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Abstract: Quinoa is a crop originating in the Andes but grown more widely and with the genetic
potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need
to be assessed across years and multiple locations. To improve comparability among field trials
across the globe and to facilitate collaborations, components of the trials need to be kept consistent,
including the type and methods of data collected. Here, an internationally open-access framework
for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic,
physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature
plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision
of phenotyping cards to facilitate consistency in data collection. High-throughput methods for
multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher-
throughput post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa
field trials including the collection of environmental data and designing layouts with statistical
robustness is suggested. To move towards developing resources for quinoa in line with major cereal
crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of
data for quinoa researchers globally.

Keywords: Chenopodium quinoa; descriptors; genetic diversity; scoring card; architecture; panicle;
disease; high throughput seed phenotyping; remote sensing; database

1. Introduction

Food systems are experiencing intense pressure owing to, among other factors, in-
creasing population and environmental change (such as increases in the frequency and
severity of extreme weather events). Changes in environmental conditions are causing
changes in where particular crops can be cultivated as well as the types of crops that can
be planted in affected areas [1,2]. Uncertainty in climate and weather predictions highlight
the need for crops and varieties that are stable across time and regions. Diversification of
the crops grown is also important as increasing yield losses are projected to pose a serious
threat to food security [3]. These challenges will become ever more paramount with a
growing global population. Apart from the concerns of undernourishment in our popula-
tion, many are not receiving adequate amounts or diversity of micronutrients in their diet;
malnutrition is referred to as “hidden hunger” [4]. Dietary intake has been identified as a
key factor in the treatment and prevention of numerous non-communicable diseases [5].
The threat posed by climate change to food security, in addition to the concerns of human
nutrition, highlights the urgent need for diversification of the food system [6]. Numerous
strategies may be used to respond to both hunger and hidden hunger. One such strategy is
the reintroduction of genetic diversity to fully domesticated crops to increase variability
in the genes responsible for the environmental adaptability, plasticity, and resilience that
their wild ancestors still possess. An alternative approach lies in the domestication of
plants not yet used in agriculture at the global level and focus breeding efforts in Neglected
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and Underutilized Species and plants that are only partially domesticated (orphan crops)
and those that still harbor considerable genetic variability, which may contribute to im-
proved yield and adaptability. An example of the latter approach is the use of quinoa
(Chenopodium quinoa Willd.), a crop providing high nutritional content that has become
increasingly popular in recent years.

Quinoa has not been domesticated to the same extent as the other major grain crops
for global food and agriculture such as wheat, maize, or rice. Because of its cultivation
in various agro-ecological conditions over the last few millennia, including mesothermal
zones, highlands, salt flats, and subtropical zones of the Andes, quinoa experiences a
wide range of challenging environmental conditions, resulting in high genetic diversity
and tolerance to a range of biotic and abiotic stresses of this crop [7,8]. Furthermore, the
seed is gaining popularity for its high nutritional value, an important feature of the UN’s
Sustainable Development Goals [9]. Despite the ability of quinoa to maintain yield under a
wide range of environments and the growing worldwide interest in the crop, the primary
locations for cultivation are still the countries that have a tradition of growing quinoa:
Bolivia, Peru, Colombia, Ecuador, Argentina, and Chile [10]. In recent years, quinoa has
been more widely cultivated at sites such as Europe, North America, and China [11].
A primary strategy developed to meet the increasing food demand is the expansion of
cultivation through the identification of adaptable and high yielding quinoa cultivars for
different agro-ecological zones [12]. Seed nutritional contents and interannual stability
of cultivars are traits of much importance in quinoa [13]. Local production will reduce
food miles, thereby reducing transportation costs and potentially environmental impacts of
quinoa consumption. To achieve this aim, insights into the broad performance spectrum of
different varieties grown in a range of environments as well as an improved understanding
of the genes underlying traits of agronomic importance are needed.

Recently, genomic tools have emerged to support the development of quinoa germplasm
for novel environments. Several novel genomic resources have been developed in the
past decade, including bacterial artificial chromosome (BAC), expressed sequence tag
(EST) libraries, and DNA-based molecular markers (see [14]), as well as, more recently, a
chromosome-scale reference genome sequence of a coastal (or “lowland”) quinoa accession
(BioSample Accession Code QQ74) [15] and the resequencing of several wild and cultivated
quinoas. Together, these are helping develop genomics-informed breeding programs and
genetic studies to accelerate crop improvement [14]. Phenomics (i.e., high-throughput
phenotyping) are currently a limiting factor in genetic analyses and genomic prediction,
after recent advances in throughput and reduced genotyping costs realized over the past
two decades [16]. Quinoa phenotyping strategies, however, have not been standardized.
This is one of the limiting factors in the common characterization of quinoa and assessment
of its adaptation to different environments, and which limits advancements in quinoa
genetic research.

Yield is an important but complex trait in plant breeding because it embodies the
link between the cumulative effects of all plant traits and economic value of the crop [17].
Owing to the additive and genetically complex nature of yield, the genetic architecture
of yield cannot be easily analyzed, and is usually best analyzed through secondary traits
that contribute to yield, such as harvest index and other developmental traits, and photo-
synthetic parameters and other physiological traits (see [18]). Crop improvement efforts
through indirect selection that focuses on secondary traits which are correlated with yield
but are potentially monogenic have long been proposed for crops [19,20] and have been
successfully used for sunflower [21,22], and many other examples [23–29]. The assessment
of differences in the response of genotypes to different environmental conditions facilitates
the development of genotypes that lead to improved phenotypes in a specific environ-
ment [30] and also allow insights into the genetic architecture of a trait. To gain insights
into complex traits, a study of large numbers of genotyped accessions across multiple
environments is required to identify genotype-by-environment (G × E) interactions [31].
This is particularly important in quinoa, due to the large G × E interactions that have been
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reported [32,33]. For the generation of varieties for different situations, G × E interactions
also need to be considered in association with agricultural practices that are shaped by
growers and societies. Building collaborations between breeders and growers is important
for the adoption of new varieties [34,35].

It is often difficult to determine the pattern of quinoa genotypic responses across environ-
ments. The biplot analysis may also provide a powerful solution to alleviate this problem. For
effective cultivar evaluation, both the effect of genotype (G) and the interaction G × E must
be considered simultaneously [36,37]. A G plus G × E (GGE) biplot was shown to effectively
identify the G × E interaction pattern of the data and to show clearly which genotype won
in which environments. In addition, the GGE biplot technique is useful in selecting superior
genotypes and test environments for a given mega-environment; that is, a group of locations
that consistently share the same best genotype or genotypes.

Given the need for data from multiple environments and the high costs incurred from
large field trials, the benefits of robust collaborations are clear. In addition to the need
for international collaboration for the exchange of genetic material [13], the establishment
of an internationally accessible framework for quinoa phenotyping is crucial because it
will facilitate the comparison and sharing of data from trials among researchers globally.
The previously published “Descriptors for Quinoa and wild relatives” [38] has been a
useful guide for the establishment of several phenotypes. We also note the EU Community
Plant Variety Office publication protocol for tests on distinctness, uniformity, and stability:
Chenopodium quinoa [39]. However, there is a need for more detailed explanations of many of
the traits, as the current guide leaves scope for interpretation reducing comparability among
trials. A lack of good guidelines for the recording of traits or a margin for interpretation,
results in uncertainty around data sets that could be reduced through standardization and
clear definitions.

Based on our experiences over the past six years since the publication of these descrip-
tors with the International Year of Quinoa, we have identified several useful phenotypes
covering the variability expressed by over 1000 quinoa genotypes across multiple envi-
ronments (including some in which quinoa has not been cultivated extensively) and have
adapted the description of some traits to clarify the definitions of the traits. We present
this information in this article, resulting from discussion and general agreements among
the Quinoa Phenotyping Consortium. Furthermore, this article provides guidelines for the
entire process of a field trial, starting with the experimental design, providing advice on
crop management decisions, and detailing the minimum environmental data which must
be collected. Without standardized metadata information about a trial, experiments cannot
be replicated, even when phenotyping standards are followed [40].

A consensus on phenotyping methods is presented in this article, starting with phe-
notyping methods that are performed throughout the growing seasons, including the
international standard on the recording of phenological growth stages [41] and options for
high-throughput phenotyping using remote sensing. This section is followed by detailed
descriptions of the traits that can be assessed in mature plants. These traits are also summa-
rized in phenotyping cards (Supplementary file S1) to aid phenotyping in the field. Next,
we focus on the process of harvesting and describe post-harvest phenotyping options and
methods. The next step in facilitating the creation of a collaborative network of trials is
a platform that allows the viewing of trials undertaken by different researchers globally,
through which data can then be easily shared and analyzed. This structure is provided by
the quinoa Germinate platform. Thus, this article presents the collective efforts of a large
number of quinoa researchers, reflecting the experience gained over many years of working
with this crop, and aimed to establish a baseline to approach field trials and move toward
an era of accelerated discoveries in the global quinoa research community. The traits
presented herein represent the phenotyping scales that are currently in use for exploring
the natural diversity across different environments. As quinoa research is progressing,
these scales will need to be adapted to match new situations and applications. For this, we
are aiming for the Quinoa Phenotyping Consortium to hold an annual meeting to refine the
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guidelines and procedures with the aim of both increasing the quality and standardization
of phenotyping.

2. Quinoa Database

The establishment of an international consensus for our methods in phenotyping
quinoa field trials is the first important step in driving international quinoa research
forward through allowing comparisons among field trials and facilitating collaborations.
An important component of the phenotyping operation is the recording of all information
needed for further exploitation of the data. These records need to be complemented with a
platform that allows sharing of data generated with the herein described methodologies
and facilitates access to the available datasets.

Contribution of data to this database is of great value to (a) breeders and other people
who want to start working with quinoa, (b) other researchers, and (c) to the team that
shares their data. Considering the monetary and time cost of field trials, in addition to the
phenotypic plasticity of quinoa, access to information on how quinoa varieties perform
in different locations is highly valuable in providing decision-making support to growers
and individuals who want to start working with quinoa. Access to data from trials in
a similar environment would help them to make informed decisions on what varieties
might be performing best in their region. For other researchers, as well as the team that
contributes the data, the importance of data shared in a database lies in the opportunities
for collaborations that it creates. Many analyses require datasets from multiple locations
and years. It is through collaborations that the speed of discoveries is accelerated. If a team
has not published their data yet and wants to keep it private, it can still be uploaded to the
database under a privacy setting through which the data remains accessible only to the
person who uploaded it and optionally a defined list of other individuals (i.e., the research
team). In addition to these privacy settings, license terms can optionally be assigned to
datasets before access to the data is granted. In this case, data would only be accessed after
the license has been accepted.

Here, we present a central repository Quinoa Germinate Database. Available online:
http://germinate.quinoadb.org (accessed on 15 August 2021), which was created using
the Germinate platform [42,43]. The Germinate platform is used by many international
organizations, including CIMMYT and data uploaded to Germinate will also become
available through the BreedingAPI.

This database allows storing phenotypic and genotypic data as well as germplasm
passport data and environmental information. To upload a dataset, users need to first register
to the database and data can only be uploaded through the use of standard data templates
(https://github.com/germinateplatform/germinate/tree/master/datatemplates accessed on
15 August 2021) to ensure consistency between datasets. For the quinoa community, some of
these data templates have been customized to include the information that was highlighted in
this paper, including the phenotypes that have been described. These quinoa datasets can be
downloaded from the home page of germinate.quinoadb.org. Traits included in the quinoa-
traits-data-template.xlsx can be amended to fit your data, but we encourage that all traits
uploaded to the Quinoa Germinate Database be trait variables also described in the Quinoa
Ontology database of the Crop Ontology (CO_367) of the Generation Challenge Program (GCP)
(http://cropontology.org/ accessed on 15 August 2021). Data uploaded using the templates
are checked for consistency and correctness by the program before it is imported into the
database. A detailed report highlights issues within the data that require fixing before the
dataset can be imported. Once added to Germinate, trial data along with climate information
can be queried and visualized to discover and highlight patterns and correlations. Data across
different trial sites, years, and treatments can be compared to gain a better insight into the
effects on performance of germplasm. Customizable lists of germplasm facilitate the comparison
of the performance of different accessions, as well as data export of subsets of interest.

All traits described in this manuscript are being uploaded to the Phenotype and
Trait Ontologies of the Crop Ontology Curation Tool (https://www.cropontology.org/

http://germinate.quinoadb.org
http://germinate.quinoadb.org
https://github.com/germinateplatform/germinate/tree/master/datatemplates
http://cropontology.org/
https://www.cropontology.org/
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accessed on 15 August 2021) to create a Quinoa Ontology database. Any traits measured
in Quinoa trials should be included and described in this ontology database. The use
of a standard nomenclature for phenotypic traits is another aim in the context of data
reproducibility and reusability [44]. The use of standard ontology and recommended
methods allows others to quickly interpret and compare data generated from other teams.
Hence, we recommend using the described trait variables for quinoa (CO_367), and if a
trait is not included in the already described, to add it to the ontology by filing a request
(https://www.cropontology.org/add-ontology accessed on 15 August 2021). The ontology
spreadsheet can be downloaded from the website and from Quinoa Germinate Database.
Available online: http://germinate.quinoadb.org (accessed on 15 August 2021).

The step of using standardized templates and standard quinoa ontologies ensures
that datasets from different groups have the same structure and include the information
required by another team to use these data in their analyses. Uploaded datasets can be
visualized and analyzed using different tools that are available through the platform. The
platform’s integrated tools for data exploration and analysis facilitate the process from data
collection to the next exciting steps for new discoveries about quinoa.

3. Germplasm Selection

The quality of an experiment and its usability in an international framework requires
careful consideration and planning, with the first step being the selection of genotypes.
Based on the proposal of the Plurinational State of Bolivia, quinoa has been recognized by
the United Nations (during its General Assembly in New York, 22/12/2011 [45]) as a poten-
tially valuable crop for future generations. In recognition of the considerable genetic diver-
sity created and maintained by the Andean civilization, the International Year of the Quinoa
that was declared, with the FAO in charge as the office of secretary [46]. The exceptional
genetic diversity resulted from the cultivation and domestication of quinoa for several thou-
sand years in the harsh and diverse environments of the Andes, combined with the tradition
of seed exchange by Andean growers. In 2013, Rojas et al. [7,47] estimated that “16,422
accessions of quinoa and its wild relatives, both closer and more distant (C. quinoa, C. album,
C. berlandieri, C. hircinum, C. petiolare, C. murale, and Chenopodium sp.) were conserved in 59
genebanks distributed in 30 countries”. However, most (88%) of these resources reside in
genebanks from the Andean region, for which access is limited to people from those coun-
tries [48,49]. Increased international research partnerships with Andean countries is crucial
to facilitate access to genetic resources in order to continue quinoa plant breeding and the
generation of new varieties which are adapted to new regions. Ex situ collections of 987
and 229 C. quinoa accessions are publicly available from the Genebank Information System
of the IPK Gatersleben (Available online: https://gbis.ipk-gatersleben.de/ (accessed on
15 August 2021)) and the USDA U.S. National Plant Germplasm System (Available on-
line: https://npgsweb.ars-grin.gov/gringlobal/search.aspx accessed on 15 August 2021))
genebanks, respectively. They include germplasm from 15 countries, mostly the South
American countries of Peru, Bolivia, Chile, Ecuador, and Argentina. The extent of duplica-
tion within these accessions is uncertain, although likely significant.

To select a panel of accessions representing quinoas genetic diversity, one can, for
instance, choose accessions based on their origin, i.e., country/region of origin. Such selec-
tion is possible because country/region information is usually documented for accessions
available in public genebanks—although it should be noted that the original country of
origin can be ambiguous. We found that a substantial proportion of the ex situ collections
have more precise information missing about the collection site (region, province, or closest
city), preventing them from being selected on the basis of a strict geographical distribution.

Another option for selecting a subset of quinoa genetic diversity is to consider stable
morphological characteristics, such as color and shape of leaf, stem, and seed, as a pheno-
typic passport for each accession. Such data are not always provided by the germplasm
provider, and stability is rarely known, so screening of a large, diverse population is usually
required before further selection is possible.

https://www.cropontology.org/add-ontology
http://germinate.quinoadb.org
https://gbis.ipk-gatersleben.de/
https://npgsweb.ars-grin.gov/gringlobal/search.aspx
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A third option is to use the phylogenetic relatedness and population structure informa-
tion provided by recent genetic diversity analyses performed using either DNA molecular
marker screening of the different quinoa populations or, more recently, whole-genome
resequencing [50–59]. Whole genome resequencing will be stored in a separate database
administered by David Jarvis, BYU (quinoadb.org). Although no comprehensive screening
has been performed on the entire collection of quinoa resources available in public gene
banks to date, several studies have provided estimations of the genetic diversity of each
category of germplasm (in particular, highland vs. coastal (originally designated “sea
level”: [60]), the relatedness among accessions, and an estimation of the heterozygosity
level at given sites within each population. Cumulatively, these parameters are important
for establishing a suitable panel of quinoa genotypes for genetic analysis.

There is large genetic variation available in quinoa germplasm with a large reser-
voir of genes for conferring resistance to biotic and abiotic stresses necessary for quinoa
adaptation to challenging and changing environments. Developing new plant breeding
methods that can maintain a high level of genetic diversity from the population varieties
(usually traditional varieties which are often highly heterogeneous material [61]) may
confer more stability of seed yields and a higher resilience to the cropping system [62].
The genetic variability in quinoa germplasm is, however, also driving major challenges
in fundamental genetic studies. The traditional practice of admixing, together with the
possibility of quinoa to outcross, has resulted in extensive allelic richness translating to
a relatively high level of genetic heterozygosity in some populations [50–59]. Owing to
this genetic heterozygosity, quinoa genotypes collected in Andean countries and main-
tained in public gene banks are likely to be highly heterogeneous, necessitating several
generations of selfing and single-seed descent to reduce the heterozygosity at potential
loci of interest before these materials can be used in genetic studies. Considering the high
level of heterozygosity, we recommend a minimum of two generations, and preferably five
generations, of self-pollination before initiating any genetic studies to minimize phenotypic
heterogeneity and genetic heterozygosity that would interfere with association analyses in
genetic studies [63,64]. The use of doubled haploids to obtain homozygosity might also
be possible, although this technique has not yet been developed in quinoa. Any accession
studied must subsequently be maintained through single-seed descent and given a unique
identifier, for it will likely become a selected genotype, genetically distinct from the original
material. After several generations and confirmation of homozygosity, seed could then be
bulked to facilitate larger trials, in larger plots and/or at multiple locations.

Another consequence of heterogeneity of seeds in public gene banks is the strong
segregation and therefore divergence between plants that are likely to be selected for
self-pollination for each quinoa accession in different laboratories worldwide. Ideally,
this diversity could be counteracted by growing a subset of seeds from each accession
and selecting plants for propagation that represent the majority of the accession. In
reality, however, the phenotypic plasticity of quinoa resulting from strong genotype
(G) × environment (E) interactions causes quinoa accessions with the same genetic back-
ground to produce drastically different phenotypes in different environments [32], making
the creation of a phenotypic passport for each genotype difficult. Therefore, caution must
be maintained when comparing results generated for a single accession from seed stocks
maintained by different genebanks worldwide. These accessions should be considered as
genotypes and must be clearly identified with an independent identifier because they might
evolve over time into a new commercial variety considering the Distinction-Uniformity-
Stability descriptors of the UPOV system (as defined by being material that is new, distinct,
and uniform).

To maintain the relationship among quinoa accessions in different seed stocks world-
wide, we propose that the identification of quinoa germplasm is standardized through the
use of Digital Object Identifiers (DOIs), allowing each quinoa accession worldwide to be
uniquely identified by an alphanumeric string that is assigned by a registration agency such
as the Global Information System. Available online: https://ssl.fao.org/glis/ (accessed
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on 15 August 2021, which provides a persistent link to the location of information about
the object on the Internet. This unique identifier co-exists with other identifiers such as
those given by the gene banks and allows for unambiguous and permanent identifications
of plant genetic resources, which can be exchanged across organizations, and therefore,
facilitate the comparison of results obtained by different teams.

4. Experimental Design and Crop Management

The statistical design of a plant trial experiment will depend on the aim of the study
and will dictate the way in which the data from the experiment are analyzed. Plant
breeding and genetics rely thoroughly on large-scale variety trials to generate reliable phe-
notype data and the scale of those grows continuously [65]. For field trials, spatial designs
(i.e., planting layouts in the field where genotypes are replicated and their positions along
rows and columns are randomized) are recommended because they allow for better estima-
tion of environmental variation in the field and increase the reliability of the experiments.
In general, researchers/breeders should aim for balanced experiments to evaluate the
germplasm/varieties in multiple locations and years. Statistical procedures based on
mixed models are used to compute fixed effects (best linear unbiased estimate) and ran-
dom effects (best linear unbiased predictions) from the phenotype data generated by field
experiments. If the environment-effect on genotype (G × E) is not significant, no or little
difference between BLUE and BLUP was observed. However, when G × E is significant,
BLUP was superior to BLUE [66,67]. When a treatment is tested, the number of subjects re-
quired is double because treatments always need to be tested alongside control conditions,
and both should be fully replicated and separately randomized [68]. There are different
options to account for technical constraints that might need to be resolved. For example, a
split-plot design might need to be used if a treatment factor, e.g., irrigation treatment, can
only be applied to a larger area. A good resource for advice on several different designs is
the book Statistical Methods in Biology: Design and Analysis of Experiments and Regression [68].
The inclusion of genetic relatedness in the design of early generation trials can also be con-
sidered for improvements of selection decisions at early stages in breeding programs [69].
Breeders can also optimize breeding programs to improve efficiency and effectiveness with
the help of simulation software such as QU-GENE [70], AlphaSim [71], and DeltaGen [72].
Moreover, analysis can be improved into a new stage by incorporation of genotypic (SNP)
and phenotypic data to perform genomic selection (GBLUP) and GWAS [65].

In early generation variety trials with large numbers of genotypes and small amounts
of seed, it is often not technically feasible to implement a fully replicated design. Partially
replicated designs [73], where at least 25% of the genotypes have two replicates, are
recommended under such circumstances. If resources permit, fully replicated designs are
preferred because the statistical power and confidence in the results increase as the number
of replicates of each genotype increase. If breeding values (the estimation of the value
that the genes of a variety would have if used as a parent in crosses) [74] are required, a
pedigree analysis or a genomic selection approach is needed. Both require generation of a
relationship matrix based on either the pedigree or genomic information. Replication in
these approaches ensures that the total genetic variation can be partitioned into additive
or non-additive variation, which is important for determining breeding values versus
commercial values of genotypes [75]; thus, fully replicated trials are preferred. For genome-
wide association studies (GWAS) aiming at identifying the genetic variation associated
with a particular phenotype, it is important to ensure adequate genetic diversity, allowing
enough statistical power to perform an association analysis. Because there is a clear
relationship between the effective sample size and the statistical power of an association
study, it has been recommended to use a minimum of 100 genotypes to perform GWAS
analyses [76], although the minimum sample size also depends on the genetic diversity
within the population, the number of markers used in the study, the trait considered, and
where the minor QTLs are being sought. Once these data are obtained, replication should
be prioritized over the inclusion of a larger number of accessions. In limited space, the
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inclusion of more genotypes but fewer replicates comes at the expense of obtaining an
accurate estimation of their phenotypic performance, which in turn reduces the power
of SNP-loci association calculations, and might lead to false positives. A good balance
can be achieved with partially replicated designs which combine the advantages of high
replication levels for a subset of the genotypes and a large enough genetic diversity in the
panel of genotypes.

DiGGer [77] is a useful package for R software that can be used to create partially
replicated and fully replicated spatial designs. It can be downloaded from NSW DPI Biometrics
software download page. Available online: http://nswdpibiom.org/austatgen/software/
(accessed on 15 August 2021). Once in the R version 4.0 software environment, the file can be
installed from the downloaded zip file (e.g., “digger.zip”) using the following commands:

install.packages(“C:/path/DiGGer.zip”, repos = NULL, type = “source”)
where “C:/path/” indicates the path to the folder in which the zip file has been saved.
The downloaded zip file contains a manual with examples of the code required to create
these designs. An example of a fully replicated and a partially replicated trial created
in DiGGer is shown in Figure 1A,B respectively. Other packages with many useful func-
tions are agricolae: Statistical Procedures for Agricultural Research (Available online:
https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 15 August
2021)) and ASReml-R. Available online: https://www.vsni.co.uk/software/asreml-r (ac-
cessed on 15 August 2021).

Figure 1. Example trial design generated using DiGGer of (A) a fully replicated trial with two replicates, including 60 plots
arranged in six rows by 10 columns, with each replicate block of 30 genotypes (GXX) comprising three rows by 10 columns
(color representing genotype), and (B) a partially replicated trial with 25% replication, including 48 genotypes (GXX) in
total, with 12 genotypes having two replicates (pink) and 36 genotypes having one replicate (blue).

Although not included in the trial design examples shown, it is very important to
include the rows and columns of border plants that are needed around the field to provide
a “buffer area” for the experiment, thereby reducing the environmental border effects.
This buffer area should be at least 1 m wide and should be planted with one or two well-
performing genotypes. Border effects are also observed at the plot level, making the high
phenotypic plasticity of quinoa immediately apparent. Plants on the edges of the plot
commonly show higher levels of branching, which is probably a response to the increased
space and resource availability. These plants can also differ greatly in height from plants in
the middle of the plot, a phenomenon which may depend on their exposure to nitrogen
and other nutrients, water, and varying ratios of red to far-red light. If there are maturity
or height variations among genotypes, neighboring plots may also cause shading, which is
an issue to be considered when planning the plot size.

Therefore, it is recommended to have plot sizes of approximately 4 m2 to allow a “plot
in plot” design. When recording observations, researchers can disregard the plants on
the outer edges of the plot, which occupy approximately 0.5 m on each side, and focus

http://nswdpibiom.org/austatgen/software/
https://cran.r-project.org/web/packages/agricolae/index.html
https://www.vsni.co.uk/software/asreml-r
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only on the plants in the middle of each plot. The phenotypes observed in the middle of a
plot are the phenotypes of interest because the proportion of plants along the edge becomes
negligible when plants are grown in large fields at a commercial scale. Border rows may be
used for bagging and seed multiplication. However, if bagging is not adequately performed,
heterogeneous seeds may be obtained, which should not be used in future trials.

Regarding yield predictions, larger plots are more beneficial, and bed sizes such as
5 m long × 3 m wide (12 rows, 25 cm between rows) = 15 m2 are recommended to ensure
a more accurate representation of the behavior and expected yield from an accession if it
were cultivated in a large field. A 10 cm spacing between plants within a row equates to
600 plants per plot. If 500 plots are used, the field area required for the plots is 7500 m2.
The total area required will be larger, after adding in the area needed for spacing between
plots, and the inclusion of border plots around the field. Smaller plots are often required
owing to individual constraints. We found plots sized 2 m × 2 m to be a practical size
for multi-environment trials quantifying phenotypic traits to assess a large set of several
hundred accessions, but plots this small should not be used for accurate measures of yield.

In any trial, growing conditions should be as close as possible to the actual condition
under which the plants will be grown commercially, particularly if investigating yield or
traits closely related to yield [78]. These conditions involve minimization of both abiotic
stresses (such as water and nutrients) and biotic stresses (such as pests, weeds, and diseases).
If stress effects are important, these conditions must be implemented in plants grown under
otherwise optimal conditions to allow quantification of the specific responses to stress.
Optimal conditions and crop management approaches are largely dependent on location,
soil types, and genotypes. The following section provides some suggestions for planting
and growing conditions. More detailed recommendations for specific situations can be
found in the book “Quinoa: Improvement and Sustainable Production” [79]. Although
there are no clear guidelines for some of the following crop management aspects yet,
a research gap that needs to be addressed, it is advisable to follow strategies that are
successful for others growing quinoa under similar environmental conditions and soil
types [13,80].

4.1. Planting

Planting density has a significant effect on the phenotypes of quinoa (see, e.g., [81]),
specifically on their branching habit, and should therefore be optimized to suit the cropping
system. Soil types and irrigation systems are important factors to consider; for example,
factors such as furrow irrigation can restrict row width. When assessing the effect of plant
density, it is important to consider two distances: the distance between rows of a plot, plus
the distance between plants in a row. Studies that have assessed the effects of planting
density on quinoa phenotypes were conducted in a specific environment. Due to the use
of different methodologies and genotypes, comparisons between environments are not
possible to draw. It appears that the optimal planting density depends on multiple envi-
ronmental and management factors, such as weed management, as well as genotype [82].
Considering the significant phenotypic plasticity of quinoa in response to planting density,
it is clear that trials with similar planting densities are better in multi-environment analyses
and that planting density always needs to be recorded. Moreover, plots with poor emer-
gence should be recorded, and might need to be excluded from analyses. When assessing
hundreds of genotypes in one trial, only one uniform planting density can be used, unless
planting density is a criterion being tested.

Current and future cropping systems aim for the production of high yielding varieties
with highly nutritive seeds, requiring low fertilizer and phytosanitary inputs. Optimum
sowing density can vary depending on quinoa variety, which in turn can differ according to
plant and panicle architectures, seed size, sowing technique (broadcast, rows, or grooves),
and agroecosystem. Quinoa sown at high densities grow into less robust and smaller plants,
with lower yield per plant, than those planted at low densities. However, the planting of
too few plants per unit area may result in branched plants that may not mature before the
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first frost, and it may also provide more space for the growth of weeds. Therefore, Aguilar
and Jacobsen, 2003 [83], have recommended a density of 40 plants per m2, with 10 cm
between plants in a row and 25 cm between rows, depending on practical details of the
system. Quinoa seed viability is sometimes low; therefore, it is prudent to plant more seed
(~3 kg/Ha without taking seed size into consideration), followed by a thinning of plants to
achieve the desired distances between plants. Thinning (removing excess seedlings) should
be performed when plants are 5 to 10 cm high, after the plants are established, but before
signs of intense competition for light, such as elongated seedlings, are detected. Sowing
a lot of seed followed by thinning to achieve the desired plant density is a method often
popular in a field situation that does not allow the recording of seed viability in the field.
Hence, germination rate of the seeds from each seed batched used in the field trial should
be tested in petri dishes to calculate seed germination rate (%) and other germination
parameters. This also allows more precise calculation of the amount of seed that needs to
be sown out (see, e.g., [84]).

The above recommendations relate to ordinary flat fields. In the Andes highlands, farmers
have through generations developed a completely different strategy where they sow numerous
seeds in holes that are distant from each other. The outermost plants protect the plants in the
middle from flying sands and strong winds while the holes also collect water.

Planting may be performed by hand, although this approach is labor-intensive and is
not feasible for large trials. Alternatively, a hand push seeder can be used. The use of a
mechanical seed planter (such as a cone seeder) allows even higher throughput, although
this requires a skilled operator to ensure that seeds from one genotype are not carried over
into adjacent plots. Seeds are planted at shallow depths. A recommendation is to plant at a
depth that is three times the diameter of the seed. With seeds between 1.5 and 2 mm in
diameter, the planting depth should be approximately 4.5–6 mm. Recommended planting
depths can vary with location and soil types. Soil compaction is important because quinoa
seeds germinate better in looser soils, so germination rates are better in sandy soils than in
heavy clay soils [85]. Hydromorphic soil types are problematic for growing quinoa due to a
high sensitivity to waterlogging [86]. Waterlogging was also found to negatively impact the
percentage of emergence when seeds were planted too deeply, whereas shallow-planted
seeds may be subject to drying [87]. A uniform planting depth of the seeds is important to
reduce the risk of uneven field emergence.

Water availability and other environmental constraints can be considered in the
decisions around the season for cultivation. Depending on environmental factors or for
consideration of crop rotations, quinoa can be used as a winter or spring crop. The sowing
date requires careful consideration as this decision impacts growth and productivity of the
crop. Due to a range of factors from soil temperature for seed germination through to high
temperatures inhibiting grain fill [88]. Consideration could also be given to staggering
planting to account for differing times to maturity depending on the traits being measured
in the experiment.

4.2. Irrigation

Irrigation is known to affect several aspects of quinoa phenotypes, from plant height [89]
to seed saponin content [90] and yield [91,92]. Irrigation needs for optimal growth depend
on soil type and environmental conditions and should therefore be calculated for each
location. The irrigation requirements for quinoa can be estimated using the crop coefficients
(Kc) for quinoa, as described below.

To calculate the evapotranspiration rates, a reference evapotranspiration rate (ET0) is
first calculated from a range of meteorological parameters using the only standard accepted
method by the FAO, the Penman–Monteith equation [93]. To facilitate the calculation
of ET0, a calculator has been developed by the FAO for Windows OS [94]. Next, water
requirements can be calculated by multiplying the ET0 with quinoa crop coefficients
(Kc × ET0), and finally, irrigation amounts are planned by subtracting any rainfall from
the water requirements that were calculated. The requirements differ with growth stages,
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considering that the principal growth stages 6 (flowering) and 8 (ripening) are most
sensitive to drought stress [95]. Rainfed crops may therefore need additional irrigation at
several points of the growing cycle: before sowing, at the beginning of flowering, and at the
start of seed filling. Proposed Kc values also reflect the differing requirements by providing
three different values to choose from: one of the following three Kc values may be used to
make a crude estimate of water requirements: 0.52 for initial stages, 1.00 for mid-season
stages, and 0.70 during the principal growth stage 9 senescence [91], although compare [96]).
More accurate estimates of water use can be performed by using a growth model relating
the dynamics of leaf area and radiation interception. Integrated crop management tools
such as the SALTMED model can be used for informing irrigation strategies, and has
been calibrated and used for quinoa [6,97,98]. The Kc values used in these three model
applications differed among them, suggesting that different Kc values yield better model
predictions in different environments and for different genotypes. For example, planting
densities were found to greatly affect Kc values, varying to such an extent that a single Kc
value was difficult to assign [82].

Owing to strong phenotypic responses of quinoa to water availability, it is also crucial
that the land used for the experiment is laser leveled before sowing to reduce the hetero-
geneity in the amount of water that plants receive across the field. Types of irrigation vary
depending on local environmental conditions and technical possibilities. In any case, it is
important to record details of irrigation schedules and the amount of water used. Even
though quinoa is considered a facultative halophyte, salinity levels of the irrigation water
are important to measure with precision as well, not only when salinity is a treatment.

4.3. Fertilization

There has been little research on the fertilization of quinoa. Most publications provide
information on local recommendations but lack thorough physiological and biochemical
characterization across genotypes. Several studies focus only on varying inorganic nitrogen
supply following the conventional method for determination of optimal nitrogen availabil-
ity by measuring responses according to yield [99] without examining growth responses to
other important macro- and micro-nutrients or organic sources of these nutrients. Quinoa
yield has been shown to positively respond to nitrogen supply [96,100,101]; however, it
is important, when breeding quinoa for smallholder growers, to consider the selection of
genotypes that can maintain their yield under nitrogen limiting conditions. Interestingly,
quinoa cv. Titicaca has been shown to maintain size, weight, and nitrogen content of their
seeds irrespective of the nitrogen supply [102,103].

4.4. Weeding, Pest and Disease Controls

There have not yet been any effective herbicides developed for quinoa and the crop is
mainly cultivated under organic practices; therefore, weeding often needs to be performed
by hand. Weeding is important because weeds compete with quinoa plants for nutrients,
light, and water, confounding the results of systematic investigations on the culture of
quinoa and potentially reducing yield. If machine weeding is available, spacing between
rows/plots needs to be sufficient to enable movement of machinery.

For scientific studies in-field, preventative management of pests and diseases need
to be conducted. For this, it is better to apply treatment on a regular schedule rather
than waiting for problems to appear. Of course, for trials testing resistance to pests
and diseases, such a regimen should not be conducted, nor for commercial fields using
integrated pest management. In several countries, no approved products for quinoa are
available; therefore, management must often be based on recommendations for similar
crops such as beet, chard, or spinach. For preventing loss in quinoa yields, it is essential
to be aware of the diseases and pest that may occur, but in the case of quinoa, there is
high uncertainty about local ecological interactions when adapting the crop to new agro-
ecological zones and environments. The only manual on quinoa pest and disease [104]
was developed for Andean conditions and it was not adapted for different conditions of
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cultivation, nor translated into English. This point implies that we need entomologists and
plant pathologists within the research teams for controlling and preventing damages in
trials. Digital tools such as Platix [105] to detect diseases and foliar disorders are becoming
increasingly powerful and can supplement expert input.

5. Environmental Variables

Although crop management techniques can be used to influence some environmental
variables, such as when irrigation regimes are planned according to rainfall, virtually
no environmental variables can be controlled in a field experiment. These variables
include soil drainage, soil pH, and microtopographic effects, causing pooling in some
locations [106,107]. However, environmental variables greatly affect phenotypes, and the
degree of plasticity of a genotype to adapt to environmental conditions varies greatly. Thus,
consideration of G × E interactions are of great importance in matching genotypes with
the appropriate environments for achieving maximum yield. The investigation of these
interactions also facilitates the uncovering of genetic correlations by plant geneticists [108].
To gain clearer insight into the input of genetic factors to a trait, potential variability intro-
duced by environment (E) and management (M) needs to be reduced as much as possible.
This can be achieved if as many variables as is reasonably possible are monitored. To
limit the effects of management on the variables measured in a trial, the management
practices should be harmonized by adopting the recommendations from the section above.
Environmental variables can vary substantially among and even within the plots in a field.
Therefore, it is important that researchers try to collect at least a minimal set of variables
for a field site from a nearby weather station. The most important variables that should be
collected for each trial are summarized in Table 1.

Effective nutrient and soil management relies on data from the testing of soil cores
by internationally accredited laboratories. A soil core sample is collected using a hollow
steel tube called a “core drill”, which may be up to 40 cm in depth. It is best if cores from
0–20 cm deep are separated from those taken at 20–40 cm depth. There is considerable
spatial variability in the physical and chemical properties of soil both horizontally and
vertically, and therefore, large sampling regimes are recommended. Multiple core samples
(25–30) should be collected at random sites from multiple, well-defined locations such as
fence lines, tree lines, hills, or GPS coordinates.

A more strategic approach involves defining “zones” within the field where variations
in management practices are predicted to be necessary owing to differences in slope or
soil color or areas in which growth has been shown to vary in previous years. A good
visual example is provided in [109]. This strategy can reduce sampling time by using
more “cluster” sampling, i.e., using five cores per zone. Soil sampling depth depends
on the rooting depth of quinoa accessions used in a specific soil and can be assessed
using a soil core drill in the plot and looking for roots within the soil core. The soil type
affects numerous factors, including the soil’s water holding capacity, nutrient storage, and
aeration. These factors affect crop productivity and phenotype. Soil texture is an important
factor to include in the environmental information [110]. The USDA provides soil texture
calculators to define a single point texture class based on the percentage of sand, silt, and
clay. This calculator is available at the following URL: https://www.nrcs.usda.gov/wps/
portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 (accessed 15 August 2021).

Proximity to the study perimeter can also cause G × E effects on plant phenotypes.
Outer plants incur the brunt of wind, causing high rates of evapotranspiration. In a random-
ized trial assessing diversity of phenotypic variation across the population, neighboring
plots can impact the conditions of each plot. It is possible that larger and more heavily
branched plants require more water than smaller plants, and therefore, irrigation systems
could over- and under-water plants of different sizes. This issue again highlights the
importance of replication in experimental design and the importance of measurement of
environmental parameters. The outputs from measurement devices and plot locations in

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167
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association models can be used as covariates as a broad control for known or unknown
factors [106].

Table 1. Minimum set of environmental variables to record for quinoa trials.

Soil, To Be Measured Before and After the Field Season

Watering regime
Water holding capacity

Composition in terms of % sand, silt, organic matter, etc.
Nutrient and mineral composition—total nitrogen, organic carbon, phosphorus, potassium,

sulfur, etc. Note: when measuring nitrates, the soil sample must be kept cold because nitrates are
unstable

Soil physical properties affecting plant growth
pH

Apparent density
Electrical conductivity (EC), especially for salinity trials

Weather

Precipitation, and irrigation schedule
Temperature, at least daily Tmax and Tmin, but preferably recorded continuously throughout the

day to enable calculation of degree-days to flowering and to maturity
Humidity—relative humidity/dewpoint temperature

Daily irradiance (mol m−2 d−1), recorded continuously throughout the day
Wind speed (average daily speed)

Day length (including twilight time)

Depending on the aim of a trial, more detailed environmental measurements might
be needed. Humidity and temperature, which can be combined into a heat index, can
account for within-site environmental variation in studies of disease traits because fungal
species generally prefer humid conditions. The cost of temperature–humidity meters
ranges from less than USD 100 to several hundred dollars. Using plot position, i.e., two
columns of vectors of site grid positions, as covariates in spatial models can account
for some environmental effects. However, better corrections are achieved with measure-
ments of environmental information as covariates. Small hand-held temperature–humidity
devices such as Extech EA20 (Extech Instruments, Nashua, NH, USA, available online:
www.extech.com (accessed on 15 August 2021)) or a UNI-T UT333 (Uni-Trend Technology,
Dongguan City, China, available online: www.uni-trend.com (accessed on 15 August 2021))
and others may be used for measurements at a plot level. Trials examining crop responses
to water also require measurements for atmospheric vapor pressure deficit (VPD), which is
related to evaporative demand and thereby driving plant water transport. The higher the
pressure deficit, the higher the water stress experienced by the plant [111,112].

The amount of soil moisture per plot can be used to correct environmental varia-
tions when water use efficiency and photosynthetic traits are measured. Soil moisture
measurements for individual plots can be used as covariates to correct environmental
variation in water use efficiency and photosynthetic studies, as can thermal measurements
in heat stress conditions. Soil moisture sensors also have a wide range of costs and can
provide much needed assessment of local soil factors such as temperature, pH, and water
content that could drive some of the phenotypic variation in a study. Several inexpen-
sive devices are available; however, advanced systems can cost approximately USD 1000,
such as the Vegetronix VG-Meter-200 (Vegetronix, Riverton, Utah, USA, available online
at: www.vegetronix.com (accessed on 15 August 2021)) is a mid-range soil data logger
or APERA PH8500-SL (Apera Instruments, Wuppertal, Germany, available online at:
www.aperainst.com (accessed on 15 August 2021)). Gravimetric measurements of soil
water content can also give some indications of water availability for plants and can in
some conditions be the only method practically feasible. Sensors measuring soil moisture

www.extech.com
www.uni-trend.com
www.vegetronix.com
www.aperainst.com
www.aperainst.com
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frequently overestimate soil humidity in soils with high levels of iron [113] and in this case,
water content can be measured gravimetrically.

Crop growth simulation models such as those of the Decision Support System for
Agrotechnology Transfer (DSSAT) can be used to investigate G × E interactions. Crop
models can be used to facilitate crop management decisions by evaluating multiple scenar-
ios. The integration of quinoa into the DSSAT system was initiated with the calibration
of the CROPGRO template for quinoa [114]. However, more work on getting DSSAT
models calibrated and usable for quinoa is required. Other crop growth models or crop
water models such as SALTMED and AquaCrop are good resources for quinoa and already
applied (e.g., [97,98,115–119]). The minimal requirements necessary to use these models
must be considered (for AquaCrop see [120]; [121]; for SALTMED see [122]).

To facilitate the reuse of data and establishment of multiple local networks of pheno-
typic data, Minimum Information About a Plant Phenotyping Experiment (MIAPPE) meta-
data standard for plant phenotyping must be followed [40]. A MIAPPE spreadsheet tem-
plate is published online for guidance, MIAPPE available online:
https://github.com/MIAPPE/MIAPPE (accessed on 15 August 2021). Alternatively, we
recommend downloading the data templates created for the Germinate platform, which
are created in accordance with metadata standards, data templates available online:
https://github.com/germinateplatform/germinate/tree/master/datatemplates (accessed
on 15 August 2021). Templates specifically for quinoa are available at the Quinoa Germinate
Database. Available online: http://germinate.quinoadb.org (accessed on 15 August 2021)
In this manuscript (see Section 9 for more details), we also offer a platform for sharing
quinoa datasets using the Germinate database structure [42,43]. To use this structure, the
templates provided should be filled in with the relevant information. Therefore, it would
be best to start using such templates from the initial planning of a trial and then continue
with phenotypic observations.

The above list of environmental parameters is comprehensive and will be difficult to achieve
for all experimental sites. Pragmatic decisions will often need to be made and can be guided by
both the particular properties of the site and the scientific questions being addressed.

6. Observations during Growth

There are several measurements that can be conducted throughout the growing period.

6.1. Phenology over Time

Clearly defined phenological stages are of great importance for reproducible phenotyping.
Multiple studies have investigated and described phenological stages in quinoa [41,123–127].
These studies have provided valuable information about the characterization of the crop;
however, only one study has followed the complete international scale system proposed
by the Biologische Bundesanstalt Bundessortenamt und Chemische Industrie (BBCH).
Sosa-Zuniga et al., (2017) [41] provided the most recent and complete description according
to the BBCH guidelines. Here, the main principal growth stages and their relevance to
phenotyping are briefly summarized. An overview of the main growth stages is also shown
in the phenotyping cards (Supplementary File S1: Phenotyping cards).

Sosa-Zuniga et al., (2017) [41] describe eight major growth stages. All developmental
stages from seed germination until cotyledon emergence belong to principal growth stage
0 (BBCH 00–09). The sowing date is the most critical part of this stage because it should be
optimized for local conditions. The next principal growth stage 1 covers all stages of leaf
development (BBCH 10–19). Fully emerged cotyledons can be observed in BBCH 10. This
stage is considered the field emergence stage, and it is necessary to record both the time
and the emergence percentage. The emergence percentage can be measured by assessing
a randomly selected 1 m2 area from the middle part of a plot. At BBCH 11, true leaves
develop, and the time from stage 10 to 11 is essential for estimating the early seedling vigor
of quinoa accessions.

https://github.com/MIAPPE/MIAPPE
https://github.com/germinateplatform/germinate/tree/master/datatemplates
https://github.com/germinateplatform/germinate/tree/master/datatemplates
http://germinate.quinoadb.org
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At principal growth stage 2, branches start to grow from the basal leaves. This
stage can occur before the principal growth stage 5, depending on the accession. The
inflorescence emergence stage (principal growth stage 5) is one of the most critical stages in
quinoa development. At the initial inflorescence emergence stage, floral buds are enclosed
in leaves (BBCH 50) and are thus difficult to phenotype. At BBCH 51, buds are visible from
the top but still surrounded by the leaf primordia. This stage should be recorded and can
be represented as days to inflorescence emergence.

Principal growth stage 6 in quinoa is its flowering stage. Because yield and many
other agronomically important traits are highly correlated with flowering, this stage is
vital. According to Sosa-Zuniga et al., (2017) [41], stage 6 is divided into three BBCH
stages. BBCH 60 is the beginning of anthesis, which is marked by flowers opening and
extruding their anthers. BBCH 67 is the beginning of senescence of anthers. BBCH 69
is the completion of senescence of anthers. The length of time between BBCH 60 and
BBCH 69 depends on the accession and can vary widely. Phenotyping of BBCH 67 and
69 can be imprecise; therefore, reproducible phenotyping attempts in the flowering stage
should be focused on recording BBCH 60. This stage is used to score the flowering time of
an accession. A panicle can be classified as BBCH 60 as soon as at least one flower with
extruded anthers is visible. When scoring flowering time in the field, a plot may be scored
for the onset of anthesis, once >50% of plants in the plot have reached this stage. The
number of days to flowering among quinoa accessions is highly diverse.

The next principal growth stage is the fruit development stage BBCH 70. At this stage,
ovary thickening occurs and can be identified by naked eye, as shown in the phenotyping
cards (Supplementary File S1: Phenotyping cards). Depending on the accession, BBCH 70
and late flowering stages could overlap. Therefore, it is challenging to record this stage, and
these difficulties might result in imprecise phenotyping. Nonetheless, this is a crucial stage
because it is the beginning of the seed set, and therefore, careful and frequent observation
should be performed to record the BBCH 70 stage.

Principal growth stage 8 comprises three ripening stages: BBCH 81, 85, and 89. At
BBCH 81, onset of seed filling can be observed, and seeds at this stage appear as milky
grains owing to the nature of soft fruits. Thick and fully ripened grains are present in the
stages BBCH 85 and 89, respectively. When scoring plants at this principal growth stage,
it is important to carefully examine the seeds by sampling some from the upper middle
half of the panicle and crushing the seed by hand, typically with a fingernail. Quinoa
accessions show varying degrees of ripening panicles, and a single panicle may show all
stages at a single time point, indicating a highly unsynchronized panicle ripening. When
the complete panicle is at BBCH 89, it is ready to harvest, but the plant is still not fully
senesced. Mechanical harvesting may be difficult at this stage. BBCH 89 is considered the
stage of physiological maturity. Sometimes, BBCH 89 is not possible to score, particularly
with day-length sensitive plants that can exhibit regrowth in the panicle.

Senescence is the next growth stage (9)—although sometimes this can occur before
BBCH 89. Five BBCH scores are assigned to this stage. Senescence starts from the basal
leaves (BBCH 91) and spreads upward in a plant. At BBCH 95, all leaves are dead, and the
stems turn yellow to beige in color. Plants are ready for harvest when the whole plant is
dead at BBCH 99. However, depending on the accession, it may be advisable to harvest
before plants reach this final stage to prevent seed loss from shattering or feeding birds.

For the precise recording of principal growth stages, observations must be performed
two to three times a week. All plots must be assessed on the same day, and observations
should be evenly spaced throughout the growth cycle. At least 50% of the plants in the
inner part of a plot should have reached the corresponding stage for the recording of the
growth stage of the plot, as judged overall by eye. In practice, recording all stages may
not be feasible, especially when the trials are large. In this case, it is necessary to record at
least the sowing date, field emergence (BBCH 09), emergence of first true leaves (BBCH 11),
floral bud emergence (BBCH 51), anthesis (BBCH 60), physiological maturity (BBCH 89),
and harvest date.
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Note that this approach for the scoring of phenology is distinct to the measuring of
more specific (often physiological) traits, where it is usually best for at least 3–5 plant per
plot be measured and marked for resampling of the same plants (not randomly selected
plants each time). It is best if these plants are within the final harvest sector or at least
comply with requisites for sampling area (e.g., not border plants).

Apart from recording the timing at which each genotype reaches the selected phe-
nological growth stages, another phenotype that must be assessed during growth are
leaf area-related measurements, such as radiation interception efficiency. Because the last
main stem leaves of quinoa plants appear around the beginning of anthesis (BBCH 60),
whereas those on branches continue expanding until the end of flowering [127], the best
growth stage to count leaf numbers and areas is after the anthesis growth stage (BBCH 70).
Of course, an ideal approach would be to count leaf numbers as soon as leaves emerge
throughout the growth period because by anthesis, many would have fallen from the plant.
However, this is highly labor-intensive and often not feasible.

6.2. Radiation Capture and Efficiency of Use

The yield potential of a crop in field trials is correlated with the amount of pho-
tosynthetically active radiation (PAR) available and the plants’ efficiency in capturing
it [128]. Variability in radiation capture owing to differences in the architectural traits
of genotypes and efficiency of use of radiation in response to environmental conditions
have been proposed as heritable traits which could be used to reduce the complexity of
phenotypic responses to the environment. The results of genetic analyses of these traits,
in combination with environmental and genotype information, can be used in yield simu-
lations. This approach requires data from experiments performed in different years and
locations for the validation of the simulation results, although most other traits have to be
assessed in the context of much larger networks of experiments across multiple years and
locations [129,130].

Using a resource capture and efficiency approach, biomass accumulation by a crop
can be modeled as follows:

biomass = resource availability × resource capture (or uptake) e f f iciency × resource use e f f iciency

where the resource can be radiation, water, nitrogen, or another nutrient. From a manage-
ment perspective, radiation availability can be partially achieved by the selection of sowing
dates and location and selection of genotypes with suitable cycle durations, whereas water
and nutrients can be managed by altering irrigation or fertilization practices.

One of the main determinants of the uptake of any resource is radiation interception
efficiency, i.e., the proportion of incident radiation intercepted by the crop. This property
affects both radiation capture and the partitioning of water use between potential transpira-
tion and evaporation [131]. Interception efficiency (IE) is determined by the leaf area index
(LAI), the leaf area per unit soil area, and k, the light extinction coefficient. The association
between IE and k is described by Beer’s law [132] as follows:

IE = 1(−k×LAI)

The association between LAI and IE is affected by variation in the light extinction
coefficient k. In quinoa, variation was detected according to genotype and plant density,
with a positive correlation between k and plant density, suggesting rearrangement of leaves
when the density was modified. However, a common k of 0.59, resulting in a critical
(95% IE) LAI value of 5.09 can be used across genotypes and densities [127]. If this k
value is assumed, IE can be calculated with LAI estimations from emergence to critical
LAI. Estimations of LAI can be obtained through destructive leaf sampling or a portable,
non-destructive, Plant Canopy Analyzer. As these two methods are low in throughput or
not calibrated for quinoa, the use of remote sensing, as described later in this section, is a
better alternative.
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Leaf area indices can be calculated from measurements of IE, which can be estimated
using a ceptometer, an instrument for measuring PAR (see details about its estimation
in [127]), and by taking measurements above and below the canopy, the amount of light that
is not used by the plant for photosynthesis can be determined. Results can be used as an
estimation of radiation capture, integrating LAI development, senescence, and k variation
aspects. Measurements using a ceptometer are time-consuming; however, because it can
only be used for a couple of hours around midday, and for each replicate, six measurements
need to be taken, two above the canopy to determine incident irradiation and four below
the canopy along the ground to calculate the amount of intercepted radiation [133].

The last component of the biomass accumulation equation, resource use efficiency,
which equals radiation use efficiency (RUE, g m−2 MJ−1 or [g mol m−2 d−1 PFFD−1];
PPFD: photosynthetic photon flux density) from a carbon balance perspective, can also
be calculated from IE measurements. Similar to LAI, RUE is associated with accumulated
intercepted PAR (∑ incident PAR × IE over the period among samplings). RUE might
not be stable during the crop cycle of quinoa. Ruiz and Bertero (2008) [127] detected two
different RUE estimates from emergence to end of flowering (BBCH 70), an initial low
value of 1.25 g m−2 MJ intercepted PPFD−1 and a second, higher RUE value of 2.78 g m−2

MJ intercepted PPFD−1 with a breakpoint at 107 MJ m−2 [127]. This experiment was
run using a mid-winter sowing time, and no similar differences in RUE across the cycle
were detected for spring sowings [134]. Low RUEs under low temperature conditions are
expected to occur in several quinoa growing environments, such as the high Andes, during
early spring in Northern Europe, or autumn and winter in Mediterranean environments,
which partially explains the low initial growth observed for quinoa in many environments.

However, the approaches for LAI and RUE measurements described here are not
feasible for application in large field trials owing to several limitations, which make
them low in throughput. This process is time-consuming and labor-intensive and also
affects the quality of the data collected because measurements must be taken over a
longer time span. Instead, unmanned aerial vehicles (UAVs) deployed with multi-spectral
sensors may be used to collect image data for the entire trial area to estimate LAI of all
quinoa plots. However, low-throughput field-based methods for measuring LAI are still
required for modelling LAI from UAV-based imagery and for independent validation of
the image-derived LAI measurements Estimates for RUE or radiation capture can also be
obtained from the Photochemical Reflectance Index (PRI), which can be extracted from
spectroradiometers (PRI) or normalized difference vegetation index (NDVI) estimates [135].
Several spectral reflectance indices can be obtained at a high throughput through the use of
UAVs. Of these indices, NDVI and green normalized difference vegetation index (GNDVI)
have been identified as the most informative for quinoa when assessing irrigation treatment
effects [136,137]. Furthermore, spectral reflectance measurements have been identified as
the most effective tool in the assessment of disease impacts in quinoa [138].

6.3. Unmanned Aerial Vehicle-Based Phenotyping

Phenotyping methods have been considered a bottleneck in plant genetic studies [16];
therefore, it is important to quickly progress to non-destructive high-throughput and
high-precision options for phenotypic data collection. The use of UAV technology is emerg-
ing to be one of the most promising solutions. Recent advances in UAV technology and
miniaturization of mountable sensors have facilitated accurate, consistent, and expansive
high-throughput phenotyping of crops [139] and standardized data collection approaches
and image processing workflows [140]. The use of UAV-derived data for crop phenotyping
may increase the amount of data collected, frequency of data acquisition, consistency
of information extracted, and the ability to undertake retrospective studies, while sig-
nificantly reducing human labor. Red-Green-Blue (RGB) and multispectral cameras are
used most frequently for crop phenotyping studies because of their relatively low costs
and ease of use; however, Light Detection and Ranging (LiDAR), thermal infrared, and
hyperspectral sensors have also been used to collect information on phenotypic traits [141].
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UAV-based RGB and multispectral cameras have been found to be suitable for plant height
estimation of maize [142], yield prediction of tomatoes [143], plant vigor assessment of
barley [144], detection of pathogens, e.g., cotton root rot disease [145], yellow rust disease
in winter wheat [146], and maize streak virus [147], and mapping of growth patterns of
winter wheat [148]. UAV-captured data can also be used to calculate a crop water stress in-
dex [149] where leaf temperature is normalized using environmental conditions measured
around the experiment along with leaf temperature. The use of digital photogrammetric
processing approaches such as structure-from-motion and multi-view stereo reconstruc-
tion of overlapping optical images allows detailed surface elevation characterization and
three-dimensional models to be generated [150]. Although LiDAR sensors have greater
plant canopy penetration capabilities and provide height information with higher accuracy
than photogrammetrically processed optical data, their weight, costs, and range currently
limit their operational use in the agricultural industry [151].

UAV-derived thermal data have become increasingly popular for use in phenotyping
applications to monitor canopy temperature, detect plant disease, and estimate yield [152].
However, camera effects such as vignetting, camera warming, and temperature drift as
well as meteorological conditions such as ambient temperature, wind, and wind direction
often affect the accuracy of UAV-derived at-surface temperature measurements [153,154].
Malbeteau et al., (accepted) [155] provide practical information and examples of how to
overcome issues related to dynamic temperatures and wind effects during thermal UAV
data collection to improve data consistency and accuracy of UAV-based orthomosaics of
a field trial designed for phenotyping of tomato plants. UAV-based hyperspectral im-
agery contains hundreds of spectral bands that allow the collection of detailed spectral
information on phenotypic traits [156]. Examples of agricultural hyperspectral data appli-
cations include estimation of chlorophyll, mapping of plant disease, detection of nutrient
status, and assessment of plant nitrogen content [157]. Although UAV-based hyperspec-
tral data provide information well-suited for phenotyping, data processing and analysis
are often complex, requiring careful image calibration and pre-processing [158,159] to
achieve spectrally accurate reflectance data suitable for scientific research and consistent
monitoring [160]. Ivushkin et al., (2019) [161] used data from UAV-based multispectral,
hyperspectral, thermal, and LiDAR sensors to discriminate between quinoa plants in a
salt-treated plot and a control plot and found hyperspectral vegetation indices to be better
suited than multispectral data for the spectral discrimination of quinoa plants between the
two treatments. The LiDAR data were used to detect a lower plant height of salt-treated
plants compared with the control plants. Temperature measurements could clearly discrim-
inate the quinoa plants in the two treatments, when the thermal data were clustered based
on plants with similar vegetation index values. These findings emphasize the potential of
UAV-based phenotyping of quinoa plants.

The successful application of UAV-based sensing technologies for phenotyping in quinoa
field trials depends on the seeding pattern and dimensions because single rows of quinoa
plants with limited spacing between rows (Figure 2A) precludes separation of plots owing
to lodging across neighboring plots. Shading from tall quinoa plants of neighboring shorter
plants affects their spectral reflectance characteristics as observed from RGB, multispectral,
and hyperspectral imagery and plant temperature measured by thermal infrared cameras.
To reduce shadow effects, it is generally recommended to collect RGB, multispectral, and
hyperspectral UAV imagery close to solar noon. Although rectangular and square plots of
greater width (Figure 2B,C) improve the separation of quinoa plants from neighboring plots for
image analysis, except along their perimeter, the larger the plots and the greater the separation
(Figure 2D), the more feasible it becomes to derive image-based representative samples of
individual plots for analysis of phenotypic traits.
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Figure 2. Quinoa plant trials showing (A) linear plots with a width of one plant; (B) rectangular plots with multiple plants
next to each other; (C) square plots of 1 × 1 m2; and (D) square plots of 2.5 × 2.5 m2. All UAV images are displayed as false
color composites.

The collection of UAV imagery throughout the growing season allows multi-temporal
assessment to study plant growth, behavior, and phenology. Multi-temporal assessment
generally requires accurate georeferencing of the image datasets acquired during the
growing season, which can be achieved using GPS-surveyed ground control points [140].
Variations in solar elevation, irradiance, and atmospheric conditions alter the illumination
conditions over time. To enable spectral characteristics to be compared among multiple
datasets, normalization of the image digital numbers to a set standard, normally at-surface
reflectance, is required [162]. For consistent multi-temporal results and to ensure similar
spatial resolution of the imagery, it is also recommended to employ the same flight pattern,
altitude, and type of camera because different cameras are sensitive to different spectral
wavelengths [140]. Finally, it is important to collect field calibration and validation data
of phenotypic traits to be mapped. While in situ calibration data allow relationships and
models to be developed, e.g., for UAV-based image classification, independent validation
data enable the accuracy of maps to be assessed [163].

The use of automated and active phenotyping systems using light-induced fluores-
cence transient (LIFT) canopy scans can be useful for linking of photosynthetic performance
and canopy structure and offers great potential for plant breeding and crop growth model-
ing [164,165]. UAVs, automated greenhouse phenotyping facilities, and rapid handheld
phenotyping devices can create time series of imagery of large populations of plants over
the course of a season or developmental stage(s) [166]. The data collected from these
approaches may include a range of imaging modalities, e.g., hyperspectral, thermal, RGB,
LiDAR, etc. This results in large volumes of high dimensional data for each plant that also
contain spatial and temporal components. These data inherently contain cryptic informa-
tion about biochemical, physiological, and morphological information of plants and their
variance over time, and their conditionality on environmental conditions and genotype.
Data volumes from such approaches can reach tens of terabytes per day and thus require
automated approaches for phenotype extraction. Machine learning approaches, including
deep learning, can be trained in a supervised manner to recognize phenotypes of interest
such as height, chlorophyl content, flowering, plant architecture, abiotic stress, pathogen
detection, disease quantification, etc. [167]. This is typically achieved by researchers manu-
ally labelling datasets and training neural networks to be able to predict those labels from
the image data. After adequate training, the resulting neural network models can be used
to analyze large volumes of data to extract phenotypes in an automated manner. However,
the training phase is labor-intensive and supervised learning approaches will not, by them-
selves, extract all meaningful information from these complex, high-dimension datasets.
As an alternative, unsupervised approaches such as autoencoders can be used to learn the
latent spaces in a dataset and the resulting patterns extracted for use as phenotypes [168].
Traditionally, the downside of such an unsupervised approach has been the “black box”
nature of neural networks which makes the extracted latent spaces difficult to interpret.



Plants 2021, 10, 1759 21 of 52

However, recent advances in neural network architectures such as transformers with atten-
tion mechanisms show promise in relating the latent-space topology to the original features
and thus producing interpretable phenotypes that are automatically extracted out from
large datasets [169,170].

7. Phenotyping of Mature Plants

Toward the end of plant growth, before physiological maturity and harvest, it is useful
to phenotype several traits at once in one large phenotyping event. Phenotyping at this
stage can be seen as the cumulative effect of different developmental phases on the trait
studied. Therefore, phenotyping at maturity can be a way to summarize the morphological
strategy of the plant.

For most traits, the most useful stage for undertaking this intensive phenotyping is
around mid-seed filling, during principal growth stage 8, i.e., ripening. It is important
not to schedule this event too early because colors may not have developed or too late
because during senescence, colors and leaves are lost. Depending on the number of traits
decided upon for investigation and the size of the trial, this process is usually completed
in 2–3 weeks. Preparation for the phenotyping event includes the set-up of a spreadsheet
containing the field plan, plot numbers and associated accession information, and the traits
that are to be described. An example of such a table lies in the templates linked on the home
page of Quinoa Germinate Database. Available online: http://germinate.quinoadb.org
(accessed on 15 August 2021). Not all phenotypes will be recorded in each trial; only
phenotypes that show variation across the field should be selected. In addition to the
descriptions, phenotyping cards are created (Supplementary File S1). These may be printed,
laminated, and given to each person of the phenotyping team to carry while assessing plots
within the field.

Multiple teams of individuals may divide the workload to shorten the time required
for completing the phenotyping. However, this comes at a risk of introducing biases and
errors. If the work is shared, it is crucial to train each person adequately and to ensure that
all agree with the method using which traits are scored or measured. Hence, it is important
that extra time for training each person is planned in for the first day of phenotyping. The
first plots are scored by all people together. This gives an opportunity for ensuring that
the scoring method for each phenotype is clear to each person. Next, around five plots
should be scored independently by each person, and scores should be compared. Where
differences in the given scores are identified, these should be discussed. The next plots
can only be split up between the people scoring, once all are in agreement. At multiple
times throughout each day in the field, each team should phenotype overlapping plots
and compare the measurements to ensure that the measurements agree and traits persist.
The following section describes in detail the phenotypes that we recommend to measure
during phenotyping of mature plants.

7.1. Assessing the Quality of Phenotypic Data

To address questions that may arise during the analysis after termination of the trial,
for instance, checking the data for outliers or apparent typos, photographs are taken of each
plot. Four photographs are taken, as shown in the example images in Figure 3, starting
with one picture of the entire plot. It is useful to have a pole used for height measurements
included in the middle of the plot as a scale reference. Next, one representative and easily
accessible plant (avoiding the outer edge plants) is chosen for a second picture, which
should show the entire plant. For this picture and the following close-up picture of the
panicle, a black background is needed to capture all details of the individual plant. This
backdrop should be composed of cloth with a matte finish to prevent light reflectance and
should be attached to a wooden frame that can be easily transported. A color rendition
chart (e.g., ColorChecker Passport Photo 2, X-Rite Inc., Grand Rapids, MI, USA) is also
important, to include color calibration because light conditions may vary highly throughout
the day depending on the weather conditions. Therefore, a camera with high resolution

http://germinate.quinoadb.org
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and manual adjustments of the settings to permit adaptations to changing light conditions
is needed. For example, the images in Figure 3B,C were taken with a Canon EOS 70D
device (Canon, Tokyo, Japan), with manual settings for F-number (f/7.1) and exposure
time (1/250). However, for the plot image, this exposure time resulted in an overexposed
image (too bright). A second photograph was taken with exposure time 1/500 (Figure 3A).
Different settings were used again for Figure 3D, the image of seeds on the blue card.
This photograph was taken using the automatic setting “aperture priority” instead of a
manual setting, and used a different F-number (f/9). For image analysis, images need
to be stored either as raw data files or using lossless compression techniques to enable
complete reconstruction of the data from compressed data. This is also important because
the quality of the images taken determines whether they can later be used for image feature
extraction. Algorithms for the extraction of plant morphological features from these types
of images are currently being developed, and seed phenotypic characteristics can already
be extracted from seed images by placing the seeds on a blue card background (Figure 3D).
This technique is described in detail later (Section: Seed Phenotyping, Section 9.2.1.).

Figure 3. Example photos of images taken during mature plant phenotyping event. These include (A) a picture of the entire plot
with reference for plant height, (B) a photograph of one representative plant for the plot in front of a black background with
ColorChecker and ranging pole for height reference, (C) a close-up picture of the primary panicle, and (D) a picture of a seed
sample (~20 seeds) on a 10 × 10 cm square blue card background (used for later image extractions of seed size and color.

7.2. Plot-Level Phenotypes

In addition to the photographs of plants, there are a number of phenotypes that should
be scored to allow others to do quantitative analyses without the need to be involved in
data collection. A number of quality control phenotypes are assessed as the percentage
of the plot that is affected (Table 2). These phenotypes may also need to be considered
in analyses of the trial data where the phenotypes might affect any of the later described
“plant-level” phenotyping data in which one representative plant for the plot is chosen for
further measurement.

Table 2. Overview and description of phenotypes that may be recorded at the plot level and record the majority of the plot.
Scoring metrics followed by an asterisk(*) represent assessments of the percentage of the plot covered or affected by levels 1
(up to 20%), 3 (20–40%), 5 (40–60%), 7 (70%–80%), and 9 (over 80%). Border plants of each plot should not be considered
when phenotyping. See Supplementary File S1: Phenotyping cards for visual examples for the traits.

Plot-Level Phenotype Scoring Metric Description

Plot coverage 1,3,5,7,9 * Percentage of the plot covered, 1 = poor to 9 = good establishment
Plot population

homogeneity 1,3,5,7 Judgment of homogeneity of the accession, 1 = homogeneous to 7 = mixed
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Table 2. Cont.

Plot-Level Phenotype Scoring Metric Description

Branchiness 1,3,5,7
Score for the overall amount of side branches along the entire length of the

stem, ignoring very small and spindly branches, ranging from 1 = no branches
to 7 = bushy plant with many (i.e., greater than 7) major lateral branches

Growth habit 1,3,5,7
Four categories of growth habit described in images on the phenotyping card.
Here the focus lies on whether branching is present in the bottom third of the
stem from the base of the plant and if a main inflorescence can be identified

Stem breakage
incidence 1,3,5,7,9 * Stems are broken or detached, assessing the percentage of the plot affected

Stem lodging
incidence 1,3,5,7,9 * Plants are prostrate, on or near the ground, with intact stems; assessing the

percentage of the plot affected

Stem lying incidence 1,3,5,7,9 *
Stem of the plant is not emerging straight up from the soil but has a kink at the
base, growing along the ground before rising; assessing the percentage of the

plot affected

Stem angle 1,3,5,7 The angle at which the majority of plants are leaning, measured between the
vertical axis and the horizontal axis

Panicle axis angle 1,3,5,7 The angle at which the majority of panicle axes are leaning, measured between
an upright panicle on the vertical and a panicle pointing towards the ground

7.2.1. Plot Population Homogeneity

The most important trait for quality control of data in the analyses of datasets is
the score of heterogeneity of the phenotypes of the individual plants within a plot. The
genetic diversity of quinoa is wide owing to less-intensive breeding events (and thus a
relative paucity of population bottlenecks), and several quinoa accessions are landraces
that produce a heterozygous phenotype. Quinoa is predominantly self-pollinating and
has varying rates of natural hybridization of 10–17%, which are likely to be greater at
lower plant spacings, and depending on the coincidence of flowering with the windiness
of the site or the presence of other pollen vectors [7,171]. There is also a possibility for
outcrossing if panicles are not isolated with a bag. The heterogeneity of a population
can be beneficial in small-scale cultivation, where it might confer greater yield stability
in unpredictable weather conditions. However, for genetic studies, heterogeneity poses
considerable challenges because the phenotype must be correlated with the genotypic
information. Hence, highly heterogeneous genotypes are not suitable for genetic studies,
and plots need to be excluded from the analysis if >50% of the plants within a plot are
segregating, i.e., they are observably different, and a plot must be excluded when the
main phenotype of the accession is not identifiable within the plot (for example images of
the different categories of heterogeneity scores, see Supplementary File S1: Phenotyping
cards). If possible, producing inbred genotypes by isolating the panicles within 100 µm
mesh pollination bags (“bagging”) before the start of genetic studies is recommended.
When bagging panicles in the field, bag size is important. Bags of size 10 × 15 cm were
found to be best; larger bags can be caught more easily by the wind. After flowering (at
BBCH 70), the bags should be removed to allow the panicles to expand and grow. It is
important that the panicles remain tagged after the removal of the bags to keep information
on which panicle is to be harvested for pure seeds. For example, bags can be tied to the
plant underneath the panicle upon removal.

Heterogeneity is scored by assessing the percentage of plants in the plot that have a
visibly distinct phenotype from the majority of plants in the plot, where four categories are
described as follows (see also Supplementary File S1: Phenotyping cards):

• 1: Most plants are the same (up to 10% different).
• 3: Over half of plants are the same (10–30% different).
• 5: Less than half of plants are the same (30–50% different).
• 7: Over 50% of the plants are different, completely mixed plot; will need to be excluded

from analysis.
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7.2.2. Plot Coverage

Another quality control measure is plot coverage, which can give an indication of the
spatial heterogeneity at the plot level. The importance of recording plot coverage lies in the
aforementioned phenotypic plasticity of most quinoa accessions in response to the space
available around them, which is why this information may be included as a covariate in
analyses of responsive traits.

The plot is assessed using a scoring metric based on percentages, where:

• 1: Up to 20% of the plot is covered, plant establishment is very poor.
• 3: Less than half of the plot is covered, ~30% (20–40%).
• 5: Around half of the plot is covered, ~50% (40–60%).
• 7: Over half of the plot is covered, ~70% (60–80%).
• 9: Over 80% of the plot is covered, plant establishment is very good.

To make the assessment of plot coverage in percentage easier, and if the plot size
allows it, plants can be counted to see how the number compared to the total amount of
plants a plot should have. Alternatively, plot coverage information can be deduced from
plant emergence or UAV data, if available.

7.2.3. Stem Breakage Incidence

Other factors such as plant damage should also be considered in subsequent analyses
of traits. For instance, damage to the stems may be relevant for yield measurements when
the damage causes a loss of yield from affected plants. Stem breaks are often caused by
strong winds, but can also happen after insect damage or some fungal diseases (which
should be checked when stem breakages are observed). Because panicles get detached
from the plant, further progression of their life cycle is prevented. Depending on the timing
of the damage event, the affected panicles may still be harvestable. Stem breakage is an
undesirable trait in a cultivar and is assessed on the basis of the percentage of the plot
affected, where:

• 1: Up to 20% of the plot is affected.
• 3: Up to half of the plot is affected, ~30% (20–40%).
• 5: Around half of the plot is affected, ~50% (40–60%).
• 7: Over half of the plot is affected, ~70% (60–80%).
• 9: Over 80% of the plot is affected.

7.2.4. Stem Lodging and Stem Angle

In contrast to the snapping of stems, stem lodging refers to bent plants lying on or
near the ground, with intact stems. Although the panicles are still harvestable in this
case, depending on the degree to which a plant lodges and how close it is to the ground
the panicle is, they might not be picked up by a combine harvester. In addition, where
panicles are lying on the ground, pre-harvest sprouting and fungal infections may arise.
Often the proportion of the plot that is affected by entirely lodged plants varies. Hence,
for scoring stem lodging, the percentage of the plot affected is recorded using the same
percentage-based categories as described above.

Alternatively, stem vertical angle, i.e., the angle at which the majority of plants in the
plot are leaning towards, measured from the vertical axis, may be scored
(see Supplementary File S1: Phenotyping cards). Here, a scoring system is used, where:

• 1 < 22.5◦ inclination or deviation of the stem from the vertical (i.e., most plants are upright).
• 3 < 45◦.
• 5 < 67.5◦.
• 7 < 90◦ (i.e., most plants are on or very close to the ground).

7.2.5. Panicle Axis Angle

Depending on the environment, or if a treatment (for example salinity) is applied,
genotypes can be observed to have panicles that droop towards the ground. A deviation
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from the vertical may also represent a heat avoidance strategy as was observed in sun-
flower [172]. Similar to stem vertical angle, panicle drooping is assessed for the majority of
the plot and based on the degree at which a panicle deviates from the vertical. Because a
panicle can droop towards the ground while its stem remains vertical, this scoring system
goes up to 180◦ in this case:

• 1 < 45◦ inclination or deviation of the panicle from the vertical (i.e., most panicles are upright).
• 3 < 90◦.
• 5 < 135◦.
• 7 < 180◦ (i.e., most panicles are pointing towards the ground).

7.2.6. Stem Lying Incidence

Stem lying sometimes co-occurs with stem lodging. The cause of stem lying remains
unclear, but it results in the lying of stems on the ground, which may occur at the seedling
stage of emergence (BBCH 00–09). The length of the section of a stem that is growing along
the ground varies, indicating that the plants with stem lying could be classified into distinct
groups. However, during in-field experiments, with multiple plants in a plot, it is apparent
that there are some complications with this phenotype. Some plants exhibit severe stem
lying, whereas others with the same genotype in the same plot have none. Hence, when
stem lying is noted in the plot, the percentage of the plot that is affected should be scored,
not the severity of the lying itself. The scoring categories are therefore the same as those
for stem breakage listed above. Severely affected plots may need to be excluded from
subsequent analyses. Depending on the severity of this phenotype observed in the field,
stem lying may not be necessary to record.

7.2.7. Growth Habit

The architecture of quinoa plants varies greatly, and because this phenotype is partic-
ularly responsive to environmental conditions, the growth habit category for an accession
is also classified at the plot level. Depending on the experiment, growth habit may also be
assessed for individual plants.

The categories shown in Figure 4 were drawn based on their presentation in the
Quinoa Descriptors [38], but the description of the categories was adapted to include the
extent of growth habits that we observed in our diversity panel of approximately 1000
accessions. The feature that differentiates the groups is branching in the lower-third of the
plant as well as the size of the panicles on those branches.

Figure 4. Growth habit of quinoa plants is grouped into four categories based on the branching habits at the base of the plant,
and the size of the panicles of these branches: 1—not branched at base; 3—some branching from the base with no significant
panicles on branches; 5—branching from the base with more significant panicles; 7—main panicle is difficult to identify.

• 1: Not branched at base, usually with a clearly defined terminal panicle.
• 3: Some branching from the base; no significant panicles on branches in the basal area

(thus, this is not worth harvesting).
• 5: Branching from the base with more significant panicles.
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• 7: Main panicle is difficult to identify.

7.2.8. Branchiness

Growth habit is focused on the branching habit at the base of the plant; however, in
this category, we assess the degree of branching across the entire plant. The number of
branches coming from the primary axis is easiest to assess when the plant is in principal
growth stage 9, senescence. Because the phenotyping event is planned for a time where
most plants are at principal growth stage 8, attention should be paid to avoid bias from the
leafiness of the plant when scoring for branching degree. Plants from the middle of the
plot are categorized into:

• 1: Low number or no secondary branches.
• 3: Some branches (30–50% of the primary branch length has secondary branching).
• 5: Branched (50–70% of the primary branch length has secondary branching).
• 7: Highly branched (above 70% of the primary branch length has secondary branching).

7.3. Plant-Level Phenotypes

After assessment of plot-level phenotypes, it is recommended that detailed observa-
tions of representative plants from each plot are made. As representative plants, again we
select individuals from the middle of the plot (to avoid edge effects) which share features
with plants across the entire plot, including the traits outlined in Tables 3 and 4. Depending
on the time available for plant phenotyping, we select 1 to 3 individuals per plot. If there is
a clear segregation of phenotypes in a plot, these plots are to be marked heterogeneous
and are excluded from genetic studies. Representative individuals from each “type” can be
separately phenotyped to maintain a record of how the accession segregated phenotypically.
The phenotypes measured for each plant are divided into quantitative and categorical
traits, as outlined in the following sections.

Table 3. Overview of the quantitative plant-level phenotypes that are measured for representative plants of a plot.

Plant-Level Phenotype Unit Description

Plant height cm

Height of the most representative plants of the plot, usually from the middle of the plot, measured
with a long measuring stick from soil to the tip of the panicle. If more than one distinct phenotype

is present, more than one plant may be recorded in a new row of the spreadsheet, with all
phenotypes that are differing recorded separately

Panicle length cm Length of the primary panicle measured with the same stick. Measured from the base of the
panicle to the tip

Stem diameter near plant base mm Thickness of the stem measured with calipers at the middle of the bottom third of the plant stem
Stem diameter under panicle mm Thickness of the stem measured just underneath the panicle

Number of significant panicles count Count of the number of significant panicles, i.e., larger panicles, near the top of the plant,
harvestable, that provide a major contribution to the seed harvested from the plant

Table 4. Overview of categorical plant-level phenotypes and description of the according scoring metrics.

Plant-Level Phenotype Scoring Metric Description

Growth stage BBCH scale Phenological growth stage; very important to record at mature phenotyping

Seed shattering 1,3,5,7 Grain persistence in the plant at physiological maturity. Assessing how easy seeds fall off the
panicle upon light touch: 1 = no seeds falling to 7 = majority of seeds falling

Panicle shape 1,3,5 Classified into one of the three categories: glomerulate, intermediate, or amarantiform
Panicle density 1,3,5,7 Scored from 1 = lax (loose) with panicle axes easily visible to 7 = tight and compact panicles

Panicle leafiness 1,3,5,7 Scored from 1 = no leaves to 7 = many leaves
Panicle color 13,4,15,16,5,7 Categorized according to the color phenotyping card
Stem color 13,4,15 Categorized into green (13), red (4), or no pigmentation (15)
Stem striae 0,1 Presence (1) absence (0) scoring of stem streaks or stripes

Axil pigmentation 0,1 Presence (1) absence (0) scoring of pigmented axils
Stem leaf shape 1,2 Leaves of the stem are categorized into two groups: rhomboidal (1) and triangular (2)
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7.3.1. Quantitative Plant-Level Phenotypes

An overview of the quantitative traits is shown in Table 3. They are presented based
on the order used during phenotyping in the field.

Plant Height

Plant height is measured from the base of the plant at soil level to the tip of the primary
panicle. We found that the use of metal ranging poles with alternating red and white colors
to be the best option for a height reference because they are sturdy, yet not too heavy, metal
poles with alternating red and white colors which work as height references. Extra markings
and height labels need to be added to the poles using black tape and permanent markers. As
ranging poles are made up of multiple parts that are screwed together, the height of the poles
can be adjusted to the maximum height of the plant in the trial. If representative plants are not
entirely upright, they can be held upright to record their height.

Panicle Length

Panicle length is measured for the primary panicle from the base of the panicle
to its tip. In most commercial varieties, panicles are often extremely distinct and eas-
ily measured. However, in some quinoa accessions with wild phenotypes resembling
Chenopodium hircinum accessions, panicles can be sparse, with the inflorescences spaced
along the length of each branch. In these cases, we grasp the panicle below the lowest
lateral branch with a large inflorescence and bring them together to get an estimate of the
primary panicle.

Stem Diameter

Stem thickness is measured twice, once at the base of the plant and once just below the
panicle. In our protocol, digital calipers are used to measure both. In dense plots or with
large field trials, these measurements can be very time-consuming and are best applied for
studies assessing the likelihood of stem lying, stem-breaking, and lodging.

Number of Significant Panicles

An attractive trait for a commercial variety that is harvested by machine is the presence
of a single primary panicle. However, in many accessions, several additional panicles can
be observed emerging from lateral branches. A significant panicle is a panicle which is
large enough to make an important contribution to the yield obtained from a plant. These
panicles are often on the upper half of the plant, near the primary panicle. The number
of significant panicles should be counted, which is generally equivalent to the number of
primary branches. The “significant panicles” should, together, contribute to an estimated
90% or more of total plant yield.

Categorical Plant-Level Phenotypes

Aside from the phenotypes that are measured, a number of traits are visually assessed
and assigned to defined categories. An overview of the qualitative traits is shown in Table 4.

Seed Shattering

Dehiscence (or seed shattering) is a dispersal strategy of importance to wild plants,
but this trait is a major cause for crop yield losses [173]. Increased persistence of the grain
within the panicle is therefore a priority trait during the domestication process of a crop.
This trait is assessed by lightly tapping 3–5 panicles while holding the other hand or a
piece of paper underneath the panicle to catch the seed that falls off. The number of seeds
that fell may be:

• 1: No seeds falling.
• 3: Some seeds falling.
• 5: Many seeds falling.
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• 7: Majority of seeds is falling, “raining” seeds, and a large number of seeds present on
the ground at measurement.

Panicle Shape

Three categories have been described for the overall shape of quinoa panicles [38],
as illustrated in Figure 5. However, this trait has caused problems, as some panicles
are not easily categorized into the described groups. The three groups were changed to
scores of 1,3,5 instead of the scores previously named 1,2,3 in the Quinoa Descriptors [38]
because quinoa panicles are so diverse that panicles cover a wide spectrum of shapes, rather
than falling into the three distinct groups that are described below, or the two categories
that were previously suggested, glomerulate and amarantiform [123]. The difficulty in
categorizing is causing inconsistencies with scoring. Glomerulate panicles usually have
clusters of glomerules at the end of a cluster of branches emerging from the secondary
axis, as shown in Figure 6. To distinguish between the intermediate and amarantiform
groups, the length of the secondary axis, which is usually packed tightly with glomerules
up to the junction (resembling “fingers”), should be considered. Additionally, intermediate
panicles can have short tertiary branches emerging from the secondary axes, usually
from the bottom half of a “finger”. The glomerules inserted into the short tertiary axes
create “bulbous clusters” and lead to the presence of both, glomerulate and amarantiform
features in an intermediate trait. Generally, it was also observed that panicles fitting into
the intermediate category have their elongated glomerules only starting from a lower
half of the panicle, while the top resembles a triangular shape of glomerulate glomerules.
To improve this classification system in the future, image analysis algorithms are being
developed for the identification of new groups from images of panicle inflorescences.

• 1: Glomerulate—glomerules with globose shape, resembling “bulbous clusters”.
• 3: Intermediate—panicles have both amarantiform and glomerulate traits, resembling

fingers with glomerules.
• 5: Amarantiform—glomerules with elongated shape, resembling “fingers”.

Figure 5. Three distinct groups of observable panicle shapes: 1. Glomerulate, 3. Intermediate,
and 5. Amarantiform.
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Figure 6. An example of a glomerulate panicle with a visible network of branches.

Panicle Density

Panicle density, a trait that can vary greatly with environment (such as temperature),
contributes to the complications with defining panicle shape and is scored separately as follows:

• 1: Lax (loose)—glomerules sparsely spaced, panicle axes easily visible.
• 3: Intermediate—glomerules tighter but with panicle axes still visible.
• 5: Primary axis rarely visible.
• 7: Compact—glomerules tightly packed, no panicle axes visible.

Panicle Leafiness

Within the inflorescences, there are often leaves growing among the flowers
(see Supplementary File S1: Phenotyping cards). Variability between genotypes and
environments is observed for this trait and can be scored as follows:

• 1: Leaves are present in less than one-third of the panicles.
• 3: Leaves are present in more than one-third but less than three-fourths of the primary,

sporadic, and not dense panicles.
• 5: Leaves present in three-fourths to of the entire primary axis, frequent but not dense leafiness.
• 7: Many leaves present throughout the primary axis.

Panicle Color

Color code descriptors with 15 colors for quinoa panicle scoring were previously
provided by [38]; however, scoring for color is highly subjective. We find disagreement
among individuals scoring panicle colors, particularly for differentiating red, pink, and
purple. This problem highlights the need for providing color cards (e.g., Royal Horticultural
Society Colour Chart, Methuen Handbook of Colour, or Munsell Color Chart for Plant
Tissues) as a direct reference when accurate classification of colors is of interest, and in
this case, it is advisable to extract color information from images. In most field trials,
detailed color recording may not be a priority, but recording the most prevalent color is
a useful indicator of phenotypic segregation and quality control as color is a dominant
morphological marker [174]. Therefore, we reduced the number of categories to the
following six:

• Green (13);
• Green with Purple (16);
• Pink/Purple/Red (4);
• Orange/Yellow (5);



Plants 2021, 10, 1759 30 of 52

• Dark colored (7);
• Beige/White (i.e., no pigmentation, mostly for mature plants) (15).

Stem Color

For stems, 11 colors were proposed [38]. This wide color variation has not been ob-
served in the field among our diversity panel and is difficult to correctly identify under
field conditions. Stem color is useful to serve as a quality control for validating proto-
cols in genetic analyses because the loci associated with stem color have already been
identified [15]. Therefore, plants only need to be categorized into the following:

• Green (13);
• Red (4);
• No pigmentation (beige, white, yellow) (15).

Stem color can also provide information about the homozygosity of an accession, and
accessions have been observed with red coloration at the leaf–stem intersection, which may
be used as a control for whether crosses have been successful [174]. A lack of pigmentation
is based on panicles and stems that have lost their color owing to senescence. It is not
always possible to time the scoring campaign for color across all accessions because there
can be great variability in the number of days required to achieve maturity.

Stem Striae and Axil Pigmentation

The presence of stronger pigmentation forming stripes on the stems and pigmented
axils are traits that persist and may be used for example for the identification of successful
crosses. If desired, stem striae color can also be recorded. Separate genetic mechanisms to
color may likely regulate the location of the pigment accumulation or synthesis. Hence, it
should be sufficient to score for:

• Presence (1);
• Absence (0).

Stem Leaf Shape Characteristics

Leaf shape characteristics are heritable traits that may be useful to breeders for variety
identification. These traits may also be correlated with irradiation capture, water use
stability or yield stability. They need to be recorded at flowering. As described by [38] stem
leaf shape can be categorized into two groups:

• Rhomboidal (1);
• Triangular (2).

The leaf margin refers to the shape of the edges of the leaf. This trait also summarizes
teeth number, another leaf shape characteristic which can be scored separately if more
detail is required. Leaf margin is categorized into:

• Entire (1);
• Dentate (3);
• Serrate (5).

8. Phenotyping of Disease

Depending on the environment in which a trial is conducted, quinoa may also be
affected by diseases that influence plant health and yield negatively. Therefore, recording of
disease occurrence and scoring for disease severity might be necessary in field trials where
diseases are observed despite taking pest and disease control measures. As infections
can progress rapidly, it is important that the plots of a trial are regularly assessed for
disease throughout the growing season, and controlled for [175]. Trials where disease is
not controlled but representing the studied treatment are independent trials designed for
the phenotyping of disease, typically by the selection of genetically diverse accessions
with variable disease resistance. Disease assessment includes measuring the incidence (the
number of affected plants out of the total assessed) and severity (proportion of plant area
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or fruit volume destroyed by a pathogen) [176]. Observations must be conducted at least
three times: once during phenological growth stage 1, when plants have around nine true
leaves, and before branches develop; a second time during either principal development
4 (development of harvestable vegetative parts), principal growth stage 5 (inflorescence
is visible), or principal growth stage 6 (flowering); and a third time during principal
growth stage 8. To avoid difficulties arising with senescing leaves, observations should be
conducted before principal growth stage 9.

Accurate diagnostics of quinoa diseases, however, are complicated because multiple
pathogens often appear in communities [177]. A field situation is a complex interaction
between the plant and its microbiome. Therefore, incorrect identification of the pathogen
involved can occur if only a single organism is considered. Some plant disease agents
can be identified through their symptoms and classified from infected tissue by skilled
plant pathologists. However, numerous pathogens cannot be distinguished from each
other based on the visual assessment of disease symptoms. In fact, molecular tools and
clear distinctions among quinoa plant diseases were lacking in the past, with only a few
examples properly described. The pathogens identified to affect quinoa include the fungal
pathogens Ascochyta caulina, Cercospora cf. chenopodii, Colletotrichum nigrum, C. truncatum,
Fusarium spp., and Pseudomonas syringae [175]. The predominant and most well-described
pathogen is the oomycete Peronospora variabilis: it causes downy mildew, and its impact
is considered to be one of the most economically important [51,178–186]. The complexity
of diseases can lead to inaccurate diagnosis in field trials. Therefore, we propose for the
in-field phenotyping of disease symptoms to assess all three parts of the plant: foliage,
stem, and panicles. Leaf symptoms should be well-described with respect to detectable
changes in lesion shape (irregular, blotch, spots) (Figure 7(Aa,b); 7(Ca,b), color (pink,
bronze, chlorotic, mix) (Figure 7(Aa–d), other symptoms (surrounding halos, concentric
rings) (Figure 7(Aa,d)), and distinctive signs such as sporulation usually present on the
abaxial side of the leaf (Figure 7(Ba,b)), and chlorotic leaf veins (Figure 7(Bc)). Next,
the type of lesions on a leaf (dots, diffuse or extensive) are recorded (Figure 7(Ca–d)),
followed by the amount of spread which is measured by the percentage of leaf area affected
(Figure 7(D1–5)) in relation to its total area. The scoring could be based on a scale from 1 to
5 (1 = 0–10%; 2 = 11–25%; 3 = 26–50%; 4 = 51–70%; 5 = 71–100%), which is frequently used
as a measurement of disease caused by various pathogens including severity of downy
mildew of quinoa [187].

For the estimation of severity in the field, we suggest a selection of 3–10 representative
leaves. Disease symptoms are often influenced by the age of the plant and position of
the tissue [176,188]. Leaves at the base of the plant could be displaying symptoms of
senescence. In contrast, leaves toward the apex of the plant may display induced resistance
which often occurs not only at the site of the initial infection but also in distal uninfected
parts [189,190]. Therefore, we propose that samples selected from the middle part of the
plants best represent the infection. In the case of stems and panicles, similar principles
should be applied. Examples for visible changes in panicles and stems brought upon by
pathogens are shown in Figure 8. Panicles and seeds can be affected by various pathogens
causing different amounts of rotting, which can result in total harvest loss and contaminated
seed. The example for stem disease in Figure 8B shows a mature stem with necrosis of
diamond shape (which can cause plant lodging), concentric rings, and visible pycnidia.
Another young stem shows pink coloration and white mycelia.
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Figure 7. (A) Lesions on leaf surface: (a) pale or yellow chlorotic lesions with or without a halo and
occasional pink-orange discoloration caused by leaf pathogens, (b) bronze irregular lesions caused by
Alternaria sp., (c) diffuse chlorotic spots caused by P. variabilis and (d) concentric and chlorotic halo
under artificial inoculation with Alternaria sp. (B) Sporulation on lower side leaf surface with (a) black
dots showing downy mildew sporangia, (b) dark gray-violaceous sporulation caused by P. variabilis
and (c) vein discoloration, general chlorosis and pink-orange spots caused by Fusarium sp. (C) Lesion
type on upper surfaces and amount of disease ranging from (a) dots, (b) dots expanding, (c) diffuse,
and (d) extensive. (D) Severity phenotyping scale used for assessing the percentage of the leaf area
affected where 1 = 0–10%, 2 = 11–25%, 3 = 26–50%, 4 = 51–70% and 5 = 71–100%. Leaf examples given
represent different degrees of severity during the infection of Alternaria spp. (Colque-Little and some
images previously published in [51]).

For accurate disease diagnostic, further procedures are needed: samples should
be saved for isolation, microscopic analysis, and molecular identification of the causal
agent. Koch’s postulates, guidelines for determining a causative relationship between a
microorganism and a disease, should be validated. The steps required for the standardized
procedure include (a) description of disease symptoms, (b) isolation of the disease agent,
(c) artificial inoculation of quinoa tissue with the isolated agent, (d) recording of symptoms
on the infected quinoa tissue followed by (e) a re-isolation of the microorganism from
the infected tissue [133,176,191]. More ongoing research is required to identify possible
pathogens, especially newly emerging ones, behind quinoa diseases. Advancement of
molecular diagnostics such as development of rapid DNA extractions and newly designed
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species-specific primers along with advanced remote sensor-based image techniques are
expected to be helpful for fast and more accurate disease detection in the near future.

Figure 8. (A) Examples for panicle diseases, with (a) a panicle infected with Alternaria spp., and (b),
a panicle predominantly infected with Cladosporium spp. at the end of the season. (B) Examples
for stem diseases, showing (a) quinoa black stem caused by Ascochyta caulina with presence of dark
structures (pycnidia), (b) pink stem and light pink mycelia corresponding to Fusarium spp. (pictures
by Colque-Little, (B)(a) courtesy of [182].

9. Harvest and Post-Harvest

When all other phenotypic traits have been collected and plants have reached ma-
turity (BBCH 89), they may be harvested and prepared for post-harvest data collection.
Depending on the trial size, type, and resources available, harvest may be approached
using different methodologies. Irrespective of the method selected, it is important that an
indication of the number of plants that contributed to the yield is available, by counting
the plants when hand-harvesting, harvesting only a set number of plants per plot, or
harvesting the entire plot and using previous field emergence information. Recording the
plant number allows the yields obtained in one trial to be compared with results from
another trial. This is crucial information to collect for international collaborative quinoa
research. The recommended harvest and post-harvest traits are listed in Table 5.
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Table 5. Overview of harvest and post-harvest traits.

Harvest and Post-Harvest Unit Description

Number of plants harvested count

Above-ground dry biomass grams
Cutting plants at the very base with secateurs and drying

the entire plant in an oven until mass is constant. Recording
total dry weight

Below-ground biomass grams If possible, root biomass could also be measured (especially
when plants are growing in sandy soil)

Seed yield for representative plants grams
Seed mass of approximately four representative plants that
were harvested from the center of the plot (seed should be

dried to constant weight)

Total seed yield per plot grams × m−2
Harvesting the panicles remaining per plot while excluding

borders, and adding the weight to that from the four
representative plants, seed dried in oven to constant weight

Seed yield per plant grams
Total harvested seed mass per plant may be calculated from

the seed weight of all plants in the plot divided by the
number of plants harvested

Harvest index Yield/ above-ground biomass
Seed weight (TGW) grams/1000 seeds Thousand Grain Weight (TGW), the weight of 1000 seeds

Seed hectoliter weight grams/100mL Estimation of density, determined by weighing all seeds
fitting into a 100 mL volume

Seed size (average area; average
perimeter) millimeter Seed size outputs from image analysis separated by

semicolon (method options described in Section 9.2)

Seed color (average red; average green;
average blue)

Numeric RGB
equivalent

Seed color output values for red, green, and blue
components, semi colon separated (obtained from image

analysis methods, see Section 9.2)

9.1. Harvest Protocols

When developing harvest protocols, it is important to consider edge effects. Therefore,
when choosing a plant for phenotyping, it is best to select only plants from the inside
of the plot, while disregarding unusually small plants or the typically larger and more
branched individuals at the borders, which might cause a bias in the yield predictions.
Similarly, in plots with uneven emergence, unusually large individuals should not be
selected. Depending on the plot size, it is recommended to harvest a larger number of
representative individuals (20–30 plants) because smaller sample sizes may lead to less
accurate predictions for yield. The number of harvested plants as well as the plot coverage
should always be noted. Main panicles may be harvested separately from secondary
panicles of a plant to obtain an indication about the distribution of seed on a plant.

For calculation of the harvest index, i.e., the ratio of harvested seeds to total dry
above-ground biomass, a subset of plants should be selected for harvest as entire plants
and cut at the base of the plant at soil level using secateurs. Depending on the plot size, 4–6
plants may be used for this evaluation. The plants should be placed in bags and dried in in
an oven at no less than 60 °C for several days (until weight is constant). Once plants are dry,
they can be weighed to obtain shoot biomass before proceeding to threshing and weighing
the seed. This information is extremely important for identifying the best-performing
genotypes, which are those that invest more resources in their seeds rather than to their
above-ground biomass.

Threshing and winnowing are, together, the process of separating the seed from the
chaff or straw and is easiest when the panicle is dry. Before mechanically threshing, the
seed should be loosened from panicles and chaff by hand to facilitate the threshing and
winnowing processes and reduce seed loss during machine threshing. After threshing,
the seeds are weighed to obtain yield. A sample can be taken and weighed to obtain the
Thousand Grain Weight (g/1000 seeds). However, for higher throughput and more detailed
information, the seed scanning method described in the following section is recommended.
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9.2. Seed Phenotyping

Because the seed is the final product, seed properties, especially their nutritional
properties, are important to be considered when selecting varieties of interest. Seed color
was not found to be correlated with significant differences in most nutritional properties,
except perhaps protein and carbohydrate contents. Pereira et al., (2019) [192] have reported
that white seeds had the lowest protein and highest carbohydrate contents compared with
red and black seeds. However, color is of interest because large white seeds are in demand
in the market for quinoa. In some countries, such as Bolivia and Peru, large red or large
black seeds are also desirable. Irrespective of the color, large grain size is the highest
priority for international market [7].

The phenotypes of seed color and grain shape were previously divided into different
categories [38]. However, visual assessment of the seed and assigning it one of four not eas-
ily distinguishable categories for shape is not very precise. With color identified as a highly
subjective trait, in the following section, we present an alternative that saves considerable
time spent on phenotyping these traits without the need for expensive equipment.

9.2.1. In-Field Seed Morphology Descriptors

An image feature extraction algorithm was developed to produce the following seed
morphological descriptors from an image: seed area, perimeter, color, and counts. Although
centralized image collection with controlled lighting and fixed resolution provides the
highest quality images, the collection of images in the field can save time and resources.
This algorithm also provided accurate results on images that were obtained using the
camera of a mobile phone. However, adjustments to the feature extraction methods are
required because images from these cameras are distorted.

Apart from a camera, a backdrop for quinoa seeds is needed. A blue card of fixed
size is best. The blue color provides a color contrast with the quinoa seeds, and the fixed
size allows pixel to mm conversion. A template for this 10 × 10 cm2 square blue card is
provided (Supplementary File S2: Blue card template) and should be cut from weighted
paper of the reference color. Overall, 10–50 seeds are placed on the card, and a photograph
is taken. In the case of in-field image collection, the image may be taken with a camera
held in one hand, while the card with the seeds is held in the other, as shown in Figure 3D.

The measurement of seeds on the blue card comprises three steps: isolation of the
blue card from the scene, rectification of the card to a square of known pixel count, and
segmentation and measurement of the seeds from the card. The image analysis software
CyVerse was made available to the community on CyVerse [193]. In the CyVerse Discovery
Environment, images can be analyzed using the Phytomorph Image Phenomics Toolkit.
After clicking on the app, an analysis name can be assigned and single images or folders
that are uploaded to the CyVerse Data Environment can be selected for analysis. For this,
the required image analysis algorithm must be selected. The algorithm for the method
described here is called “Quinoa Seed Card”. Once the analysis is completed, the user is
notified via email and can return to the Discovery Environment where the outputs are
stored in the user’s database. The outputs can be browsed there or downloaded. The
results include values for average area, average perimeter, and average red, average green,
and average blue components. In addition, images are returned with seeds that were
detected by the algorithm as single seeds, used for analysis, and highlighted in red. This
allows confirmation that the algorithm showed expected performance.

9.2.2. Seed Scanning

For more accurate measurements of seed morphological characteristics, including
size, shape, and color, a high-throughput seed scanning system has been established in
the Sustainable Seed Systems Laboratory (SSSL) at Washington State University (WSU) to
capture images of quinoa seeds. Similar systems may be established elsewhere; however,
users must consider their needs. The SSSL system uses eight flatbed scanners, which
capture images at a resolution of 1200 dots per inch (dpi). System design is focused on the
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ability to queue and initiate four samples on one set of scanners, with the process being
repeated on other set of scanners while the first set of images are captured. This system
allows the analysis of approximately 50 samples per hour and supports data collection for
thousands of samples in a year.

Users should consider their desired throughput when designing a system to best
meet their needs because this will determine the number of scanners required and their
orientation in the workspace. Certain pieces of equipment are required, regardless of
throughput (Supplementary File S3: Equipment List File). The SSSL system uses Epson
Perfection V39 flatbed scanners (Epson America, Inc., Long Beach, CA 90806), which
balance affordability (USD 50–100) with capability (up to 4800 dpi optical resolution;
600 dpi color scan in 30 s). A small subsample (approximately 1–2 g) of each sample is
taken for seed scanning. A sample splitter or other comparable equipment should be
used to collect a representative subsample. Seed samples are weighed before scanning;
however, scanners with integrated balances are available. The SSSL uses an Ohaus Scout
SPX123 Analytical Balance (Parsippany, NJ, USA), with a capacity of 120 g and a precision
of 0.001 g. Seeds are carefully scattered on the scanner, within the field of view, to limit the
number of seeds that are touching. Then, the scanner lid is closed. The underside of the
scanner lid, acting as the image background, has been painted using the flat, matte paint
color “Blueberry Festival”, which can be characterized by red, green, and blue values of 73,
139, and 184, respectively, and HEX #498BB8 (Valspar Paints, Cleveland, OH, USA).

Scanners are connected to a Dell Optiplex 9010 SFF Computer (Intel Core i5-3470
3.2 GHz, 16GB RAM, 2 TB HDD) with USB cables. This machine runs a Linux operating
system (Ubuntu 18.04) to support simultaneous scanner operation and image filing using
Python shell scripts. The system is command-line driven, where QR codes are scanned
using a wireless 1D/2D barcode scanner. The QR codes have embedded information related
to the scan command, scanner identity, and sample identity to facilitate high-throughput
operation and reduce the risk of human errors associated with manual information entry.
Images captured on each scanner are saved, backed up on an external hard drive, and
uploaded to the CyVerse Discovery Environment for image analysis.

Subsequent image analysis provides a robust data set for use in phenotyping and
quantitative analyses. Image analysis is performed in the CyVerse Discovery Environment
using the Phytomorph Image Phenomics Toolkit, the same application that was used for
the analysis of the blue card images described previously. First, a single high-throughput
file path is created with a set of images. Next, the high-throughput file path is selected for
analysis with either the Arabidopsis Seed Method (black background) or All Grains (blue,
lilac, green or white background) single file tool in the Phytomorph Image Phenomics
Toolkit. A high-throughput multifile path is created from the output using .json files. This
high-throughput multipath is then selected for analysis using the JSON compiler in the
multifile tools in the Phytomorph Image Phenomics Toolkit. Finally, a .csv file of results
for each image is available for download. The data include measurements of each seed in
the image, with mean and standard deviations. A tutorial demonstrating this process is
available on the SSSL YouTube channel, SSSL Training - Image Analysis. Available online:
https://www.youtube.com/watch?v=9SK4vkfeJHI (accessed on 15 August 2021).

The CSV file from the seed image analysis contains a large amount of information.
Seed size, shape, and color are quantified. The number of seeds in each subsample is
automatically counted, and this information is combined with the weight of the subsample
to calculate the weight of 1000 seeds (Figure 9). Seed size includes seed area and the length
of the major and minor axis, which are used to calculate seed shape (i.e., eccentricity). Seed
color includes red, green, and blue values that can be used to produce any color. Seed
count is reported as the number of objects in the image. If seeds are touching, the size of
that shape is divided by the average size seed to determine the number of seeds in the
aggregate. Means and standard deviations are reported for each measurement. The mean
values represent an average calculated using the values for each seed, with the standard
deviation representing the variability within the sample. For some measurements, such

https://www.youtube.com/watch?v=9SK4vkfeJHI
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as color, a standard deviation of standard deviations is reported; a standard deviation
for the sample is calculated using the standard deviations of all the seeds in the sample
(Supplementary File S4: QuinoaCollab_NIR_Scan File).

Figure 9. Correlation between thousand seed weight as estimated using image analysis, where the
number of seeds is counted and the weight of those seeds is known, and hand-counted thousand
seed weight.

9.2.3. Seed Nutritional Phenotyping
Near-Infrared Spectroscopy

Quinoa seed composition, especially protein content and composition, can be highly
variable [194,195]. Seed composition can vary depending on processing, when certain parts
of the seed are removed or modified through washing, abrasion, or milling [196]. Therefore,
seed composition analyses and their results must be considered in the context of processing
and physical state of the quinoa seed before analysis. One method to achieve HT analysis
of quinoa seed composition is the use of near-infrared (NIR) spectroscopy, in which, in
theory, any sample measurement can be predicted as long as the sample’s spectral data are
correlated with the desired measurement [197]. This technology has diverse capabilities,
such as phenomic selection and prediction of maize yield from kernels [198], and has been
successfully applied to predict amino acid content in quinoa [199]. In addition to the NIR
methodology, mid-infrared should be considered as a useful technology with practical
applications in quinoa. For example, mid-infrared has been used to classify groups of
quinoa [200] and characterize rheological properties [201].

An NIR calibration requires careful selection of samples to serve as the reference
data, from which multivariate regression equations will be created. Spectral data are
used to predict the target measurement(s). Sample selection should represent the target
population of spectra [197]. One approach is to collect spectral data for as many samples
as possible. These samples should represent the genotypes and environments that will be
routinely analyzed. Next, principal component analysis of the spectral data, combined
with the Kennard–Stone method of sample selection, can identify the best candidates to
include in the calibration [202]. The R package prospectr provides multiple options for
selecting samples for calibration and validation sets using a multivariate spectral data
set. Another approach is to select samples representative of a normal distribution for the
desired measurement, such as protein content.
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Reference data, such as protein content and amino acid composition, should be mea-
sured according to Official Methods of Analysis [203]. Blind duplicates, i.e., multiple
samples from the same seed sample submitted for analysis and acting as quality control,
should be included when possible to estimate and account for errors during calibration
development. Various methods can be used to develop calibration equations, such as
partial-least squares regressions. The calibration metrics, such as standard error of predic-
tion, should be quantified through either internal or external validation processes [198,204].
The development of calibration processes is ongoing. The initial calibration should be up-
dated over time by incorporating outliers into the reference data set or additional products
(market classes, flours, etc.) into the crop analysis profile to improve the calibration(s).

NIR—An Example of Calibration Development for Quinoa

When beginning to develop an NIR calibration, one should consider how the quinoa
samples will be processed before analysis and determine the desired outputs from the
analysis. For example, the WSU SSSL has initiated NIR calibration development with raw
whole quinoa seed, which are unprocessed but cleaned of non-seed material to predict
crude protein, crude fat, ash, and moisture content, in addition to a complete amino
acid profile using a DA7250 (PerkinElmer, Waltham, MA, USA) with an NIR range of
950–1650 nm. The advantage of this approach is that samples require minimal processing
before analysis. The disadvantage is that sample homogenization through milling could
provide a more accurate representation of seed composition because the entire seed is
made available for spectral reflectance. Scatter corrections, such as standard normal variate
(SNV) or multiplicative scatter correction (MSV) can be applied during pre-processing of
spectral data to correct for differences in the sample matrix (i.e., seed surface) [205]. A
non-destructive approach ensures that seed viability is maintained to support subsequent
breeding activities, such as greenhouse seed increases, field trials, and further research and
analyses, such as food science studies.

The SSSL has improved the stock DA7250 NIR calibration twice. The stock calibration
included 27 samples and reference data for moisture, protein, and ash. However, it was not
robust and poorly predicted novel quinoa samples; NIR analysis is best at interpolation
rather than extrapolation. The second version (V2) added samples from the WSU breeding
program materials and field research trials [206]. These samples were randomly selected
across a normal distribution of crude protein content predicted using the stock calibration.
The current NIR calibration (V3) incorporated 37 samples selected from a collection of
diverse genotypes grown in Australia in 2018. Samples were selected using the Kennard–
Stone method, with principal component analysis of the spectral data. The reference data
collection included 10 blind duplicates to measure and account for laboratory standard
error in the calibration.

Eight-fold cross validation was performed in triplicate to measure calibration predic-
tion accuracy metrics, which are reported as an average measure (Table 6). These metrics
provide an indication of how well the calibration may perform. For example, a large range
in reference data values is beneficial for encompassing the possible values of experimental
samples that may be analyzed, and usually contributes to higher prediction accuracy as
measured by the correlation coefficient between measured and predicted values. The
metrics related to the cross validation provide various measures of the calibration predic-
tion accuracy. Although the current calibration includes various seed colors, calibrations
specific to the major quinoa seed colors—white, black, and red—may be more appropriate.
NIR calibrations exist for developed market classes in other crops, such as red and white
wheat. The SSSL will continue to analyze diverse genotypes grown in varying environ-
ments for identifying candidate samples with the potential to improve the accuracy of the
NIR calibration for predicting quinoa seed composition. This will be achieved by either
including samples with novel spectral signatures, or by including data that increase the
range of reference data for particular seed components.
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Table 6. Washington State University Sustainable Seed Systems lab NIR calibration (V3) metrics. The range, minimum
(min), and maximum (max) are calculated using reference data for quinoa samples included in the calibration (n = 175).
Calibration prediction accuracy metrics are reported as an average measure of 8-fold cross validation in triplicate.

Stats from WSU Calibration V3 Data (g 100g−1 Protein)

Range Min Max RMSECV SECV Robust SECV RPDCV R2CV

Alanine 1.99 2.89 4.88 0.022 0.022 0.018 3.036 0.892
Arginine 4.68 4.58 9.25 0.053 0.053 0.044 4.308 0.946

Aspartic acid 3.22 5.51 8.73 0.039 0.040 0.036 3.768 0.930
Cysteine 0.76 1.31 2.07 0.010 0.010 0.010 3.188 0.902

Glutamic acid 7.04 8.22 15.26 0.093 0.093 0.086 3.802 0.931
Glycine 1.33 4.78 6.11 0.041 0.041 0.036 2.447 0.834

Histidine 1.05 1.96 3.01 0.015 0.015 0.014 4.564 0.952
Isoleucine 1.51 2.89 4.41 0.021 0.022 0.019 3.392 0.913
Leucine 2.55 4.3 6.85 0.031 0.032 0.029 3.473 0.917
Lysine 3.14 3.45 6.59 0.029 0.029 0.033 3.290 0.908

Methionine 1.15 1.31 2.46 0.012 0.012 0.009 2.955 0.886
Phenylalanine 1.57 2.71 4.28 0.019 0.019 0.018 3.889 0.934

Proline 1.68 2.80 4.48 0.023 0.023 0.018 2.556 0.847
Serine 1.39 2.89 4.28 0.019 0.019 0.016 3.176 0.901

Taurine 1.96 0.82 2.79 0.012 0.012 0.009 1.669 0.645
Threonine 1.60 2.43 4.02 0.017 0.017 0.016 3.015 0.890

Tryptophan 0.93 0.55 1.48 0.012 0.012 0.009 1.681 0.647
Tyrosine 0.93 2.12 3.05 0.014 0.014 0.013 3.393 0.913

Valine 1.84 3.36 5.20 0.024 0.024 0.023 3.260 0.906
Hydroxylysine 0.18 0.05 0.23 0.004 0.004 0.003 1.591 0.605
Hydroxyproline 0.93 0.29 1.21 0.010 0.010 0.011 1.821 0.699

Stats from WSU calibration V3 data (g 100g−1 sample)
Crude protein 11.95 6.82 18.77 0.394 0.395 0.406 5.521 0.967

Ash 3.32 2.21 5.53 0.154 0.154 0.129 3.084 0.895
Crude fat 6.95 0.00 6.95 0.310 0.311 0.316 3.883 0.934

Crude fiber 13.67 1.44 15.11 0.442 0.443 0.377 4.904 0.958
Moisture 3.76 6.41 10.17 0.183 0.183 0.159 6.579 0.977
TotalAA 10.06 5.84 15.90 0.413 0.413 0.328 4.018 0.938

Range Min Max RMSECV SECV Robust SECV RPDCV R2CV

Hydroxylysine and hydroxyproline are poorly predicted. Lanthionine and ornithine were eliminated from the calibration owing to limited
lab analysis. RMSECV = root mean square error of cross validation; SECV = standard error of cross validation; RPDCV = ratio of reference
data standard deviation to standard error of prediction; R2CV = coefficient of determination of cross validation.

The Nutritional Phenotyping Pipeline at Washington State University

HT analysis of seed composition and characteristics is performed by SSSL at WSU
using a Nutritional Phenotyping Pipeline. The system has been applied to barley, perennial
grains, quinoa, and camelina and has the potential to be applied to diverse crops. The
system is flexible and can accommodate varying sample amounts. Seed characteristics can
be measured using image analysis with as little as 1–2 g of quinoa. With approximately
10 g of quinoa, seed composition can be estimated using a NIR analyzer; however, larger
seed samples of 100–300 g ensure a more robust and representative analysis. This flexibility
supports the analysis of single plant samples up to plot-level samples. Moreover, analysis
of mineral content and composition in whole quinoa seeds is under development using
energy-dispersive X-ray spectroscopy. Sample organization and tracking is maintained
throughout the Nutritional Phenotyping Pipeline using a system that relies on 2D digital
barcodes (QR codes), barcode scanners, and USB drivers. The system is designed for
quality assurance and quality control by automating sample data entry and processing.
Additional information on the pipeline workflow and development as well as videos
detailing each step in the process can be found on the SSSL YouTube channel. Available
online: https://youtube.com/playlist?list=PLdKoK4IZoGTAFYZWCev4vteOErik3CKcS
(accessed on 15 August 2021)
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9.2.4. Detection of Saponins in Quinoa

Most quinoa seeds also contain a large variety of compounds called saponins, some of
which have shown to harbor antinutritive properties, thus making them undesirable for
human consumption. The predominant form of saponins in quinoa are triterpenoid glyco-
sides [207–209]. Saponins have foaming characteristics and are bitter in taste. They have
been found to largely localize on the outside of the seed, making it possible to wash them
off or remove them by abrasion before consumption (reviewed in [210]). The production
of quinoa without those bitter saponins has been a breeding target, and some naturally
non-bitter quinoa accessions have been identified [15]. For breeding and phenotyping
purposes, testing for saponins is desirable. Over 90 different saponins have been found in
quinoa [208]. Saponins are composed of an aglycone backbone with sugar moieties. The
combination of those two make up the large variety. Four of the common aglycones in
quinoa are oleanolic acid, hederagenin, phytolaccagenic acid, and serjanic acid [208].

For phenotyping purposes, a simple detection test may be used that utilizes the
foaming characteristics of saponins. When shaken in water, saponins foam, a property
that is used for the afrosimetric method [211]. Colorimetric methods such as the use of
spectrophotometry can also be used for saponin detection (e.g., [212]). However, these
methods also detect the phytosterols in plants. Colorimetric methods are, therefore, not
worth the extra effort, while it is easier and cheaper to do the afrosimetric test. Jarvis
et al., (2017) [15] validated the results of an afrosimetric test using a more specific detection
method, i.e., gas chromatography–mass spectrometry (GC–MS), on a mapping population,
which segregated for saponins. The afrosimetric test and GC–MS method corroborated the
absence or presence of saponins.

The afrosimetric test can be easily performed as part of a field trial on a large number
of samples according to the following method: five quinoa seeds, free from loose hull, are
placed in a 1.5 mL microcentrifuge tube containing 500 µL of double-distilled water. The
tubes are shaken by hand vigorously for 30 s until a foam appears that is stable in height,
as shown in Figure 10. If foam occurs, it may be semi-quantified by using a caliper and
measuring the foam height. A vortex swirls the sample and does not, on its own, lead
to stable foam heights. The afrosimetric method is not suitable for the quantification of
saponins or investigation of the types of saponins.

Figure 10. Foaming test (afrosimetric method) for presence or absence of saponins on quinoa seeds.

To quantify saponins, GC–MS or liquid chromatography–mass spectrometry (LC–MS)
can be used with appropriate standards. GC–MS includes a derivatization step, which
removes the sugar moieties from the aglycone backbone; hence, GC–MS allows quantifi-
cation based on the aglycone backbone [15]. LC–MS allows detection of the individual
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saponins; however, this quantification is limited by the availability of standards. Both
GC–MS and LC–MS are more laborious and expensive than the afrosimetric test.

9.2.5. Quinoa Seed Longevity

Every stage of seed production, from field selection to harvesting and processing to
seed storage, is crucial for the quality management of seed [213]. Seed longevity is related
to the prediction of seed viability in a storage environment, and depends greatly on its
composition, the environment during seed maturation, and harvesting [214,215]. Moisture
content, temperature, and oxygen are fundamental factors that control seed longevity [216].
Among these factors, elevated seed moisture is the main culprit for loss of seed quality
during storage [217,218].

Both natural and economic resources are wasted owing to inadequate seed storage
if seeds of poor quality are sown [219]. Thus, high quality seeds are ensured at the time
of planting if the seeds maintain their quality during seed production and at the time
of harvesting, processing, and storage. Seeds having higher initial quality have greater
longevity than seeds from the same genotype of lower initial quality [219]. Environmental
conditions, especially higher temperatures and long photoperiods, during seed develop-
ment promote dormancy after harvest [220,221]. As quinoa belongs to the Amaranthaceae
family, its varieties proceed through different types of seed dormancy or sometimes have no
dormancy [222]. The influence of maternal environment on the seed-coat’s characteristics
is associated with the level of dormancy in Chenopodium seeds. The Chilean accession
showing higher level of dormancy had a significantly thicker episperm for all sowing
dates [221]. Some quinoa varieties have no dormancy and in wet environments, seeds
may germinate inside the panicle before harvest [222]. This condition can lead to large
yield losses and the desiccation intolerance of unorthodox seeds leads to different storage
requirements. It is, therefore, important that quinoa varieties are also evaluated for their
dormancy type and that preharvest sprouting is recorded when observed. After harvest,
the viability of seed should be monitored with Tetrazolium tests on regular basis (see [221]).

Cultivated quinoa has small, flat seeds that are highly hygroscopic in nature and absorb
water very quickly, within a day, owing to the porosity of its integument. This moisture gain
can be used as an indicator to predict seed longevity [220]. Despite the potential to grow quinoa
under adverse environmental conditions, its seed quality deteriorates with inadequate storage
conditions, particularly at high temperatures and relative humidity [223,224]. Quinoa seed
loses viability extremely quickly compared with conventional cereals such as maize, wheat,
and rice [225]. There is a need to explore the physiological and biochemical changes associated
with seed longevity under ambient storage conditions. Castellión et al., (2010) [226] found
a strong association between quinoa seed aging and the accumulation of Maillard reaction
products formed by a reaction between amino acids and reducing sugars, which is responsible
for protein aggregation and insolubility. Thus, protein insolubility and water mobility through
the multilayers of the seeds are key indicators for the prediction of seed longevity in quinoa
germplasm [220]. Both pericarp and seed coat are comprised of two layers of cells. In the
pericarp, the inner layer is discontinuous and its cells are tangentially stretched while the large
cells of the outer layer are papillose in shape. The seed coat also consists of two cell layers, the
exotesta and the endotegmen [227]. In contrast, lipid peroxidation is not a good indicator for
seed longevity because of the high oxidative stability of the lipids associated with the high
vitamin E content of quinoa seeds [228].

The pattern of loss of viability among quinoa accessions depends on post-harvest
management, seed provenance, germplasm, and conditions prevailing during seed devel-
opment, where seed maturation is the most sensitive phase for seed viability [222]. Low
seed moisture content and temperature are basic principles for the storage of orthodox
seeds such as many quinoa varieties [219]. The best approach is Dry Chain Technology,
which is aimed at proper drying (natural or artificial drying to safe moisture limits) of
seeds after harvest followed by hermetic packaging to keep it dry until used in the value
chain [218]. Hermetic bags are composed of a plastic that resists the exchange of moisture
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and gases, thus a modified atmosphere can be created by depleting oxygen and enriching
carbon dioxide inside the bags [217]. The popular hermetic bags are Super Bags (GrainPro,
Washington, D.C., USA) and Purdue Improved Crop Storage (PICS) bags, and are being
used in >80 countries to protect grains, legumes, and industrial commodities [229]. A PICS
bag is comprised of a double layer of high-density polyethylene (HDPE) liners inside of a
woven bag, while a Super Bag consists of a single HDPE layer to control post-harvest losses
in cereals [230]. In a recent study conducted at agro-climatic conditions of Pakistan, quality
of quinoa seeds stored in hermetic bags at 8% initial seed moisture content is preserved
in terms of higher germination and vigor and negligible seed deterioration compared
with traditional storage under diverse ambient conditions. Rapid loss of seed viability in
traditional porous bags was owing to moisture absorption from the ambient high relative
humidity, which resulted in seed deterioration [231].

Quinoa seed of initial seed quality of 80% germination and 8% moisture content can
be stored hermetically for six months without loss of viability under ambient conditions
(25–40 °C and 50–60% RH) while after one-year storage germination declines to 15% [231].
Quinoa seed maintains physiological quality for longer periods (up to 300 days) in im-
permeable packaging and under low temperature (4 ± 2 °C) [232]. It is also reported that
quinoa seed with 5% moisture content at 5 °C can be stored for 8 months with maximum
viability [233], and this moisture content is also ideal for long term storage. Seed of 5%
moisture content can be stored for one year at 25 °C with only one percent loss of germi-
nation (according to seed viability equation given by [234]). The moisture content below
which quinoa seed longevity is not further improved lies at 4.1% when stored at 65 °C [234].

10. Conclusions

Advances in quinoa crop improvement can be accelerated through the development
of an international network of quinoa researchers and trial datasets. Collaborations across
members of the Global Collaborative Network on Quinoa (GCN-Quinoa). Available online:
gcn-quinoa.org (accessed on 15.08.2021) would be highly facilitated if all of members will
be able to use the same language, tools and methods for establishing trials, collecting
data, and then sharing datasets. This network initiated in 2015 has connected all the
participants of different FAO–TCP programs. Now, the GCN-Quinoa links 296 members
from all around the world in more than 75 countries. The sharing of data among global
and regional research groups allows deeper exploration of each dataset in the context of its
environment. Owing to the significant effects of environment and management practices
on quinoa phenotypes, the reusability of each dataset greatly depends on the quality of
the metadata recorded, including a detailed profile of environmental parameters, and on
maintaining as many factors constant as is possible. The most important variables that
need consistency among trials are the methods of data collection, which can be achieved
by an international agreement on phenotyping methods describing common protocols
for establishing a dataset with comparable standards, as have been proposed in this
article. The Germinate database is available at Quinoa Germinate Database. Available
online: http://germinate.quinoadb.org (accessed on 15 August 2021) to further facilitate
standardizing global quinoa dataset structures and sharing and analyzing of data.

Quinoa is a remarkable crop with many valuable properties, but it is also a crop that still
needs significant amounts of research and breeding to facilitate its move to become a major or
widely cultivated food crop. It is hoped that this paper will facilitate these efforts by providing
a framework for globally consistent phenotyping, benchmarking the phenotyping of quinoa
plants and easing the comparison of results obtained around the world.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/plants10091759/s1, S1: Phenotyping cards, S2: Blue card template, S3: Scanner Equipment, S4:
QuinoaCollab_NIR_Scan File.
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140. Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.;
Mészáros, J.; et al. Current Practices in UAS-based Environmental Monitoring. Remote Sens. 2020, 12, 1001. [CrossRef]

141. Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned Aerial Vehicle Remote
Sens.ing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant. Sci. 2017, 8, 1111. [CrossRef] [PubMed]

142. Ziliani, M.G.; Parkes, S.D.; Hoteit, I.; McCabe, M.F. Intra-Season Crop Height Variability at Commercial Farm Scales Using a
Fixed-Wing UAV. Remote Sens. 2018, 10, 2007. [CrossRef]

http://doi.org/10.4081/ija.2020.1749
http://doi.org/10.1016/j.agwat.2010.07.003
http://doi.org/10.2134/agronj2008.0137s
http://doi.org/10.1016/j.agwat.2009.06.020
http://doi.org/10.1002/ird.2116
http://www.fao.org/3/i6050e/i6050e.pdf
http://doi.org/10.1016/j.envsoft.2014.08.005
http://doi.org/10.1016/S1364-8152(01)00079-2
http://doi.org/10.1006/anbo.1996.0126
http://doi.org/10.1016/j.fcr.2014.06.011
http://doi.org/10.1016/S1161-0301(14)80148-2
http://doi.org/10.1016/j.eja.2008.05.003
http://doi.org/10.3389/fphys.2013.00017
http://doi.org/10.1016/j.pbi.2009.12.012
http://doi.org/10.1016/s0065-2113(10)06002-5
http://doi.org/10.1016/0378-4290(92)90032-5
http://doi.org/10.1128/microbe.1.223.1
http://doi.org/10.1071/FP10168
http://www.ncbi.nlm.nih.gov/pubmed/32480897
http://doi.org/10.1016/j.rse.2010.08.023
http://doi.org/10.2135/cropsci2018.11.0711
http://doi.org/10.2134/age2018.12.0063
http://doi.org/10.1016/j.cropro.2003.08.010
http://doi.org/10.1016/j.compag.2020.105731
http://doi.org/10.3390/rs12061001
http://doi.org/10.3389/fpls.2017.01111
http://www.ncbi.nlm.nih.gov/pubmed/28713402
http://doi.org/10.3390/rs10122007


Plants 2021, 10, 1759 49 of 52

143. Johansen, K.; Morton, M.J.L.; Malbeteau, Y.; Aragon, B.; Al-Mashharawi, S.; Ziliani, M.G.; Angel, Y.; Fiene, G.; Negrão, S.;
Mousa, M.A.A.; et al. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random
Forest. Front. Artif. Intell. 2020, 3. [CrossRef]

144. Di Gennaro, S.F.; Rizza, F.; Badeck, F.-W.; Berton, A.; Delbono, S.; Gioli, B.; Toscano, P.; Zaldei, A.; Matese, A. UAV-based
high-throughput phenotyping to discriminate barley vigour with visible and near-infrared vegetation indices. Int. J. Remote Sens.
2018, 39, 5330–5344. [CrossRef]

145. Wang, T.; Thomasson, J.A.; Yang, C.; Isakeit, T.; Nichols, R.L. Automatic Classification of Cotton Root Rot Disease Based on UAV
Remote Sensing. Remote Sens. 2020, 12, 1310. [CrossRef]

146. Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, X.; Li, Q.; Guo, L.; Chen, W.-H. Wheat yellow rust monitoring by learning from
multispectral UAV aerial imagery. Comput. Electron. Agric. 2018, 155, 157–166. [CrossRef]

147. Chivasa, W.; Mutanga, O.; Biradar, C. UAV-Based Multispectral Phenotyping for Disease Resistance to Accelerate Crop Improve-
ment under Changing Climate Conditions. Remote Sens. 2020, 12, 2445. [CrossRef]

148. Holman, F.H.; Riche, A.B.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. Radiometric Calibration of ‘Commercial off the Shelf’
Cameras for UAV-Based High-Resolution Temporal Crop Phenotyping of Reflectance and NDVI. Remote Sens. 2019, 11, 1657.
[CrossRef]

149. Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981,
17, 1133–1138. [CrossRef]

150. Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution
Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sens. 2012, 4, 1392–1410.
[CrossRef]

151. Shendryk, Y.; Sofonia, J.; Garrard, R.; Rist, Y.; Skocaj, D.; Thorburn, P. Fine-scale prediction of biomass and leaf nitrogen content in
sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102177. [CrossRef]

152. Messina, G.; Modica, G. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research
Outlook. Remote Sens. 2020, 12, 1491. [CrossRef]

153. Aragon, B.; Johansen, K.; Parkes, S.; Malbeteau, Y.; Al-Mashharawi, S.; Al-Amoudi, T.; Andrade, C.F.; Turner, D.; Lucieer, A.;
McCabe, M.F. A Calibration Procedure for Field and UAV-Based Uncooled Thermal Infrared Instruments. Sensors 2020, 20, 3316.
[CrossRef] [PubMed]

154. Kelly, J.; Kljun, N.; Olsson, P.-O.; Mihai, L.; Liljeblad, B.; Weslien, P.; Klemedtsson, L.; Eklundh, L. Challenges and Best Practices
for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera. Remote Sens. 2019, 11, 567. [CrossRef]

155. Malbeteau, Y.; Johansen, K.; Aragon, B.; Al-Mashhawari, S.K.; McCabe, M.F. Overcoming the challenges of thermal infrared
orthomosaics using a swath-based approach to correct for dynamic temperature and wind effects. Remote Sens. 2021, 13, 3255.
[CrossRef]

156. Aasen, H.; Bolten, A. Multi-temporal high-resolution imaging spectroscopy with hyperspectral 2D imagers-From theory to
application. Remote Sens. Environ. 2018, 205, 374–389. [CrossRef]

157. Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors,
Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [CrossRef]

158. Angel, Y.; Turner, D.; Parkes, S.; Malbeteau, Y.; Lucieer, A.; McCabe, M.F. Automated Georectification and Mosaicking of
UAV-Based Hyperspectral Imagery from Push-Broom Sensors. Remote Sens. 2020, 12, 34. [CrossRef]

159. Barreto, M.A.P.; Johansen, K.; Angel, Y.; McCabe, M.F. Radiometric Assessment of a UAV-Based Push-Broom Hyperspectral
Camera. Sensors 2019, 19, 4699. [CrossRef]

160. Hassler, S.C.; Baysal-Gurel, F. Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy 2019, 9,
618. [CrossRef]

161. Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Franceschini, M.H.; Kramer, H.; van Loo, E.N.; Roman, V.J.; Finkers, R.
UAV based soil salinity assessment of cropland. Geoderma 2019, 338, 502–512. [CrossRef]

162. Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High Throughput Field Phenotyping of
Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing. Remote Sens. 2016, 8, 1031. [CrossRef]

163. Galli, G.; Sabadin, F.; Costa-Neto, G.M.F.; Fritsche-Neto, R. A novel way to validate UAS-based high-throughput phenotyping
protocols using in silico experiments for plant breeding purposes. Theor. Appl. Genet. 2020, 134, 715–730. [CrossRef]

164. Keller, B.; Matsubara, S.; Rascher, U.; Pieruschka, R.; Steier, A.; Kraska, T.; Muller, O. Genotype Specific Photosynthesis
x Environment Interactions Captured by Automated Fluorescence Canopy Scans Over Two Fluctuating Growing Seasons.
Front. Plant. Sci. 2019, 10, 1482. [CrossRef]

165. Raesch, A.R.; Muller, O.; Pieruschka, R.; Rascher, U. Field Observations with Laser-Induced Fluorescence Transient (LIFT) Method
in Barley and Sugar Beet. Agriculture 2014, 4, 159–169. [CrossRef]

166. Pieruschka, R.; Schurr, U. Plant Phenotyping: Past, Present, and Future. Plant. Phenomics 2019, 2019, 1–6. [CrossRef]
167. Mochida, K.; Koda, S.; Inoue, K.; Hirayama, T.; Tanaka, S.; Nishii, R.; Melgani, F. Computer vision-based phenotyping for

improvement of plant productivity: A machine learning perspective. GigaScience 2018, 8. [CrossRef]
168. Ubbens, J.; Cieslak, M.; Prusinkiewicz, P.; Parkin, I.; Ebersbach, J.; Stavness, I. Latent Space Phenotyping: Automatic Image-Based

Phenotyping for Treatment Studies. Plant. Phenomics 2020, 2020, 1–13. [CrossRef]

http://doi.org/10.3389/frai.2020.00028
http://doi.org/10.1080/01431161.2017.1395974
http://doi.org/10.3390/rs12081310
http://doi.org/10.1016/j.compag.2018.10.017
http://doi.org/10.3390/rs12152445
http://doi.org/10.3390/rs11141657
http://doi.org/10.1029/WR017i004p01133
http://doi.org/10.3390/rs4051392
http://doi.org/10.1016/j.jag.2020.102177
http://doi.org/10.3390/rs12091491
http://doi.org/10.3390/s20113316
http://www.ncbi.nlm.nih.gov/pubmed/32532127
http://doi.org/10.3390/rs11050567
http://doi.org/10.3390/rs13163255
http://doi.org/10.1016/j.rse.2017.10.043
http://doi.org/10.3390/rs9111110
http://doi.org/10.3390/rs12010034
http://doi.org/10.3390/s19214699
http://doi.org/10.3390/agronomy9100618
http://doi.org/10.1016/j.geoderma.2018.09.046
http://doi.org/10.3390/rs8121031
http://doi.org/10.1007/s00122-020-03726-6
http://doi.org/10.3389/fpls.2019.01482
http://doi.org/10.3390/agriculture4020159
http://doi.org/10.34133/2019/7507131
http://doi.org/10.1093/gigascience/giy153
http://doi.org/10.34133/2020/5801869


Plants 2021, 10, 1759 50 of 52

169. Brunner, G.; Liu, Y.; Pascual, D.; Richter, O.; Ciaramita, M.; Wattenhofer, R. On Identifiability in Transformers. arXiv 2019,
arXiv:1908.04211.

170. Chefer, H.; Gur, S.; Wolf, L. Transformer Interpretability Beyond Attention Visualization. 2021. Available online: https:
//openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_
CVPR_2021_paper.html (accessed on 15 August 2021).

171. Mastebroek, H.; van Loo, E.; Dolstra, O. Combining ability for seed yield traits of Chenopodium quinoa breeding lines. Euphytica
2002, 125, 427–432. [CrossRef]

172. Ploschuk, E.L.; Hall, A. Capitulum position in sunflower affects grain temperature and duration of grain filling. Field Crop. Res.
1995, 44, 111–117. [CrossRef]

173. Dong, Y.; Ewang, Y.-Z. Seed shattering: From models to crops. Front. Plant. Sci. 2015, 6, 476. [CrossRef] [PubMed]
174. Peterson, A.; Jacobsen, S.-E.; Bonifacio, A.; Murphy, K. A Crossing Method for Quinoa. Sustainability 2015, 7, 3230–3243. [CrossRef]
175. Colque-Little, C.; Amby, D.; Andreasen, C. A Review of Chenopodium quinoa (Willd.) Diseases—An Updated Perspective. Plants

2021, 10, 1228. [CrossRef] [PubMed]
176. Agrios, G. Plant Pathology; Elsevier Academic Press: Cambridge, MA, USA, 2005.
177. Lamichhane, J.R.; Venturi, V. Synergisms between microbial pathogens in plant disease complexes: A growing trend.

Front. Plant. Sci. 2015, 6, 385. [CrossRef]
178. Danielsen, S.; Jacobsen, S.-E.; Hockenhull, J. First Report of Downy Mildew of Quinoa Caused by Peronospora farinosa f. sp.

chenopodii in Denmark. Plant. Dis. 2002, 86, 1175. [CrossRef] [PubMed]
179. Testen, A.; McKemy, J.M.; Backman, P.A. First Report of Passalora Leaf Spot of Quinoa Caused by Passalora dubia in the United

States. Plant. Dis. 2013, 97, 139. [CrossRef]
180. Testen, A.; McKemy, J.M.; Backman, P.A. First Report of Ascochyta Leaf Spot of Quinoa Caused by Ascochyta sp. in the United

States. Plant. Dis. 2013, 97, 844. [CrossRef]
181. Testen, A.; Jiménez-Gasco, M.D.M.; Ochoa, J.B.; Backman, P.A. Molecular Detection of Peronospora variabilis in Quinoa Seed and

Phylogeny of the Quinoa Downy Mildew Pathogen in South America and the United States. Phytopathology 2014, 104, 379–386.
[CrossRef]

182. Yin, H.; Zhou, J.; Lv, H.; Qin, N.; Chang, F.J.; Zhao, X.J. Identification, Pathogenicity, and Fungicide Sensitivity of Ascochyta
caulina (Teleomorph: Neocamarosporium calvescens) Associated with Black Stem on Quinoa in China. Plant. Dis. 2020, 104.
[CrossRef] [PubMed]
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