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1 | INTRODUCTION

Barbara de M. Quintela® |

Marek Kasztelnik* |

Abstract

In silico, medicine models are frequently used to represent a phenomenon
across multiples space-time scales. Most of these multiscale models require
impracticable execution times to be solved, even using high performance com-
puting systems, because typically each representative volume element in the
upper scale model is coupled to an instance of the lower scale model; this cau-
ses a combinatory explosion of the computational cost, which increases expo-
nentially as the number of scales to be modelled increases. To attenuate this
problem, it is a common practice to interpose between the two models a
particularisation operator, which maps the upper-scale model results into a
smaller number of lower-scale models, and an operator, which maps the fewer
results of the lower-scale models on the whole space-time homogenisation
domain of upper-scale model. The aim of this study is to explore what is the
simplest particularisation / homogenisation scheme that can couple a model
aimed to predict the growth of a whole solid tumour (neuroblastoma) to a
tissue-scale model of the cell-tissue biology with an acceptable approximation
error and a viable computational cost. Using an idealised initial dataset with
spatial gradients representative of those of real neuroblastomas, but small
enough to be solved without any particularisation, we determined the approxi-
mation error and the computational cost of a very simple particularisation
strategy based on binning. We found that even such simple algorithm can sig-
nificantly reduce the computational cost with negligible approximation errors.
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In most biological problems, biological entities operating at a spatial scale of some microns (e.g., cells) produce clini-
cally relevant effects that manifest at a much larger spatial scale (e.g., tissue, organ, organism). Same applies for the
temporal scale: chemical reactions taking place in a few milliseconds may produce effects observable over years. For
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example, with reference to the modelling of solid tumours growth, the space-time scales to span are 10 ® to 10" m,
and 1072 to 10’ s.! Hereinafter, we define range of a model, the largest portion of space or time the model accounts for,
and grain, the smallest portion of it.> The grain is frequently referred to also as the representative volume element
(RVE). A neuroblastoma can reach volumes as large as 4,188,790 mm® (a sphere of 20 cm of diameter). The representa-
tive volume element (RVE) of the tissue-scale model is equal to the average size of tumour cell (~ 10 pm). Current
models can account for the interactions of around 1 million cells (which correspond to a range of ~1 mm?) over
2weeks in roughly 2 min of computations, using a single graphic processing unit (GPU). Even in the unrealistic
assumption that the parallelisation of such model scales linearly, to solve the tissue-scale model over the entire tumour
volume would thus require 111,7011 GPU-hour on a large GPGPU cluster to simulate a full four-months chemotherapy
cycle. Splitting the problem into two single-scale models does not significantly change the computational cost: the
whole tumour model would need an RVE of 1-2 mm?, so we would need to solve millions of tissue-scale models, one
for each RVE of the tumour-scale model. However, if we can interpose between the two single-scale models
particularisation / homogenisation operators, the number of tissue-scale models to run can be reduced. This comes at
the price of introducing some additional approximation error in the solution. It is also important that this operator is as
simple as possible, to reduce the computational overhead that the multiscale orchestration imposes.

The simplest particularisation strategy is based on binning. In meteorology, the pairwise homogenisation algorithm
uses statistical analysis to dynamically define the bins.’ In fracture mechanics, binning-based particularisation is
implemented by placing bins at the Gauss quadrature points.* Binning particularisation is also used successfully in the
reconstruction of genomes,” but to authors' knowledge, it has never been proposed for computational oncology problems.
There are of course more sophisticated particularisation methods described in the literature. In fracture mechanics are
common hybrid multiscale methods combining homogenisation and domain decomposition approaches for example,® in
the field of composite materials, it is common the use of the theory of asymptotic particularisation of periodic media,’
which can be formulated with guaranteed accuracy.® Similar methods were also used to homogenise the properties of
solid tumours’; however, two key assumptions (periodic microstructure, and strong separation of scales) are hardly met
in this type of tissues. Problems of mass transport by diffusion within composite materials have been homogenised
assuming that the mass release curves for the detailed microstructural and continuum models.'® De la Cruz et al. propose
a quite elegant hybrid method to homogenise continuum and cell-scales in tumour growth multiscale model.'’ However,
their purpose is not that of reduce the computational cost of the multiscale model. On the contrary, the method they pro-
pose introduces a non-negligible overhead to homogenise the boundary conditions between the two scales.

The aim of this study is to evaluate the error caused by a specific implementation of the particularisation / homoge-
nisation process based on binning, as a function of the number of bins, in a multiscale model of growth for neuroblas-
toma tumours. The model uses the particularisation / homogenisation process to link a whole-tumour scale continuum
model that calculates oxygen diffusion and the biomechanical interaction of the growth process, with tissue-scale
agent-based models that simulate the activation, replication, differentiation, and death of the various cellular
populations involved with this specific tumour growth. As the overall computational cost of the model's solution
depends on the number of tissue-scale models we need to run at each time step, which is equal to the number of bins
used for the organ-to-tissue particularisation, there is a trade-off between the level of detail of the particularisation and
the computational cost to solve the multiscale model.

2 | MATERIALS AND METHODS
2.1 | A brief overview of the biological problem and its idealisation

One of the aims of the PRIMAGE project'? is the development of digital twins (patient-specific models) that can predict
the growth of a neuroblastoma (a type of solid tumour) when left untreated or when treated with different chemother-
apies. Living cells can replicate through a process called mitosis, where a single cell divides in two. Healthy human cells
have a number of molecular mechanisms that limit the rate of replication, and the number of times a cell can replicate
during its life. Due to mutation, some cells might lose these limitation mechanisms and start replicating indefinitely.
This produces a solid tumour, which is a tissue mass composed of tumour cells and of the extracellular matrix they
secrete. As the tumour grows, it compresses the surrounding tissues and organs, compromising their functions and
eventually killing the patient. There are various things that may slow down the growth of a neuroblastoma, but the
PRIMAGE model focuses on three: the transport to and from the surrounding vascular network that brings oxygen and
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other nutrients to the growing number of cells and removes from them their metabolic waste substances; the biome-
chanics of volumetric expansion of the tumour geometry due to the cells' replication; how the cells respond to the spe-
cific chemotherapy. Oxygen diffusion in the tumour mass is regulated by the cellularity (the volumetric ratio between
cells and matrix) and the vascularity, the density of capillary vessels that form within the tumour as it grows. Chemo-
therapy may reduce the replication rate and increase the death rate of tumour cells. How effective a specific chemother-
apy cocktail is in doing this depends on molecular make-up of the mutated tumour cells.

The PRIMAGE model predicts the change in geometry of the tumour over time depending on the treatment, as a
function the following input set: geometry, cellularity and vascularity at the beginning of the treatment, which are
quantified with Magnetic Resonance Imaging; and several molecular biomarkers obtained by analysis the tumour
biopsy. The mathematical model is built assuming that each cell change states is a probability function z,, (Equation 1)
that depends on the type of cell I, its differentiation level a, its telomerasel state 7, and the concentration biochemical
species S; at the cell location. Equation (2) represents the cumulative probability of internal state change for cell k as a
function of the treatment type.

my, (k(X), t) =z, (Ix, ok, Tk, S1, S2, ooy Sj, 1) (1)
. N e dv, ) N e dV, .
SiX, 0= %t @ Vo 7o )+ Y X4 Ty @y Vo T ) (2)
k k

The changes over space and time of the concentrations S; can be formulated as a diffusion-reaction equation. The den-
sity of the various cell types in space as a function of the replication/death events and of the biomechanical deformation
of the tissue can be formulated in terms of mass conservation equations. If we assume the cellularity does not change
as much as the tumour grows, the change of volume of the tumour over space and time can then be formulated as a
partial differential equation function of the changes in the local concentration of cells. The complete mathematical
treatment can be found in reference 1.

Scale separation analysis' suggested to decompose the problem into three single-scale models, propetly orchestrated. The
cell model, which computes Equation (1), needs to be run only once at the outset. Thus, the orchestration is limited to the
coupling of the tumour model with the tissue model. With respect to the results of the scale separation analysis, the final
implementation of the multiscale model presents some differences, dictated by computational constraints. The tumour model
solves the diffusion-reaction equations for the initial conditions dictated by the imaging data using a finite element scheme. A
tissue model is then run for each finite element: the tissue models simulate the evolution of the cells in the compartment for
the following 14 days. This is the longest time that in the untreated model predicts a change in volume that the tumour model
can handle without the need for remeshing. With the updated values of volume, cellularity, and vascularity for each finite ele-
ment the tumour model simulates first the volumetric expansion. The resulting geometry is the re-meshed, and then the
diffusion-reaction simulation is run again with the new values of vascularity and cellularity. The tissue scale models are exe-
cuted again to simulate another 14 days, and so forth until the whole chemotherapy cycle (typically 16 weeks) is simulated.

2.2 | Implementation details

The current version of the PRIMAGE multiscale model requires the coupling of two component models. The first com-
ponent model is a finite element model developed by the University of Zaragoza (ES) that solves the diffusion-reaction
equations and the biomechanics of the volumetric expansion equations. The volume of the whole tumour at time zero
is decomposed into a finite element mesh of 4-node linear tetrahedrons. The average element size is an order of
10~2 mm. The tumour-scale model is entirely deterministic; if the model is run twice with the same input, it will predict
the same output. The tumour-scale model is solved using a commercial general-purpose solver (Ansys v19.5, Ansys
Corp, USA), which runs on CPU cores.

The second component model is an agent-based model (ABM) developed by the University of Sheffield (UK). In the
ABM tissue-scale model each relevant cellular type is modelled as an autonomous agent, whereas the diffusion-
reaction of the chemical species in the compartment are described through a system of differential equations solved
with a finite difference scheme. The growth of the tumour is described by a set of rules that regulate when each cell
moves, replicates or dies. The tissue-scale model is stochastic in nature, so the same input will not produce the same
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output. The ABM model is run using the Flame GPU framework'® also developed by the University of Sheffield, and
distributed in Open Source.'* The ABM runs predominantly on GPU cores.

The reference volume element (RVE) for the ABM is a cube volume shrunken based on the initial parameters of the
model (e.g., element volume, cellularity and cell density). We assume that the ABM RVE is fully contained inside the
tetrahedron of the tumour-scale model and positioned at its centroid (Figure 1). The two models are coupled by an
orchestration software layer that handles the data flow, according to Figure 2. Between the two models there is a rela-
tion process, described in the following section, that handles the scale transformations.

In principle, we should run a tissue-scale model for each finite element in the tumour-scale model. But considering
that real tumours models could have millions of elements, this is not possible. Thus, a relation model is added to the
orchestration to handle the particularisation / homogenisation process.

The multiscale model was run on PLGrid2 Prometheus HPC cluster3, managed by Cyfronet, composed of Intel
Xeon E5-2680 CPUs and 144 Nvidia Tesla K40 XL GPGPUs. The cluster uses Linux CentOS7 as an operating system
and the SLURM scheduling system.

2.3 | Data

The whole study was conducted on an idealised tumour model, small enough to allow a solution without any
particularisation with the computational resources available. The idealised tumour model assumes the cancer to be a

FIGURE 1 Cubic-shaped RVE for the ABM (red) for a tetrahedron mesh element.
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FIGURE 2 Topology of the orchestration software layer
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spherical solid tumour of 5 mm in diameter, an initial volume of 524 mm?, which is meshed with 4448 finite elements.
Vascularity is represented in the model in term of oxygen concentration. Oxygen concentration is dimensionless
because is normalised with maximum oxygenation levels according to literature; the initial oxygen concentration is
assumed to be 1 at the outer skins and 0 at the centre with linear variation along the radius. This produces an initial
gradient that equal or greater than the one we would expect in real tumour data. The model assumed the cellularity
(ratio between cancer cells volume and the total cancer volume) to remain constant over the entire simulation. The
multiscale model is run to reproduce the growth of this idealised tumour for a period of 2 weeks, without any treat-
ment. The treatment would always slow down the growth, so the no-treatment option is the most critical for the
particularisation algorithm. While, ideally, we should calculate the particularisation error over the full duration of the
chemotherapy cycle, as the error propagates, the re-meshing required after 14 days would make impossible a reliable
evaluation of the particularisation error.

2.4 | The particularisation/homogenisation relation model

Between the two component models, there is a relation model that has the function of gathering all the data necessary
to write the inputs of the next model and doing the transformations requested for making the scale change, here named
as particularisation and homogenisation (Figure 2).

Those processes complement one with each other; the particularisation gets the outputs from the macro-scale and
groups the elements of the mesh in sets called bins. The homogenisation gets the outputs of the micro-scale and esti-
mates them to the macro-scale.

The binning process algorithm orders the elements by one variable and groups them in sets of the same size (or the
closest possible to it). The biggest value of each bin is selected to run the tissue model.

The homogenisation gathers all the results obtained by the tissue model and estimates the values (oxygen and
volume) for the elements that were not run, using a linear approach on the order the elements were sorted at the
particularisation, resulting in a set of data by elements. However, the last component model requires that the oxy-
gen input values are written per each node of the FE and not per element. This is done by considering the concen-
tration of oxygen in each node as a simple average of the oxygen value of all the elements that are connected to
the node.

The particularisation algorithm can operate on one variable at a time. In our case, the coupled models exchange
two quantities, the oxygen concentration and the change in volume. A preliminary investigation confirmed that the
spatiotemporal gradients of oxygen concentration were much greater than those of the changes in volume; thus,
the particularisation algorithm was run on the oxygen concentration. However, we also monitored the error induced in
the other variable. On the contrary, we did not explore the effect of particularisation on cellularity, because in this
implementation it is assumed to remain constant.

2.5 | The validation study

We first run the whole multiscale model without any particularisation (number of bins = number of finite elements).
At the end of the simulation, we recorded for each finite element of the tumour-scale model the oxygen concentration,
and the change in volume (tumour growth).

We then repeated the simulation several times, each time progressively reducing the number of bins. Since the
tissue-scale model is inherently stochastic, if we rerun the model, we would see differences not only due to the number
of bins we use but also due to the stochasticity. In order to separate these two sources of variation, in each of these
reruns, we did not run again the tissue-scale model, but we simply used the full-resolutions results obtained with the
initial simulation. This way, we were certain that the only difference between repeated simulations would be due to the
level of particularisation.

To describe the average error caused by each level of particularisation for each coupled variable (oxygen concentra-
tion, and changes in volume), we used the root mean square error (RMSE). The RMSE was plotted as a function of the
percentage of tumour-scale elements that were simulated at the tissue-scale level (hereinafter referred as granularity,
defined as the opposite of particularisation).
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Considering the primary reason for particularisation is to reduce the duration and cost of the simulation, we also
plotted the RMSE as a function of the wall-clock solution time, and of the total number of core-hours (under the
assumption that CPU and GPU cores had the same weight).

3 | RESULTS

Two cases of particularisation were tested, particularising by oxygen concentration and by the variation of volume. In
each test, several executions were run only changing the size of the particularisation (number of bins) and comparing
to the value obtained without doing particularisation and homogenisation (full resolution result)for calculating the root
mean square error (RMSE), divided by the full resolution result to normalise. The percentage granularity represents the
fraction of finite elements that had the outputs estimated by the tissue-scale model, that is, the percentage of granularity
is equal to one minus the percentage of elements particularised. Therefore, the smaller is the percentage granularity,
the closer it is to the case without particularisation (which has 0% granularity).

The percentage of RMSE error is plotted versus the percentage of granularity for both variables where the
particularisation variable is the oxygen concentration (Figure 3), or the variation of volume (Figure 4).

The particularisation by oxygen resulted to be much more accurate. While the particularisation by volume at 95%
granularity cause errors of 60% on the variation of volume and 7% in the oxygen concentration, the particularisation by
oxygen at 95% granularity caused errors below 1% for both variables (specifically .4% for the variation of volume, the
primary output of the model).

The computational cost for the whole orchestration is reported in Figure 5 in terms of core-time and memory alloca-
tion for the case of particularisation by oxygen. While the simulation of 2 weeks of growth for a small, idealised tumour
used in this study requires 104 core-hours and over 14 GB of allocated memory to be solved on the in the Prometheus
cluster without particularisation, an 95% granularity model can be solved with only 5 core-hours and 700 MB of mem-
ory. This means that the largest tumour would require 400,000 core-hours to simulate the whole 4 months of chemo-
therapy for each of the treatments being tested. Considering that current pre-exascale European supercomputers like
Leonardo being installed at the CINECA Italian HPC centre has 14,000 GPU cores that are nearly 10 times faster than
the one we used in this study, a simulation could be done in 8-10 h with a third of the core available.
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FIGURE 3 Error of the results for the oxygen concentration and volume variation with particularisation by oxygen.
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FIGURE 4 Error of the results for the oxygen concentration and volume variation with particularisation by volume.
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4 | DISCUSSION

The aim of this study was to evaluate the error caused by a specific implementation of the particularisation / homogenisation
process based on binning, as a function of the number of bins, in a multiscale model of growth for neuroblastoma tumours.
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As expected, the binning-based particularisation operator introduced approximation errors that grew with the gran-
ularity (number of bins) used in the particularisation, while the computational cost showed an inverse linear correla-
tion with the granularity. Thus, the question is reduced to whether the errors caused by significant granularity
(e.g., >90%) introduction approximation errors that are considered acceptable.

In both cases of particularisation, as expected, the error tends to zero when the granularity tends to 0% because
fewer values are being estimated (Figures 3 and 4). A particularisation by oxygen concentration with less than 1% of ele-
ments sampled (99% of granularity) causes a particularisation error of less than 1% for both oxygen concentration and
change in volume. The particularisation by the change of volume is less effective, causing a particularisation error for
the oxygen higher than 1% in most of executions and the volume error significantly increases when the granularity is
not close to zero.

The core-time consumption graph shows that the impact of the particularisation on the performance is linear and
the same occurs to the memory consumption. This occurs because the number of bins determines the number of execu-
tions of the tissue model, which is the most computer-demanding part of the orchestration.

This brings us to conclude that, for this problem, a particularisation by binning, while the simplest possible strategy
appears to be adequate. In particular, the particularisation by binning of the oxygen concentration cause approximation
errors of less than 1% over a 2-week simulation. Considering that the minimal clinically important difference in evalu-
ating a solid tumour treatment is a reduction of at least 35% of the tumour volume,!® even assuming a full accumulation
of the error for a 4-month simulation would still be well below 5%, which can be considered acceptable for the applica-
tion at hand.

The computer modelling of neuroblastoma growth has received attention in the literature, (e.g.,”" "), but most
models investigate the problem at a single scale. On the contrary, there very little literature to compare to for multiscale
modelling of neuroblastomas. In authors' knowledge the only other work'® has very different aims, and use no
particularisation strategy because they explore only five possible cellular configurations. If we broaden our research to
solid tumours in general, probably the closest work is that done by the CHIC project led by Prof Stamatakos on the
modelling of a brain tumour, glioblastoma.'®** The project used as orchestration software the precursor of that used in
this study,”" but used no particularisation strategy. Other authors proposed for similar problems single-scale models
coupling the cellular replication simulated with a cellular automata with the diffusion-reaction problem simulated with
a Lattice-Boltzmann scheme.*” While elegant, this approach, in the paper used to model 1 mm? of tumour, is impracti-
cal to model tumours that can grow as large as some 10 cm of size.

The main limit of this study is the use of an idealised tumour model. A real-world tumour would be different from
this idealised one, for the sheer size, that might be much larger in some cases. However, in term of oxygen gradients,
the one we assumed in the idealised tumour model are close to the highest observed in real tumours. A larger size
would increase the absolute values of the computational costs but would not change the conclusions on the
particularisation errors, which largely depend on such gradient. So, again, the conclusions reached here should remain
valid for real-world tumours. Nevertheless, we will repeat a particularisation convergence test for each of the cases used
in the future validation studies, in order to confirm that the particularisation error changes asymptotically as the granu-
larity is decreased. Another limit is that in the current implementation the cellularity is assumed to remain constant.
This should change in the final implementation, and at that point, it will be worth estimating the particularisation error
also for that variable. But again, given its spatiotemporal gradients are expected to be much lower than those of the oxy-
gen concentration, we expect comparable or lower errors.

In conclusion, the use of homogenisation based on a binning strategy in a multiscale model of solid tumour growth
can reduce the computational cost by 90% or more, while causing a particularisation error of less than 1%.
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