zhang (2019)

market is unstable. As observed in Sect. 5.3.1 it is sufficient to examine the oscillations of
the fundamental solutions on the virtual assets.

We consider the following setting:

• The time grid is equidistant TN = { kTN |k = 0, 1, . . . , N }, where T = 1 and N ∈ N;
• The decay kernel is exponential, G(t) = e−t ;
• The cross-impact matrix is a one factor matrix, Q = (1−q)IM +qeeT , where q = 1/2;
• S0t follows a Bachelier model where the covariance matrix is equal to Q.

Luo and Schied (2020) conjectures that in the one-asset case θ∗ satisfies

sup
N ,γ

θ∗(1, J , N , γ ) = G(0) · J − 1

4
,

therefore, given the results of Sect. 5, our conjecture is that

sup
N ,γ

θ∗(M, J , N , γ ) = G(0) · (J − 1)λmax

4
, (14)

where λmax is the maximum eigenvalue of Q. We recall that in the above setting, λmax =
1 + M−1

2 and G(0) = 1. Moreover we are assuming that G and Q do not depend explicitly
on J and M . Thus, in the first analysis we set N = 300, γ = 10 and we compute θ∗ as a
function of M and J . Figure9 exhibits the corresponding level curves. It is worth noticing
that the relation between J and M is very close to that of Eq. 14. Indeed, the average relative
discrepancy on θ∗ is of the order of 10−3.

Finally, we examine how θ∗ depends on N and γ for fixed M and J , which are M = J =
11, see Fig. 10 which illustrates the related surface.14

Overall, the numerical results suggests that for fixed M and J the relation (14) holds when
N is not too small, since for the chosen parameter Eq. (14) predicts θ∗ = 15.

14 We also compute the same surface for M = J = 3 and M = J = 5, and we obtain similar results, available
upon request.
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5.3.3 Scaling andmarket stability: comparative statics for J andM

The conjecture in Eq.14 indicates that, if market impact does not suitably scale with the
number of assets and of agents, market turns out to be unstable for large J and M , unless the
transaction costs parameter θ increases appropriately.

From Eq.14 it is clear that a sufficient condition for asymptotic stability, i.e. that there
exists a finite value of θ∗ above which the market is stable in a market with many agents and
many assets, is that the two following limits are finite:

• limM→∞ λmax

• limJ→∞ JG(0)

The first limit is finite, for example, in a multiasset Kyle model as in Garcia del Molino
et al. (2020) with a one factor structure for fundamental price and net order flow of noise
traders (see Sect. 5.1). For the second limit, we have empirical and theoretical evidences
that the kernel scales with J as G(t) = J−β Ḡ(t). Clearly we would need β ≥ 1 to have
asymptotic stability in J . Multi agent Kyle models with finite variance of the fundamental
price suggest β = 1/2 (see Bagnoli et al. (2001) and Sect. 5.1), while the empirical evidence
ismore ambiguous, due to the difficulty to identify empirically the trading activity of different
agents. Thus it is still an open issue if this type of setting can provide asymptotically stable
markets in the limit of large J .

Schied and Zhang (2019) have highlighted the importance of transaction cost θ in deter-
mining whether the Nash equilibrium of a market impact game is stable or unstable. They
prove the existence of a threshold value of θ belowwhich themarket is unstable. By extending
the framework to many agents and assets, we have shown the importance of the scaling prop-
erties of market impact, which in these games is exogenous, in determining market stability.
If the largest eigenvalue of the cross impact matrix diverges with M or if the kernel goes to
zero slower than J−1 the market will be unstable for large values of M or J , respectively.
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6 Conclusions

In this paper we investigated the general problem of Nash equilibria in market impact games
with an arbitrary number of assets and of agents. Specifically, we extended the results of
Schied andZhang (2019) and Luo and Schied (2020) in several directions.Wefirst considered
a multi-asset market where we introduced the cross-impact effect among assets. We solved
the Nash equilibrium, we analysed the optimal solution provided by the equilibrium, and we
studied the impact of transaction costs on liquidation strategies.We found that in the presence
of cross impact it might be convenient to trade auxiliary assets in order to minimize market
impact cost of a position a trader wants to liquidate. Thus the optimal execution problem
should be handled intrinsically as a multi-asset problem.

We then used market impact games to investigate several potential determinants of market
instabilities driven by finite liquidity and simultaneous trade execution of many agents. In
addition to the existence of a transition between a stable and an unstable phase when the
transaction cost is smaller than a given threshold (Schied & Zhang, 2019), we find that
markets become asymptotically in J and M unstable when the impact does not scale suitably
with these variables. On one side, these results set limits to the parameters of models that do
not lead to instability and on the other, contributes to the theoretical and empirical literature
on market impact in multi agent and multi-asset settings.

From the policy perspective, the conjecture above indicates that the critical transaction
cost level θ belowwhich instabilities are present growswith the impact coefficientG(0) (or its
scaled version), the number of traders J , and the largest eigenvalue λmax of the cross impact
matrix. Thus, to ensure stability, the transaction cost parameter θ should be set taking into
account the above variables, and be increased or decreased when they significantly change.15

Clearly, an increase of the transaction costs might discourage trading activity, therefore
decreasing overall market participation and possibly price discovery. For example, in the
one period multi-agent Kyle model of Bagnoli et al. (2001) the mean square deviation of
the market price from the fundamental value goes to zero with the number of agents as
(J+1)−1. Thus regulators should fix transaction costs by balancing the contrasting objectives
of increasing traders participation/price discovery and stabilizing markets.
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Appendix A: Proofs of the results

Proof of Lemma 3.5 Since the cross-impact matrix is diagonal, each asset is not affected by
the orders on other assets, i.e., the impact for each asset is provided only by the self-impact
and there is no cross-impact effect. In particular,

CT(�·, j,·|�·,− j,·) =
M∑

i=1

CT(ξ i, j,·|�i,− j,·;Gi ),

where CT(ξ i, j,·|�i,− j,·;Gi ) is the liquidation cost of Definition 2.4 where the decay kernel
is multiplied by λi . Moreover, the mean-variance functional can be splitted in the sum of
mean-variance functionals of each asset i , i.e.,

MVγ (�·, j,·|�·,− j,·) =
M∑

i=1

MVγ (ξ i, j,·|�i,− j,·;Gi ),

where MVγ (ξ i, j,·|�i,− j,·;Gi ) is the mean-variance functional defined in equation (3) with
the related CT(ξ i, j,·|�i,− j,·;Gi ). Indeed,

MVγ (�·, j,·|�·,− j,·) = E[CT(�·, j,·|�·,− j,·)] + γ

2
Var[CT(�·, j,·|�·,− j,·)]

and since E[·] is a linear operator

E[CT(�·, j,·|�·,− j,·)] =
M∑

i=1

E[CT(ξ i, j,·|�i,− j,·;Gi )].

On the other hand, Var[CT(�·, j,·|�·,− j,·)] = Var[∑N
k=0〈S�

tk , ξ ·, j,k〉] because � is determin-

istic. Let us denote Yi = ∑N
k=0 S

�
tk ,i

ξi, j,k , then

Var

[ N∑

k=0

〈S�
tk , ξ ·, j,k〉

]
= Var

[ M∑

i=1

Yi

]
=

M∑

i=1

Var(Yi ) +
∑

i �=l

Cov(Yi , Yl).

However, if Cov(Yi , Yl) = 0 for i �= l, then

Var[CT(�·, j,·|�·,− j,·)] =
M∑

i=1

Var[CT(ξ i, j,·|�i,− j,·;Gi )],

whereweused again that� is deterministic. Therefore, theMmulti-assetmarket impact game
with J agents is equivalent to considerM stacked independent one-asset market impact game
with J agents, where the decay kernel for each asset i is scaled by the corresponding diagonal
element of D, λi , which preserves the strictly positive definite property since λi > 0 ∀i .
Thus, for each asset i and agent j the existence, uniqueness and the closed formula of Nash
Equilibrium ξ∗

i, j,· for the mean-variance optimization are straightforward from Theorem
2.4 of Luo and Schied (2020) where the decay kernel is multiplied by λi , respectively for
each asset. Moreover, since MVγ (�·, j,·|�·,− j,·) = ∑M

i=1 MVγ (ξ i, j,·|�i,− j,·;Gi ) we may
conclude. If S0· follows a Bachelier model and � is deterministic, then CT(�·, j,·|�·,− j,·)
is a Gaussian random variable, so that the mean-variance optimization and CARA expected
utility maximization are equivalent over the class of deterministic strategies, indeed

Uγ (�·, j,·|�·,− j,·) = uγ (−MVγ (�·, j,·|�·,− j,·)), γ > 0,
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and U0(�·, j,·|�·,− j,·) = −E[CT(�·, j,·|�·,− j,·)], γ = 0.

On the other hand, following the same reasoning of the proof of Theorem 2.4 of Luo and
Schied (2020), when �·,− j,· are deterministic, from Theorem 2.1 of Schied et al. (2010) if
there exists a deterministic strategy �∗·, j,· which maximizes the expected utility functional
Uγ (�·, j,·|�·,− j,·), over the class of deterministic strategies, then �∗·, j,· is also a maximizer
for the expected utility functional within the class of all adapted strategies. Then, we may
use the same argument of Corollary 2.3 of Schied and Zhang (2017) to conclude that the
Nash equilibrium for the mean-variance optimization problem form a Nash equilibrium for
CARA expected utility maximization.

So, it remains to show that if S0· has uncorrelated components, then Cov(Yi , Yl) = 0 for
i �= l, whereYi = ∑N

k=0 S
�
tk ,i

ξi, j,k . However, S�
t,i = S0t,i−

∑
tk<t G(t−tk)·∑J

j=1(Q·ξ ·, j,k)i ,
where (Q · ξ ·, j,k)i denotes the i-th component of Q · ξ ·, j,k , then

Yi =
N∑

k=0

[
S0tk ,iξi, j,k −

( ∑

tk<t

G(t − tk) ·
J∑

j=1

(Q · ξ ·, j,k)i
)

ξi, j,k

]

=
N∑

k=0

[
S0tk ,iξi, j,k

]
−

N∑

k=0

[( ∑

tk<t

G(t − tk) ·
J∑

j=1

(Q · ξ ·, j,k)i
)

ξi, j,k

]

so since � is deterministic and using the martingale property of S0· ,

Cov(Yi , Yl) = Cov

( N∑

k=0

S0tk ,iξi, j,k,
N∑

h=0

S0th ,lξl, j,h

)

= E

[ N∑

k,h=0

S0tk ,i S
0
th ,lξi, j,kξl, j,h

]
− E

[ N∑

k=0

S0tk ,iξi, j,k

]
E

[ N∑

h=0

S0th ,lξl, j,h

]

=
N∑

h,k=0

ξi, j,kξl, j,hCov(S
0
tk ,i , S

0
th ,l) =

N∑

h,k=0

ξi, j,kξl, j,hCov(S
0
tk∧th ,i , S

0
tk∧th ,l)

which is zero if the components of S0· are uncorrelated. ��
Proof of Theorem 3.7 Let Q = V DV T be the spectral decomposition of Q, where, since Q
is symmetric, V is orthogonal and D is the diagonal matrix which contains the eigenvalues of
Q. ByAssumptions 1 Cov(P0

t ) = V TV is diagonal, so by Lemma 3.5 there exists the Nash
Equilibrium �∗,P ∈ Xdet(X P ,T), for each inventory X P associated to the orthogonalized
virtual assets Pt = V T St . Moreover, if S0t follows a Bachelier model then also P0

t follows
a Bachelier model and �∗,P is also a Nash equilibrium for the CARA expected utility
maximization for Lemma 3.5. Therefore, to proof that �∗, where �∗·, j,· = V�

∗,P
·, j,·, is the

Nash Equilibrium is sufficient to show that the liquidation cost CT(�·, j,·|�·,− j,·), when the
cross impact matrix is Q, is equivalent to CT(�P·, j,·|�P·,− j,·), when the cross impact is D,

where the equivalence map is provided by V T . Writing explicitly for each trading time step
k the liquidation cost formula we have, since V is orthogonal,

CT(�·, j,·|�·,− j,·)] =
N∑

k=0

(
G(0)

2
〈Q�·, j,k, �·, j,k〉 − 〈S�

tk , �·, j,k〉

+ G(0)

2

∑

l �= j

〈Q�·,l,k, �·, j,k〉 + θ 〈�·, j,k, �·, j,k〉.
)
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=
N∑

k=0

(
G(0)

2
〈DV T�·, j,k, V T�·, j,k〉 − 〈V T S�

tk , V
T�·, j,k〉+

+ G(0)

2

∑

l �= j

〈DV T�·,l,k, V T�·, j,k〉 + θ 〈V T�·, j,k, V T�·, j,k〉.
)

=
N∑

k=0

(
G(0)

2
〈D�P·, j,k, �P·, j,k〉 − 〈Ptk , �P·, j,k〉

+ G(0)

2

∑

l �= j

〈D�P·,l,k, �P·, j,k〉 + θ 〈�P·, j,k, �P·, j,k〉.
)

= CT(�P·, j,·|�P·,− j,·).

Finally, in order to obtain that �∗ is admissible for X , it is sufficient to set X P = V T X . ��
Proof of Corollary 3.8 As observed in Remark 3.6 the mean-variance functional is splitted as
the sum of mean-variance functionals of each asset i , since when γ = 0 the functional is
restricted to the expected cost. Then, the existence of the Nash equilibrium for the virtual
orthogonalized assets follows by Lemma 3.5 without requiring the assumptions of uncorre-
lated assets and the proof follows directly by the same reasoning of the proof of Theorem 3.7.
Moreover by definition, when γ = 0 the CARA utility function is equal to the mean-variance
functional, so that �∗ is a Nash equilibrium over the set X (X ,T). ��
Proof of Proposition 4.1 Let the j-th trader be an Arbitrageur, i.e., X·, j = 0 ∈ R

M . More-
over, his/her inventory for the virtual assets is zero, X P

i, j = ∑M
m=1 V

T
i,mXm, j = 0 for each

i = 1, 2, . . . , M . Then, since for Theorem 3.7 Eq. (10) provides the optimal schedule on
each virtual assets i , the optimal schedule of the Arbitrageur for the i-th virtual asset is

characterized by the corresponding X
P
i,·.

a) ⇒ b). If Xi,· = 0, ∀i then

X
P
i,· = 1

J

J∑

j=1

X P
i, j = 1

J

J∑

j=1

M∑

m=1

V T
i,mXm, j =

M∑

m=1

V T
i,mXm,· = 0 ∀i .

So, the solution of the Arbitrageurs for each virtual assets is zero and hence also for the
original assets by Theorem 3.7.

b) ⇒ a). If the optimal solution for an Arbitrageur is zero for all assets, then by Theorem
3.7 and since V is orthogonal, the optimal solution for the Arbitrageur is zero also for the

virtual assets, so that X
P
i,· = 0 ∀i and then Xi,· = 0 ∀i . ��

Proof of Theorem 5.4 Let X1, X2 be the inventories of trader first and second trader, respec-
tively. In order to show that market is unstable it is sufficient to exhibit initial inventories
which leads to optimal trading strategies with spurious oscillations. WLOG we may assume
that inventories are normalized to 1, i.e., XT

1 X1 = XT
2 X2 = 1. Therefore, let us consider

X1 = −X2, so that X P
1 = V T X1 = −V T X2 = −X P

2 and the NE for the i-th virtual assets is
fully characterized by the fundamental solutions wi . So, for each virtual asset the instability
is lead by the correspondent virtual kernel, i.e., the kernel relative to the i-th virtual asset
which is given by G · λi , where λi is the related i-th eigenvalues. Then, for the Schied and
Zhang instability result we know that if we want non oscillatory solutions, θ has to be greater
than G(0) · λi/4 for all i . However, if νi denotes the i-th eigenvector of Q, which may be
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assumed normalized νTi νi = 1, then when X1 = νi the virtual inventory X P
1 has 1 in the

i-th component and zero otherwise. Then, �∗,P is a matrix where the i-th row is equal to wT
i

and zero otherwise. Therefore,

�∗ = V · �∗,P = [
ν1| · · · νi−1|νi |νi+1| · · · |νM

] · �∗,P =
⎡

⎢⎣
ν1,iw

T
i

...

νM,iw
T
i

⎤

⎥⎦ = νi ⊗ wi ,

i.e. the NE for the j-asset is given by v j,iwi , so also the stability for the original asset St is
characterized by wi . Then, if θ < θ∗ = maxi=1,2,...,M

G(0)·λi
4 and imax denotes the position

of the maximum eigenvalue, the NE for inventories X1 = −X2 = νimax exhibits spurious
oscillations. ��
Proof of Corollary 5.5 The eigenvalues of Q are λ1 = 1− q + qM and λ2:M = 1− q , where
v1 = e, the vector with all 1, is the virtual asset associated with λ1. Then, when qM → ∞
the first eigenvalue diverges so for Theorem 5.4 we conclude. ��
Proof of Corollary 5.6 We first note that by Theorem 5.4 it is sufficient to prove that there
exists a cluster which is unbounded. Indeed, we observe that

Q = Q̂ + q

⎡

⎢⎢⎢⎣

e1
e2
...

eK

⎤

⎥⎥⎥⎦
[
e1 e2 · · · eK

]

where

Q̂ =

⎡

⎢⎢⎢⎣

Q1 − qe1eT1 0 · · · 0
0 Q2 − qe2eT2 · · · 0
...

. . .
...

0 · · · 0 QK − qeK eTK

⎤

⎥⎥⎥⎦ .

Then by Theorem 8.1.8 pag.443 of Golub and Van Loan (2013) λ1(Q) ≥ λ1(Q̂)

where λi (Q) denotes the i-th largest eigenvalue of Q and respectively of Q̂. The eigen-
values of Q̂ are given by the eigenvalues of Qi − qei eTi for i = 1, 2, . . . , K and for each i ,
λ1(Qi −qei eTi ) = 1−qi + Mi (qi −q) and the rests Mi − 1 eigenvalues are equal to 1−qi .
So, if there exists a cluster such that Mi is unbounded for any value of θ , then λ1(Qi −qei eTi )

is unbounded, thanks to (i), and also the respective eigenvalue of Q, so by Theorem 5.4 we
conclude that there is no a finite value for θ such that the market is weakly stable.

So, let us first start by fixing the number of cluster to K < ∞. Then, when M tends to
infinity at least one of the clusters will increase to infinity, which means that there exists a
cluster i such that λ1(Qi − qei eTi ) → ∞, thanks to (i), and also the respective eigenvalue
of Q goes to infinity. Therefore, we conclude for Theorem 5.4.

For the general case we conclude by contradiction. If K (M) is the number of cluster for
a fixed M , and K (M) → ∞ when M → ∞ then the set {Mi : i ∈ N} is unbounded. Indeed,
if supi∈N Mi = S < ∞, then the average number of stocks in a cluster is

∑K (M)
i=1 Mi
K (M)

≤ S for

all M and this is in contradiction with the assumptions that limM→+∞ M
K (M)

→ +∞. So
since {Mi : i ∈ N} is unbounded we conclude that there is no finite value of θ such that it is
greater than all the eigenvalues of Q when M → ∞. ��
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Proof of Theorem 5.7 The largest eigenvalue of a symmetric M ×M matrix Q can be defined
as

λ1(Q) = max
x �=0

xT Qx
xT x

.

If we consider the vector e = (1, 1, ..., 1)T , we have the lower bound

λ1(Q) ≥ eT Qe
eT e

=
∑

i, j qi j

M
.

The largest eigenvalue of a generic matrix Q ∈ AM
h is then bounded by

λ1(Q) ≥ 1 + 2h

M
.

But the one-factor matrix Q1 f ac = (1 − q)IM + qeeT , with q = 2h
M(M−1) , belongs to AM

h
and has

λ1(Q1 f ac) = 1 + (M − 1)
2h

M(M − 1)
= 1 + 2h

M
,

i.e., the lower bound for the max eigenvalue of matrices inAM
h . Therefore, ∀Q ∈ Ah it holds

that

λ1(Q) ≥ λ1(Q1 f ac).

��
Note that the bound is not strict since the largest eigenvalue of a block diagonal matrix

with identical blocks is also 1 + 2 h
M . Indeed, let consider the block diagonal matrix with K

identical clusters

Q :=

⎡

⎢⎢⎢⎣

Q(ρ) 0 · · · 0
0 Q(ρ) · · · 0
...

. . .
...

0 · · · 0 Q(ρ)

⎤

⎥⎥⎥⎦ ∈ R
M×M ,

where Q(ρ) ∈ R
Mc is a one-factor matrix and Mc · K = M . We observe that Q ∈ AM

h if
and only if ρ = 2h

(Mc−1)M , therefore

λ1(Q) = 1 + (Mc − 1)ρ = 1 + 2h

M
.

Appendix B: Cross temporary impact

In this Appendix we consider the possible extension of Definition 3.1 presented in Remark
3.3, where the quadratic transaction cost θ〈ξ ·, j,k, ξ ·, j,k〉 is replaced by

θ〈Qξ ·, j,k, ξ ·, j,k〉, (15)

allowing to account for cross temporary impact effects. As discussed, this generalization
makes financial sense if the θ dependent term is interpreted as describing temporary impact.

Let us first consider the case where Q is a multiple of the identity, Q = λIM . Then, the
result of Lemma 3.5 still holds since the rescaled quadratic cost is equivalent to the transaction
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cost of Schied and Zhang (2019), θ̃〈ξ ·, j,k, ξ ·, j,k〉 where θ̃ = θλ, i.e., the impact λ acts as a
scaling factor for transaction cost level.

If Q is diagonal, Q = diag(λ1, λ2, . . . , λM ), where λi > 0, then the result of Lemma
3.5 can be straightforwardly generalized, since using the same reasoning of the proof of
Lemma 3.5, the M multi-asset market impact game with J agents is equivalent to M stacked
independent one-asset market impact game with J agents. The decay kernel for each asset
i is scaled by the corresponding diagonal element of Q, as well as the transaction cost level
and therefore we may recover the Nash equilibrium (8) where vi and wi are the fundamental
solutions associated with the scaled decay kernel, G(t) · λi and parameter θλi .

Finally, also in the general case we may proceed straightforwardly following the same
reasoning as before.Whenwe transform themarket impact game into the virtual assets space,
see Equation (9), with virtual assets defined by Pt = V T S�

t , where Q = V DV T , the market
impact will be diagonalized and if �P·, j,k = V T�·, j,k denotes the strategy of trader j at time
step k in the virtual assets, then it is sufficient to observe that

〈Q�·, j,k, �·, j,k〉 = 〈DV T�·, j,k, V T�·, j,k〉 = 〈D�P·, j,k, �P·, j,k〉,

to show that the liquidation cost CT(�·, j,·|�·,− j,·) is equivalent to CT(�P·, j,·|�P·,− j,·), when
the cross impact is D, with the equivalence map provided by V T . Indeed, the only difference
with the proof of Theorem 3.7 is the rescaled transaction cost term 〈Q�·, j,k, �·, j,k〉 in the
cost functional form, which is however equivalent to 〈D�P·, j,k, �P·, j,k〉.

Interestingly,when a cross temporary impact is present, the instability of themarket impact
game becomes independent of Q. Precisely, following the proof of Theorem 5.4, in the space
of the virtual assets, each market impact game has a different scaled transaction cost level
θ̃i = θλi , i.e. each eigenvalue of Q scales the corresponding transaction cost level. On the
other hand, the related market impact is given G(0)λi/4. Therefore the instability condition
is provided for each i

θ̃i < G(0)λi/4

θλi < G(0)λi/4

θ < G(0)/4,

which is the Schied and Zhang (2019) instability condition. This is somewhat expected since
the instability condition balances the permanent and the temporary impact; if both depend
on Q, it is natural that it disappears from the inequality.
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