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Abstract
We give a characterization of equilibrium measures for p-capacities on the boundary of an 
infinite tree of arbitrary (finite) local degree. For p = 2 , this provides, in the special case of 
trees, a converse to a theorem of Benjamini and Schramm, which interpretes the equilib-
rium measure of a planar graph’s boundary in terms of square tilings of cylinders.
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1  Introduction

In Electrostatics, an amount of, say positive, electric charge free to move across a conductor 
A in the Euclidean space will reach an equilibrium configuration � , which at the same time: 
(1) minimizes the energy E(�) carried by the generated electrostatic potential; (2) minimizes 
the maximum value of the potential; (3) makes the potential constant on the whole A, except 
possibly for a small exceptional set. For a given system of units, there is an amount ‖�‖ of 
charge for which the potential on (most of) A is unitary. The total charge ‖�‖ is the capacity of 
the conductor and � is the corresponding equilibrium measure of A. The mathematical theory 
of electrostatics, developed by Gauss, then put on firm mathematical foundations by Frost-
man, was later extended in many directions. See [6] for a survey of axiomatic linear theories 
which goes far beyond the scope of this article, and [1] for a rather general axiomatic non-
linear theory. The problem we consider here, in a special instance, is that of characterizing 
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equilibrium measures. Namely, given a positive measure � , our “measurable”, is there a way 
to tell whether or not it is the equilibrium measure for some conductor A? The equilibrium 
measures are known to satisfy a number of properties, but to the best of our knowledge a com-
plete answer is available only for the equilibrium measure of the boundary of a planar graphs. 
The case of finite, planar graphs is studied in [14], and a combinatorial interpretation of the 
equilibrium measure � of the boundary of possibly infinite, planar graphs satisfying an extra 
technical hypothesis, is contained in a beautiful article by Benjamini and Schramm [4].

In this article, we characterize the equilibrium measures, within Nonlinear Potential 
Theory, for subsets of the boundary of an infinite tree. Benjamini and Schramm’s theorem, 
in the case of trees, would apply to the equilibrium measures of a closed subset of the tree 
boundary. We find a condition which characterizes the equilibrium measures of subset of 
the trees, providing, in this special context, a converse to their result.

In order to state our main finding, we fix some minimal notation, to be better developed 
in the next section. A tree T is a connected graph with no cycles. We denote by E the set 
of its edges and by V the set of its vertices. Given two vertices x, y, we write x ∼ y if they 
are connected by an edge. We consider infinite trees such that each vertex has a finite but 
arbitrary number of neighbors. We assume that there is a unique, distinguished edge � one 
of whose endpoints, o, is not endpoint of any other edge. We say that o is the root of T. Let 
# denote the standard graph distance, which counts the number of edges along the shortest 
path connecting two vertices. A sequence of pairwise connected edges with no repetitions 
is called a geodesic, since it minimizes the graph distance between any couple of vertices 
lying along it. We also say that a vertex belongs to a geodesic if it is the endpoint of some 
edge belonging to the geodesic. A half infinite geodesic emanating from o is said to be a 
ray. The boundary �T  of the tree can be classically identified with the set of rays. We set 
V = V ∪ �T  . We partially order V  by writing � ≥ y if and only if y lies on the geodesic con-
necting o and � (or if y belongs to the ray � in the case � ∈ �T  ). Thus, edges are oriented 
and we can identify E with the subset of couples (x, y) in V × V  such that x ∼ y and y > x . 
The boundary of the tree is a compact metric space with respect to the visual metric (see 
the section on preliminaries). We have then Borel signed measures on �T  , which we call 
charges, while measures are intended to be nonnegative. As we will detail in the next sec-
tion, using these ingredients and following the classical theory presented in [1], we can 
develop a Nonlinear Potential Theory on the tree. In particular, for any p ∈ (1,+∞) one 
can associate to a charge � a nonlinear potential Vp� ∶ V → ℝ , and a notion of p−capacity 
for subsets of the boundary is made available, see Sect. 1 for the definitions. By the general 
theory, we know that for each capacitable A ⊆ 𝜕T  , there exists a unique positive meas-
ure �A with support in the closure of A realizing its p−capacity cp(A) , namely, such that 
cp(A) = ‖�A‖ . We call �A the p−equilibrium measure for A.

Equilibrium measures are strictly related to trace inequalities for discrete Hardy opera-
tors [2, Theorem 5]. The simplest interpretation, however, is in terms of elementary rescal-
ing properties of trees, see Sect. 2. Our goal is characterizing which measures � are equi-
librium measures of some subset of the boundary. Such a characterization is encoded in 
the following integro-differential equation, which we will call, accordingly, the equilibrium 
equation:

(1)
∇g[x, y]|∇g|p−2[x, y]

(
1 − g(x)

)
=

∑
[z,w] ∈ E

z ≥ x

|∇g[z,w]|p, [x, y] ∈ E.
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In the above expression p, p� ∈ (1,∞) are Hölder conjugate exponents, E denotes the set of 
edges of the tree, g is a function defined on the vertices, ∇g[x, y] ∶= g(y) − g(x) denotes its 
gradient on the edge [x, y] and the right-hand side is a Sobolev energy. Our main result is 
the following.

Theorem 1  (i) Let � be the p−equilibrium measure for a set A ⊆ 𝜕T  . Then the function 
g = Vp� solves (1).

(ii) Conversely, let g ∶ V → ℝ be a solution of (1) with ‖g‖∞ < 1 . Then, there exists an 
F� set A ⊆ 𝜕T  with equilibrium measure �A such that g = Vp(�

A).

Observe that equation (1) is non linear even in Linear Potential Theory. This is not sur-
prising, since linear combinations of equilibrium measures are only seldom equilibrium 
measures themselves. From the discussion in Sect. 3 it will be clear that solutions of (1) are 
automatically p−harmonic functions which are increasing along geodesics emanating from 
o. We will see how the equilibrium equation may be reformulated as an equation for meas-
ures (equation (4) in Sect. 2) or for edge functions (equation (5) in Sect. 3).

The equation can be interpreted in several ways. In the linear case p = 2 it says that equi-
librium measures on trees can be associated to particular tilings of rectangles by squares. 
This gives an independent proof of the tiling theorem of Benjamini and Schramm [4, Theo-
rem 4.1], in the special case of a tree, and, more interestingly, it provides a converse result.

Here is the precise statement (see Sect. 5). We say that a square tiling of the rectangle 
R = [0, t] × [0, 1] has combinatorics prescribed by a tree T if there is a bijection � ↦ Q� 
from the edge set of T to the set of tiles such that � and � have a common vertex and 𝛼 < 𝛽 
if and only if the squares Q� and Q� are neighbouring in the tiling and the upper side of Q� 
lies on the lower side of Q� . 
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Theorem  2  (i) Let T = (V ,E) be a rooted tree and �A be the equilibrium measure (for 
p = 2 ) for a set A ⊆ 𝜕T .

Then, there exists a square tiling {Q�}�∈E of the rectangle R = [0, c2(A)] × [0, 1] , where 
the combinatorics of the tiling are prescribed by T and the square Q� has side of length 
�(�) = �A(�T�).

(ii) Conversely, suppose a rectangle R = [0, c] × [0, 1] , c ≤ 1 , is square-tiled by {Q�}� 
with combinatorics given by a rooted tree T.

Then there exists an F� subset A of �T  such that the measure �(�T�) = �(�) , is the equi-
librium measure of A, and then c2(A) = c.

A consequence of this theorem is that the different tilings having the same tree-combi-
natorics can be parametrized by a family of F� subsets of �T .

Theorem  2 is very much related to results in [4, 12, 14]. Benjamini and Schramm 
proved that the equilibrium measure of a planar graph’s boundary is associated to a tiling 
of a cylinder by squares, and on trees, analytically, this is the content of (1). The converse 
statement is not true: there are tilings of cylinders whose combinatorics are prescribed by 
a planar graph, in which the sizes of the tiles do not reflect the equilibrium measure of 
the graph’s boundary; trees provide plenty of counterexamples. Theorem 2 provides, in the 
special case of trees, the correct bijection between tilings and discrete potential theoretic 
objects. It would be very interesting to have a generalization of this statement to the whole 
class of planar graphs.

Again in the linear case, Theorem 1 is related to some beautiful theorems of Kai-Lai 
Chung (see [10, 11]), interpreting equilibrium measures in terms of last exit times for sto-
chastic processes. The results of Chung, and of Benjamini and Schramm, have a probabil-
istic statement, or proof. As we work in the nonlinear case 1 < p < ∞ , we do not expect 
probabilistic methods to apply here. Even in the linear case, however, it would be interest-
ing to have a converse to Benjamini and Schramm’s theorem on planar graphs, and this 
converse might have a probabilistic proof. See the monographs [13, 16] and [15] for thor-
ough introductions to the stochastic processes which are here relevant.

The paper is organized as follows. Section  1 is devoted to present some preliminary 
results of Potential Analysis on trees. Section  2 contains the proof of (i) in Theorem  1, 
which follows quite easily from some rescaling properties we present. In Sect. 3 we pro-
vide some useful reinterpretation of equation (1) in terms of edge functions and of meas-
ures. The proof of part (ii) of our characterization is more subtle and is given in Sect. 4. 
In Sect. 5 we discuss some new results on square tilings of rectangles which follow from 
Theorem 1 with p = 2 . Finally, in Sect. 6 we show how capacities can be expressed by a 
recursive formula involving branched continued fractions, and we exploit this fact to give 
another reformulation of Theorem 1.
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2 � Potential theory on the tree

Let T be a tree with root vertex o and root edge � , as described in the Introduction. 
A vertex is said to be a leaf if it is the endpoint of one edge only. Being mainly inter-
ested in infinite trees, we will assume that T has no leaves except o; this is a simplifi-
cation but not a restriction. Given � ∈ E , we write b(�) and e(�) for its beginning and 
ending vertex, respectively, i.e., they are connected by � and b(𝛼) < e(𝛼) . We denote 
by |�| the level of an edge � , which is the number of edges preceding � in the geo-
desic to the root � . With this definition we have |�| = 0 . Levels of vertices are given 
by the rule |b(�)| = |�| . We define the sons of an edge � as the elements of the set 
s(�) = {� ∈ E ∶ � ∼ �, |�| = |�| + 1} . A subtree rooted at � is a rooted tree S having 
root edge � and as edge set a subset of {� ∈ E ∶ � ≥ �} , the set of edges of T which are 
larger than � with respect to the order relation induced by o. We simply say that S is a 
subtree of T if it is a subtree rooted at � . We denote by T� the full subtree rooted at � , 
i.e., that whose edge set is exactly {� ∈ E ∶ � ≥ �} . We call T� the �-tent. Observe that 
subtrees are obtained subtracting from T a countable union of tents. The boundary �T� 
of the �-tent is exactly the set of rays passing through � . We put on �T  the topology gen-
erated by the boundary of tents, namely the one having as a basis {�T�}�∈E.

It is clear that the counting metric # does not extend properly to the boundary of an 
infinite tree. We endow V  with a different metric: given two points �, � ∈ V  , we define 
their confluent to be the vertex � ∧ � = max{x ∈ V ∶ x ≤ �, x ≤ �} . Then, we define the 
visual metric

The reader familiar with Gromov’s theory of hyperbolic spaces can observe that for 
�, � ∈ V  , expression (2) coincides with the Gromov product on (V , #) , given by

In fact, one can extend such a product to points in �T  by setting (�, �)o = lim(x, y)o , where 
the limit is taken for x → �, y → � along the rays labeled by � and � . With this notation we 
have d(�, �) = (�, �)o . It is not hard to see that (2) defines a distance on V  , which in fact is 
an ultrametric, and that 

(
V , d

)
 is a compact metric space (see, for example, [15, p. 121]). 

Moreover, the topology induced by this metric on �T  is the tent topology introduced before.
There is a one-to-one correspondence between compact sets in �T  and boundaries of 

subtrees, in the following sense.

Proposition 1  A set K ⊆ 𝜕T  is compact if and only if there exists a subtree TK ⊆ T  such 
that K = �TK.

Proof  The fact that the boundary of a subtree is compact follows directly from the defini-
tion of subtree. Conversely, if K is compact, consider the subtree S ⊆ T  having as edge 
set E(S) = P(K) ∶= {𝛼 ∈ E ∶ 𝛼 < 𝜉, for some 𝜉 ∈ 𝜕K} . Clearly K ⊆ 𝜕S . On the other 
hand, if � ∈ �S , by definition of boundary of a tree, P({𝜉}) ⊆ E(S) . Now, suppose by con-
traddiction that � ∉ K . Then, by compactness, there exists and an edge � ∈ E such that 
�T�

⋂
K = � and � ∈ �T� . Hence, � ∉ P(K) for 𝛽 ∈ P({𝜉}) ⊆ E(S) with |�| ≥ |�| , leading 

to a contraddiction. 	�  ◻

(2)d(�, �) = e−|�∧�|.

(x, y)o =
1

2
(#(x, o) + #(y, o) − #(x, y)), x, y ∈ V .
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We present now a Nonlinear Potential Theory on the tree T which falls within the axi-
omatics developed in §2.3-2.5 of the treatise of Adams-Hedberg [1]. We consider the com-
pact metric space (V , d) and we make E into a measure space by endowing it with the 
counting measure. We introduce the kernel k ∶ V × E → ℝ , given by the indicator function 
k(𝜉, 𝛼) = �{𝛼<𝜉}(𝜉, 𝛼) . Observe that k(⋅, �) is continuous on �T  , since �T� is open.

Given a function f ∶ E → ℝ and p, p� ∈ (1,+∞) such that 1∕p + 1∕p� = 1 , we define 
the p−potential of f, Ipf ∶ V → ℝ ∪ {±∞} , by

We fix the convention Ipf (o) = 0 and we ease the notation by simply writing If in place of 
I2f .

The co-potential of a charge � ∈ M(�T) is defined as the edge function

Observe that ⟨If ,�⟩L2(�T) = ⟨f , I∗�⟩
�2(E).

To the charge � one can then associate the nonlinear potential Vp�(�) = IpI
∗�(x) , 

� ∈ V  . It is easily seen that for p = 2 one recovers the logarithmic potential of � on the 
metric space (V , d),

The p−energy of the charge � is given by

Setting ΩA = {f ∈ �
p(E) ∶ If ≥ 1 on A} , we define the p-capacity of a set A ⊆ 𝜕T  as

A property holds cp-a.e. on A if it holds everywhere on A but for a subset of zero 
p-capacity. A function f is admissible for A ⊆ 𝜕T  if f ∈ ΩA

�
p

 . It can be proved that 
ΩA

�
p

= {f ∈ �
p

+ ∶ If ≥ 1 cp − a.e. on A} , see [1], and that there exists a unique function 
f A ∈ ΩA

�
p

 , called p-equilibrium function for A, such that

Moreover, for such a function it holds If A = 1 cp-a.e. on A.
We call a point � ∈ A irregular for A if If A(�) ≠ 1 . Clearly the set of irregular points for 

any set A has zero p−capacity.
As a set function, p-capacity is monotone, countably subadditive and regular from 

inside and outside, i.e., 

	 (in)	 cp
(⋃

n

An

)
= lim

n
cp(An)for any increasing sequence (An) of arbitrary subsets of �T

	(out)	 cp
(⋂

n

(Kn)
)
= lim

n
cp(Kn) , for any decreasing sequence (Kn) of compact subsets of �T

Ipf (𝜉) =
∑
𝛼∈E

k(𝜉, 𝛼)f (𝛼)|f (𝛼)|p�−2 = ∑
E∋𝛼<𝜉

f (𝛼)|f (𝛼)|p�−2.

I∗�(�) = ∫V

k(�, �)d�(�) = �
(
�T�

)
, � ∈ E.

V2�(�) = ∫
�T

log
1

d(�, �)
d�(�), � ∈ V .

Ep(�) = ∫
�T

Vp�(�)d�(�) = ‖I∗�‖p�
p�
.

cp(A) = inf
f∈ΩA

‖f‖p
p
.

cp(A) = min
f∈ΩA

�p
‖f‖p

p
= ‖f A‖p

p
.
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A set A ⊆ 𝜕T  is capacitable if c
p
(A) = sup{c

p
(K) ∶ K ⊆ A, K compact} = inf{c

p
(G) ∶ G ⊇ A, G open}. 

From (in) and (out) follows that all Suslin sets, and in particular all Borel sets, are capacit-
able, see [9].

Observe that without losing generality, in the definition of p−capacity the 
infimum can be taken over functions supported on the predecessor set of A , 
P(A) ∶= {𝛼 ∈ E ∶ 𝛼 < 𝜉, for some 𝜉 ∈ A} . Namely, the capacity of a compact set K 
only depends on the combinatorics of P(K) and not on the rest of the tree, and if TK ⊆ T  
is the subtree having K as a boundary (see Proposition 1), we have cp(K) = cp(�TK) , 
where the right handside is intended as the capacity when TK is taken as the ambient 
space.

It is possible to give a dual definition of capacity in terms of measures on �T  rather than 
of functions on E. The proof of the following theorem is a straightforward adaptation of an 
equivalent result [1, Theorem 2.5.6] for capacities in ℝn arising by regular enough kernels.

Theorem A  Suppose that A ⊆ 𝜕T  is a Suslin set. Then

Moreover, there exists a unique positive Borel measure �A supported in A , called the p−
equilibrium measure of A, such that

and I∗�A(�)p
�−1 = f A(�) , � ∈ E.

With this definition of capacity, it is clear that if a property (P) holds cp−a.e. on 
A ⊆ 𝜕T  , then it holds �−a.e. on A for every measure � with Ep(𝜇) < ∞ . To see this, let 
B ∶= {� ∈ A ∶ ¬(P)} , so that cp(B) = 0 . The measure � ∶=

�|B
Ep(�)

1∕p�
 satisfies Ep(�) ≤ 1 . 

Then, �(B) ≤ cp(B) = 0 , from which it follows �(B) = 0.
We conclude the section by showing that in �T  there exist compact subsets with arbi-

trary p-capacity.

Proposition 2  Let Tn be a homogeneus tree of degree n. For each real number 
t ∈ [0, cp(�T

n)] there exists a compact subset Kt of the boundary �Tn such that cp(Kt) = t.

Proof  Each edge � of Tn , except the root, can be given an index i(�) ∈ {0,… , n − 1} which 
distinguishes it from the other n − 1 edges � such that b(�) = b(�) . We can define a map 
Λ ∶ �Tn → [0, 1] associating to each point � = {�j}

∞
j=1

∈ �Tn the number having expansion 
in base n given by

The map Λ is clearly onto but it fails to be injective because of the multiple representations 
of the rational numbers. Still, Λ−1(t) has at most two points. Moreover, Λ is continuous, 
since

cp(A) = sup{𝜇(A)p ∶ 𝜇 ≥ 0, supp (𝜇) ⊆ A, Ep(𝜇) ≤ 1}.

�A(A) = cp(A) = Ep(�
A),

Λ(�) =

∞∑
j=1

i(�j)n
−j.
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Now, consider the function � ∶ [0, 1] ⟶ ℝ given by �(t) = cp(Λ
−1[0, t]) . This is an 

increasing map, and we know that �(0) = 0 and �(1) = cp(�T
n) . By the subadditivity of cp , 

the continuity of Λ and the regularity of capacity, we have

The right handside equals zero, since the preimage of a single point under Λ is finite. 
By similar reasoning we estimate �(t) − �(t − �) . It follows that � is continuous and 
�([0, 1]) = [0, cp(�T

n)] . The result is obtained picking Kt = Λ−1[0,�−1(t)] . 	� ◻

3 � Rescaling of capacities

In this section we show that equilibrium measures rescale under changes of the root in 
a tree, in a sense that will be more clear soon. This is a point where trees behave much 
more simply than general planar graphs, and constitutes the key property to prove (i) in 
Theorem 1. We introduce a subscript notation to indicate which is the root of the tree we 
are referring to. For example, given the rooted tree T and some edge � ∈ E , we write Ip,� 
for the p−potential operator acting on functions defined on the edges of the �−tent T� , 
Ip,�f = Ip(�T�

f ) . Accordingly, Vp,�� = Ip,�I
∗� , Ep,�(�) =

∑
�≥� �I∗�(�)�p� and cp,� denotes 

the capacity when we consider T� as ambient space. In the same fashion, if A is a subset 
of �T  , A� = A ∩ �T�.

A question arises: if A is a subset of �T  and � its p−equilibrium measure, which is 
the p−equilibrium measure �� for A� in the tent T� ? It is natural to expect that it is a res-
caling of the measure � , i.e., �� = k��|A�

 for some positive constant k� . In such a case, 
for cp−a.e. � in A� , we would have

It follows that the only possible candidate rescaling constant is

We now prove that our Ansatz is correct. This was already observed in [3].

Proposition 3  Let � be the p−equilibrium measure for a set A ⊆ 𝜕T  . Then,

is the p−equilibrium measure for A𝛼 ⊆ 𝜕T𝛼.

|Λ(�) − Λ(�)| ≤ (n − 1)

∞∑
j=|�∧�|+1

n−j ≈ n−|�∧�| ⟶ 0, as �(�, �) → 0.

�(t + �) − �(t) ≤ cp
(
Λ−1[t, t + �]

)
⟶ cp(Λ

−1{t}).

1 = Vp,���(�) = kp
�−1

�
Vp,��(�) = kp

�−1
�

(
Vp�(�) − Vp�(b(�))

)
= kp

�−1
�

(
1 − Vp�(b(�))

)
.

(3)k� =
(
1 − Vp�(b(�))

)1−p

.

�� ∶= k��|A�
=

�|�T�(
1 − Vp�(b(�))

)p−1
,
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Proof  Let �� be the (unique) p−equilibrium function of A� in T� . We want to prove that 
�� = I∗�

p�−1
�  . Define the edge function,

Then f is admissible for A ⊆ 𝜕T  , since for cp−a.e. � ∈ A ⧵ A� , If (�) = Vp�(�) = 1 , while for 
cp−a.e. � ∈ A� it holds

Clearly I∗�p�−1 is an admissible function for A𝛼 ⊆ 𝜕T𝛼 , since I�I∗�p�−1 ≤ II∗�p�−1 = 1 , c.p−
a.e. on A. Hence, it must be ‖��‖p�p(T� )

≤ ‖I∗�p�−1‖p
�p(T� )

= ‖I∗�‖p�
�p� (T� )

 . It follows

Then, f must be the equilibrium function for A, and by the uniqueness of the equilibrium 
function f = I∗�p�−1 . This implies �� = I∗�

p�−1
�  . 	�  ◻

As an immediate consequence we have the following.

Corollary 1  Let A ⊆ 𝜕T  be a set of positive capacity and � ∈ E , � not the root edge of T, 
such that A ⊆ 𝜕T𝛼 . Then cp,𝛼(A) > cp(A).

Proof  Since k𝛼 > 1 , we have cp,𝛼(A) = 𝜇𝛼(A) = k𝛼𝜇(A) > 𝜇(A) = cp(A) . 	�  ◻

Observe in passing that the above corollary is supported by visual intuition, since 
we expect the capacity of a set to be larger if we look at the set from a closer point of 
view.

We can now give a necessary condition for a measure to be of equilibrium, thus 
proving (i) in Theorem 1.

Proof  (Proof of (i) in Theorem 1) We claim that for every � ∈ E , � solves the following 
equation:

Suppose the claim holds and let g = Vp� . It is easily seen that ∇g[x, y] = I∗�[x, y]p
�−1 for 

every edge [x, y] ∈ E . It follows that g solves the equilibrium equation (1).
To prove the claim, let � ∈ E . If A� = � , then by the topology of the tree follows that 

also A ∩ �T� = � . Since supp (𝜇) ⊆ A , I∗�(�) = 0 , and hence I∗�(�) = 0 for all � ≥ � , and 
(4) trivially holds. Otherwise, on one hand we have

f (�) =

{(
1 − Vp�(b(�))

)
��(�) if � ≥ �

I∗�(�)p
�−1 otherwise .

If (�) = I�f (�) + If (b(�)) =
(
1 − Vp�(b(�))

)
I���(�) + Vp�(b(�)) = 1.

‖f‖p
p
=
�
1 − Vp�(b(�))

�p‖��‖p�p(T� )
+ ‖I∗�p�−1‖p

�p(T⧵T� )

≤ ‖I∗�‖p�
�p� (T� )

+ ‖I∗�‖p�
�p� (T⧵T� )

= Ep(�) = cp(A).

(4)I∗�(�)
(
1 − Vp�(b(�))

)
= Ep,�(�).

cp,�(A�) = Ep,�(��) =
Ep,�(�)(

1 − Vp�(b(�))
)p ,
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and on the other,

Matching the two expressions we get the claim. 	�  ◻

4 � Flows on edges and p−harmonic functions

Observe that equation (4) can be regarded as a special instance of an equation for edge 
functions:

In the particular case when the function f is the co-potential of a charge � on the �T  , the 
above equation reduces to (4). It is clear that a necessary condition for an edge function f to 
be the co-potential of a charge is to satisfy the following additivity condition

A function f ∶ E → ℝ fulfilling (6) is said to be a flow on T.
In [8, Proposition 2.2] a full characterization for edge functions which are co-potentials 

of charges is given. For nonnegative functions, however, such a characterization takes a 
very simple form, of immediate verification: an edge function f is a nonnegative flow if and 
only if f = I∗� for some nonnegative measure � on �T .

It turns out that solutions of (5) with bounded p−potential are always flows, and hence 
they have a measure representation.

Proposition 4  Let f ∶ E → ℝ be a solution of (5) such that Ipf < 1 on V. Then f = I∗� for 
some nonnegative measure � on �T .

Proof  First of all observe that for a function f solving (5), the condition Ipf < 1 automat-
ically implies that f ≥ 0 on E. We want to show that f satisfies (6) for every � ∈ E . If 
f (�) = 0 for some edge � , then the right handside of equation (5) says that f (�) = 0 on all 
edges � ≥ � and then clearly (6) holds in � . Now, consider edges � such that f (�) ≠ 0 . We 
have

Since 1 − Ipf (e(𝛼)) > 0 , for every � , then f is a flow, and the result follows. 	� ◻

cp,�(A�) = ��(A�) = k��(A�) =
I∗�(�)(

1 − Vp�(b(�))
)p−1

.

(5)f (�)
(
1 − Ipf (b(�))

)
=
∑
�≥�

|f (�)|p� , f ∶ E → ℝ.

(6)f (�) =
∑

�∈s(�)

f (�), for all � ∈ E.

(7)

∑
�≥�

f (�)p
�

− f (�)p
�

=
∑

�∈s(�)

∑
�≥�

f (�)p
�

=
∑

�∈s(�)

f (�)
(
1 − Ipf (b(�))

)

=
(
1 − Ipf (e(�))

) ∑
�∈s(�)

f (�)

=
(
1 − Ipf (e(�))

)(
− f (�) +

∑
�∈s(�)

f (�)
)
+
∑
�≥�

f (�)p
�

− f (�)p
�

.
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A similar calculation as in the proof of Proposition 4 can be used to show that, if f is a 
(not necessarily positive) flow and (4) holds for |�| large, then it holds everywhere. We give 
here the explicit details.

Proposition 5  Let � ∈ E and suppose that f is a flow solving (4) for � ∈ s(�) . Then f solves 
(4) also in �.

Proof  Following the line of (7) and using the flow property of f we easily obtain

	�  ◻

We end the section by pointing out that the flow condition (6) for edge functions has a 
neat counterpart for vertex functions. In fact, it is easy to observe [8, Proposition 2.3] that 
f is a flow if and only if Ipf  is p−harmonic on V ⧵ {o} . In this context, the p-Laplacian of a 
function g ∶ V → ℝ at a vertex x is given by

and g is p-harmonic if Δpg ≡ 0 on V ⧵ {o} . From Proposition 4 then immediately follows

Corollary 2  Let g ∶ V → ℝ be a solution of (1) with ‖g‖∞ < 1 . Then g is p−harmonic.

5 � Proof of Theorem 1

In this section, we prove (ii) in Theorem 1, namely that for a measure with bounded nonlin-
ear potential it is sufficient to solve equation (1) to be an equilibrium measure.

Proof  (Proof of (ii) in Theorem 1) Let g ∶ V → ℝ , with ‖g‖∞ < 1 , be a solution of (1). With-
out loss of generality, normalize assuming g(o) = 0 (the function g̃ = (g − g(o))∕(1 − g(o)) 
solves (1), is bounded by 1 and vanishes at o). Set f (�) = ∇g(�)p−1 , � ∈ E . Then f solves 
(5) and Ipf = g is bounded by 1. It follows by Proposition 4 that there exists a nonnegative 
Borel measure � on �T  such that f = I∗� and, consequently, g = Vp�.

Observe that � has finite p−energy: since it solves (4) at every edge � , by evaluating at 
� = � we get Ep(𝜇) = 𝜇(𝜕T) = Vp(𝜇)(e(𝜔))

p−1 < 1 . Moreover, Vp�(�) = limx→� Vp�(x) ≤ 1 . 
We show that indeed Vp� = 1 , �−a.e. on �T .

Let SN = {� ∈ E ∶ |�| = N} . To each N ∈ ℕ we associate a piecewise-constant func-
tion ΦN on the boundary, ΦN(�) = (1 − Vp�(b(�))) for � ∈ �T� , � ∈ SN . Then we have

∑
�≥�

|f (�)|p� = |f (�)|p� +
(
1 − Ipf (e(�))

) ∑
�∈s(�)

f (�)

= f (�)
(
f (�)|f (�)|p�−2 + 1 − Ipf (e(�))

)
= f (�)

(
1 − Ipf (b(�))

)
.

Δpg(x) ∶=
∑
y∼x

(
g(y) − g(x)

)|||g(y) − g(x)
|||
p−2

,



	 N. Arcozzi, M. Levi 

1 3

Since Ep(𝜇) < ∞ , it follows that

Also, ΦN(�) ↘ Φ(�) ∶= 1 − Vp�(�) ≥ 0 as N → +∞ . Hence, by monotone convergence 
theorem, we obtain

which gives Vp�(�) = 1 , �− a.e. on �T .
Consider now the irregular points for � , i.e., with the �−measure zero set

Let Bn = {� ∈ supp (�) ∶ Vp�(�) ≤ 1 − 1∕2n} . Clearly Bn ⊆ Bn+1 and I(�) =
⋃

n Bn . Fix 
𝜀 > 0 , and choose a collection of edges (�n

j
)n∈ℕ,j∈Jn

 , such that {�Tj,n}j∈Jn
 is an open cover 

of Bn , where Tj,n is the �n
j
−tent. Without loss of generally, we can assume that (�n

j
)n∈ℕ,j∈Jn

 
satisfies the following: 

	 (i)	 Bn ⊆
⋃

j∈Jn
𝜕Tj,n

	 (ii)	 Tj,n
⋂

Ti,l = � , for (j, n) ≠ (i, l)

	 (iii)	 |Jn| = mn ∈ ℕ

	 (iv)	
∑

j∈Jn
I∗𝜇(𝛼n

j
) < 𝜀∕2n.

In fact, if the intersection in (ii) was not empty, one of the two would be contained in 
the other and can be replaced by it in the covering family. Moreover, all the sublevel sets 
Bn are compact, since Vp� is continuous. Hence, for each n, we can extract a finite sub-
cover so that Bn ⊆

⋃
j∈Jn

𝜕Tj,n with |Jn| = mn ∈ ℕ , which is the finiteness condition on the 
index set in (iii). Finally, condition (iv) comes from the outer regularity of the measure 
� : since 0 = 𝜇(Bn) = inf{𝜇(𝜕T𝛼) ∶ 𝛼 ∈ E, 𝜕T𝛼 ⊇ Bn} , there exist sequences (�n

j
)j such that 

�(�Tj,n) → 0 and we can assume to properly extract each subcover from one of those.
Write �T = F�

⋃
G� , where G� ∶=

⋃
j,n �Tj,n and F� = �T ⧵ G� . Observe that,

Hence we have,

Now, Vp� ≡ 1 on A� ∶= supp (�) ∩ F� , so that Vp� is a p-admissible function for A� . Then, 
by definition of capacity we have

0 ≤ �
𝜕T

ΦN(𝜉)d𝜇(𝜉) =
∑
𝛼∈SN

�
𝜕T𝛼

ΦN(𝜉)d𝜇(𝜉) =
∑
𝛼∈SN

(1 − Vp𝜇(b(𝛼)))I
∗𝜇(𝛼)

=
∑
𝛼∈SN

Ep,𝛼(𝜇) =
∑
|𝛽|≥N

I∗𝜇(𝛽)p
�

= Ep(𝜇) −
∑
|𝛽|<N

I∗𝜇(𝛽)p
�

.

∫
�T

ΦN(�)d�(�) ⟶ 0, as N → +∞.

∫
�T

Φ(�)d�(�) = ∫
�T

(1 − Vp�(�))d�(�) = 0,

I(𝜇) = {𝜉 ∈ supp (𝜇) ∶ Vp𝜇(𝜉) < 1}.

�(�T) ≥ �(F�) = �(�T) − �(G�) = �(�T) −
∑
j,n

I∗�(�n
j
) ≥ �(�T) −

∑
n

�∕2n = �(�T) − �.

�(�T) = lim
�→0

�(F�).



Equilibrium measures on trees﻿	

1 3

On the other hand, the measure �� ∶=
�|F�

Ep(�|F�
)1∕p�

 is admissible for A� , since Ep(��) = 1 . 

By the dual definition of capacity it follows that

We are now ready to build up the candidate F� set. Let {�(k)}k∈ℕ be a sequence of positive 
numbers such that �(k) ↘ 0 as k → +∞ . Define A ∶=

⋃
k A�(k) , which is clearly an F� set. 

Observe that we can assume that the covers related to each choice of � are taken so that 
G𝜀(k+1) ⊆ G𝜀(k) . Therefore, A�(k) ↗ as k → +∞ . It follows that

while the reverse inequality is trivially true. Using this together with (8) and (9) and the 
regularity of the p−capacity, we obtain

	�  ◻

It is clear from the proof that the situation is much easier for measures with no irregular 
points.

Corollary 3  Suppose that � ∈ M
+(�T) solves (4) and Vp� ≡ 1 on supp (�) . Then, � is the 

p-equilibrium measure of supp (�).

6 � Infinite square tilings

In [7] Brooks, Smith, Stone and Tutte considered the problem of tiling a rectangle with 
a finite number of squares and proved that to any finite connected planar graph G can be 
associated such a tiling. The same graph can produce different tilings. Chosen any two 
vertices in G, they show how the associated tiling can be built in such a way to reflect this 
choice. In [4] Benjamini and Schramm extended this result to the infinite case, showing 
that infinite graphs can produce infinite tilings. Theorem 1 can be reformulated, for p = 2 , 
in terms of square tilings of a rectangle: part (i) of the theorem is essentially equivalent 
to the infinite tiling theorem by Benjamini and Schramm, in the special case when G is a 
rooted tree T, hence providing a new and different proof of it. More interestingly, part (ii) 
provides a converse result, in a sense that will be more clear once we introduce the proper 
terminology.

Given a rectangle R, i.e, a closed planar region whose boundary is a rectangle, we say 
that a family of squares Q = {Qj}j is a square tiling of R if int (Qi)

⋂
int (Qj) = � , for i ≠ j , 

and R =
⋃

j Qj . By rotation invariance of the problem we always think rectangles and 
squares to have sides parallel to the coordinates axes of ℝ2 , and we talk about upper (lower) 

(8)cp(A�) ≤ Ep(�|F�
) ≤ Ep(�) = �(�T).

(9)cp(A�) ≥ ��(A�)
p ≥ ( �(F�)

�(�T)1∕p�

)p

.

�(A) = lim
k→∞

�(A�(k)) = �(�T) − lim
k→∞

�(G�(k)) ≥ �(�T) − lim
k→∞

∑
n

�(k)

2n
= �(�T),

cp(A) = lim
k→+∞

cp(A�(k)) = �(�T) = �(A).
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and left (right) sides, as well as horizontal and vertical sides, in the obvious way. We write 
B(j) and E(j) for the upper and lower side of Qj , respectively.

We say that the combinatorics of a family Q of squares in the plane are prescribed by a 
tree T if the followings are true. 

(1)	 The squares in the family are indexed by the edges of the tree, Q = {Q� ∶ � ∈ E}.
(2)	 B(𝛼) ⊆ E(𝛽) whenever b(�) = e(�).

Theorem  1 can be reformulated, for p = 2 , in terms of square tilings, leading to Theo-
rem 2. We detail out the proof here.

Proof  (Proof of Theorem 2) (i) Given a tree T with root edge � and a set A ⊆ 𝜕T  , let 
{Q�}�∈E be a family of squares such that Q� has side of length �(�) = �(�T�) , being � = �A 
the equilibrium measure of A. By the additivity of � we can place the squares on the plane 
in such a way that,

With this choice, the combinatorics is prescribed by T. Moreover, it is clear that the inte-
riors of the squares in the family are pairwise disjoint and that 

⋃
� Q� is both vertically 

and horizontally convex (its intersection with any vertical and horizontal line is either 
empty, or a point, or a line segment). Now, let R be the rectangle having vertical sides 
of length 1 and upper side coinciding with the upper side of Q(�) , so being of length 
�(�T) = �(A) = c2(A) . Denote by | ⋅ | the area measure. Then,

It is then enough to show that the family of squares is contained in R to prove that it is a 
tiling. It is clear that all the family {Q�} lies in between the two vertical sides of R, and 
that the horizontal room is fully filled, by additivity of the measure. Moreover, as already 
observed in the proof of part (ii) of Theorem 1, for every � ∈ �T  it must be

It follows that 
⋃

𝛼 Q𝛼 ⊆ R and {Q�}� is a tiling.
(ii) Let the rectangle R be tiled according to the combinatorics of a tree T, as described 

above. Then for each � ∈ E , we have:

Hence, it is immediate that if we define a measure on �T  by �(�T�) = �(�) , it solves equa-
tion (4). Then the harmonic function g = V2� is bounded by 1 on V and solves (1). By 
Theorem 1, � must be the equilibrium measure of some F� subset A of �T  . 	� ◻

It might be interesting to informally discuss some features of the tiling, and its rela-
tion to the set A. The example below can provide a useful illustration of what we are 
saying here in general terms.

E(�) =
⋃

�∈s(�)

B(�).

|R| = c2(A) = I∗�(�) = E2(�) =
∑
�∈E

�(�T�)
2 =

∑
�∈E

|Q�| = ||
⋃
�

Q�
||.

1 ≥ V2𝜇(𝜉) =
∑
𝛼<𝜉

𝜇(𝜕T𝛽) =
∑
𝛼<𝜉

�(𝛼).

∑
𝛽≥𝛼

|Q(𝛽)| = �(𝛼)

(
1 −

∑
𝛽<𝛼

�(𝛽)

)
.
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For each � in �T  , let �n be the only edge of level n belonging to the ray � , and choose 
a point xn+1 in Q�n

 . Then, it is immediate that limn→∞ xn =∶ �(�) exists in R, and that 
it does not depend on the precise location of the xn ’s in the corresponding squares. 
Let �(�) be the orthogonal projection of �(�) onto the lower side of R, identified with 
[0, c2(A)].

Let A ⊆ 𝜕T  and �A its equilibrium measure. The following facts are easy to check: 

(i)	 if we replace T by its subtree obtained keeping only the edges � with 𝜇A(𝜕T𝛼) > 0 , then 
tiling does not have degenerate squares, and c2(A ∩ 𝜕T𝛼) > 0 for all edges �.

(ii)	 let A′ be the set of regular points for �A , i.e. A� = {� ∈ �T ∶ V2�
A(�) = 1} : then 

�A�

= �A , hence they induce the same tiling.
(iii)	 � is injective but possibly at countably many points and surjective from �T  onto 

[0, c2(A)];
(iv)	 �A(�−1(A)) = �(A) for all measurable sets A ⊆ [0, c2(E)] (where � denotes length meas-

ure on [0, c2(A)]);
(v)	 let Ex(A) ∶= {� ∈ �T ∶ �(�) ≠ �(�)} : then, Ex(A) = �T ⧵ A�;

(Fig. 1)
We can assume from now that the tree has been pruned as in (i) and that A = A�. 

Still, we see below that the combinatorics of the tree are not, by themselves, enough to 
determine a rectangle R and a square tiling of it. They are, if we assume that the set A in 
the Theorem 2 is closed, but they are not in general. This is in striking contrast with the 
case of finite trees, or more generally graphs. However, if c2(A) < c2(𝜕T) , then a price 
has to be paid. In fact, in that case

c2(Ex(A)) ≥ c2(𝜕T) − c2(A) > 0,

Fig. 1   For the boundary point � 
identified by the geodesic {x

j
}
j
 , 

�(�) does not lie on the bottom 
side of R 
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i.e., the exceptional set Ex(A) is rather large, although, clearly, 0 = �A
(Ex(A)) = �(�(Ex(A))) . To 

enlighten this phenomenon, we provide an example of a set which is densly spread out on 
the boundary having exceptional set of full capacity.

Example 1  (A regular set of dyadic combinatorics and arbitrarily small capacity with posi-
tive capacity in every subtree) Let 𝜀 > 0 be any small number, and T = T2 a dyadic tree 
with edge root � . Let n = n(�) be the number of steps one has to move to the left, starting 
from the root, before finding an edge ��

n
 such that cp(�Tn,�) ≤ �∕2 , where Tn,� denotes ��

n
−

tent. Let {��
1
,… , ��

n
} be the geodesic from the root to ��

n
 , and �j be the right brother of ��

j
 , 

i.e. the only edge with b(�j) = b(��
j
) . In each subtree T�j , j = 1,… , n , starting from the root 

�j , move to the left, say n(�j) steps, until you find an edge �
�j

n(�j)
 such that 

cp(�Tn(�j),�j ) ≤ �∕(22n) . Then we iterate the process: {��j

1
,… , �

�j

n(�j)
} is the geodesic from �j 

to ��j

n(�j)
 and �i = �i(j) the right brother of ��j

i
 . In each subtree T�i we individuate as before, 

always moving to the left, subtrees with cp(�Tn(�i),�i ) ≤ �∕(23n(�j)) , and so on. Let

By construction, for every � ∈ E the tree T� contains a tent with boundary in A. Since tents 
have positive capacity (for example by the rescaling property of Proposition 3), it follows 
that cp(A ∩ 𝜕T𝛼) > 0 for every � ∈ E . On the other hand,

For the regularity, observe that by construction for every point � ∈ A , there exists some 
edge � such that 𝜉 ∈ 𝜕T𝛼 ⊆ A . Therefore, if � , �� are the equilibrium measures for A and 
�T� respectively, we have

by the regularity of homogeneous trees.

7 � Branched continued fractions

Theorem 1 can be reformulated in terms of branched continued fractions. Besides adding 
further interesting structure to the class of equilibrium measures, this provides a recursive 
formula for concretely calculating capacity of sets. An accessible survey on branched con-
tinued fractions is in [5].

Proposition 6  Let f ∶ E → ℝ
+ be any non-negative function such that Ipf < 1 on V, and 

consider the associated rescaled function defined by

A1 = �T��
n
, A2 =

n⋃
j=1

�Tn(�j),�j , A3 =

n⋃
j=1

n(�j)⋃
i=1

�Tn(�i)�i , … , and set A =
⋃
k

Ak.

cp(A) ≤
∑
k

cp(Ak) ≤
∑
k

�

2k
= �.

Vp�(�) = Vp,��(�) + Vp�(b(�)) =
(
1 − Vp�(b(�))

)
Vp,��

�(�) + Vp�(b(�)) = 1,
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Then, f is the potential of a measure � on �T  if and only if c is defined, for each edge � 
which is not a leaf, by the following recursive formula

Proof  By (10), f (�) = c(�) . Denote by �− the parent of � , i.e. the only edge �− such that 
� ∈ s(�−) . For every � ≠ � , we have

Iterating we obtain,

Hence, for any chosen edge � which is not a leaf, it holds

Now, f is the co-potential of a measure if and only if the flow condition (6) holds. Namely, 
using (12), (6) holds if and only if

which is equivalent to (11), as can be seen solving with respect to c(�) . 	�  ◻

By the rescaling properties of equilibrium measure (Proposition 3), we have that if � is 
the p−equilibrium measure for a set A ⊆ 𝜕T  , then c(�) = cp,�(A�) . This gives us an algo-
rithm to calculate the capacity of a set in �T  in terms of successive tents capacities. Moreo-
ver, by relation (11) we deduce that capacities can be expressed by means of branched 
continued fractions. For example, by (11) we obtain the expression

(10)
c(�) =

f (�)(
1 − Ipf (b(�))

)p−1
.

(11)
c(�) =

�
�∈s(�)

c(�)

⎛⎜⎜⎝
1 +

� �
�∈s(�)

c(�)

�p�−1⎞⎟⎟⎠

p−1
.

f (�)p
�−1 = c(�)p

�−1
(
1 − Ipf (b(�))

)
= c(�)p

�−1
(
1 − Ipf (b(�

−)) − f (�−)p
�−1

)

= c(�)p
�−1

(
f (�−)p

�−1

c(�−)p�−1
− f (�−)p

�−1

)
= c(�)p

�−1f (�−)p
�−1 1 − c(�−)p

�−1

c(�−)p�−1
.

(12)f (𝛼) = c(𝛼)
∏
𝛾<𝛼

(
1 − c(𝛾)p

�−1
)p−1

.

∑
�∈s(�)

f (�) =
∏
�≤�

(
1 − c(�)p

�−1
)p−1 ∑

�∈s(�)

c(�).

c(�) =
(
1 − c(�)p

�−1
)p−1 ∑

�∈s(�)

c(�),

c2(�T) =
1

1 +
1∑

�∈s(�)

1

1 +
∑
�∈s(�)

1

1 +…

.
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In [15, p. 57] the same structure was observed for the total resistence R of an infinite tree 
without edges of degree 1. In particular, for such a class of trees, we obtain the relation

To end the section, we give a reformulation of Theorem 1 which provides a characteriza-
tion of equilibrium measures by means of an equation for capacities.

Theorem 3  (i) Let � the equilibrium measure for a set A ⊆ 𝜕T  and f = I∗� . Then the func-
tion c = cf  given by (10) solves

(ii) Let � be a measure on �T  such that Vp(𝜇) < 1 on V. Set f = I∗� . If the function c = cf  
solves (13), then there exists an F� set A ⊆ 𝜕T  such that � is its p-equilibrium measure.

Proof  Given any measure � , setting f = I∗� and c = cf  , by (10) we have

If � is an equilibrium measure then (4) holds, and conversely if � is such that Vp(𝜇) < 1 and 
solves (4) it is the equilibrium measure of some F� set. But (4) holds if and only if

But by Proposition 6, we know that c(�) solves (11), or equivalently, f (�) is defined by 
(12). Hence, sobstituting above we get

which is (13). 	�  ◻
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c2(�T) =
1

1 + R
.

(13)c(𝛼)
(
1 − c(𝛼)p

�−1
)
=
∑
𝛽>𝛼

c(𝛽)p
�
∏

𝛼≤𝛾<𝛽
(
1 − c(𝛾)p

�−1
)p
, 𝛼 ∈ E.

f (�)
(
1 − Ipf (b(�))

)
=

f (�)p
�

c(�)p�−1
, � ∈ E.

f (𝛼)p
�(
1 − c(𝛼)p

�−1
)
= c(𝛼)p

�−1
∑
𝛽>𝛼

f (𝛽)p
�

.

c(𝛼)p
�
∏
𝛾<𝛼

(
1 − c(𝛾)p

�−1
)p(

1 − c(𝛼)p
�−1

)
= c(𝛼)p

�−1
∑
𝛽>𝛼

c(𝛽)p
�
∏
𝛾<𝛽

(
1 − c(𝛾)p

�−1
)p
,

http://creativecommons.org/licenses/by/4.0/


Equilibrium measures on trees﻿	

1 3

References

	 1.	 Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Vol. 314. Springer (2012)
	 2.	 Arcozzi, N., Rochberg, R., Sawyer, E.: Capacity, carleson measures, boundary convergence, and exceptional 

sets. Perspectives in partial differential equations, harmonic analysis and applications. Proc. Sympos. Pure 
Math 79, 1–20 (2008)

	 3.	 Arcozzi, N., Rochberg, R., Sawyer, E.T., Wick, B.D.: Potential theory on trees, graphs and ahlfors-regular 
metric spaces. Potential Anal. 41(2), 317–366 (2014)

	 4.	 Benjamini, I., Schramm, O.: Random walks and harmonic functions on infinite planar graphs using square 
tilings. Ann. Prob. 24(3), 1219–1238 (1996)

	 5.	 Bodnar, D.: On the convergence of branched continued fractions. J. Math. Sci. 97(1), 3862–3871 (1999)
	 6.	 Brelot, M., Gowrisankaran, K., Murthy, M.V.: Lectures on potential theory, vol. 19. Tata Institute of Funda-

mental Research Bombay (1967)
	 7.	 Brooks, R.L., Smith, C.A.B., Stone, A.H., Tutte, W.T., et al.: The dissection of rectangles into squares. Duke 

Math. J. 7(1), 312–340 (1940)
	 8.	 Chalmoukis, N., Levi, M.: Some remarks on the dirichlet problem on infinite trees. Concret. Oper. 6(1), 

20–32 (2019)
	 9.	 Choquet, G.: Theory of capacities. In: Annales de l’institut Fourier, vol. 5, pp. 131–295 (1954)
	10.	 Chung, K.L.: Probabilistic approach in potential theory to the equilibrium problem. In: Annales de 

l’institut Fourier, vol. 23, pp. 313–322 (1973)
	11.	 Chung, K.L., Rao, M.: Equilibrium and energy. In: Selected Works Of Kai Lai Chung, pp. 631–640. 

World Scientific (2008)
	12.	 Georgakopoulos, A.: The boundary of a square tiling of a graph coincides with the poisson boundary. 

Invent. Math. 203(3), 773–821 (2016)
	13.	 Lyons, R., Peres, Y.: Probability on trees and networks, vol. 42. Cambridge University Press (2017)
	14.	 Schramm, O.: Square tilings with prescribed combinatorics. Israel J. Math. 84(1–2), 97–118 (1993)
	15.	 Soardi, P.M.: Potential Theory on Infinite Networks. Springer (2006)
	16.	 Woess, W.: Denumerable markov chains. generating functions, boundary theory, random walks on trees 

ems textbk. Math. Eur. Math. Soc., Zürich Crossref MathSciNet ZentralBlatt Math (2009)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Equilibrium measures on trees
	Abstract
	1 Introduction
	2 Potential theory on the tree
	3 Rescaling of capacities
	4 Flows on edges and harmonic functions
	5 Proof of Theorem 1
	6 Infinite square tilings
	7 Branched continued fractions
	Acknowledgements 
	References




